
FetchRefs_FR

FetchRefs_FR ii

COLLABORATORS

TITLE :

FetchRefs_FR

ACTION NAME DATE SIGNATURE

WRITTEN BY August 26, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

FetchRefs_FR iii

Contents

1 FetchRefs_FR 1

1.1 FetchRefs_FR . 1

1.2 Table Of Contents . 1

1.3 Introducing FetchRefs . 2

1.4 Requirements . 2

1.5 Arguments . 2

1.6 FILES . 3

1.7 PORTNAME . 3

1.8 ARexx commands . 3

1.9 FR_ADD . 4

1.10 FR_CLEAR . 4

1.11 FR_GET . 5

1.12 FR_NEW . 7

1.13 FR_QUIT . 7

1.14 The <Select reference> window . 8

1.15 ARexx scripts . 9

1.16 The script for the Shell . 9

FetchRefs_FR 1 / 10

Chapter 1

FetchRefs_FR

1.1 FetchRefs_FR

FetchRefs 1.3

A feature packed utility that provides you with a
comfortable access to your AutoDocs and include files

(FetchRefs manual)

Table Of Contents

Introducing FetchRefs
Arguments
ARexx~commands
The~<Select~reference>~window
ARexx~scripts

1.2 Table Of Contents

MAIN FetchRefs_FR
1. Introducing FetchRefs

1.1. Requirements
2. Arguments

2.1. FILES
2.2. PORTNAME

3. ARexx~commands
3.1. FR_ADD
3.2. FR_CLEAR
3.3. FR_GET
3.4. FR_NEW
3.5. FR_QUIT

4. The~<Select~reference>~window
5. ARexx~scripts

5.1. The~script~for~the~Shell

FetchRefs_FR 2 / 10

1.3 Introducing FetchRefs

FetchRefs is the heart of the package and you will probably want to have it
running always. Anything FetchRefs does is based on ARexx commands, be it
load a new file, flush its buffer, quit, or do its best to find
documentation on whatever (part of a) keyword the caller supplies.

Before FetchRefs is any good, it needs an index file. This is generated by
GenerateIndex. Please be sure to read the file ’FetchRefs_GI.guide’ to
learn everything about generating index files! Also be sure that you *have*
an index file before you try to use FetchRefs.

If you decide to skip parts of this guide, please make sure that you read
at least the FR_GET and the the~<Select~reference>~window sections.
Thanks a lot.

Requirements

1.4 Requirements

FetchRefs requires
· triton.library, Copyright 1995 by Stefan Zeiger

Thanks to the author for creating and releasing this library!

You will need at least version 5 (release 1.4) of Triton and naturally an
Amiga with at least Kickstart 2.0. Finally you will need to have ARexx
running.

1.5 Arguments

The syntax of FetchRefs is (in standard AmigaDos notation):

FILES/M,PORTNAME

or, if you prefer this BNF-like approach,

FetchRefs [[FILES] {wildcard}] [PORTNAME <name>]

As you can see(?), you can specify as many index FILES as you please.
If you want to use tool types (i.e. start from Workbench, possibly via the
WBStartup drawer), you simply enter each argument as a tool type. To enter
several index FILES you simply make several tool type entries, all
starting with ’FILES=’.

In the following sections the arguments are explained.

FILES
PORTNAME

FetchRefs_FR 3 / 10

1.6 FILES

The FILES argument specifies what index files FetchRefs should initially
load. These files are generated by GenerateIndex and are unreadable for
anything but FetchRefs and GenerateIndex. You may enter as many index files
as you please, though most people will do fine with just one.

One issue to remember is that what you specify via the FILES argument are
not really file names but rather wildcard specifications. This means that
you can use all the standard things like # ? [] and so on to specify the
FILES. If you enter a wildcard that matches no files, a warning is written
to the Shell window or in a requester if you start from Workbench. This is
to catch the case where you make a typing mistake - otherwise it can be
very hard to figure out why FetchRefs does not load any index FILES. Except
from that warning, FetchRefs will just consider it a wildcard with no match
and do nothing more about it.

It is not required that you enter any FILES. For example, people with very
limited memory might want to have no files loaded and then use the ARexx
function FR_NEW to load the index file right before they use FR_GET to
fetch the reference. After fetching they will then use FR_CLEAR to flush
the index file again.

1.7 PORTNAME

The PORTNAME argument specifies what the name of FetchRefs’s ARexx port
should be. The default is ’FETCHREFS’.

If the specified (or default if nothing is specified) port already exists,
FetchRefs will send it a break signal and exit. Therefore you can quit an
already running FetchRefs by simply starting another copy. The new instance
will then make sure that they both quit. You can start FetchRefs for a
third time after this and it will then stay in memory.

If you really want several instances of FetchRefs running at the same time
you need to give each copy a different PORTNAME.

1.8 ARexx commands

FetchRefs is operated through a few ARexx commands. For the basic usage of
FetchRefs you do not need to know particulary much about any of these.
Nevertheless, you will probably want to know how and why FetchRefs does
what and when if you want to customize it a bit.

In any case you should read the FR_GET section as it covers a big part
of FetchRefs.

The file ’FetchRefs.ADoc’ (without icon and not installed by Installer
script) contains the documentation on all the ARexx commands in standard
AutoDoc format. Thus you can scan it with GenerateIndex and (with
FetchRefs) quickly look up the manual pages if you should need them while
editing an ARexx script.

FetchRefs_FR 4 / 10

FR_ADD
FR_CLEAR
FR_GET
FR_NEW
FR_QUIT

1.9 FR_ADD

FetchRefs/FR_ADD FetchRefs/FR_ADD

NAME
FR_ADD -- load additional index files

SYNOPSIS
FR_ADD FILES/M

FR_ADD [wildcard [...]]

FUNCTION
FR_ADD will load extra index files and add them to the internal
list. The index files already in memory are not removed.

INPUTS
FILES/M - wildcard specification(s) for the index files to load.

RESULTS
None.

BUGS
None known.

SEE ALSO
FR_CLEAR, FR_NEW

1.10 FR_CLEAR

FetchRefs/FR_CLEAR FetchRefs/FR_CLEAR

NAME
FR_CLEAR -- remove any index files from memory

SYNOPSIS
FR_CLEAR

FUNCTION
Frees all memory allocated to store loaded index files. Most of
the memory FetchRefs uses is the index so this will put FetchRefs
into a low-memory sleep mode. By later calling FR_ADD or FR_NEW
the original state can be restored.

FetchRefs_FR 5 / 10

INPUTS
None.

RESULTS
None.

BUGS
None known.

SEE ALSO
FR_ADD, FR_NEW

1.11 FR_GET

FetchRefs/FR_GET FetchRefs/FR_GET

NAME
FR_GET -- get a reference into a file or the clipboard

SYNOPSIS
FR_GET FIND/A,TO/A,PUBSCREEN,FILEREF/S,CASE/S

FR_GET <keyword> <filename> [public screen name] [FILEREF] [CASE]

FUNCTION
Searches the index list for a name matching the FIND keyword and
writes it to the file specified by TO.

The FIND argument is a wildcard. Thus you can search on things
like ’Open#?’ and get a long list of functions starting with
’Open’. Many more wildcards exist; all the standard AmigaDOS ones
are accepted. However, though FR_GET supports wildcards, the
provided ARexx scripts do not!

If you need wildcarding capabilities you can put the cursor on a
space (see below) before executing the ARexx script. This will
open the~<Select~reference>~window where all wildcards can be
used in the pattern string gadget.

When no matches are found, an error is returned. If excatly one is
found, the reference is written to the filename specified by the
TO argument.

If the supplied keyword/wildcard turns out to match several
references, a window is opened. Read more about this window in the
section named the~<Select~reference>~window, please. The window
will also open if the empty string ’’ matches the wildcard. This
means that you can position the cursor on a space character and
invoke FetchRefs. Then the window will open and you can enter a
search pattern. Useful if you are going to look something up that
is not in your current source view.

The screen on which the above mentioned window is to be opened is
specifed by using the PUBSCREEN argument. You specify the name of

FetchRefs_FR 6 / 10

a public screen which may not be in private mode (they rarely
are). If the specified screen is not available (non-existent or
non-public) or if you do not specify PUBSCREEN at all then
FetchRefs will open the window on the currently active screen.
Should this not be public, the default public screen (usually
Workbench) is used.
No matter where the window opens that screen will be brought to
front (if it is not already there). When you have finished the
selection and the window closes, the screen is again put behind
the other screens (but only if it was brought to front in the
first place).

If the FILEREF argument is given, each of the files in the index
file will be considered a reference themselves. The name of the
reference is the filename without any leading path or suffixes.
For example, the file ’DINCLUDE:Amiga30/exec/types.h’ would be
considered a match if you search for the reference ’types’. The
reason for this truncation is mainly due to the way FetchRefs
works otherwise; types.h must be truncated at the dot if ’types’
was a C structure and not a file name - and FetchRefs really has
no way of knowing what it actually is, until the match is already
found; so, the most sensible idea seemed to trucate everything at
the first non alpha-numeric character.

Depending on whether you set the CASE flag or not, the comparison
of the reference names is either case sensitive (CASE specified)
or not. If you are very good at memorizing capitalization you may
want to turn it on - personally I prefer to keep the search case
insensitive.

To write the reference to the clipboard instead of a file, a
filename of ’CLIPnn’ can be specified. nn is the number of the
clipboard unit you wish to use. The ’CLIP’ word must be in
uppercase, otherwise the name is considered an usual file name.

INPUTS
FIND/A - name of reference to search for. Wildcards accepted.
TO/A - file name to put the result into. ’CLIPnn’ specifies

the clipboard unit nn.
PUBSCREEN - public screen to open the "select reference" window

on. Default is the currently active screen (if public,
otherwise the default public screen).

FILEREF - let a reference search on the base name of a file
match with the entire file.

CASE - activate case sensitive search.

RESULTS
Two results are returned.

rc will be
0 if the reference was successfully written
5 if the~<Select~reference>~window was cancelled/closed

10 if no match was found for the specified search pattern
20 if an error (no memory, etc.) happend during the fetch

rc2 contains additional information; if rc is 0 then it will
contain a number specifying what line the editor should move the

FetchRefs_FR 7 / 10

cursor to after having loaded the generated file. This line will
contain the core of the requested reference. If rc is 5, 10, or
20, rc2 will be a string describing what went wrong. This can be
passed on to the user through the editor (requester, title line).

BUGS
None known.

SEE ALSO

1.12 FR_NEW

FetchRefs/FR_NEW FetchRefs/FR_NEW

NAME
FR_NEW -- clear internal index list and load a new

SYNOPSIS
FR_NEW FILES/M

FR_NEW [wildcard ...]

FUNCTION
This is a combination of FR_CLEAR and FR_ADD and results in the
internal list being set to nothing but what’s specified by the
FILES arguments.

INPUTS
FILES/M - wildcard specification(s) describing what files to load

instead of the current list.

RESULTS
None.

BUGS
None known.

SEE ALSO
FR_ADD, FR_CLEAR

1.13 FR_QUIT

FetchRefs/FR_QUIT FetchRefs/FR_QUIT

NAME
FR_QUIT -- force FetchRefs to quit

SYNOPSIS
FR_QUIT

FUNCTION

FetchRefs_FR 8 / 10

Will send a ^C signal to the FetchRefs process that owns the ARexx
port. This will force FetchRefs to free all allocated memory,
close down the ARexx port, and exit.

A similar effect can be achived by using the C:Break program,
running FetchRefs again, or by sending a ^C by any other means.

INPUTS
None.

RESULTS
None.

BUGS
None known.

SEE ALSO

1.14 The <Select reference> window

FetchRefs hates being wrong. It will much rather be stupid than wrong.
Therefore it will ask you whenever it gets in doubt. You can bring
FetchRefs in doubt by giving it ambigious orders. If you ask it to fetch a
reference but leave several posibilities open, FetchRefs will ask you to
specify what you really want.

There are three ways to get FetchRefs asking: using a wildcard that
matches several references (like ’Open#?’), fetching something like
’DateStamp’ or ’OpenDevice’ which is documented in several places, and
finally asking to fetch a reference that matches ’’ (i.e. place the cursor
on a space and invoke the GoFetchRefs ARexx script).

FetchRefs asks by opening a window with a listview. This listview contains
all the references that match whatever you asked for. Below this listview
is a string gadget which contains your search wildcard. Both of these will
naturally be empty if you placed the cursor on a space.

All references in the listview are picked with the options that are given
to the FR_GET call which got the window opened in the first place. In
other words, you cannot change the FILEREF and CASE options while the
window is open.

If you see a reference you like in the listview you can double click on it
and the window will disappear and your editor will soon have the reference
ready. You can also navigate in the listview by the arrow keys and the
numeric keyboard and select to load the selected reference by using Enter.
The gadget ’Fetch reference’ also means the same as double clicking on an
item.

If you do not want any of the references in the listview you can press the
’Cancel’ or the close window gadget or the Esc key and the window will
disappear and you will be back in your editor right where you left it.

You can also enter a new search pattern in the string gadget and then the
contents of the listview will change to the references that match the new

FetchRefs_FR 9 / 10

pattern. This is quite powerful if you search for a function but are not
quite sure what the name is; you can simply try until you see it in the
listview and then fetch it. Note that while the string gadget is active,
pressing return will *not* fetch the reference selected in the listview.
Instead, it will confirm the contents of the string gadget and switch the
contents of the listview.

As a final possibility, you can press the ’List file’ gadget whenever you
have selected an entry in the listview. This will change the contents of
the listview to all the references in the file which the selected
reference also comes from. This is useful when you are looking for
functions in "family" with a certain function but you do not know their
names. Simply get the function name you know into the listview by writing
it in the string gadget and then press ’List file’ - suddenly you have all
functions in the same library as the one function you know and chances are
that you will now find the name of the related function you are looking
for.
You can also use this gadget to list all functions in any AutoDoc, if you
use the FILEREF option of FR_GET. Simply enter e.g. ’intuition’ in the
string gadget, press Enter, select ’intuition.doc’ in the listview, and
press ’List file’. Now the listview will contain a list of all the
functions in the Intuition AutoDoc.

1.15 ARexx scripts

Included in the FetchRefs distribution are some pre-made ARexx scripts for
popular editors (the list is shown by the Installer script).

I consider it your problem to figure out how you execute the script from
your particular editor. The basic idea, however, is to assign the command
"execute arexx script ’GoFetchRefs’" to a key and then simply press that
key when your cursor is on top of the word you want a reference for.

If you want to change the options of FetchRefs (as described in FR_GET)
you must locate the line starting with ’FR_GET’ and change it according to
your needs. This line is present in all the scripts.

If you optimize a script or invent an entirely new script for an editor
that is currently not yet supported, I am interested in getting a copy so
I can distribute it along with further versions of FetchRefs that might
be. Please note, however, that various extensions to make the scripts meet
your needs are not something that I am generally interested in. The
scripts are *meant* to be simple.

The~script~for~the~Shell

1.16 The script for the Shell

Apart from all the scripts for editors, a generic one is also supplied.
This script does not need any editor and just prints the reference to a
Shell window. You execute it from a Shell prompt like this:

FetchRefs_FR 10 / 10

Shell> rx GoFetchRefs OpenScreen

Of course you change ’OpenScreen’ to whatever you want to search for.
Wildcards are accepted, so you could go ’rx GoFetchRefs
(Open|Close|%)Scr#en’ - if you should happen to know these wild wildcards
;-).

You can also make a little script that fetches the reference and brings it
into your favourite text viewer - but I will leave that as an exercise to
you.

	FetchRefs_FR
	FetchRefs_FR
	 Table Of Contents
	Introducing FetchRefs
	Requirements
	Arguments
	FILES
	PORTNAME
	ARexx commands
	FR_ADD
	FR_CLEAR
	FR_GET
	FR_NEW
	FR_QUIT
	The <Select reference> window
	ARexx scripts
	The script for the Shell

