GAP-Li b Reference Docunent

TABLE OF CONTENTS

GAP. | i b/ - - backgr ound- -
GAP.lib/--data itemns--
GAP. | i b/ Creat ePopul ati on
GAP. | i b/ Crossover

GAP. | i b/ Del et ePopul ati on
GAP. | i b/ Ent er GAP

GAP. | i b/ Evol ve
GAP.lib/Flip

GAP. | i b/ GaussRand

GAP. | i b/ Hamm ngDi st

GAP. | i b/ I nGaussRand

GAP. | i b/ I nitRand

GAP. | i b/ 1 nRand

GAP. | i b/ 1 Range

GAP. | i b/ PopMember
GAP. | i b/ Rnd

GAP. | i b/ Test bi t

GAP. | i b/ TossRand

GAP-Lib is (C)1998-1999 Peter Bengtsson,

standard di scl ai ner appli es.

1/22

PURPCSE

The Genetic Al gorithm Progranmm ng Library (GAP-Lib) is intended to
nmake it easier to inplenent genetic algorithns for any purpose. The
library itself inplenents nost of the franmework needed to handl e one
or several populations thus |eaving the progranmer free to concentrate
on the purpose of her program

Some work will still be needed, specifically setting up a genotype,
creating a fitness function and in sone cases functions for
initializing, nmutating, crossing and del eting individuals.

OVERVI EW
GAP-Lib: A CGenetic AlgorithmProgramm ng Library.

Alibrary for programming with genetic algorithns. The |ibrary features
a sinple yet flexible interface coupled with sensible default val ues
and quite powerful built-in functionality to provide for both high and
| ow| evel programm ng.

The GAP-Lib is primarily bit-oriented and this is reflected in the

exi sting default-functions for crossover and nutation. It is however
possi ble to use al nbst any representation as long as the library
itself only sees fixed-length individuals (Variable I ength individuals
are possi bl e though).

A typical programusing the GAP-Lib will begin by initializing the
GAP environment by calling Enter GAP() then create a popul ation using
Creat ePopul ation() followed by sone nunber of calls to Evolve() and
finally ending with calling Del etePopul ation().

The current version as of 24-Muy-1999 is 0.82
(Version 0, Revision 82).

Current |limtations include:

e Hard to inplenment dynam c-I|ength individuals.
e Not thread-safe (Not dynamically |inked).

2/22

STRUCTURES

GAP-Lib has three primary structures to keep track of data. One is the
user -defined structure which describes an individual and though this
structure is not always nessecary, it is highly recomended that you
have one since it will help others to read your code.

The other structure is the population structure which in turn includes
a statistics structure. A nenber-by-nmenber explanation of these
structures follow here:

struct Popul ation {
| ong NunPol ys;
| ong CGenerati on;
| ong Fl ags;
struct Popstat Stat;
| ong Byt es;
void *Polys;
void *Magic;
i

NunPolys - This is the nunmber of individuals in the popul ation

CGeneration - This is how nany times a generation shift has taken place.

Flags - Internal status, do not touch

Stat - This is the statistics structure, see bel ow.

Bytes - The byte-size of an individual (or its descriptor).

Polys - This is for the internal list of individuals, do not touch
Magic - This is also internal, do not touch

struct Popstat {
doubl e Aver ageFi t ness;
doubl e Medi anFi t ness;
doubl e TypeFitness;
| ong TypeCount ;
doubl e StdDevi ation
doubl e MaxFi t ness;
doubl e M nFitness;
voi d * Vax;
| ong CGenerati on;

}s

Aver ageFitness - The average fitness of the popul ation

Medi anFi t ness - The nedian fitness of the popul ation

TypeFitness - The type (npbst common) fitness val ue.

TypeCount - The nunber of individuals with the type fitness.

StdDevi ation - The standard deviation of the fitness val ues.

MaxFitness - The fitness value of the fittest individual

M nFitness - The fitness value of the least fit individual

Max - A pointer to the fittest individual after the last call to
Evol ve().

CGeneration - The generation for which these statistics are valid.

The Popstat structure is read-only and it is inportant to remenber
that even if you copy the structure the Max pointer will becone
invalid the next tinme Evolve() is called.

3/22

Ataglist is alist of pairs, the first nmenber of the pair is the
tag and determ nes what type of data the second nenber is. A typical
menber of a taglist could ook Iike this:

{EVL_Elite, 5}
N N

| | -> The dat a.
| -> The type of data.

A conplete taglist could |look Iike this:

struct Tagltem MyTaglist[]={
{EVL_Eval uator, fitfunc}, /* Fitness function */
{EVL_HElite, 5}, /* No. of elite individuals */
{ TAG_DONE, 0} /* End-Tag */

i

The End-Tag, TAG DONE, is a special tag comon to all taglists. There
are currently four such tags defined:

TAG_DONE - Marks the end of a taglist.

TAG_END - Equi val ent to TAG DONE.

TAG IGNORE - This tag is ignored.

TAG_MORE - ti_Data is a pointer to a taglist with nore tags,

processing of the current taglist will be term nated.

As sone of you mght be a bit lazy ;-), there is also an alternative
way of specifying taglists. At least in GAP-Lib there is. As an exanple
we have the function Evolve() which also has and interface naned

Evol veT(), EvolveT() takes a variable nunber of argunents, the | ast

of which nmake up the taglist. To use the above taglist with Evol veT()
one would wite:

Evol veT(Pop, EVL_Eval uator, fitfunc, EVL_Elite, 5 TAG DONE);
N
| ->This is not part of the taglist.
PRI M TI VE TYPES
GAP-Lib defines one primtive data type; IPTR The IPTRis a type
| arge enough to hold both an integer and a pointer, it is used for

the data-part of a tagitem IPTR can be considered equivalent to
intptr_t as defined in the C9X C-Language standard-to-be.

4/22

NANMVE
CreatePopul ation -- Allocates and initializes a popul ation.
Creat ePopul ati onT -- Varargs interface to CreatePopul ation

SYNCPSI S
struct Popul ati on *Creat ePopul ation(long int,long int,struct Tagltem *);
struct Popul ati on *Creat ePopul ationT(long int,long int,...);

Pop = CreatePopul ati on(Num PSi ze, TagLi st);

Pop = CreatePopul ati onT(Num PSi ze, ...);

FUNCTI ON
This function will allocate and initialize a population. If no
initialization function is given, CreatePopulation() will sinply
random ze all bits in the created individuals. There is also a
predefined initialization function which initializes every individua
to a string of zero bits.

| NPUTS
Num - Nunber of individuals to be created in this popul ation
PSi ze - The byte-size of the individuals in this population.
TagLi st - Apointer to a taglist.

TAGS

POP Init (void (*)(void *)) - A pointer to a function or one of the
values RAND INIT or ZERO INIT. Currently NULL is equivalent to
ZEROINIT. A function to initialize an individual should take a
pointer to an individual and return nothing (void).

POP_Destruct (void (*)(void *)) - A pointer to a function to be called
when deleting an individual. If you are allocating resources with
a custominitialization function, then you should supply this
tag. The function should take a pointer to an individual and
return nothing (void).

POP_Cache (BOOL) - Set this to false if you are nodi fying the
i ndi vidual s between calls to Evolve() or if you really need to
save menory. Default is TRUE which enabl es sone caching of data.

RESULT
Pop - An initialized population structure or NULL if sonething
fail ed.
NOTE

CreatePopulation() will fail if EnterGAP() has not been call ed
previously.

BUGS
None known.

SEE ALSO
Ent er GAP(), Del et ePopul ati on()

5/22

NANMVE
Crossover -- Performcrossover on two bitstrings.

SYNCPSI S
void Crossover(void *,void *,int,int);

Crossover(void *Indl,void *Ind2,int At,int Size);
FUNCTI ON

Perforns one-point crossover of two bitstrings. The bitstrings must
have the same length.

| NPUTS
Indl - Pointer to the first bitstring (Individual).
Ind2 - Pointer to the second bitstring (Individual).
At - Bit to performcrossover at.

Size - Size of bitstring in bytes. (OBS!: _BYTES !!)

RESULT
None.

NOTE
Note well that all bitstrings must consist of a whole nunber of bytes.
This is for reasons of sinplicity and efficiency.

BUGS
None known.

SEE ALSO
Flip

6/22

NANMVE
Del et ePopul ation -- Delete a previously all ocated popul ation

SYNCPSI S
voi d Del et ePopul ati on(struct Popul ation *);

Del et ePopul ati on(Pop) ;

FUNCTI ON
Del etes a previously allocated popul ation and frees all resources
associated with it. If no custom deallocation function was given only
the resources allocated by CreatePopulation() will be freed (If
Creat ePopul ation() was called without a custominitialization function
this is probably what you want).

| NPUTS
Pop - Pointer to the population to be del eted.

RESULT
None.

BUGS
None known.

SEE ALSO
Cr eat ePopul ati on()

7/22

NAME
EnterGAP -- Initialize GAP environnent.

SYNOPS| S
void Enter GAP(int);

Ent er GAP(Level) ;

FUNCTI ON
Initializes the GAP environment.
| NPUTS
Level - Level of verbosity at startup, supported values range fromO to 2

wi th O=quiet, 1=normal, 2=verbose.

RESULT

O for failure, non-zero for success.
EXAVPLE

i nt mai n(voi d)

{

/* Do sonme stuff here */
i f(Enter GAP(1)) {

/* Do everything el se here. */

} else {
fprintf(stderr,"Initialization failed.\n");
}
return(0); /* Finished, exit. */
}
BUGS

None known.

SEE ALSO

8/22

NAVE

Evolve -- Perforns generation shift on a popul ation
Evol veT -- Varargs interface to Evol ve().
SYNCPSI S
struct Popul ation *Evol ve(struct Popul ation *,struct Tagltem *);
struct Popul ation *Evol veT(struct Popul ation *,Tag,...);

Pop = Evol ve(Pop, TagLi st);
Pop = Evol veT(Pop, Tag0Type, ...);

FUNCTI ON
This is the big one. Evolve performs a generation shift, taking
a popul ation and returning a new one.

| NPUTS
Pop - Pointer to an initialized popul ation structure.
TagList - Pointer to a taglist.

TAGS
EVL_Eval uator (double (*)(void *)) - Pointer to a function taking
a pointer to an individual and returning its fitness val ue
as a double. Note well that this tag is _required_.
Al so read the NOTE | abel further down.

EVL Mutator (void (*)(void *,int)) - Pointer to a nutation function
taking a pointer to an individual and its byte-size as an
integer. This function should also decide if a nutationis to
take place as it will be called exactly once for every
i ndividual in the population. NULL is a permtted val ue
for this tag meaning that no nmutation will take place. The default
is touse a built-in function designed to nmutate bitstrings.

EVL Crosser (void (*)(void *,void *,int)) - Pointer to a function which
perforns crossover on two individuals. It should take two pointers
to individuals and a byte-size paraneter and return nothing (void).
It will be called exactly once for every individual generated by
crossover. NULL is not a permtted value for this tag. The default
is to use a built-in function designed to performcrossover on two
bi tstrings.

EVL_Thernostat (double (*)(long,long)) - Pointer to a heat-regul ating
function for Boltzmann sel ection (TEMPERATURE). The default
function is PopSize*(2.722-pow(1.0+1. 0/ Generation, Generation))
but this mght change in later versions. The function taked the size of
t he popul ation as first argunent and the generation as second.

EVL Elite (int) - Sets the nunmber of top individuals to copy from one
generation to the next w thout crossover (with the risk for
nmut ati on though). Setting this value high will result in a
steady-state type of GA. The default value is O.
Note!: Setting the Crowding flag currently alters the semantics of
this tag! If Crowding is in effect the Elite nunber is the nunber
of individuals not to generate. That is, in a population of eg. 20
individuals an Elite value of 15 would nean generate 5 new i ndi vi dual s.

9/22

aval abl e T1ags are.

FLG | ni t Dunped - Sane as EVL_I nit Dunped
FLG EraseBest - Sane as EVL_EraseBest
FLG _Crowdi ng Sane as EVL_Crowdi ng
FLG Statistics Sane as EVL_Statistics

Exanpl e usage: {EVL_Fl ags, FLG Crowdi ng| FLG St ati sti cs}
NOTE |f using EVL_Flags, you nmust explicitly set
FLG Statistics to generate statistics.

EVL Dunp (int) - Sets the nunber of bottom (worst) individuals to dunp
by replacing themw th copies of the top (best) individuals.
Default is O.

EVL Select (int) - Sets the select nethod used to deternine parents
when generating new individuals. Avail able nethods are:

DRANDOM : Doubl e-random sel ecti on. A random i ndi vi dua
and one of those fitter than the first one
sel ected are chosen. (Default)

FI TPROP : Fi tness proportionate sel ection

SI GVA : Sigma scal ed fitness proportionate sel ection
TOURNAMENT : Tour nanent sel ection (fast).

| NORDER : | norder selection. The fittest individual is selected

together with the rest in descending order of fitness.

TEMPERATURE: Bol t zmann scal ed sel ection. The sel ection
pressure varies over tine as deternined by
a 'heat’ function. See also the EVL_Thernost at
tag.

EVL Stats (BOOL) - Cenerate statistics. CGenerating statistics will
i ncrease processing tinme significantly conpared to not doing it.
If statistics are enabled, the fitness function mght be called
twice as nany tines. Once for every old individual for evaluation
and once for every new individual for generating statistics.
This is dependant on caching and previ ous state. Wen caching is
di sabl ed, then the fitness function will always be called exactly
twice if generating statistics. Default is TRUE

EVL PreMutate (BOOL) - Mutate old generation instead of new. This

will nmutate the parent popul ati on before generati ng new
i ndividuals. Note that this is done after eval uation so that
setting this tag to TRUE will mean that there is no nessecary

connecti on between good genes and a high fitness - only a
probability thereof (depending on the mutator function). This
enmul ates nutation occuring in mature individuals in nature.

EVL_Newbies (int) - Number of new individuals to generate. The
individuals to replace will be randomy selected fromthe old
popul ation. This could for exanple be used to keep the fitness
of a popul ati on down when co-evol vi ng popul ati ons.

10/22

takKing two pornters to rnalvidual s In aadairtron to tnelr (equal) SIZze
and returning the absolute value of the distance (dissimlarity neasure)
between them Default is to neasure the Hanmi ng di stance between

i ndi vi dual s.

EVL_Crowdi ng (BOOL) - Use crowdi ng replacenent where each new
i ndi vidual generated replaces the individual nost |like itself.
Note! This tag currently alters the neaning of the EVL Elite tag!

EVL I nitDunped (BOOL) - If dunping individuals (see EVL _Dunp above)
initialize theminstead of replacing themw th copies of the
fittest indiviuals.

EVL _EraseBest (BOOL) - If generating new random i ndivi duals (see
EVL_Newbi es tag above) replace the fittest individuals instead
of random ones.

RESULT
Pop - A pointer to the population structure or NULL is sonething
went horribly wong.
NOTE

Not e t hat Evolve always treats higher fitness values as better
this means that you nust take care to transformyour fitness
val ues accordingly if needed before returning them

BUGS
None known, but if there are any major bugs this is probably where they are.

SEE ALSO
Cr eat ePopul ati on()

11/22

NANMVE
Flip-- Flip abit ina bitstring.

SYNOPSI S
void Flip(void *,int);
Flip(lnd, At);

FUNCTI ON

Flips a bit in a bitstring. Bits are counted from | ower addresses to
hi gher.

I NPUTS
I nd - A pointer to the bitstring (individual).
At - The bit-position to be flipped.
RESULT
None.
BUGS
None known.
SEE ALSO
Testhit ()

12/22

NANMVE
GaussRand -- Cenerate a gaussi an pseudo-random nunber.

SYNCPSI S
doubl e GaussRand(doubl e, doubl e);

Val = GaussRand(M, Si gma) ;
FUNCTI ON
Cenerates a pseudo random nunber around My with a Gaussi an

di stribution.

| NPUTS
My - Val ue around which to generate a random nunber.

Sigma - Standard deviation of the generated nunbers.

RESULT
Val - A random nunber.

BUGS
None known.

SEE ALSO
Rnd(), InitRand(), InRand(), |nGaussRand()

13/22

NAVE

Hamm ngDi st -- Measure the Hamm ng di stance between two bitstrings.

SYNCPSI S
unsi gned long int Hamm ngDi st(void *,void *,int);

di stance = Hanm ngDi st (1 nd1l,|1nd2, Si ze);

FUNCTI ON
Counts the nunber of differings bits in two bitstrings.
| NPUTS
Indl - Pointer to the first bitstring (Individual)
Ind2 - Pointer to the second bitstring (Individual)

Size - Nunmber of _BYTES in each bitstring.

RESULT
The nunber of differing bits.

BUGS
None known.

SEE ALSO

14/22

NANMVE
I nGaussRand -- Generate a bounded gaussi an random nunber.

SYNCPSI S
doubl e | nGaussRand(doubl e, doubl e, doubl e) ;

Val = I nGaussRand(My, Si gna, Del ta);
FUNCTI ON

Cenerates a pseudo random nunber in the range [M/-Delta, My+Delta] with
a Gaussian distribution around M.

| NPUTS
My - Val ue around which to generate a random nunber.
Sigma - Standard deviation of the generated nunbers.

Delta - Delta fromM in which to generate nunbers.

RESULT
Val - A random nunber.
BUGS
Setting Delta too small (<Sigma) will result in _very inefficient

random nunber generation. Setting Delta < 0.0 makes the function
enter an infinite | oop.

SEE ALSO
Rnd(), InitRand(), InRand(), GaussRand()

15/22

NANMVE
InitRand -- Initialize pseudo-random nunber generator

SYNOPSI S
void I nitRand(l ong);

I ni t Rand(seed);

FUNCTI ON
Initializes the internal pseudo-random nunber generator. This function
shoul d be called with an appropriate seed before any of the random
nunber functions are called. Note that Evolve() al so uses the random
nunber functions. A default seed is supplied but it is not reconmended
to leave this as it is since every run will then be identical

| NPUTS
seed - A seed value for the pseudo random nunber generator

RESULT
None.

EXAMPLE
#i nclude <stdlib.h> /* For definition of NULL */
#i ncl ude <tine. h>
#i ncl ude <GAP. h>

i nt mai n(voi d)

{
| ni t Rand(ti me(NULL)) :

return(0);

}

BUGS
A seed value of O will not work properly.

SEE ALSO
Rnd(), InRand()

16/22

NAVE

InRand -- Cenerate a bounded floating point pseudo-random nunber.
SYNOPSI S

doubl e I nRand(doubl e, doubl e);

Val = InRand(Lo, H);
FUNCTI ON

CGenerates a pseudo random nunber between Lo and Hi. The resol ution of
the generated nunber is in steps of (H -Lo)/2147483646.

| NPUTS
Lo - Lower bound of the range in which to generate a random
numnber .
Hi - Upper bound of the range in which to generate a random
numnber .
RESULT
Val - A random nunber in the range [Lo, H] (inclusive).
BUGS

None known.

SEE ALSO
Rnd(), InitRand()

17/22

NAVE
| Range -- Map an integer onto a range.

SYNCPSI S
doubl e I Range(unsi gned | ong i nt, doubl e, doubl e);

v = | Range(Val, Lo, Hi);

FUNCTI ON

Maps an unsigned long integer onto the range [Lo, Hi] (inclusive).
| NPUTS

Val - The value to nap

Lo - Lower bound of the range.

H - Higher bound of the range.
RESULT

Y% - Avalue in the range [Lo,Hi].
BUGS

None known.
SEE ALSO

I nRand()

18/22

NANMVE
PopMenber -- Get the n:th nenber of a popul ation

SYNCPSI S
voi d *PopMenber (struct Population *,int);

I nd = PopMenber (Pop, n);

FUNCTI ON
Returns a pointer to the n:th individual in a population (counted from
zero). For a population with say 50 individuals, valid nunbers would
range fromO to 49.

| NPUTS
Pop - A pointer to an popul ation structure.
n - The number of the individual to retrieve.
RESULT
I nd - Apointer to the n:th individual in the popul ation
BUGS
None known.
SEE ALSO

Cr eat ePopul ati on()

19/22

NANMVE
CGenerate a pseudo-random i nt eger

Rnd - -
SYNCPSI S
long int Rnd(long int);
Val = Rnd(H);
FUNCTI ON
Cener ates a pseudo-random i nteger between zero and one |less than Hi
is cyclic and repeats after 2147483645

The random numnber gener at or

gener at ed nunbers.

| NPUTS
Hi - Upper bound of random nunber.
RESULT
Val - An integer in the range [O,H[.
BUGS
H can not be greater than 2147483646 (Ox7ffffffe = 2731-1).
Rnd() only gives 31 random bits, not 32.

Thi s neans t hat

SEE ALSO
I nRand(), I nitRand()

20/22

NANMVE
Testhit -- Test the status of an arbitrary bit in a bitstring.

SYNCPSI S
int Testbit(void *,int);

status = Testbit(lnd, At);
FUNCTI ON
Tests the status of a bit in a bitstring. Bits are counted from | ower
addresses to higher.
| NPUTS
I nd - A pointer to the bitstring.
At - The nunber of the bit to be tested.

RESULT
Oif the bit is clear, non-zero otherw se.

BUGS
None known.

SEE ALSO
Flip()

21/22

NANMVE
TossRand -- Sinulate the flip of a coin

SYNOPSI S
i nt TossRand(doubl e);

result = TossRand(Prob);
FUNCTI ON
Returns 1 with a probability of Prob. A probability of 0.5 sinulates
the toss of a fair coin.
| NPUTS
Prob - The probability of the result being 1. Valid val ues are
in the range [0, 1].

RESULT
0 or 1.

BUGS
None known.

SEE ALSO
InRand(), InitRand(), GausRand(), Rnd()

22/22

