
Preliminary Release

March, 1997
© Apple Computer, Inc. 1995 - 1997

Text Encoding Reference

Preliminary.  Apple Computer, Inc. 3/3/97

Apple Computer, Inc.
© 1997 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh,
and WorldScript are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Mac and QuickDraw are trademarks
of Apple Computer, Inc.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and

may be registered in certain
jurisdictions.
Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.
Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

C H A P T E R 1

Contents

Preliminary.



 Apple Computer, Inc. 3/3/97

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Text Encoding Conversions
Reference
Text Encoding Conversions Constants and Data Types 1-3
Text Encoding Specification 1-4
Text Encoding Base 1-4
Text Encoding Variant Data Type and Variants 1-8
Text Encoding Format 1-11
Unicode Character and String Pointer Data Types 1-12

Text Encoding Conversions Functions 1-13
Creating a New Text Encoding Specification and Obtaining Values From
an Existing One 1-13

CreateTextEncoding 1-14
GetTextEncodingBase 1-15
GetTextEncodingVariant 1-16
GetTextEncodingFormat 1-17
GetTextEncodingBaseName 1-18
1-1

C H A P T E R 1

1-2 Contents

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference 1

Text Encoding Conversions Constants and Data Types 1

Mac OS 8 provides data types, constants, and functions for creating text
encoding specifications and obtaining the values that comprise an existing text
encoding specification.

All text to be converted or truncated is expressed in a particular coded
character set identified by a text encoding specification. Many of the Mac OS 8
system components include functions that take a text encoding specification as
a parameter. Here are a few ways in which text encoding specifications are
used:

■ Text objects contain the text encoding specifications for the text they
encapsulate.

■ The Locale Object Manager locale objects contain text encoding
specifications for user-displayable text strings they include.

■ Encoding conversions performed by the Unicode Converter or the
High-Level Encoding Converter require at least two text encoding
specifications, the source and target text encodings.

You use text encoding specifications with many of the Text Object Manager
functions. For example, when you use InstallTextIntoTextObject to place text
in a text object or AppendTextToTextObject to append it to one, you give the text
encoding specification for the text. When you call GetTextObjectTextRuns to
obtain information about the text runs in a text object, the Text Object Manager
returns the text encoding specification for each text run.

When you want the Locale Object Manager to return a particular locale object
name string to you in a text object, you call GetLocaleObjectName, passing as
one of its parameters the text encoding specification for the name. One of the
standard attributes that a locale object can have associated with it is a text
encoding specification.

You provide text encoding specifications to identify the source and target
encodings for use with the Unicode Converter functions, such as
ConvertTextToUnicode. You also provide a text encoding specification to
determine where to safely truncate text when you call
TruncateForTextToUnicode. When you use text encoding specifications with the
Unicode Converter, you don’t specify text encodings directly as parameters to
Text Encoding Conversions Constants and Data Types 1-3
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference

these conversion and truncation functions. Rather, you give the text encoding
specifications through a Unicode mapping data structure and you provide a
Unicode mapping data structure from within a conversion information
structure. See “Unicode Converter Reference” for more information.

Text Encoding Specification 1

A text encoding specification is an opaque scalar value that specifies the text
encoding base, the text encoding variant, the text encoding format, and the
packing version used for the text encoding or text encoding scheme. You use
the following data types to specify three of these values when you create a text
encoding specification: TextEncodingBase (page 1-4), TextEncodingVariant
(page 1-8), and TextEncodingFormat (page 1-11). You don’t specify the packing
version. The values you specify are packed into an unsigned 32-bit value,
which you can then pass by value either directly or from within other data
structures to the functions that use text encodings or text encoding schemes.

A text encoding specification is defined by the TextEncoding data type.

typedef UInt32 TextEncoding; /* text encoding specification */

Text Encoding Base 1

You use a text encoding base data type to give the primary specification of the
text encoding, or coded character set, used to express the text to which it
pertains. A text encoding base is defined by the TextEncodingBase data type.

typedef UInt32 TextEncodingBase;

The GetTextEncodingBase function (page 1-15) returns the base encoding from
the text encoding specification you pass it. If the encoded character set is a
variant of the text encoding base, the text encoding specification can contain
the variant name (page 1-8) that identifies the encoded character set. Obtaining
the base encoding name does not also return the variant name. (To obtain the
variant of the base encoding, you use GetTextEncodingVariant (page 1-16)).

The first 33 values (0 through 32) defined for text encoding bases correspond to
the Macintosh script codes defined for System 7. For example, if the text
encoding base is 4, then the base encoding is MacOS Arabic
(kTextEncodingMacArabic), corresponding to System 7’s Arabic, which was
represented in System 7 by the constant smArabic.
1-4 Text Encoding Conversions Constants and Data Types

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference

Some values you can specify as text encoding bases are metavalues. A
metavalue can refer to any of various real values, depending on the
circumstances in which it is used. For example, the constant
kTextEncodingUnicodeDefault represents the default base encoding for Unicode.
You can use these enumerated constants to specify text encoding bases:

enum {
kTextEncodingMacRoman = 0, /* Roman base encoding */
kTextEncodingMacJapanese = 1L, /* Japanese base encoding */
kTextEncodingMacTradChinese = 2L, /* Traditional Chinese base encoding */
kTextEncodingMacKorean = 3L, /* Korean base encoding */
kTextEncodingMacArabic = 4L, /* Arabic base encoding */
kTextEncodingMacHebrew = 5L, /* Hebrew base encoding */
kTextEncodingMacGreek = 6L, /* Greek base encoding */
kTextEncodingMacCyrillic = 7L, /* Cyrillic base encoding */
kTextEncodingMacRSymbol = 8L, /* base encoding for right-to-left

symbols */
kTextEncodingMacDevanagari = 9L, /* Devanagari base encoding */
kTextEncodingMacGurmukhi = 10L, /* Gurmukhi base encoding */
kTextEncodingMacGujarati = 11L, /* Gujarati base encoding */
kTextEncodingMacOriya = 12L, /* Oriya base encoding */
kTextEncodingMacBengali = 13L, /* Bengali base encoding */
kTextEncodingMacTamil = 14L , /* Tamil base encoding */
kTextEncodingMacTelugu = 15L, /* Teluga base encoding */
kTextEncodingMacKannada = 16L, /* Kannada/Kanarese base encoding */
kTextEncodingMacMalayalam = 17L, /* Malayalam base encoding */
kTextEncodingMacSinhalese = 18L, /* Sinhalese base encoding */
kTextEncodingMacBurmese = 19L, /* Burmese base encoding */
kTextEncodingMacKhmer = 20L, /* Khmer base encoding */
kTextEncodingMacThai = 21L, /* Thai base encoding */
kTextEncodingMacLaotian = 22L, /* Laotian base encoding */
kTextEncodingMacGeorgian = 23L, /* Georgian base encoding */
kTextEncodingMacArmenian = 24L, /* Armenian base encoding */
kTextEncodingMacSimpChinese = 25L, /* Simplified Chinese base encoding */
kTextEncodingMacTibetan = 26L, /* Tibetan base encoding */
kTextEncodingMacMongolian = 27L, /* Mongolian base encoding */
kTextEncodingMacGeez = 28L, /* Geez/Ethiopic base encoding */
kTextEncodingMacEastEurRoman = 29, /* extended Roman base encoding for

Slavic and Baltic languages */
kTextEncodingMacCentralEurRoman = 29, /* extended Roman base encoding for

Slavic and Baltic languages */
Text Encoding Conversions Constants and Data Types 1-5
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference

kTextEncodingMacVietnamese = 30, /* Roman base encoding for Vietnamese */
kTextEncodingMacExtArabic = 31, /* Extended Arabic base encoding for

Sindhi */
kTextEncodingMacUninterp = 32, /* base encoding for uninterpreted

symbols */
kTextEncodingMacSymbol = 33, /* base encoding for symbols font */
kTextEncodingMacDingbats = 34. /* base encoding for Zapf Dingbats font */
kTextEncodingMacTurkish = 35, /* Turkish base encoding */
kTextEncodingMacCroatian = 36, /* Croatian base encoding */
kTextEncodingMacIcelandic = 37, /* Icelandic base encoding */
kTextEncodingMacRomanian = 38, /* Romanian base encoding */
kTextEncodingMacUkrainian = 152, /* Ukrainian base encoding */
kTextEncodingMacBulgarian = 153, /* Bulgarian base encoding */
kTextEncodingMacHFS = 0xFF,
/* Unicode and ISO Universal Multiple-Octet Coded Character Set (UCS) encodings */

begin at 0x100 */
kTextEncodingUnicodeDefault = 0x100, /* Unicode default base encoding,

metavalue*/
kTextEncodingUnicodeV1_1 = 0x101, /* Unicode version 1.1 base encoding,

UCS4 format is not supported */
kTextEncodingISO10646_1993 = 0x102, /* ISO10646, 1993 Unicode base encoding,

UCS4 format is not supported */
/* ISO 8-bit and 7-bit encodings begin at 0x200 */
kTextkTextEncodingISOLatin1 = 0x201, /* ISO 8859-1 */
kTextEncodingISOLatin2 = 0x202, /* ISO 8859-2 */
kTextEncodingISOLatinCyrillic = 0x205, /* ISO 8859-5 */
kTextEncodingISOLatinArabic = 0x206, /* ISO 8859-6,=ASMO 708,=DOS cp708 */
kTextEncodingISOLatinGreek = 0x207, /* ISO 8859-7 */
kTextEncodingISOLatinHebrew = 0x208, /* ISO 8859-8 */
kTextEncodingISOLatin5 = 0x209, /* ISO 8859-9 */
/* MS-DOS and Windows encodings begin at 0x400 */
kTextEncodingDOSLatinUS = 0x400, /* code page 437 */
kTextEncodingDOSGreek = 0x405, /* code page 737 (was cp 437G) */
kTextEncodingDOSBalticRim = 0x406, /* code page 775 */
kTextEncodingDOSLatin1 = 0x410, /* code page 850, "Multilingual" */
kTextEncodingDOSGreek1 = 0x411, /* code page 851 */
kTextEncodingDOSLatin2 = 0x412, /* code page 852, Slavic */
kTextEncodingDOSCyrillic = 0x413, /* code page 855, IBM Cyrillic */
kTextEncodingDOSTurkish = 0x414, /* code page 857, IBM Turkish */
kTextEncodingDOSPortuguese = 0x415, /* code page 860 */
kTextEncodingDOSIcelandic = 0x416, /* code page 861 */
1-6 Text Encoding Conversions Constants and Data Types

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference

kTextEncodingDOSHebrew = 0x417, /* code page 862 */
kTextEncodingDOSCanadianFrench = 0x418, /* code page 863 */
kTextEncodingDOSArabic = 0x419, /* code page 864 */
kTextEncodingDOSNordic = 0x41A, /* code page 865 */
kTextEncodingDOSRussian = 0x41B, /* code page 866 */
kTextEncodingDOSGreek2 = 0x41C, /* code page 869, IBM Modern Greek */
kTextEncodingDOSThai = 0x41D, /* code page 874, also for Windows */
kTextEncodingDOSJapanese = 0x420, /* code page 932, also for Windows */
kTextEncodingDOSChineseSimplif = 0x421, /* code page 936,also for Windows */
kTextEncodingDOSKorean = 0x422, /* code page 949, also for Windows */
kTextEncodingDOSChineseTrad = 0x423, /* code page 950, also for Windows */
kTextEncodingWindowsLatin1 = 0x500, /* code page 1252 */
kTextEncodingWindowsANSI = 0x500, /* code page 1252 (alternate name) */
kTextEncodingWindowsLatin2 = 0x501, /* code page 1250, Central Europe */
kTextEncodingWindowsCyrillic = 0x502, /* code page 1251, Slavic Cyrillic */
kTextEncodingWindowsGreek = 0x503, /* code page 1253 */
kTextEncodingWindowsLatin5 = 0x504, /* code page 1254, Turkish */
kTextEncodingWindowsHebrew = 0x505, /* code page 1255 */
kTextEncodingWindowsArabic = 0x506, /* code page 1256 */
kTextEncodingWindowsBalticRim = 0x507, /* code page 1257 */
/* Various national standards begin at 0x600 */
kTextEncodingUS_ASCII = 0x600, /* U.S. ASCII */
kTextEncodingJIS_X0201_76 = 0x620, /* JIS X0201, 1976 */
kTextEncodingJIS_X0208_83 = 0x621, /* JIS X0208, 1983 */
kTextEncodingJIS_X0208_90 = 0x622, /* JIS X0208, 1990 */
kTextEncodingJIS_X0212_90 = 0x623, /* JIS X0212, 1990 */
kTextEncodingGB_2312_80 = 0x630, /* GB 2312, 1980 */
kTextEncodingKSC_5601_87 = 0x640, /* Korean standard (KSC) 5601, 1987 */
/* ISO 2022 collections begin at 0x800 */
kTextEncodingISO_2022_JP = 0x820, /* ISO 2022, JP */
kTextEncodingISO_2022_JP_2 = 0x821, /* ISO 2022, JP 2 */
kTextEncodingISO_2022_KR = 0x840, /* ISO 2022, KR */
/* EUC (Extended Unix Code) collections begin at 0x900 */
kTextEncodingEUC_JP = 0x920,
kTextEncodingEUC_KR = 0x940,
/* Other defacto standards begin at 0xA00 */
kTextEncodingShiftJIS = 0xA01, /* plain Shift-JIS */
kTextEncodingKOI8_R = 0xA02 /* Russian internet standard */

};
Text Encoding Conversions Constants and Data Types 1-7
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference

Text Encoding Variant Data Type and Variants 1

A text encoding variant identifies a text encoding, or coded character set, some
of whose less commonly used characters vary from those specified by the base
encoding scheme with which the variant is related. In this case, variations in
mapping usually exist only for relatively insignificant characters.

A variant can also specify a subset of a base encoding. For example, a variant of
a base encoding that in its full specification includes vertical forms might exist
for a subset of that encoding that does not include them. One variant of
Unicode might exist that does not contain combining characters, another might
exist that does not include coded characters in the Compatibility Zone, and yet
another might exist that does not include coded characters in the Corporate
Use Zone. An application might want to use the variant that does not include
Corporate Use Zone coded characters to ensure round-trip fidelity for encoding
text that is sent out over the Internet. Coded characters defined by Apple, for
example, in the Corporate Use Zone are local to Apple and cannot be translated
with certainty of fidelity.

Variants of the same base encoding can coexist in the same system as font
variants. Two different text encodings that can both be used for body text in the
same language on the same version of a localized platform are usually
considered variants of the same base encoding. For example, the MacOS
Icelandic and MacOS Turkish text encodings are considered different base
encodings even though they belong to the same script; they normally do not
coexist on the same Macintosh® system, and they each have their own
language and region codes.

The enumeration of variants for a given text encoding base always begins with
0, and the constant specifying the default for the variant of a base encoding
always implies the first variant in the set of variants defined by the
enumeration.

A text encoding variant is defined by the TextEncodingVariant data type.

typedef UInt32 TextEncodingVariant;

You can explicitly specify a variant of a base encoding or you can specify the
default variant of that base when your application calls the CreateTextEncoding
function (page 1-14) to create a new text encoding. For example, if you specify
the default constant kTextEncodingDefaultVariant as the value of the
CreateTextEncoding function’s encodingVariant parameter and the base
encoding is MacOS Japanese (kTextEncodingMacJapanese), the resulting text
encoding specification will identify the kJapaneseStandardVariant variant
(page 1-8).
1-8 Text Encoding Conversions Constants and Data Types

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference

To obtain the text encoding variant of a text encoding specification, you use the
GetTextEncodingVariant function (page 1-16). To create a new text encoding
specification for a variant, you call the CreateTextEncoding function (page 1-14).

The following Unicode Converter enumeration defines constants for the
default variant of any base text encoding and for variants of the MacOS
Japanese, MacOS Hebrew, and Unicode Version 1.1 base encodings.

enum {
/* Default TextEncodingVariant for any TextEncodingBase *
kTextEncodingDefaultVariant = 0, /* default text encoding variant for

any text encoding base*/
/* Variants of kTextEncodingMacJapanese */
kJapaneseStandardVariant = 0, /* standard Japanese variant */
kJapaneseStdNoVerticalsVariant = 1, /* without vertical presentation

forms */
kJapaneseBasicVariant = 2, /* variant for basic interchange */
kJapanesePostScriptScrnVariant = 3, /* PostScript-for-screens variant */
kJapanesePostScriptPrintVariant = 4, /* PostScript-for-printers variant */
kJapaneseVertAtKuPlusTenVariant = 5, /* variant in which the vertical forms

are located in the space beginning
at ku +10. */

/* Variants of kTextEncodingMacHebrew */
kHebrewStandardVariant = 0, /* standard Hebrew variant */
kHebrewFigureSpaceVariant = 1, /* Hebrew figure space variant */

/* Variants of kTextEncodingUnicodeV1_1 */
kUnicodeNoSubset = 0, /* variant with full set of Unicode

10646 character encodings */
kUnicodeNoCompatibilityVariant = 1, /* Unicode 10646 variant that does not

include character encodings in the
Compatibility zone */

kUnicodeNoComposedVariant = 3 /* Unicode 10646 variant that does not
include encodings for composed
characters */

};

Enumerator descriptions
kJapaneseStandardVariant

The standard Japanese variant.
Text Encoding Conversions Constants and Data Types 1-9
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference

kJapaneseStdNoVerticalsVariant
The standard Japanese no-verticals variant. This variant is
for users who don't want separately-encoded vertical
forms, for example GX users.

kJapaneseBasicVariant

The Japanese variant for basic interchange; all Shift-JIS
platforms support the subset of characters in this variant.

kJapanesePostScriptScrnVariant
The Japanese variant for screen bitmap version of the Sai
Mincho and Chu Gothic fonts.

kJapanesePostScriptPrintVariant

The Japanese variant for PostScript printing versions of the
Sai Mincho and Chu Gothic PostScript fonts. This version
includes two-byte halfwidth characters in addition to
one-byte halfwidth characters.

kJapaneseVertAtKuPlusTenVariant
The Japanese variant that includes encodings for vertical
forms beginning at ku +10, that is, beginning with cells at
row 11 in the JIS X0208-90 chart. In this chart, which is
organized into rows and columns, a row is referred to as
“ku” (meaning “ward”).
Beginning at ku +10, which is equivalent to row 11, are
rows of cells not used for the standard JIS X0208-90. These
cells can be used for vertical presentation forms. Vertical
forms can also be stored in another unused portion at the
bottom of the chart beginning at ku +84. The
kJapaneseVertAtKuPlusTenVariant constant indicates that
vertical forms are stored beginning at ku +10. This variant
is the same as the JIS X0208-90 standard in other aspects.
This variant does not include Apple extensions.

kHebrewStandardVariant

The standard Hebrew variant.
kHebrewFigureSpaceVariant

The Hebrew variant in which xD4 represents figure space,
not left single quote as in the standard variant.

kUnicodeNoSubset

The standard 10646 Unicode encoded character set in
which the full set of Unicode characters are supported.
1-10 Text Encoding Conversions Constants and Data Types

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
kUnicodeNoCompatibilityVariant
The Unicode 10646 variant that does not include encoded
characters belonging to the Compatibility Zone.

kUnicodeNoComposedVariant
The Unicode 10646 variant that does not include encoded
characters that are composed characters.

Text Encoding Format 1

A text encoding format identifies the packing format of the encoded characters
comprising the character set. For example, a character set such as Unicode
might use 16-bit representations, as is the case for the UCS-2 format, or it might
use 32-bit representations, as is the case for the UCS-4 format.

A text encoding format is defined by the TextEncodingFormat data type.

typedef UInt32 TextEncodingFormat;

The GetTextEncodingFormat function (page 1-17) returns the text encoding
format of a text encoding specification.

You can explicitly specify a format of a text encoding or you can specify the
default text encoding format when your application calls the
CreateTextEncoding function (page 1-14) to create a new text encoding.

The following enumeration defines constants for specifying text encoding
formats:

enum {
/* default text encoding format for any text encoding base */
kTextEncodingDefaultFormat = 0
/* format for kTextEncodingUnicodeV1_1 */
kUnicode16BitFormat = 0,
/* format for Unicode Transformation Format 7 */
kUnicodeUTF7Format = 1,
/* format for Unicode Transformation Format 8 */
kUnicodeUTF8Format = 2,
/* formats for kTextEncodingISO10646_1993 */
kISO10646UCS2Format = 0

};
Text Encoding Conversions Constants and Data Types 1-11
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
Enumerator descriptions

kTextEncodingDefaultFormat
The standard format for any base encoding.

kUnicode16BitFormat
The 16-bit character encoding format specified by the
Unicode 1.1 Standard.

kUnicodeUTF7Format
The Unicode transformation format in which character
encodings are represented by 7 bits.

kUnicodeUTF8Format
The Unicode transformation format in which character
encodings are represented by 8 bits.

kISO10646UCS2Format
The 16-bit (double octet) format specified by the ISO/IEC
10646-1 UCS-2 (Universal Character Set containing 2 bytes)
standard.

Unicode Character and String Pointer Data Types 1

The Unicode Converter functions that use a Unicode character data type
assume that the Unicode character has the normal byte-order for an unsigned
16-bit integer on the current platform and that any initial byte-order prefix
character has been removed. These functions also assume that each Unicode
character is aligned on a 2-byte boundary. A 16-bit Unicode character is defined
by the UnicodeToTextRunInfo data type.

typedef UInt16 UniChar;/* 16-bit Unicode character */

You specify a Unicode character array pointer to indicate an array used to hold
a Unicode string. A Unicode character array pointer is defined by the
UniCharArrayPtr data type.

typedef UniChar *UniCharArrayPtr; /* Unicode string pointer */

You specify a constant Unicode character array pointer for Unicode strings
used within the scope of a function whose contents are not modified by that
function. A constant Unicode character array pointer is defined by the
ConstUniCharArrayPtr data type.

typedef const UniChar *ConstUniCharArrayPtr; /* Unicode string pointer */
1-12 Text Encoding Conversions Constants and Data Types

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
Text Encoding Conversions Functions 1

Mac OS 8 provides functions you use to create or modify a text encoding
specification and functions you use to obtain the contents of an existing text
encoding specification. (These functions are provided because you must not
directly modify a text encoding specification.)

You use the CreateTextEncoding function (page 1-14) to create a text encoding
specification.

To obtain the values comprising an existing text encoding specification, you use
these functions:

■ GetTextEncodingBase to obtain the text encoding base name

■ GetTextEncodingVariant to obtain the encoding variant

■ GetTextEncodingFormat to obtain the encoding format

To obtain the name of the text encoding base of a text encoding specification in
a language you specify, you use the GetTextEncodingBaseName function.

Creating a New Text Encoding Specification and Obtaining Values From an Existing
One 1

A text encoding specification is an opaque scalar value that specifies the text
encoding base name, the text encoding variant, the text encoding format, and
the packing version used for the text encoding. The field values identify a
particular coded character set used to represent the text. You use the
CreateTextEncoding function to create a text encoding specification.

When you create a text encoding specification, the three values that you specify
are packed into an unsigned integer, which you can then pass by value from
within other data structures to the functions that use text encodings.

You use Text Encoding Conversions functions to obtain the contents of a text
encoding specification; you must not access this data structure directly. You use
the GetTextEncodingBase, GetTextEncodingVariant, and GetTextEncodingFormat
functions to obtain the text encoding base, variant, and format from the
specification.
Text Encoding Conversions Functions 1-13
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
CreateTextEncoding 1

Creates a text encoding specification from values you supply to the function
and returns the text encoding specification.

TextEncoding CreateTextEncoding (
TextEncodingBase encodingBase,
TextEncodingVariant encodingVariant,
TextEncodingFormat encodingFormat);

encodingBase A text encoding base of type TextEncodingBase (page 1-4).

encodingVariant
A variant of the text encoding base (page 1-8). To specify the
default variant for the base encoding given in the encodingBase
parameter, you can use the kTextEncodingDefaultVariant
(page 1-8) constant.

encodingFormat
A text encoding format (page 1-11).

function result
The text encoding specification that the function creates from
the values you pass it.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-14 Text Encoding Conversions Functions

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
SEE ALSO

See “Creating a New Text Encoding Specification and Obtaining Values From
an Existing One” (page 1-13) and the introduction following “Text Encoding
Conversions Reference” (page 1-3) for more information.

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of text encodings.

GetTextEncodingBase 1

Obtains the text encoding base value from the specified text encoding.

TextEncodingBase GetTextEncodingBase (TextEncoding encoding);

encoding A text encoding specification (page 1-3) containing the text
encoding base you want to obtain.

function result The text encoding base (page 1-4) belonging to the text
encoding you specified.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

See “Creating a New Text Encoding Specification and Obtaining Values From
an Existing One” (page 1-13) and the introduction following “Text Encoding
Conversions Reference” (page 1-3) for more information.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Text Encoding Conversions Functions 1-15
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of text encodings.

GetTextEncodingVariant 1

Obtains the text encoding variant value from the specified text encoding.

TextEncodingVariant GetTextEncodingVariant (TextEncoding encoding);

encoding A text encoding specification (page 1-3) containing the text
encoding variant you want to obtain.

function result The text encoding variant (page 1-8) belonging to the text
encoding you specified.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

See “Creating a New Text Encoding Specification and Obtaining Values From
an Existing One” (page 1-13) and the introduction following “Text Encoding
Conversions Reference” (page 1-3) for more information.

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of text encodings.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
1-16 Text Encoding Conversions Functions

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
GetTextEncodingFormat 1

Obtains the text encoding format value from the specified text encoding.

TextEncodingFormat GetTextEncodingFormat (TextEncoding encoding);

encoding A text encoding specification (page 1-3) containing the text
encoding format you want to obtain.

function result The text encoding format (page 1-11) belonging to the text
encoding you specified.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

See “Creating a New Text Encoding Specification and Obtaining Values From
an Existing One” (page 1-13) and the introduction following “Text Encoding
Conversions Reference” (page 1-3) for more information.

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of text encodings.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Text Encoding Conversions Functions 1-17
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
GetTextEncodingBaseName 1

Obtains and returns the name of the text encoding base, whose specification
you provide in the Unicode mapping, in the language you request.

OSStatus GetTextEncodingBaseName (
ConstUnicodeMappingPtr unicodeMapping,
LangCode languageID,
ByteCount bufLen,
ByteCount *nameLength,
UniCharArrayPtr mappingName);

unicodeMapping
A Unicode mapping data structure containing the encoding
specification (page 1-4) whose text encoding base name you
want to obtain. This data structure, which you provide,
contains text encoding specifications for a Unicode encoding
and any other text encoding. The function returns the name of
the base encoding for the other text encoding. For information
about the Unicode mapping data structure, see the “Unicode
Converter Reference.”

languageID A System 7 Script Manager language code. A language code is
used to indicate a particular written version of a language on
the Macintosh. Note that this is not an ISO language code. See
the System 7 Inside Macintosh: Text book for information on
Script Manager language codes.

bufLen The length in bytes of the buffer supplied by your application
and pointed to by the mappingName parameter.

nameLength A pointer to a value of type ByteCount. On output, the length in
bytes of the name of the text encoding base returned in the
mappingName parameter. The name can be up to 64 bytes long.

mappingName
A pointer to a Unicode character array (page 1-12) for the text
encoding base name string. On output, the name as a Unicode
string in the language specified by the languageID parameter. If
the name does not exist in the specified language, the name is
returned in the default language, which is English.
1-18 Text Encoding Conversions Functions

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
function result A result code. The function returns a noErr result code if it has
found and returned the text encoding base name. If one or more
of the input parameter values is invalid, the function returns a
paramErr result code. If the converter could not find one of the
mapping tables specified by the Unicode mapping structure
you supply or one of the resources associated with it, the
function returns a unicodeNoTableErr result code.

DISCUSSION

GetTextEncodingBaseName returns the base encoding name as a Unicode string.
If GetTextEncodingBaseName cannot return the base encoding name in the
language you specify, it returns the name in the default language, which is
usually English.

Note
In the next developer release of the Unicode Converter, the
type definition for the unicodeMapping parameter, which is
now ConstUnicodeMappingPtr, will be changed to
TextEncoding; and the type definition for the languageID
parameter, which is now LangCode, will be changed to
LocaleIdentifier. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Text Encoding Conversions Functions 1-19
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 1

Text Encoding Conversions Reference
1-20 Text Encoding Conversions Functions

 Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

Contents

Preliminary.  Apple Computer, Inc. 3/3/97

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 High-Level Text Encoding
Converter Reference
High-Level Text Encoding Converter Constants and Data Types 2-3
Conversion Object Reference 2-3
Text Encoding Conversion Information 2-5

High-Level Text Encoding Converter Functions 2-6
Obtaining Information About Available Text Encodings 2-6

TECCountAvailableTextEncodings 2-6
TECGetAvailableTextEncodings 2-8
TECGetTextEncodingLocalizedName 2-10

Identifying Direct Encoding Conversions 2-11
TECCountDirectTextEncodingConversions 2-12
TECGetDirectTextEncodingConversions 2-13

Identifying Possible Destination Encodings 2-15
TECCountDestinationTextEncodings 2-15
TECGetDestinationTextEncodings 2-17

Identifying Text Encodings from Internet Names and Vice Versa 2-19
TECGetTextEncodingFromInternetName 2-19
TECGetTextEncodingInternetName 2-20

Creating and Deleting Conversion Objects 2-21
TECCreateConverter 2-22
TECCreateConverterFromPath 2-23
TECDisposeConverter 2-25
TECClearConverterContextInfo 2-26

Converting Text Between Encodings 2-28
TECConvertText 2-28

High-Level Text Encoding Converter Result Codes 2-30
2-1

C H A P T E R 2
2-2 Contents

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2
High-Level Text Encoding Converter Reference 2

High-Level Text Encoding Converter Constants and Data
Types 2

Conversion Object Reference 2

You use a conversion object reference to refer to a conversion object. A
conversion object is an opaque data type that specifies a conversion path
between source and destination text encodings and specifies other context
needed for performing a conversion. When you want to perform a conversion,
you must pass a conversion object reference to the conversion function.

You create a conversion object and obtain a reference to it by calling the
TECCreateConverter (page 2-22) or TECCreateConverterFromPath (page 2-23)
functions. Once you obtain a conversion object reference, you can pass it to any
of the functions that perform conversions. If you will be performing the same
conversion multiple times, you should create the conversion object once and
then reuse it.

Although you need to specify only the source and destination encodings to
create and obtain a conversion object reference, in some cases the converter
must perform intermediate conversions to convert text from a source encoding
to a destination encoding. If you use TECCreateConverter to create a conversion
object reference, the converter will choose the best intermediate conversion
path; this process occurs internally and is transparent to your application.
However, you may want to explicitly define the conversion path the converter
should follow instead of relying on system behavior. If you know the most
expedient path involving intermediate conversions, specifying it as an explicit
path can improve performance in two areas.

Firstly, it can decrease the amount of time the converter requires to build the
conversion object. When the converter builds the conversion object in response
to your call to TECCreateConverter, it determines if it needs to perform
intermediate conversions to achieve the encoding conversion you request. If so,
the converter must poll all conversion plug-ins to determine the conversions
they enable, then it must determine the best path using available conversions.
Specifying your own conversion path eliminates this internal query and
High-Level Text Encoding Converter Constants and Data Types 2-3
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
assessment process, allowing the converter to more quickly create the
conversion object.

Secondly, it can assure you of the best conversion-process performance. If the
converter needs to assess the best intermediate conversion path to use, it will
choose, from among all possible paths, the shortest path to the destination
encoding from the source one—that is, the path entailing the fewest number of
conversions; this might not be the most expedient path (although it usually is).
For example, the converter might elect to convert the source text to Unicode
and then from Unicode to the destination encoding because this process entails
only one intermediate conversion. However, a path involving two intermediate
conversions might actually be faster.

To create a conversion object reference that contains an explicit conversion
path, you use TECCreateConverterFromPath.

Both of these functions—TECCreateConverter and TECCreateConverterFromPath
return the same kind of conversion object reference, TECObjectRef, which you
can pass to any of the High-Level Text Encoding Converter functions that take
a parameter of this type.

For conversions that entail use of a text encoding scheme, the converter stores
and maintains state information identifying the current encoding in the
conversion object. It also stores escape sequences, special control characters,
and other information pertaining to encoding state changes in the conversion
object. All of this is transparent to your application.

A conversion object has the ability to maintain state information. Therefore,
your application can use the same conversion object reference to convert
multiple segments of a single text stream. You might want to do this when the
text is arriving in packets or when you do not know how large an output buffer
to allocate for the converted string.

When you are finished using a conversion object to convert a particular stream
of text, you can use the TECClearConverterContextInfo function (page 2-26) to
clear its context. You can then use the same reference to the same conversion
object—now cleared of its former context pertaining to the last text stream you
used it for—to convert another text stream. The High-Level Text Encoding
Converter provides this feature to encourage you to keep conversion objects
around for multiple uses instead of creating them anew for converting different
streams of text because the conversion object creation process incurs a large
amount of overhead.
2-4 High-Level Text Encoding Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
When you know you will no longer have need of a particular conversion
object, you should release the memory allocated for it by calling the
TECDisposeConverter function (page 2-25). A reference persists until you
dispose of it. The TECObjectRef data type defines a conversion object reference.

typedef struct OpaqueTECObjectRef* TECObjectRef;

Text Encoding Conversion Information 2

When you call the TECGetAvailableTextEncodingConversions function
(page 2-13), you pass an array of text encoding conversion information
structures. The function fills the text encoding conversion information
structures of the array with information about each type of supported
conversion. A text encoding conversion information structure is defined by the
TECConversionInfo data structure.

struct TECConversionInfo {
TextEncoding sourceEncoding;
TextEncoding destinationEncoding;
UInt16 reserved1;
UInt16 reserved2;

};
typedef struct TECConversionInfo TECConversionInfo;

Field descriptions
sourceEncoding A text encoding data structure giving the source encoding

in which the text to be converted to the destination
encoding is expressed. For information on text encoding
specifications, see the “Text Encoding Conversions
Reference.”

destinationEncoding
A text encoding data structure giving the destination
encoding to which the text to be converted from the source
encoding is expressed.

reserved1 Reserved.
reserved2 Reserved.
High-Level Text Encoding Converter Constants and Data Types 2-5
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
High-Level Text Encoding Converter Functions 2

Obtaining Information About Available Text Encodings 2

The number and kind of text encodings that the High-Level Text Encoding
Converter supports depends on the conversion plug-ins currently installed in
the system. Encoding conversion plug-ins, which provide conversion services
between two encodings, are installed in the Text Encodings folder within the
System folder.

You can use the TECGetAvailableTextEncodings function to obtain a list of text
encoding specifications for all available text encodings that can be used for
converting text. To know how large an array to allocate to hold this list, you
can first call the TECCountAvailableTextEncodings function.

For any of the text encoding specifications returned in the list, you can use the
TECGetTextEncodingLocalizedName function to obtain the text encoding name.
You can display these encoding names in dialog boxes or menus, for example,
to advertise available encodings to the user.

TECCountAvailableTextEncodings 2

Identifies the number of text encodings the encoding converter supports, which
depends on its current configuration.

pascal OSStatus TECCountAvailableTextEncodings (ItemCount
*numberEncodings);

numberEncodings
A pointer to a value of type ItemCount. On output, this pointer
refers to the number of currently supported text encodings.

function result A result code. If TECCountAvailableTextEncodings returns a
result code other than noErr, then one of the conversion
plug-ins providing conversion services for various text
encodings encountered an error condition while the High-Level
2-6 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
Encoding Converter polled it for the number of encodings it
supports. For possible result codes, see “High-Level Text
Encoding Converter Result Codes” on page 2-30.

DISCUSSION

TECCountAvailableTextEncodings counts and returns the number of text
encodings that you can use to perform conversions based on the current
configuration of the High-Level Text Encoding Converter. You need this
number in order to determine how large of an array to allocate as the buffer
that you pass to TECGetAvailableTextEncodings (page 2-8) in the
availableEncodings parameter. Therefore, you should call this function before
you call TECGetAvailableTextEncodings in order to allocate an array with
enough elements to accommodate the specifications for all of these text
encodings.

TECCountAvailableTextEncodings counts each instance of the same encoding.
That is, if different conversion plug-ins support the same text encoding for any
of the conversion processes they provide, TECCountAvailableTextEncodings
includes each instance of the text encoding in its sum. Consequently, the same
text encoding may be counted more than one time. However, the
TEGetAvailableTextEncodings function does not return duplicate text encoding
specifications. This means TECCountAvailableTextEncodings may return a
number that is greater than the number of array elements required to hold the
text encoding specifications that TEGetAvailableTextEncodings returns.
However, to provide sufficient space, you should base the number of elements
you allocate for the array on this count.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-7
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
SEE ALSO

For background information, see “Obtaining Information About Available Text
Encodings” on page 2-6.

TECGetAvailableTextEncodings 2

Returns the text encoding specifications identifying the encodings the
converter is currently configured to handle.

pascal OSStatus TECGetAvailableTextEncodings(
TextEncoding availableEncodings[],
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings);

availableEncodings[]
An array composed of text encoding specification data
structures. On output, the TECGetAvailableTextEncodings
function fills the array with the specifications for the text
encodings the encoding converter currently supports. To
determine how large of an array to allocate, use the
TECCountAvailableTextEncodings function (page 2-6). For
information on text encoding specifications, see the “Text
Encoding Conversions Reference.”

maxAvailableEncodings
The quantity of text encoding specification data structures that
the availableEncodings array can contain.

actualAvailableEncodings
A pointer to a value of type ItemCount. On output, this pointer
refers to the number of text encodings the function returned in
the availableEncodings array.

function result A result code. If TECGetAvailableTextEncodings returns a result
code other than noErr, then one of the conversion plug-ins
providing conversion services for various text encodings
encountered an error condition while the High-Level Encoding
Converter polled it for the encodings it supports. For possible
result codes, see “High-Level Text Encoding Converter Result
Codes” on page 2-30.
2-8 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
DISCUSSION

The TECGetAvailableTextEncodings function returns the text encoding
specifications in the array you pass to the function as the availableEncodings
parameter, eliminating any duplicate information in the process. For example,
if the converter is configured to support a number of conversion plug-ins some
of which support the same text encoding, then TECGetAvailableTextEncodings
returns only one instance of the specification for that encoding. Consequently,
the number of encodings TECGetAvailableTextEncodings returns in the available
encodings array may be fewer than the number of elements you allocated for
the array based on your call to TECCountAvailableTextEncodings (page 2-15).
TECGetAvailableTextEncodings tells you the number of specifications it returns
in the actualAvailableEncodings parameter.

You can pass any of the specifications returned in the list to the
TECGetTextEncodingLocalizedName function (page 2-10) to obtain the name of its
text encoding.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For brief, background information, see “Obtaining Information About
Available Text Encodings” on page 2-6.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-9
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
TECGetTextEncodingLocalizedName 2

Returns the text encoding name in the requested language, given a
specification for the text encoding.

pascal OSStatus TECGetTextEncodingLocalizedName(
TextEncoding textEncoding,
RegionCode region,
TextEncoding preferredEncoding,
ByteCount bufLen,
TextEncoding *nameEncoding,
ByteCount *nameLength,
Byte encodingName[]);

textEncoding The text encoding specification for the encoding whose name
you want to obtain. For information on text encoding
specifications, see the “Text Encoding Conversions Reference.”

region A region code.

preferredEncoding
A text encoding specification.

bufLen The length in bytes of the buffer given in the encodingName
parameter.

nameEncoding A pointer to a text encoding specification.

nameLength A pointer to a value of type ByteCount. On output, the value
gives the length of the name string returned in the encodingName
parameter.

encodingName An array of Byte types.

function result A result code. If TECGetTextEncodingLocalizedName returns a
result code other than noErr, then the conversion plug-in
providing conversion services for the text encoding whose
name you requested encountered an error condition. In this
case, the High-Level Encoding Converter returns the error code
passed through from the plug in. For possible result codes, see
“High-Level Text Encoding Converter Result Codes” on
page 2-30.
2-10 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
DISCUSSION

You use TECGetTextEncodingLocalizedName to obtain the name of an encoding in
the language you specify so that you can display the encoding name to your
user. You might want to tell your user about the encoding conversions that are
available, giving a list of pairs showing source and destination encodings. In
this case, you could call this function for each text encoding of a conversion
after you determine the conversions made possible by the current
configuration.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For background information, see “Obtaining Information About Available Text
Encodings” on page 2-6.

To obtain a list of specifications for all text encodings available on the system,
use the TECGetAvailableTextEncodings function (page 2-8).

To determine the destination encodings supported for a particular source
encoding in order to identify available encoding conversions, you can call the
TECGetDestinationTextEncodings function (page 2-17).

Identifying Direct Encoding Conversions 2

The High-Level Text Encoding Converter performs conversions between any
two encodings if those encodings are supported by the current configuration of
the converter, which depends on the current constellation of conversion
plug-ins.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-11
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
Conversion plug-ins provide services supporting direct conversion between
two encodings. To obtain information identifying all direct conversions that the
High-Level Text Encoding Converter can perform, you use the
TECGetDirectTextEncodingConversions function. To determine the size of the
array to pass to this function to obtain the returned information, you can first
call the TECCountDirectTextEncodingConversions function.

The converter may not always be able to perform a direct conversion between
two specific encodings supported by a single conversion plug-in. However, it
may be able to carry out the requested conversion by including intermediate
conversions. This entails using the services of more than one conversion
plug-in to achieve the conversion from the specified source encoding to the
destination one.

The TECGetDirectTextEncodingConversions and
TECCountDirectTextEncodingConversions functions do not take into account
conversions from a source to destination encoding entailing intermediate
conversions. However, you can call TECCreateConverter (page 2-22) to find out
if a specific conversion is possible when the
TECGetDirectTextEncodingConversions function does not report it as a
supported direct conversion. If the conversion you are interested in is not
possible, TECCreateConverter cannot create the conversion object and the
function will return an error result code.

TECCountDirectTextEncodingConversions 2

Gives the number of direct conversions that the encoding converter supports in
its current configuration.

pascal OSStatus TECCountDirectTextEncodingConversions (
ItemCount *numberOfEncodings);

numberOfEncodings
A pointer to a value of type ItemCount. On output, this pointer
refers to the number of direct conversions that the converter is
currently configured to support.

function result A result code. If TECCountDirectTextEncodingConversions
returns a result code other than noErr, then one of the
conversion plug-ins polled by the converter encountered an
2-12 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
error condition. In this case, the High-Level Encoding
Converter returns the error code passed through from the plug
in. For possible result codes, see “High-Level Text Encoding
Converter Result Codes” on page 2-30.

DISCUSSION

You use the number that TECCountDirectTextEncodingConversions returns to
determine how large to make the array you pass to
TECGetDirectTextEncodingConversions (page 2-13).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For background information, see “Identifying Direct Encoding Conversions”
on page 2-11.

TECGetDirectTextEncodingConversions 2

Returns the types of direct conversions the converter handles in its current
configuration.

pascal OSStatus TECGetDirectTextEncodingConversions(
TECConversionInfo directConversions[],
ItemCount maxDirectConversions,
ItemCount *actualDirectConversions);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-13
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
directConversions[]
An array composed of text encoding conversion information
structures (page 2-5). On output, the
TECGetDirectTextEncodingConversions function fills the array
with the text encoding conversion information structures
identifying the types of conversions the encoding converter
currently supports. To determine how large of an array to
allocate, use the TECCountDirectTextEncodingConversions
function (page 2-12).

maxDirectConversions
The quantity of text encoding conversion information structures
that the directConversions array can contain.

actualDirectConversions
A pointer to a value of type ItemCount. On output, this pointer
refers to the number of text encoding conversion information
structures returned in the direct conversions array.

function result A result code. If TECGetDirectTextEncodingConversions returns a
result code other than noErr, then one of the conversion
plug-ins accessed by the converter encountered an error
condition. In this case, the High-Level Encoding Converter
returns the error code passed through from the plug in. For
possible result codes, see “High-Level Text Encoding Converter
Result Codes” on page 2-30.

DISCUSSION

The TECGetDirectTextEncodingConversions function returns the text encoding
conversion information structures in the array you pass to the function as the
directConversions parameter. Each element consists of a text encoding
conversion information structure giving the source and destination encodings.

If you want to display the available direct encoding conversions to your user,
you can obtain the source and destination text encoding names in the language
you specify. To do this, for each encoding you pass the text encoding
specification returned in a text encoding conversion information structure to
the TECGetTextEncodingLocalizedName function (page 2-10).

You can use the conversion speed information this function returns to assess
the fastest path when you want to specify intermediate conversions explicitly
2-14 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
in creating a conversion object using the TECCreateConverterFromPath function
(page 2-23).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For background information, see “Identifying Direct Encoding Conversions”
on page 2-11.

Identifying Possible Destination Encodings 2

You can identify all possible destination encodings to which the encoding
converter can convert a specific source encoding by calling the
TECGetDestinationTextEncodings function. To determine how large of an array
to allocate to hold the information TECGetDestinationTextEncodings returns,
you can first call TECCountDestinationTextEncodings.

TECCountDestinationTextEncodings 2

Returns the number of encodings to which the High-Level Text Encoding
Converter can convert the specified source encoding using a single, direct
conversion process from the source encoding to another one.

pascal OSStatus TECCountDestinationTextEncodings(
TextEncoding inputEncoding,
ItemCount *numberOfEncodings);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-15
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
inputEncoding
A text encoding specification giving the source text encoding.
For information on text encoding specifications, see the “Text
Encoding Conversions Reference.”

numberOfEncodings
A pointer to a value of type ItemCount. On output, this pointer
refers to the number of text encodings that the source encoding
given in the inputEncoding parameter can be converted to
directly.

function result A result code. If TECCountDestinationTextEncodings returns a
result code other than noErr, then one of the conversion
plug-ins polled by the converter encountered an error
condition. In this case, the High-Level Encoding Converter
returns the error code passed through from the plug-in. For
possible result codes, see “High-Level Text Encoding Converter
Result Codes” on page 2-30.

DISCUSSION

TECCountDestinationTextEncodings returns the number of direct encoding
conversions possible from the given source encoding to any supported
destination encodings. A direct encoding conversion consists of a conversion
from the source encoding to a destination encoding that does not require one or
more intermediate conversions. For example, suppose MacJapanese is the
source encoding; conversion from MacJapanese to EUC_JP is considered direct
whereas conversion from MacJapanese to EUC_JP and from EUC_JP to
ISO2022-JP with ISO2022-JP as the destination encoding is considered indirect.

You can use the number that TECCountDestinationTextEncodings returns to
determine how many text encoding specification elements to allocate for the
array you pass to TECGetDestinationTextEncodings (page 2-17), which you call
to obtain the text encoding specifications for the supported destination
encodings.
2-16 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

TECGetDestinationTextEncodings 2

Returns the encoding specifications for the destination text encodings to which
the High-Level Text Encoding Converter can directly convert the specified
source encoding.

pascal OSStatus TECGetDestinationTextEncodings(
TextEncoding inputEncoding,
TextEncoding destinationEncodings[],
ItemCount maxDestinationEncodings,
ItemCount *actualDestinationEncodings);

inputEncoding
A text encoding specification identifying the source text
encoding. For information on text encoding specifications, see
the “Text Encoding Conversions Reference.”

destinationEncodings[]
An array of text encoding specification data structures. On
output, the TECGetDestinationTextEncodings function fills the
array elements with specifications for the destination encodings
to which the High-Level Text Encoding Converter can directly
convert the source encoding given in the inputEncoding
parameter. Your application allocates memory for this array to
accommodate the encodings that
TECGetDestinationTextEncodings returns. To determine how
large of an array to allocate, use the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-17
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
TECCountDestinationTextEncodings function (page 2-15). For
information on text encoding specifications, see the “Text
Encoding Conversions Reference.”

maxDestinationEncodings
The maximum number of destination text encodings. This is the
number of elements composing the array you provide in the
destinationEncodings parameter.

actualDestinationEncodings
A pointer to a value of type ItemCount. On output, this pointer
refers to the number of text encoding specifications the function
returned in the destination encodings array.

function result A result code. If TECGetDestinationTextEncodings returns a
result code other than noErr, then one of the conversion
plug-ins accessed by the converter encountered an error
condition. In this case, the High-Level Encoding Converter
returns the error code passed through from the plug-in. For
possible result codes, see “High-Level Text Encoding Converter
Result Codes” on page 2-30.

DISCUSSION

TECGetDestinationTextEncodings returns specifications for all possible
destination text encodings to which the source encoding can be directly
converted. You can display the names of these target encodings to your user in
a specific language. You can call the TECGetTextEncodingLocalizedName function
(page 2-10) to obtain a text encoding name based on its specification.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-18 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
Identifying Text Encodings from Internet Names and Vice Versa 2

The Internet has its own set of names that identify text encodings in which text
is expressed.

Given an Internet name, you can determine its equivalent text encoding for the
Mac OS 8 platform using the TECGetTextEncodingFromInternetName function. To
determine the equivalent Internet name for a text encoding supported on the
Mac OS 8 platform, you can use the TECGetTextEncodingInternetName function.

TECGetTextEncodingFromInternetName 2

Given an Internet name, returns the corresponding Mac OS 8 text encoding
specification.

pascal OSStatus TECGetTextEncodingFromInternetName(
TextEncoding *textEncoding,
ConstStr255Param encodingName);

textEncoding A pointer to a text encoding data structure. On output, the
structure contains the Mac OS 8 text encoding specification that
corresponds to the Internet name specified by the encodingName
parameter. For information about text encodings, see the “Text
Encoding Conversions Reference.”

encodingName The Internet encoding name for which you want the
corresponding Mac OS 8 equivalent.

function result A result code.

DISCUSSION

Names of text encodings defined on Mac OS 8 differ from names defined for
the Internet to represent the same encodings. You can use
TECGetTextEncodingFromInternetName to obtain the Mac OS 8 name for a text
encoding given its Internet name.
High-Level Text Encoding Converter Functions 2-19
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

TECGetTextEncodingInternetName 2

Returns the Internet name for the specified text encoding.

pascal OSStatus TECGetTextEncodingInternetName(
TextEncoding textEncoding,
Str255 encodingName);

textEncoding The text encoding specification for the encoding whose Internet
name you want to obtain. For information on text encoding
specifications, see the “Text Encoding Conversions Reference.”

encodingName The Internet name, returned by the function, that represents the
text encoding specified by the textEncoding parameter.

function result A result code.

DISCUSSION

The TECGetTextEncodingInternetName function returns the Internet name for the
text encoding whose specification you provide.

If there are multiple Internet names for the same text encoding, the function
returns the one that is designated the preferred name.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-20 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Creating and Deleting Conversion Objects 2

The High-Level Encoding Converter functions that perform conversions rely
on a conversion object for information describing the encodings to and from
which the text is to be converted. You pass a conversion object reference to a
text conversion function when you call the function. You create a conversion
object that specifies the source and destination encodings using the
TECCreateConverter function and the function returns a reference to the object.

You can also create a conversion object that explicitly specifies the conversion
path the converter should follow when it must perform intermediate
conversions to achieve conversion to the final destination encoding. For this
purpose, you use the TECCreateConverterFromPath function, which also returns
a reference to the object. You can use a conversion object reference multiple
times to convert portions of a single text stream.

After you use a conversion object for one conversion process, you can use it
again for another. You can use the TECClearConverterContextInfo function to
clear the context of a conversion object before you use it for the next conversion
process. When you are entirely finished with a conversion object reference, you
must delete the conversion object and reference using the TECDisposeConverter
function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-21
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
TECCreateConverter 2

Creates a text encoding conversion object based on the specified source and
destination encodings and returns a reference to it.

pascal OSStatus TECCreateConverter(
TECObjectRef *newEncodingConverter,
TextEncoding inputEncoding,
TextEncoding outputEncoding);

newEncodingConverter
A pointer to a conversion object reference (page 2-3). On
output, the reference pertains to the newly created text
encoding conversion object.

inputEncoding
The specification for the source text encoding. A source
encoding identifies the encoding in which a byte stream to be
converted using this reference is currently expressed. For
information on the text encoding specification data structure,
see the “Text Encoding Conversions Reference.”

outputEncoding
The specification for the destination text encoding. A
destination encoding identifies the encoding to which a byte
stream expressed in a source encoding is to be converted.

function result A result code. If TECCreateConverter returns a result code other
than noErr, then it did not successfully create the conversion
object reference. If the current configuration of the converter
does not support either the source or destination encoding, the
function returns a kUnknownEncodingErr result code. See
“High-Level Text Encoding Converter Result Codes”
(page 2-30) for additional result codes.

DISCUSSION

Given a source encoding and a destination encoding, TECCreateConverter
determines a conversion path, creates a text encoding conversion object, and
returns a reference to it. You use a conversion object reference with conversion
functions such as TECConvertText (page 2-28). A conversion function, such as
TECConvertText, relies on a conversion object for information identifying the
2-22 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
type of conversion it is to perform—that is, for the source and destination
encodings and other characteristics of the conversion including state
information and references to required plug-ins.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To create a conversion object reference that contains a specific conversion path
that you define—that is, a path from the source encoding to the destination
encoding that entails specific intermediate conversions—use the
TECCreateConverterFromPath function (page 2-23).

For brief, background information, see “Creating and Deleting Conversion
Objects” on page 2-21.

TECCreateConverterFromPath 2

Creates a conversion object that includes a specific conversion path from a
source encoding through intermediate encodings to a destination encoding and
returns a reference to it.

pascal OSStatus TECCreateConverterFromPath(
TECObjectRef *newEncodingConverter,
const TextEncoding inPath[],
ItemCount inEncodings);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-23
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
newEncodingConverter
A pointer to a conversion object reference (page 2-3). On
output, the reference pertains to the newly created text
encoding conversion object.

inPath[] An ordered array of text encoding specifications. The elements
of the array begin with the source encoding specification
followed by a series of specifications for the encodings through
which the text is successively converted until it is converted to
the destination encoding. For information on the text encoding
specification data structure, see the “Text Encoding Conversions
Reference.”

inEncodings The number of text encoding specifications composing the
conversion path array given in the inPath parameter.

function result A result code. If TECCreateConverterFromPath returns a result
code other than noErr, then it did not successfully create the
conversion object reference. If the current configuration of the
converter does not support all of the encodings composing the
array, the function returns a kUnknownEncodingErr result code.
See “High-Level Text Encoding Converter Result Codes”
(page 2-30) for additional result codes.

DISCUSSION

You use TECCreateConverterFromPath to create and obtain a reference to a
conversion object that specifies a conversion path you define. You give the
conversion sequence from the source encoding through intermediate encodings
to the destination encoding instead of allowing the High-Level Text Encoding
Converter to determine the path internally, as it does when you use
TECCreateConverter (page 2-22) to create the conversion object. To specify the
conversion sequence, you create an array of text encoding specification data
types that identify the encoding conversions through which the text to be
converted should pass from its source to destination encoding.

Each adjacent pair of text encodings you specify in the array must represent a
conversion that is supported by the current configuration of the encoding
converter. Otherwise, the function will return an error result code, in which
case it will not create the conversion object. Therefore, you should use the
TECGetDestinationTextEncodings function (page 2-17) to determine each
subsequent step in the sequence from the source to the destination encoding.
2-24 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To create a conversion object reference that allows the High-Level Text
Encoding Converter to determine the conversion path from the source to
destination encodings you specify, use the TECCreateConverter function
(page 2-22).

For brief, background information, see “Creating and Deleting Conversion
Objects” on page 2-21.

TECDisposeConverter 2

Disposes of the specified conversion object reference and the object it refers to.

pascal OSStatus TECDisposeConverter (TECObjectRef newEncodingConverter);

newEncodingConverter
The text encoding conversion object reference to be disposed of.
This can be a reference returned by TECCreateConverter
(page 2-22) or TECCreateConverterFromPath (page 2-23).

function result A result code. See “High-Level Text Encoding Converter Result
Codes” (page 2-30) for result codes.

DISCUSSION

You use TECDisposeConverter to dispose of an encoding converter object and its
reference when you have finished using the reference. Be sure not to specify a

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-25
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
conversion object reference as a parameter to another function after you use
TECDisposeConverter to dispose of it.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For brief, background information, see “Creating and Deleting Conversion
Objects” on page 2-21.

TECClearConverterContextInfo 2

Clears the context pertaining to the last conversion process for which the
conversion object was used.

pascal OSStatus TECClearConverterContextInfo (TECObjectRef
encodingConverter);

encodingConverter
The reference to the text encoding conversion object whose
context is to be cleared.This can be a reference returned by
TECCreateConverter (page 2-22) or TECCreateConverterFromPath
(page 2-23).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-26 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
function result A result code. If TECClearConverterContextInfo was unable to
clear the context, it returns a result code passed through from
one of the conversion plug-ins. For possible result codes, see
“High-Level Text Encoding Converter Result Codes” on
page 2-30.

DISCUSSION

Creating a conversion object and obtaining a reference to it entails some
overhead and expense. It is more economical for the system to allow you to
reuse an existing conversion object than it is for it to create a new one
containing the same conversion information. To make it possible for you to
reuse conversion objects that you’ve already created, the High-Level Text
Encoding Converter provides the TECClearConverterContextInfo function,
which you call to clear a conversion object of any state and context information
it contains that was used for the last conversion. Calling this function returns
the conversion object to its original state.

When you convert multiple segments of a text string, you call the conversion
function for each string using the same conversion object. In this case, you
want the conversion object to maintain state. It is only after you completely
convert all segments of the text string that you clear the conversion object used
for the process.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
High-Level Text Encoding Converter Functions 2-27
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
Converting Text Between Encodings 2

TECConvertText 2

Converts a stream of text from a source encoding to a destination one, relying
on the referenced conversion object for the encoding identifications.

pascal OSStatus TECConvertText(
TECObjectRef encodingConverter,
ConstTextPtr inputBuffer,
ByteCount inputBufferLength,
ByteCount *actualInputLength,
TextPtr outputBuffer,
ByteCount outputBufferLength,
ByteCount *actualOutputLength);

encodingConverter
The reference to the text encoding conversion object to be used
for the conversion.This can be a reference returned by
TECCreateConverter (page 2-22) or TECCreateConverterFromPath
(page 2-23).

inputBuffer The source text stream. This is the text to be converted.

inputBufferLength
The length in bytes of the stream of text given in the
inputBuffer parameter.

actualInputLength
A pointer to a value of type ByteCount. On output, this value
returns the number of source text bytes, passed to the function
in the inputBuffer parameter, that TECConvertText converted
and returned in the outputBuffer parameter. If the buffer you
specified in the outputBuffer parameter is not large enough to
hold the entire converted text stream, you can use the value
returned by this parameter to distinguish the remainder of the
text to be converted. You can then call TECConvertText to
convert the rest of the text stream.
2-28 High-Level Text Encoding Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
outputBuffer A pointer to a buffer for a byte stream. On output, this buffer
holds the converted text. For information on how to assess the
size of the output buffer to allocate, see the function discussion.
If the buffer that you allocate is not large enough to hold the
entire converted text stream, TECConvertText returns the
number of bytes of source text that were converted in the
actualInputLength parameter. You can then call the
TECConvertText again to convert the remaining text.

outputBufferLength
The length in bytes of the buffer provided by the outputBuffer
parameter.

actualOutputLength
The length in bytes of the converted text returned in the buffer
specified by the outputBuffer parameter.

function result
A result code. If there is not enough memory available for
TECConvertText to convert the text, the function returns the
appropriate Memory Manager result code.

DISCUSSION

TECConvertText converts the stream of text you pass it to the destination
encoding specified in the text encoding conversion object whose reference you
give. The function relies on the specified conversion object for information
identifying the source encoding in which the text is expressed, the train of
encodings forming the intermediate conversion path, if one is explicate
specified, and any conversion options implicitly specified by default in the
conversion object or explicitly set by your application. The function returns the
text in the output buffer that you provide.

In allocating an output buffer, a good rule of thumb is larger is better, basing
your estimate on the byte requirements of the destination encoding. You
should always allocate a buffer that is at least 32 bytes long. For the function to
complete successfully, the output buffer you allocate must be large enough to
accommodate at least part of the converted text. In this case, if the function
cannot convert all of the text, it will execute successfully and return the portion
of the text it converted and information about the remaining text, so that you
can call the function again to convert that text.
High-Level Text Encoding Converter Functions 2-29
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 2

High-Level Text Encoding Converter Reference
If the output buffer you allocate is too small to accommodate any converted
text, the function will fail. For example, if the destination encoding requires
additional bytes to identify the text encoding, such as an escape sequence
preceding the converted text, your buffer must be large enough to
accommodate the escape sequences and the text. If the destination encoding
happens to be a text encoding scheme, such as ISO 2022, which begins in ASCII
and switches to other coded character sets through limited combinations of
escape sequences, then you need to allocate enough space to accommodate
escape sequences signaling switches. ISO 2022 requires 3 bytes for an escape
sequence preceding the 2-byte character it introduces. If you allocate a buffer
that is less than 5 bytes, TECConvertText will fail.

If you are not sure of the required size for the output buffer and the one you
allocate is too small to hold all of the converted text, you can call
TECConvertText multiple times. TECConvertText returns the number of source
bytes it removed from input in the actualInputLength parameter. You can use
this number to identify the next byte to be taken and how many bytes remain.

During the conversion process, the High-Level Text Encoding Converter may
need to create temporary buffers to contain intermediate conversions. The
converter disposes of these buffers when it no longer needs them.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

High-Level Text Encoding Converter Result Codes 2

Many of the High-Level Text Encoding Converter functions return result codes.
The various result codes specific to the converter are listed here.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-30 High-Level Text Encoding Converter Result Codes

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Contents

Preliminary.  Apple Computer, Inc. 3/3/97

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Unicode Converter Reference
Unicode Converter Constants and Data Types 3-3
Conversion Information Reference for Converting to Unicode 3-3
Conversion Information References for Converting From Unicode to a
Single Encoding 3-5
Conversion Information Reference for Converting From Unicode to One or
More Encodings 3-6
Text Encoding Run Structure 3-7
Conversion Control Flags 3-7
Control Flags for Truncating a Unicode String 3-16
Control Flags for Specifying the Fallback Handlers and Their Calling
Order 3-17
Constants for Script Manager Value Conversions To and From Text
Encodings 3-19
Filter Indicators for Querying for Matching Unicode Mappings 3-21
Unicode Character and String Pointer Data Types 3-23
Region Code Data Type 3-24
Unicode Mapping Structure 3-24
Unicode Mapping Version 3-26
Latest Unicode Mapping Version 3-26
Fallback Handler Function 3-27

Unicode Converter Functions 3-28
Converting to Unicode 3-29

CreateTextToUnicodeInfo 3-29
ConvertFromTextToUnicode 3-32
DisposeTextToUnicodeInfo 3-36

Converting From Unicode 3-38
CreateUnicodeToTextInfo 3-38
3-1

C H A P T E R 3
ConvertFromUnicodeToText 3-41
DisposeUnicodeToTextInfo 3-45

Converting From Unicode to Multiple Encodings 3-47
CreateUnicodeToTextRunInfo 3-47
ConvertFromUnicodeToTextRun 3-50
DisposeUnicodeToTextRunInfo 3-56

Truncating Strings Before Converting Them 3-58
TruncateForTextToUnicode 3-58
TruncateForUnicodeToText 3-60

Converting Unicode From and To Pascal Strings 3-62
ConvertPStringToUnicode 3-62
ConvertUnicodeToPString 3-64

Obtaining Unicode Mapping and Text Encoding Base Name
Information 3-66

QueryUnicodeMappings 3-67
Changing the Conversion Information Structure’s Mapping
Information 3-70

ChangeTextToUnicodeInfo 3-70
ChangeUnicodeToTextInfo 3-72

Setting the Fallback Handler 3-73
SetFallbackUnicodeToText 3-74
SetFallbackUnicodeToTextRun 3-76
SetFallbackUnicodeToTextPreemptive 3-78
SetFallbackUnicodeToTextRunPreemptive 3-81

Converting Between Script Manager Values and Text Encoding
Specifications 3-83

UpgradeScriptInfoToTextEncoding 3-83
RevertTextEncodingToScriptInfo 3-87

Application-Defined Function 3-90
MyUnicodeToTextFallbackProc 3-90

Result Codes 3-94
3-2 Contents

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Unicode Converter Reference 3

Unicode Converter Constants and Data Types 3

The Unicode Converter performs table lookup-based conversions. Its primary
use is to convert text from any text encoding to Unicode or to convert Unicode
text to any text encoding. The Unicode Converter also allows you to convert
text encoded in the coded character set of one text encoding to another using
Unicode as a hub. (Table lookup-based conversion converts text encoded in a
single text encoding to another; it does not deal with text encoding schemes.)
Applications that want to convert text between any two text encodings
typically use the High-Level Encoding Converter. However, when you want
extensive error reporting and control over the conversion mapping process,
you can use the Unicode Converter to convert between any two text encodings
using Unicode as the hub.

For data types, constants and functions pertaining to text encodings, see the
“Text Encoding Conversions Reference” chapter. This chapter describes the text
encoding specification data type, data types you use to specify the base,
variant, and format of a text encoding specification, and the functions you use
to create a text encoding specification and obtain the values comprising one.

Conversion Information Reference for Converting to Unicode 3

The Unicode Converter ConvertFromTextToUnicode (page 3-32) and
ConvertPStringToUnicode (page 3-62) functions that convert a text stream in
another encoding to Unicode use a data structure that contains mapping and
state information. When you call one of these functions, you pass a conversion
information reference that points to the private conversion information data
structure created for the conversion process. A conversion information
reference is defined by the TextToUnicodeInfo data type.

typedef struct OpaqueTextToUnicodeInfo *TextToUnicodeInfo;

Your application cannot directly create or modify the contents of the private
data structure pointed to by a conversion information reference. Instead, your
application must first call the CreateTextToUnicodeInfo function (page 3-29) to
Unicode Converter Constants and Data Types 3-3
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
provide the mapping information required for the conversion. The function
creates and returns a conversion information reference. You can then pass this
reference to ConvertFromTextToUnicode (page 3-32) or ConvertPStringToUnicode
(page 3-62) to identify the information to be used in performing the actual
conversion.

Your application can use the same conversion information reference to convert
multiple segments of a single text stream to Unicode. After you have finished
using a conversion information reference, you should release the memory
allocated for it by calling the DisposeTextToUnicodeInfo function (page 3-36).
Although a conversion information reference persists until you dispose of it,
you should use the same conversion information reference only to convert
segments of text belonging to the text stream for which you created the
reference. For each new conversion process, you should create a new
conversion information reference to convert another string of text even if you
intend to use the same mapping information. This is because the Unicode
Converter stores private state information in a conversion information
reference that is relevant only to that particular reference and the single text
stream for which it is used.

Another function, the TruncateForTextToUnicode function (page 3-58), also
requires a conversion information reference as a parameter. This function does
not modify the contents of the private data structure to which the conversion
information reference refers.

For functions that do not modify the conversion information contents, the
Unicode Converter defines a data type that restricts the way in which the
conversion information can be used. The declaration of the pointer is prefixed
with the const keyword making the object pointed to a constant, but not the
pointer—that is, not the reference—to it a constant. Functions that do not
modify the conversion information contents declare a parameter of this type,
indicating that the conversion information contents will remain unchanged
within the scope of the function.The TruncateForTextToUnicode function takes a
parameter of this type. A conversion information reference for use with
functions that do not modify the conversion information contents is defined by
the ConstTextToUnicodeInfo data type.

typedef const TextToUnicodeInfo ConstTextToUnicodeInfo;
3-4 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Conversion Information References for Converting From Unicode to a Single
Encoding 3

The Unicode Converter ConvertFromUnicodeToText (page 3-41) and
ConvertUnicodeToPString (page 3-64) functions that convert Unicode to a single
encoding use a data structure that contains mapping and state information. A
conversion information reference is a pointer to a private data structure that the
Unicode Converter uses to store private state and mapping information when
converting a Unicode string to another encoding. A conversion information
reference for this purpose is defined by the UnicodeToTextInfo data type.

typedef struct OpaqueUnicodeToTextInfo *UnicodeToTextInfo;

Your application cannot directly create or modify the contents of the private
data structure pointed to by a conversion information reference. Instead, your
application must first call CreateUnicodeToTextInfo (page 3-38) to provide the
mapping information required for the conversion. The Unicode Converter
creates and returns a conversion information reference. You can then pass this
reference to ConvertFromUnicodeToText or ConvertUnicodeToPString to identify
the information used to perform the actual conversion.

Your application can use the same conversion information reference to convert
multiple segments of a single text stream. After you have finished using a
conversion information reference, you should release the memory allocated for
it by calling the DisposeUnicodeToTextInfo function (page 3-36). Although a
conversion information reference persists until you dispose of it, you should
use the same conversion information reference only to convert segments of text
belonging to the text stream for which you created the reference. For each new
conversion process, you should create a new conversion information reference
to convert another stream of text even if you intend to use the same mapping
information stored in an existing conversion information reference. This is
because the Unicode Converter stores private state information in a conversion
information reference that is relevant only to that particular reference and the
single text stream for which it is used.

Another function, TruncateForUnicodeToText (page 3-60) also requires a
conversion information reference as a parameter. This function does not
modify the contents of the private data structure the conversion information
reference refers to. For functions that do not modify the conversion information
contents, the Unicode Converter defines a data type that adds the const
keyword to the declaration of the pointer to restrict the way in which the
conversion information can be used by these functions. Prefixing the
Unicode Converter Constants and Data Types 3-5
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
declaration of the pointer with const makes the object pointed to a constant,
but not the pointer—that is, not the reference, to it—a constant. Functions that
do not modify the conversion information contents declare a parameter of this
type, indicating that the conversion information contents will remain
unchanged within the scope of the function.The Unicode Converter
TruncateForUnicodeToText function takes a parameter of this type. A constant
information reference for determining where to truncate a Unicode string to be
converted is defined by the TruncateForUnicodeToText data type.

typedef const UnicodeToTextInfo ConstUnicodeToTextInfo;

Conversion Information Reference for Converting From Unicode to One or More
Encodings 3

The Unicode Converter functions that convert a Unicode string to one or more
encodings require that you pass a conversion information reference. A
conversion information reference is a pointer to an opaque data structure that
the Unicode Converter uses to store private state and mapping information
when converting a Unicode string to other encodings.

Your application cannot directly modify the contents of a private data structure
containing conversion information. Instead, your application must call
CreateUnicodeToTextRunInfo (page 3-47) to obtain a reference to the data
structure. When you call CreateUnicodeToTextRunInfo, you provide the
mapping information required for the conversion and the Unicode Converter
creates the private data structure. You pass the reference returned from
CreateUnicodeToTextRunInfo to ConvertFromUnicodeToTextRun (page 3-50) to
identify the information to be used for the conversion. This function modifies
the contents of the private data structure pointed to by the conversion
information reference. A conversion information reference for this purpose is
defined by the UnicodeToTextRunInfo data type.

typedef struct OpaqueUnicodeToTextRunInfo *UnicodeToTextRunInfo;

Your application can use the same conversion information reference to convert
multiple segments of a single text stream from Unicode. After you have
finished using a conversion information reference, you should release the
memory allocated for it by calling the DisposeUnicodeToTextRunInfo function
(page 3-36).
3-6 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Although a conversion information reference persists until you dispose of it,
you should use the same conversion information reference only to convert
segments of text belonging to the text stream for which you created the
reference. For each new conversion process, you should create a new
conversion information reference to convert another stream of text even if you
intend to use the same mapping information. This is because the Unicode
Converter stores private state information in a conversion information
reference that is relevant only to the text stream for which it is used.

Text Encoding Run Structure 3

A stream of text may contain many text segments each of which may be
expressed in a different encoding from that of the preceding or following text
segment. This is referred to as a text encoding run. When you use
ConvertFromUnicodeToTextRun (page 3-50) to convert a range of text containing
text runs, the Unicode Converter returns information for each text run
consisting of the starting offset of the text run segment and its text encoding
specification. To obtain this information, you pass a pointer to an array of text
run structures to the ConvertFromUnicodeToTextRun function when you call it to
perform the conversion. Be sure to allocate enough array elements to
accommodate information for all of the converted text runs. A text encoding
run structure is defined by the TextEncodingRun data type.

struct TextEncodingRun {
ByteOffset offset; /* beginning of the text run */
TextEncoding textEncoding; /* text encoding for the run */

};
typedef struct TextEncodingRun TextEncodingRun;

Field descriptions
offset The beginning character position of a run of text in the

converted text string.

textEncoding The encoding in which the text string beginning at the
offset identified by the offset field is specified.

Conversion Control Flags 3

Your application uses control flags to determine the manner in which the
conversion of text from one encoding to another is performed. The conversion
Unicode Converter Constants and Data Types 3-7
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
functions—ConvertFromTextToUnicode (page 3-32), ConvertFromUnicodeToText
(page 3-41), and ConvertFromUnicodeToTextRun (page 3-50)—allow you to set
control flags specifying the conversion process behavior.

These functions take a controlFlags parameter whose value you can set using
the bitmask constants defined for the flags. A different subset of control flags
applies to each of these functions. Using the bitmask constants, you can
perform the bitwise OR operation to set the pertinent flags for a particular
function’s parameters. For example, when you call a function, you might pass
the following controlFlags parameter setting:

controlflags=kUnicodeUseFallbacksMask | kUnicodeLooseMappingsMask;

An exception to this is the directionality field, which is part of the control flags
parameter. The directionality field allows you to specify the base line direction.
To set the directionality field, which consists of multiple bits, you use the
kUnicodeDirectionalityBits constant, not its equivalent mask, because you
must shift the bits. For example, to include directionality among the control
flags settings, when you call the function, you would pass the following
controlFlags parameter assignment; this setting turns on loose and fallback
mapping and it sets a left-to-right base line direction:

controlFlags=kUnicodeLooseMappingsMask | kUnicodeUseFallbacksMask |
(kUnicodeLeftToRight << kUnicodeDirectionalityBits);

The following enumerations define constants for the control flag masks.

enum {
kUnicodeUseFallbacksMask = 1L << kUnicodeUseFallbacksBit,
kUnicodeKeepInfoMask = 1L << kUnicodeKeepInfoBit,
kUnicodeDirectionalityMask = 3L << kUnicodeDirectionalityBits,
kUnicodeVerticalFormMask = 1L << kUnicodeVerticalFormBit,
kUnicodeLooseMappingsMask = 1L << kUnicodeLooseMappingsBit,
kUnicodeStringUnterminatedMask = 1L << kUnicodeStringUnterminatedBit,
kUnicodeTextRunMask = 1L << kUnicodeTextRunBit,
kUnicodeKeepSameEncodingMask = 1L << kUnicodeKeepSameEncodingBit

};
3-8 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Enumerator descriptions

kUnicodeUseFallbacksMask
A mask for setting the Unicode-use-fallbacks conversion
control flag. The Unicode-use-fallbacks control flag
determines how the Unicode Converter responds in regard
to use of fallback mappings when it encounters a source
text element for which there is no target encoding
equivalent.
You can use this mask for the controlFlags parameter of
ConvertFromTextToUnicode (page 3-32),
ConvertFromUnicodeToText (page 3-41), and
ConvertFromUnicodeToTextRun (page 3-50).
Set the flag for ConvertFromTextToUnicode to direct the
Unicode Converter to use a fallback handler to perform
fallback mapping. To do this, it substitutes one or more
characters for the text element it cannot translate to the
target encoding and continues converting the text string.
Fallback mappings are mappings that do not preserve the
meaning or identity of the source character but represent a
useful approximation of it.
If Unicode-use-fallbacks conversion control flag is clear,
ConvertFromUnicodeToText will complete execution and
return to your application when the converter encounters a
source text element for which there is no equivalent target
encoding, after checking for a loose mapping, if that
control flag is set.
If you set this flag and you did not call
SetFallbackUnicodeToText (page 3-78) to associate an
application-supplied fallback handler with the conversion
information reference you pass to
ConvertFromUnicodeToText, the Unicode Converter uses the
system-supplied default fallback handler to perform
fallback mapping.
If you set the flag for ConvertFromUnicodeToText and you
called SetFallbackUnicodeToText, the Unicode Converter
performs fallback mapping according to the control flags
that you set when you called SetFallbackUnicodeToText.
For SetFallbackUnicodeToText, you stipulate which
fallback handler the Unicode Converter should call—the
Unicode Converter Constants and Data Types 3-9
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
application-defined fallback handler or the default
handler—if a fallback handler is required, and the
sequence in which the Unicode Converter should call the
fallback handlers if either can be used, for example, when
the other fails or is unavailable. Depending on the
SetFallbackUnicodeToText setting, the Unicode Converter
uses the fallback character mapping defined by the
application-supplied fallback handler or the fallback
character defined by the mapping table for the target
encoding.
If you also set the kUnicodeLooseMappingsBit
control flag for ConvertFromUnicodeToText, the Unicode
Converter will attempt to map a source text element for
which there is no strict mapping target encoding
equivalent to a loose mapping before it attempts to
perform fallback mapping. If no loose mapping exists in
the mapping table, the Unicode Converter will perform
fallback mapping.
Fallback mapping from Unicode is a process in which a
Unicode character is mapped to one coded character or a
sequence of coded characters in another coded character
set that may not have the same meaning or use, but that
may provide an approximate graphic representation or
even textual representation of the corresponding Unicode
character. In general, fallback characters are not reversible,
and therefore, do not lend themselves to round-trip fidelity
conversions.

kUnicodeKeepInfoMask
A mask for setting the keep-information control flag. The
keep-information control flag governs whether the
Unicode Converter should keep the current state or
initialize the conversion information data structure, whose
reference you pass it, before converting the text string.
If keep-information control flag is clear, the converter will
initialize the conversion information data structure before
converting the text string.
If you set this flag, the converter will use the current state.
This is useful if your application must convert a stream of
text in pieces that are block delimited. You can set or clear
this flag for the controlFlags parameter of the
3-10 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
ConvertFromTextToUnicode, ConvertFromUnicodeToText, and
the ConvertFromUnicodeToTextRun functions.

kUnicodeDirectionalityMask
A mask for the directionality control flag. This flag is a
field composed of multiple bits.
To set the directionality field, you use the
kUnicodeDirectionalityBits constant, not this mask,
because you must shift the bits.
The directionality control flags allow you to specify the
global, or base, line direction for the text being converted.
This determines which direction the converter should use
for resolution of neutral coded characters, such as spaces
that occur between sets of coded characters having
different directions—for example, between Latin and
Arabic characters—rendering ambiguous the direction of
the space character. The following enumeration defines the
possible settings:

enum {
 kUnicodeDefaultDirection,
 kUnicodeLeftToRight,

 kUnicodeRightToLeft
};

The constant kUnicodeDefaultDirection tells the converter
to use the value of the first strong direction character in the
string. The constant kUnicodeLeftToRight tells the
converter that the base paragraph direction is left-to-right.
The constant kUnicodeRightToLeft tells the converter that
the base paragraph direction is right-to-left.
If the directionality control flag is clear, the converter maps
these text elements to their abstract forms.
This flag is valid for the controlFlags parameter of the
ConvertFromUnicodeToText and
ConvertFromUnicodeToTextRun functions.

kUnicodeVerticalFormBitMask

A mask for setting the vertical form control flag. The
vertical form control flag tells the Unicode Converter how
Unicode Converter Constants and Data Types 3-11
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
to map text elements for which there are both abstract and
vertical presentation forms in the target encoding.
If you set this flag, the converter maps these text elements
to their vertical forms. You can set or clear this flag for the
controlFlags parameter of the ConvertFromUnicodeToText
and ConvertFromUnicodeToTextRun functions.
A presentation form is a form of a graphic symbol
representing a character that depends on the position of
the character relative to other characters. Presentation
forms can also be graphic symbols that represent multiple
characters, including 1) for Arabic contextual forms,
different forms that represent each Arabic character
depending on its position relative to other characters 2) for
Arabic ligatures, single forms that represent a sequence of
Arabic characters 3) certain Latin ligatures, 4) different
forms for some CJK punctuation and Japanese kana,
depending on whether they are intended for horizontal or
vertical display. Presentation variants include full-width
and halfwidth characters. Some character sets encode
presentation forms instead of or in addition to encoding
abstract characters. For example, a number of text
elements can be represented in Unicode either as single
characters or as character sequences. Similarly, the
presentation forms encoded in Unicode can also be
represented using characters for the abstract forms.

kUnicodeLooseMappingsBit

A mask for setting the Unicode-loose-mapping control
flag. The Unicode-loose-mapping control flag determines
whether the Unicode Converter should use the loose
mapping portion of a mapping table for character
mapping if the strict mapping portion of the table does not
include a target encoding equivalent for the source text
element.
If this flag is clear, the converter will use only the strict
equivalence portion; if it cannot convert using strict
equivalence, the converter returns a unicodeNotFoundErr
result code, and returns control to your application.
 If you set this flag and a conversion for the source text
element does not exist in the strict equivalence portion of
3-12 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
the mapping table, then the converter will use the loose
mapping section.
You can set or clear this flag for the controlFlags fields of
the ConvertFromUnicodeToText and
ConvertFromUnicodeToTextRun functions. The bitmask for
this flag is defined by the constant
kUnicodeLooseMappingsMask.

Strict and loose mappings occur within the context of
multiple semantics and multiple representations. A
mapping table has both strict equivalence and loose
mapping sections. Strict mapping occurs when the
mapping of a coded character from Unicode to Character
Set X, for example, is the exact reverse of the mapping of
that coded character from Character Set X to Unicode. In
the case of multiple semantics—that is, when a single
coded character in Character Set X represents two distinct
but similar text elements, such as “double vertical line”
and “parallel”, and two separate coded characters exist for
these text elements in Unicode—a strict mapping exists
between the single coded character in Character Set X and
only one of the two coded characters in Unicode. Mapping
to the other coded character in Character Set X would
constitute a loose mapping. Loose mappings from Unicode
to Character Set X are considered additional mappings that
match the semantics established for the characters in
Character Set X. For more information on strict mapping,
see “Introduction to Text Handling and
Internationalization on Mac OS 8” in Inside Macintosh: Text
Handling and Internationalization.

kUnicodeStringUnterminatedMask

A mask for setting the string-unterminated control flag.
This control flag determines how the Unicode Converter
handles direction resolution and text element boundaries
at the end of an input buffer.
If this bit is clear, the converter will assume that the next
call you make using the current context will supply
another buffer of text that should be treated as a
continuation of the current text.
If you set this bit, the converter will treat the end of the
buffer as the end of text.
Unicode Converter Constants and Data Types 3-13
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
You can set or clear this flag for the controlFlags
parameter of the ConvertFromUnicodeToText and
ConvertFromUnicodeToTextRun functions.
If this flag is set, when the Unicode Converter converts text
from Unicode and it reaches the end of the current input
buffer, the Unicode Converter will treat the end of the
buffer as the end of the current text element. This
treatment is valid for end-of-buffer characters that would
never be part of a longer text element beyond the buffer—
characters such as zero (0) with a non-joiner or a control
character. However, if the last character in the input buffer
were A, for example, the next buffer could begin with a
diacritical mark, which would be part of the same text
element; to handle cases such as this, you should clear this
flag. If you clear this flag and the current text element
extends beyond the buffer boundary because of the last
character, the Unicode Converter will return the
unicodeElementErr result code.
In attempting to analyze the text direction, when the
Unicode Converter reaches the end of the current input
buffer and the direction of the current text element is still
unresolved, if you set this flag, the Unicode Converter will
treat the end of the buffer as a block separator for direction
resolution. If you clear this flag, it will set the direction as
undetermined.

kUnicodeTextRunMask
A mask for setting the text-run control flag. This control
flag determines how the Unicode Converter converts
Unicode text to another encoding when more than one
possible target encoding exists.
If this flag is clear, ConvertFromUnicodeToTextRun attempts
to convert the Unicode text to the single encoding from the
list of encodings in the Unicode-to-text-run conversion
information reference that produces the best result, that is,
that provides for the greatest amount of source text
conversion.
If you set this flag, ConvertFromUnicodeToTextRun
(page 3-50), which is the only function to which it applies,
may generate a target string that combines text in any of
3-14 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
the encodings specified by the Unicode-to-text-run
conversion information reference.

kUnicodeKeepSameEncodingMask

A mask for setting the keep-same-encoding control flag.
This control flag determines how the Unicode Converter
treats the conversion of Unicode text following a text
element that could not be converted to the first target
encoding when multiple target encodings exist. This
control flag applies only if the kUnicodeTextRunMask control
is set.
If you set this flag, ConvertFromUnicodeToTextRun attempts
to minimize encoding changes in the conversion of the
source text string; that is, once it is forced to make an
encoding change, it attempts to use that encoding as the
conversion target for as long as possible.
If you clear this flag, ConvertFromUnicodeToTextRun
attempts to keep most of the converted string in one
encoding, switching to other encodings only when
necessary.

The following enumeration defines constants for these control flags. Except for
the kUnicodeDirectionalityBits constant, which you use to set the
directionality field to specify the base line direction, these constants are
provided for your information only. You do not need to use them in setting a
function’s controlFlags parameter. Rather, you use the masks for the control
flags, described previously, to set the flags.

enum {
kUnicodeUseFallbacksBit = 0, /* use fallback handler */
kUnicodeKeepInfoBit = 1, /* use current conversion information data

structure state */
kUnicodeDirectionalityBits = 2, /* offset for bidirectionality

specification field (2 bits) */
kUnicodeVerticalFormBit = 4, /* use vertical presentation for text */
kUnicodeLooseMappingsBit = 5, /* use loose mapping */
kUnicodeStringUnterminatedBit = 6, /* unterminated string */
kUnicodeTextRunBit = 7, /* use multiple target encodings */
kUnicodeKeepSameEncodingBit = 8 /* use same encoding for next text run */

};
Unicode Converter Constants and Data Types 3-15
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Enumerator descriptions

kUnicodeUseFallbacksBit
The Unicode-use-fallbacks conversion control flag.

kUnicodeKeepInfoBit
The keep-information control flag.

kUnicodeDirectionalityBits
The offset for the directionality specification field (2 bits).

kUnicodeVerticalFormBit
The vertical form control flag.

kUnicodeLooseMappingsBit
The Unicode-loose-mapping control flag.

kUnicodeStringUnterminatedBit
The string-unterminated control flag.

kUnicodeTextRunBit
The text-run control flag.

kUnicodeKeepSameEncodingBit

The keep-same-encoding control flag.

Control Flags for Truncating a Unicode String 3

Your application can use two control flags to specify aspects of how a string is
truncated when you call TruncateForUnicodeToText (page 3-60) to identify
where to properly truncate a Unicode string before converting the text to any
encoding. The following enumeration defines constants for setting these two
control flags:

enum {
kUnicodeTextElementSafeMask = 1L << kUnicodeTextElementSafeBit,
kUnicodeRestartSafeMask = 1L << kUnicodeRestartSafeBit

};

Enumerator descriptions

kUnicodeTextElementSafeMask
A mask for setting the text-element-safe control flag. This
control flag determines whether a string should be
truncated to include complete text elements. If the
text-element-safe control is set, then the truncated string,
as identified by TruncateForUnicodeToText, will contain
3-16 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
complete text elements. You should usually set this control
flag, even if you set other flags.

kUnicodeRestartSafeMask
A mask for setting the Unicode-restart-safe control flag.
This control flag specifies whether the string should be
truncated so that it is safe for processing by the
ConvertFromUnicodeToText function (page 3-41). If the
Unicode-restart-safe control flag is set, then the truncated
string will be safe for processing by the
ConvertFromUnicodeToText function even if the string is not
block delimited, that is, it does not begin on a paragraph
boundary.

The following enumerations define constants for these control flags. These
constants are provided for your information only. You do not need to use them
in setting the TruncateForUnicodeToText function’s controlFlags parameter.
Rather, you use the masks for the control flags, described previously, to set the
flags comprising the controlFlags parameter.

enum {
kUnicodeTextElementSafeBit = 0, /* text contains complete elements */
kUnicodeRestartSafeBit = 1 /* text is safe for use with

ConvertFromUnicodeToText function */
};

Enumerator descriptions

kUnicodeTextElementSafeBit
The text-element-safe control flag.

kUnicodeRestartSafeBit
The Unicode-restart-safe control flag.

Control Flags for Specifying the Fallback Handlers and Their Calling Order 3

You can set control flags to identify which fallback handler is to be used—or if
both are to be used in the case of the first one failing to convert the character,
the order in which they are called—when you assign a fallback handler for use
with a specific conversion information reference. A fallback handler is a
function that is used when the Unicode Converter cannot convert a Unicode
character to the target encoding using the strict equivalence, or, if
Unicode Converter Constants and Data Types 3-17
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
kUnicodeLooseMappingsBit is set, loose mapping portions of the specified
mapping table.

A fallback mapping is a sequence of one or more characters in the target
encoding that are not exactly equivalent to the source characters but which
preserve some of the information of the original. For example, (C) is a possible
fallback mapping for ©.

When your application calls ConvertFromUnicodeToText (page 3-41) or
ConvertUnicodeToPString (page 3-64) and the specified mapping table does not
contain a target encoding equivalent for a Unicode source text element, the
Unicode Converter uses the Unicode-to-text fallback handler associated with
the conversion information reference you pass to the function. The Unicode
Converter supplies a default fallback handler that you can associate with a
conversion information reference, but you can also supply your own fallback
handler and use it instead of or in addition to the default handler if it is unable
to perform the fallback mapping.

You set the controlFlags parameter of the SetFallbackUnicodeToText function
(page 3-78) to specify whether the Unicode Converter should call the default or
application-supplied fallback handler or whether it should call both handlers—
and if so, the order in which they are called.

The following enumerations define constants for the setting the controlFlags
parameter of the SetFallbackUnicodeToText function.

enum {
kUnicodeFallbackDefaultOnly = 0L, /* use default fallback handler only */
kUnicodeFallbackCustomOnly = 1L, /* use custom fallback handler only */
kUnicodeFallbackDefaultFirst = 2L, /* use default first, then custom */
kUnicodeFallbackCustomFirst = 3L /* use custom first, then default */

};

Enumerator descriptions

kUnicodeFallbackDefaultOnly
Sets the controlFlag parameter to direct the Unicode
Converter to call its own default fallback handler to find a
fallback element and not call the application-defined one.

kUnicodeFallbackCustomOnly
Sets the controlFlag parameter to direct the Unicode
Converter to call only the specified application-defined
3-18 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
fallback handler. The Unicode Converter will not call the
default fallback handler.

kUnicodeFallbackDefaultFirst
Sets the controlFlag parameter to direct the Unicode
Converter to call its own default fallback handler first to
find a fallback element, and if that fails to find an
appropriate target element, to call the application-defined
fallback handler.

kUnicodeFallbackCustomFirst
Sets the controlFlag parameter to direct the Unicode
Converter to call the application-defined fallback handler
first, and if that fails, to call its own default fallback
handler.

The following enumerations define constants for the control flag and its mask.
These constants are provided for your information only.

enum {
kUnicodeFallbackSequencingBits = 0

};

Enumerator descriptions

kUnicodeFallbackSequencingBits
The offset for the control flag field that indicates which
fallback handler is to be used first.

enum {
kUnicodeFallbackSequencingMask = 3L << kUnicodeFallbackSequencingBits

};

Enumerator descriptions

kUnicodeFallbackSequencingMask
The mask for the control flag field that indicates which
fallback handler is to be used first.

Constants for Script Manager Value Conversions To and From Text Encodings 3

For backward-compatibility, the Unicode Converter provides the
UpgradeScriptInfoToTextEncoding (page 3-83) function that you can use to
upgrade Script Manager language code, region code, script code, and font
Unicode Converter Constants and Data Types 3-19
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
values to a text encoding and the RevertTextEncodingToScriptInfo function
(page 3-87) to revert a text encoding to its corresponding Script Manager
values. The Unicode Converter defines three constants for use with these
functions.

If the one of these values can be correctly derived from another value, you can
use the constant defined by the Unicode Converter for that value when you call
UpgradeScriptInfoToTextEncoding. A constant is not defined for the font value;
you can specify NULL instead of a constant for the font.

If the RevertTextEncodingToScriptInfo function cannot return the language
code, the function returns a value of kTextLanguageDontCare.

When you call UpgradeScriptInfoToTextEncoding, you can specify values for
one or more parameters, but you must specify at least one parameter value. If
you do not specify a value for a parameter of this function, you must use one of
the constants defined by the following enumerations to indicate this:

enum {
kTextLanguageDontCare = —128

};

enum {
kTextScriptDontCare = —128

};

enum {
kTextRegionDontCare = —128

};

Enumerator descriptions
kTextLanguageDontCare

Specifies that the language code is not provided for the
translation.

kTextScriptDontCare
Specifies that the script code is not provided for the
translation.

kTextRegionDontCare

Specifies that the region code is not provided for the
translation.
3-20 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Filter Indicators for Querying for Matching Unicode Mappings 3

The Unicode Converter allows you to query it for a list of all conversion
mappings available on the system whose field values match field values you
use as filters. For example, you can check for all available mappings between
Unicode Version 1.1 and the default variant encoding of other encodings. To
identify the fields of the conversion mappings to be checked for matches, you
specify the fields of the two encoding specifications belonging to a Unicode
mapping data structure.

You call the QueryUnicodeMappings function to obtain conversion mappings.
When you call this function, you specify a pointer to a Unicode mapping data
structure (page 3-24). A Unicode mapping data structure contains fields that
specify text encodings. For information about text encodings and the constants
you use to specify them, see the “Text Encoding Conversions Reference.” To
identify the fields of the Unicode mapping data structure whose values are
used as matching criteria, you set a filter parameter that you pass to the
QueryUnicodeMappings function (page 3-67). The filter parameter value identifies
which of the six fields of the Unicode mapping data structure are to be used as
matching criteria—the three fields of the Unicode encoding specification and
the three fields of the other text encoding specification. The function will return
only those mappings whose corresponding field values match the ones you
specify.

You can use the constants defined by the following enumeration to set the filter
indicators of the QueryUnicodeMappings function’s filter field.

enum {
kUnicodeMatchUnicodeBaseMask = 1L << kUnicodeMatchUnicodeBaseBit,
kUnicodeMatchUnicodeVariantMask = 1L << kUnicodeMatchUnicodeVariantBit,
kUnicodeMatchUnicodeFormatMask = 1L << kUnicodeMatchUnicodeFormatBit,
kUnicodeMatchOtherBaseMask = 1L << kUnicodeMatchOtherBaseBit,
kUnicodeMatchOtherVariantMask = 1L << kUnicodeMatchOtherVariantBit,
kUnicodeMatchOtherFormatMask = 1L << kUnicodeMatchOtherFormatBit

};

Enumerator descriptions

kUnicodeMatchUnicodeBaseMask
A mask for setting the match-Unicode-base filter. This filter
indicator directs QueryUnicodeMappings to match against
the text encoding base value belonging to the text
encoding specified by the unicodeEncoding field of the
Unicode Converter Constants and Data Types 3-21
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Unicode mapping data structure. QueryUnicodeMappings
returns only those mappings whose corresponding field
value matches this one. If this filter is not set, the function
ignores the field it represents.

kUnicodeMatchUnicodeVariantMask

A mask for setting the match-Unicode-variant filter. This
filter indicator directs QueryUnicodeMappings to match
against the text encoding variant value belonging to the
text encoding specified by the unicodeEncoding field of the
Unicode mapping data structure. If this filter is not set, the
function ignores the field it represents.

kUnicodeMatchUnicodeFormatMask

A mask for setting the match-Unicode-format filter. This
filter indicator directs QueryUnicodeMappings to match
against the text encoding format value belonging to the
text encoding specified by the unicodeEncoding field of the
Unicode mapping data structure.

kUnicodeMatchOtherBaseMask

A mask for setting the match-other-base filter. This filter
directs QueryUnicodeMappings to match against the text
encoding base value belonging to the text encoding
specified by the otherEncoding field of the Unicode
mapping data structure. If this filter is not set, the function
will ignore the field it represents.

kUnicodeMatchOtherVariantMask

A mask for setting the match-other-variant filter. This filter
directs QueryUnicodeMappings to match against the text
encoding variant value belonging to the text encoding
specified by the otherEncoding field of the Unicode
mapping data structure. If this filter is not set, the function
will ignore the field it represents.

kUnicodeMatchOtherFormatBit
A mask for setting the match-other-format filter. This filter
directs QueryUnicodeMappings to match against the text
encoding format value belonging to the text encoding
specified by the otherEncoding field of the Unicode
mapping data structure. If this filter is not set, the function
will ignore the field it represents.
3-22 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
The following enumerations define constants for these filter indicators. These
constants are provided for your information only. You do not need to use them
in setting the filter parameter. Rather, you use the masks for the filter
indicators, described previously, to set the filter parameter.

enum {
kUnicodeMatchUnicodeBaseBit = 0, /* match on Unicode base encoding name */
kUnicodeMatchUnicodeVariantBit = 1, /* match on Unicode variant */
kUnicodeMatchUnicodeFormatBit = 2, /* match on Unicode format */
kUnicodeMatchOtherBaseBit = 3, /* match on base encoding name of other

encoding */
kUnicodeMatchOtherVariantBit = 4 /* match on variant of other encoding */
kUnicodeMatchOtherFormatBit = 5, /* match on format of other encoding */

};

Enumerator descriptions

kUnicodeMatchUnicodeBaseBit
The match-Unicode-base filter indicator.

kUnicodeMatchUnicodeVariantBit

The match-Unicode-variant filter indicator.
kUnicodeMatchUnicodeFormatBit

The match-Unicode-format filter indicator.
kUnicodeMatchOtherBaseBit

The match-other-base filter indicator.
kUnicodeMatchOtherVariantBit

The match-other-variant filter indicator.
kUnicodeMatchOtherFormatBit

The match-Unicode-format filter indicator.

Unicode Character and String Pointer Data Types 3

The Unicode Converter functions that use a Unicode character data type
assume that the Unicode character has the normal byte-order for an unsigned
16-bit integer on the current platform and that any initial byte-order prefix
character has been removed. These functions also assume that each Unicode
character is aligned on a 2-byte boundary. A 16-bit Unicode character is defined
by the UniChar data type.

typedef UInt16 UniChar;/* 16-bit Unicode character */
Unicode Converter Constants and Data Types 3-23
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
You specify a Unicode character array pointer to indicate an array used to hold
a Unicode string. A Unicode character array pointer is defined by the
UniCharArrayPtr data type.

typedef UniChar *UniCharArrayPtr; /* Unicode string pointer */

You specify a constant Unicode character array pointer for Unicode strings
used within the scope of a function whose contents are not modified by that
function. A constant Unicode character array pointer is defined by the
ConstUniCharArrayPtr data type.

typedef const UniChar *ConstUniCharArrayPtr; /* Unicode string pointer */

Region Code Data Type 3

A region code data type is a 16-bit value used to hold a region code that
specifies a particular region as defined by System 7. The
UpgradeScriptInfoToTextEncoding function (page 3-83) takes a region code
parameter. A region code is defined by the RegionCode data type.

typedef short RegionCode; /* region code */

For a description of a region code of this type, see the System 7 Inside
Macintosh: Text book.

Unicode Mapping Structure 3

A Unicode mapping data structure identifies a Unicode encoding specification
and a particular base encoding specification to be used for conversion of a text
string. You use a data structure of this type to specify the text encodings to and
from which the text string is to be converted. Because the Unicode Converter
always converts to and from Unicode, at least one of these is always a Unicode
encoding specification for any conversion. A Unicode mapping data structure
is defined by the UnicodeMapping data type.

struct UnicodeMapping {
TextEncoding unicodeEncoding;
TextEncoding otherEncoding;
UnicodeMapVersion mappingVersion;
3-24 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
};
typedef struct UnicodeMapping UnicodeMapping
typedef UnicodeMapping *UnicodeMappingPtr;

Field descriptions
unicodeEncoding A Unicode text encoding specification of type

TextEncoding. You use one of these base encodings,
described in see the “Text Encoding Conversions
Reference” chapter to identify the Unicode format:
kTextEncodingUnicodeDefault, kTextEncodingUnicodeV1_1,
kTextEncodingUnicodeV2_0, kTextEncodingISO10646_1993.

otherEncoding Any text encoding specification. You can give a Unicode
text encoding specification or a text encoding specification
containing any other base encoding variant. For
information about text encoding specifications, see the
“Text Encoding Conversions Reference” chapter.

mappingVersion The version of the Unicode mapping table to be used. (To
specify that the latest version is to be used, set this field to
the kUnicodeUseLatestMapping constant.) A later developer
release will address how to obtain a value from a Unicode
mapping table to pass as this parameter when you want to
specify a version of a Unicode mapping table other than
the latest one.

Many Unicode Converter functions take a pointer to a Unicode mapping data
structure as a parameter. For functions that do not modify the Unicode
mapping contents, the Unicode Converter defines a data type that adds the
const keyword to the declaration of the pointer to restrict the way in which the
Unicode mapping can be used by these functions. Prefixing the declaration of
the pointer with const makes the object pointed to a constant, but not the
pointer itself. The CreateTextToUnicodeInfo (page 3-29),
CreateUnicodeToTextInfo (page 3-38), QueryUnicodeMappings (page 3-67),
CreateUnicodeToTextRunInfo (page 3-47), GetTextEncodingBase, and
GetTextEncodingBaseName functions do not modify the Unicode mapping
contents and therefore take a parameter of this type, indicating that the
Unicode mapping contents will remain unchanged within the scope of the
function. (For information on the GetTextEncodingBase and
GetTextEncodingBaseName functions, see the “Text Encoding Conversions
Reference” chapter.) A constant pointer to a Unicode mapping data structure is
defined by the ConstUnicodeMappingPtr data type.
Unicode Converter Constants and Data Types 3-25
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
typedef const UnicodeMapping *ConstUnicodeMappingPtr;

The ChangeTextToUnicodeInfo (page 3-70) and ChangeUnicodeToTextInfo
(page 3-72) functions modify the contents of the Unicode mapping data
structure and take a pointer parameter of type UnicodeMappingPtr.

Unicode Mapping Version 3

When performing conversions, you specify the version of the Unicode
mapping table to be used for the conversion. You provide the version number
in the mapping version field of the Unicode mapping data structure (page 3-24)
that is passed to a function. A Unicode mapping version is defined by the
UnicodeMapVersion data type.

typedef SInt32 UnicodeMapVersion;

Note
For this release, you can direct the converter to use the
latest version by setting the mapping version field to
kUnicodeUseLatestMapping (page 3-26). A future developer
release will address how to obtain a value from a Unicode
mapping table to pass as this parameter when you want to
specify a version of a Unicode mapping table other than
the latest one.

Latest Unicode Mapping Version 3

Instead of explicitly specifying the mapping version of the Unicode mapping
table to be used for conversion of a text string, you can specify that the latest
version be used. When you create a Unicode mapping structure (page 3-24),
you can assign the use-latest-mapping constant to the mapping version field
and the Unicode Converter will use the latest Unicode mapping table for the
conversion function to which you pass the Unicode mapping structure. The
following enumeration defines the use-latest-mapping constant:

enum {
kUnicodeUseLatestMapping = –1

};
3-26 Unicode Converter Constants and Data Types

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Fallback Handler Function 3

To convert a text string, you specify a conversion information reference when
you call a conversion function. When the Unicode Converter encounters a
source text element for which there is no target encoding equivalent, it may use
loose mappings and fallback characters to perform the conversion. A fallback
mapping is a sequence of one or more characters in the target encoding that
provide a semblance for another text element. A fallback character attempts to
provide character identity for the source text element; the fallback character or
character sequence is not exactly equivalent to the source characters but it
preserves some of the information of the original. The fallback character or
character sequence used depends on the target encoding; it is an entry in the
mapping table for the encoding. If fallback mappings are used and the
specified fallback handler fails—or both handlers fail when both the
application-supplied one and the system default one are specified—then the
converter uses the default fallback sequence to represent the source character in
the converted string,

A fallback handler is a function that the Unicode Converter uses to perform
fallback mapping. The Unicode Converter supplies a default fallback handler.
You can provide your own fallback handler and use it alone, or you can use
both. You can specify the order in which both handlers are called if one fails.
Depending on how control flags governing this process are set, the converter
may use its own fallback handler for this purpose or one supplied by your
application. You supply your own fallback handler as a function that adheres
to a function prototype defined by the Unicode Converter.

To assign your fallback handler to a conversion information reference from
within your application’s main task only, you use the
SetFallbackUnicodeToText (page 3-83) or SetFallbackUnicodeToTextRun
(page 3-76) function. In this case, you pass a universal procedure pointer
(UniversalProcPtr) as the function’s fallback parameter.

You supply your own fallback handler as a function that adheres to the
following prototype defined by the Unicode Converter. This function is defined
by the Unicode Converter as follows:

typedef pascal OSStatus (*UnicodeToTextFallbackProcPtr)(
UniChar *srcUniStr,
ByteCount srcUniStrLen,
ByteCount *srcConvLen,
TextPtr destStr,
ByteCount destStrLen,
Unicode Converter Constants and Data Types 3-27
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
ByteCount *destConvLen,
LogicalAddress contextPtr,
ConstUnicodeMappingPtr unicodeMappingPtr);

To assign your fallback handler to a conversion information reference from any
task other than the main task of your application, you use the
SetFallbackUnicodeToTextPreemptive (page 3-78) or
SetFallbackUnicodeToTextRunPreemptive (page 3-81) function. In this case, you
pass a pointer to your application-defined function as the function’s fallback
parameter. The prototype for this function is defined by the Unicode Converter
as follows:

typedef pascal OSStatus (*UnicodeToTextFallbackPreemptiveProcPtr)(
UniChar *srcUniStr,
ByteCount srcUniStrLen,
ByteCount *srcConvLen,
TextPtr destStr,
ByteCount destStrLen,
ByteCount *destConvLen,
LogicalAddress contextPtr,
ConstUnicodeMappingPtr unicodeMappingPtr);

For information about creating a fallback handler function, see the description
of the MyUnicodeToTextFallbackProc function (page 3-90).

Unicode Converter Functions 3

You use the Unicode Converter functions to convert text to or from Unicode.
The Unicode Converter consists of two main symmetrical parts, one of which
you use to convert text to Unicode from any other encoding and the other of
which you use to convert text from Unicode to any other encoding. Each of
these parts contains its own set of functions. Using the Unicode Converter with
Unicode as an intermediary encoding, you can also convert text from any
source encoding to any target encoding.
3-28 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Converting to Unicode 3

You can convert text in any encoding to Unicode, but to do so you must first
create and obtain a reference to a private data structure containing the
mapping and state information the Unicode Converter uses to perform the
conversion. You use the CreateTextToUnicodeInfo function to provide
information for a conversion information data structure and obtain a reference
to it. You then pass the reference to the ConvertFromTextToUnicode function to
perform the conversion. When your application is finished using the reference,
you should dispose of it by calling the DisposeTextToUnicodeInfo function.

You can also use the Unicode Converter functions to convert text from one
encoding to another using Unicode as an intermediary encoding; this is a
two-part process. You use these functions to convert the text to Unicode, then
you use the functions described in “Converting From Unicode” (page 3-38) to
convert the text from Unicode to the final target encoding.

CreateTextToUnicodeInfo 3

Creates a conversion information data structure required for converting a
single stream of text in any encoding to Unicode, and returns a reference to the
conversion information structure.

pascal OSStatus CreateTextToUnicodeInfo (
ConstUnicodeMappingPtr unicodeMapping,
TextToUnicodeInfo *textToUnicodeInfo);

unicodeMapping
A pointer to a Unicode mapping structure (page 3-24). Your
application provides this data structure to identify the mapping
to be performed.

textToUnicodeInfo
A pointer to a conversion information data structure (page 3-3)
for converting text to Unicode. On output, the parameter returns
a conversion information reference to the private data structure
that holds mapping table information you supply as the
UnicodeMapping parameter and state information related to the
Unicode Converter Functions 3-29
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
conversion. The information contained in the conversion
information reference is required for conversion of a text stream
in any encoding to Unicode.

function result
A result code. If the function returns a result code other than
noErr, then the reference returned in the textToUnicodeInfo
parameter refers is invalid. If one of the mapping tables
specified by the Unicode mapping structure you supply or one
of the resources associated with it was not found, the function
returns a unicodeNoTableErr result code. If one of the table
resources you specified has a checksum error, the function
returns a unicodeChecksumErr result code.

DISCUSSION

For each stream of text in a single encoding that you want to convert to
Unicode, your application must first call the CreateTextToUnicodeInfo function
to create a conversion information data structure and obtain a reference to it.
When you call CreateTextToUnicodeInfo, it locates and loads the mapping table
resources, based on the mapping table information you provide, that are
required for the conversion.

You can use the same conversion information reference to convert multiple text
segments of a single text stream. A conversion information reference persists
until you dispose of it. After you finish converting a text stream using a
conversion information reference, you should release the memory allocated for
the reference by calling the DisposeTextToUnicodeInfo function (page 3-36).

You should use the same conversion information reference only to convert
segments of text belonging to the text stream for which you created the
reference.You should create a new conversion information reference to convert
another stream of text even if you intend to use the same mapping information
stored in an existing conversion information reference. This is because the
Unicode Converter stores private state information in a conversion information
reference that is relevant only to the single text stream for which it is used.

For example, to convert a document in a single encoding to Unicode, your
application can use a single conversion information reference. Each time you
call the ConvertFromTextToUnicode function to convert a segment of text
belonging to the text stream, you pass the function the same reference,
repeating the process until the entire text stream is converted. If you use the
same conversion information reference to convert multiple segments of the
3-30 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
same text stream, you should set the Unicode-keep-information control flag
(page 3-7) when you call the conversion function. This is because how the
conversion is performed might depend on the next character. The Unicode
Converter might need to refer to the next character in the following text
segment, for example, to determine the text direction for Hebrew or Arabic text.

You pass a reference returned from CreateTextToUnicodeInfo to
ConvertFromTextToUnicode (page 3-32) or ConvertPStringToUnicode (page 3-62)
to identify the information to be used for the conversion. These two functions
modify the contents of the conversion information reference.

You pass a reference returned from CreateTextToUnicodeInfo to
TruncateForTextToUnicode (page 3-58) to identify the information to be used to
truncate the string. This function does not modify the contents of the
conversion information reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

If you are converting the text stream to Unicode as an intermediary encoding,
and then from Unicode to the final target encoding, you must use
CreateUnicodeToTextInfo (page 3-38) to create a conversion information
reference for the second part of the process.

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-31
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
ConvertFromTextToUnicode 3

Converts a string from any encoding to Unicode.

pascal OSStatus ConvertFromTextToUnicode (
TextToUnicodeInfo iTextToUnicodeInfo,
ByteCount iSourceLen,
ConstLogicalAddress iSourceStr,
OptionsBits iControlFlags,
ItemCount iOffsetCount,
ByteOffset iOffsetArray[],
ItemCount *oOffsetCount,
ByteOffset oOffsetArray[],
ByteCount iBufLen,
ByteCount *oSourceRead,
ByteCount *oUnicodeLen,
UniCharArrayPtr oUnicodeStr);

iTextToUnicodeInfo
A conversion information reference of type TextToUnicodeInfo
containing mapping and state information used for the
conversion. Your application obtains a reference when it uses
CreateTextToUnicodeInfo (page 3-29).

iSourceLen The length in bytes of the source string to be converted.

iSourceStr The logical address of the source string to be converted.

iControlFlags Conversion control flags. Bitmasks control flags that apply to
this function are kUnicodeUseFallbacksMask and
kUnicodeKeepInfoMask. For a description of the conversion
control flags, see “Conversion Control Flags” (page 3-7).

iOffsetCount The number of offsets in the iOffsetArray parameter. Your
application supplies this value. The number of entries in
iOffsetArray must be fewer than the number of bytes specified
in iSourceLen. If you don’t want offsets returned to you, specify
0 (zero) for this parameter.

iOffsetArray An array of type ByteOffset. On input, you specify the array
that contains an ordered list of significant byte offsets
pertaining to the source string. These offsets may identify font
or style changes, for example, in the source string. All array
3-32 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
entries must be less than the length in bytes specified by the
iSourceLen parameter. If you don’t want offsets returned to
your application, specify NULL for this parameter and 0 (zero)
for iOffsetCount.

oOffsetCount A pointer to an ItemCount. On output, this value contains the
number of offsets that were mapped in the output stream.

oOffsetArray An array of type ByteOffset.On output, this array contains the
corresponding new offsets for the Unicode string produced by
the converter.

iBufLen The length in bytes of the output buffer pointed to by the
oUnicodeStr parameter. Your application supplies this buffer to
hold the returned converted string. The oUnicodeLen parameter
may return a byte count that is less than this value if the
converted byte string is smaller than the buffer size you
allocated.

oSourceRead A pointer to a value of type ByteCount. On output, this value
contains the number of bytes of the source string that were
converted. If the function returns a unicodePartConvertErr, this
parameter returns the number of bytes that were converted
before the error occurred.

oUnicodeLen A pointer to a value of type ByteCount. On output, this value
contains the length in bytes of the converted stream.

oUnicodeStr A pointer to an array used to hold a Unicode string. On input,
this value points to the beginning of the array for the converted
string. On output, this buffer holds the converted Unicode
string. (For guidelines on estimating the size of the buffer
needed, see the following discussion.) For a description of the
UniCharArrayPtr data type, see “Unicode Character and String
Pointer Data Types” (page 3-23).

function result A result code. If the ConvertFromTextToUnicode function returns
a noErr result code, it has completely converted the source
string to the Unicode variant you specified without using
fallback characters. If the function returns the paramErr, the
string was not converted. If the ConvertFromTextToUnicode
returns the unicodeFallbacksErr result code, the function has
Unicode Converter Functions 3-33
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
completely converted the input string to the specified target
using one or more fallbacks because you set the
kUnicodeUseFallbacksBit control flag.

If the function returns the unicodePartConvertErr result code,
the function was not able to convert the entire source string to
the specified Unicode variant and it did not attempt to use
fallbacks because you did not set the kUnicodeUseFallbacksBit
control flag. When this error occurs, the function may have
been able to convert part of the string, but not the entire string
because, for example, a subtable required for conversion of
some of the text was missing from the mapping table used for
the conversion.

If the function returns a unicodeBufErr, the output buffer
specified by iBufLen is too short to hold the converted string.
For result codes of unicodePartConvertErr and unicodeBufErr,
the oSourceRead parameter contains the number of bytes
converted before the error occurred. To convert the remaining
part of the string, you can call this function again, passing the
function the rest of the string.

DISCUSSION

The ConvertFromTextToUnicode function converts a text string in any encoding
to Unicode. You specify the source string’s encoding in the Unicode mapping
data structure that you pass to CreateTextToUnicodeInfo (page 3-29) to obtain a
conversion information reference for the conversion. You pass the reference
returned by CreateTextToUnicodeInfo to ConvertFromTextToUnicode as the
iTextToUnicodeInfo parameter. The source encoding can be any encoding,
including a Unicode variant or another text encoding.

In addition to converting a text string in any encoding to Unicode, the
ConvertFromTextToUnicode function can map style or font information from the
source text string to the returned converted string. The converter reads the
application-supplied offsets, which apply to the source string, and returns the
corresponding new offsets in the converted string. If you do not want the
offsets at which font or style information occurs mapped to the resulting string,
you should pass NULL for iOffsetArray and 0 (zero) for iOffsetCount.

Your application must allocate a buffer to hold the resulting converted string
and pass a pointer to the buffer in the oUnicodeStr parameter. To determine the
size of the output buffer to allocate, you should consider the size of the source
3-34 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
string, its encoding type, and its content in relation to the resulting Unicode
string.

For example, for 1-byte encodings, such as Mac OS Roman, the Unicode string
will be at least double the size of the source string. For most 2-byte encodings,
such as Shift-JIS, the Unicode string will be less than double the size of the
source string. In some cases, such as Mac OS Korean, it is not unusual for the
Unicode string to be three times as large as the source string.

However, for Mac OS Arabic and Mac OS Hebrew, some 1-byte characters,
such as punctuation characters and digits, are converted to three Unicode
characters. Depending on how many of these the source string contains, the
resulting Unicode string could be more than three times the size of the original.

To convert a single text stream, your application can use a conversion
information reference. You pass the same reference to the
ConvertFromTextToUnicode function each time you call the function to convert a
segment of text belonging to the single text stream, repeating the process until
the entire stream of text is converted.

You should use the same conversion information reference only to convert
segments of text belonging to the text stream for which you created the
reference. This is because the Unicode Converter stores private state
information in a conversion information reference that is relevant only to the
single text stream for which it is used. When you finish converting all of the
text reliant on the conversion information reference, release the memory
allocated for the reference by calling the DisposeUnicodeToTextInfo function
(page 3-45).

If you use the same conversion information reference to convert multiple
segments of the same text stream, you should set the
Unicode-keep-information control flag (page 3-7) when you call the conversion
function. This is because how the conversion is performed might depend on
the next character in the text stream. The Unicode Converter might need to
refer to the next character in the following text segment, for example, to
determine the text direction for Hebrew or Arabic text.
Unicode Converter Functions 3-35
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SPECIAL CONSIDERATIONS

This function modifies the contents of the conversion information data
structure specified by the reference you passed in the iTextToUnicodeInfo
parameter.

SEE ALSO

If you are converting the text stream to Unicode as an intermediary encoding,
and then from Unicode to the final target encoding, you use
ConvertFromUnicodeToText (page 3-41) for the second part of the process.

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

DisposeTextToUnicodeInfo 3

Releases the memory allocated for the specified conversion information
reference.

pascal OSStatus DisposeTextToUnicodeInfo (
TextToUnicodeInfo *textToUnicodeInfo);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-36 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
textToUnicodeInfo
A pointer to a conversion information data structure (page 3-3)
for converting text to Unicode. On input, you specify a
reference that points to the conversion information to be
disposed of, which your application created using
CreateTextToUnicodeInfo (page 3-29).

function result
A result code. The function returns a noErr result code if it
successfully disposes of the conversion information reference. If
your application specifies an invalid conversion information
reference, such as NULL, the function returns a paramErr result
code.

DISCUSSION

The DisposeTextToUnicodeInfo function disposes of the conversion information
reference and releases the memory allocated for it. Your application should not
attempt to dispose of the same data structure more than once.

You must use this function only to release the memory for a reference of type
OpaqueTextToUnicodeInfo that your application created through the
CreateTextToUnicodeInfo function (page 3-29). You must not use it for any other
type of conversion information reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-37
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Converting From Unicode 3

You can convert text from Unicode to another encoding, but to do so you must
first obtain a reference to a private data structure containing the mapping and
state information the Unicode Converter uses to perform the conversion. You
use the CreateUnicodeToTextInfo function to obtain this reference. You then
pass the reference to the ConvertFromUnicodeToText function to perform the
conversion. When your application is finished using the reference, you must
dispose of it and the memory allocated for it by calling the
DisposeUnicodeToTextInfo function.

Converting text from one encoding to another using Unicode as an
intermediary encoding is a two-part process. You use the functions described in
“Converting to Unicode” (page 3-29) to convert the text to Unicode, then you
use these functions to convert the text from Unicode to the final, target
encoding.

CreateUnicodeToTextInfo 3

Creates a data structure containing the information required for converting
strings from Unicode to another encoding, and returns a reference to the
private structure.

pascal OSStatus CreateUnicodeToTextInfo (
ConstUnicodeMappingPtr unicodeMapping,
UnicodeToTextInfo *unicodeToTextInfo);

unicodeMapping
A Unicode mapping structure (page 3-24). Your application
provides this data structure to identify the mapping to be
performed.
3-38 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
unicodeToTextInfo
A pointer to a conversion information data structure (page 3-3)
for converting Unicode strings to text. On output, the parameter
returns a conversion information reference to the private data
structure that holds the mapping table information you supply
as the UnicodeMapping parameter and the state information
related to the conversion. The CreateUnicodeToTextInfo
function creates the private data structure and returns the
reference to it as this parameter if the function completes
successfully. The information contained in the conversion
information reference is required for the conversion of a
Unicode string to any other encoding, including a Unicode
variant.

function result
A result code. If the function returns a result code other than
noErr, then the reference returned in the unicodeToTextInfo
parameter refers to an invalid conversion information data
structure. If one of the mapping tables specified by the Unicode
mapping structure you supply or one of the resources
associated with it was not found, the function returns a
unicodeNoTableErr result code. If one of the table resources you
specified has a checksum error, the function returns a
unicodeChecksumErr result code.

DISCUSSION

For each Unicode string that you want to convert to another encoding, your
application must call the CreateUnicodeToTextInfo function to create a
conversion information data structure and obtain a reference to it. The Unicode
Converter uses the mapping table information you provide when creating the
reference.

You can use the same conversion information reference to convert multiple
Unicode strings belonging to the same text stream to the encoding specified in
the mapping table. You should use the same conversion information reference
only to convert segments of text belonging to the single text stream for which
you created the reference. This is because the Unicode Converter stores private
state information in a conversion information reference that is relevant only to
that particular reference and the single text stream for which it is used. When
you are finished converting all of the text reliant on the conversion information
Unicode Converter Functions 3-39
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
reference, you must release the memory allocated for the reference by calling
the DisposeUnicodeToTextInfo function (page 3-45).

If you use the same conversion information reference to convert multiple
segments of the same text stream, you should set the
Unicode-keep-information control flag (page 3-7) when you call the conversion
function. This is because how the conversion is performed might depend on
the next character. The Unicode Converter might need to refer to the next
character in the following text segment, for example, to determine the text
direction for Hebrew or Arabic text.

The CreateUnicodeToTextInfo function locates and loads the mapping table
resources required for the conversion.

You pass the reference returned from the CreateUnicodeToTextInfo function to
the ConvertFromUnicodeToText function (page 3-41) or the
ConvertUnicodeToPString function (page 3-64), to identify the information to be
used for the conversion. These two functions modify the contents of the
conversion information reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-40 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
ConvertFromUnicodeToText 3

Converts a string from Unicode to the specified encoding.

pascal OSStatus ConvertFromUnicodeToText (
UnicodeToTextInfo iUnicodeToTextInfo,
ByteCount iUnicodeLen,
ConstUniCharArrayPtr iUnicodeStr,
OptionBits iControlFlags,
ItemCount iOffsetCount,
ByteOffset iOffsetArray[],
ItemCount *oOffsetCount,
ByteOffset oOffsetArray[],
ByteCount iBufLen,
ByteCount *oInputRead,
ByteCount *oOutputLen,
LogicalAddress oOutputStr);

iUnicodeToTextInfo
A conversion information reference of type UnicodeToTextInfo
for converting text from Unicode. You use the
CreateUnicodeToTextInfo function (page 3-38) to obtain a
reference to specify for this parameter.

iUnicodeLen The length in bytes of the Unicode string to be converted.

iUnicodeStr The logical address of the Unicode string to be converted.

iControlFlags Conversion control flags. You can use these bitmasks to set the
control flags that apply to this function:
kUnicodeUseFallbacksMask
kUnicodeKeepInfoMask
kUnicodeVerticalFormMask
kUnicodeLooseMappingsMask
kUnicodeStringUnterminatedMask

For a description of these control flags, see “Conversion Control
Flags” (page 3-7).

To set the directionality field, which is also a valid control flag
for this parameter, you use the kUnicodeDirectionalityBits
constant, not the mask, because you must shift the bits.
Unicode Converter Functions 3-41
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
iOffsetCount The number of offsets contained in the array provided by the
iOffsetArray parameter. Your application supplies this
value.The number of entries in iOffsetArray must be fewer
than the number of bytes specified in iUnicodeLen. If you don’t
want offsets returned to you, specify 0 (zero) for this parameter.

iOffsetArray An array of type ByteOffset. On input, you specify the array
that gives an ordered list of significant byte offsets pertaining to
the Unicode source string to be converted. These offsets may
identify font or style changes, for example, in the source string.
If you don’t want offsets returned to your application, specify
NULL for this parameter and 0 (zero) for iOffsetCount.

oOffsetCount A pointer to an ItemCount.

oOffsetArray An array of type ByteOffset.On output, this array contains the
corresponding new offsets for the converted string in the new
encoding.

iBufLen The length in bytes of the output buffer pointed to by the
oOutputStr parameter. Your application supplies this buffer to
hold the returned converted string. The oOutputLen parameter
may return a byte count that is less than this value if the
converted byte string is smaller than the buffer size you
allocated.

oInputRead A pointer to a value of type ByteCount. On output, this value
gives the number of bytes of the Unicode string that were
converted. If the function returns a unicodePartConvertErr, this
parameter returns the number of bytes that were converted
before the error occurred.

oOutputLen A pointer to a value of type ByteCount. On output, this value
give the length in bytes of the converted text stream.

oOutputStr A value of type LogicalAddress. On input, this value points to a
buffer for the converted string. On output, the buffer holds the
converted text string. (For guidelines on estimating the size of
the buffer needed, see the following discussion.)

function result A result code. The function returns a noErr result code if it has
completely converted the Unicode string to the target encoding
without using fallback character sequences. If the function
returns the paramErr, the function does not convert the string.
3-42 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
If the ConvertFromUnicodeToText returns the
unicodeFallbacksErr result code, the function has completely
converted the input string to the specified target using one or
more fallbacks because you set the Unicode-use-fallbacks
control flag.

If the function returns a unicodeTableFormatErr because the
mapping table specified an unknown table format or index
format or a unicodeVariantErr because the specified target
encoding was not found in the mapping table, the function does
not convert the string.

If the function returns a unicodeCharErr because the source text
contained an invalid Unicode character, a unicodeElementErr
because the source string contained a text element too long to
process, a unicodeNotFoundErr because a Unicode text element
in the source string is not in the mapping table, or a
unicodeBufErr because the output buffer specified by iBufLen is
too short to hold the converted string, then the function did not
completely convert the string. If it converted part of the string,
the buffer pointed to by the oOutputStr parameter contains the
converted portion. To convert the remaining part of the string,
you can call this function again, passing the function the rest of
the string.

DISCUSSION

The ConvertFromUnicodeToText function converts a Unicode text string to the
target encoding you specify in the Unicode mapping data structure that you
pass to CreateUnicodeToTextInfo (page 3-38) when you call it to obtain a
conversion information reference for the conversion process. You pass the
reference returned by CreateUnicodeToTextInfo to ConvertFromUnicodeToText as
the iUnicodeToTextInfo parameter. The target encoding can be any encoding,
including a Unicode variant or another text encoding.

In addition to converting the Unicode string, ConvertFromUnicodeToText can
map style or font information from the source text string to the returned
converted string. The converter reads the application-supplied offsets and
returns the corresponding new offsets in the converted string. If you do not
want font or style information offsets mapped to the resulting string, you
should pass NULL for iOffsetArray and 0 (zero) for iOffsetCount.
Unicode Converter Functions 3-43
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Your application must allocate a buffer to hold the resulting converted string
and pass a pointer to the buffer in the oOutputStr parameter. To determine the
size of the output buffer to allocate, you should consider the size and content of
the Unicode source string in relation to the type of encoding to which it will be
converted. For example, for many encodings, such as Mac OS Roman and
Shift-JIS, the size of the returned string will be between half the size and the
same size as the source Unicode string. However, for some encodings that are
not Mac OS ones, such as EUC-JP which has some 3-byte characters for Kanji,
the returned string could be larger than the source Unicode string. For Mac OS
Arabic and Mac OS Hebrew, the result will usually be less than half the size of
the Unicode string.

To convert a single Unicode text stream, your application can use the same
conversion information reference. You pass this reference to the
ConvertFromTextToUnicode function each time you call the function to convert a
segment of text belonging to the text stream, repeating the process until the
entire text stream is converted.

You should use the same conversion information reference only to convert
segments of text belonging to the text stream for which you created the
reference. This is because the Unicode Converter stores private state
information in a conversion information reference that is relevant only to the
single text stream for which it is used. When you are finished converting all of
the text reliant on the conversion information reference, release the memory
allocated for the reference by calling DisposeUnicodeToTextInfo (page 3-45).

If you use the same conversion information reference to convert multiple
segments of the same text stream, you should set the
Unicode-keep-information control flag (page 3-7) when you call the conversion
function. This is because how the conversion is performed might depend on
the next character in the text stream. The Unicode Converter might need to
refer to the next character in the following text segment, for example, to
determine the text direction for Hebrew or Arabic text.
3-44 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SPECIAL CONSIDERATIONS

This function modifies the contents of the conversion information data
structure pointed to by the reference you passed as the iUnicodeToTextInfo
parameter.

SEE ALSO

If you are converting the text stream to Unicode as an intermediary encoding,
and then from Unicode to the final target encoding, you use
ConvertFromTextToUnicode (page 3-32) for the first part of the process and
ConvertFromUnicodeToText for the second part of the process.

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

DisposeUnicodeToTextInfo 3

Releases the memory allocated for the specified conversion information
reference.

pascal OSStatus DisposeUnicodeToTextInfo (
UnicodeToTextInfo *unicodeToTextInfo);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-45
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
unicodeToTextInfo
A pointer to a conversion information data structure (page 3-5)
for converting Unicode text to another encoding. On input, you
specify a reference that points to the conversion information to
be disposed of, which your application created using
CreateUnicodeToTextInfo (page 3-38).

function result
A result code. The function returns noErr if it disposes of the
conversion information reference successfully. If your
application specifies an invalid conversion information
reference, such as NULL, the function returns a paramErr result
code.

DISCUSSION

The DisposeUnicodeToTextInfo function disposes of the conversion information
reference and releases the memory allocated for it. Your application should not
attempt to dispose of the same conversion information reference more than
once.

You must use this function only to release the memory for a reference of type
OpaqueUnicodeToTextInfo that your application created through the
CreateUnicodeToTextInfo function (page 3-38). You must not use it for any other
type of conversion information reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-46 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Converting From Unicode to Multiple Encodings 3

It may not be possible to convert a Unicode string to a single target encoding.
To handle these cases, the Unicode Converter provides the
ConvertFromUnicodeToTextRun function that allows you to specify a number of
possible target encodings and how the function should use these target
encodings, if necessary, when converting the Unicode string. Before you use
the ConvertFromUnicodeToTextRun function, you must first create and obtain a
reference to a private data structure containing the mapping and state
information the Unicode Converter uses to perform the conversion. You use the
CreateUnicodeToTextRunInfo function to provide information for the private
data structure and obtain a reference to it. You then pass the reference to the
ConvertFromUnicodeToTextRun function to perform the conversion. When your
application is finished using the reference, you must dispose of it and the
memory allocated for it by calling the DisposeUnicodeToTextRunInfo function.

CreateUnicodeToTextRunInfo 3

Creates a data structure containing the information required for converting a
Unicode text string to any one or more encodings, and returns a reference to
the structure.

pascal OSStatus CreateUnicodeToTextRunInfo (
ItemCount numberOfMappings,
ConstUnicodeMappingPtr unicodeMapping,
UnicodeToTextRunInfo *unicodeToTextInfo);
Unicode Converter Functions 3-47
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
numberOfMappings
The number of mappings specified by your application for
converting from Unicode to any other encoding types,
including other forms of Unicode.

unicodeMapping
An array of Unicode mapping structures (page 3-24). Your
application provides this data structure to identify the
mappings to be used for the conversion. The order in which the
mappings are specified in this data structure affects the
conversion process. When the ConvertFromUnicodeToTextRun
function (page 3-50) requires more than one target encoding to
convert the text string, the Unicode Converter uses the order of
mappings as they appear in this array to determine the priority
of target encodings.

unicodeToTextInfo

A pointer to a conversion information data structure (page 3-6)
for converting Unicode text strings to any one or more
encodings. On output, a conversion information reference to the
private data structure that holds the mapping table information
you supply as the unicodeMapping parameter and the state
information related to the conversion. The
CreateUnicodeToTextRunInfo function creates the private data
structure and returns a reference to the structure if the function
completes successfully.

function result
A result code. If the converter could not find one of the
mapping tables specified by the Unicode mapping structure
you supply or one of the resources associated with it, the
function returns a unicodeNoTableErr result code. If one of the
table resources you specified has a checksum error, the function
returns a unicodeChecksumErr result code. If the function returns
a result code other than noErr, then the reference returned in the
unicodeToTextInfo parameter is invalid.

DISCUSSION

For each Unicode string to be converted to one or more encodings belonging to
a set of mappings, your application must call the CreateUnicodeToTextRunInfo
function to create a conversion information data structure and obtain a
3-48 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
reference to it. You pass the reference returned from the
CreateTextToTextRunInfo function to the ConvertFromUnicodeToTextRun function
(page 3-50) to provide the mapping and state information to be used for the
conversion. The CreateUnicodeToTextRunInfo function locates and loads the
mapping table resources required for the conversion.

You can use the same conversion information reference to convert multiple
Unicode strings belonging to the same text stream to the encodings specified in
the mapping table. You should use the same conversion information reference
only to convert the text stream for which you created the reference. This is
because the Unicode Converter stores private state information in a conversion
information reference that is relevant only to the single text stream for which it
is used. When you are finished converting all of the text reliant on the
conversion information reference, release the memory allocated for the
reference by calling DisposeUnicodeToTextRunInfo (page 3-56).

If you use the same conversion information reference to convert multiple
Unicode strings, you should set the Unicode-keep-information control flag
when you call the conversion function. This is because how the conversion is
performed might depend on the next character. The Unicode Converter might
need to refer to the next character in the following text segment, for example, to
determine the text direction for Hebrew or Arabic text.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-49
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

ConvertFromUnicodeToTextRun 3

Converts a string from Unicode to one or more encodings.

pascal OSStatus ConvertFromUnicodeToTextRun (
UnicodeToTextRunInfo iUnicodeToTextInfo,
ByteCount iUnicodeLen,
ConstUniCharArrayPtr iUnicodeStr,
OptionBits iControlFlags,
ItemCount iOffsetCount,
ByteOffset iOffsetArray[],
ItemCount *oOffsetCount,
ByteOffset oOffsetArray[],
ByteCount iBufLen,
ByteCount *oInputRead,
ByteCount *oOutputLen,
LogicalAddress oOutputStr,
ItemCount iEncodingRunBufLen,
ItemCount *oEncodingRunOutLen,
TextEncodingRun oEncodingRuns[]);

iUnicodeToTextInfo
A conversion information reference for converting Unicode text
to one or more encodings. You use the
CreateUnicodeToTextRunInfo function (page 3-47) to obtain a
reference to specify for this parameter.

iUnicodeLen The length in bytes of the Unicode string to be converted.

iUnicodeStr A pointer to the Unicode string to be converted.

iControlFlags Conversion control flags. The following constants define the
masks for control flags valid for this parameter. You can use
these masks to set the iControlFlags parameter:
kUnicodeUseFallbacksBit
kUnicodeKeepInfoBit
3-50 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
kUnicodeDirectionalityMask
kUnicodeVerticalFormBit
kUnicodeLooseMappingsBit
kUnicodeStringUnterminatedBit
kUnicodeTextRunBit
kUnicodeKeepSameEncodingBit

For a description of these control flags, see “Conversion Control
Flags” (page 3-7).

To set the directionality field, which is also a valid control flag
for this parameter, you use the kUnicodeDirectionalityBits
constant, not the mask, because you must shift the bits.

If the Unicode-text-run control flag is clear,
ConvertFromUnicodeToTextRun attempts to convert the Unicode
text to the single encoding from the list of encodings in the
Unicode-to-text-run conversion information reference that
produces the best result, that is, that provides for the greatest
amount of source text conversion. If the complete source text
can be converted into more than one of the encodings specified
in the Unicode mapping structures array, then the converter
chooses among them based on their order in the array. If this
flag is clear, the oEncodingRuns parameter will always point to a
value equal to 1. The Unicode-use-fallbacks control flag is not
applicable if the Unicode-text-run control flag is clear.

If you set the Unicode-use-fallbacks control flag, the converter
will use the default fallback characters for the current encoding.
If the converter cannot handle a character using the current
encoding, even using fallbacks, the converter attempts to
convert the character using the other encodings, beginning with
the first encoding specified in the list and skipping the
encoding where it failed.

If you set the kUnicodeTextRunBit control flag, the converter
attempts to convert the complete Unicode text string into the
first encoding specified in the Unicode mapping structures
array you passed to CreateUnicodeToTextRunInfo (page 3-47) to
create the conversion information reference used for this
conversion. If it cannot do this, the converter then attempts to
convert the first text element that failed to the remaining
Unicode Converter Functions 3-51
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
encodings, in their specified order in the array. How the
converter does this depends on the setting of the
Unicode-keep-same-encoding control flag:

- If the Unicode-keep-same-encoding control flag is clear, the
converter returns to the original encoding and attempts to
continue conversion with that encoding; this is equivalent to
converting each text element to the first encoding that works, in
the order specified.

 - If the Unicode-keep-same-encoding control flag is set, the
converter continues with the new target encoding until it
encounters a text element that cannot be converted using the
new encoding. When the converter cannot convert a text
element using any of the encodings in the list and the
Unicode-keep-same-encoding control flag is set, the converter
uses the fallbacks default characters for the current encoding.

For a description of the complete set of conversion control flags,
see “Conversion Control Flags” (page 3-7).

iOffsetCount The number of offsets in the array pointed to by the
iOffsetArray parameter. Your application supplies this value.
The number of entries in iOffsetArray must be fewer than half
the number of bytes specified in iUnicodeLen. If you don’t want
offsets returned to you, specify 0 (zero) for this parameter.

iOffsetArray An array of type ByteOffset. On input, you specify the array
that contains an ordered list of significant byte offsets
pertaining to the source Unicode string. These offsets may
identify font or style changes, for example, in the Unicode
string. If you don’t want offsets returned to your application,
specify NULL for this parameter and 0 (zero) for iOffsetCount.

oOffsetCount A pointer to an ItemCount.

oOffsetArray An array of type ByteOffset.On output, this array contains the
corresponding new offsets for the resulting converted string.

iBufLen The length in bytes of the output buffer pointed to by the
oOutputStr parameter. Your application supplies this buffer to
hold the returned converted string. The oOutputLen parameter
may return a byte count that is less than this value if the
converted byte string is smaller than the buffer size you
allocated.
3-52 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
oInputRead A pointer to a value of type ByteCount. On output, this value
contains the number of bytes of the Unicode source string that
were converted. If the function returns a result code other than
noErr, then this parameter returns the number of bytes that
were converted before the error occurred.

oOutputLen A pointer to a value of type ByteCount. On output, this value
contains the length in bytes of the converted string.

oOutputStr A value of type LogicalAddress. On input, this value points to
the start of the buffer for the converted string. On output, this
buffer contains the converted string in one or more encodings.
When an error occurs, the ConvertFromUnicodeToTextRun
function returns the converted string up to the character that
caused the error. (For guidelines on estimating the size of the
buffer needed, see the following discussion.)

iEncodingRunBufLen
The number of text encoding run elements you allocated for the
encoding run array pointed to by the oEncodingRuns parameter.

oEncodingRunOutLen
A pointer to a value of type ItemCount. On output, this value
contains the number of valid encoding runs returned in the
oEncodingRuns parameter.

oEncodingRuns An array of elements of type TextEncodingRun. On input, this
refers to the array of text encoding run data structures. Your
application should allocate an array with the number of
elements you specify in the iEncodingRunBufLen parameter. On
output, this array contains the encoding runs for the converted
text string. Each entry in the encoding run array specifies the
starting offset in the converted text string and the associated
encoding specification.

function result
A result code. The function returns a noErr result code if it has
completely converted the Unicode string to the target encoding
without using fallback character sequences. If the function
returns the paramErr because one or more of the input
parameter values is invalid, the function does not convert the
string.
Unicode Converter Functions 3-53
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
If ConvertFromUnicodeToTextRun returns the unicodeFallbacksErr
result code, the function has completely converted the input
string to the specified target using one or more fallbacks
because you set Unicode-use-fallbacks control flag.

If the function returns a unicodeVariantErr because the
specified target encoding was not found in the mapping table,
the function does not convert the string.

If the function returns a unicodeTableFormatErr because the
mapping table specified an unknown table format or index
format, the function might have partially converted the string.

If the function returns a unicodeCharErr because the source text
contained an invalid Unicode character, a unicodeElementErr
because the source string contained a text element too long to
process, a unicodeNotFoundErr because a Unicode text element
in the source string is not in the mapping table, or a
unicodeBufErr because the output buffer specified by iBufLen is
too short to hold the converted string, then the function did not
completely convert the string. If it converted part of the string,
the array pointed to by the oOutputStr parameter contains the
converted portion. To convert the remaining part of the string,
you can call this function again, passing the function the rest of
the string.

DISCUSSION

To use the ConvertFromUnicodeToTextRun function, you must first set up an
array of Unicode mapping structures (page 3-24) containing in order of
precedence the mapping information for the conversion. To create a conversion
information reference, you call the CreateUnicodeToTextRunInfo function
passing it the Unicode mapping array pointer. You pass the returned reference
as the iUnicodeToTextInfo parameter when you call the
ConvertFromUnicodeToTextRun function.

Two of the control flags that you can set for the iControlFlags parameter allow
you to control how the Unicode Converter uses the multiple encodings in
converting the text string. These flags are explained in the description of the
iControlFlags parameter. Here is a summary of how to use these two control
flags:
3-54 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
■ If you want to keep the converted text in a single encoding run, leave the
Unicode-text-run control flag clear.

■ If you want to keep as much as possible of the converted text in one
encoding, set the Unicode-multiple-run control flag and leave clear the
Unicode-keep-same-encoding control flag.

■ If you want to minimize the number of encoding runs or to minimize the
changes of target encoding, set both the Unicode-text-run and
Unicode-keep-same-encoding control flags.

The ConvertFromUnicodeToTextRun function returns the converted string in the
array pointed to by the oOutputStr parameter. Beginning with the first text
element in the oOutputStr array, the elements of the array pointed to by the
oEncodingRuns parameter identify the encodings of the converted string. The
number of elements in the oEncodingRuns array may not correspond to the
number of elements in the oOutputStr array. This is because the oEncodingRuns
array only includes elements for each change of encoding in the converted
string.

You can use the same conversion information reference to convert multiple
Unicode strings belonging to a same text stream to the encodings specified in
the mapping table. You should use the same conversion information reference
only to convert the single text stream for which you created the reference. This
is because the Unicode Converter stores private state information in a
conversion information reference that is relevant only to the text stream for
which it is used. When you are finished converting all of the text reliant on the
conversion information reference, release the memory allocated for the
reference by calling the DisposeUnicodeToTextRunInfo function (page 3-47).

If you use the same conversion information reference to convert multiple
Unicode strings of a single text stream, you should set the Unicode-keep-info
control flag (page 3-7) when you call the conversion function. This is because
how the conversion is performed might depend on the next character. The
Unicode Converter might need to refer to the next character in the following
text segment, for example, to determine the text direction for Hebrew or Arabic
text.
Unicode Converter Functions 3-55
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SPECIAL CONSIDERATIONS

This function modifies the contents of the conversion information reference
specified by the iUnicodeToTextInfo parameter.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

DisposeUnicodeToTextRunInfo 3

Releases the memory allocated for the specified conversion information
reference.

pascal OSStatus DisposeUnicodeToTextRunInfo (
UnicodeToTextRunInfo *unicodeToTextRunInfo);

unicodeToTextRunInfo
A pointer to a conversion information data structure (page 3-6)
for converting Unicode text to another encoding. On input, you

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-56 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
specify a reference that points to the conversion information to
be disposed of, which your application created using
CreateUnicodeToTextRunInfo (page 3-47).

function result
A result code. The function returns a noErr result code if it
disposes of the conversion information reference successfully. If
your application specifies an invalid reference, such as NULL, the
function returns paramErr.

DISCUSSION

The DisposeUnicodeToTextRunInfo function disposes of the conversion
information reference specified by the unicodeToTextRunInfo parameter and
releases the memory allocated for it. Your application should not attempt to
dispose of the same conversion information reference more than once.

You must use this function only to release the memory for a conversion
information reference that your application created through the
CreateUnicodeToTextRunInfo function (page 3-47). You must not use it for any
other type of conversion information reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-57
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Truncating Strings Before Converting Them 3

The Unicode Converter provides two functions that you can use to identify
where to properly truncate text before converting it: you use the
TruncateForTextToUnicode function to locate where to truncate text to be
converted from another encoding to Unicode and the
TruncateforUnicodeToText function to locate where to truncate text to be
converted from Unicode to another encoding.

TruncateForTextToUnicode 3

Identifies where your application should truncate a multibyte string to be
converted to Unicode so that the string is not broken in the middle of a
two-byte character.

pascal OSStatus TruncateForTextToUnicode(
ConstTextToUnicodeInfo textToUnicodeInfo,
ByteCount sourceLen,
ConstLogicalAddress sourceStr,
ByteCount maxLen,
ByteCount *truncatedLen);

textToUnicodeInfo
The conversion information reference (page 3-3) pertaining to
the text string to be truncated. The TruncateForTextToUnicode
function does not modify the contents of this private data
structure.

sourceLen The length in bytes of the multibyte string to be truncated.

sourceStr The logical address of the multibyte string to be truncated.

maxLen The maximum allowable length of the truncated string.

truncatedLen A pointer to a value of type ByteCount. On output, this value
contains the length of the longest portion of the multibyte
string, pointed to by the sourceStr parameter, that is less than
or equal to the length specified by the maxLen parameter. This
identifies the byte after which you can truncate the string.
3-58 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
function result
A result code. The function returns a noErr result code if it
successfully truncates the string. If the function returns
paramErr, the content of the returned truncatedLen parameter is
invalid.

DISCUSSION

Your application can use this function to truncate a string properly before you
call the ConvertFromTextToUnicode function so that the string you pass to
ConvertFromTextToUnicode is terminated with complete characters. To avoid the
possibility of corrupting the contents of the string or breaking a string between
the first and second bytes of a two-byte character, it is best to use this function
instead of truncating the string yourself. You can call this function repeatedly
to properly truncate a text string, each time identifying the new beginning of
the string, until the last portion of the text is less than or equal to the maximum
allowable length.

Because the TruncateForTextToUnicode function does not modify the contents of
the conversion information reference, you can call this function safely between
calls to the ConvertFromTextToUnicode function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-59
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

TruncateForUnicodeToText 3

Identifies where your application should truncate a Unicode string to be
converted to any encoding so that the string is broken in a way that preserves
the text element integrity.

pascal OSStatus TruncateForUnicodeToText (
ConstUnicodeToTextInfo unicodeToTextInfo,
ByteCount sourceLen, ConstUniCharArrayPtr sourceStr,
OptionBits controlFlags,
ByteCount maxLen,
ByteCount *truncatedLen);

unicodeToTextInfo
A conversion information reference (page 3-5) pertaining to the
Unicode string to be truncated. The TruncateForUnicodeToText
function does not modify the contents of this private data
structure.

sourceLen The length in bytes of the Unicode string to be truncated.

sourceStr The Unicode string to be truncated.

controlFlags Truncation control flags. You can use the
kUnicodeTextElementSafeMask and the kUnicodeRestartSafeMask
masks (page 3-16) to set the control flags that apply to this
function.

If you set the Unicode-text-element-safe control flag, the
truncated string will contain complete text elements. You
should normally set this bit.

If you set the Unicode-restart-safe control flag, you can safely
process the string using the ConvertFromUnicodeToText function
even if the string is not block delimited.

maxLen The maximum allowable length of the truncated string.
3-60 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
truncatedLen A pointer to a value of type ByteCount. On output, this value
contains the length of the longest portion of the Unicode source
string, pointed to by the sourceStr parameter, that satisfies the
conditions specified by the control flags and that is less than or
equal to the value of the maxLen parameter. This returned
parameter identifies the byte after which you should truncate
the string.

function result
A result code. The function returns a noErr result code if it
successfully truncates the string. If the function returns
paramErr, the content of the returned truncatedLen parameter is
invalid.

DISCUSSION

Your application can use this function to truncate a Unicode string properly
before you call the ConvertFromUnicodeToText function (page 3-41) to convert
the string. TruncateForUnicodeToText identifies where to truncate the Unicode
string so that your application does not break it in the middle of a text element,
such as between a letter and a combining diacritic. To avoid the possibility of
corrupting the contents of the string, it is best to use this function instead of
truncating the string yourself. Using the TruncateForUnicodeToText function to
identify where to truncate the string ensures that the string you pass to the
ConvertFromUnicodeToText function is terminated with complete characters.

You can call this function repeatedly to properly truncate a text segment, each
time identifying the new beginning of the string, until the last portion of the
text is less than or equal to the maximum allowable length.

Because this function does not modify the contents of the conversion
information reference, you can call this function between calls to the
ConvertFromUnicodeToText function.

If the string to be truncated is not block delimited—for example, if you are
truncating text contained in incoming packets before converting it—you should
set the kUnicodeRestartSafeBit control flag before you call the
TruncateForUnicodeToText function for each packet’s text. This allows the
Unicode Converter to resolve the character direction of the text without benefit
of the full block-delimited context. For this scenario, you would prefix any
truncated portion of the text to the text of the next packet before calling the
TruncateForUnicodeToText function for that packet.
Unicode Converter Functions 3-61
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Converting Unicode From and To Pascal Strings 3

The Unicode Converter provides functions that limit effort and the overhead
involved in converting Pascal strings to and from Unicode. You can use the
ConvertPStringToUnicode function to convert a Pascal string to a Unicode string
and the ConvertUnicodeToPString function to convert a Unicode string to Pascal.

ConvertPStringToUnicode 3

Converts a Pascal string in a Mac OS text encoding to a Unicode string.

pascal OSStatus ConvertPStringToUnicode (
TextToUnicodeInfo textToUnicodeInfo,
ConstStr255Param pascalStr,
ByteCount bufLen,
ByteCount *unicodeLen,
UniCharArrayPtr unicodeStr);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-62 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
textToUnicodeInfo
A conversion information reference (page 3-3) pertaining to the
Pascal string to be converted. You use the
CreateTextToUnicodeInfo function (page 3-29) to obtain the
reference.

pascalStr The Pascal string to be converted to Unicode.

bufLen The length in bytes of the output buffer pointed to by the
unicodeStr parameter. Your application supplies this buffer to
hold the returned converted string. The unicodeLen parameter
may return a byte count that is less than this value if the
converted string is smaller than the buffer size you allocated.

unicodeLen A pointer to a value of type ByteCount. On output, the length in
bytes of the converted Unicode string returned in the
unicodeStr parameter.

unicodeStr A pointer to a Unicode character array (page 3-23). On output,
this buffer holds the converted Unicode string.

function result A result code. If the ConvertPStringToUnicode function returns a
noErr result code, it has completely converted the Pascal string
to the Unicode variant you specified without using fallback
characters. If the function returns the paramErr, the string was
not converted. If the ConvertPStringToUnicode returns the
unicodeFallbacksErr result code, the function has completely
converted the input string to the specified target using one or
more fallbacks.

If the function returns a unicodeBufErr, the output buffer
specified by bufLen is too short to hold the converted string. For
a result code of unicodeBufErr, the sourceRead parameter
contains the number of bytes converted before the error
occurred. To convert the remaining part of the string, you can
call this function again, passing the function the rest of the
string.

DISCUSSION

The ConvertPStringToUnicode function provides an easy and efficient way to
convert a short Pascal string to a Unicode string without incurring the
overhead associated with the ConvertFromTextToUnicode function (page 3-32).
Unicode Converter Functions 3-63
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
If necessary, this function automatically uses fallback characters to map the text
elements of the string.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

ConvertUnicodeToPString 3

Converts a Unicode string to Pascal in a Mac OS 8 text encoding.

pascal OSStatus ConvertUnicodeToPString (
UnicodeToTextInfo unicodeToTextInfo,
ByteCount unicodeLen,
ConstUniCharArrayPtr unicodeStr,
Str255 pascalStr);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-64 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
unicodeToTextInfo
A conversion information reference (page 3-5) pertaining to the
Unicode string to be converted. You use the
CreateUnicodeToTextInfo function (page 3-38) to obtain the
reference for the conversion.

unicodeLen The length in bytes of the Unicode string to be converted. This
is the string your application provides in the unicodeStr
parameter.

unicodeStr An array (page 3-23) containing the Unicode string to be
converted.

pascalStr A Pascal string pointer. On output, the converted Pascal string
returned by the function.

function result A result code. The function returns a noErr result code if it has
completely converted the Unicode string to Pascal without
using fallback character sequences. If the function returns the
paramErr, the function does not convert the string.

If the ConvertFromUnicodeToText returns the
unicodeFallbacksErr result code, the function has completely
converted the input string to the specified target using one or
more fallbacks.

If the function returns a unicodeTableFormatErr because the
mapping table specified an unknown table format or index
format or a unicodeVariantErr because the specified target
encoding was not found in the mapping table, the function does
not convert the string.

If the function returns a unicodeCharErr because the source text
contained an invalid Unicode character, a unicodeElementErr
because the source string contained a text element too long to
process, a unicodeNotFoundErr because a Unicode text element
in the source string is not in the mapping table, or a
unicodeBufErr because the output buffer specified by pascalStr
is too short to hold the converted string, then the function did
not completely convert the string. If it converted part of the
string, the array pointed to by the unicodeStr parameter
contains the converted portion. To convert the remaining part
of the string, you can call this function again, passing the
function the rest of the string.
Unicode Converter Functions 3-65
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
DISCUSSION

The ConvertUnicodeToPString function provides an easy and efficient way to
convert a Unicode string to Pascal in a Mac OS 8 text encoding without
incurring the overhead associated with the ConvertFromUnicodeToText function
(page 3-41).

If necessary, this function uses the loose mapping and fallback characters to
map the text elements of the string. For fallback mappings, it uses the handler
associated with the conversion information reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Obtaining Unicode Mapping and Text Encoding Base Name Information 3

The Unicode Converter provides functions you can use to obtain information.
You can obtain a list of the mapping tables available on the system that match
specified criteria using the QueryUnicodeMappings function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-66 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
QueryUnicodeMappings 3

Returns a list of the conversion mappings available on the system that meet
specified matching criteria and returns the number of mappings found.

pascal OSStatus QueryUnicodeMappings (
OptionBits filter,
ConstUnicodeMappingPtr findMapping,
ItemCount maxCount,
ItemCount *actualCount,
UnicodeMappingPtr returnedMappings);

filter Filter control flags representing the six fields of the Unicode
mapping data structure, pointed to by the findMapping
parameter, that this function uses to match against in
determining which mappings on the system to return to your
application. The filter indicator enumerations (page 3-21) define
the constants for the field’s flags and their masks. You can
include in the search criteria any of the three text encoding
fields for both the Unicode encoding and the other specified
encoding. For any flag not turned on, the field value is ignored
and the function does not check the corresponding field of the
mappings on the system.

findMapping
A Unicode mapping data structure (page 3-24) containing the
text encodings whose field values are to be matched.

maxCount
The maximum number of mappings that can be returned. You
provide this value to identify the number of elements in the
array pointed to by the returnedMappings parameter that your
application allocated. If the function identifies more matching
mappings than the array can hold, it returns as many of them as
fit. The function also returns a unicodeBufErr in this case.

actualCount A pointer to a value of type ItemCount. On output, the number
of matching mappings found. This number may be greater than
the number of mappings specified by maxCount if more
matching mappings are found than can fit in the
returnedMappings array.
Unicode Converter Functions 3-67
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
returnedMappings
A pointer to an array of Unicode mapping data structures
(page 3-24). On input, this pointer refers to an array for the
matching mappings returned by the function. You should
estimate the number of matching mappings you expect will be
found and allocate the array with enough elements to hold
them. On output, this array holds the matching mappings. If
there are more matches than the array can hold, the function
returns as many of them as will fit and a unicodeBufErr error
result. The actualCount parameter identifies the number of
matching mappings actually found, which may be greater than
the number returned.

function result A result code. If the function returns a noErr result code, the
value retuned in the actualLen parameter is less than or equal
to the value returned in the maxCount parameter and the
returnedMappings parameter contains all of the matching
mappings found. If the function returns a unicodeBufErr, the
function found more mappings than your returnedMappings
array could accommodate.

DISCUSSION

You can use the QueryUnicodeMappings function to obtain all mappings on the
system up to the number allowed by your returnedMappings array by
specifying a value of zero for the filter field.

You can use the function to obtain very specific mappings by setting individual
filter indicator flags. You can filter on any of the three text encoding subfields of
the Unicode mapping data structure’s unicodeEncoding specification and on
any of the three text encoding subfields of the mapping’s otherEncoding
specification.The filter parameter is a set of six indicator flags that correspond
to these six subfields. The list provided in the returnedMappings parameter will
contain only mappings that match the fields of the Unicode mapping data
structure whose text encodings fields you identify by setting their
corresponding filter indicator flags. No filtering is performed on fields for
which you do not set the corresponding filter indicator.

For example, to obtain a list of all mappings in which one of the encodings is
the default variant and default format of the Unicode 1.1 base encoding and the
other encoding is the default variant and default format of a base encoding
other than Unicode 1.1, you would set up the filter and findMappings
3-68 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
parameter as follows. To set up these parameters, you use the constants defined
for the text encoding bases, the text encoding default variants, the text
encoding default formats, and the filter indicator bitmasks (page 3-21). (For
information on text encoding bases, text encoding default variants, and text
encoding default formats and their constants, see the “Text Encoding
Conversions Reference” chapter.) In this example, the text encoding base field
of the Unicode mapping data structure’s otherEncoding field is ignored, so you
can specify any value for it. When you call QueryUnicodeMappings, passing it
these parameters, the function will return a list of mappings between the
Unicode encoding you specified and every other available encoding in which
each non-Unicode base encoding shows up once because you specified its
default variant and default format.

findMapping.unicodeMapping = CreateTextEncoding(
kTextEncodingUnicodeV1_1,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);

findMapping.otherEncoding = CreateTextEncoding(
kTextEncodingMacRoman,

 kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);

filter = kUnicodeMatchUnicodeBaseMask | kUnicodeMatchUnicodeVariantMask |
 kUnicodeMatchUnicodeFormatMask | kUnicodeMatchOtherVariantMask |
 kUnicodeMatchOtherFormatMask;

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-69
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Changing the Conversion Information Structure’s Mapping Information 3

You can use two Unicode Converter functions to change the mapping
associated with a conversion information reference. To change the mapping for
a reference used to convert text to Unicode, use the ChangeTextToUnicodeInfo
function. To change the mapping for a reference used to convert Unicode text
to another encoding, use the ChangeUnicodeToText function.

ChangeTextToUnicodeInfo 3

Changes the mapping information for the specified conversion information
reference used to convert text to Unicode to the new mapping you provide.

pascal OSStatus ChangeTextToUnicodeInfo (
TextToUnicodeInfo textToUnicodeInfo,
ConstUnicodeMappingPtr unicodeMapping);

textToUnicodeInfo
The conversion information reference (page 3-3) containing the
mapping to be modified. You use the CreateTextToUnicodeInfo
function (page 3-29) to obtain a text-to-Unicode conversion
information reference.

unicodeMapping
A Unicode mapping data structure (page 3-24) identifying the
new mapping to be used. This is the mapping that replaces the
existing mapping in the conversion information reference.

function result A result code. If ChangeTextToUnicodeInfo returns a result code
of noErr, then the function has successfully changed the
mapping associated with the conversion context. If it returns
3-70 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
another result code, the function has not changed the mapping.
The function returns the paramErr result code if one or more of
the input parameter values is invalid, the unicodeNoTableErr
result code if one of the mapping tables specified by the
Unicode mapping structure you supply or one of the resources
associated with it was not found, and the unicodeChecksumErr
result code if one of the table resources needed for the mapping
has a checksum error.

DISCUSSION

The ChangeTextToUnicodeInfo function allows you to provide new mapping
information for text to be converted to Unicode. The function replaces the
mapping table information that currently exists in the conversion information
reference pointed to by the textToUnicodeInfo parameter with the information
contained in the UnicodeMapping data structure you supply as the
UnicodeMapping parameter.

ChangeTextToUnicodeInfo resets the conversion information reference’s fields as
necessary.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-71
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
ChangeUnicodeToTextInfo 3

Changes the mapping information contained in the specified conversion
information reference used to convert Unicode text to another encoding.

pascal OSStatus ChangeUnicodeToTextInfo (
UnicodeToTextInfo unicodeToTextInfo,
ConstUnicodeMappingPtr UnicodeMapping);

unicodeToTextInfo
The conversion information reference (page 3-5) to be modified.
You use the CreateUnicodeToTextInfo function (page 3-38) to
obtain a reference of this type.

UnicodeMapping
The Unicode mapping data structure (page 3-24) to be used.
This is the new mapping that replaces the existing mapping in
the conversion information data reference.

function result A result code. If ChangeUnicodeToTextInfo returns a result code
other than noErr, then the function has successfully changed the
mapping associated with the conversion context. If it returns
another result code, the function has not changed the mapping.
The function returns the paramErr result code if one or more of
the input parameter values is invalid, the unicodeNoTableErr
result code if one of the mapping tables specified by the
Unicode mapping structure you supply or one of the resources
associated with it was not found, the unicodeChecksumErr result
code if one of the table resources needed for the conversion has
a checksum error.

DISCUSSION

The ChangeUnicodeToTextInfo function allows you to provide new mapping
information for converting text from Unicode to another encoding. The
function replaces the mapping table information that currently exists in the
specified conversion information reference with the information contained in
the new Unicode mapping data structure you provide.

ChangeUnicodeToTextInfo resets the conversion information reference’s fields as
necessary.
3-72 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
This function is especially useful for converting a string from Unicode if the
Unicode string contains characters that require multiple target encodings and
you know the next target encoding.

For example, you can change the other (target) encoding of the Unicode
mapping data structure pointed to by the UnicodeMapping parameter before you
call the ConvertFromUnicodeToText function (page 3-41) to convert the next
character or sequence of characters that require a different target encoding.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To convert a Unicode string to multiple target encodings when you do not
know the required target encodings, you must call the
ConvertFromUnicodeToTextRun function (page 3-50).

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Setting the Fallback Handler 3

The Unicode Converter provides functions for setting the fallback handler for a
particular conversion information reference to be used for converting from
Unicode to any encoding.

You assign a fallback handler to a conversion information reference to be used
for fallback mapping. A fallback mapping is a sequence of one or more

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Unicode Converter Functions 3-73
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
characters in the target encoding for a text element that are not exactly
equivalent to the source encoding characters but which preserve some of the
information of the original. For example, (C) is a possible fallback mapping for
©. In general, the Unicode Converter uses fallback characters as a last resort in
converting text between encodings because they are not reversible and
therefore do not lend themselves to round-trip fidelity conversions.

You use the SetFallbackUnicodeToText function from within your application’s
main task to associate your fallback handler with a conversion information
reference to be used for converting a single text run using the
ConvertFromUnicodeToText function or the ConvertUnicodeToPString function.

You use the SetFallbackUnicodeToTextRun function from within your
application’s main task to associate your fallback handler with a conversion
information reference for multiple text runs to be used with the
ConvertFromUnicodeToTextRun function.

You use the SetFallbackUnicodeToTextPreemptive function from within any
other task but your application’s main one to associate your fallback handler
with a conversion information reference to be used for converting a single text
run using the ConvertFromUnicodeToText function or the
ConvertUnicodeToPString function.

You use the SetFallbackUnicodeToTextRunPreemptive function from within your
application’s main task to associate your fallback handler with a conversion
information reference for multiple text runs to be used with the
ConvertFromUnicodeToTextRun function.

SetFallbackUnicodeToText 3

Associates an application-defined fallback handler with a specific
UnicodeToTextInfo conversion information reference for a single text run to be
used with either the ConvertFromUnicodeToText function (page 3-41) or the
ConvertUnicodeToPString function (page 3-64). You can call
SetFallbackUnicodeToText from within your application’s main task only.

pascal OSStatus SetFallbackUnicodeToText (
UnicodeToTextInfo unicodeToTextInfo,
UnicodeToTextFallbackUPP fallback,
OptionBits controlFlags,
LogicalAddress infoPtr);
3-74 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
unicodeToTextInfo
The conversion information reference with which the fallback
handler is to be associated. You use the
CreateUnicodeToTextInfo function (page 3-38) to obtain a
reference of this type.

fallback A universal procedure pointer to the application-defined
fallback routine. For a description of the function prototype that
your fallback handler must adhere to, see “Fallback Handler
Function” (page 3-27). For a description of how to create your
own fallback handler, see “MyUnicodeToTextFallbackProc”
(page 3-90).

controlFlags Control flags (page 3-17) that stipulate which fallback handler
the Unicode Converter should call—the application-defined
fallback handler or the default handler—if a fallback handler is
required, and the sequence in which the Unicode Converter
should call the fallback handlers if either can be used when the
other fails or is unavailable.

infoPtr The logical address of a context containing data to be passed to
the application-defined fallback handler. The Unicode
Converter passes this pointer to the application-defined
fallback handler as the last parameter when it calls the fallback
handler. Your application can use this context to store data
required by your fallback handler whenever it is called. A
context is similar in use to a System 7 reference constant
(refcon).

function result A result code. The function returns a noErr result code if it has
successfully installed the application-defined fallback handler.
If one or more of the input parameter values is invalid, the
function can return an Unicode Converter paramErr result code.

DISCUSSION

You use this function to specify a fallback handler to be used for converting a
Unicode text segment to another encoding when the Unicode Converter cannot
convert the text using the mapping table specified by the conversion
information reference passed to the ConvertFromUnicodeToText function
(page 3-41). You can define multiple fallback handlers and associate them with
different conversion information references, depending on your requirements.
Unicode Converter Functions 3-75
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
If you don’t want the Unicode Converter to use a fallback handler defined by
your application, you can set the controlFlags parameter to direct it to use its
default fallback handler only. You can also tell the Unicode Converter to use
both fallback handlers and the order in which to call them. For example, you
can tell the Unicode Converter to try its fallback handler first, and then use
yours, if its handler is unavailable or unable to perform the conversion.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function can be called only by an application’s main task.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

SetFallbackUnicodeToTextRun 3

Associates an application-defined fallback handler with a specific conversion
information reference for multiple text runs to be used with the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

No No No
3-76 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
ConvertFromUnicodeToTextRun function (page 3-50). You can call
SetFallbackUnicodeToTextRun from within your application’s main task only.

pascal OSStatus SetFallbackUnicodeToTextRun (
UnicodeToTextRunInfo unicodeToTextRunInfo,
UnicodeToTextFallbackUPP fallback,
OptionBits controlFlags,
LogicalAddress infoPtr);

unicodeToTextInfo
The conversion information reference with which the fallback
handler is to be associated. You use the
CreateUnicodeToTextRunInfo function (page 3-47) to obtain a
reference of this type.

fallback A universal procedure pointer to the application-defined
fallback routine. For a description of the function prototype that
your fallback handler must adhere to, see “Fallback Handler
Function” (page 3-27). For a description of how to create your
own fallback handler, see “MyUnicodeToTextFallbackProc”
(page 3-90).

controlFlags Control flags (page 3-17) that stipulate which fallback handler
the Unicode Converter should call—the application-defined
fallback handler or the default handler—if a fallback handler is
required, and the sequence in which the Unicode Converter
should call the fallback handlers if either can be used when the
other fails or is unavailable.

infoPtr The logical address of a context containing data to be passed to
the application-defined fallback handler. The Unicode
Converter passes this pointer to the application-defined
fallback handler as the last parameter when it calls the fallback
handler. Your application can use this context to store data
required by your fallback handler whenever it is called. A
context is similar in use to a System 7 reference constant
(refcon).

function result A result code. The function returns a noErr result code if it has
successfully installed the application-defined fallback handler.
If one or more of the input parameter values is invalid, the
function can return an Unicode Converter paramErr result code.
Unicode Converter Functions 3-77
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
DISCUSSION

You use this function to specify a fallback handler to be used for converting a
Unicode text segment to another encoding when the Unicode Converter cannot
convert the text using the mapping table specified by the conversion
information reference passed to the ConvertFromUnicodeToText function
(page 3-41). You can define multiple fallback handlers and associate them with
different conversion information references, depending on your requirements.

If you don’t want the Unicode Converter to use a fallback handler defined by
your application, you can set the controlFlags parameter to direct it to use its
default fallback handler only. You can also tell the Unicode Converter to use
both fallback handlers and the order in which to call them. For example, you
can tell the Unicode Converter to try its fallback handler first, and then use
yours, if its handler is unavailable or unable to perform the conversion.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function can be called only by an application’s main task.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

SetFallbackUnicodeToTextPreemptive 3

Associates an application-defined fallback handler with a specific conversion
information reference for a single text run to be used with either the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

No No No
3-78 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
ConvertFromUnicodeToText function (page 3-41) or the ConvertUnicodeToPString
function (page 3-64). You can call SetFallbackUnicodeToTextPreemptive from
within any task other than your application’s main task.

pascal OSStatus SetFallbackUnicodeToTextPreemptive(
UnicodeToTextInfo unicodeToTextInfo,
UnicodeToTextFallbackPreemptiveProcPtr fallback,
OptionBits controlFlags,
LogicalAddress infoPtr);

unicodeToTextInfo
The conversion information reference with which the fallback
handler is to be associated. You use the
CreateUnicodeToTextInfo function (page 3-38) to obtain a
reference of this type. SetFallbackUnicodeToTextPreemptive
modifies the conversion information reference contents.

fallback A pointer to the application-defined fallback handler routine.
For a description of the function prototype that your fallback
handler must adhere to, see the “Fallback Handler Function”
(page 3-27). For a description of how to create your own
fallback handler, see “MyUnicodeToTextFallbackProc”
(page 3-90).

controlFlags Control flags (page 3-17) that stipulate which fallback handler
the Unicode Converter should call—the application-defined
fallback handler or the default handler—if a fallback handler is
required, and the sequence in which the Unicode Converter
should call the fallback handlers if either can be used when the
other fails or is unavailable.

infoPtr The logical address of a context containing data to be passed to
the application-defined fallback handler. The Unicode
Converter passes this pointer to the application-defined
fallback handler as the last parameter when it calls the fallback
handler. Your application can use this context to store data
required by your fallback handler whenever it is called. A
context is similar in use to a System 7 reference constant
(refcon).
Unicode Converter Functions 3-79
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
function result A result code. The function returns a noErr result code if it has
successfully installed the application-defined fallback handler.
If one or more of the input parameter values is invalid, the
function can return a Unicode Converter paramErr result code.

DISCUSSION

You use this function to specify a fallback handler to be used for converting a
Unicode text segment to another encoding when the Unicode Converter cannot
convert the text using the mapping table specified by the conversion
information reference passed to the ConvertFromUnicodeToText function
(page 3-41) or the ConvertUnicodeToPString function (page 3-64). You can define
multiple fallback handlers and associate them with different conversion
information references, depending on your requirements.

If you don’t want the Unicode Converter to use a fallback handler defined by
your application, you can set the controlFlags parameter to direct it to use its
default fallback handler only. You can also tell the Unicode Converter to use
both fallback handlers and the order in which to call them. For example, you
can tell the Unicode Converter to try its fallback handler first, and then use
yours if its handler is unavailable or unable to perform the conversion.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-80 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

SetFallbackUnicodeToTextRunPreemptive 3

Associates an application-defined fallback handler with a specific conversion
information reference for multiple text runs to be used with the
ConvertFromUnicodeToTextRun function (page 3-50). You can call
SetFallbackUnicodeToTextRunPreemptive from within any task other than your
application’s main task.

pascal OSStatus SetFallbackUnicodeToTextRunPreemptive(
UnicodeToTextRunInfo unicodeToTextRunInfo,
UnicodeToTextFallbackPreemptiveProcPtr fallback,
OptionBits controlFlags,
LogicalAddress infoPtr);

unicodeToTextInfo
The conversion information reference with which the fallback
handler is to be associated. You use the
CreateUnicodeToTextRunInfo function (page 3-38) to obtain a
reference of this type. SetFallbackUnicodeToTextRunPreemptive
modifies the conversion information reference contents.

fallback A pointer to the application-defined fallback handler routine.
For a description of the function prototype that your fallback
handler must adhere to, see the “Fallback Handler Function”
(page 3-27). For a description of how to create your own
fallback handler, see “MyUnicodeToTextFallbackProc”
(page 3-90).

controlFlags Control flags (page 3-17) that stipulate which fallback handler
the Unicode Converter should call—the application-defined
fallback handler or the default handler—if a fallback handler is
required, and the sequence in which the Unicode Converter
should call the fallback handlers if either can be used when the
other fails or is unavailable.
Unicode Converter Functions 3-81
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
infoPtr The logical address of a context containing data to be passed to
the application-defined fallback handler. The Unicode
Converter passes this pointer to the application-defined
fallback handler as the last parameter when it calls the fallback
handler. Your application can use this context to store data
required by your fallback handler whenever it is called. A
context is similar in use to a System 7 reference constant
(refcon).

function result A result code. The function returns a noErr result code if it has
successfully installed the application-defined fallback handler.
If one or more of the input parameter values is invalid, the
function can return an Unicode Converter paramErr result code.

DISCUSSION

You use this function to specify a fallback handler to be used for converting a
Unicode text segment to another encoding when the Unicode Converter cannot
convert the text using the mapping table specified by the conversion
information reference passed to the ConvertFromUnicodeToText function
(page 3-41). You can define multiple fallback handlers and associate them with
different conversion information references, depending on your requirements.

If you don’t want the Unicode Converter to use a fallback handler defined by
your application, you can set the controlFlags parameter to direct it to use its
default fallback handler only. You can also tell the Unicode Converter to use
both fallback handlers and the order in which to call them. For example, you
can tell the Unicode Converter to try its fallback handler first, and then use
yours, if its handler is unavailable or unable to perform the conversion.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
3-82 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Converting Between Script Manager Values and Text Encoding Specifications 3

You can convert Script Manager values to a text encoding specification using
the UpgradeScriptInfoToTextEncoding function and a text encoding
specification to Script Manager values using the
RevertTextEncodingToScriptInfo function.

UpgradeScriptInfoToTextEncoding 3

Converts a System 7 script code, a language code, a region code, and a font
name to a text encoding.

pascal OSStatus UpgradeScriptInfoToTextEncoding (
ScriptCode textScriptID,
LangCode textLanguageID,
RegionCode regionID,
ConstStr255Param textFontname,
TextEncoding *encoding);

textScriptID A valid Script Manager script code. The System 7 Script
Manager defines constants for script codes using this format:
smXxx. To designate the system script, specify the meta-value of
smSystemScript. To designate the current script based on the
font specified in the grafPort, specify the meta-value of
smCurrentScript. To designate the script for the current
keyboard layout, specify smInputScript. To indicate that you do
not want to provide a script code for this parameter, specify the
constant kTextScriptDontCare (page 3-19). See the System 7
volume Inside Macintosh: Text for more information on the Script
Manager’s script codes, language codes, and region codes.
Unicode Converter Functions 3-83
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
textLanguageID
A valid Script Manager language code. The System 7 Script
Manager defines constants for language codes using this
format: langXxx. To indicate that you do not want to provide a
language code for this parameter, specify the constant
kTextLanguageDontCare (page 3-19).

regionID A valid Script Manager region code. The System 7 Script
Manager defines constants for region codes using this format:
verXxx. To indicate that you do not want to provide a region
code for this parameter, specify the constant
kTextRegionDontCare (page 3-19).

textFontname The name of a font, such as Symbol or Zapf Dingbats, each of
which has their own text encoding base, or the name of a font
that is currently installed on the system. To indicate that you do
not want to provide a font name, specify a value of NULL.

encoding A pointer to a value of type TextEncoding. On output, this value
holds the text encoding specification that the function created
from the other values you provided. For information on text
encoding specifications and their constants, see the “Text
Encoding Conversions Reference” chapter.

function result A result code. UpgradeScriptInfoToTextEncoding returns a noErr
result code if it has successfully translated the values you
specified to the corresponding text encoding specification. If it
returns other result codes, the function has not upgraded the
System 7 values to a text encoding specification. The function
returns paramErr if two or more of the input parameter values
conflict in some way—for example, the System 7 language code
does not belong to the script whose script code you specified, or
if the input parameter values are invalid. The function returns a
unicodeTextEncodingDataErr result code if the internal data
tables used for translation are invalid.

DISCUSSION

The UpgradeScriptInfoToTextEncoding function allows you to translate the
specification for an encoding from the world of the Script Manager, which uses
script codes, language codes, region codes, and font names, to the Mac OS 8
world of the Unicode and High-Level Encoding Converter and text objects,
which uses text encoding specifications. A one-to-one correspondence exists
3-84 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
between many of the Script Manager’s script codes and a particular Mac OS 8
text encoding base value. However, because text encodings are a super set of
script codes, some combinations of script code, language code, region code,
and font name might result in a different text encoding base value than would
be the case if the translation were based on the script code alone.

When you call the UpgradeScriptInfoToTextEncoding function, you can specify
any combination of its parameters, but you must specify at least one.

If you don’t specify an explicit value for a parameter, you must pass the
don’t-care constant appropriate to that parameter.
UpgradeScriptInfoToTextEncoding will use as much information as you supply
to determine the equivalent text encoding or the closest approximation. If you
provide more than one parameter, all parameters will be checked against one
another to ensure that they are valid in combination.

UpgradeScriptInfoToTextEncoding first attempts to resolve the language and
region codes, if you specify them. If you specified the region but not the
language, it maps the region to a language. If you specified both, it ensures that
they are valid in combination.

After the language is resolved—if you specified the language code, region
code, or both—UpgradeScriptInfoToTextEncoding resolves the language in
relation to the script. First, the function checks for special languages, using the
information presented in Table 3-1.
Unicode Converter Functions 3-85
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Table 3-1 Resolving Language and Script Codes to Text Encoding Bases

If the function finds the language in Table 3-1, it assigns the appropriate text
encoding base name.

If the resolved language is not listed in Table 3-1 and you did not specify a
script,UpgradeScriptInfoToTextEncoding derives the appropriate script from
the language. If you specified a script, it checks the language against the script
to ensure that they are valid in combination.

Note
If you did not specify a language, region, or script, the
script remains unresolved at this point in the process. ◆

If the script is resolved or you specified only a script and font name,
UpgradeScriptInfoToTextEncoding next attempts to resolve the script and font
name. If you specified a font name of either Symbol or Zapf Dingbats—each of
which has its own base encoding—the function assigns the proper text
encoding base name. If the font you specified is not either of these and it is not
currently installed on the system, the function returns an error.

If the script is resolved and you specified a font currently installed, it checks
the font against the script to ensure that they are valid in combination. If so, the
function assigns the proper text encoding base to the script, completing the
translation. If not, it returns an error.

If the script is yet unresolved and you specified the name of an installed font,
the function derives the script from the font.

If language is
specified and
is...

If script is
specified, error
unless it is...

If script is not
specified, set it
to... Set TextEncodingBase to...

langCroatian
or
langSlovenain

smRoman smRoman kTextEncodingMacCroatian

langIcelandic smRoman smRoman kTextEncodingMacIcelandic

langRomanian smRoman smRoman kTextEncodingMacRomanian

langTurkish smRoman smRoman kTextEncodingMacTurkish

langGreek smRoman or
smGreek

smRoman kTextEncodingMacGreek

langUkrainian smCyrillic smCyrillic kTextEncodingMacUkrainian
3-86 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
If you did not specify a font and the script was resolved earlier in the process,
the function assigns the proper text encoding base to the script. Finally, if the
script is still unresolved, the function returns an error.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function can be called only by an application’s main task.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

RevertTextEncodingToScriptInfo 3

Converts the given Mac OS 8 text encoding specification to the corresponding
Script Manager’s script code and, if possible, language code, region code, and
font name.

pascal OSStatus RevertTextEncodingToScriptInfo (
TextEncoding encoding,
ScriptCode *textScriptID,
LangCode *textLanguageID
Str255 textFontname);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

No No No
Unicode Converter Functions 3-87
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
encoding The text encoding specification to be converted. For information
on text encoding specifications and their constants, see the
“Text Encoding Conversions Reference” chapter.

textScriptID A pointer to a value of type ScriptCode. On output, a System 7
Script Manager script code that corresponds to the text
encoding specification you identified in the encoding parameter.
If you do not pass a pointer for this parameter on input, the
function will return a paramErr result code.

textLanguageID
A pointer to a value of type LangCode. On input, to indicate that
you do not want the function to return the language code,
specify NULL as the value of this parameter. On output, the
appropriate language code, if the language can be
unambiguously derived from the text encoding specification,
for example, Japanese, and you did not set the parameter to
NULL.

If you do not specify NULL on input and the language is
ambiguous—that is, the function cannot accurately derive it
from the text encoding specification—the function returns a
value of kTextLanguageDontCare (page 3-19).

textFontname A Pascal string. On input, to indicate that you do not want the
function to return the font name, specify NULL as the value of
this parameter. On output, the name of the appropriate font if
the font can be unambiguously derived from the text encoding
specification, for example, Symbol, and you did not set the
parameter to NULL.

If you do not specify NULL on input and the font is ambiguous—
that is, the function cannot accurately derive it from the text
encoding specification—the function returns a zero-length
string.

function result A result code. The function returns a noErr result code if it has
successfully translated the encoding specification into the script
code, and, optionally, the language code and font name. The
function returns paramErr if the text encoding specification
input parameter value is invalid. The function returns a
unicodeTextEncodingDataErr result code if the internal data
tables used for translation are invalid.
3-88 Unicode Converter Functions

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
DISCUSSION

The Unicode Converter provides the RevertTextEncodingToScriptInfo function
for applications that use the System 7 Script Manager and Font Manager
functions, which require that encoding specifications be expressed in the
format used by these managers. The Unicode Converter provides the
RevertTextEncodingToScriptInfo function to allow you to convert information
in a Mac OS 8 text encoding specification into at least the script code used for
System 7 and the appropriate language code and font name, if they can be
unambiguously derived, as is the case for Japanese. Your application can then
use this information to display text to a user on the screen.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function can be called only by an application’s main task.

SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

No No No
Unicode Converter Functions 3-89
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Application-Defined Function 3

MyUnicodeToTextFallbackProc 3

Converts a Unicode text element for which there is no target encoding
equivalent in the appropriate mapping table to the fallback character sequence
defined by your fallback handler, and returns the converted character sequence
to the Unicode Converter.

pascal OSStatus MyUnicodeToTextFallbackProc(
UniChar *srcUniStr,
ByteCount srcUniStrLen,
ByteCount *srcConvLen,
TextPtr *destStr,
ByteCount destStrLen,
ByteCount *destConvLen,
LogicalAddress *contextPtr
ConstUnicodeMappingPtr unicodeMappingPtr);

srcUniStr A pointer to a value consisting of one or more entities of type
UniChar. (This value could be an array.) On input, this value
specifies the Unicode text element to be treated by the fallback
handler. The Unicode Converter passes this parameter to your
fallback handler when it calls it. This is the text element that the
Unicode Converter was unable to convert.

srcUniStrLen The length in bytes of the text element string passed as the
srcUniStr parameter. For most text strings, the length is 2 bytes,
indicating a single Unicode character. However, the length may
exceed 2 bytes, for example, if the text element contains a base
character followed by combining characters or if the text
element consists of conjoining Korean jamos.
3-90 Application-Defined Function

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
srcConvLen A pointer to a value of type ByteCount. On output, the length in
bytes of the portion of the text element that was actually
processed by your fallback handler. Your fallback handler
returns this value.

destStr A pointer to a value of type ByteCount. The Unicode Converter
passes this pointer to your handler when the Unicode
Converter calls it. On output, the converted string returned by
your handler.

destStrLen The maximum size in bytes of the buffer provided by the
destStr parameter.

destConvLen A pointer to a value of type ByteCount. On output, the length in
bytes of the fallback character sequence generated by your
fallback handler. Your handler should return this length.

contextPtr A pointer to a context. On input, the pointer to the context
containing data for your fallback handler. The Unicode
Converter passes this context to your handler whenever it calls
it. This is the context pointer that you specified as the infoPtr
parameter of the SetFallbackUnicodeToTextPreemptive function
(page 3-78) or the SetFallbackUnicodeToTextRunPreemptive
function (page 3-81). How you use the data passed to you in
this context is particular to your handler. A context is similar in
use to a System 7 reference constant (refcon).

unicodeMappingPtr
A constant pointer to a Unicode mapping data structure
(page 3-24). A Unicode mapping data structure identifies a
Unicode encoding specification and a particular base encoding
specification.

function result A result code. Your function should return a noErr result code if
it has successfully handled the conversion to the fallback.

DISCUSSION

The Unicode Converter calls your fallback handler when it cannot convert a
text string using the mapping table specified by the conversion information
reference passed to either the ConvertFromUnicodeToText function or the
ConvertUnicodeToPString function. The control flags you set for the
controlFlags field of the SetFallbackUnicodeToTextPreemptive function or the
SetFallbackUnicodeToTextRunPreemptive function stipulate which fallback
Application-Defined Function 3-91
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
handler the Unicode Converter should call and which one to try first if both
can be used.

When the Unicode Converter calls your handler, it passes to it the Unicode text
string to be converted and its length, a buffer for the converted string you
return and the buffer length, and a pointer to the context containing the data
your application supplied to be passed on to your fallback handler. For a
description of the function prototype your handler should adhere to, see
“Fallback Handler Function” (page 3-27).

After you convert the Unicode text segment to fallback characters, you return
the fallback character sequence of the converted text in the buffer provided to
you and the length in bytes of this fallback character sequence. You also return
the length in bytes of the portion of the source Unicode text element that your
handler actually processed.

You provide a fallback-handler function for use with the
ConvertFromUnicodeToText function (page 3-41), the ConvertUnicodeToPString
function (page 3-64) function, or the ConvertFromUnicodeToTextRun function
(page 3-50). You associate an application-defined fallback handler with a
particular conversion information reference (page 3-5) you intend to pass to the
conversion function when you call it.

You use different functions to associate a fallback handler with a conversion
information reference depending on whether you call the function from within
your application’s main task or if you call the function from any task other than
your application’s main one.

To associate a fallback-handler function with a conversion information
reference from within a task other than your application’s main one, you use
the SetFallbackUnicodeToTextPreemptive
andSetFallbackUnicodeToTextRunPreemptive functions. For these functions, you
pass a pointer to your fallback-handler function as the fallback parameter.

To associate a fallback-handler function with a conversion information
reference from within your application’s main task, you use the

SetFallbackUnicodeToText (page 3-83) and SetFallbackUnicodeToTextRun
(page 3-76) functions. For these functions you must pass a universal procedure
pointer (UniversalProcPtr). This is derived from a pointer to your function by
using the predefined macro NewUnicodeToTextFallbackProc.

For a complete description of how to use this universal procedure pointers,
refer to the book Inside Macintosh: PowerPC System Software.
3-92 Application-Defined Function

Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
SEE ALSO

For general information about Unicode and the Unicode Converter, see
“Unicode Converter Constants and Data Types” (page 3-3).

See the chapter “Introduction to Text Handling and Internationalization on
Mac OS 8” in Inside Macintosh: Text Handling and Internationalization for an
overview of the Unicode Converter and the conversion process.
Application-Defined Function 3-93
Preliminary.  Apple Computer, Inc. 3/3/97

C H A P T E R 3

Unicode Converter Reference
Result Codes 3

The Unicode Converter functions can return result codes specific to the
Unicode Converter and also general error codes such as noErr (meaning the
function completed successfully), paramErr (meaning one or more of the input
parameters has an invalid value), and memory, operating system, and resource
errors. The result codes specific to the Unicode Converter functions are listed
here.
3-94 Application-Defined Function

Preliminary.  Apple Computer, Inc. 3/3/97

	Text Encoding Reference
	Text Encoding Conversions Reference
	Text Encoding Conversions Constants and Data Types...
	Text Encoding Specification
	Text Encoding Base
	Text Encoding Variant Data Type and Variants
	Text Encoding Format
	Unicode Character and String Pointer Data Types

	Text Encoding Conversions Functions
	Creating a New Text Encoding Specification and Obt...

	High-Level Text Encoding Converter Reference
	High-Level Text Encoding Converter Constants and D...
	Conversion Object Reference
	Text Encoding Conversion Information

	High-Level Text Encoding Converter Functions
	Obtaining Information About Available Text Encodin...
	Identifying Direct Encoding Conversions
	Identifying Possible Destination Encodings
	Identifying Text Encodings from Internet Names and...
	Creating and Deleting Conversion Objects
	Converting Text Between Encodings

	High-Level Text Encoding Converter Result Codes

	Unicode Converter Reference
	Unicode Converter Constants and Data Types
	Conversion Information Reference for Converting to...
	Conversion Information References for Converting F...
	Conversion Information Reference for Converting Fr...
	Text Encoding Run Structure
	Conversion Control Flags
	Control Flags for Truncating a Unicode String
	Control Flags for Specifying the Fallback Handlers...
	Constants for Script Manager Value Conversions To ...
	Filter Indicators for Querying for Matching Unicod...
	Unicode Character and String Pointer Data Types
	Region Code Data Type
	Unicode Mapping Structure
	Unicode Mapping Version
	Latest Unicode Mapping Version
	Fallback Handler Function

	Unicode Converter Functions
	Converting to Unicode
	Converting From Unicode
	Converting From Unicode to Multiple Encodings
	Truncating Strings Before Converting Them
	Converting Unicode From and To Pascal Strings
	Obtaining Unicode Mapping and Text Encoding Base N...
	Changing the Conversion Information Structure’s Ma...
	Setting the Fallback Handler
	Converting Between Script Manager Values and Text ...

	Application-Defined Function
	Result Codes

