Text Encoding Converter ERS Friday February 14, 1997

?ext Encoding Converter ERS

Version 7
Wednesday, February 12, 1997

Tom Naughton

Text Encoding Converter ERS Friday February 14, 1997

Text and International Engineering
Extension: 4-2076
eMail: naughton@apple.com

Text Encoding Converter ERS Friday February 14, 1997

1.0 Background

The Unicode converter provides table-based conversion to or from Unicode. It does not
directly provide general conversion between any two encodings (although it can be used as
part of this process), nor does it handle algorithmic code conversions (such as JIS to
Shift-JIS) or multi-encoding streams (using ISO-2022 or EUC, for example).

The High Level Text Encoding Converter (a.k.a. HLTEC, HLEC, and TEC) is a layer
above the Unicode converter to provide these services in a general way. If not:

* many applications may have to provide their own routines for this (thus resulting in much
duplicate code and bigger applications)

* specific APIs may be provided as necessary in certain localized versions of system
software, resulting in a proliferation of localization-specific—something we definitely want
to avoid, since it makes it difficult for developers to write a single application that works
everywhere.

1.1 Dependencies of this Document

For a description of the TextEncoding data type see the ERS for the Unicode converter.
Important concepts that need to be understood to fully understand this document include
Text encoding bases, variants, and formats.

2.0 Requirements

This layer provides conversion between arbitrary encodings. This involves a combination
of the following techniques:

* Table-based conversion to or from Unicode, using the Unicode converter. A single
X-to-Y conversion may involve converting X to Unicode, and then converting Unicode to
Y. Intermediate storage for the Unicode form is handled by the Text Encoding Converter.

* Algorithmic conversion, using plug-in code modules. These plug-ins are implemented as
code fragments.

* Maintaining and updating the current state (the current encoding and other relevant

Text Encoding Converter ERS Friday February 14, 1997

information) for multi-encoding streams. It also handles detecting escape sequences,
special control characters, and any other tags which change the current encoding state. This
information is stored in the converter object and maintained by the plug-ins performing the
conversion.

2.1 Performance Goals

One immediate requirement for the converter is to perform code conversions for mail and
other text sent and received over the internet. Conversions should be fast enough that a user
doesn’t notice the time delay for an average sized web page or email to be converted.

2.1.1 Code Size

The Text Encoding Converter represents entirely new capabilities for the Macintosh, so
there are no memory or disk footprint requirements based on existing use by applications.
Until such requirements emerge, we will use worst-case requirements.

The Text Encoding Converter, when compiled for the PowerPC and not counting any
plugins, must occupy less than 100 kilobytes in memory and on disk. The fat version for
PowerPC and 68K must be less than 150 kilobytes.

Here are the current approximate code sizes in bytes for the various components.

PowerPC 68K
Text Encoding Converter 24,288 15,078
Japanese Encodings 11,312 7,074
Chinese Encodings 8,140 3,998
Korean Encodings 6,580 2,450
Unicode plugin 11,700 7,278

The Unicode plugin will also pull in the entire low level (Unicode) text encoding converter
code fragments. See that documentation for approximate memory requirements.
2.1.2 Speed Measurements

Like the footprint requirements, the performance requirements are worst-case and are not
intended to serve as realistic performance estimates. In most cases we expect to do much
better than these requirements.

On average, an application must be able to perform a round-trip conversion on a 255
character MacRoman string in less than half a millisecond on a 6100/60 with 8 megabytes

Text Encoding Converter ERS Friday February 14, 1997

of RAM, if the converter and plugins are already in memory.

Here are timings in microseconds of the same five conversions being done three times in a
row on a 9500/132. The later times are faster because certain resources have been cached.
Conversions involving the Unicode converter tend to take a bit longer than those performed
entirely through the high level converter.

Conversion Create Convert In Out
First Try
LatinltoMacRoman 2703 1743 32 32
2022toSJIS 845 865 454 334
EUCtoSJIS 293 109 230 230
UTF7toMacJapanese 1192 1478 126 92
LatinltoUTF7 1989 804 67 90
Second Try
LatinltoMacRoman 2070 1008 32 32
2022toSJIS 845 845 454 334
EUCtoSJIS 293 109 230 230
UTF7toMacJapanese 1212 1437 126 92
LatinltoUTF7 2213 886 67 90
Third Try
LatinltoMacRoman 2070 1029 32 32
2022toSJIS 845 845 454 334
EUCtoSJIS 293 89 230 230
UTF7toMacJapanese 1396 1437 126 92
Latin1toUTF7 2009 1008 67 90

Create - Time in microseconds to create the converter object. This creation time
includes the conversion path search.
Convert - Time in microseconds to perform encoding conversion.

In - Number of text bytes in input buffer

Text Encoding Converter ERS Friday February 14, 1997

Out - Number of text bytes placed in output buffer

3.0 Architecture

Conversion routines are provided as plug-in components implemented as code fragments.
The main export symbol of each fragment is a routine which returns a pointer to a table
containing a plug-in signature, table version information, and hooks to each of the plug-ins
methods. Each plug-in can be polled for the encodings it supports and is responsible for
handling all conversions between its supported encodings. The High Level Encoding
Converter will decide how best to meet a callers conversion requirements using the
conversion resources available to it. This may involve stringing together multiple encoding
converters. The caller is shielded from this complexity and treats an encoding converter
object as a single entity regardless of its actual structure.

When using the converter an application does not need to be aware of the plug-ins
available. Each of the APIs that returns information about the available text encoding
conversion services polls all plug-ins and makes them appear as one large plug-in.

3.1 SOM vs. CFM

The plug-in model is based on CFM rather than SOM. This is because SOM was not felt to
offer any substantial benefits over CFM for this application, while it would impose a
definite cost in runtime overhead, and an unknown but potentially significant cost in
implementation complexity. The TextEncoding plug-ins are modeled after those of the Mac
OS 8 I/O families.

3.2 Error Codes

All APIs that call through to plug-ins return an OSStatus. Though some may never return
an error, this allows plug-ins the opportunity to return errors as necessary. For example a
plug-in may need to return an error status code when performing a simple action requires
disk or network access and an error occurs.

3.2.1 Errors

The High Level Text Encoding Converter will use the following error codes:

ERROR CODE INFORMATION IN THE REST OF THE ERS NEED TO BE UPDATED

kTextUnsupportedEncodingErr None of the currently insalled plugins
recognizes an encoding

kTECCorruptConverterErr Invalid converter object reference was passed
to a TEC API

Text Encoding Converter ERS
TECMalformedInputErr
TECNoConversionPathErr

kTECBufferBelowMinimumSizeErr

kTECPartialCharErr

kTextUndefinedElementErr

kTECNoConversionPathErr

kTECBufferBelowMinimumSizeErr
kTECNeedFlushStatus

KTECOutputBufferFullStatus

Friday February 14, 1997

Error in input text (bad escape sequence,
illegal multibyte character)

Could not find a conversion path between the
source and destination encodings

Conversion did not take place because the
output buffer is too small to contain the next
character

Conversion cannot continue because the input
buffer has been truncated in the middle of a
multibyte character

Conversion was stopped because a character
that could not be converted to the output
encoding was found in the input

A converter could not be created because there
was no direct conversion routine available and
no path of multiple conversions routines.

The output buffer is too small for the next text
element

Conversion will not be complete until the
converter is flushed using TECFlushText

There is no more room in the output buffer for
the next text element.

The following errors can occur during single to multiple/multiple to single encoding

conversions.

TECBadTextRunErr

TECTextRunBuffFullErr

Conversion was stopped because text in the
input buffer lies outside of all encoding runs

Conversion was stopped because there was
not enough room in the encoding runs output
buffer to continue

ERROR CODE INFORMATION IN THE REST OF THE ERS NEEDS TO BE

UPDATED

4.0 APIs

4.1 Available encoding Information

Text Encoding Converter ERS Friday February 14, 1997

TECCountAvailableTextEncodings returns the largest number of encodings that will be
returned by the routine TECGetAvailableTextEncodings. This will allow the caller to
supply a buffer of adequate size to TECGetAvailableTextEncodings.

0OSStatus TECCountAvailableTextEncodings(ItemCount *numberEncodings);

errors:
plug-in defined errors

TECGetAvailableTextEncodings will fill in an array of type TextEncoding passed in by the
user with information about the types of encodings the current configuration of the encoder
can handle. The number of encodings may be slightly smaller than the number returned by
TECCountAvailableTextEncodings, since it removes duplicate encodings supported by
different plug-ins. This actual number can’t be known until the list is constructed.

OSStatus TECGetAvailableTextEncodings (TextEncoding
availableEncodings[], ItemCount maxAvailableEncodings, ItemCount
*actualAvailableEncodings);

errors:
plug-in defined errors

TECGetSubTextEncodings and TECCountSubTextEncodings are used to get a list of
encodings that are contained in an encoding scheme. For example EUC_JP contains ISO
8859-1, JIS 208, JIS 212, and half-width katakana. Not every encoding that can be broken
down into multiple encodings will necessarily support this routine. It’s up to the plug-in
developer to decide with encodings might be useful to break up.

0SStatus TECCountSubTextEncodings (TextEncoding inputEncoding,
ItemCount *numberOfEncodings);

errors:
UnknownEncodingErr

0OSStatus TECGetSubTextEncodings (TextEncoding inputEncoding,
TextEncoding subEncodings[], ItemCount maxSubEncodings, ItemCount
*actualSubEncodings);

errors:
UnknownEncodingErr

TECGetTextEncodingl.ocalizedName returns a string representing the name of the
encoding in a caller-specified language and encoding, if the specified language is not
available, the converter will try to return something universal. These strings could be
displayed as part of the calling application’s user interface.

The name of an encoding could be returned in a number of different encodings. For

Text Encoding Converter ERS Friday February 14, 1997

example in Japanese the name could be either in MacJapanese or Unicode. For this reason
the caller supplies a preferred encoding. This could allow a plugin to store names in
multiple encodings and choose the encoding that a caller requests.

extern pascal 0OSStatus TECGetTextEncodingLocalizedName (TextEncoding
textEncoding, LocaleIdentifier locale, TextEncoding
preferedEncoding, ByteCount bufLen, TextEncoding *nameEncoding,
ByteCount *nameLength, Byte encodingNamel])

errors:
UnknownEncodingErr

TECGetEncodingInternetName is used to return a string containing the encoding names
approved for use in HTML encoding tags. TECGetEncodingFromInternetName performs
the reverse function. All names are returned as a Str255 in 7 bit US-ASCII since that is the
encoding they are defined and most commonly found in.

OSStatus TECGetTextEncodingInternetName (TextEncoding textEncoding,
Str255 encodingName)

0OSStatus TECGetTextEncodingFromInternetName (TextEncoding
*textEncoding, ConstStr255Param encodingName)

errors:
UnknownEncodingErr

4.1.1 Text Encoding Conversion Info

A TECConversionlnfois a structure used to describe conversion services available in a
plug-in converter. Each plug-in is required to implement a routine that returns the number
of pairs it supports, and a second routine to return the actual pairs in a buffer provided by
the caller.

Each pair contains a source and destination encoding which describes a kind of conversion
the plug-in can perform. There are also two sets of 16 bits reserved for future use. These
bits could provide more information about the given conversions routine such as the
relative speed of the routine, whether the conversion is a lossy one, or the conversion
options it supports.

struct TECConversionInfo{

TextEncoding sourceEncoding;
TextEncoding destinationEncoding;
UIntlé6 reservedl;

UIntlé6 reserved?2;

}s

Text Encoding Converter ERS Friday February 14, 1997

TECCountDirectTextEncodingConversions returns the number of encoding pair structures
that will be returned by the routine TECGetAvailableTextEncodingConversions. This will
allow the caller to supply a buffer of the correct size to
TECGetDirectTextEncodingConversions.

OSStatus TECCountDirectTextEncodingConversions (ItemCount
*numberOfEncodings);

errors:
plug-in defined errors

TECGetDirectTextEncodingConversions will fill in an array of type
TextEncodingConversionPair passed in by the caller with information about the types of
conversions the current configuration of the encoder can handle.

OSStatus TECGetDirectTextEncodingConversions
(TECConversionInfoavailableConversions[], ItemCount
maxAvailableConversions, ItemCount *actualAvailableConversions);

errors:
plug-in defined errors

Given a text encoding, TECCountDestinationTextEncodings returns the number of
encodings it can be converted into using a single-stage (direct) converter.

OSStatus TECCountDestinationTextEncodings(TextEncoding inputEncoding,
ItemCount *numberOfEncodings);

errors:
plug-in defined errors

Given a TextEncoding, TECGetDestinationTextEncodings will fill in an array of type
TextEncoding passed in by the caller with information about the Encodings the current
configuration of the encoder can convert the original TextEncoding into using a single-stage
converter.

OSStatus TECGetDestinationTextEncodings (TextEncoding inputEncoding,

TextEncoding destinationEncodings[], ItemCount
maxDestinationEncodings, ItemCount *actualDestinationEncodings);

errors:
plug-in defined errors

4.2 Investigating Encodings

Text Encoding Converter ERS Friday February 14, 1997

Given a stream of bytes in an unknown encoding and an array of possible encodings,
TECSniffTextEncoding will return counts of “errors” and “features” for each of the
encodings. Each error indicates a code point or sequence that is illegal in a specified
encoding while a feature indicates the presence of a sequence that is characteristic of that
encoding.

For example the string “4¢é6” could legally be interpreted as MacRoman or MacJapanese.
Both sniffers would return zero errors, but the MacJapanese sniffer would also return 2
features of MacJapanese (representing two legal two byte characters.)

Before returning, the passed-in arrays are sorted in order of probability of being the
encoding of the sample buffer. The results are sorted first by fewest number of errors, then
by greatest number of features, and then by the original order in the list. Upon return from
the routine, the caller can assume the correct encoding is in testEncodings[0], or possibly
testEncodings[1].

pascal 0OSStatus TECCountSniffers(ItemCount *numberOfSniffers);

pascal OSStatus TECGetSniffers(TextEncoding sniffers[], ItemCount
maxSniffers, ItemCount *actualSniffers);

pascal 0OSStatus TECCreateSniffer (TECSniffertRef *encodingSniffer,
TextEncoding testEncodings[], ItemCount numTextEncodings,);

pascal 0OSStatus TECSniffTextEncoding(TECObjectRef *encodingSniffer,
TextPtr inputBuffer, ByteCount inputBufferLength, ItemCount
numErrsArray([], ItemCount maxErrs, ItemCount numFeaturesArrayl[],
ItemCount maxFeatures);

pascal OSStatus TECDisposeSniffer (TECSniffertRef encodingSniffer);

4.3 Creating a Converter Object

When the caller supplies valid source and destination encodings, TECCreateConverter will
create a conversion object with the required default characteristics, the defaults should
reflect what most users would need in each specific conversion. These defaults can be
changed with the option getter and setter functions described in section 4.6.

OSStatus TECCreateConverter (TECObjectRef *newEncodingConverter,
TextEncoding inputEncoding, TextEncoding outputEncoding);

errors:
TECNoConversionPathErr
TECUnknownEncodingErr
Memory Manager errors
plug-in defined errors

While TECCreateConverter will find a path from the source to the destination encoding of
one exists in the current plug-in configuration, TECCreateConverterFromPath can be used

Text Encoding Converter ERS Friday February 14, 1997

to specify a specific path

OSStatus TECCreateConverterFromPath (TECObjectRef
*newEncodingConverter, TextEncoding inPath[], ItemCount
inEncodings);

errors:
TECUnknownEncodingErr
Memory Manager errors
plug-in defined errors

TECDisposeConverter disposes of an encoding converter object. The object should no
longer be used after this call is made.

OSStatus TECDisposeConverter (TECObjectRef newEncodingConverter);

errors:
TECCorruptConverterErr
plug-in defined errors

4.4 Converting Encodings

During encoding conversion the Text Encoding Converter may need to create temporary
buffers to contain intermediate results, in the current implementation these buffers are one
third the size of the output buffer. These buffers are only allocated while a conversion is
being performed, and will always be deallocated upon return from TECConvertText.

TECClearContext clears any internal status information saved in a converter object. Calling
this function will return a converter object back to the same state it was in when it was
created. Multiple conversions can be performed with the same converter object by calling
this function between conversions.

0OSStatus TECClearContext (TECObjectRef encodingConverter);

errors:
TECCorruptConverterErr
plugin defined errors

TECConvertText converts the specified stream of bytes to the desired encoding according
to the parameters in the specified encoding converter object. On exit the actuallnputLength
will indicate how much of the input buffer was consumed and actualOutputLength will
indicate how much text was placed in the output buffer. This can be useful in cases where
the output buffer is not large enough to contain the entire converted text. In such cases
TECConvertText will return TECNotDoneStatus and can be called repeatedly until the
entire text has been converted.

Text Encoding Converter ERS Friday February 14, 1997

OSStatus TECConvertText (TECObjectRef encodingConverter, TextPtr
inputBuffer, ByteCount inputBufferLength, ByteCount
*actualInputLength, TextPtr outputBuffer, ByteCount
outputBufferLength, ByteCount *actualOutputLength)

errors:
TECCorruptConverterErr
TECBuffTooSmallErr
TECPartialCharErr
TECBadCharErr
TECMalformedInputErr
TECNotDoneStatus
plugin defined errors
Memory Manager errors

TECFlushText is called at the end of the conversion process to flush out any data that may
be stored in a converter’s temporary buffers or perform other end of encoding conversion
functions. Encodings such as [ISO-2022 that need to shift back to a certain default state at

the end of a conversion can do so when this API is called.

OSStatus TECFlushText (TECObjectRef encodingConverter, TextPtr
outputBuffer, ByteCount outputBufferLength, ByteCount
*actualOutputLength);

errors:
TECBuffTooSmallErr
plug-in defined errors

4.5 Multiple Encoding Run Conversions

NEEDS UPDATE

The following APIs allow conversion to and from multiple encoding runs. This will make
possible conversion of Unicode to multiple Mac encodings and vice versa for display using
the Script Manager under System 7. It could also be used to break up a multiple encoding
packaging format such as ISO 2022 or EUC into runs of constituent encodings.

TECCreateOneToManyConverter takes an input encoding and a list of destination
encodings and returns a converter object that will break the input encoding into runs of any
of the destination encodings.

extern pascal 0OSStatus TECCreateOneToManyConverter (TECObjectRef
*newEncodingConverter, TextEncoding inputEncoding, ItemCount
numOutputEncodings, const TextEncoding outputEncodings[]);

Text Encoding Converter ERS Friday February 14, 1997

errors:
TECNoConversionPathErr
TECUnknownEncodingErr
Memory Manager errors
plug-in defined errors

TECCreateManyToOneConverter takes a destination encoding and a list of input encodings
and returns a converter object that will convert all runs of the input encodings into a single
run of the destination encoding.

extern pascal 0OSStatus TECCreateManyToOneConverter (TECObjectRef
*newEncodingConverter, ItemCount numInputEncodings, const
TextEncoding inputEncodings[], TextEncoding outputEncoding);

errors:
TECNoConversionPathErr
TECUnknownEncodingErr
Memory Manager errors
plug-in defined errors

The following two APIs convert text from or to multiple text runs. The runs are delimited
using an array of structures of type TextEncodingRun. Each run contains an offset from the
beginning of the text buffer and the text encoding of the run.

struct TextEncodingRun {
ByteOffset offset;
TextEncoding textEncoding;

TECConvertTextToMultipleEncodings takes an input text buffer, an output text buffer, and
an output buffer for the text encoding runs. On return it returns information about how
much of the input buffer was consumed and how much of the output buffers were used.

0OSStatus TECConvertTextToMultipleEncodings (TECObjectRef
encodingConverter, ConstTextPtr inputBuffer, ByteCount
inputBufferLength, ByteCount *actualInputLength, TextPtr
outputBuffer, ByteCount outputBufferLength, ByteCount
*actualOutputLength, TextEncodingRunPtr outEncodingsBuffer,
ByteCount outEncodingsBufferLength, ByteCount
*actualOutEncodingsLength);

errors:
TECCorruptConverterErr
TECBuffTooSmallErr
TECTextRunBuffFullErr

Text Encoding Converter ERS Friday February 14, 1997

TECPartialCharErr
TECBadCharErr
TECMalformedInputErr
TECNotDoneStatus
plugin defined errors
Memory Manager errors

TECConvertTextFromMultipleEncodings takes a text input buffer an input text encoding
run buffer, and an output text buffer. The multiple runs of input text are converted into the
single destination encoding and placed in the output text buffer.

0OSStatus TECConvertTextFromMultipleEncodings (TECObjectRef
encodingConverter, ConstTextPtr inputBuffer, ByteCount
inputBufferLength, ByteCount *actualInputLength,
ConstTextEncodingRun inEncodingsBuffer[], ByteCount
inEncodingsBufferLength, ByteCount *actualInEncodingsLength,
TextPtr outputBuffer, ByteCount outputBufferLength, ByteCount
*actualOutputLength);

errors:
TECBadTextRunErr
TECCorruptConverterErr
TECBuffTooSmallErr
TECPartialCharErr
TECBadCharErr
TECMalformedInputErr
TECNotDoneStatus
plugin defined errors
Memory Manager errors

4.6 Specifying Conversion Options

Conversion options might include such information as whether to convert half width
Japanese Katakana characters to full width or whether an error should be generated when a
conversion fallback occurs.

Each plug-in can specify options unique to itself. Options are specified by providing a
plug-in signature, an option selector, and a 32 bit RefCon. The selector and RefCon are
defined completely by the plugin. The RefCon could either contain actual data, such as a
Boolean to turn an option on or off, or it could be a pointer to a plug-in specific structure.

When TECSetOption is called on a converter object, the encoding converter loops through
each stage of the converter asking the corresponding plugin to set options for that stage.

Text Encoding Converter ERS Friday February 14, 1997

Any plugin that can’t handle the specified option will return paramErr to the TEC. If no
plugin handles the specified option, paramErr will be returned to the caller.

OSStatus TECSetOption(TECObjectRef encodingConverter, TECPluginSig
pluginSig, TECOptionSelector selector, TECOptionRefCon options);

errors:
paramErr
noErr

TECGetOption returns the current settings of a particular option.

OSStatus TECGetOption(TECObjectRef encodingConverter, TECPluginSig
pluginSig, TECOptionSelector selector, TECOptionRefCon *options);

errors:
paramErr
noErr

See Section 7.0 “Deliverables” for descriptions and code examples of the supported
plug-in-specific conversion options.

5.0 Using the Converter

5.1 Converting Encodings

Below is a code sample showing how to use the TextEncodingConverter to convert text
encoded in ISO 2022JP into MacJapanese.

Calling TECCreateConverter will return in JIStoSJISConverter a newly created converter
object set up to convert 1SO2022 to MacJapanese. In order to convert from encoding X to
encoding Z, the Text Encoding Converter may need to convert to intermediate encodings
(Xto Y to..toZ). In the current implementation there is no algorithm that converts
directly from ISO2022 to MacJapanese, but there are algorithms that convert ISO2022 to
EUC and EUC to MacJapanese. The converter object JIStoSJISConverter will
automatically be wired to use these two routines to perform the conversion. If at a later
date, an ISO2022 to MacJapanese algorithm is added, this example code will take
advantage of it without modification.

TECConvertText takes a converter object, and input /output buffer information. On return,
actuallnputLength will be modified to indicate how much of the input text has been
converted, the conversion could have stopped either for lack of space in the output buffer
or because an error occurred. The number of bytes placed in the outputBuffer are returned
in actualOutputLength.

Because the converter object retains context information, TECConvertText can be called

Text Encoding Converter ERS Friday February 14, 1997

repeatedly on successive portions of the text buffer in the case of constrained memory.
TECDisposeConverter destroys the converter object and releases any memory it had
reserved.

OSStatus TestISO2022toMacJapanese(void)

{

TECObjectRef JIStoSJISConverter;

ByteCount actualOutputLength;

ByteCount outBuffLen = 5000;

TextPtr outputBuffer =(TextPtr)NewPtr(outBufflen);

TextPtr inputBuffer;

ByteCount inputLength;

OSStatus status;

char *testJIS = "$BAa9b(J [$BS0SSdS?$+(J] /Hayataka”;

inputBuffer = (TextPtr)testJIS;

inputLength = strlen(testJIS);

// Make a converter object

status = TECCreateConverter(&JIStoSJISConverter,
kTextEncodingISO 2022 JP, kTextEncodingMacJapanese);

if (!status) {
// Convert text
status = TECConvertText(JIStoSJISConverter,

inputBuffer, inputLength, &actualInputLength,
outputBuffer, outBufflLen, &actualOutputLength);

// Dispose converter
status = TECDisposeConverter(JIStoSJISConverter);

}

DisposePtr((Ptr)outputBuffer);

return status;

}

6.0 Writing Text Encoding Plug-Ins

Text Encoding Converter ERS Friday February 14, 1997

The High Level Text Encoding Converter was designed to make writing plug-ins to add
new functionality as quick and painless as possible. Their functions include implementing
a mechanism of informing the encoding converter about their conversion and encoding
analysis capabilities, setting up converters, tearing them down, performing conversions,
handling caller options, and examining text encodings.

The plug-ins are implemented as code fragments. The main export symbol of which is a
routine which returns the address of a record of type TECPluginDispatchTable containing a
dispatch table version number, a signature for the plug-in, and hooks for the methods each
plug-in needs to support.

6.1 Plug-in dispatch Table

TECPluginDispatchTable KoreanPluginDispatchTable = {
kTECPluginDispatchTableCurrentVersion,
kTECPluginDispatchTableCurrentVersion,
kTECKoreanPluginSignature,

&ConverterPluginNewEncodingConverter,
&ConverterPluginSetOption,
&ConverterPluginGetOption,
&ConverterPluginClearContextInfo,
&ConverterPluginConvertTextEncoding,
&ConverterPluginPluginFlushConversion;
&ConverterPluginDisposeEncodingConverter,

&ConverterPluginNewEncodingSniffer,
&ConverterPluginClearSnifferContextInfo,
&ConverterPluginSniffTextEncoding,
&ConverterPluginDisposeEncodingSniffer,
/* The following functionality is handled by providing resources.
When these resources are present in a plugin, the TEC

will look through them instead of calling the method.

Unless you need to dynamically determine the information
provided by the following hooks, using resources is the

way to go

L T R

nil, // &ConverterPluginGetAvailableTextEncodings,

nil, // &ConverterPluginGetAvailableTextEncodingPairs,

nil, // &ConverterPluginGetDestinationTextEncodings,

nil, // &ConverterPluginGPluginGetSubTextEncodings,

nil, // &ConverterPluginPluginGetSniffers;

nil, // &ConverterPluginPluginGetTextEncodingMIMEName,

nil, // &ConverterPluginPluginGetTextEncodingFromMIMEName,
nil, // &ConverterPluginPluginGetTextEncodingInterfaceName,
nil, // &ConverterPluginPluginGetWebTextEncodings;

Text Encoding Converter ERS Friday February 14, 1997

nil, // &ConverterPluginPluginGetMailTextEncodings;

}i
6.2 Required plug-in methods

6.2.1 Creation, Destruction, and Conversion

A plug-in’s TECPlugInNewEncodingConverter routine is called to allow the plug-in to set
up its TECPlugInContextRec structure. The TECPlugInContextRec structure needs to
contain all the information the plug-in requires to perform conversions between the
encodings specified in inputEncoding and outputEncoding.

OSStatus TECPlugInNewEncodingConverter (
TECObjectRef *newEncodingConverter,
TECPlugInContextRec *plugContext,
TextEncoding inputEncoding,
TextEncoding outputEncoding)

6.3 Plug-in data structures

The Text Encoding Converter communicates with it’s plugins through the
PluginContextRec. This record contains information about the state of a conversion stage.

The public section

Most of the public section of the PluginContextRec record will be maintained by the Text
Encoding Converter and modified by the plug-in. The bufferContext will be set up to point
to the input and output buffers before TECPlugInConvertTextEncoding is called. On exit
from that routine, the plug-in will update this structure to indicate how much of the input
buffer was consumed, and how much text was placed in the output buffer.

The private section is intended for the plug-in’s private use and will not be modified by the
Text Encoding Converter. The plug-in uses this area to store whatever state information it
needs to keep track of the type of conversion it is performing and to save any context
sensitive state information required during a multi-pass encoding conversion. If a plug-in
requires more space than is provided in this record to keep its local data, it can maintain a
pointer to its data in the contextRefCon field.

All current Apple plugins use these fields in the following way: The conversionProc field
points to a routine within the plug-in that performs a specific conversion, from EUC to ISO
2022 for example. The clearContextProc can point either to a generic routine that clears all
state information in the PluginPrivateRec, or could point to routines custom tailored to clear
the conversion context for each specific conversion routine. The contextRefCon can be

Text Encoding Converter ERS Friday February 14, 1997

used to store a handle to additional information handled by the plugin. The pluginData
structure is available for storing converter state information.

struct TECConverterContextRec {

/*
public - manipulated externally*/
Ptr pluginRec;
TextEncoding sourceEncoding;
TextEncoding destEncoding;
UInt32 pluginOptions;
UInt32 converterOptions;
TECBufferContextRec bufferContext;
/*
private - manipulated only within Plugin*/
UInt32 contextRefCon;
ProcPtr conversionProc;
ProcPtr clearContextInfoProc;
UInt32 optionsl;
UInt32 options2;
UInt32 options3;
UInt32 options4;
/*

state information */
TECPluginStateRec pluginState;

}i

typedef struct TECConverterContextRec TECConverterContextRec;

TECPlugInDisposeEncodingConverter will be called for each plug-in referenced in a
converter object when it is disposed. The plug-in is responsible for disposing of any
memory or other resources such as conversion tables it may have created or loaded from
disk in TECPlugInNewEncodingConverter.

0SStatus TECPlugInDisposeEncodingConverter (
TECObjectRef newEncodingConverter,
TECPlugInContextRec *plugContext);

TECPlugInConvertTextEncoding will be called to perform the actual conversion. The
BufferContextRec will point to the start and end of the input and output buffers. The
plug-in will convert the text in the input buffer to the desired encoding and place it in the
output buffer, deciding how much of the input text it will consume to fit in the output
buffer. Upon exit, the plug-in needs to update the inputBuffer and outputBuffer pointers to
reflect how much of the text was converted and how large the output was. The plug-in

Text Encoding Converter ERS Friday February 14, 1997

should save all necessary state information so that it can continue the conversion where it
left off in the event that the entire converted input text could not fit in the output buffer.

0SStatus TECPlugInConvertTextEncoding(
TECObjectRef encodingConverter,
TECPlugInContextRec *plugContex);

6.2.2 Providing Information about Encodings and Plug-in Services

The following routines provide the mechanism that the Text Encoding Converter uses to
find out what services are available to it in each of its plug-ins. These services include
which encodings the plug-in knows about and which conversions it can perform on those
encodings.

Each of these mechanisms consist of a count routine which returns the number of elements
that will be returned, and a routine that returns the actual elements in a preallocated array.
The array should be large enough to accommodate the number of elements returned by the
count function.

TECPlugInCountAvailableTextEncodings and TECPlugInGetAvailableTextEncodings are
used to fill in an array of type TextEncoding with the encodings supported by the plug-in.

OSStatus TECPlugInCountAvailableTextEncodings (
ItemCount *numberOfMappings)

OSStatus TECPlugInGetAvailableTextEncodings (
TextEncoding *availableEncodings,
ItemCount maxAvailableEncodings,
ItemCount *actualAvailableEncodings)

TECPlugInCountAvailableTextEncodingPairs and
TECPlugInGetAvailableTextEncodingPairs are used to fill in an array of type
TextEncodingConversionPair with the types of conversions a plug-in supports. The data
type TextEncodingConversionPair is explained in section 3.1.1 above.

OSStatus TECPlugInCountAvailableTextEncodingPairs(
ItemCount *numberOfMappings)

OSStatus TECPlugInGetAvailableTextEncodingPairs (
TextEncodingConversionPair *availableEncodings,
ItemCount maxAvailableEncodings,

ItemCount *actualAvailableEncodings)

TECPlugInCountDestinationTextEncodings and TECPlugInGetDestinationTextEncodings
are used to fill in an array of type TextEncoding with all of the text encodings that the

Text Encoding Converter ERS Friday February 14, 1997

parameter inputEncoding can be converted to in one step. This routine is used by the Text
Encoding Converter to find and evaluate paths from one encoding to another.

OSStatus TECPlugInCountDestinationTextEncodings (
TextEncoding inputEncoding, ItemCount *numberOfMappings)

OSStatus TECPlugInGetDestinationTextEncodings(
TextEncoding inputEncoding,
TextEncoding *destinationEncodings, ItemCount
maxDestinationEncodings,
ItemCount *actualDestinationEncodings)

Since encodings supported on a user’s system may need to be displayed in menus or option
dialogs, and these encoding names may not be known to an application at compile time,
each plug-in provides a mechanism which returns the names of the encodings it knows
about. This routine takes a text encoding a desired language, a desired encoding for the
text name data, and returns a string with the name of the encoding in the best language and
encoding available.

0OSStatus TECPluginGetTextEncodingLocalizedName (TextEncoding
inputEncoding, LocaleIdentifier locale, TextEncoding
preferedEncoding, ByteCount bufLen, TextEncoding *nameEncoding,
ByteCount *nameLength, Byte encodingName]])

TECPluginGetTextEncodingInternetName is used to find the name of a text encoding as it
would appear in a MIME header and TECPluginGetTextEncodingFromInternetName
performs the inverse.

OSStatus TECPluginGetTextEncodingInternetName (TextEncoding
textEncoding, Str255 encodingName)

OSStatus TECPluginGetTextEncodingFromInternetName (TextEncoding
*textEncoding, ConstStr255Param encodingName)

TECPluginCountSubTextEncodings and TECPluginGetSubTextEncodings are used to find
out which encodings are packaged within a text encoding. For example EUC_JP and
ISO2022_JP both contain JIS 208, JIS 212, JIS Roman, and Half Width Katakana.

0SStatus TECPluginCountSubTextEncodings (TextEncoding inputEncoding,
ItemCount *numberOfEncodings)

0OSStatus TECPluginGetSubTextEncodings (TextEncoding inputEncoding,
TextEncoding subEncodings[], ItemCount maxSubEncodings, ItemCount
*actualSubEncodings)

Text Encoding Converter ERS

6.2.2 Plug-in Resources

To facilitate plugin development, avoid duplicate code, and eventually avoid unnecessarily
loading a plug-in, certain data access plug-in methods can be implemented as resources. If

Friday February 14, 1997

these resources are present, the corresponding routines will never be called. If this
information is not available until run time, such as is the case with the Unicode plugin
which needs to find out which conversion tables are available, then the plugin will be

loaded and the corresponding function will be called instead.

#define

Value

kTECAvailableEncodingsResType

'cved!

Replaces Routines

PluginCountAvailableTextEncodings, PluginCountAvailableTextEncodings

#define

Value

kTECSubEncodingsResType

'cvsb'

Replaces Routines

PluginCountSubTextEncodings, PluginGetSubTextEncodings

#define

Value

kTECConversionPairsResType

'‘cvpr'

Replaces Routines

PluginCountAvailableTextEncodingPairs, PluginGetAvailableTextEncodingPairs

#define

Value

kTECInternetNamesResType

'cvnm'

Replaces Routines

PluginGetTextEncodingInternetName, PluginGetTextEncodingFromInternetName

#define

Value

kTECLocalizedNamesResType

'cvni'

Replaces Routine

Text Encoding Converter ERS Friday February 14, 19

PluginGetTextEncodinglocalizedName

MORE RESOURCES

7.0 Deliverables

The Text Encoding Converter will consist of a shared library the incorporates the code
fragments for the TEC, Unicode Converter, Text Common, and the Unicode plug-in. The
rest of the plug-in code fragments will be installed along with the Unicode converter’s
tables in the Text Encodings folder in the system folder.

7.1 Unicode Plug-In

Though the Unicode converter code fragment is always present, the Unicode plug-in
provides the interface to make the Unicode converter look like any other plug-in to the High
Level Text Encoding Converter.

7.1.1 Supported Unicode Encodings

When its code fragment is loaded and prepared for execution the Unicode plug-in polls the
Unicode converter to find out which conversion tables are available. Once initialized, the
Unicode plug-in provides conversion support for all the encoding bases, variants, and
formats provided by the Unicode converter plus support for UTF7 and UTFS.

7.1.1 Supported Unicode Conversions Options

The current version allows the caller to take full advantage of the conversion option flags
available in the low level Unicode converter APIs.

From Unicode — kUnicodeUseFallbacksBit

To Unicode — kUnicodeUseFallbacksBit, kUnicodeDirectionalityMask,
kUnicodeVerticalFormBit, kUnicodeL.ooseMappingsBit, kUnicodeStringUnterminatedBit

Unicode to Multiple Runs — kUnicodeUseFallbacksBit., kUnicodeDirectionalityMask,
kUnicodeVerticalFormBit, kUnicodel.ooseMappingsBit, kUnicodeStringUnterminatedBit,
kUnicodeKeepSameEncodingBit

For more information on these conversion options, see the Unicode converter ERS.

Example:

status = TECSetOption(encodingConverter, ‘unic’,

Text Encoding Converter ERS Friday February 14, 1997

kTECUnicodeLowLevelFlags, kUnicodeUseFallbacksBit |
kUnicodeVerticalFormBit);

An optional feature of UTF7 is to encode the characters !"#$%&*;<=>@[]*_*{l and }
either directly or by shifting into base 64 mode.

status = TECSetOption(encodingConverter, ‘unic’,
kTECUnicodeHighLevelFlags, kUnicodeUTF7MustShiftOpt);

7.2 Japanese Plug-In

7.2.1 Supported Japanese Encodings

Encodings: kTextEncodingJIS_X0208_90
kTextEncodingShiftJIS,
kTextEncodingISO_2022_JP,
kTextEncodingEUC_JP,
kTextEncodingMacJapanese,

Conversions: round trip EUC to ShiftJIS
round trip 2022 to EUC
ShiftJIS to JIS 208

Ideally, routines t o convert directly from Unicode 1.1 to EUC_JP and back should also be
provided since the characters of JIS X 0212-1990 are supported in EUC_JP and Unicode
but not in MacJapanese.

7.2.2 Supported Japanese Conversion Options

Selector: kTECJapaneseOptionFlags

Options flags: kJapaneseConvertSingleByteKatakana - convert single byte
katakana to full width katakana

kJapaneseRejectSingleByteKatakana - return an error if single
byte katakana is present in input

kJapaneseRejectNonJISChars - return an error if nonstandard
KanjiTalk extension characters are present in input

Text Encoding Converter ERS Friday February 14, 1997

Example:

status = TECSetOption(encodingConverter, ‘tktn’,
kTECJapaneseOptionFlags, kJapaneseConvertSingleByteKatakana |
kTokorotenRejectNonJISChars);

7.3 Chinese Plug-In

7.3.1 Supported Chinese Encodings

Encodings: kTextEncodingISO_2022_CN ISO_2022Format,
kTextEncodingISO_2022_CN HZ_GB_2312Format,
kTextEncodingEUC_CN,

Conversions: round trip EUC to GB2312
round trip 2022 to HZ
round trip 2022 to EUC

7.4.2 Supported Korean Conversion Options

Selector: not currently defined

Options flags:

