
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

PR 10 - A Printing Loop That Cares…
Printing

Revised by: Matt Deatherage January 1994
Written by: Ginger Jernigan & Pete “Luke” Alexander October 1990

This Technical Note discusses opening and closing the Printing Manager with calls to
_PrOpen and _PrClose as well as how to handle errors at print time.
Changes since October 1990: Added code in both versions to handle printing documents
larger than 128 pages.

Introduction

At one time, Apple recommended that developers call _PrOpen at the beginning of their
application and _PrClose at the end, before returning to the Finder. This recommendation
was in the ancient past when an application only had to deal with a single printer driver.

As more printer drivers became available, it became important for an application to consider
the presence of other applications and how opening and closing the printer driver affected
them. The user could open the Chooser at any time and change the current printer driver
without the current application’s knowledge. If an application followed the old philosophy
and a user changed the current printer driver while running the application, the next time the
user attempted to print, the wrong driver would be open, the Printing Manager would not be
able to find the necessary resources, and the user would get an error.

The Current Recommendation

DTS currently recommends that applications open and close the printer driver each time the
application uses the Printing Manager.

MPW Pascal

------ PrintStuff --}
{**
** PrintStuff will call all of the necessary Print Manager calls to print
** a document. It checks PrError() after each Print Manager call. If an
** error is found, all of the Print Manager open calls (i.e., PrOpen,
** PrOpenDoc...) will have a corresponding close call before the error
** is posted to the user. You want to use this approach to make sure the
** Print Manager closes properly and all temporary memory is released.
**}

Developer Support Center October 1990

Macintosh Technical Notes

PROCEDURE PrintStuff;

Developer Support Center October 1990

Macintosh Technical Notes

VAR
 copies,
 firstPage,
 lastPage,
 loop,
 numberOfCopies,
 pageNumber,
 printmgrsResFile,
 realNumberOfPagesInDoc : Integer;
 PrintError : LongInt;
 oldPort : GrafPtr;
 thePrRecHdl : THPrint;
 thePrPort : TPPrPort;
 theStatus : TPrStatus;

BEGIN
 GetPort(oldPort);

 {**
 UnLoadTheWorld will swap out ALL unneeded code segments and data that are NOT
 required
 during print time. Your print code must be a separate code segment.
 **}
 UnLoadTheWorld;

 thePrRecHdl := THPrint(NewHandle(SIZEOF(TPrint)));

 IF (MemError = noErr) AND (thePrRecHdl <> NIL) THEN
 BEGIN
 PrOpen;
 IF (PrError = noErr) THEN
 BEGIN
 {**
 Save the current resource file (i.e. the printer driver's)
 so the driver will not lose its resources upon return from
 the pIdleProc.
 **}
 printmgrsResFile := CurResFile;
 PrintDefault(thePrRecHdl);

 IF (PrError = noErr) THEN
 BEGIN
 IF (PrStlDialog(thePrRecHdl)) THEN
 BEGIN
 {**
 DetermineNumberOfPagesinDoc determines the number of
 pages contained in the document by comparing the size of
 the document with rPage from the TPrInfo record (IM II-150).
 It returns the number of pages required to print the
 document for the currently selected printer.
 **}

 realNumberOfPagesinDoc := DetermineNumberOfPagesinDoc
 (thePrRecHdl^^.prInfo.rPage);

 IF (PrJobDialog(thePrRecHdl)) THEN
 BEGIN
 {**
 Get the number of copies of the document that the
 user wants printed from iCopies of the TPrJob record
 (IM II-151).
 **}

Developer Support Center October 1990

Macintosh Technical Notes

 numberOfCopies := thePrRecHdl^^.prJob.iCopies;

 {**
 Get the first and last pages of the document that
 were requested to be printed by the user from iFstPage
 and iLastPage from the TPrJob record (IM II-151).
 **}

 firstPage := thePrRecHdl^^.prJob.iFstPage;
 lastPage := thePrRecHdl^^.prJob.iLstPage;

 {**
 Print "all" pages in the print loop
 **}

 thePrRecHdl^^.prJob.iFstPage := 1;
 thePrRecHdl^^.prJob.iLstPage := 9999;

 {**
 Determine the "real" number of pages contained in
 the document. Without this test, you would print
 9999 pages.
 **}

 IF (realNumberOfPagesinDoc < lastPage) THEN
 lastPage := realNumberOfPagesinDoc;

 PrintingStatusDialog := GetNewDialog(257, NIL, POINTER(-1));

 {**
 Print the number of copies of document requested by the

 user
 from the Print Job Dialog.
 **}

 For copies := 1 To numberOfCopies Do
 BEGIN

 {**
 Install a pointer to your pIdle proc in my print record.
 **}
 thePrRecHdl^^.prJob.pIdleProc := @checkMyPrintDialogButton;

 {**
 Restore the resource file to the printer driver's.
 **}
 UseResFile(printmgrsResFile);

 thePrPort := PrOpenDoc(thePrRecHdl, NIL, NIL);

 IF (PrError = noErr) THEN
 BEGIN
 {**
 Print the range of pages of the document requested
 by the user from the Print Job Dialog.
 **}
 pageNumber := firstPage;
 WHILE ((pageNumber <= lastPage) AND (PrError = noErr)) DO
 BEGIN

Developer Support Center October 1990

Macintosh Technical Notes

 { **

If we've crossed a 128-page boundary,
close the current print file, send it
to the printer if necessary, and open a
new document.

 ** }

 IF (pageNumber - firstPage) MOD iPFMaxPgs = 0 THEN
 BEGIN
 IF pageNumber <> firstPage THEN
 BEGIN
 PrCloseDoc(thePrPort);
 IF (thePrRecHdl^^.prJob.bJDocLoop = bSpoolLoop)
 AND (PrError = noErr) THEN
 PrPicFile(thePrRecHdl, NIL,NIL, NIL,
theStatus);
 thePrPort := PrOpenDoc(thePrRecHdl, NIL, NIL);
 END;
 END;

 PrOpenPage(thePrPort, NIL);

 IF (PrError = noErr) THEN
 BEGIN
 {**
 rPage (IM II-150) is the printable
 area for the currently selected printer.
 By passing the current enables your app to use

 the same routine to draw to the screen and the
 printer's GrafPort.

 **}

 DrawStuff (thePrRecHdl^^.prInfo.rPage,
 GrafPtr (thePrPort),
 pageNumber);
 END;
 PrClosePage(thePrPort);
 pageNumber := pageNumber + 1;
 END; {** End pagenumber loop **}
 END;
 PrCloseDoc(thePrPort);
 END; {** End copies loop **}

 {**
 The printing job is being canceled by the request of
 the user from the Print Style Dialog or the Print Job
 Dialog. PrError will be set to iPrAbort to tell the
 Print Manager to abort the current printing job.
 **}
 END
 ELSE
 PrSetError(iPrAbort); {** Cancel from the job dialog **}
 END
 ELSE
 PrSetError(iPrAbort); {** Cancel from the style dialog **}
 END;
 END;

Developer Support Center October 1990

Macintosh Technical Notes

 IF (thePrRecHdl^^.prJob.bJDocLoop = bSpoolLoop) and (PrError = noErr) THEN
 PrPicFile(thePrRecHdl, NIL, NIL, NIL, theStatus);

 {**
 Grab the printing error -- once you close the Printing Manager, PrError doesn't
return
 a valid result anymore.
 **}

 PrintError := PrError;

 PrClose;

 {**
 You do not want to report any printing errors until you have fallen
 through the printing loop. This will make sure that ALL of the Print
 Manager's open calls have their corresponding close calls, thereby
 enabling the Print Manager to close properly and that all temporary
 memory allocations are released.
 **}

 IF (PrintError <> noErr) THEN
 PostPrintingErrors (PrintError);

 END;

 IF (thePrRecHdl <> NIL) THEN
 DisposHandle(Handle (thePrRecHdl));

 IF (PrintingStatusDialog <> NIL) THEN
 DisposDialog(PrintingStatusDialog);

 SetPort(oldPort);
END; {** PrintStuff **}

MPW C

/*------ PrintStuff --*/
**
** PrintStuff will call all of the necessary Print Manager calls to print
** a document. It checks PrError() after each Print Manager call. If an error
** is found, all of the Print Manager open calls (i.e., PrOpen, PrOpenDoc...)
** will have a corresponding close call before the error is posted to the user.
** You want to use this approach to make sure the Print Manager closes properly
** and all temporary memory is released.
**/

void PrintStuff ()
{
 GrafPtr oldPort;
 short copies,
 firstPage,
 lastPage,
 numberOfCopies,
 printmgrsResFile,
 realNumberOfPagesinDoc,
 pageNumber,
 PrintError;
 THPrint thePrRecHdl;
 TPPrPort thePrPort;
 TPrStatus theStatus;

Developer Support Center October 1990

Macintosh Technical Notes

 GetPort(&oldPort);

/**
 UnLoadTheWorld will swap out ALL unneeded code segments and data that
 are NOT required during print time. Your print code must be a separate
 code segment.
 **/

 UnLoadTheWorld ();
 thePrRecHdl = (THPrint) NewHandle (sizeof (TPrint));

/**
 Check to make sure that the memory manager did not produce an error
 when it allocated the print record handle and make sure it did not pass
 back a nil handle.
 **/

 if (MemError() == noErr && thePrRecHdl != nil)
 {
 PrOpen();

 if (PrError() == noErr)
 {
 /**
 Save the current resource file (i.e. the printer driver's) so
 the driver will not lose its resources upon return from the pIdleProc.
 **/
 printmgrsResFile = CurResFile();
 PrintDefault(thePrRecHdl);

 if (PrError() == noErr)
 {
 if (PrStlDialog(thePrRecHdl))
 {
 /**
 DetermineNumberOfPagesinDoc determines the number of pages
 contained in the document by comparing the size of the document
 with rPage from the TPrInfo record (IM II-150). It returns the
 number of pages required to print the document for the

 currently selected printer.
 **/

 realNumberOfPagesinDoc = DetermineNumberOfPagesinDoc
 ((**thePrRecHdl).prInfo.rPage);

 if (PrJobDialog(thePrRecHdl))
 {
 /**
 Get the number of copies of the document that the user
 wants printed from iCopies of the TPrJob record (IM II-151).
 **/

 numberOfCopies = (**thePrRecHdl).prJob.iCopies;

 /**
 Get the first and last pages of the document that
 were requested to be printed by the user from iFstPage
 and iLastPage from the TPrJob record (IM II-151).
 **/

 firstPage = (**thePrRecHdl).prJob.iFstPage;
 lastPage = (**thePrRecHdl).prJob.iLstPage;

Developer Support Center October 1990

Macintosh Technical Notes

 /**
 Print "all" pages in the print loop
 **/

 (**thePrRecHdl).prJob.iFstPage = 1;
 (**thePrRecHdl).prJob.iLstPage = 9999;

 /**
 Determine the "real" number of pages contained in the

 document. Without this test, you would print 9999 pages.
 **/

 if (realNumberOfPagesinDoc < lastPage)
 lastPage = realNumberOfPagesinDoc;

 PrintingStatusDialog = GetNewDialog(257, nil, (WindowPtr) -1);

 /**
 Print the number of copies of the document
 requested by the user from the Print Job Dialog.
 **/
 for (copies = 1; copies <= numberOfCopies; copies++)
 {
 /**
 Install a pointer to your pIdle proc in my print record.
 **/
 (**thePrRecHdl).prJob.pIdleProc = checkMyPrintDialogButton;

 /**
 Restore the resource file to the printer driver's.
 **/

 UseResFile(printmgrsResFile);
 thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);

 if (PrError() == noErr)
 {

 /**
 Print the range of pages of the document
 requested by the user from the Print Job Dialog.
 **/
 pageNumber = firstPage;
 while (pageNumber <= lastPage && PrError() == noErr)
 {

 /**
 If we've crossed a 128-page boundary,
 close the current print file, send it
 to the printer if necessary, and open a
 new document.

 **/

 if ((pageNumber - firstPage) % iPFMaxPgs == 0)
 {
 if (pageNumber != firstPage)
 {
 PrCloseDoc(thePrPort);
 if (((**thePrRecHdl).prJob.bJDocLoop ==

 bSpoolLoop) && (PrError() == noErr))

Developer Support Center October 1990

Macintosh Technical Notes

 PrPicFile(thePrRecHdl, nil, nil, nil,
 &theStatus);

 thePrPort = PrOpenDoc(thePrRecHdl, nil,
 nil);
 }
 }

 PrOpenPage(thePrPort, nil);

 if (PrError() == noErr)
 {
 /**
 rPage (IM II-150) is the printable area
 for the currently selected printer. By

 passing the current port to the draw
 routine, enables your app to use the same

 routine to draw to the screen and the
printer's GrafPort.
 **/
 DrawStuff ((**thePrRecHdl).prInfo.rPage,
 (GrafPtr) thePrPort, pageNumber);
 }

 PrClosePage(thePrPort);
 pageNumber++;
 } /** End pageNumber loop **/
 }
 PrCloseDoc(thePrPort);
 } /** End copies loop **/
 }
 /**
 The printing job is being canceled by the request of the
 user from the Print Style Dialog or the Print Job Dialog.
 PrError will be set to PrAbort to tell the Print Manager to
 abort the current printing job.
 **/
 else
 PrSetError (iPrAbort); /** cancel from the job dialog **/
 }
 else
 PrSetError (iPrAbort); /** cancel from the style dialog **/
 }
 }

 if (((**thePrRecHdl).prJob.bJDocLoop == bSpoolLoop) && (PrError() == noErr))
 PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);

 /**
 Grab the printing error -- once you close the Printing Manager, PrError doesn't

 returna valid result anymore.
 **/

 PrintError = PrError();

 PrClose();

 /**
 You do not want to report any printing errors until you have fallen
 through the printing loop. This will make sure that ALL of the Print
 Manager's open calls have their corresponding close calls, thereby
 enabling the Print Manager to close properly and that all temporary
 memory allocations are released.

Developer Support Center October 1990

Macintosh Technical Notes

 **/
 if (PrintError != noErr)
 PostPrintingErrors (PrintError);
 }

 if (thePrRecHdl != nil)
 DisposHandle((Handle) thePrRecHdl);

 if (PrintingStatusDialog != nil)
 DisposDialog(PrintingStatusDialog);

 SetPort(oldPort);
} /** PrintStuff **/

Developer Support Center October 1990

Macintosh Technical Notes

Checking And Handling Printing Errors

An application should always check for error conditions while printing by calling PrError.
PrError returns errors from the Printing Manager (and some AppleTalk and OS errors)
that occur during printing.

As the example code demonstrates, an application should call PrError after each call to a
Printing Manager function or procedure. By consistently checking PrError after each
call, the application is able to catch any errors created at print time and report them to a user
via a dialog box in a clean and graceful manner.

The following section outlines some general error-handling guidelines.

• You should avoid calling PrError within your pIdle procedure; errors that
occur while it is executing are usually temporary and serve only as internal flags
for communication within the printer driver—they are not intended for the
application. If you absolutely must call PrError within your idle procedure,
and an error occurs, never abort printing within the idle procedure itself. Wait
until the last called printing procedure returns, then check to see if the error still
remains. Attempting to abort printing within an idle procedure is a guarantee of
certain death.

• Upon detecting an error after the completion of a printing routine, stop drawing
at that point, and proceed to the next procedure to close any previously made
open calls. For example, if you detect an error after calling PrOpenDoc, skip
to the next PrCloseDoc. Or, if you get an error after calling PrOpenPage,
skip to the next PrClosePage and PrCloseDoc. Remember that if you
have called PrOpen, then you must call the corresponding PrClose to ensure
that printing closes properly and all temporary memory allocations are released
and returned to the heap.

• Do not display any alert or dialog boxes to report an error until the end of the
printing loop. Once at the end, check for the error again; if there is no error
assume that printing completed normally. If the error is still present, then you
can alert the user.

This technique is important for two reasons. First, if you display a dialog box in
the middle of the printing loop, it could cause errors that can terminate an
otherwise normal job. For example, if the printer is an AppleTalk printer, the
connection can be terminated abnormally since the driver would be unable to
respond to AppleTalk requests received from the printer while the dialog box
was waiting for input from the user. If the printer does not hear from the
Macintosh with a short period of time (e.g., 30 seconds), it times out, assuming
that the Macintosh is no longer there, which results in a prematurely broken

Developer Support Center October 1990

Macintosh Technical Notes

connection causing another error to which the application must respond.

Developer Support Center October 1990

Macintosh Technical Notes

In addition, the driver may have already displayed its own dialog box in
response to an error. In this instance, the driver posts an error to let the
application know that something went wrong and it should abort printing. For
example, when the LaserWriter driver detects that the Laser Prep version which
has been downloaded to the LaserWriter is different than that with which the
user is trying to print, it displays the appropriate dialog box informing the user of
the situation and giving him the option of reinitializing the printer. If the user
chooses to cancel printing, the driver posts an error to let the application know
that it needs to abort, but since the driver has already taken care of the error by
displaying a dialog box, the error is reset to zero before the printing loop is
complete. The application should check for the error again at the end of the
printing loop, and if it still indicates an error, the application can then display the
appropriate dialog box.

• If using PrGeneral, be prepared to receive the following errors:
NoSuchRsl, OpNotImpl, and resNotFound. In all three cases, the
application should be prepared to continue to print without using the features of
that particular opcode.

However, in the case of the resNotFound error, it means the current printer
driver does not support PrGeneral. This lack of support should not be a
problem for an application, but it needs to be prepared to deal with this error. If
you receive a resNotFound error from PrError, clear the error with a call
to PrSetError(0); otherwise, PrError might still contain this error the
next time you check it, which would prevent your application from printing.

Canceling or Pausing the Printing Process

If you install a procedure for handling requests to cancel printing, with an option to pause
the printing process, beware of timeout problems when printing to the LaserWriter.
Communication between the Macintosh and the LaserWriter must be maintained to prevent a
job or a wait timeout. If there is no communication for a period of time (over two minutes),
the printer times out and the print job terminates due to a wait timeout. Or, if the print job
requires more than three minutes to print, the print job terminates due to a job timeout.
Since, there is no good method to determine to what type of printer an application is
printing, it is probably a good idea to document the possibility of a LaserWriter timing out
for a user who chooses to select “pause” for over two minutes.

Error Messages Created In Print Land…

The Printing Manager reports the error messages covered in this section. If an error that
does not belong to the Printing Manager occurs, the Printing Manager puts it into low
memory, where it can be retrieved with a call to PrError, and terminates the printing loop,
if necessary. As already documented, if you encounter an error in the middle of a printing

Developer Support Center October 1990

Macintosh Technical Notes

loop, do not jump out; fall through the loop and let the Printing Manager terminate properly.

Developer Support Center October 1990

Macintosh Technical Notes

Error Code Constant Description
0 noErr No error
128 iPrAbort Abort the
printing process

(Command-period)
-1 iPrSavePFil Problem
saving print file
-17 controlErr

Unimplemented Control call
-27 iIOAbort I/O problems
-108 iMemFullErr Not
enough heap space

The following errors are specific to the LaserWriter family:

-4101 Printer not found or closed
-4100 Connection just closed
-4099 Write request too big
-4098 Request already active
-4097 Bad connection refnum
-4096 No free Connect Control Blocks (CCBs)
available
-8133 PostScript error occurred during
transmission of data to printer. Most often caused by
a bug in the PostScript code being downloaded.
-8132 Timeout occurred. This error is returned
when no data has been sent to the printer for two
minutes. Usually caused by extremely long imaging
time.
-8131 Printer not responding: it may have been
turned “off.” This error occurs if a user turns off the
LaserWriter in the middle of a print job.

The following errors are specific to PrGeneral:

1 NoSuchRsl Requested resolution
is not supported
2 OpNotImpl Requested
PrGeneral opcode not implemented in the
current printer driver.
-192 resNotfound The current printer
driver does not support PrGeneral.

Developer Support Center October 1990

Macintosh Technical Notes

The most common error encountered is -4101, which is generated if no LaserWriter is
selected. Since this error is so common, it is a good idea to display a dialog box requesting
the user to select a printer from the Chooser when this error is encountered.

Further Reference:
• Inside Macintosh, Volume II-145 & V-410, The Printing Manager
• Technical Note M.IM.DevIndPrinting —

 Device-Independent Printing
• d e v e l o p, July 1990, Issue 3, “Meet PrGeneral”

Developer Support Center October 1990

