
Graphics Driver for External Use

Sean Williams, Kevin Williams, Fernando Urbina

Apple Computer, Inc.

Version 1.0.1

July 17, 1995

July 17, 1995 Copyright Apple Computer, Inc. i

GDX

Overview..1
How Did We Do?...2

Design Layout..2
All Modules...3

Core..3

HAL...4

OSS..4

Creating a HAL from a Template...5
Global Search and Replace..5

Create Your Register Models...5

Start at the Top, Work to the Bottom...6

Don’t Try to Map a HAL Routine Directly to a Control or Status Call...6

GraphicsHALxxx vs. Templatexxx ...6

Use PopupFuncs ..6

MPW Make File ..6

Metrowerks Projects..6

CLUTs & You (A Primer)..7
Indexed Color & CLUT Operation..8

Direct Color & CLUT Operation...9

Graphics Core Routines...10
GraphicsUtilMapSenseCodesToDisplayCode()..10

Graphics OSS Routines..11
GraphicsOSSSaveProperty() ...11

GraphicsOSSGetProperty() ...11

GraphicsOSSDeleteProperty()...12

GraphicsOSSSetHALPref()...12

GraphicsOSSGetHALPref()..12

GraphicsOSSSetVBLInterrupt()..13

GraphicsOSSVBLDefaultEnabler() ..13

GraphicsOSSVBLDefaultDisabler() ...13

GraphicsOSSDoVSLInterruptService() ..13

Graphics HAL Routines...14
GraphicsHALInitPrivateData()..14

GraphicsHALOpen() ...15

GraphicsHALClose()...15

GraphicsHALTerminate()..15

GraphicsHALKillPrivateData()...16

GraphicsHALDetermineDisplayCode()..16

GraphicsHALDrawHardwareCursor() ..16

GraphicsHALGetBaseAddress() ...17

GraphicsHALGetCLUT()..17

GraphicsHALGetHardwareCursorDrawState()...18

Copyright Apple Computer, Inc. July 17, 1995ii

GDX

GraphicsHALGetDefaultDisplayModeID()..18

GraphicsHALGetMaxDepthMode()..19

GraphicsHALGetModeTiming()...19

GraphicsHALGetNextResolution()...20

GraphicsHALGetPages()...20

GraphicsHALGetPowerState()..21

GraphicsHALGetSenseCodes()...21

GraphicsHALGetSync()..22

GraphicsHALGetVBLInterruptRoutines()..23

GraphicsHALGetVideoParams()...24

GraphicsHALGrayCLUT()..24

GraphicsHALMapDepthModeToBPP()..24

GraphicsHALModePossible() ...25

GraphicsHALProgramHardware() ..25

GraphicsHALSetCLUT() ..26

GraphicsHALSetHardwareCursor()..27

GraphicsHALSetPowerState()...27

GraphicsHALSetSync()...28

GraphicsHALSupportsHardwareCursor()...28

GraphicsHALPrivateControl() ..28

GraphicsHALPrivateStatus()...29

Changing the Core ...30
Gamma Tables with More than 8 Bits...30

Adding New DisplayModeIDs..31

Supporting Less Than 256 Colors ...31

Release Notes...32
Version 1.0...32

Version 1.0.1..32

July 17, 1995 Copyright Apple Computer, Inc. 1

GDX
Overview

Overview
Graphics Driver for External Use (GDX) is a template for a native graphics driver which can be
quickly adapted to new hardware implementations. This driver fully conforms to all the
requirements for a native driver, as described in Designing PCI Cards and Drivers for Power
Macintosh Computers.

This template has been extensively tested, since it is the basis of all the graphics drivers used in
the initial round of PCI based Power Macintoshes. Third party developers need only create a
single file describing their hardware implementation.

The code is structured into three modules:

• Core
For graphics drivers, there is a core set of software which is invariant across hardware
implementations or OS services. This core handles the majority of the control and status
calls received. Third parties will not have to modify the Core1.

• Hardware Abstraction Layer (HAL)
This section is responsible for performing operations on the underlying hardware, and
reporting the hardware’s capabilities to the Core. A HAL will have to be provided for each
implementation of graphics hardware. Two HAL templates have been provided which can
be easily adapted for third party hardware.

• Operating System Services (OSS)
This section handles OS services, such as how to register and service interrupts, receive
parameter blocks, etc. Third parties will not have to modify the OSS.

Although the majority of third parties will be developing graphics drivers for PCI devices, GDX
is not PCI centric. Rather, it will run under any operating system that supports Slot Manager
Independent (SMI) graphics drivers. For example, PCI, PDS, NuBus, PCMCIA, or direct attach
frame buffer controllers can be supported.

1. See the section “Changing the Core” on page 30 for a list of exceptions.

Copyright Apple Computer, Inc. July 17, 19952

GDX
Design Layout

How Did We Do?
Abstraction and modularization look good on paper, but carrying the design forward into
implementation is sometimes more challenging. Here is a self-assessment of GDX’s
implementation:

Core: A+
The Core came into place quite nicely. Every nuance of a graphics control or status call is
handled, or passed off to the HAL when appropriate. The process of developing five GDX
based drivers assured that there were no hardware dependencies in the core.

HAL: A+
The interface between the HAL and the Core is extremely robust. Moreover, that interface
has proved flexible enough to support wildly different hardware implementations.

OSS: C
As it became apparent that Copland and System 7.5.2 were converging in their use of the
Name Registry, Expansion Manager, Interrupt Manager, etc., less effort was applied
toward developing a robust OSS layer. For example, it would not be possible to simply
write a new OSS layer for Windows, and have the Core and HAL remain unchanged.
However, the existing OSS is a nice start down the path toward that ideal.

Design Layout
The files in GDX are organized as follows:

July 17, 1995 Copyright Apple Computer, Inc. 3

GDX
Design Layout

All Modules
All three modules need to include the following:

GraphicsPriv.h
This file has declarations, error codes, and constants that are used throughout GDX. All
GDX files will need to include this. However, no items outside of GDX will need access to
this file, hence the ‘Priv’ postfix.

Core
The Core is composed of multiple files and constitutes the majority of the brains of GDX.
Although it is not necessary to make changes here, inspecting this code can be quite useful for
understanding the relationship between a graphics driver and its clients. Additionally, this would
also be a useful reference if you were developing or maintaining a graphics driver from another
source base.

GraphicsCore.c
This files contains the majority of the code which handles the driver commands
kInitializeCommand, kReplaceCommand, kOpenCommand, kCloseCommand,
kControlCommand, kStatusCommand, kSupersededCommand, and kFinalizeCommand.

Additionally, it has the routines to initialize and kill the private data that the Core uses to
maintain its state information.

GraphicsCore.h
This merely has the function declarations of the Core routines that have external scope to
other GDX files.

GraphicsCorePriv.h
This has declarations that are strictly private to the items that comprise the Core. Neither
the OSS or HAL will need to include this file.

GraphicsCoreControl.c
This file implements the core portion of the various Control calls.

GraphicsCoreControl.h
This has the function declarations of the Control routines that have external scope to other
GDX files.

GraphicsCoreStatus.c
This file implements the core portion of Status calls.

GraphicsCoreStatus.h
This has the function declarations of the Status routines that have external scope to other
GDX files.

GraphicsCoreUtils.c
This has some basic utility functions that an item in the Core or HAL might want to make
use of. In particular, a HAL which has standard sense codes will probably want to make

Copyright Apple Computer, Inc. July 17, 19954

GDX
Design Layout

use of the GraphicsUtilMapSenseCodesToDisplayCode(), which will uniquely map a
raw sense code / extended sense code pair to a DisplayCode.

GraphicsCoreUtils.h
This has the function declarations of the utility routines that have external scope to other
GDX files.

HAL
This consists only of a header file and a C file. The HAL is responsible for accessing the hardware
and reporting its abilities. To ease development efforts, two templates have been provide which
can be used as a basis for a real HAL. Choose the template which best matches your needs, or
combine certain aspects of them to produce a new template.

GraphicsHAL.h
This contains the function declarations that a HAL must implement. These functions have
external scope to other GDX files.

GraphicsHALTemplateEZ.c
This can be used as a template for implementing a HAL. This template is referred to as
“EZ” since the hardware has a simple register model. For example, to establish a proper
raster for a 640 x 480 display at 67 Hz, only a single register needs to be accessed in the
frame buffer controller and the CLUT.

Additionally, it can be considered “EZ” for the following reasons:

Always has enough VRAM available to support all of its resolutions.
No hardware cursor.
No special lower power modes.

GraphicsHALTemplate.c
This can be used as a template for implementing a HAL. This template has a more
complex internal model than the “EZ” template for the following reasons:

Support for hardware cursor.
Special low power modes.
Complex register model.
Different resolutions available depending on amount of VRAM present.

OSS
The OSS provides a thin layer of abstraction for operating system services. Essentially, it can be
considered as a set of utility functions for OS services that a graphic driver uses often.

GraphicsOSS.c
This file implements all of the OSS functionality. Essentially, the OSS provides a means
for saving, retrieving, and deleting properties from the Name Registry, saving and
retrieving the Core’s and HAL’s preferences, and dealing with interrupts.

July 17, 1995 Copyright Apple Computer, Inc. 5

GDX
Creating a HAL from a Template

GraphicsOSS.h
This has the function declarations of the OSS routines that have external scope to other
GDX files.

Creating a HAL from a Template
The templates provided are extensively documented in the code. If you are familiar with your
hardware specifics, they can be adapted in a short period of time. Here are some hints to get off to
a quick start.

Global Search and Replace
The templates use a strict naming convention for their hardware specific variables, so a major
portion of the adaptation can be accomplished via a global case sensitive search and replace in the
template file.

For example, in TemplateEZ, perform the following:

Similarly, the process of converting Template can be started by performing the following:

Create Your Register Models
The register models used in the templates were designed to be generic, so they will need to be
updated to reflect your hardware.

TABLE 1. Search and Replace for TemplateEZ

Search For… Replace With…
TemplateEZ YourArchitecture

templateEZ yourArchitecture

Cosmo YourFrameBufferController

cosmo yourFrameBufferController

Irazu YourCLUT

irazu yourCLUT

TABLE 2. Search and Replace for Template

Search For… Replace With…
Template YourArchitecture

template yourArchitecture

Toynbee YourFrameBufferController

toynbee yourFrameBufferController

Spur YourCLUT

spur yourCLUT

MrSanAntonio YourTimingGeneratorGoesHere

mrSanAntonio yourTimingGeneratorGoesHere

Copyright Apple Computer, Inc. July 17, 19956

GDX
Creating a HAL from a Template

Start at the Top, Work to the Bottom
Start at the first function in the template, and try and adapt it to your hardware. If uncertain what
to do, defer the decision and go on to the next function.

Don’t Try to Map a HAL Routine Directly to a Control or Status Call
The HAL routines are quite primitive. In most cases, they don’t correspond directly to a Control
or Status call. Instead, they provide the Core with information it needs to respond to a Control or
Status call. Think of the HAL routines as the simple items that they are, and the Core will deal
with patching everything together.

GraphicsHALxxx vs. Templatexxx
In the templates, some functions will be prefixed with ‘GraphicsHAL’ and others will be prefixed
by ‘Template.’

The routines which start with ‘GraphicsHAL’ must be implemented by all HALs. The routines
starting with ‘Template’ are strictly private to the HAL, and are completely implementation
dependent.

Use PopupFuncs
This is a really cool utility routine will add a popup menu listing all the source file’s functions to
the title bar. It can be installed into any file editor, such as MPW Shell, Metrowerks, or Think.

This makes navigating through unfamiliar source files a breeze. The demo installer has been
provided.

MPW Make File
For those of the MPW persuasion, a make file has been provided that builds both template drivers.
Install the headers and libraries from the PCI DDK into you MPW folder, set the directory to
GDX, and Build!

Metrowerks Projects
A Metrowerks project has been provided for building each template. Again, install the headers
and libraries from the PCI DDK into Metrowerks and build. Don’t forget to either recompile the
headers, or don’t use precompiled headers.

July 17, 1995 Copyright Apple Computer, Inc. 7

GDX
CLUTs & You (A Primer)

CLUTs & You (A Primer)
Color Lookup Tables / Digital to Analog Convertors (CLUT/DACs, hereafter referred to simply
as CLUTs) provide hardware that converts pixel values stored in the frame buffer to some actual
RGB video value. For indexed color modes (1-8 bits per pixel), the operation of the CLUT is
fairly intuitive. For direct color modes (16 or 32 bits per pixel), the operation is somewhat obtuse.
Consider a generic triple 256x8 CLUT which supports 1 - 32 bpp as shown below:

FIGURE 1. Generic Triple 256x8 CLUT

This CLUT is referred to as a “triple 256x8” CLUT for the following reasons:

• triple The CLUT has three channels: red, green and blue.
• 256 The CLUT has 256 physical addresses.
• 8 For each channel at a given address, an 8-bit value can be stored.

To help explain the differences between indexed and direct modes, a generic representation of
how pixels are represented in a frame buffer is detailed below. Please notice that for 16 and 32
bpp, each channel has a number of bits dedicated to it, whereas that is not the case for 1 - 8 bpp.

FIGURE 2. Generic Pixel Data Format in Frame Buffer

Red Green Blue

0xff

Address

0xXX0xXX0xXX

0xXX0xXX0xXX0x00

31 0

31 0

31 0

31 0

31 0

31 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p0 p1 p2 p3 p4 p5 p6 p7

pixel 0 pixel 1 pixel 2 pixel 3

pixel 1pixel 0

BlueRed Green

4591014162021252630

BlueRed Green

Red Green Blue

7815162324

pixel 0

32 bits / pixel

16 bits / pixel

8 bits / pixel

4 bits / pixel

2 bits / pixel

1 bit / pixel

Copyright Apple Computer, Inc. July 17, 19958

GDX
CLUTs & You (A Primer)

Indexed Color & CLUT Operation
For 1 - 8 bpp, the pixel data in the frame buffer represents the logical address of a CLUT entry.
For each pixel, a single lookup takes place, and three 8-bit values (red, green, blue) are extracted
and used as inputs for their respective channel’s DAC. Figure 3 illustrates this:

FIGURE 3. Indexed Color Example

From this example, it should be clear that the pixel data (0x7f) is used as the logical CLUT
address. From that address, three 8-bit values are extracted, and then used as inputs to the DAC to
provide the correct analog video signal.

The range of logical CLUT addresses is based solely on the number of bits per pixel:

TABLE 3. Logical Address Range (Indexed Color)

Bits Per Pixel Logical Address Range (2bpp-1)
1 0 - 1

2 0 - 3

4 0 - 15

8 0 - 255

Red Green Blue

0x01

0x7f

0x80

0xfe

0xff

Address

0xXX0xXX0xXX

0xXX 0xXX

0xXX 0xXX

0xXX 0xXX

Indexed Pixel @ 8 bpp
0x7f 0xXXXXXX

0xXX

0xXX

0xXX

Pixel Data CLUT DAC Input

0xXX0xXX0xXX0x00

0xXX 0xXX 0xXX

July 17, 1995 Copyright Apple Computer, Inc. 9

GDX
CLUTs & You (A Primer)

Direct Color & CLUT Operation
For 16 or 32 bpp, the CLUT is used solely for gamma correction. Since each pixel has bits
dedicated to each channel (red, green, and blue), a lookup for each channel occurs. For each
lookup, the logical CLUT address is derived from that channel’s pixel data. The gamma corrected
value is then extracted from the appropriate channel’s lookup table.

FIGURE 4. Direct Color Examples

As shown above, three lookups occur. The red channel bits (0xfe) indicate the logical CLUT
address to access. At the location, the 8-bits of red information is extracted, and used as input to
the red channel’s DAC. This process is repeated for the green and blue channels.

For direct color, the range of logical addresses is based on the number of bits per channel:

TABLE 4. Logical Address Range (Direct Color)

Bits Per Pixel Bits Per Channel Logical Address Range (2bpc-1)
16 5 0 - 31

32 8 0-255

Red Green Blue

0x01

0x7f

0x80

0xfe

0xff

Address

0xXX0xXX0xXX

0xXX 0xXX

0xXX 0xXX 0xXX

0xXX 0xXX

0xXX 0xXX

Direct Pixel @ 32 bpp
0x00fe8001

0xXXXXXX

0xXX

0xXX

0xXX

Pixel Data CLUT DAC Input

0xXX0xXX0xXX0x00

Copyright Apple Computer, Inc. July 17, 199510

GDX
Graphics Core Routines

Graphics Core Routines
The routines that live in the Core are largely defined by the client API to the graphics driver. Since
the client API is documented in Designing PCI Cards and Drivers for Power Macintosh
Computers, it will not be repeated here.

However, in addition to the Control and Status routines in the Core, there are several utility
routines, one of which a HAL might want to take advantage of:

GraphicsUtilMapSenseCodesToDisplayCode()
This routine will map RawSenseCode / ExtendedSenseCode pairs to their corresponding
DisplayCode for frame buffer controllers which either have ‘standard’ sense code hardware or
can coerce their raw / extended sense codes to appear standard.

This functionality is provided as a utility routine in the Core, because a large number of frame
buffer controllers have support for standard sensing.

GDXErr GraphicsUtilMapSenseCodesToDisplayCode(RawSenseCode rawSenseCode,
ExtendedSenseCode extendedSenseCode,
DisplayCode *displayCode)

-> rawSenseCode
Result from reading sense lines when none are being actively driven.

-> extendedSenseCode
Result from applying extended sense algorithm to sense lines.

<- displayCode
DisplayCode which the RawSenseCode / ExtendedSenseCode pair maps to.

July 17, 1995 Copyright Apple Computer, Inc. 11

GDX
Graphics OSS Routines

Graphics OSS Routines
The majority of the OSS routines are used by the Core, but some might be utilized by the HAL.
The routines that the HAL might want to access involve accessing the NameRegistry, accessing
preferences in NVRAM, and enabling/disabling interrupts.

GraphicsOSSSaveProperty()
The OSS calls the Name Registry to save information. The OSS doesn't care about the content.

GDXErr GraphicsOSSSaveProperty(const RegEntryID *regEntryID,
const char *propertyName, const void *propertyValue,
ByteCount propertySize,
OSSPropertyStorage ossPropertyStorage)

-> regEntryID
The node in which the property should be saved.

-> propertyName
C string property name.

-> propertyValue
Opaque pointer to the buffer containing the data to be stored.

-> propertySize
Size of the data, in bytes.

-> ossPropertyStorage
GDX internal flags that describe how the property should get saved:

kOSSPropertyAvailableAtDisk Available when disk is up (saved across boots).
kOSSPropertyVolatile Property not saved across boots.

GraphicsOSSGetProperty()
The OSS calls the NameRegistry to get information. The OSS doesn't care about the content. If
the property doesn't exist, that's an error.

GDXErr GraphicsOSSGetProperty(const RegEntryID *regEntryID,
const char *propertyName, void *propertyValue,
ByteCount propertySize);

-> regEntryID
The node from which the property should be retrieved.

-> propertyName
C string property name.

-> propertyValue
Opaque pointer to the buffer to contain the retrieved data.

-> propertySize
The expected size of the data, in bytes.

Copyright Apple Computer, Inc. July 17, 199512

GDX
Graphics OSS Routines

GraphicsOSSDeleteProperty()
The OSS calls the NameRegistry to delete properties. It doesn't care what property is deleted.

GDXErr GraphicsOSSDeleteProperty(const RegEntryID *regEntryID,
const char *propertyName);

-> regEntryID
The node from which the property should be deleted.

-> propertyName
C string name of the property to delete.

GraphicsOSSSetHALPref()
Graphics drivers get 8 bytes of nonvolatile RAM (NVRAM) allocated to them. They can use
these bytes to store preferences, so that the desired state can be retrieved during boot time.

The Core uses 4 of those bytes to maintain the state information it needs (DisplayModeID,
DepthMode, and DisplayCode), leaving the other 4 bytes for use by the HAL. The HAL can use
those bytes for any data it chooses.

As with the routines listed above, the OSS uses the NameRegistry to store this information.

GDXErr GraphicsOSSSetHALPref(const RegEntryID *regEntryID,
UInt32 halData)

-> regEntryID
The node for which the preferences should be set.

-> halData
The 4 bytes the HAL wishes to save in NVRAM.

GraphicsOSSGetHALPref()
This call allows the HAL to retrieve the 4 bytes it previously set.

GDXErr GraphicsOSSGetHALPref(const RegEntryID *regEntryID,
UInt32 *halData)

-> regEntryID
The node from which the preferences should be retrieved.

<- halData
The 4 bytes retrieved from NVRAM for the HAL.

July 17, 1995 Copyright Apple Computer, Inc. 13

GDX
Graphics OSS Routines

GraphicsOSSSetVBLInterrupt()
This routine is used to allow/prevent VBL interrupts from propagating to the processor. The exact
behavior of this function depends on how the HAL responded to the
GraphicsHALGetVBLInterruptRoutines() call, as detailed on page 16.

Boolean GraphicsOSSSetVBLInterrupt(Boolean enableInterrupts)

-> enableInterrupts
true if interrupts should be enabled, false otherwise.

<- Boolean
If disabling interrupts, then this is true if interrupts were previously enabled, false
otherwise.

It is undefined when enabling interrupts.

GraphicsOSSVBLDefaultEnabler()
Sometimes, the HAL might wish to enable the motherboard interrupt source, regardless of what it
returned for the GraphicsHALGetVBLInterruptRoutines(). This routine will do so, leaving the
state of the internal interrupt source on the card unchanged.

void GraphicsOSSVBLDefaultEnabler(void)

GraphicsOSSVBLDefaultDisabler()
This is the counterpart to the above routine. Should the HAL wish to disable the motherboard
interrupt source, it can call this function. As above, the state of the internal interrupt source on the
card will be unchanged.

Boolean GraphicsOSSVBLDefaultDisabler(void)

<- Boolean
true if motherboard interrupts were previously enabled, false otherwise.

GraphicsOSSDoVSLInterruptService()
This routine calls the Video Service Library (VSL) to service the VBL tasks associated with this
graphics device.

Normally, a HAL implementation would never have to call this routine. However, in the rare
event that a HAL's hardware does not support true hardware interrupts, then the HAL should call
this during its simulated VBL routine to allow the OS to service items in its VBL task queue.

void GraphicsOSSDoVSLInterruptService(void)

Copyright Apple Computer, Inc. July 17, 199514

GDX
Graphics HAL Routines

Graphics HAL Routines
The following is a description of the routines which comprise the Graphics HAL. All HALs must
implement these routines.

GraphicsHALInitPrivateData()
This routine is called after the Core has received an kInitializeCommand or a
kReplaceCommand. The HAL should allocate whatever private storage it requires, perform the
necessary operations to determine its hardware’s addresses, and initialize internal state
information.

GDXErr GraphicsHALInitPrivateData(const RegEntryID *regEntryID,
Boolean *replacingDriver)

-> regEntryID
This is the RegEntryID for the driver. It should be copied via the
RegistryEntryIDCopy() function, in the event that the NameRegistry is queried
later.

<-> replacingDriver
On input, this indicates whether the Core got a kInitializeCommand or a
kReplaceCommand. These commands are similar, but with subtle differences. A
kInitializeCommand is issued if no version of this driver has been previously
loaded, whereas a kReplaceCommand is issued if a previous version of the driver has
been loaded, but subsequently superseded.

 If false, then a kInitializeCommand had been received by the Core, and the HAL
should do a full hardware initialization.

 If true, then a kReplaceCommand had been received by the Core, and the HAL can
attempt to configure itself to its state prior to it being superceded.

On output, this allows the HAL to override the Core's default behavior if it chooses to
do so.

 If false, then the HAL is signaling the Core that it is unable to reconfigure itself to
its state prior to being superseded, and the Core will continue as if a
kInitializeCommand had occurred.

 If true, then the HAL was able to re-configure itself in the event of being replaced,
and the Core will proceeded accordingly.

July 17, 1995 Copyright Apple Computer, Inc. 15

GDX
Graphics HAL Routines

GraphicsHALOpen()
It is possible for the driver to be opened and closed many times. This routine should perform the
required initialization of the hardware in order to determine the amount of VRAM that is in the
system, and any other hardware specific items that the HAL cares about. Additionally, the HAL
might initialize internal state information or retrieve its preferences via the
GraphicsOSSGetHALPref() routine.

No programming to set up a raster for a given DisplayModeID or DepthMode is necessary at this
point.

GDXErr GraphicsHALOpen(const AddressSpaceID spaceID,
Boolean replacingDriver)

-> spaceID
This is the AddressSpaceID for the HAL’s hardware.

-> replacingDriver
true if the HAL should behave as if the driver is being replaced, false otherwise.

GraphicsHALClose()
Upon close, there are no major requirements, since the majority of the work will be handled
elsewhere.

GDXErr GraphicsHALClose(const AddressSpaceID spaceID)

-> spaceID
This is the AddressSpaceID the HAL’s hardware.

GraphicsHALTerminate()
This routine is called after the Core has received an kFinallizeCommand or a
kSupersededCommand.

GDXErr GraphicsHALTerminate(Boolean superseded)

-> superseded
true if the current driver is going to be superseded by another driver, false
otherwise.

If true, the current driver can choose to save any state that the replacement driver
may need, and can choose whether or not to keep the raster going.

If false, no driver is going to replace it. In that event, it should stop the raster and
leave the hardware in a polite state.

Copyright Apple Computer, Inc. July 17, 199516

GDX
Graphics HAL Routines

GraphicsHALKillPrivateData()
This routine is called when it is time for the HAL to dispose of its private data. For example, any
memory it allocated should be returned, and any RegEntryIDs that were copied should be
disposed.

void GraphicsHALKillPrivateData(void)

GraphicsHALDetermineDisplayCode()
This routine is called whenever it is necessary to determine the type of display that is connected to
the hardware. When this routine is called, the following actions should occur:

• Perform required steps to determine what display is connected (e.g., read sense lines).
• Update the HAL's state information regarding the type of display connected, if the HAL

maintains that state information.

GDXErr GraphicsHALDetermineDisplayCode(DisplayCode *displayCode)

<- displayCode
DisplayCode for the attached display.

In the event that the HAL is does not recognize the specific type of display attached, it
should set *displayCode = kDisplayCodeUnknown.

GraphicsHALDrawHardwareCursor()
This routine sets the hardware cursor's X and Y coordinates and its visible state. If the cursor was
set successfully by a previous call to GraphicsHALSetHardwareCursor(), then the HAL must
program the hardware with the given X, Y and visible state. If the previous call to
GraphicsHALSetHardwareCursor() failed, then an error should be returned.

GDXErr GraphicsHALDrawHardwareCursor(SInt32 x, SInt32 y,
Boolean visible)

-> x
X coordinate.

-> y
Y coordinate.

-> visible
true if the cursor must be visible, false if it should be hidden.

July 17, 1995 Copyright Apple Computer, Inc. 17

GDX
Graphics HAL Routines

GraphicsHALGetBaseAddress()
This returns the base address of a specified page in the current mode. This allows graphics pages
to be written to even when not displayed.

GDXErr GraphicsHALGetBaseAddress(SInt16 page, char **baseAddress)

-> page
(0 based) Page number for which the base address is desired.

<- baseAddress
Base address of desired page.

GraphicsHALGetCLUT()
This routine will fill out the specified array of ColorSpecs with the contents of the CLUT.

The RGBColor structure in each ColorSpec uses 16-bits for each channel (red, green, and blue),
whereas most CLUTs only use 8-bits. Therefore, when filling in the RGBColor structure, the most
significant byte for each channel should be filled with the 8-bits extracted from its respective
channel in the CLUT. Moreover, to maintain the same behavior as the previous drivers, the 8-bits
from the CLUT should also be written to the least significant byte for each RGBColor.

It is important to note that the positions of the entries refer to logical positions, not physical ones.
At 4 bpp, for example, the entry positions could range from 0, 1, 2,…, 15, even though the
physical positions may not have this number sequence.

No range checking is required, because the Core has already done so.

GDIErr GraphicsHALGetCLUT(ColorSpec *csTable, SInt16 startPosition,
SInt16 numberOfEntries, Boolean sequential,
DepthMode depthMode)

<-> csTable
This is a pointer to the array of ColorSpecs provided by the caller to be filled with the
contents of the CLUT.

-> startPosition
(0 based) Starting point in the array to fill.

-> numberOfEntries
(0 based) The number of entries to get.

-> sequential
If false, then the value field of the ColorSpec should be inspected to see what
logical position should be retrieved. If true, then the array index indicates what
logical position should be read.

-> depthMode
The relative bit depth. This is provided so that the HAL can decide how to map the
logical entry positions to the physical entry positions.

Copyright Apple Computer, Inc. July 17, 199518

GDX
Graphics HAL Routines

GraphicsHALGetHardwareCursorDrawState()
This routine is used to determine the state of the hardware cursor. After HAL initialization the
cursor’s visible state and set state should be false. After a mode change the cursor should be
made invisible but the set state should remain unchanged.

GDXErr GraphicsHALGetHardwareCursorDrawState(SInt32 *cursorX,
SInt32 *cursorY, UInt32 *cursorVisible, UInt32 *cursorSet)

<- cursorX
X coordinate from last GraphicsHALDrawHardwareCursor() call.

<- cursorY
Y coordinate from last GraphicsHALDrawHardwareCursor() call.

<- cursorVisible
true if the cursor is visible, false otherwise.

<- cursorSet
true if last GraphicsHALDrawHardwareCursor() call was successful, false
otherwise.

GraphicsHALGetDefaultDisplayModeID()
This routine is used to get the default DisplayModeID and DepthMode for a display. This routine
gets called when a new display is connected to the computer. The HAL knows how much VRAM
is available and which DisplayModeIDs it supports, so this call is used to determine the best
settings for a particular display.

GDXErr GraphicsHALGetDefaultDisplayModeID(DisplayCode displayCode,
DisplayModeID *displayModeID, DepthMode *depthMode)

-> displayCode
The connected display.

<- displayModeID
The default DisplayModeID for the connected display.

<- depthMode
The default DepthMode.

July 17, 1995 Copyright Apple Computer, Inc. 19

GDX
Graphics HAL Routines

GraphicsHALGetMaxDepthMode()
This takes a DisplayModeID and returns the maximum DepthMode that is supported by the
hardware. No check is made to determine if the DisplayModeID is valid for the connected
display. The HAL should return an error if the DisplayModeID is not supported or there is not
enough VRAM to support the DisplayModeID.

GDXErr GraphicsHALGetMaxDepthMode(DisplayModeID displayModeID,
DepthMode *maxDepthMode);

-> displayModeID
Get the information for this DisplayModeID.

<- maxDepthMode
Maximum relative bit depth for the DisplayModeID.

GraphicsHALGetModeTiming()
This is used to gather scan timing information for a specific DisplayModeID.

GDXErr GraphicsHALGetModeTiming(DisplayModeID displayModeID,
UInt32 *timingFormat, UInt32 *timingFlags)

-> displayModeID
The DisplayModeID for which the information is desired.

<- timingFormat
Currently, kDeclROMtables is the only valid response for this field.

<- timingFlags
This bit field indicates whether the specified DisplayModeID is valid, safe, and/or the
default for the connected display. The bits are defined as follows:

kModeValid Set if HAL believes the connected display can
support the specified DisplayModeID.

kModeSafe Set if HAL is 100% certain the connected display
can support the specified DisplayModeID.

kModeDefault Set if the specified DisplayModeID is the default for
the connected display.

If the HAL doesn’t believe the specified DisplayModeID is applicable to the
connected display, it should set timingFlags to 0, and the Display Manger will
subsequently attempt to query any Display Modules present in the system.

Copyright Apple Computer, Inc. July 17, 199520

GDX
Graphics HAL Routines

GraphicsHALGetNextResolution()
This routine is used to iterate over the DisplayModeIDs the HAL supports. The Core has taken
care of most of this work, so the HAL simply has to return the next DisplayModeID supported. It
is important to note that all DisplayModeIDs should be reported, regardless of what display is
physically connected.

GDXErr GraphicsHALGetNextResolution(DisplayModeID previousDisplayModeID,
DisplayModeID *displayModeID, DepthMode *maxDepthMode)

-> previousDisplayModeID
If previousDiplayModeID = kDisplayModeIDFindFirstResolution, get the first
supported resolution by the hardware.

Otherwise, previousDiplayModeID contains the DisplayModeID from the previous
call, so report the subsequent DisplayModeID.

<- displayModeID
DisplayModeID of the next display mode following previousDisplayModeID. Set
this to kDisplayModeIDNoMoreResolutions once all supported DisplayModeIDs
have been reported.

<- maxDepthMode
Maximum relative bit depth for the displayModeID.

GraphicsHALGetPages()
This routine reports the number of graphics pages supported for the specified DisplayModeID at
the specified DepthMode.

No attempt should be made to determine whether or not a display capable of being driven with a
raster of type DisplayModeID is physically connected.

GDXErr GraphicsHALGetPages(DisplayModeID displayModeID,
DepthMode depthMode, SInt16 *pageCount)

-> displaymodeID
The DisplayModeID for which the page count is desired.

-> depthMode
The DepthMode for which the page count is desired.

<- pageCount
of pages supported at the specified DisplayModeID and DepthMode. In the event of
an error, pageCount is undefined. This is a counting number, so it is not zero based.

July 17, 1995 Copyright Apple Computer, Inc. 21

GDX
Graphics HAL Routines

GraphicsHALGetPowerState()
The graphics hardware might have the ability to go into some kind of power saving mode. This
call is used to determine the current power state. If the hardware does not support changing power
states, then it can return kGDXErrUnsupportedFunctionality.

GDXErr GraphicsHALGetPowerState(VDPowerStateRec *vdPowerState)

For this routine, the relevant fields indicated by vdPowerState are:

<- powerState
The current power mode: kAVPowerOff, kAVPowerStandby, kAVPowerSuspend, or
kAVPowerOn.

<- powerFlags
Bit field for conveying additional information. Currently the following bits are
defined:

kPowerStateNeedsRefresh Set if VRAM needs to be refreshed after coming out
of the designated power state.

GraphicsHALGetSenseCodes()
This routine is called whenever the state of the sense codes need to be reported. This should only
report the sense code information. No attempt should be made to determine what type of display
is attached here. Moreover, the sense codes should be determined every time this call is made, and
not make use of any previously saved values.

GDXErr GraphicsHALGetSenseCodes(RawSenseCode *rawSenseCode,
ExtendedSenseCode *extendedSenseCode,
Boolean *standardInterpretation)

<- rawSenseCode
For standard sense code hardware, this value is found by instructing the hardware not
to actively drive any of the monitor sense lines, and then reading the state of the
monitor sense lines 2, 1, and 0. (2 is the MSB, 0 the LSB)

<- extendedSenseCode
For standard sense code hardware, the extended sense code algorithm is as follows:
(Note: as described here, sense line ‘A’ corresponds to ‘2’, ‘B’ to ‘1’, and ‘C’ to ‘0’)

•Drive sense line ‘A’ low and read the values of ‘B’ and ‘C’.
•Drive sense line ‘B’ low and read the values of ‘A’ and ‘C’.
•Drive sense line ‘C’ low and read the values of ‘A’ and ‘B’.

In this way, a six-bit number of the form BC/AC/AB is generated.

<- standardInterpretation
If standard sense code hardware is implemented (or the values are coerced to appear
standard) then set this to true. Otherwise, set it to false, and the interpretation for
rawSenseCode and extendedSenseCode will be considered private.

Copyright Apple Computer, Inc. July 17, 199522

GDX
Graphics HAL Routines

GraphicsHALGetSync()
This routine is called to determine the frame buffer controller’s abilities for handling the various
syncing signals, and also to determine the current status of the syncs. If the connected display
supported the Video Electronics Standards Association (VESA) Device Power Management
Standard (DPMS), it would respond to the horizontal and vertical syncs in the following manner:

GDXErr GraphicsHALGetSync(Boolean getHardwareSyncCapability,
VDSyncInfoRec *sync)

-> getHardwareSyncCapability
If true, then report the capability of the hardware. If false, then report the current
state of the sync lines and which channel (if any) that the hardware is syncing on.

For this routine, the relevant fields of the VDSyncInfoRec structure are as follows:

<- csMode
If getHardwareSyncCapability = true, then report the capability of the hardware.
When reporting the capability of the hardware, set the appropriate bits of csMode:

kDisableHorizontalSyncBit Set if HW can disable Horizontal Sync.
kDisableVerticalSyncBit Set if HW can disable Vertical Sync.
kDisableCompositeSyncBit Set if HW can disable Composite Sync.
kSyncOnRedEnableBit Set if HW can sync on red.
kSyncOnGreenEnableBit Set if HW can sync on green.
kSyncOnBlueEnableBit Set if HW can sync on blue.
kNoSeparateSyncControlBit Set if HW cannot enable/disable H, V, C sync

independently. Means that HW only supports the
‘Off’ or ‘Active’ state.

If getHardwareSyncCapability = false, then report the current state of sync lines
and if the hardware is syncing on red, green, or blue. Reporting the ‘current state of
the sync lines’ effectively means ‘report the state of the display.’

To report if the hardware is syncing on red, green or blue, set the following bits
accordingly:

kSyncOnRedEnableBit Set if HW is syncing on red.
kSyncOnGreenEnableBit Set if HW is syncing on green.
kSyncOnBlueEnableBit Set if HW is syncing on blue.

TABLE 5. DPMS Interpretation & Sync Bits

DPMS
State

Vertical
Sync

Horizontal
Sync

Display
State kDisableVerticalSyncBit kDisableHorizontalSyncBit

Active Pulses Pulses Active 0 0

Standby Pulses No Pulses Blanked 0 1

Idle No Pulses Pulses Blanked 1 0

Off No Pulses No Pulses Blanked 1 1

July 17, 1995 Copyright Apple Computer, Inc. 23

GDX
Graphics HAL Routines

GraphicsHALGetVBLInterruptRoutines()
The OSS encapsulates how interrupts are handled by the system. This routine supplies the OSS
with the HAL's interrupt routines that follow the OSS conventions. Hopefully, if the OS changes,
only the OSS will need to change.

GDXErr GraphicsHALGetVBLInterruptRoutines(Boolean *installVBLInterrupts,
Boolean *chainDefault, VBLHandler **halVBLHandler,
VBLEnabler **halVBLEnabler, VBLDisabler **halVBLDisabler,
void **vblRefCon);

<- installVBLInterrupts

true if the HAL's interrupt scheme can match the OSS's scheme. i.e. the HAL lets the OSS handle
most of the interrupt functions.

false if the HAL's interrupt scheme is radically different than the OSS's scheme. The HAL is
responsible for knowing how the OS handles interrupts. (Obviously, this is the escape mechanism for a
poor OSS design.)

If this is false, all other parameters are ignored.

<- chainDefault

If halVBLEnabler or halVBLDisabler is NULL, this is ignored by the OSS for the respective function
since the default enabler/disabler supplied by the OS is used.

If chainDefault = true, and if the halVBLEnabler or halVBLDisabler is not NULL, the OSS will
call the default OS enabler/disabler after the HAL's enabler/disabler is called

If chainDefault = false, and if the halVBLEnabler or halVBLDisabler is not NULL, the OSS will
not call the default OS enabler/disabler after the HAL's enabler /disabler is called. The HAL assumes
the responsibility for enabling/disabling the interrupt source on the motherboard. (Dangerous!)

<- halVBLHandler

The HAL's VBL handler which should clear and reprime the internal interrupt source.

<- halVBLEnabler

If halVBLEnabler = NULL, the default OS enabler will be called and the HAL can ignore things.

If halVBLEnabler != NULL and chainDefault = true, the HAL needs to enable the internal
interrupt source, and the OSS will call the default OS enable routine to enable motherboard interrupts.

If halVBLEnabler != NULL and chainDefault = false, the HAL needs to enable the internal and
motherboard interrupt source. (Dangerous!)

<- halVBLDisabler

If halVBLDisabler = NULL, the default OS enabler will be called and the HAL can ignore things.

If halVBLDisabler != NULL and chainDefault = true, the HAL can choose to disable the internal
interrupt source, and the OSS will call the default OS disable routine to disable motherboard interrupts.

If halVBLDisabler != NULL and chainDefault = false, the HAL can choose to disable the internal
and must disable the external interrupt source. (Dangerous!)

<- vblRefCon

If the HAL needs some data for the interrupt routines, then this opaque pointer can be used to reference
it. The OSS will not attempt to interpret this in any manner.

Copyright Apple Computer, Inc. July 17, 199524

GDX
Graphics HAL Routines

GraphicsHALGetVideoParams()
This routine is used to obtain the rowbytes for a specified DisplayModeID and DepthMode. As a
courtesy to the caller, the relative bit depth is also returned.

GDXErr GraphicsHALGetVideoParams(DisplayModeID displayModeID,
DepthMode depthMode, UInt32 *bitsPerPixel,
SInt16 *rowBytes)

-> displayModeID
The DisplayModeID for which the information is desired.

-> depthMode
The relative bit depth for which the information is desired.

<- bitsPerPixel
Absolute bit depth for the specified DepthMode.

<-> rowBytes
On input, rowbytes contains the horizontal pixels for the specified DisplayModeID.

On output, rowbytes should have the number of bytes between successive rows of
video memory for the specified DisplayModeID and DepthMode.

GraphicsHALGrayCLUT()
This routine sets all the CLUT entries to 50% gray. This is useful so that the pixel depth can be
subsequently changed without introducing screen anomalies, since 50% gray has the same
representations at all bit depths. The 50% gray value will be obtained by using the midpoint value
of the supplied gamma table.

GDIErr GraphicsHALGrayCLUT(const GammaTbl *gamma)

-> gamma
This is a pointer to a gamma table. An acceptable 50% gray value can be obtained by
using the midpoint of each channel’s correction data. It is the responsibility of the
Core to make sure the gamma table is valid, so the HAL does not have to perform any
error checking.

GraphicsHALMapDepthModeToBPP()
This routine is used to map a relative pixel depth (DepthMode) to an absolute pixel depth (bits per
pixel).

GDXErr GraphicsHALMapDepthModeToBPP(DepthMode depthMode,
UInt32 *bitsPerPixel)

-> depthMode
The relative pixel depth

<- bitsPerPixel
Corresponding absolute pixel depth.

July 17, 1995 Copyright Apple Computer, Inc. 25

GDX
Graphics HAL Routines

GraphicsHALModePossible()
This routine checks to see if the hardware is capable of driving the given DisplayModeID at the
indicated DepthMode and page. This does not check to see that the DisplayModeID is valid for the
display type that is physically connected.

Important Note: The GDXErr return value does not indicate whether the mode is possible or not. It
only signifies whether or not the value returned in modePossible was correctly determined. In the
event of an error, modePossible does not contain valid information.

GDXErr GraphicsHALModePossible(DisplayModeID displayModeID,
DepthMode depthMode, SInt16 page, Boolean *modePossible)

-> displaymodeID
The DisplayModeID for which the information is desired.

-> depthMode
The DepthMode for which the information is desired.

-> page
The page for which the information is desired.

<- modePossible
This will be true if the frame buffer can support the desired items, false otherwise.
In the event of an error, modePossible is undefined.

GraphicsHALProgramHardware()
This routine attempts to program the graphics hardware to the desired DisplayModeID,
DepthMode, and page. The HAL is not required to specifically check to see if the inputs are valid,
since it can assume that the checking has been done elsewhere.

GDXErr GraphicsHALProgramHardware(DisplayModeID displayModeID,
DepthMode depthMode, SInt16 page, Boolean *directColor,
char **baseAddress)

-> displayModeID
The desired DisplayModeID.

-> depthMode
The desired relative bit depth.

-> page
The desired page.

<- directColor
true if the desired DepthMode results in the hardware being in a direct color mode,
otherwise it is false. In the event on an error, it is undefined.

<- baseAddress
The resulting base address of the frame buffer’s VRAM. In the event of an error, it is
undefined.

Copyright Apple Computer, Inc. July 17, 199526

GDX
Graphics HAL Routines

GraphicsHALSetCLUT()
This routine will program the CLUT with the specified array of ColorSpecs. Two such arrays are
provided, the original, and a second that has been luminance mapped (if appropriate) and gamma
corrected. It is up to the HAL implementation to decide which array should be applied to the
hardware. Most hardware will use the corrected version.

It is important to note that the positions of the entries refers to logical positions, not physical ones.
At 4 bpp, for example, the entry positions could range from 0, 1, 2,…, 15, even though the
physical positions may not have this number sequence.

No range checking is required, because the caller has already done so.

GDIErr GraphicsHALSetCLUT(const ColorSpec *originalCSTable,
ColorSpec *correctedCSTable, SInt16 startPosition,
SInt16 numberOfEntries, Boolean sequential,
DepthMode depthMode)

-> originalCSTable

This is a pointer to the array of ColorSpecs provided by the caller. This is only provided in the event
that the hardware should not use the correctedCSTable. If any adjustments need to made to it, then
they should be done to a copy. Don’t throw away the const!

-> correctedCSTable

This is essentially a copy of originalCSTable, except that it has been luminance mapped (if
appropriate) and gamma corrected. Most hardware will use this information to set the CLUT. Though it
is unlikely that this information will need to be changed, it is not marked as const in case it is used to
build a special version from the originalCSTable. In that event, the array can be altered as necessary.

During the gamma correction process, the 16-bit representation of each channel in the RGBColor
structure was mapped to an 8-bit (or less) representation.

For example, if prior to correction, an RGBColor was represented as follows:

rgbColor.red = 0xAAAA;
rgbColor.green = 0xBBBB;
rgbColor.blue = 0xCCCC;

After gamma correction it might appear as:

rgbColor.red = 0x00A9;
rgbColor.green = 0x00B6;
rgbColor.blue = 0x00C4;

Additionally, regardless of the size of the originalCSTable array, correctedCSTable points to an
array of ColorSpecs with 256 entries.

-> startPosition (0 based) Starting point in the array.

-> numberOfEntries (0 based) This is the number of entries to be set.

-> sequential

If false, then the value field of the ColorSpec should be inspected to see what logical position should
be set. If true, then the array index indicates what logical position should be set.

-> depthMode

The relative bit depth. This is provided so that the HAL can decide how to map the logical entry
positions to the physical entry positions.

July 17, 1995 Copyright Apple Computer, Inc. 27

GDX
Graphics HAL Routines

GraphicsHALSetHardwareCursor()
This routine is called to setup the hardware cursor and determine if whether the hardware can
support it. The HAL should remember whether this call was successful for subsequent
GetHardwareCursorDrawState() or DrawHardwareCursor() calls, but should NOT change the
cursor's X or Y coordinates, nor its visible state.

GDXErr GraphicsHALSetHardwareCursor(const GammaTbl *gamma,
Boolean luminanceMapping, void *cursorRef)

-> gamma
Current gamma table to correct cursor colors with, if the HAL can apply gamma
correction.

-> luminanceMapping
This will be true if the Core had luminance mapping enabled and it was in an
indexed color mode. If true, the HAL should luminance map the cursor CLUT even
if the hardware cursor is a super-duper cursor capable of direct color. This is because
the hardware cursor should look like the software cursor it is replacing.

-> cursorRef
Opaque data to be handed to VSLPrepareCursorForHardwareCursor().

GraphicsHALSetPowerState()
The graphics hardware might have the ability to go into some kind of power saving mode. This
call is used to change the current power state. If the hardware does not support changing power
states, then it can return kGDXErrUnsupportedFunctionality.

GDXErr GraphicsHALGetPowerState(VDPowerStateRec *vdPowerState)

For this routine, the relevant fields indicated by vdPowerState is:

-> powerState
The desired power mode: kAVPowerOff, kAVPowerStandby, kAVPowerSuspend, or
kAVPowerOn.

<- powerFlags
Bit field for reporting special conditions.

kPowerStateNeedsRefresh Set if VRAM needs to be refreshed after coming out
of the designated power state.

Copyright Apple Computer, Inc. July 17, 199528

GDX
Graphics HAL Routines

GraphicsHALSetSync()
This routine is used set the state of the hardware’s sync lines. If the connected display conformed
to DPMS, then it would respond as shown in Table 5, “DPMS Interpretation & Sync Bits,” on
page 22.

GDXErr GraphicsHALSetSync(UInt8 syncBitField, UInt8 syncBitFieldValid)

-> syncBitField
Bit field indicating which of the sync bits need to be disabled or enabled:

kDisableHorizontalSyncBit Set if HW should disable horizontal sync.
kDisableVerticalSyncBit Set if HW should disable vertical sync.
kDisableCompositeSyncBit Set if HW should disable composite sync.
kSyncOnRedEnableBit Set if HW should sync on red.
kSyncOnGreenEnableBit Set if HW should sync on green.
kSyncOnBlueEnableBit Set if HW should sync on blue.

-> syncBitFieldValid
This is a mask of the bits in syncBitField which are valid.

GraphicsHALSupportsHardwareCursor()
This call is used to determine if the HAL supports a hardware cursor.

GDXErr GraphicsHALSupportsHardwareCursor(Boolean *supportsHardwareCursor)

<- supportsHardwareCursor
true if HAL supports a hardware cursor, false otherwise.

GraphicsHALPrivateControl()
This routine accepts private control calls, or control calls which the Core does not process. If the
HAL knows what to do with the privateControlCode, it should deal with it accordingly.

OSErr GraphicsHALPrivateControl(void *genericPtr,
SInt16 privateControlCode)

-> genericPtr
Points to the data structure that the HAL needs for this control call. Should be cast to
appropriate data type if internal routine is invoked.

-> privateControlCode
The private csCode that the HAL might know what to do with.

July 17, 1995 Copyright Apple Computer, Inc. 29

GDX
Graphics HAL Routines

GraphicsHALPrivateStatus()
This routine accepts private status calls, or status calls which the Core does not process. If the
HAL knows what to do with the privateStatusCode, it should deal with it accordingly.

OSErr GraphicsHALPrivateStatus(void *genericPtr,
SInt16 privateStatusCode)

-> genericPtr
Points to the data structure that the HAL needs for this control call. Should be cast to
appropriate data type if internal routine is invoked.

-> privateStatusCode
The private csCode that the HAL might know what to do with.

Copyright Apple Computer, Inc. July 17, 199530

GDX
Changing the Core

Changing the Core
Though GDX is designed so that no changes to the Core or OSS are required when developing a
HAL, here are some instances in which changes might be required:

Gamma Tables with More than 8 Bits
The Core only support gamma tables which have 8 bits or less of correction data per entry. It does
not support 16 or 12 bit gamma tables. In the event that support for more than 8 bits is desired, the
following changes will be required:

GraphicsCoreControl.c

GraphicsCoreSetGamma()
Remove the check for 8 bits or less.

Change the calculation of the tableSize from:

tableSize = sizeof(GammaTbl) // fixed size header
+ clientGamma->gFormulaSize // add formula size
+ clientGamma->gChanCnt * clientGamma->gDataCnt // assume 1 byte/entry
- 2; // correct gFormulaData[0] counted twice

to:

dataSize = (clientGamma->gDataWidth + 7) DIV 8;

tableSize = sizeof(GammaTbl) // fixed size header
+ clientGamma->gFormulaSize // add formula size
+ clientGamma->gChanCnt * clientGamma->gDataCnt * dataSize
- 2; // correct gFormulaData[0] counted twice

Change the copying of the correction data from:

for (entryLoop = 0 ; entryLoop < gammaTable->gDataCnt ; entryLoop++)
*newData++ = *clientData++;

to:

for (entryLoop = 0 ; entryLoop < (gammaTable->gDataCnt * dataSize) ; entryLoop++)
*newData++ = *clientData++;

GraphicsCoreUtils.c

GraphicsUtilSetEntries()
This is where gamma correction is applied to the values about to be written to the
CLUT. The changes required here are not quite as straight forward as above, but
can be stated succinctly: allow 1 or 2 bytes of correction data per entry.

HAL Interface
In GraphicsHALSetCLUT(), which accepts a gamma corrected ColorSpec table, a
parameter will have to be added to specify how many bits where used for correction. This
will allow the HAL to chose the correct bits from each 16 bit RGBColor.

July 17, 1995 Copyright Apple Computer, Inc. 31

GDX
Changing the Core

Adding New DisplayModeIDs
If the existing DisplayModeIDs defined in GraphicsPriv.h are not sufficient to describe the
rasters your hardware can produce, then you will need to define additional ones.

GraphicsPriv.h
Add the new DisplayModeID to the end of the existing enumeration.

GraphicsCore.c

GraphicsCoreInitPrivateData()
Add the new DisplayModeID to the localTable, describing its resolution and
scan rate.

GraphicsCoreStatus.c

GraphicsCoreGetModeTiming()
Add the new DisplayModeID to the timingModeTable, describing its timing data.

Supporting Less Than 256 Colors
As computers get faster and faster, the burden of supporting high pixel depths has lessened.
However, from a programing standpoint, the effort to support lower pixel depths requires as much
programing (and testing) as supporting higher pixel depths. GDX only supports 8, 16, and 32 bits
per pixel. However, the modification to support lesser depths is quite simple:

GraphicsCoreStatus.c

GraphicsCoreGetVideoParams()
Add the appropriate information in the switch statement for 1, 2, and 4 bits per
pixel.

Copyright Apple Computer, Inc. July 17, 199532

GDX
Release Notes

Release Notes
This is the change history of GDX.

Version 1.0
May 23, 1995. Initial release.

Version 1.0.1
July 17, 1995. This is an incremental release incorporating minor updates.

New Features and Enhancements
The following items are incorporated into GDX 1.0.1:

Default Gamma Applied at Start-up
Previously, a linear gamma table was applied to the hardware during the early
stages of booting. Now, a default gamma table is applied, based on the type of
display connected.

Better Support for Hardware Which Doesn’t Generate Interrupts
A small number of graphics devices may not actually generate hardware VBL
interrupts. If so, the HAL can simulate a VBL by using an interrupt timer2. When
the timer goes off, the HAL can call GraphicsOSSDoVSLInterruptService() to
allow the OS to service items in its VBL task queue.

Files Changed
This is the list of the items that were changed for the 1.0.1 releases:

GraphicsCore.c
In GraphicsOpen(), a default gamma table is applied instead of a linear one. Also,
some slight changes where made to provide better support for replacing drivers
that don’t fully support the kReplace/kSuperseded commands.

GraphicsCoreControl.c
In GraphicsCoreSetSync(), reflect the fact that syncBitFieldValid is now an
input only when calling GraphicsHALSetSync().

GraphicsCoreStatus.c
In GraphicsCoreGetConnection(), now reporting new constants for fixed
frequency 16”, 19” and 21” color displays.

GraphicsCoreUtilities.c & GraphicsCoreUtilities.h
Added a new function GraphicsUtilGetDefaultGammaTableID().

GraphicsOSS.c & GraphicsOSS.h
Added a new function GraphicsOSSDoVSLInterruptService().

2. Designing PCI Cards and Drivers for Power Macintosh Computers, page 272.

July 17, 1995 Copyright Apple Computer, Inc. 33

GDX
Release Notes

GraphicsHALTemplate.c
In GraphicsHALInitPrivateData(), added a detailed comment about the
nuances of replacing a driver.

In GraphicsHALGetModeTiming(), now setting timingFormat = kDeclROMTables
prior to any error checking.

In GraphicsHALSetSync(), update to reflect that syncBitFieldValid is now
only an input.

GraphicsHALTemplateEZ.c
Throughout this file, the types long, unsigned long, short, unsigned short,
etc. were replaced with SInt32, UInt32, SInt16, UInt16, etc.

In GraphicsHALInitPrivateData(), added a detailed comment about the nuances of
replacing a driver.

In GraphicsHALGetModeTiming(), now setting timingFormat = kDeclROMTables
prior to any error checking.

In GraphicsHALSetSync(), update to reflect that syncBitFieldValid is now
only an input. Also, syncBitFieldValid is examined more closely to check for
error conditions.

In GraphicsHALGetVideoParams(), fixed a typo for the case of 32 bits per pixel in
which ‘<< 1’ was typed instead of ‘<< 2’.

