
develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 1

The New Device Drivers:
Memory Matters

MARTIN MINOW

If you’re writing a device driver for the new PCI-based Macintosh
computers, you need to understand the relationship of the memory an
application sees to the memory the hardware device sees. The support
for these drivers (which will also run under Copland, the next
generation of the Mac OS) includes the PrepareMemoryForIO function,
as discussed in my article in Issue 22. This single coherent facility
connects the application’s logical view of memory to the hardware
device’s physical view. PrepareMemoryForIO has proven difficult to
understand; this article should help clarify its use.

If you managed to struggle through my article “Creating PCI Device Drivers” in
develop Issue 22 without falling asleep, you probably noticed that it got rather vague
toward the end when I tried to describe how the PrepareMemoryForIO function
works. There are a few reasons for this: the article was getting pretty long and
significantly overdue (the excuse), and I really didn’t understand the function that
well myself (the reason). Things are a bit better now, thanks to the enforced boredom
of a very long trip, the need to teach this algorithm to a group of developers, and
some related work I’m doing on the SCSI interface for Copland.

My previous article showed the simple process of preparing a permanent data area
that might be used by a device driver to share microcode or other permanent
information with a device. This article attacks a number of more complex problems
that appear when a device performs direct memory access (DMA) transfers to or from
a user data area. It also explores issues that arise if data transfers are needed in
situations where the device’s hardware cannot use DMA.

The sample code excerpted here is included in its entirety on this issue’s CD. It’s a
later version of the sample device driver that accompanied the article on Issue 22’s
CD. Of course, you’ll need a hardware device to use the driver and updated headers
and libraries to recompile it. The DMA support library files DMATransfer.c and
DMATransfer.h contain several functions that interact with PrepareMemoryForIO.
The revised sample device driver on the CD shows how this library can be

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 2

incorporated into a complete device driver for PCI-based Power Macintosh
computers.

I’ll assume that you’ve read my earlier article (which you can look at on the CD if
you don’t have it in print). That article gives an overview of the new device driver
architecture and touches on the PrepareMemoryForIO function, but for a
comprehensive description of the architecture and details about the function, see
Designing PCI Cards and Drivers for Power Macintosh Computers (available from
APDA). I’ll also assume that you’re reasonably familiar with the basic concepts of a
virtual memory operating system, including memory pages and logical and physical
addresses; for a brief review, see “Virtual Memory on the Macintosh.”

VIRTUAL MEMORY ON THE
MACINTOSH
BY DAVE SMITH

Virtual memory on the Macintosh has two
major functions: it increases the size of
RAM transparently by moving data back
and forth from a disk file, and it remaps
addresses. Of the two, remapping
addresses is more relevant to device driver
developers (and, incidentally, much more of
a headache).

When Macintosh virtual memory is turned
on, the processor and the code running on
the processor always access logical
addresses. A logical address is used the
same way as a physical address; however,
the Memory Management Unit (MMU)
integrated into the processor remaps the
logical address on the fly to a physical
address if the data is resident in memory. If
the data isn’t resident in memory, a page
fault occurs; this requires reading the
desired data into memory from the disk and
possibly writing other, unneeded data from
memory to the disk to free up space in
memory. (This explanation is slightly
simplified, of course.)

Since it would be impractical to have a
mapping for each byte address, memory is

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 3

subdivided into blocks called pages. A page
is the smallest unit that can be remapped.
Memory is broken into pages on page
boundaries, which are page-size intervals
starting at 0. The remapping allows physical
pages that are not actually contiguous in
physical memory to appear contiguous in
the logical address space.

The Macintosh currently uses a page size
of 4096 bytes; however, future hardware
may use a different page size. You should
call the GetLogicalPageSize function in the
Driver Services Library to determine the
page size.

DMA is performed on physical addresses
since the MMU of the processor is not on
the address bus that devices use. One of
the functions of PrepareMemoryForIO is to
translate logical addresses into physical
addresses so that devices can copy data to
and from the appropriate buffers.

Many virtual memory systems provide
multiple logical address spaces to prevent
applications from interfering with each
other. It appears to each application that it
has its own memory system, not shared
with any other application. The Macintosh
currently has only one logical address
space, but future releases of the Mac OS
will support multiple logical address spaces.

PREPARING MEMORY FOR A USER DATA
TRANSFER
At the beginning of a user data transfer, the device driver calls PrepareMemoryForIO
to determine the physical addresses of the data and to ensure the coherency of
memory caches; at the end of the transfer, it calls the CheckpointIO function to
release system resources and adjust caches, if necessary. PrepareMemoryForIO
performs three functions that are necessary for DMA transfers: it locates data in
physical memory; it ensures that the data locations contain the actual data needed or

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 4

provided by the device; and, with the help of CheckpointIO, it maintains cache
coherency.

Your device driver can call PrepareMemoryForIO from task level, from a software
interrupt, or from the mainline driver function (that is, DoDriverIO). CheckpointIO
can be called from task level, from a software interrupt, or from a secondary interrupt
handler. (For more on the available levels of execution, see “Execution Levels for
Code on the PCI-Based Macintosh.”) In a short while, we’ll see how the fact that
these functions must be called from particular points affects the transfer process.

EXECUTION LEVELS FOR CODE
ON THE PCI-BASED MACINTOSH
BY TOM SAULPAUGH

Native code on PCI-based Macintosh
computers may run in any of four execution
contexts: software interrupt, secondary
interrupt, primary interrupt, or task. All driver
code contexts have access to a driver’s
global data. No special work (such as
calling the SetA5 function on any of the
68000 processors) is required to access
globals from any of these contexts.

A software interrupt routine runs within the
execution environment of a particular task.
Running a software interrupt routine in a
task is like forcing the task to call a specific
subroutine immediately. When the software
interrupt routine exits, the task resumes its
activities. A software interrupt routine
affects only the task in which it’s run; the
task can still be preempted so that other
tasks can run. Those tasks, in turn, can run
their own software interrupt routines, and a
task running a software interrupt routine can
be interrupted by a primary or secondary
interrupt handler. All software interrupt
routines for a particular task are serialized;
they don’t interrupt each other, so there’s
no equivalent to the 680x0 model of nested
primary interrupt handlers. A software
interrupt routine is analogous to a Posix
signal or an Windows NT asynchronous

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 5

procedure call. A software interrupt routine
running in the context of an application,
INIT, or cdev doesn’t have access to a
driver’s global data.

The secondary interrupt level is the
execution context provided to a device
driver’s secondary interrupt handler. In this
context, hardware interrupts are enabled
and additional interrupts may occur. A
secondary interrupt handler is a routine that
runs in privileged mode with primary
interrupts enabled but task switching
disabled. All secondary interrupt handlers
are serialized, and they never interrupt
primary interrupt handlers; in other words,
they resemble primary interrupt handlers
but have a lower priority. Thus, a secondary
interrupt handler queued from a primary
interrupt handler doesn’t execute until the
primary interrupt handler exits, while a
secondary interrupt handler queued from a
task executes immediately. A secondary
interrupt handler is analogous to a deferred
task in Mac OS System 7 or a Windows NT
deferred procedure call. Secondary
interrupt handlers, like primary interrupt
handlers, should be used only by device
drivers. Never attempt to run application,
INIT, or cdev code in this context or at
primary interrupt level.

The primary interrupt level (also called
hardware interrupt level) is the execution
context in which a device’s primary interrupt
handler runs. Page faults are not allowed in
this context. Here, primary interrupts of the
same or lower priority are disabled, the
immediate needs of the device that caused
the interrupt are serviced, and any actions
that must be synchronized with the interrupt
are performed. The primary interrupt
handler is the routine that responds directly

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 6

to a hardware interrupt. It usually satisfies
the source of the interrupt and queues a
secondary interrupt handler to perform the
bulk of the servicing.

The task level (also called non-interrupt
level) is the execution environment for
applications and other programs that don’t
service interrupts. Page faults are allowed
in this context.

If the data is currently in physical memory, PrepareMemoryForIO locks the memory
page containing the data so that it cannot be relocated. If the data isn’t in physical
memory, PrepareMemoryForIO calls the virtual memory subsystem and a page fault
occurs, reorganizing physical memory to make space in it for the data. After the
transfer finishes, CheckpointIO releases the memory page locks.

PrepareMemoryForIO and CheckpointIO perform an important function related to the
use of caches. A cache is a private, very fast memory area that the CPU can access at
full speed. The processor runs much faster than its memory runs; to keep the
processor running at its best speed, the CPU copies data from main memory to a
cache. Both the PowerPC and the Motorola 68040 processors support caching,
although their implementation details differ. The important point is that a value of a
data item in memory can differ from the value for the same data item in the cache.
Furthermore, you have to tell the PowerPC or the Motorola processor to synchronize
the cache in memory.

Normally, the processor hardware prevents cache incoherence from causing data
value problems. However, for some processor architectures, DMA transfers access
main memory independently of the processor cache. PrepareMemoryForIO (for write
operations) and CheckpointIO (for read operations) synchronize the processor cache
with main memory. This means that DMA write operations write the valid contents of
memory, and the processor uses the valid data just read from the external device.

As noted earlier, some devices cannot perform DMA transfers; instead, they use
programmed I/O, in which the main processor moves data between logical addresses
and the device. PrepareMemoryForIO also returns the logical address that such
devices must use.

A SIMPLE MEMORY PREPARATION EXAMPLE
Listing 1 presents a very simple example that shows how a memory area may be
prepared for I/O.

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 7

To simplify listings,
I’ve often omitted data type casting. Think of all data types as
unsigned 32-bit integers. Because of this omission, you can’t
implement these listings as written, but should base your code on the
sample on this issue’s CD.

Listing 1
Simplified memory preparation

#define kBufferSize 512

#define kMapCount 2

/* The buffer your application is preparing */

UInt8 gMyBuffer[kBufferSize];

IOPreparationTable gIOTable;

/* Logical & physical mapping tables, filled in by PrepareMemoryForIO */

LogicalAddress gLogicalMapping[2];

PhysicalAddress gPhysicalMapping[kMapCount];

void SimpleMemoryPreparation(void)

{

OSStatus osStatus;

gIOTable.options =

(kIOMinimalLogicalMapping | kIOLogicalRanges | kIOIsInput);

gIOTable.state = 0;

gIOTable.addressSpace = kCurrentAddressSpaceID;

gIOTable.granularity = 0;

gIOTable.firstPrepared = 0;

gIOTable.lengthPrepared = 0;

gIOTable.mappingEntryCount = kMapCount;

gIOTable.logicalMapping = gLogicalMapping;

gIOTable.physicalMapping = gPhysicalMapping;

/* Set the logical address to be mapped and the length of the area

to be mapped. */

gIOTable.rangeInfo.range.base = (LogicalAddress) gMyBuffer;

gIOTable.rangeInfo.range.length = sizeof gMyBuffer;

/* Call PrepareMemoryForIO and process the preparation. */

do {

osStatus = PrepareMemoryForIO(&gIOTable);

if (osStatus != noErr)

break;

MyApplicationDMARoutine(...);

CheckpointIO(gIOTable.preparationID, kNilOptions);

gIOTable.firstPrepared += gIOTable.lengthPrepared;

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 8

} while ((gIOTable.state & kIOStateDone) == 0);

}

PrepareMemoryForIO is called with one parameter, an IOPreparationTable. Among
other things, this table specifies one or more address ranges to prepare (only one, in
this example). Each address range is indicated by a starting logical address and a
count of the number of bytes in the range.

The IOPreparationTable also points to a logical mapping table and a physical
mapping table (gLogicalMapping and gPhysicalMapping in our example). The
physical mapping table is where PrepareMemoryForIO returns the page addresses
that the driver can use to access the client’s buffer during DMA. The logical mapping
table is the list of addresses that the driver must use for doing programmed I/O.

The simplest IOPreparationTable options — kIOMinimalLogicalMapping and
kIOLogicalRanges — are set in this example. The kIOMinimalLogicalMapping flag
indicates that only the first and last logical pages need to be mapped, while the
kIOLogicalRanges flag indicates that the data (here, the gMyBuffer vector) consists
of logical addresses.

Since kIOMinimalLogicalMapping is set, the logical mapping table requires two
entries for each address range; we have only one range, so our logical mapping table
needs a total of two entries. The physical mapping table requires one entry per page;
we set this to two entries because our 512-byte buffer may cross a page boundary.
When writing your driver, you can use the GetMapEntryCount function in the DMA
support library to compute the actual number of physical mapping table entries
needed for an address range.

If the preparation is successful, the driver performs the DMA transfer and
checkpoints the transfer to release its internal operating system structures.
PrepareMemoryForIO sets the kIOStateDone flag in the IOPreparationTable’s state
field if the entire area has been transferred.

If PrepareMemoryForIO cannot prepare the entire area, it doesn’t set the
kIOStateDone flag in the state field, and your driver needs to call
PrepareMemoryForIO again with the firstPrepared field updated to reflect the number
of bytes prepared in this range of memory. The recall must be done from a software
interrupt routine; it cannot be performed from an interrupt handler.

MORE ABOUT MAPPING
Address ranges to be prepared by PrepareMemoryForIO may cross a page boundary
or boundaries and thus may take up two or more pages in physical memory. Figure 1

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 9

shows what the physical mapping looks like for two address ranges: the first is more
than two pages long and crosses two page boundaries, while the second is an even
page long and crosses one page boundary.

Your program’s

logical address space

Physical

address space

Physical

mapping table

0x0400

0x3000

0x2000

0x6400

0x5000

0

0x2000

0x1000

0x3000

0x4000

0x5000

0x6000

0

0x2000

0x1000

0x3000

0x4000

0x5000

0x6000

Address ranges
Starting

address

Count

(in bytes)

0x0400

0x4400

0x2800

0x1000

Figure 1
Mapping to multiple pages

Each address range maps to an area in physical memory that can be thought of as
having up to three sections: the beginning page, the middle pages, and the ending
page.

• Every address range produces a beginning page. Your data may
start at an offset into this page, depending on the starting address
of the range. This is true for both the address ranges in Figure 1.
The address in the mapping table for the beginning page points to
the beginning of your data in the page. Notice that for the second
address range in our example, the logical address for the start of
the data, 0x4400, maps to the physical address 0x6400.

• If your address range maps to three or more pages, some number
of middle pages are completely filled with your data. The first
address range in Figure 1 illustrates this.

• If your address range maps to two or more pages, the data on the
ending page begins at the beginning of the page, but it may cover
only part of the page, depending on the count in your address
range.

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 10

Unfortunately, there’s no simple one-to-one correspondence between entries in the
physical and logical mapping tables and the address range (or ranges) that a driver or
application specifies when it calls PrepareMemoryForIO. Because of this, the
function that controls a driver’s DMA or programmed I/O process must iterate
through the input address ranges and output mapping tables to compute the address
and size of each data transfer segment. As you’ll see when you look at the DMA
support library on this issue’s CD, this turns out to be an extremely complex process.

The DMA support library routines iterate through the address ranges and mapping
tables, matching the two together to provide each data transfer segment in order. The
library recognizes when two physical pages are contiguous and extends the data
transfer length as far as possible.

When called for the example in Figure 1, the DMA support library returns five
physical transfer segments (this example doesn’t demonstrate logical alignment
problems). To learn how the algorithm works, I’d recommend that you work out the
actual addresses and segment transfer lengths using pencil and paper. (When you look
at the DMA support library in DMATransfer.c, you’ll see a more mechanized
approach that I strongly recommend if you’re developing complex software.)

THE DATA TRANSFER PROCESS
Figure 2 illustrates how a data transfer might proceed through the system. It shows
the five steps involved in a transfer that requires partial preparation of a large chunk
of data that can’t be prepared in one gulp. The diagram also shows the proper
execution levels for each step. As we’ll see later, the process is considerably simpler
without partial preparation.

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 11

Task

(Non-Interrupt)

Primary

Interrupt

1. Call PrepareMemoryForIO.

Start DMA operation.

Wait for interrupt.

2. Queue secondary interrupt.

Secondary

Interrupt

3. Call CheckpointIO.

Call SendSoftwareInterrupt.

4. Call PrepareMemoryForIO.

CallSecondaryInterruptHandler2.

5. Restart DMA operation.

Time

Figure 2
The progress of a data transfer with partial preparation

Here’s a breakdown of the steps in the data transfer:

1. The transfer starts at task (application or driver mainline) level.
The driver must call PrepareMemoryForIO from task level
because PrepareMemoryForIO may require virtual memory page
faults and has to reserve system memory for its own tables. After
memory is prepared, the driver examines the logical and physical
mapping tables and starts the DMA operation. It then waits for an
interrupt. (Of course, the actual driver behavior depends on your
hardware.)

2. When the driver’s primary interrupt handler runs, it determines
that another DMA transfer is needed, but that no more data is
prepared (because the number of bytes transferred equals the value
in the lengthPrepared field in the IOPreparationTable). Since
another partial preparation must be performed, the primary
interrupt handler queues a secondary interrupt and exits the
primary interrupt. The device is in a “frozen” state: it either has
data available (to read) or needs more data (to write) but cannot
proceed at this time. I’ll talk more about this problem later.

3. The driver’s secondary interrupt handler starts. It examines its
internal state and determines that a DMA transfer has been

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 12

completed. It calls CheckpointIO with the kMoreIOTransfers bit to
complete the current partial transfer. Since another data transfer
will be needed, it begins the process of recalling
PrepareMemoryForIO by calling SendSoftwareInterrupt to queue
a software interrupt routine. Then, with nothing more to do, the
secondary interrupt handler exits. The device is still frozen.

4. The software interrupt routine runs. It updates the firstPrepared
field and calls PrepareMemoryForIO to prepare the next segment
(range of memory). This may require a page fault, causing the
virtual memory subsystem to move data between main memory
and the virtual memory disk file. When PrepareMemoryForIO
finishes, the logical and physical mapping tables are updated, and
the lengthPrepared field contains the number of bytes that can be
transferred in the next segment. The software interrupt routine
calls a secondary interrupt handler (which is equivalent to queuing
the handler).

5. The sequence returns to the secondary interrupt handler, and the
DMA operation is restarted. The partial preparation algorithm
continues at step 2, progressing through steps 2 to 5 until all data
is transferred.

The device is frozen in steps 2 to 5; it cannot proceed on the current I/O request until
the partial preparation completes. But note that the page fault handler in step 4 may
require disk I/O; consequently, any device that can service the page fault device (such
as the SCSI bus manager) cannot support partial preparation. Writers of disk drivers
and other SCSI-based interface software must understand these restrictions.

A CLOSER LOOK: SOME EXAMPLES
Unfortunately, as a result of some necessary constraints of PrepareMemoryForIO, the
code in Listing 1 isn’t usable in an actual device driver when the data transfer results
in the interruption of the hardware device by the CPU. In this section, I’ll return to
the five-step transfer process outlined above, showing how a driver interacts with
memory preparation. I’ll illustrate the process using the sample preparation shown in
Figure 3. Here your application or driver created a simple IOPreparationTable for an
application data buffer that’s 512 bytes long and begins at logical address
0x01B89F80.

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 13

512 bytes

Your application

memory

0x01B89F80

Data buffer

Values set by

your program

Values set by

PrepareMemoryForIO

0x01B89F80

0x01B8A000

0x0077EF80

0x0077F000

IOPreparationTable

options

state

(kIOStateDone)

addressSpace

granularity

(0)

firstPrepared

(0)

lengthPrepared

(512)

mappingEntryCount

(2)

logicalMapping

physicalMapping

preparationID

rangeInfo.range.base

(0x01B89F80)

rangeInfo.range.length

(512)

Figure 3
A simple IOPreparationTable
<<Reviewers: Please verify that what's marked as set by your program vs.
PrepareMemoryForIO is correct; it doesn't agree with the PCI Driver documentation>>

Our example is a simple case, in which the transfer process consists of only three
steps:

1. The buffer in our example crosses a physical page boundary, so
two mapping entries are needed. PrepareMemoryForIO fills in the
logical and physical mapping tables and sets the lengthPrepared
field. Since it has successfully prepared the entire buffer, it sets the
kIOStateDone bit in the state field. After your driver uses the
NextPageIsContiguous macro in DMATransfer.h, to determine
that the two physical mapping entries are contiguous, it puts the
first physical address, 0x0077EF80, and the entire byte count into
the DMA registers and starts the device.

2. When the transfer finishes, the driver’s primary interrupt handler
runs. It determines that the transfer has finished and queues a
secondary interrupt to complete processing.

3. The driver’s secondary interrupt handler calls CheckpointIO to
complete the transfer. It then completes the entire device driver
operation by calling IOCommandIsComplete.

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 14

This example requires a single DMA transfer; however, if the physical mapping
entries are discontiguous, the first two steps of the process become more complicated:

1. After preparation, your driver determines that the two physical
mapping entries are not contiguous. Therefore, it puts the first
physical address, 0x0077EF80, and the first byte count (128 bytes
in this case) into the DMA registers and starts the DMA operation.

2. When the transfer finishes, the driver’s primary interrupt handler
runs. It determines that the transfer has finished; however, another
physical transfer is needed and can be performed, so it restarts the
DMA operation with the new physical address and the remaining
byte count (384 bytes in this case), restarts the DMA operation,
and exits the primary interrupt handler.

After this DMA operation finishes, the operating system reenters
the primary interrupt handler. Upon the completion of the entire
transfer, the primary interrupt handler queues the secondary
interrupt handler to finish the entire operation.

The example in Figure 3 requires a single preparation, but in some cases
PrepareMemoryForIO cannot prepare the entire area and so requires partial
preparation. To illustrate this, I’ll change a few parameters in the IOPreparationTable:

• The logical address of the buffer is 0x01B89F80.

• The transfer length is 20480 bytes.

• The transfer granularity is 8192 bytes. This value limits the length
of the longest transfer.

PrepareMemoryForIO performs partial preparation of the data three times, as shown
in Table 1.

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 15

Table 1
Three partial preparations

Logical Mapping Physical Mapping Byte Count
First Preparation 0x01B9F80 0x0077EF80 4224

0x01BA000 0x0077F000

Second Preparation 0x01B8B000 0x00780000 8192
0x01B8C000 0x00782000

Third Preparation 0x01B8D000 0x00783000 8064
0x01B8E000 0x00784000

Because of partial preparation, the entire transfer requires the following three
repetitions of the five-step process:

1. The driver prepares the first DMA operation for physical address
0x0077EF80, length 4224. After it interrupts, the primary interrupt
handler queues a secondary interrupt that, when run, calls
CheckpointIO and causes a software interrupt routine to run. This
software interrupt routine updates the firstPrepared field from 0 to
4224 (the amount previously prepared) and calls
PrepareMemoryForIO for the next partial preparation. When
PrepareMemoryForIO finishes, the software interrupt routine calls
the secondary interrupt handler.

2. The secondary interrupt starts the next transfer for physical
address 0x00780000, length 8192. When this transfer finishes, the
primary interrupt queues the secondary interrupt, which, in turn,
calls CheckpointIO, and causes the software interrupt routine to
run a second time. This task calls PrepareMemoryForIO for the
next preparation and recalls the secondary interrupt handler.

3. The secondary interrupt handler starts the final transfer. When it
finishes, the driver completes the entire transfer.

LOGICAL DATA TRANSFER: PROGRAMMED I/O
Some hardware devices do not support DMA but rather use programmed I/O, in
which the main processor moves data between program logical addresses and the
device. Programmed I/O is also needed when the device’s DMA hardware cannot use
DMA in a particular situation or context — for example, a one-byte transfer.

Some hardware devices cannot transfer data that isn’t properly aligned to some
specific hardware-specific address value. For example, the DMA controller on the

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 16

Power Macintosh 8100 requires addresses to be aligned to an 8-bit boundary; it can
only transfer to physical addresses in which the low-order three bits are set to 0. Also,
data transfers must be a multiple of 8 bytes. To handle such cases, the DMA support
library returns the logical addresses of unaligned segments so that a device driver can
transfer them with programmed I/O operations.

This restriction on logical alignment means that before starting a DMA transfer, the
driver must look at the low-order bits of the physical address and the low-order bits
of the count. The actual data transfer process is illustrated by the code in Listing 2,
which presumes 8-byte alignment and ignores a few additional complications. The
ugly stuff is in the ComputeThisSegment function, which examines the
IOPreparationTable and handles multiple address ranges. The DMA support library
simplifies the procedure, as we’ll see in the next section.

Listing 2
Data transfer with logical alignment

LogicalAddress thisLogicalAddress;

PhysicalAddress thisPhysicalAddress;

ByteCount thisByteCount, segmentByteCount;

ComputeThisSegment(&thisLogicalAddress, &thisPhysicalAddress,

&thisByteCount);

if ((thisPhysicalAddress & 0x07) != 0) {

/* Pre-alignment logical transfer */

segmentByteCount = 8 - (thisPhysicalAddress & 0x07);

if (segmentByteCount > thisByteCount)

segmentByteCount = thisByteCount;

DoLogicalTransfer(thisLogicalAddress, segmentByteCount);

thisByteCount -= segmentByteCount;

thisLogicalAddress += segmentByteCount;

thisPhysicalAddress += segmentByteCount;

}

if (thisByteCount > 0) {

/* Aligned physical transfer */

segmentByteCount = thisByteCount & ~0x07;

if (segmentByteCount != 0) {

DoPhysicalTransfer(thisPhysicalAddress, segmentByteCount);

thisByteCount -= segmentByteCount;

thisLogicalAddress += segmentByteCount;

}

}

if (thisByteCount != 0) {

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 17

/* Post-alignment logical transfer */

DoLogicalTransfer(thisLogicalAddress, thisByteCount);

}

PUTTING IT ALL TOGETHER
Here we’ll take a look at how your driver can use several of the functions in the DMA
support library to simplify dealing with PrepareMemoryForIO.

Before you can call any of the functions in the DMA support library to make a partial
preparation, you need to call InitializePrepareMemoryGlobals (Listing 3), which
creates a software interrupt routine.

Listing 3
Initialization for DMA

SoftwareInterruptID gNextDMAInterruptID;

/* This function is called once, when your driver starts. */

OSErr InitializePrepareMemoryGlobals(void)

{

OSErr status;

gLogicalPageSize = GetLogicalPageSize();

gPageMask = gLogicalPageSize - 1;

status = CreateSoftwareInterrupt(

PrepareNextDMATask, /* Software interrupt routine */

CurrentTaskID(); /* For my device driver */

NULL, /* Becomes the p1 parameter */

TRUE, /* Persistent software interrupt */

&gNextDMAInterruptID); /* Result is the task ID. */

return (status);

}

The key function in the DMA support library is PrepareDMATransfer. This function
understands the complexities of multiple address ranges as well as how to combine
several physical data areas into a single longer contiguous data transfer. Also, it has a
large amount of code to handle unaligned buffers (using the algorithm shown in
Listing 2). As shown in Listing 4, PrepareDMATransfer initializes the variables that
the driver needs to carry out the data transfer operation, calls PrepareMemoryForIO,
and initializes the first DMA operation.

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 18

Listing 4
PrepareDMATransfer

/* In a production system, kPageCount should be retrieved from the

operating system by calling GetLogicalPageSize. */

#define kPageCount 4096

#define kLongestDMA 65536

#define kLogicalAlignment 8

#define kMappingEntries ((kLongestDMA + (kPageCount - 1)) / kPageCount)

DMATransferInfo gDMATransferInfo;

IOPreparationTable gIOTable;

LogicalAddress gLogicalMapping[2];

PhysicalAddress gPhysicalMapping[kMappingEntries];

AddressRange gThisTransfer;

Boolean gIsLogical;

OSErr PrepareDMATransfer(

ByteCount firstPrepared /* Zero at first call */

)

{

OSErr status;

gThisTransfer.base = NULL; /* Setup for programmed I/O */

gThisTransfer.length = 0; /* Interrupt handler */

gIsLogical = FALSE;

if (firstPrepared == 0) {

/* This is an initial preparation for the transfer. */

gIOTable.preparationID = kInvalidID; /* Error exit marker */

switch (ioCommandCode) {

case kReadCommand: gIOTable.options = kIOIsInput; break;

case kWriteCommand: gIOTable.options = kIOIsOutput; break;

default: return (paramErr);

}

ioTable.ioOptions |=

(kIOLogicalRanges /* Logical input area */

| kIOShareMappingTables /* Share with OS kernel */

| kIOMinimalLogicalMapping /* Minimal table output */

);

gIOTable.state = 0;

gIOTable.addressSpace = CurrentTaskID();

gIOTable.granularity = kLongestDMA;

gIOTable.firstPrepared = 0;

gIOTable.lengthPrepared = 0;

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 19

gIOTable.mappingEntrycount = kMappingEntries;

gIOTable.logicalMapping = gLogicalMapping;

gIOTable.physicalMapping = gPhysicalMapping;

gIOTable.rangeInfo.range.base = pb->ioBuffer;

gIOTable.rangeInfo.range.length = pb->ioReqCount;

}

else /* We were called to continue a partial preparation. */

gIOTable.firstPrepared = firstPrepared;

status = PrepareMemoryForIO(&gIOTable);

if (status != noErr)

return (status);

status = InitializeDMATransfer(&gIOTable, kLogicalAlignment,

&gDMATransferInfo);

return (status);

}

PrepareDMATransfer calls PrepareMemoryForIO to get the first set of memory
addresses; if PrepareMemoryForIO returns noErr, the driver initializes the hardware
to begin processing. Here I assume that the hardware interrupts the processor when it
requires a data transfer. The primary interrupt handler is shown in Listing 5.

Listing 5
The primary interrupt handler

InterruptMemberNumber MyInterruptHandler(

InterruptSetMember member,

void *refCon,

UInt32 theIntCount)

{

OSErr status;

if (<device has or requires more data> == FALSE)

status = noErr; /* Presume I/O completion. */

else

status = MySetupForDataTransfer();

if (status != kIOBusyStatus) {

/* This partial transfer (or device operation) is complete. */

QueueSecondaryInterruptHandler(DriverSecondaryInterruptHandler,

NULL, NULL, (void *) status);

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 20

}

return (kIsrIsComplete);

}

OSErr MySetupForDataTransfer(void)

{

OSErr status;

if (gIsLogical && gThisTransfer.length > 0) {

/* Continue a programmed I/O transfer. */

DoOneProgrammedIOByte(* ((UInt8 *) gThisTransfer.base));

gThisTransfer.base += 1;

gThisTransfer.length -= 1;

status = kIOBusyStatus;

}

else { /* We need another preparation segment. */

status = PrepareDMATransfer(

&gDMATransferInfo, &gThisTransfer, &gIsLogical);

if (status == noErr) { /* Do we have more data? */

status = kIOBusyStatus; /* Don't queue secondary task. */

if (gIsLogical) { /* Start a programmed I/O transfer. */

DoOneProgrammedIOByte(* ((UInt8 *) gThisTransfer.base));

gThisTransfer.base += 1;

gThisTransfer.length -= 1;

}

else /* Start a DMA transfer segment. */

StartProgrammedIOToDevice(&gThisTransfer);

}

else /* This preparation is done. Can we start another? */

status = kPrepareMemoryStartTask;

}

return (status);

}

Listing 6 shows the secondary interrupt handler — at least the part that handles the
DMA operation. The primary interrupt handler provides the operation status in the p2
parameter; the secondary interrupt handler uses this parameter to determine whether
the operation is complete (in which case this is the final status), or whether some
intermediate operation is required.

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 21

Listing 6
The secondary interrupt handler

OSStatus DriverSecondaryInterruptHandler(void *p1,

 void *p2)

{

OSStatus osStatus;

osStatus = ((OSErr) p2);

switch (osStatus) {

case kPrepareMemoryStartTask: /* Need more preparation */

CancelDeviceWatchdogTimer();

osStatus = SendSoftwareInterrupt(gNextDMAInterruptID, 0);

if (osStatus != noErr) {

/* Handle error status by stopping the device. */

...

}

break;

case kPrepareMemoryRestart: /* Preparation completed */

osStatus = MySetupForDataTransfer();

break;

}

if (osStatus != kIOBusyStatus) { /* If I/O is complete */

CancelDeviceWatchdogTimer();

CheckpointIO(&ioTable, kNilOptions);

IOCommandIsComplete(ioCommandID, (OSErr) osStatus);

}

return (noErr);

}

Finally, Listing 7 shows the software interrupt routine that’s called when the driver
must call PrepareMemoryForIO again to perform a partial preparation.

Listing 7
A software interrupt routine for partial preparation

void PrepareNextDMATask(void *p1,

void *p2)

{

OSErr status;

ByteCount newFirstPrepared;

develop New Device Drivers: Memory Matters Second Draft 8/10/95 Page 22

if ((gIOTable.state & kIOStateDone) != 0)

status = eofErr; /* Data overrun or underrun error */

else { /* Do the next partial preparation. */

newFirstPrepared =

gIOTable.firstPrepared + gIOTable.lengthPrepared;

status = PrepareDMATransfer(newFirstPrepared);

}

QueueSecondaryInterruptHandler(DriverSecondaryInterruptHandler,

NULL, NULL, (void *) status);

}

YOUR TURN IN THE BARREL
At times, working through the complexity of this problem felt like going off Niagara
Falls in a barrel. There used to be a joke among the developers of the UNIX operating
system: “We never document our code: if it was hard to write, it should be hard to
understand.” The algorithms I’ve described here were hard to write (at least two
weeks of work went into the DMA support library), but I hope I was able to
document and clarify the most important features of the library well enough that you
don’t have to go through the same struggle.

Thanks
to our technical reviewers David Harrison, Tom Saulpaugh, Dave Smith, and George Towner.

MARTIN MINOW
is writing the SCSI plug-in for Copland on a computer named “There must be a pony here” and
competes with his boss to see who is more cynical about Apple management. During the few
moments he can escape from meetings, he runs with the Hash House Harriers.

