Graphics Driver for External Use

Sean Williams, Kevin Williams, Fernando Urbina

Apple Computer, Inc.

Verson 1.0.1
July 17, 1995

(@Y V1= S 1
HOW DIAWE DO?......eieeieteee ettt ettt ettt r e 2
(D15 o | N I Yo | PRSP RTR 2
AT IMOUUIES. ...ttt rer et ne e r s r et r e nner e nnens 3
L0 =TT PP P PR 3
A TSRS 4
OSSR R AR R R AR e Rt r e ren s 4
Creating aHAL from aTemplate..........cooveieiiee ettt e 5
Global Search and REPIACE. ..ottt 5
Create YOUr REQISLEr MOUEIS.......cciiiececieeeece et e e sttt srentenaesnenrennennens 5
Start at the Top, WOrK t0 the BOOM..........coiiiiiieiesesere sttt s 6
Don't Try to Map aHAL Routine Directly to a Control or Status Call..........ccooeeeeirierceneneinrenn. 6
GraphiCSHALXXX VS, TEMPIAEEXXX c.veverveieereereeeeieseeseseestesiesaessesseesesssesesessessessessessessessessessessnnsens 6
USE POPUPFUNCS ...ttt sttt s b s bt e e s e e she e e e st e saeeseeeneesneesneenneens 6
MPW MEKE FTE ...ttt sttt ettt ea e e eneene e e e e e e e seeneees 6
S 0T S e ()= £ 6
CLUTS & YOU (A PIIMIEN)...ciiicie ettt ae e sae e sne e ae e e teeneesteeneesreenee e 7
Indexed Color & CLUT OPEIAiON.......ccciirieiririeirieieesieieie ettt 8
Direct Color & CLUT OPEraliON.......ccueiuerereresesesesresseseeseseseessessessessessessesssssessessessessessssssssssnsenes 9
GraphiCS COrE ROULINES.........c.coiieiiciecie et ste ettt e et e e e s e e teeteeaesnaesneesreenneenns 10
GraphicsUtiIM apSenseCodesT oDiSplayCode()........oovrereririrereee ettt 10
GraphiCS OSS ROULINES.......c..cieiieieiesie sttt st e e bbb b e ens 11
GraphiCSOSSSAVEPTOPEITY () ..veeverueeueeiereeiertestese ettt st e et ee et seesbesbesbe b e sbesaeebe e e e e e e e eneees 11
GraphiCSOSSGEIPTOPEITY() -..veveverreeererieiete sttt sttt sttt b et b e b e b e b e b sb e ebeseenen 11
GraphiCSOSSDE EtEPIOPEITY (). rveereereeeereeeererrteresresresesesseseeseeseessessessessessessessessessessessesssessensensenes 12
Graphi CSOSSSEtHALPTES()....veeveeeerieieiesisieerirt ettt sttt 12
GraphiCSOSSGEHALPTEL()......eeieeeeerieeeerieierie ettt ettt 12
GraphiCSOSSSELV BLINEITUDPL()..uvereerrererereresrerseeseeseeeeseeseesieseessessesseeseseessessessessessessessesssssesseeseenes 13
GraphicSOSSVBLDEFAUITENGDIEN()veveieerierieeiieeee e e e s 13
GraphicsOSSVBLDEfaUItDISAIEN()coveeeiirieiiieeeerieeet e 13
GraphicsOSSDOV SLINETUPLSEIVICE() .veveevereereeriereeeeeeree e seesesteseeseesnesseeseesee e seessessessessesnessesses 13
GraphiCS HAL ROULINES.........coiiiiectieiie ettt sttt st et aesne e teeneesneeneens 14
GraphiCSHALINItPrIVAIEDAA()... .. ceveeerereeertereeiesieeete sttt s ebe e ebeseene 14
LCT=To] 1ot VA o= o 15
GraPhiCSHALCIOSE(). .. eeueeeerterie sttt ettt sttt st b ettt ettt se b s bt bt bt s st e se e e e s e sbeseenbesaeerennis 15
GraphiCSHAL TEMINGEE().....eeevereeeete ettt ettt ettt et sb et b e s sb e ebeseeneas 15
GraphiCSHALKIIPrIVAEDGLA(). ... e veververeereeeereesiesesiesesessessesseeseseessesaessessessessesssessessessessesssssesses 16
GraphicsHALDetermineDiSplayCod()........ceoveruerririererierienie ettt s 16
GraphicSHAL DrawHarawar€CUISOI()ceverveuerrerieueriereeteseeiesteseesesreseesessesesseseeesreseesesseseesesseneesens 16
GraphiCSHAL GEtBASEATAIESS() ...vveveereeeeeeiereeeseses e stestesiesseeseeseeseseesses e sreste e sneesesseeseeneeneenseses 17
Graphi CSHALGEICLUT()...veuererteeererieieisiete s sttt es e st eb et eb e ssebese s b 17
GraphicsHAL GetHardwareCursorDraWSEAEE()........cuervereereriereererieesie sttt s sre e 18

July 17, 1995 Copyright Apple Computer, Inc. -_

GDX

GraphicsHAL GetDefaultDisplayModel D().......ceeeverieeeierierieeeie ettt 18
(€1r=TolglTois o VAV I ET= 1Y/ k= (D= o 1 117/ Koo L= T 19
GraphiCSHAL GEtM OAETIMING() .« cxvevetereeeterieeeenie ettt ettt st e e bbb e e e e b e sneeaas 19
GraphicSHAL GENEXTRESOIULION().....cveeeeerteieeeeie ettt 20
GraphiCSHAL GELPAGES().. e veverererererieeeeieseesestestessessesseeseessessessessesasssessesssessessessessessessessesseeneensenes 20
Graphi CSHAL GELPOWEI SEALE().....c.veveveerveerieieiesisie sttt sttt 21
Graphi CSHAL GELSENSECOUES(). .. -veuereererertererereeseesietesesessesesestesesesaesesessesesestesesesseseasssenesessesesssanens 21
GraphiCSHALGELSYNC()....veuvereiierieeeeeeestesestesteseeeeseestesae s eeeeeseesressesseeseessestesneeseneensessessessesnennes 22
GraphicSHAL GetVBLINtErTUPEROULINGES()......coververeeeeereeiesie ettt sbe e s 23
GraphiCSHAL GEtVidEOPAraMS()......ccveeruireeieiieneeie sttt sttt 24
GraphiCSHAL GrayCLUT() .eoveeeieeseresesieseseseeseeeeaeseeeeseessesseseessessessessessessessesssssssssssesssensensensenes 24
GraphicSHALMapDepthMOAETOBPP().......c.coriirieriirierieeiieee et s se e s sre s 24
GraphicSHALMOAEPOSSIDIE() ..ottt ene 25
GraphiCSHALProgramHardWare()eeeeeereeeresesiesesesieseesseseeseesesesssessessessessessessesssssesssessenes 25
GraphiCSHALSEICLUT() .uvveeeueerieteresieteesesteie sttt be et b b ne s s sbsbese e s 26
GraphiCSHAL SetHardWar@CUISOI()......ceverveeereriereeientesieeeteste s st seeseere st seese b seeseesesseseesesreseenesnens 27
GraphiCSHAL SEtPOWEI SEALE()....vvveeeeereeeeeereeseeseseestesessessesseeseeseessessessessessessessessessessessessssseessesenes 27
GraphiCSHAL SEESYNC() - veverterterueeterieeeeie sttt sttt se e se e st b e sae b e s e e e e e se e besaeebesbeeaeene e e e e nes 28
GraphicsHA L SUPPOrtSHAradWar@CUISON()......e.eeverveeeieriereeiesteseee sttt 28
GraphiCSHALPTIVAECONIION() .rvviveeeeeeeeeeiereeseesiesesiesesestesiesseeseseesseseeseesseseessessessessessessesseensensenes 28
Graphi CSHALPIIVEIESIAIUS() ... eveveuereererereeieiesisie sttt sttt bese st sn e e 29
Changing the COrE ..o s b e sre e 30
Gamma Tables With More than 8 BitS..........cccvvreirreinrcies s 30
Adding New DisplayMOCEIDS.........ccoiiiiiieieese ettt st s sr e e e b e sae e 31
SUPPOrting LeSS TNan 256 COIOIScciirieiiriirieierieeete sttt sre st be e sbe e snesnenen 31
REIEASE NOLES.......c.eeceeeee ettt e et e s esseentesreenseeneeeneenen 32
V2= = Lo o 1 OSSPSR 32
RV 2= £ o T 00 S 32

4- Copyright Apple Computer, Inc. July 17, 1995

GDX

Overview

Overview

Graphics Driver for External Use (GDX) is atemplate for a native graphics driver which can be
quickly adapted to new hardware implementations. Thisdriver fully conformsto all the
requirements for a native driver, as described in Designing PCI Cards and Drivers for Power
Macintosh Computers.

This template has been extensively tested, sinceit is the basis of all the graphics drivers used in
theinitial round of PCI based Power Macintoshes. Third party developers need only create a
single file describing their hardware implementation.

The code is structured into three modules:

» Core

For graphics drivers, there is a core set of software which isinvariant across hardware
implementations or OS services. This core handles the majority of the control and status
calls received. Third parties will not have to modify the Core?.

» Hardware Abstraction Layer (HAL)

This section is responsible for performing operations on the underlying hardware, and
reporting the hardware' s capabilitiesto the Core. A HAL will have to be provided for each
implementation of graphics hardware. Two HAL templates have been provided which can
be easily adapted for third party hardware.

* Operating System Services (OSS)
This section handles OS services, such as how to register and service interrupts, receive
parameter blocks, etc. Third parties will not have to modify the OSS.

Although the majority of third parties will be developing graphics drivers for PCI devices, GDX
isnot PCI centric. Rather, it will run under any operating system that supports Slot Manager
Independent (SMI) graphics drivers. For example, PCI, PDS, NuBus, PCMCIA, or direct attach
frame buffer controllers can be supported.

1. Seethe section “Changing the Core” on page 30 for alist of exceptions.

July 17, 1995 Copyright Apple Computer, Inc. __

GDX

Design Layout

How Did We Do?

Abstraction and modularization look good on paper, but carrying the design forward into
implementation is sometimes more challenging. Here is a self-assessment of GDX’s
implementation:

Core: A+

The Core came into place quite nicely. Every nuance of a graphics control or statuscall is
handled, or passed off to the HAL when appropriate. The process of developing five GDX
based drivers assured that there were no hardware dependencies in the core.

HAL: A+
Theinterface between the HAL and the Core is extremely robust. Moreover, that interface
has proved flexible enough to support wildly different hardware implementations.

Oss. C

Asit became apparent that Copland and System 7.5.2 were converging in their use of the
Name Registry, Expansion Manager, Interrupt Manager, etc., less effort was applied
toward developing arobust OSS layer. For example, it would not be possible to simply
write anew OSS layer for Windows, and have the Core and HAL remain unchanged.
However, the existing OSS is a nice start down the path toward that ideal .

Design Layout

Thefilesin GDX are organized as follows:

SlI=————— GDhH EEEI
15 itemns 186.2 MB in disk Z11.2 MB awailable
' GraphicsCore .o ' Graphics055 o i
GraphicsCore.h Graphics055 . h
GraphicsCorePriv.h
GraphicsCoreControl .o _
GraphicsCoreControl.h GraphicsPriv.h
GraphicsCoreStatus o
| GraphizzCoreStatuz b | GraphizzHAL h
P p
' GraphicsCoreltils o TemplateEZ
3
' GraphicsCorelltils b Ternplate 1|
O T
] R

1 Copyright Apple Computer, Inc. July 17, 1995

GDX

Design Layout

All Modules
All three modules need to include the following:

GraphicsPriv.h

Thisfile has declarations, error codes, and constants that are used throughout GDX. All
GDX fileswill need to include this. However, no items outside of GDX will need accessto
thisfile, hence the ‘ Priv’ postfix.

Core

The Core is composed of multiple files and constitutes the majority of the brains of GDX.
Although it is not necessary to make changes here, inspecting this code can be quite useful for
understanding the relationship between a graphics driver and its clients. Additionally, thiswould
also be auseful reference if you were developing or maintaining a graphics driver from another
source base.

GraphicsCore.c

Thisfiles contains the majority of the code which handles the driver commands

kl ni tializeConmand, kRepl aceComrand, kOpenComrand, kCl oseComand,

kCont r ol Conmand, kSt at usConmand, kSuper sededCormmand, and kFi nal i zeCommand.

Additionally, it has the routinesto initialize and kill the private data that the Core usesto
maintain its state information.

GraphicsCore.h
This merely has the function declarations of the Core routines that have external scope to
other GDX files.

GraphicsCorePriv.h
This has declarations that are strictly private to the items that comprise the Core. Neither
the OSS or HAL will need to include thisfile.

GraphicsCoreControl.c
This file implements the core portion of the various Control calls.

GraphicsCoreControl.h
This has the function declarations of the Control routines that have external scope to other
GDX files.

GraphicsCoreStatus.c
This file implements the core portion of Status calls.

GraphicsCoreStatus.h
This has the function declarations of the Status routines that have external scope to other
GDX files.

GraphicsCoreUtils.c
This has some basic utility functions that an item in the Core or HAL might want to make
use of. In particular, aHAL which has standard sense codes will probably want to make

July 17, 1995 Copyright Apple Computer, Inc. -_

GDX

Design Layout

use of the G aphi csUt i | MapSenseCodesToDi spl ayCode(), which will uniquely map a
raw sense code / extended sense code pair to abi spl ayCode.

GraphicsCoreUtils.h
This has the function declarations of the utility routines that have external scope to other
GDX files.

HAL

Thisconsistsonly of aheader fileand aC file. The HAL isresponsible for accessing the hardware
and reporting its abilities. To ease development efforts, two templates have been provide which
can be used asabasisfor areal HAL. Choose the template which best matches your needs, or
combine certain aspects of them to produce a new template.

GraphicsHAL .h
This contains the function declarations that aHAL must implement. These functions have
external scope to other GDX files.

GraphicsHAL TemplateEZ.c

This can be used as atemplate for implementing aHAL. Thistemplate is referred to as
“EZ” sincethe hardware has a ssmple register model. For example, to establish a proper
raster for a 640 x 480 display at 67 Hz, only a single register needs to be accessed in the
frame buffer controller and the CLUT.

Additionally, it can be considered “EZ” for the following reasons:

Always has enough VRAM available to support al of its resolutions.
No hardware cursor.
No special lower power modes.

GraphicsHAL Template.c
This can be used as atemplate for implementing aHAL. This template has a more
complex internal model than the “EZ” template for the following reasons:

Support for hardware cursor.

Specia low power modes.

Complex register model.

Different resolutions avail able depending on amount of VRAM present.

(O
The OSS provides athin layer of abstraction for operating system services. Essentially, it can be
considered as a set of utility functions for OS services that a graphic driver uses often.

GraphicsOSS.c

Thisfileimplements all of the OSS functionality. Essentially, the OSS provides a means
for saving, retrieving, and deleting properties from the Name Registry, saving and
retrieving the Core’ s and HAL' s preferences, and dealing with interrupts.

1 Copyright Apple Computer, Inc. July 17, 1995

GDX

Creating aHAL from a Template

GraphicsOSS.h
This has the function declarations of the OSS routines that have external scope to other
GDX files.

Creating aHAL from a Template

The templates provided are extensively documented in the code. If you are familiar with your
hardware specifics, they can be adapted in a short period of time. Here are some hints to get off to
aquick start.

Global Search and Replace

The templates use a strict naming convention for their hardware specific variables, so a major
portion of the adaptation can be accomplished viaaglobal case sensitive search and replacein the
templatefile.

For example, in TemplateEZ, perform the following:

TABLE 1. Search and Replace for TemplateEZ

Search For-... Replace With...
Tenpl at eEZ Your Archi tecture
tenpl at eEZ your Ar chi tecture

Cosno Your Fr ameBuf f er Control | er
cosno your FrameBuf f er Control | er
I razu Your CLUT
i razu your CLUT

Similarly, the process of converting Template can be started by performing the following:

TABLE 2. Search and Replace for Template

Search For ... Replace With...
Tenpl ate Your Archi tecture
tenpl ate your Architecture
Toynbee Your FranmeBuf f er Control | er
t oynbee your FrameBuf f er Control | er
Spur Your CLUT
spur your CLUT
M SanAnt oni o Your Ti m ngCGener at or GoesHer e
nT SanAnt oni o your Ti m ngGener at or GoesHer e

Create Your Register Models
The register models used in the templates were designed to be generic, so they will need to be
updated to reflect your hardware.

July 17, 1995 Copyright Apple Computer, Inc. -_

GDX

Creating aHAL from a Template

Start at the Top, Work to the Bottom
Start at the first function in the template, and try and adapt it to your hardware. If uncertain what
to do, defer the decision and go on to the next function.

Don’'t Try toMap a HAL Routine Directly to a Control or Status Call

The HAL routines are quite primitive. In most cases, they don’t correspond directly to a Control
or Status call. Instead, they provide the Core with information it needs to respond to a Control or
Status call. Think of the HAL routines as the simple items that they are, and the Core will deal
with patching everything together.

GraphicsHAL xxx vs. Templatexxx
In the templates, some functionswill be prefixed with * GraphicsHAL’ and others will be prefixed
by ‘ Template.’

The routines which start with * GraphicsHAL™ must be implemented by all HALSs. The routines
starting with ‘ Template' are strictly private to the HAL, and are completely implementation
dependent.

Use PopupFuncs
Thisisareally cool utility routine will add a popup menu listing all the source file's functions to
thetitle bar. It can be installed into any file editor, such as MPW Shell, Metrowerks, or Think.

This makes navigating through unfamiliar source files a breeze. The demo installer has been
provided.

MPW MakeFile

For those of the MPW persuasion, amake file has been provided that builds both template drivers.
Install the headers and libraries from the PCI DDK into you MPW folder, set the directory to
GDX, and Build!

M etrower ks Projects

A Metrowerks project has been provided for building each template. Again, install the headers
and libraries from the PCI DDK into Metrowerks and build. Don't forget to either recompile the
headers, or don’t use precompiled headers.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

CLUTs& You (A Primer)

CLUTs& You (A Primer)

Color Lookup Tables/ Digital to Analog Convertors (CLUT/DACS, hereafter referred to simply
as CLUTY) provide hardware that converts pixel values stored in the frame buffer to some actual
RGB video value. For indexed color modes (1-8 bits per pixel), the operation of the CLUT is
fairly intuitive. For direct color modes (16 or 32 bits per pixel), the operation is somewhat obtuse.
Consider ageneric triple 256x8 CLUT which supports 1 - 32 bpp as shown below:

FIGURE 1. Generic Triple 256x8 CLUT

Address Red Green Blue
ox00 [oxxx || oxxx |[oxxx |
°
°
Oxf f | Ox XX | | Ox XX | | Ox XX |

ThisCLUT isreferred to asa“triple 256x8” CLUT for the following reasons:

o triple The CLUT has three channels: red, green and blue.
* 256 The CLUT has 256 physical addresses.
8 For each channel at a given address, an 8-bit value can be stored.

To help explain the differences between indexed and direct modes, a generic representation of
how pixels are represented in aframe buffer is detailed below. Please notice that for 16 and 32
bpp, each channel has a number of bits dedicated to it, whereas that is not the case for 1 - 8 bpp.

FIGURE 2. Generic Pixel Data Format in Frame Buffer

31 24 23 16 15 8 7 0

32 bits/ pixel Red Q een Bl ue
pi xel 0

31 30 26 25 21 20 16 14 10 9 54 0

16 bits/ pixel Red G een Bl ue Red G een Bl ue
. pixel O pi xel 1

31 0
8 bits/ pixel pi xel 0 pi xel 1 pi xel 2 pi xel 3

31 0
4 bits/ pixel pO pl p2 p3 p4 PS p6 p7

31 0
2 bits/ pixel O|l112|3|4]5]6] 7] 8] 9]|10f11|12| 13| 14|15

31 0
1 bit / pixel

July 17, 1995 Copyright Apple Computer, Inc. —_

GDX

CLUTs& You (A Primer)

Indexed Color & CLUT Operation

For 1 - 8 bpp, the pixel datain the frame buffer represents the logical address of a CLUT entry.
For each pixel, a single lookup takes place, and three 8-bit values (red, green, blue) are extracted
and used as inputs for their respective channel’s DAC. Figure 3 illustrates this:

FIGURE 3. Indexed Color Example

Pixel Data CLUT DAC Input
Address Red Green Blue
ox00 [oxxx || oxxx |[oxxx |
oxol [oxxx || oxxx [[oxxx |
[]
[]
Indexed Pixel @ 8 bpp e
OX7f - OX7f { oxxx_ H oxxx_ H 0oxXX OXXO0HKX
oxso [oox][oo][oxxx
[]
[]
[]
oxfe [oxxx || oox || oxxx |
oxff |

From this example, it should be clear that the pixel data (0x7f) isused asthe logical CLUT
address. From that address, three 8-bit values are extracted, and then used as inputsto the DAC to
provide the correct analog video signal.

Therange of logical CLUT addresses is based solely on the number of bits per pixel:

TABLE 3. Logical Address Range (Indexed Color)

Bits Per Pixel L ogical Address Range (2°PP-1)
1 0-1
2 0-3
4 0-15
8 0-255

{ Copyright Apple Computer, Inc. July 17, 1995

GDX

CLUTs& You (A Primer)

Direct Color & CLUT Operation

For 16 or 32 bpp, the CLUT is used solely for gamma correction. Since each pixel has bits
dedicated to each channel (red, green, and blue), alookup for each channel occurs. For each
lookup, thelogical CLUT addressis derived from that channel’ s pixel data. The gamma corrected
value is then extracted from the appropriate channel’ s lookup table.

FIGURE 4. Direct Color Examples

Pixel Data CLUT DAC Input
Address Red Green Blue
ox00 [oxxx || oxxx |[oxxx |
oxor [oox |[oox |[oox |
R I
[]
[]
ox7f [oxxx | [oox [oxxx |
Direct Pixel @ 32 bpp oxgo [oxxx][oxxx |[oxxx |
0x00f 8001 |
[E= :
. []
oxfe | oxxx | [oxxx [oxxx |
Oxff | Ox;XXX;;(

As shown above, three lookups occur. The red channel bits (0xf e) indicate the logical CLUT
address to access. At the location, the 8-bits of red information is extracted, and used as input to
the red channel’s DAC. This processis repeated for the green and blue channels.

For direct color, the range of logical addresses is based on the number of bits per channel:

TABLE 4. Logical Address Range (Direct Color)

Bits Per Pixel Bits Per Channel Logical Address Range (2°P¢-1)
16 5 0-31
32 8 0-255

July 17, 1995 Copyright Apple Computer, Inc. “_

GDX

Graphics Core Routines

Graphics Core Routines

Theroutinesthat livein the Core are largely defined by the client API to the graphicsdriver. Since
the client APl is documented in Designing PCI Cards and Drivers for Power Macintosh
Computers, it will not be repeated here.

However, in addition to the Control and Status routines in the Core, there are several utility
routines, one of which aHAL might want to take advantage of

GraphicsUtilM apSenseCodesT oDisplayCode()

Thisroutine will map RawSenseCode / Ext endedSenseCode pairsto their corresponding

Di spl ayCode for frame buffer controllers which either have ‘ standard’ sense code hardware or
can coerce their raw / extended sense codes to appear standard.

This functionality is provided as a utility routine in the Core, because a large number of frame
buffer controllers have support for standard sensing.

GDXErr GraphicsUtil MapSenseCodesToDi spl ayCode(RawSenseCode r awSenseCode,
Ext endedSenseCode ext endedSenseCode,
Di spl ayCode *di spl ayCode)

-> rawSenseCode
Result from reading sense lines when none are being actively driven.

-> ext endedSenseCode
Result from applying extended sense algorithm to sense lines.

<- di spl ayCode
Di spl ayCode which the RawSenseCode / Ext endedSenseCode pair mapsto.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics OSS Routines

Graphics OSS Routines

The majority of the OSS routines are used by the Core, but some might be utilized by the HAL.
The routines that the HAL might want to access involve accessing the NameRegistry, accessing
preferencesin NVRAM, and enabling/disabling interrupts.

GraphicsOSSSaveProperty()
The OSS calls the Name Registry to save information. The OSS doesn't care about the content.

GDXErr G aphi csOSSSaveProperty(const RegEntryl D *regEntryl D,
const char *propertyNane, const void *propertyVal ue,
Byt eCount propertySi ze,
OSSPr opert ySt orage ossPropertySt orage)
-> regEntryl D
The node in which the property should be saved.

-> propertyName
C string property name.
-> propertyVal ue
Opague pointer to the buffer containing the data to be stored.

-> propertySi ze
Size of the data, in bytes.

-> ossPropertyStorage
GDX internal flags that describe how the property should get saved:

kOSSPr oper t yAvai | abl eAt Di sk Available when disk is up (saved across boots).
kOSSPr opertyVol atil e Property not saved across boots.

GraphicsOSSGetProperty()
The OSS calls the NameRegistry to get information. The OSS doesn't care about the content. If
the property doesn't exist, that's an error.

GDXErr Graphi csOSSGet Property(const RegEntryl D *regEntryl D,
const char *propertyNane, void *propertyVal ue,
Byt eCount propertySi ze);

-> regEntryl D
The node from which the property should be retrieved.

-> propertyName
C string property name.

-> propertyVal ue
Opaqgue pointer to the buffer to contain the retrieved data.

-> propertySize
The expected size of the data, in bytes.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics OSS Routines

GraphicsOSSDeleteProperty()
The OSS calls the NameRegistry to delete properties. It doesn't care what property is deleted.

GDXEr r G aphi csOSSDel et eProperty(const RegEntryl D *regEntryl D,
const char *propertyNane);

-> regEntryl D
The node from which the property should be deleted.

-> propertyNane
C string name of the property to delete.

GraphicsOSSSetHAL Pref()
Graphics drivers get 8 bytes of nonvolatile RAM (NVRAM) alocated to them. They can use
these bytes to store preferences, so that the desired state can be retrieved during boot time.

The Core uses 4 of those bytes to maintain the state information it needs (Di spl ayModel D,
Dept hMode, and Di spl ayCode), leaving the other 4 bytes for use by the HAL. The HAL can use
those bytes for any data it chooses.

Aswith the routines listed above, the OSS uses the NameRegistry to store this information.

GDXErr G aphi csOSSSet HALPr ef (const RegEntryl D *regEntryl D,
Ul nt 32 hal Dat a)

-> regEntryl D
The node for which the preferences should be set.

-> hal Data
The 4 bytesthe HAL wishesto savein NVRAM.

GraphicsOSSGetHAL Pref()
This call allowsthe HAL to retrieve the 4 bytesit previously set.

GDXErr Graphi csOSSGet HALPr ef (const RegEntryl D *regEntryl D,
Ul nt 32 *hal Dat a)

-> regEntryl D
The node from which the preferences should be retrieved.

<- hal Data
The 4 bytesretrieved from NVRAM for the HAL.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics OSS Routines

GraphicsOSSSetVBL I nterrupt()

Thisroutineis used to allow/prevent VBL interrupts from propagating to the processor. The exact
behavior of this function depends on how the HAL responded to the

G aphi csHALGet VBLI nt er r upt Rout i nes() call, as detailed on page 16.

Bool ean Graphi csOSSSet VBLI nt er r upt (Bool ean enabl el nt errupts)

-> enablelnterrupts
t rue if interrupts should be enabled, f al se otherwise.

<- Bool ean
If disabling interrupts, then thisist r ue if interrupts were previously enabled, f al se
otherwise.

It is undefined when enabling interrupts.

GraphicsOSSVBL DefaultEnabler ()

Sometimes, the HAL might wish to enable the motherboard interrupt source, regardless of what it
returned for the G aphi csHALGet VBLI nt er r upt Rout i nes() . Thisroutine will do so, leaving the
state of the internal interrupt source on the card unchanged.

voi d G aphi csOSSVBLDef aul t Enabl er (voi d)

GraphicsOSSVBL DefaultDisabler ()

Thisisthe counterpart to the above routine. Should the HAL wish to disable the motherboard
interrupt source, it can call thisfunction. As above, the state of the internal interrupt source on the
card will be unchanged.

Bool ean Graphi csOSSVBLDef aul t Di sabl er (voi d)

<- Bool ean
t rue if motherboard interrupts were previously enabled, f al se otherwise.

GraphicsOSSDoV SL InterruptService()
Thisroutine callsthe Video Service Library (VSL) to service the VBL tasks associated with this
graphics device.

Normally, aHAL implementation would never have to call this routine. However, in the rare
event that a HAL's hardware does not support true hardware interrupts, then the HAL should call
this during its smulated VBL routine to alow the OS to service itemsin its VBL task queue.

voi d G aphi csOSSDoVSLI nt er r upt Ser vi ce(voi d)

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics HAL Routines

Graphics HAL Routines

Thefollowing is adescription of the routines which comprise the GraphicsHAL. All HALs must
implement these routines.

GraphicsHAL InitPrivateData()

Thisroutineis called after the Core has received an ki ni ti al i zeConmand Or a

kRepl aceConmand. The HAL should allocate whatever private storage it requires, perform the
necessary operations to determine its hardware’ s addresses, and initialize internal state
information.

GDXErr Graphi csHALI nit PrivateDat a(const RegEntryl D *regEntryl D,
Bool ean *repl aci ngDri ver)

-> regEntryl D
Thisisthe RegEnt ryl Dfor the driver. It should be copied viathe
Regi st ryEnt ryl DCopy() function, in the event that the NameRegistry is queried
later.

<->replaci ngDriver
On input, thisindicates whether the Core got akl ni ti al i zeComand or a
kRepl aceConmand. These commands are similar, but with subtle differences. A
klnitializeCommand isissued if no version of thisdriver has been previousy
loaded, whereas akRepl aceComand isissued if aprevious version of the driver has
been loaded, but subsequently superseded.

If fal se, thenakl nitial i zeCommand had been received by the Core, and the HAL
should do afull hardware initialization.

If t r ue, then akRepl aceConmand had been received by the Core, and the HAL can
attempt to configure itself to its state prior to it being superceded.

On output, this allows the HAL to override the Core's default behavior if it choosesto
do so.

If f al se, thenthe HAL issignaling the Core that it is unable to reconfigure itself to
its state prior to being superseded, and the Core will continue asiif a
klnitial i zeCommand had occurred.

If t r ue, then the HAL was able to re-configure itself in the event of being replaced,
and the Core will proceeded accordingly.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics HAL Routines

GraphicsHAL Open()

It is possible for the driver to be opened and closed many times. This routine should perform the
required initialization of the hardware in order to determine the amount of VRAM that isin the
system, and any other hardware specific items that the HAL cares about. Additionally, the HAL
might initialize internal state information or retrieve its preferences viathe

G aphi csOSSGet HALPr ef () routine.

No programming to set up araster for agiven Di spl ayModel D Or Dept hMbde IS hecessary at this
point.
GDXErr Graphi csHALOpen(const AddressSpacel D spacel D,
Bool ean repl aci ngDri ver)

-> spacel D
Thisisthe Addr essSpacel D for the HAL’ s hardware.

-> replacingDriver
t rue if the HAL should behave asif the driver isbeing replaced, f al se otherwise.

GraphicsHAL Close()
Upon close, there are no major requirements, since the majority of the work will be handled
elsewhere.

GDXErr Graphi csHALC ose(const AddressSpacel D spacel D)

-> spacel D
Thisisthe Addr essSpacel Dthe HAL’s hardware.

GraphicsHAL Terminate()
Thisroutine is called after the Core hasreceived an kFi nal | i zeConmand or a
kSuper sededConmand.

GDXEr r Graphi csHALTer mi nat e(Bool ean super seded)

-> superseded
t rue if the current driver is going to be superseded by another driver, f al se
otherwise.

If t r ue, the current driver can choose to save any state that the replacement driver
may need, and can choose whether or not to keep the raster going.

If f al se, no driver isgoing to replaceit. In that event, it should stop the raster and
leave the hardware in a polite state.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics HAL Routines

GraphicsHALKIllPrivateData()

Thisroutineis called when it istime for the HAL to dispose of its private data. For example, any
memory it allocated should be returned, and any RegEnt r yI Ds that were copied should be
disposed.

voi d Graphi csHALKi | | Pri vat eDat a(voi d)

GraphicsHAL Deter mineDisplayCode()
Thisroutineis called whenever it is necessary to determine the type of display that is connected to
the hardware. When thisroutine is called, the following actions should occur:

* Perform required steps to determine what display is connected (e.g., read sense lines).
» Update the HAL's state information regarding the type of display connected, if the HAL
maintains that state information.

GDXEr r G aphi csHALDet er m nebDi spl ayCode(Di spl ayCode *di spl ayCode)

<- di spl ayCode
Di spl ayCode for the attached display.

In the event that the HAL is does not recognize the specific type of display attached, it
should set *di spl ayCode = kDi spl ayCodeUnknown.

GraphicsHAL DrawHar dwar eCur sor ()

This routine sets the hardware cursor's X and Y coordinates and its visible state. If the cursor was
set successfully by a previous call to G aphi csHALSet Har dwar eCur sor () , then the HAL must
program the hardware with the given X, Y and visible state. If the previous call to

G aphi csHALSet Har dwar eCur sor () failed, then an error should be returned.

GDXErr G aphi csHALDr awHar dwar eCur sor (SInt 32 x, SInt32 vy,
Bool ean vi si bl e)

-> X
X coordinate.

-> y
Y coordinate.

-> visible
t rue if the cursor must be visible, f al se if it should be hidden.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics HAL Routines

GraphicsHAL GetBaseAddress()
This returns the base address of a specified page in the current mode. This allows graphics pages
to be written to even when not displayed.

GDXErr Graphi csHALGet BaseAddr ess(SI nt 16 page, char **baseAddress)

-> page

(O based) Page number for which the base address is desired.

<- baseAddress

Base address of desired page.

GraphicsHALGetCLUT()
This routine will fill out the specified array of Col or Specs with the contents of the CLUT.

The RGBCol or structure in each Col or Spec uses 16-bits for each channel (red, green, and blue),
whereas most CLUTs only use 8-hits. Therefore, when filling in the RGBCol or structure, the most
significant byte for each channel should be filled with the 8-bits extracted from its respective
channel inthe CLUT. Moreover, to maintain the same behavior as the previous drivers, the 8-bits
from the CLUT should also be written to the least significant byte for each RGBCol or .

It isimportant to note that the positions of the entries refer to logical positions, not physical ones.
At 4 bpp, for example, the entry positions could range from 0, 1, 2,..., 15, even though the
physical positions may not have this number sequence.

No range checking is required, because the Core has already done so.

@Dl Err Graphi csHALGet CLUT(Col or Spec *csTable, SIntl6 startPosition,
SInt16 nunber O Entries, Bool ean sequenti al,
Dept hMbde dept hivbde)

<->csTabl e
Thisisapointer to the array of Col or Specs provided by the caller to befilled with the
contents of the CLUT.

-> startPosition

(O based) Starting point in the array to fill.

-> nunberOFEntries
(O based) The number of entries to get.

-> sequenti al
If f al se, then theval ue field of the Col or Spec should be inspected to see what
logical position should be retrieved. If t r ue, then the array index indicates what
logical position should be read.

-> dept hMode
The relative bit depth. Thisis provided so that the HAL can decide how to map the
logical entry positions to the physical entry positions.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics HAL Routines

GraphicsHAL GetHar dwar eCur sor DrawState()

Thisroutine is used to determine the state of the hardware cursor. After HAL initiaization the
cursor’svisible state and set state should beft al se. After amode change the cursor should be
made invisible but the set state should remain unchanged.

GDXEr r Gr aphi csHALGet Har dwar eCur sor Dr awSt at e(Sl nt 32 *cur sor X,
SInt32 *cursorY, Unt32 *cursorVisible, Unt32 *cursorSet)

<- cursorX
X coordinate from last Gr aphi csHALDr awHar dwar eCur sor () call.

<- cursorY
Y coordinate from last G- aphi csHALDr awHar dwar eCur sor () call.

<- cursorVisible
true if the cursor isvisible, f al se otherwise.

<- cursor Set
true if last G aphi csHALDr awHar dwar eCur sor () call was successful, f al se
otherwise.

GraphicsHAL GetDefaultDisplayM odel D()

Thisroutineis used to get the default Di spl ayModel D and Dept hbde for adisplay. Thisroutine
gets called when a new display is connected to the computer. The HAL knows how much VRAM
isavailable and which Di spl ayModel Dsit supports, so this cal is used to determine the best
settings for a particular display.

GDXErr Graphi csHALGet Def aul t Di spl ayModel D(Di spl ayCode di spl ayCode,
Di spl ayMbdel D *di spl ayModel D, Dept hMbde *dept hivbde)

-> di spl ayCode
The connected display.

<- displ ayMdel D
The default Di spl ayMbdel D for the connected display.

<- dept hMode
The default Dept hvbde.

ﬂ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics HAL Routines

GraphicsHAL GetM axDepthM ode()

ThistakesabDi spl ayMbdel D and returns the maximum Dept hMbde that is supported by the
hardware. No check is made to determine if the Di spl ayModel Disvalid for the connected
display. The HAL should return an error if the Di spl ayModel D is not supported or there is not
enough VRAM to support the Di spl ayModel D.

GDXEr r G aphi csHALGet MaxDept hMode(Di spl ayModel D di spl ayModel D,
Dept hMbde * maxDept hhvbde) ;

-> di spl ayMdel D
Get the information for this Di spl ayModel D.

<- maxDept hMode
Maximum relative bit depth for the Di spl ayMdel D.

GraphicsHAL GetM odeTiming()
Thisis used to gather scan timing information for a specific Di spl ayModel D.

GDXEr r Graphi csHALGet ModeTi mi ng(Di spl ayModel D di spl ayMbdel D,
U nt32 *timngFormat, U nt32 *tini ngFl ags)

-> di spl ayModel D
The Di spl ayMvdel D for which the information is desired.

<- tim ngFor nat
Currently, kDecl ROM abl es isthe only valid response for thisfield.

<- timngFl ags
This bit field indicates whether the specified Di spl ayMbdel Disvalid, safe, and/or the
default for the connected display. The bits are defined as follows:

kModeVal i d Set if HAL believes the connected display can
support the specified Di spl ayModel D.

kModeSaf e Set if HAL is 100% certain the connected display
can support the specified Di spl ayModel D.

kModeDef aul t Set if the specified Di spl ayMbdel Disthe default for
the connected display.

If the HAL doesn’t believe the specified Di spl ayModel Dis applicableto the
connected display, it should setti mi ngFl ags to 0, and the Display Manger will
subsequently attempt to query any Display Modules present in the system.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics HAL Routines

GraphicsHAL GetNextResolution()

Thisroutine is used to iterate over the Di spl ayModel Dsthe HAL supports. The Core has taken
care of most of thiswork, so the HAL simply hasto return the next bDi spl ayMdel D supported. It
isimportant to note that all Di spl ayMvdel Ds should be reported, regardless of what display is
physically connected.

GDXErr G aphi csHALGet Next Resol uti on(Di spl ayMbdel D previ ousDi spl ayModel D,
Di spl ayMbdel D *di spl ayMbdel D, Dept hMbde *nmaxDept hivbde)

-> previousD spl ayMdel D
If previ ousDi pl ayMbdel D = kDi spl ayModel DFi ndFi r st Resol uti on, get the first
supported resolution by the hardware.

Otherwise, pr evi ousDi pl ayModel D contains the Di spl ayModel D from the previous
call, so report the subsequent Di spl ayModel D.

<- displ ayMdel D
Di spl ayModel D of the next display mode following pr evi ousDi spl ayModel D. Set
thisto kDi spl ayMbdel DNoMor eResol ut i ons once all supported Di spl ayMdel DS
have been reported.

<- maxDept hMode
Maximum relative bit depth for the di spl ayMdel D.

GraphicsHAL GetPages()
This routine reports the number of graphics pages supported for the specified Di spl ayModel D at
the specified Dept hvode.

No attempt should be made to determine whether or not a display capable of being driven with a
raster of type Di spl ayModel Dis physically connected.

GDXEr r Graphi csHALGet Pages(Di spl ayModel D di spl ayMbdel D,
Dept hMbde dept hMbde, SIntl16 *pageCount)

-> displ aynodel D
The Di spl ayModel D for which the page count is desired.

-> dept hMode
The Dept hvode for which the page count is desired.

<- pageCount
of pages supported at the specified Di spl ayMdel D and Dept hMbde. In the event of
an error, pageCount isundefined. Thisisa counting number, so it is not zero based.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics HAL Routines

GraphicsHAL GetPower State()

The graphics hardware might have the ability to go into some kind of power saving mode. This
call isused to determine the current power state. If the hardware does not support changing power
states, then it can return kGDXEr r Unsuppor t edFuncti onal i ty.

GDXEr r Gr aphi csHALGet Power St at e(VDPower St at eRec *vdPower St at e)

For thisroutine, the relevant fields indicated by vdPower St at e are:

<- power State
The current power mode: kAVPower OF f , kAVPower St andby, kAVPower Suspend, Or
kAVPower On.

<- power Fl ags
Bit field for conveying additional information. Currently the following bits are
defined:

kPower St at eNeedsRefresh Set if VRAM needs to be refreshed after coming out
of the designated power state.

GraphicsHAL GetSenseCodes()

Thisroutineis called whenever the state of the sense codes need to be reported. This should only
report the sense code information. No attempt should be made to determine what type of display
isattached here. Moreover, the sense codes should be determined every timethiscall is made, and
not make use of any previously saved values.

GDXErr Graphi csHALGet SenseCodes(RawSenseCode *r awSenseCode,
Ext endedSenseCode *ext endedSenseCode,
Bool ean *standardl nterpretation)

<- rawSenseCode
For standard sense code hardware, this value isfound by instructing the hardware not
to actively drive any of the monitor sense lines, and then reading the state of the
monitor senselines 2, 1, and 0. (2 isthe MSB, 0 the LSB)

<- extendedSenseCode
For standard sense code hardware, the extended sense code algorithm is as follows:
(Note: as described here, senseline‘A’ correspondsto‘2’, ‘B’ to‘1’, and‘C’ to‘0’)

*Drivesenseline ‘A’ low and read the valuesof ‘B’ and ‘' C'.
*Drive senseline ‘B’ low and read the values of ‘A’ and ‘' C'.
*Drive senseline‘C’ low and read thevalues of ‘A’ and ‘B’.

In thisway, a six-bit number of the form BC/AC/AB is generated.

<- standardlnterpretation
If standard sense code hardware isimplemented (or the values are coerced to appear
standard) then set thisto t r ue. Otherwise, set it to f al se, and the interpretation for
r awSenseCode and ext endedSenseCode Will be considered private.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics HAL Routines

GraphicsHAL GetSync()
Thisroutine is called to determine the frame buffer controller’ s abilities for handling the various
syncing signals, and also to determine the current status of the syncs. If the connected display
supported the Video Electronics Standards Association (VESA) Device Power Management
Standard (DPM), it would respond to the horizontal and vertical syncsin the following manner:

TABLE 5. DPMS Interpretation & Sync Bits

DPMS | Vertical | Horizontal | Display

State Sync Sync State kDisableVerticalSyncBit | kDisableHorizontal SyncBit
Active Pulses Pulses Active 0 0
Standby Pulses No Pulses | Blanked 0 1

Idle No Pulses Pulses Blanked 1 0

Off No Pulses | No Pulses Blanked 1 1

GDXEr r Graphi csHALGet Sync(Bool ean get Har dwar eSyncCapabi lity,

VDSyncl nf oRec *sync)

-> get Har dwar eSyncCapabi lity
If t r ue, then report the capability of the hardware. If f al se, then report the current
state of the sync lines and which channel (if any) that the hardware is syncing on.

For this routine, the relevant fields of the vDSyncl nf oRec structure are as follows:

<- csMode
If get Har dwar eSyncCapabi |l ity = true, then report the capability of the hardware.
When reporting the capability of the hardware, set the appropriate bits of csMde:

kDi sabl eHori zont al SyncBi t
kDi sabl eVerti cal SyncBit
kDi sabl eConpositeSyncBit

kSyncOnRedEnabl eBi t

Set if HW can disable Horizontal Sync.
Set if HW can disable Vertical Sync.
Set if HW can disable Composite Sync.

— I

Set if HW can sync on red.

Set if HW can sync on green.

Set if HW can sync on blue.

Set if HW cannot enable/disable H, V, C sync
independently. Means that HW only supports the
‘Off” or *Active’ state.

kSyncOnG eenEnabl eBi t
kSyncOnBl ueEnabl eBi t
kNoSepar at eSyncCont r ol Bi t

If get Har dwar eSyncCapabi l ity = fal se, then report the current state of synclines
and if the hardware is syncing on red, green, or blue. Reporting the ‘ current state of
the sync lines' effectively means ‘report the state of the display.’

To report if the hardware is syncing on red, green or blue, set the following bits
accordingly:

kSyncOnRedEnabl eBi t
kSyncOnG eenEnabl eBi t
kSyncOnBl ueEnabl eBi t

Set if HW is syncing on red.
Set if HW is syncing on green.
Set if HW is syncing on blue.

Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics HAL Routines

GraphicsHAL GetVBL InterruptRoutines()

The OSS encapsulates how interrupts are handled by the system. This routine supplies the OSS
with the HAL's interrupt routines that follow the OSS conventions. Hopefully, if the OS changes,
only the OSS will need to change.

GDXEr r Graphi csHALGet VBLI nt er r upt Rout i nes(Bool ean *i nstal | VBLI nterrupts,
Bool ean *chai nDefault, VBLHandl er **hal VBLHandl er,
VBLEnabl er **hal VBLEnabl er, VBLD sabl er **hal VBLDi sabl er,
voi d **vbl Ref Con) ;

<- installVBLInterrupts
true if the HAL'sinterrupt scheme can match the OSS's scheme. i.e. the HAL letsthe OSS handle
most of the interrupt functions.

fal se if the HAL'sinterrupt schemeisradically different than the OSS's scheme. The HAL is
responsible for knowing how the OS handles interrupts. (Obviously, thisisthe escape mechanism for a
poor OSS design.)

If thisisfal se, all other parameters are ignored.

<- chai nDef aul t
If hal VBLENnabl er or hal VBLDI sabl er isNULL, thisisignored by the OSS for the respective function
since the default enabler/disabler supplied by the OSis used.

If chai nDefault = true, and if the hal VBLEnabl er or hal VBLD sabl er isnot NULL, the OSS will
call the default OS enabler/disabler after the HAL's enabler/disabler is called

If chai nDefault = fal se, and if the hal VBLEnabl er or hal VBLD sabl er isnot NULL, the OSS will
not call the default OS enabler/disabler after the HAL's enabler /disabler is called. The HAL assumes
the responsibility for enabling/disabling the interrupt source on the motherboard. (Dangerous!)

<- hal VBLHandI er
The HAL's VBL handler which should clear and reprime the internal interrupt source.

<- hal VBLEnabl er
If hal VBLEnabl er = NULL, the default OS enabler will be called and the HAL can ignore things.

If hal VBLEnabl er != NULL and chai nDef aul t = true, the HAL needs to enable the internal
interrupt source, and the OSS will call the default OS enable routine to enable motherboard interrupts.

If hal VBLEnabl er != NULL and chai nDef aul t = fal se, the HAL needs to enable the internal and
motherboard interrupt source. (Dangerous!)

<- hal VBLD sabl er
If hal VBLD sabl er = NULL, the default OS enabler will be called and the HAL can ignore things.

If hal VBLDi sabl er ! =NULL and chai nDef aul t =t r ue, the HAL can choose to disable the interna
interrupt source, and the OSS will call the default OS disable routine to disable motherboard interrupts.

If hal VBLDi sabl er ! =NULL and chai nDef aul t =f al se, the HAL can choose to disable the internal
and must disable the external interrupt source. (Dangerous!)

<- vbl Ref Con
If the HAL needs some data for the interrupt routines, then this opague pointer can be used to reference
it. The OSS will not attempt to interpret thisin any manner.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics HAL Routines

GraphicsHAL GetVideoParams()
Thisroutine is used to obtain the r owbyt es for a specified Di spl ayModel D and Dept hvode. Asa
courtesy to the caller, the relative bit depth is also returned.

GDXEr r Graphi csHALGet Vi deoPar ans(Di spl ayMbdel D di spl ayModel D,
Dept hMbde dept hMbde, Ul nt32 *bitsPerPi xel,
SInt16 *rowBytes)

-> di spl ayModel D
TheDi spl ayMvdel D for which the information is desired.

-> dept hMode
The relative bit depth for which the information is desired.

<- bitsPerPi xel
Absolute bit depth for the specified Dept hvode.

<->rowBytes
On input, r owbyt es contains the horizontal pixelsfor the specified Di spl ayMdel D.

On output, r owbyt es should have the number of bytes between successive rows of
video memory for the specified Di spl ayMvdel D and Dept hibde.

GraphicsHALGrayCLUT()

Thisroutine sets all the CLUT entries to 50% gray. Thisisuseful so that the pixel depth can be
subsequently changed without introducing screen anomalies, since 50% gray has the same
representations at al bit depths. The 50% gray value will be obtained by using the midpoint value
of the supplied gammatable.

@Dl Err Graphi csHALG ayCLUT(const GammaThbl *gammma)

-> gamma
Thisisapointer to agammatable. An acceptable 50% gray value can be obtained by
using the midpoint of each channel’s correction data. It is the responsibility of the
Core to make sure the gammatableisvalid, so the HAL does not have to perform any
error checking.

GraphicsHAL M apDepthM odeT oBPP()
Thisroutineis used to map arelative pixel depth (Dept hMode) to an absolute pixel depth (bits per
pixel).

GDXEr r Graphi csHALMapDept hModeToBPP(Dept hMode dept hibde,
U nt 32 *bit sPer Pi xel)

-> dept hMode
Therelative pixel depth

<- bi tsPerPi xel

Corresponding absolute pixel depth.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics HAL Routines

GraphicsHAL M odePossible()

This routine checks to see if the hardware is capable of driving the given Di spl ayModel D at the
indicated Dept hMode and page. Thisdoes not check to seethat the Di spl ayModel Disvalid for the
display type that is physically connected.

Important Note: The GDXEr r return value does not indicate whether the mode is possible or not. It
only signifieswhether or not the value returned in nodePossi bl e was correctly determined. In the
event of an error, modePossi bl e does not contain valid information.

GDXErr G aphi csHALModePossi bl e(Di spl ayMbdel D di spl ayModel D,
Dept hMbde dept hvbde, SInt16 page, Bool ean *nodePossi bl e)

-> displ aynodel D
The Di spl ayMvdel Dfor which the information is desired.

-> dept hMode
The Dept hvode for which the information is desired.

-> page
The page for which the information is desired.

<- nodePossi bl e
Thiswill bet r ue if the frame buffer can support the desired items, f al se otherwise.
In the event of an error, nodePossi bl e is undefined.

GraphicsHAL ProgramHar dwar &)

This routine attempts to program the graphics hardware to the desired Di spl ayModel D,

Dept hMode, and page. The HAL isnot required to specifically check to seeif the inputs are valid,
since it can assume that the checking has been done el sewhere.

GDXEr r G aphi csHALPr ogr amHar dwar e(Di spl ayModel D di spl ayModel D,
Dept hMbde dept hMbde, SIntl16 page, Bool ean *direct Col or,
char **baseAddress)

-> di spl ayMdel D
The desired DisplayModel D.

-> dept hMode
The desired relative bit depth.

-> page

The desired page.

<- directCol or
t rue if the desired Dept hbde resultsin the hardware being in adirect color mode,
otherwiseitisfal se. Inthe event on an error, it is undefined.

<- DbaseAddress
The resulting base address of the frame buffer’s VRAM. In the event of an error, it is
undefined.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics HAL Routines

GraphicsHAL SetCLUT()

Thisroutine will program the CLUT with the specified array of Col or Specs. Two such arrays are
provided, the original, and a second that has been luminance mapped (if appropriate) and gamma
corrected. It is up to the HAL implementation to decide which array should be applied to the
hardware. Most hardware will use the corrected version.

It isimportant to note that the positions of the entriesrefersto logical positions, not physical ones.
At 4 bpp, for example, the entry positions could range from 0, 1, 2,..., 15, even though the
physical positions may not have this number sequence.

No range checking is required, because the caller has aready done so.

@Dl Err Graphi csHALSet CLUT(const Col or Spec *ori gi nal CSTabl e,
Col or Spec *correctedCSTable, SInt1l6 startPosition,
SInt16 nunberOfEntries, Bool ean sequenti al,
Dept hvbde dept hivbde)

-> original CSTabl e
Thisisapointer to the array of Col or Specs provided by the caller. Thisis only provided in the event
that the hardware should not use the cor r ect edCSTabl e. If any adjustments need to made to it, then
they should be done to a copy. Don't throw away theconst !

-> correctedCSTabl e
Thisis essentialy acopy of ori gi nal CSTabl e, except that it has been luminance mapped (if
appropriate) and gamma corrected. Most hardware will use thisinformation to set the CLUT. Though it
is unlikely that thisinformation will need to be changed, it is not marked asconst in caseit isused to
build a specia version from theori gi nal CSTabl e. In that event, the array can be altered as necessary.

During the gamma correction process, the 16-bit representation of each channel in the R&BCol or
structure was mapped to an 8-bit (or less) representation.

For example, if prior to correction, an R@BCol or was represented as follows:

rgbCol or. red = OxAALA
r gbCol or. green = 0xBBBB;
r gbCol or. bl ue = 0xQ0CC

After gamma correction it might appear as:

rgbCol or. red = 0x00A9;
rgbCol or. green = 0x00B®6;
r gbCol or. bl ue = 0x004;

Additionally, regardless of the size of theor i gi nal CSTabl e array, cor r ect edCSTabl e pointsto an
array of Col or Specs with 256 entries.

-> startPosition (O based) Starting point in the array.
-> nunberFEntries (0 based) Thisisthe number of entriesto be set.

-> sequenti al
If f al se, then the val ue field of the ColorSpec should be inspected to see what logical position should
be set. If t r ue, then the array index indicates what logical position should be set.

-> dept hMbde
Therelative bit depth. Thisis provided so that the HAL can decide how to map the logical entry
positions to the physical entry positions.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics HAL Routines

GraphicsHAL SetHar dwar eCur sor ()

Thisroutineis called to setup the hardware cursor and determine if whether the hardware can
support it. The HAL should remember whether this call was successful for subsequent
GetHardwareCursorDrawState() or DrawHardwareCursor() calls, but should NOT change the
cursor's X or Y coordinates, nor itsvisible state.

GDXEr r G aphi csHALSet Har dwar eCur sor (const GanmmaTbl *ganmmg,
Bool ean | um nanceMappi ng, void *cursor Ref)

-> gamma
Current gamma table to correct cursor colors with, if the HAL can apply gamma
correction.

-> | um nanceMappi ng
Thiswill bet r ue if the Core had luminance mapping enabled and it was in an
indexed color mode. If t r ue, the HAL should luminance map the cursor CLUT even
if the hardware cursor is a super-duper cursor capable of direct color. Thisis because
the hardware cursor should ook like the software cursor it is replacing.

-> cursor Ref
Opague data to be handed to VSLPr epar eCur sor For Har dwar eCur sor () .

GraphicsHAL SetPower State()

The graphics hardware might have the ability to go into some kind of power saving mode. This
call is used to change the current power state. If the hardware does not support changing power
states, then it can return kGDXEr r Unsuppor t edFuncti onal i ty.

GDXErr Graphi csHALGet Power St at e(VDPower St at eRec *vdPower St at e)

For this routine, the relevant fields indicated by vdPower St at e iS:

-> powerState
The desired power mode: kAvPower O f , kAVPower St andby, kAVPower Suspend, Or
kAVPower On.

<- power Fl ags
Bit field for reporting specia conditions.

kPower St at eNeedsRefresh Set if VRAM needs to be refreshed after coming out
of the designated power state.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Graphics HAL Routines

GraphicsHAL SetSync()
Thisroutine is used set the state of the hardware’ s sync lines. If the connected display conformed
to DPMS, then it would respond as shown in Table 5, “DPMS Interpretation & Sync Bits,” on

page 22.
GDXErr Graphi csHALSet Sync(UI nt8 syncBitField, Unt8 syncBitFieldvalid)

-> syncBitField
Bit field indicating which of the sync bits need to be disabled or enabled:

kDi sabl eHori zont al SyncBit Setif HW should disable horizontal sync.
kDi sabl eVerti cal SyncBi t Set if HW should disable vertical sync.
kDi sabl eConpositeSyncBit Setif HW should disable composite sync.

kSyncOnRedEnabl eBi t Set if HW should sync on red.
kSyncOnG eenEnabl eBi t Set if HW should sync on green.
kSyncOnBl ueEnabl eBi t Set if HW should sync on blue.

-> syncBitFieldvalid
Thisisamask of the bitsinsyncBi t Fi el d which are valid.

GraphicsHAL SupportsHar dwar eCur sor ()
Thiscall isused to determine if the HAL supports a hardware cursor.

GDXEr r Graphi csHALSupport sHar dwar eCur sor (Bool ean *support sHar dwar eCur sor)

<- support sHar dwar eCur sor
true if HAL supports a hardware cursor, f al se otherwise.

GraphicsHAL PrivateControl()
This routine accepts private control calls, or control calls which the Core does not process. If the
HAL knows what to do with thepri vat eCont r ol Code, it should deal with it accordingly.

OSErr G aphi csHALPri vateControl (void *genericPtr,
SInt16 privat eContr ol Code)

-> generichktr
Points to the data structure that the HAL needs for this control call. Should be cast to

appropriate data type if internal routine isinvoked.

-> privat eControl Code
The private csCode that the HAL might know what to do with.

ﬂ Copyright Apple Computer, Inc. July 17, 1995

GDX

Graphics HAL Routines

GraphicsHAL PrivateStatus()

This routine accepts private status calls, or status calls which the Core does not process. If the
HAL knows what to do with thepri vat eSt at usCode, it should deal with it accordingly.

OSErr G aphi csHALPri vat eSt at us(void *genericPtr,
SInt 16 privat eSt at usCode)

-> generichktr
Points to the data structure that the HAL needs for this control call. Should be cast to
appropriate datatype if internal routine is invoked.

-> privateStatusCode
The private csCode that the HAL might know what to do with.

July 17, 1995 Copyright Apple Computer, Inc. n_

GDX

Changing the Core

Changing the Core

Though GDX is designed so that no changes to the Core or OSS are required when developing a
HAL, here are some instances in which changes might be required:

Gamma Tableswith Morethan 8 Bits

The Core only support gamma tables which have 8 bits or less of correction data per entry. It does
not support 16 or 12 bit gammatables. In the event that support for more than 8 bitsis desired, the
following changes will be required:

GraphicsCoreControl.c

GraphicsCoreSetGamma()
Remove the check for 8 bits or less.

Change the calculation of the tableSize from:

tabl eSi ze = si zeof (GanmaTbl) /1 fixed size header

+ cl i ent Ganma- >gFor mul aSi ze /1 add formula size

+ cl i ent Ganma- >gChannt * cl i ent Ganma- >gDat aOnt // assume 1 byte/entry

- 2 I/ correct gFornul aData[0] counted twice
to:

dat aSi ze = (client Ganma- >gDat aWdth + 7) DV 8§;

tabl eSi ze = si zeof (GanmaThl) I/ fixed size header

+ cl i ent Gamma- >gFor nul aSi ze // add formul a size

+ cli ent Ganma- >gChannt * cl i ent Gamma- >gDat ant * dat aS ze

- 2 I/ correct gFornul aData[0] counted twice

Change the copying of the correction data from:

for (entryLoop = 0 ; entryLoop < gammaTabl e- >gDat aOnt ; entrylLoop++)
*newDat a++ = *cl i ent Dat a++;

to:

for (entryLoop = 0 ; entrylLoop < (gammaTabl e->gDat aOnt * dataSi ze) ; entrylLoop++)
*newDat a++ = *cl i ent Dat a++;

GraphicsCoreUtils.c

GraphicsUtil SetEntries()

Thisiswhere gamma correction is applied to the values about to be written to the
CLUT. The changes required here are not quite as straight forward as above, but
can be stated succinctly: allow 1 or 2 bytes of correction data per entry.

HAL Interface

In G aphi csHALSet CLUT() , which accepts a gamma corrected Col or Spec table, a
parameter will have to be added to specify how many bits where used for correction. This
will allow the HAL to chose the correct bits from each 16 bit RGBCol or.

ﬂ Copyright Apple Computer, Inc. July 17, 1995

GDX

Changing the Core

Adding New DisplayM odel Ds

If the existing Di spl ayMvdel Ds defined in Gr aphi csPri v. h are not sufficient to describe the
rasters your hardware can produce, then you will need to define additional ones.

GraphicsPriv.h
Add the new Di spl ayMvdel Dto the end of the existing enumeration.

GraphicsCore.c

GraphicsCorel nitPrivateData()

Add the new Di spl ayModel Dto thel ocal Tabl e, describing its resolution and
scan rate.

GraphicsCoreStatus.c

GraphicsCoreGetModeTiming()
Add the new Di spl ayMvdel D to the timingModeTable, describing its timing data.

Supporting Less Than 256 Colors

As computers get faster and faster, the burden of supporting high pixel depths has lessened.
However, from a programing standpoint, the effort to support lower pixel depths requires as much
programing (and testing) as supporting higher pixel depths. GDX only supports 8, 16, and 32 bits
per pixel. However, the modification to support lesser depthsis quite simple:

GraphicsCoreStatus.c

GraphicsCoreGetVideoParams()

Add the appropriate information in the switch statement for 1, 2, and 4 bits per
pixel.

July 17, 1995 Copyright Apple Computer, Inc. “_

GDX

RELEESIN0ES

Release Notes

Thisisthe change history of GDX.

Version 1.0
May 23, 1995. Initial release.

Verson 1.0.1
July 17, 1995. Thisis an incremental release incorporating minor updates.

New Features and Enhancements
The following items are incorporated into GDX 1.0.1:

Default Gamma Applied at Start-up

Previoudly, alinear gamma table was applied to the hardware during the early
stages of booting. Now, a default gammatable is applied, based on the type of
display connected.

Better Support for Hardware Which Doesn’t Generate | nterrupts

A small number of graphics devices may not actually generate hardware VBL
interrupts. If so, the HAL can simulate aVBL by using an interrupt ti mer?. When
the timer goes off, the HAL can call G- aphi csOSSDoVSLI nt er r upt Ser vi ce() to
allow the OSto serviceitemsin its VBL task queue.

Files Changed
Thisisthelist of the items that were changed for the 1.0.1 releases.

GraphicsCore.c

In Graphi csOpen() , adefault gammatable is applied instead of alinear one. Also,
some dlight changes where made to provide better support for replacing drivers
that don’t fully support the kRepl ace/ kSuper seded commands.

GraphicsCoreControl.c
In Gr aphi csCor eSet Sync(), reflect the fact that syncBi t Fi el dval i d iSnow an
input only when calling G- aphi csHALSet Sync() .

GraphicsCoreStatus.c
INn G aphi csCor eGet Connect i on(), NOW reporting new constants for fixed
frequency 16”, 19" and 21" color displays.

GraphicsCoreUtilities.c & GraphicsCoreUtilities.h
Added anew function G- aphi csUt i | Get Def aul t GammaTabl el D() .

GraphicsOSS.c & GraphicsOSS.h
Added anew function Gr aphi csOSSDoVSLI nt er r upt Ser vi ce() .

2. Designing PCI Cards and Driversfor Power Macintosh Computers, page 272.

4“ Copyright Apple Computer, Inc. July 17, 1995

GDX

Release Notes

GraphicsHAL Template.c
In Graphi csHALI ni t Pri vat eDat a() , added a detailed comment about the
nuances of replacing adriver.

INn G aphi csHALGet ModeTi i ng() , NOW Setting ti m ngFor mat = kDecl ROMTabl es
prior to any error checking.

In G aphi csHALSet Sync() , update to reflect that syncBi t Fi el dval i d iShow
only an input.

GraphicsHAL TemplateEZ.c
Throughout thisfile, thetypes| ong, unsi gned | ong, short, unsi gned short,
etc. were replaced with Sl nt 32, Ul nt 32, Sl nt 16, Ul nt 16, €tC.

In G aphi csHALI ni t Pri vat eDat a() , added a detailed comment about the nuances of
replacing adriver.

INn G aphi csHALGet ModeTi ni ng(), NOW Setting ti m ngFor mat = kDecl ROMTabl es
prior to any error checking.

In G aphi csHALSet Sync() , update to reflect that syncBi t Fi el dval i d iSnow
only an input. Also, syncBi t Fi el dVval i d is examined more closely to check for
error conditions.

In GraphicsHAL GetVideoParams(), fixed atypo for the case of 32 bits per pixel in
which ‘<< 1’ wastyped instead of ‘<< 2’.

July 17, 1995 Copyright Apple Computer, Inc. m_

