

ð

2

T E C H N O T E :
On Multiple Inheritance
& HandleObjects 2

By Larry Rosenstein (DTS Emeritus)
Revised by Peter Gontier & Chris Forden
gurgle@apple.com
Apple Developer Technical Support (DTS)

This Technote answers a common question about MPW C++: Why doesn’t
HandleObject support multiple inheritance? To answer that question, this Note
provides a brief overview of how multiple inheritance is implemented in MPW
C++.

This Technote is addressed primarily to C++ developers who are concerned
about memory fragmentation.

About HandleObjects 2

Beginning with Version 3.0, MacApp switched the focus of its object memory
management from a handle-based system to a pointer-based system. This
change substantially improved execution speed, specifically because
pointer-based objects avoid compaction delays.

Accordingly, Apple recommends using malloc or the standard operator new for
allocating small objects.
About HandleObjects 1 of 10
Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects

For large objects, handles have some significant advantages. For one thing,
they minimize RAM usage by avoiding fragmentation. Also, some developers
need to continue using handles in their existing code.

Handles under Copland 2

Plans for Copland, the advanced Mac OS designed to supercede System 7.x,
call for handles to become less important in the Mac’s system software and
API. An improved implementation of virtual memory (VM) will alleviate the
effects of fragmentation for objects larger than the size of a VM page (4K bytes)
while increasing the duration of heap compaction due to page-swapping
between disk and RAM.

Note
The items called “vtable” in this Technote are actually
pointers to the vtable, which resides elsewhere in memory.
The more recent reference The Annotated C++ Reference
Manual uses the term “vptr”.

Using HandleObjects 2

MPW C++ contains several extensions to standard C++ for supporting
Macintosh programming. One such extension is the built-in class HandleObject.
Objects of any class descended from HandleObject are allocated as handles in
the heap. Your program may refer to one of these objects as if it were a simple
pointer; the compiler takes care of the extra dereference required.

A HandleObject is useful in Macintosh programming for the same reason that a
handle is useful. The use of handles helps prevent heap fragmentation, which
is critical on Macintosh computers that use small amounts of memory. If you
need to write an app that is small –– i.e., less than 100K –– you need to consider
using HandleObjects.

The nature of HandleObject imposes some restrictions, however, on how you
can use it in a program. These restrictions include:

■ heap allocation

■ handle manipulation
2 of 10 Using HandleObjects

Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects

■ multiple inheritance.

Heap Allocation 2

Because each object is allocated as a handle, all objects must be allocated on the
heap. (“Native” C++ objects can be allocated on the stack or in the static space
as well.) Consequently, you always declare variables and parameters as
pointers to an object of the class. For example:

class TSample: public HandleObject {
public:

…
long fData;

};

TSample *aSampleObject; // Legal
TSample anotherSample; // Results in a compile-time error

The error message the compiler generates in this case is:

Can’t declare a handle/pascal object: anotherSample

At first, this message might seem strange because the last two lines seem to
both declare objects. Actually, the first declaration is of a pointer to an object,
not of the object itself.

Handle Manipulation 2

The second restriction is that you must follow the usual rules for manipulating
handles. In particular, you have to be careful about creating pointers to
HandleObject data members, since the object might move if the heap is
compacted. If you write

long *x = & (aSampleObject -> fData);

then x becomes “stale,” i.e., it has a valid address but doesn’t point to where
the programmer intends, if the object moves. The solution is to lock the object if
there is a possibility that the heap may be compacted. Objects of HandleObject
are allocated with a call to NewHandle, so you can use HLock and HUnlock (along
with an appropriate type cast) to lock and unlock the object.
Using HandleObjects 3 of 10
Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects

Multiple Inheritance 2

The third restriction is that you cannot use multiple inheritance with a
HandleObject. The reason behind this restriction is not obvious. To understand
the reason, you must look at the implementation of multiple inheritance.

Implementing Multiple Inheritance 2

To understand how multiple inheritance is implemented, one needs a simple
example. Suppose you define two classes as follows:

class TBaseA {
public:

virtual void SetVarA(long newValue);
long fVarA;

…
};

class TBaseB {
public:

virtual void SetVarB(long newValue);
long fVarB;

…
};

If you were to look at objects of these classes (see Figure 1), you would find that
in each case the object storage would contain four bytes for the C++ virtual
table (vtable) and four bytes for the data member. Any code that accesses the
data members (for example, TBaseB::SetVarB) would do so using a fixed offset
from the start of the object. (In the particular version of C++, this offset was 0;
your offset may vary.) Figure 1 shows the layout of TBaseA and TBaseB objects.
4 of 10 Using HandleObjects

Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects

Figure 1 Layout of TBaseA and TBaseB objects

Now suppose you define another class:

class TDerived: public TBaseA, public TBaseB {
public:

virtual void SetDerivedVar(long newValue);
long fDerivedVar;

…
};

In this case, an object of TDerived has the following layout, as shown in Figure 2:

fVarA fVarB

vtableA vtableB
Using HandleObjects 5 of 10
Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects

Figure 2 Layout of TDerived object

This is what you would expect. TDerived inherits from both TBaseA and TBaseB,
and therefore objects of TDerived contain a part that is a TBaseA and a part that
is a TBaseB. In addition, the virtual table vtableDerived includes the tables for
both TBaseA and TDerived.

TDerived also inherits the virtual member functions defined in TBaseA and
TBaseB. Suppose you wanted to call SetVarB, using a TDerived object. The code
for SetVarB expects to be passed a pointer to a TBaseB object (all member
functions are passed a pointer to an appropriate object as an implicit
parameter), and refers to fVarB by a fixed offset from that pointer. Therefore, to
call SetVarB using a TDerived object, C++ passes a pointer to the middle of the
object; specifically it passes a pointer to the part of the object that represents a
TBaseB.

This gives you a very basic idea of how C++ implements multiple inheritance.
For more details, read “Multiple Inheritance for C++” by Bjarne Stroustrup in
Proceedings EUUG Spring 1987 Conference, Helsinki.

fVarA

vtableDerived

fVarB

vtableB

fDerivedVar
6 of 10 Using HandleObjects

Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects

Impact on HandleObjects 2

Each member function of a HandleObject class expects to be passed a handle to
the object, instead of a pointer; when multiple inheritance is used, the compiler
sometimes has to pass a pointer to the middle of the object.

Pointers into the middle of an object, even though (and especially because)
they are implicit in this case, nevertheless present the same problem as pointers
to object data members (as described earlier). The object’s handle could be
moved during heap compaction, rendering the pointer “stale.”

Designing a new implementation of multiple inheritance that is compatible
with a HandleObject, as well as the rest of C++, is a big undertaking. For that
reason, it is unlikely this restriction will disappear in the future. There are,
however, two alternatives to consider:

Ignore Fragmentation 2

For the majority of today’s machines and applications, the main reason to use
HandleObject is for purposes of compatibility with code that expects handle
objects. However, another valid reason is to reduce the chance of fragmentation
that would result from using non-relocatable blocks.

But even in applications for which fragmentation would otherwise be a critical
concern, memory allocation patterns may be very predictable; fragmentation is
less of an issue when all allocated blocks are of similar sizes.

Abandoning Multiple Inheritance 2

The other alternative is to give up multiple inheritance. In most cases, this isn’t
as difficult as it sounds. The typical way you would do this is with a form of
delegation. For example, you could rewrite the class TDerived as:

class TSingleDerived: public TBaseA {
public:

virtual void SetDerivedVar(long newValue);
void SetBaseB(long newValue);
long fDerivedVar;
TBaseB fBaseBPart;

…
};
Using HandleObjects 7 of 10
Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects
In this case TSingleDerived inherits only from TBaseA, but includes an object of
TBaseB as an data member. It also implements the virtual member function
SetBaseB to call the function by the same name in the TBaseB class. (In effect,
TSingleDerived delegates part of its implementation to TBaseB.)

There are advantages and disadvantages to this approach. The advantage is
that it requires only single inheritance, yet you can still reuse the
implementation of TBaseB. The disadvantage is that TSingleDerived is not a
sub-class of TBaseB, which means that an object of TSingleDerived cannot be
used in a situation that requires a TBaseB. Also, TSingleDerived has to define a
member function that corresponds to each function in TBaseB. (You can,
however, define these functions as inline and non-virtual, which eliminates any
run-time overhead.)

Caveat 2

You should realize that the multiple inheritance implementation described here
costs some extra space, compared to a simpler implementation that does not
support multiple inheritance (e.g., the implementation used for a
HandleObject). Each vtable is twice as large, and each virtual member function
takes about 24 bytes, compared to 14. This is true even if you do not take
advantage of multiple inheritance. For this reason, MPW C++ also contains a
built-in class called SingleObject, whose objects can be allocated in the same
way as normal C++ objects, but which only supports single inheritance.

Note
The third class built into MPW C++, PascalObject, uses
Object Pascal’s run-time implementation, which takes the
least amount of space, but the most execution time. ◆

Managing Many Handles 2

If you’re writing large, high-end applications, you may need to manage
thousands of objects. The Macintosh Memory Managers slow down when
required to deal with so many handles. If you’re dealing with many handles,
here are some important points to keep in mind:

■ Keep the objects locked except just after calling WaitNextEvent. Then, if some
predetermined amount of time (perhaps one minute, for example) has
8 of 10 Managing Many Handles

Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects
elapsed since the user interacted with the application, unlock everything
and compact the heap.

■ When you compact the heap, do it incrementally, i.e. do a little bit of
compaction, then check to see if you have used up more than 50,000
microseconds in the process. When you have used up that much time, call
EventAvail to check if there is now an event that needs processing. If such an
event has arrived, return to your main event loop to process it.

■ Because the Modern Memory Manager’s CompactMem routine really compacts
the entire application heap even if you ask it to compact just a little bit of it,
use NewPtr instead. Ask for a moderate-sized block (e.g. “NewPtr(40000)”),
and check the time to see if you need to call EventAvail. Then ask for another
block.

■ After compacting memory with NewPtr, dispose of the compaction pointers,
and lock your handles.

■ When you can’t allocate a pointer, you’re done.

This approach will cause purgeable handles to get purged, so if you don’t want
that to happen, create and manage a list of purgeable handles. Call HNoPurge on
this list prior to a NewPtr-based compaction, then call HPurge on it after the
compaction.

Summary 2

You cannot use a HandleObject with multiple inheritance because of the way
multiple inheritance is implemented in MPW C++. Your alternatives are to give
up one or the other: You can either use native C++ objects and let the objects
fall where they may, or give up multiple inheritance and use a form of
delegation.

Further Reference 2

■ MPW C++ Reference Manual

■ “Multiple Inheritance for C++,” Bjarne Stroustrup, Proceedings EUUG Spring
1987 Conference, Helsinki.
Summary 9 of 10
Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

T E C H N O T E : On Multiple Inheritance & HandleObjects
■ Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference
Manual, (a.k.a “ARM ”), Addison-Wesley, 1990, ISBN 0-201-51459-1,
pp.217-237

Change History 2

This Technote was originally written in August, 1990.

It was revised in July, 1995, to include information on managing multiple
handles and updated again with new information in October, 1995.
10 of 10 Summary

Technote 1009 - Release 1.0  Apple Computer, Inc. 10/24/95

	T E C H N O T E : On Multiple Inheritance & Handle...
	About HandleObjects
	Handles under Copland

	Using HandleObjects
	Heap Allocation
	Handle Manipulation
	Multiple Inheritance
	Implementing Multiple Inheritance
	Figure�1 Layout of TBaseA and TBaseB objects
	Figure�2 Layout of TDerived object

	Impact on HandleObjects
	Ignore Fragmentation
	Abandoning Multiple Inheritance

	Caveat

	Managing Many Handles
	Summary
	Further Reference
	Change History

