

C H A P T E R 5

5

Text U
tilities

Text Utilities 5

The Text Utilities provide you with an integrated collection of routines for performing a
variety of operations on textual information, ranging from modifying the contents of a
string, to sorting strings from different languages, to converting times, dates, and
numbers from internal representations to formatted strings and back. These routines
work in conjunction with QuickDraw text drawing routines to help you display and
modify text in applications that are distributed to an international audience.

Many of the Text Utilities routines were previously located in other managers in the
Macintosh system software. Several of these have been replaced with new versions that
take a script code as a parameter and others have been renamed. The appendix
“Renamed and Relocated Text Routines” in this book shows the original names and
locations of all of the text-handling routines.

You need to read this chapter if you are working with text in your application. This
includes basic operations such as accessing a string resource and comparing two strings
for equality. If you have used Macintosh text-processing routines in the past, you need to
review the material in this chapter to understand the new capabilities that have been
added to many of the routines.

To understand the material in this chapter, you need to have a basic understanding of the
Macintosh script management system. Read this chapter after reading “Introduction to
Text on the Macintosh.” For parts that describe international resources, read the
appendix “International Resources” along with this chapter. For parts that describe text
layout, read “QuickDraw Text” along with this chapter.

This chapter describes the resources and text strings with which the Text Utilities
interact, and discusses how to use the Text Utilities to compare, sort, modify, and find
breaks in text strings, and to convert and format date, time, and numeric strings.

About the Text Utilities 5

The Text Utilities routines are used for numerous text-handling tasks, including

■ defining strings—including functions for allocating strings in the heap and for
loading strings from resources

■ comparing and sorting strings—including functions for testing whether two strings
are equal and functions for finding the sorting relationship between two strings

■ modifying the contents of strings—including routines for converting the case of
characters, stripping diacritical marks, replacing substrings, and truncating strings

■ finding breaks and boundaries in text—including routines for finding word and line
breaks, and for finding different script runs in a line of text
About the Text Utilities 5-3

C H A P T E R 5

Text Utilities

■ converting and formatting date and time strings—including routines that convert
numeric and string representations of dates and times into record format, and
routines that convert numeric and record representations of dates and times
into strings

■ converting and formatting numeric strings—including routines that convert string
representations of numbers into numeric representations, and routines that convert
from numeric representations into formatted strings

The Text Utilities and the International Resources 5
Many of the Text Utilities routines script-aware, which means that you need to
understand script systems and the international resources to use the routines properly.
Each script system contains a collection of these resources, which contain data and
routines that define how regional differences are handled. In particular, the international
resources contain tables that define how different text elements are represented.

The resources used by the Text Utilities are

■ the script-sorting ('itlm') resource, which defines the sorting order among scripts

■ the numeric-format ('itl0') resource, which describes details of how time,
numbers, and short dates are presented

■ the long-date-format ('itl1') resource, which describes how long dates
are presented

■ the string-manipulation ('itl2') resource, which contains tables that define how
strings are sorted and which characters cause breaks between words

■ the tokens ('itl4') resource, which contains tables that define which sequences of
characters create which tokens

The appendix “International Resources” in this book describes each international
resource in detail.

Obtaining Resource Information 5
Many Text Utilities routines perform operations—such as modifying text or sorting
strings—that require information from resources. Some routines determine which
resources to use by checking a resource parameter; others check a script code parameter.

For a Text Utilities routine that uses a resource parameter, you can explicitly specify
the resource you want to use, or you can specify NIL. The value NIL causes the routine
to use the resources associated with the current script. The current script is either
the system script (the script associated with the currently running version of Macintosh
system software) or the font script (the script of the current font in the current graphics
port), and is determined by the value of the international resources selection flag, which
is represented by the global variable IntlForce. If the value of this flag is TRUE, the
current script is the system script; if the value of the flag is FALSE, the current script is
the font script. (See Figure 5-1.)
5-4 About the Text Utilities

C H A P T E R 5

Text Utilities

5

Text U
tilities

Figure 5-1 Determining the current script

The international resources selection flag is initialized at startup from the system script
configuration ('itlc') resource. For most system scripts, the international resources
selection flag has a default value of TRUE. If you want to change its value, you can use
the SetSMVariable function with the smIntlForce selector. If you want to test its
values, you can use the GetSMVariable function with the same selector. The
GetSMVariable and SetSMVariable functions are described in the chapter “Script
Manager” in this book.

The value of the international resources selection flag actually controls the operation of
the GetIntlResource function, which is used by other routines to access the
international resources. The operation of GetIntlResource is described in detail in the
chapter “Script Manager” in this book.

Other Text Utilities routines use a script code parameter, in which you specify the unique
number that defines the script system whose resources you want to use.

Get current font

System script

Map special fonts 0 and 1 to

their true font ID’s

Yes

Get font’s

script code

No

IntlForce

=TRUE?

Script enabled?

Yes

No

Font script System script
About the Text Utilities 5-5

C H A P T E R 5

Text Utilities

Constants for all defined script codes are listed in the chapter “Script Manager” in this
book. If you wish, you can specify the following two special constants in the script code
parameter: smSystemScript, which indicates that the routine should use the
international resources of the system script, and smCurrentScript, which indicates
that the routine should use the font script.

Pascal Strings and Text Strings 5
This chapter describes many routines, almost all of which operate on strings that are
specified in one of two forms: as Pascal strings or as text strings. These are two ways of
representing text characters, each of which has advantages and disadvantages relative to
the other.

A Pascal string is an array of characters, the first byte of which defines the number of
bytes that follow. This is the standard representation of strings used in Pascal
programming. Most of the Text Utilities routines that use Pascal strings use the Str255
or StringHandle type. An advantage of the Str255 type is that it can be passed
directly as a single parameter on the stack. A disadvantage is that a Str255 value can
hold only up to 255 bytes of character data. A typical Pascal string parameter declaration
is as follows:

PROCEDURE MyUsePascalString (str: Str255);

The alternative representation for character data, a text string, can contain up to 32,767
bytes of character data and is specified by two parameters: a pointer to the first byte of
character data and a 16-bit integer length value. A typical declaration of a routine that
uses a text string parameter declaration is as follows:

PROCEDURE MyUseTextString (textPtr: Ptr; textLen: Integer);

Some of the Text Utilities routines have been modified to allow for even longer strings.
These routines allow a 32-bit integer length value, which means that they can operate on
text strings of up to approximately two billion bytes in length.

IMPORTANT

Length is specified in bytes, not characters, for both Pascal strings and
text strings. In international text processing, two bytes are sometimes
required to represent a single character in certain fonts, as illustrated in
Figure 5-2. Because you have to accommodate both 1-byte and 2-byte
characters in the same string, the length of each string cannot be
specified as a number of characters. ▲
5-6 About the Text Utilities

C H A P T E R 5

Text Utilities

5

Text U
tilities

Figure 5-2 A string containing 1-byte and 2-byte characters

Using the Text Utilities 5

This section provides you with general information about how to use each group of Text
Utilities routines. A description of the basic concepts that each group deals with is
provided so that you can learn how to choose the appropriate function to meet your
needs. The following areas are covered:

■ how to define strings

■ how to retrieve the values of string resources

■ how to compare and sort strings, including how to sort strings in a
multi-language environment

■ how to modify strings by converting between uppercase and lowercase and
stripping diacritical marks

■ how to truncate strings to fit in specified screen areas

■ how to search for and replace portions of strings

■ how to find word, line, and script run boundaries in strings

0

1

2

3

4

5

6

7

8

9

A

B

A

B

C

†

¢

¶

$20

$21

$22

$E0

$E1

$E2

$A473

$A4F4

$A4EC

Character

codesByte

offsets

Characters

A B C ¶ ¢ †Displayed string
Using the Text Utilities 5-7

C H A P T E R 5

Text Utilities

■ how to convert date and time values into strings, accommodating different
international formats for the strings

■ how to convert date and time strings into internal numeric representations

■ how to convert numeric values into strings, accommodating different international
formats for the numbers

Defining Strings 5
Before you use a string in your application, you must define it in some way. You can use
a string variable to represent text characters, or you can allocate an object in the heap to
represent those text characters. Many strings, including error messages and lists of input
choices, originate in the resource fork of your application; you need access to these
string resources before using any of the Text Utilities routines with the strings. This
section describes several routines that you can use to allocate strings and to access
string resources.

Working With String Handles 5

When you need to modify a string, it is useful to create a version of the string as an
object in the heap. That way, you can increase or reduce the memory allocated for the
string object as necessary. String handles provide a means for you to work with
heap-oriented strings.

The Text Utilities include two routines that work with strings and string handles.
The NewString function creates a copy of a specified string in the heap and returns a
handle to that string. The SetString procedure changes the contents of the string
referenced by a string handle by copying a specified string into its area of the heap.
If you pass SetString a string that is longer than the one originally referenced by the
handle, SetString automatically resizes the handle and copies in the contents of the
specified string.

For example, suppose that you want to write a routine that creates both an uppercase
and lowercase version of an input string. The MyUpperAndLower function shown in
Listing 5-1 replaces the contents of the lowerStr parameter with a lowercase version of
the str parameter, and returns a new string handle to the uppercase version.

Listing 5-1 Using the NewString and SetString routines

FUNCTION MyUpperAndLower (str: Str255;

VAR lowerStr: StringHandle): StringHandle;

VAR

myStr: StringHandle;

len: Integer;

BEGIN

myStr := NewString(str); {create string handle to be converted to upper}

SetString(lowerStr, str); {set string handle to be converted to lower}
5-8 Using the Text Utilities

C H A P T E R 5

Text Utilities

5

Text U
tilities

len := ord(str[0]);

HLock(Handle(myStr)); {UppercaseText can move memory}

UppercaseText(@myStr^^[1], len, smSystemScript);

HLock(Handle(myStr));

HLock(Handle(lowerStr)); {LowercaseText can move memory}

LowercaseText(@lowerStr^^[1], len, smSystemScript);

HLock(Handle(lowerStr));

MyUpperAndLower := myStr;

END;

Working With String Resources 5

Since many of the strings in your Macintosh applications are specified in resource files,
you need access to those strings. Strings are defined by two different resource types: the
string ('STR ') resource and the string list ('STR#') resource. To work with the string
resource, you use the GetString function, and to work with a string list resource, you
use the GetIndString procedure.

The GetString function reads a string resource into memory and returns the handle to
the string resource as its result. GetString does not copy the string, so you must create
your own copy if you are going to modify the string in your application. If the resource
has already been read into memory, GetString simply returns a handle to the string.

If you use a number of strings in your application, it is more efficient to specify them in a
string list resource rather than as individual resources. This is because the system
software that reads in the resources can operate more efficiently when reading a
collection of strings from a file than when reading and storing each individually.

To work with an element in a string list, use the GetIndString procedure. It reads the
resource, locates the string, and copies the string into a Pascal string variable you supply.
You can then use the NewString function to create a copy of the string in the heap,
if you wish.

Sorting Strings in Different Languages 5
Strings in the same language must be sorted according to that language’s sorting
rules; information about these rules is found in resources that belong to that language’s
script system.

However, if the strings are in two different languages or writing systems, sorting order is
also governed by rules about the order among languages or writing systems. For
example, an application might need to sort names in English, French, and German, or it
might need to sort an index of English and Japanese names written in Roman and
Katakana characters.
Using the Text Utilities 5-9

C H A P T E R 5

Text Utilities
If you only need to sort strings from a single language in your application, you don’t
need to read this section or use the routines that are described here. You can skip ahead
to the section “Sorting Strings in the Same Language,” which begins on page 5-12.

When you sort strings in different languages, you must use routines that work with
script-sorting and language-sorting information. The script-sorting ('itlm') resource
contains tables that define the sorting order among the languages or writing systems in
each script system and among the different script systems that are available. It also
shows the parent script for each language, the parent language for each region, and the
default language for each script. The ScriptOrder function, which determines the
sorting relationship between two script systems, and the LanguageOrder function,
which determines the sorting relationship between two languages, use the tables
in the script-sorting resource to determine their results. For more information on the
script-sorting resource, see the appendix “International Resources” in this book.

To sort two Pascal strings in different languages, you begin by calling the StringOrder
function. (You can use the TextOrder function to compare two text strings; it operates
in the same way as does StringOrder.) The StringOrder function first calls the
ScriptOrder function; if the script codes of the two strings are different, then
StringOrder returns a result indicating the sorting relationship between the two script
codes. For example, if the first string is from a Japanese script system and the second is
from a Thai script system, then the second string comes before the first according to the
tables in the script-sorting resource.

If both strings come from the same script system, StringOrder then compares their
language codes by calling the LanguageOrder function. If the language codes of the
two strings are different, then StringOrder returns a result indicating the sorting
relationship between the two language codes. For example, if the first string is in English
and the second is in German, then the first string comes before the second according to
the tables in the script-sorting resource.

Finally, if the script codes and language codes for both strings are the same, then
StringOrder compares the two strings using one of the comparison functions
described in the next section, “Sorting Strings in the Same Language.”

If you need to sort a collection of strings, you can choose to implement your sorting
algorithm so that it uses StringOrder or TextOrder, or you can build a list for each
language and/or for each script system and sort each list independently. If you want to
use StringOrder or TextOrder, you need to store each string so that you can easily
access its script code and language code during the sort.

It is usually desirable to sort all strings from a script system together, using the sorting
rules that are associated with the current language for that script on the machine (and
ignoring the different sorting rules for the different languages). For example, if you are
sorting German, French, and English strings together for a system in England, you
usually want the English sorting rules to be applied to all of those strings. In some cases,
it may be more efficient to build a list for each language by using the language code of
each to determine to which list it belongs. After building a list for each language, you can
sort each with an algorithm that uses one of the comparison functions described in the
next section, “Sorting Strings in the Same Language.”
5-10 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Figure 5-3 shows a collection of strings from different languages that need to be sorted.

Figure 5-3 Strings in different languages in one list

In Figure 5-4, the strings have been sorted into two lists: one for each script system. The
Roman script system strings have been sorted according to the sorting rules for English,
which is assumed to be the current language for the script in this example.

Figure 5-4 Strings in different languages sorted by script

Roman

English

German

StringScript Language

love

Liebe

Japanese Japanese

Roman

English

German

peace

Frieden

Japanese Japanese

Roman

English

German

hope

Hoffnung

Japanese Japanese

Roman

StringsScript

Frieden

Hoffnung

hope

Liebe

love

peace

Japanese
Using the Text Utilities 5-11

C H A P T E R 5

Text Utilities
Figure 5-5 shows the same strings separated into three lists: one for each language.
Each list has been sorted independently by applying the sorting rules for a language. The
language lists in each script system have been ordered by calling the LanguageOrder
function.

Figure 5-5 Strings in different languages sorted by language within script

Sorting Strings in the Same Language 5
The Text Utilities provide a number of routines that you can use to compare and sort
strings in the same language. Some of these routines perform a comparison that assumes
single-byte character codes in the strings; others take into account the sorting rules of the
current script system, and still others allow you to explicitly specify the script system
resource to use for sorting strings.

Comparing strings can be an extremely intricate operation, because in many languages
you may have to account for subtleties such as complex characters, ignorable characters,
and exceptional words. Even for a straightforward language such as English, you
can’t always determine the sorting order by a simple table lookup or character
value comparison.

This section provides an introduction to some of the principles of text comparison and
sorting used by the Macintosh script management system. It then describes the routines
you can use for different comparison tasks.

Primary and Secondary Sorting Order 5

Sorting consists of two steps: determining primary sorting order and determining
secondary sorting order.

Roman English

Sorted stringsScript Language

hope

love

peace

Frieden

Hoffnung

Liebe

Japanese

German

Japanese

5-12 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
What happens in primary sorting order and secondary sorting order depends on the
language of the strings that are being sorted; however, there are two levels of importance
in the sorting operation, with some sorting differences subordinate to others. In the
primary sorting order for many Roman script system languages, uppercase and
lowercase characters are equivalent and diacritical marks are ignored. Thus, after
primary sorting, the two strings “The” and “thé” are considered equivalent. In the
secondary sorting order, lowercase characters are ranked after uppercase characters and
characters with diacritical marks are ranked individually. Thus, after secondary sorting,
“The” would sort before “thé”.

You can think of the character ranking that is used to determine sorting order as a
two-dimensional table. Each row of the table is a class of all characters such as all A’s:
uppercase and lowercase, with and without diacritical marks. The characters are ordered
within each row to form a secondary sorting order, while the order within each column
determines primary sorting order. Table 5-1 shows an example of such a table.

In primary sorting, each of the characters in the first row would be considered
equivalent and sorted before characters in the second row. In secondary sorting, the
order of the characters in each row would be taken into consideration. Another way of
saying this is to say that primary sorting characteristics take precedence over secondary
sorting characteristics: if any primary differences are present, all secondary differences
are ignored. When the strings being compared are of different lengths, each character in
the longer string that does not correspond to a character in the shorter one results in a
“comes after” result. This takes precedence over secondary sorting order.

For example, here is a list of strings that have not yet been sorted:

Å ab Ác ac Ab àb Ac

After primary sorting, the list appears as follows

Å ab Ab àb Ác ac Ac

After secondary sorting, the list appears as follows

Å Ab ab àb ac Ác Ac

Table 5-1 Excerpt from the Standard Roman script system sorting order

Primary sorting
order

Secondary sorting order

A A À Á Â Ä Å Æ a à á â ä å æ

B B b

C C Ç c ç

D D d

E E È É Ê Ë e è é ê ë

F F f
Using the Text Utilities 5-13

C H A P T E R 5

Text Utilities
Expansion and Contraction of Characters 5

In some languages, a single character may be expanded—that is, sorted as a sequence of
characters. First, the sorting routine expands the character, then it performs sorting on
the expanded version. Next, the sorting routine recombines the character and then
performs secondary sorting. For instance, the ä in German may be sorted as if it were the
two characters ae: Bäcker would come after Bad, but before Bahn.

A sequence of characters may also be contracted—that is, sorted as a single character. For
instance, ch in Spanish may be sorted as if it were one character that sorts after c but
before d: coche comes after coco but before codo.

Ignorable Characters 5

Certain characters need to be ignored unless the strings are otherwise equal; that is, these
characters have no effect on the primary sorting order, but they do influence the
secondary sorting order. In English, hyphens, apostrophes, and spaces are ignorable
characters. For instance, the hyphen is ignored in primary sorting order in English:
black-bird would come after blackbird, but before blackbirds.

Converting and Stripping Characters 5

Sometimes you may want to strip out certain characters (notably diacritical marks) or
convert the case of characters in a string to produce a different comparison result. For
example, you may want to convert all alphabetic characters in two strings into uppercase
before comparing the strings, rendering uppercase and lowercase characters equivalent.
The Text Utilities provide a number of routines for converting the case of characters and
for stripping diacritical marks. These routines are described in the section “Modifying
Text,” which begins on page 5-18.

Special Cases for Sorting 5

Sometimes the sorting order changes drastically for special cases. For instance, when
words are understood to be abbreviations, the strings should be sorted as if they were
spelled out in full, as in the following examples.

Cases such as these require a direct dictionary lookup and are not handled automatically
by the Macintosh script management system. Note that some abbreviations are
context-dependent, such as St., which may denote Saint or Street, depending on the
meaning of the adjacent text.

First string Second string Explanation

McDonald Mary McDonald is treated as MacDonald

St. James Smith St. is an abbreviation for Saint

Easy Step Easy St. St. is an abbreviation for Street
5-14 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities

Variations in Sorting Behavior 5

Here are some examples of variations in sorting behavior in different writing systems
of the world.

■ Sorting in Japanese depends upon the subscript. Kana and Romaji sorting are
complicated by the presence of both 1- and 2-byte character codes. Moreover, many
Katakana symbols have diacritical marks indicating a sound modification. For
example, the symbol for ga is formed from the symbol for ka. The secondary sorting
order for ga includes the four combinations of 1-byte or 2-byte ka with the 1-byte or
2-byte diacritical mark, plus a 2-byte character that combines the character and
diacritical into a single glyph.
In the Japanese script system, Kanji is currently sorted by character code, which
can produce unexpected results. Proper sorting in Kanji is commonly done using one
of three methods:
n First by a character’s primary radical, then by the number of remaining strokes.
n First by the number of total strokes, then by the primary radical.
n By sound value.

■ Sorting in Arabic is quite straightforward except that some characters are ignorable,
such as vowels and the extension bar (used to lengthen the cursive connection
between characters). Vowels in Arabic are also diacritical marks, overlapping over or
under the previous character (the character to the right).

■ The Thai script system currently provides for third-level sorting involving character
clusters. For more on character clusters, see the chapter “Introduction to Text on the
Macintosh” in this book.

Note
If you need to modify a script system’s standard string comparison or
replace it with your own version, you have to create your own
string-manipulation ('itl2') resource by following the guidelines
described in the appendix “International Resources” in this book. ◆

Choosing a Comparison Routine 5

The Text Utilities include six different routines for comparing one string to another.
Three of these routines test two strings for equality and the other three determine the
ordering relationship between two strings. You can use these routines with Pascal strings
and text strings, and they allow you to work with information from various resources or
to ignore script and language information altogether.

Figure 5-6 provides you with convenient guidelines for choosing from among the
comparison routines included in the Text Utilities. You first decide whether you are
comparing two Pascal strings or two text strings, and then decide whether to
unconditionally use the Macintosh file system string comparison rules or to explicitly
specify a string-manipulation resource that defines such rules. If you use a routine that
requires a parameter for a string-manipulation resource handle, you can specify NIL for
the value of that parameter to indicate that you want the current script system’s
string-manipulation resource.
Using the Text Utilities 5-15

C H A P T E R 5

Text Utilities
The top routine names in the boxes in Figure 5-6 are used to test two strings for equality,
and the bottom routine names in the boxes are used to compare two strings and
determine their sorting order. The term script-aware is used in this figure to indicate that
you must explicitly specify a string-manipulation resource as a parameter to a routine,
rather than the routine automatically using the file system’s string-manipulation rules.

Figure 5-6 Choosing a string comparison routine

The Macintosh file system string comparison rules are a subset of the Roman script
system comparison rules. These rules are used when the Macintosh file system compares
filenames for sorting. Since the Macintosh character set only contains characters with
codes from $0 to $D8, the file system comparison rules only work correctly for
character codes through $D8. You should only use the routines that use these rules
when you are trying to emulate the way that the Macintosh file system compares strings.

Text strings

Use file system comparisonDoes this

comparison need to

be script-aware?

Pascal strings

Script-aware

IdenticalString

CompareString

IdenticalText

CompareText

EqualString

RelString

Are you

using text strings

or Pascal

strings?
5-16 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Table 5-2 describes the sorting behavior implemented by the routines that use the file
system comparison rules.

Testing Two Strings for Equality 5

To test whether two strings are equal, use EqualString, IdenticalString, or
IdenticalText. You can use the first two functions with Pascal strings, and the last
one with text strings.

The functions that work with Pascal strings—EqualString and IdenticalString—
allow you to specify the kind of information you want to consider in your test. If you
want to test two Pascal strings using the Macintosh file system comparison rules, use
EqualString. If you want to consider the information from a string-manipulation
resource, use the IdenticalString function. You can explicitly specify the handle of a
string-manipulation resource or you can specify NIL as the value to indicate that you
want the current script’s string-manipulation resource used.

*All simple lowercase Roman characters are converted to their uppercase equivalents.

Table 5-2 Sorting features of the Macintosh file system

Reordering of ligatures Stripping of diacritical marks Uppercase conversion

Ligature Falls between Marked character
Stripped
to Lower Upper

Æ Å and a Ä, Å, À, Ã A a–z A–Z*

æ å and B Ç C à À

Œ Ø and o É E ã Ã

œ ø and P Ñ N ä Ä

ß s and T Ö, Õ, Ø O å Å

Ü U æ Æ

á, à, â, ä, ã, å, ª a ç Ç

ç c é É

é, è, ê, ë e ñ Ñ

í, ì, î, ï i ö Ö

ñ n õ Õ

ó, ò, ô, ö, õ, ø, º o ø Ø

ú, ù, û, ü u œ Œ

ÿ y ü Ü
Using the Text Utilities 5-17

C H A P T E R 5

Text Utilities
To test two text strings for equality, you use the IdenticalText function, which makes
use of the information in a string-manipulation resource. You can explicitly specify the
handle of a string-manipulation resource or you can specify NIL as the value to indicate
that you want the current script’s string-manipulation resource used.

Comparing Two Strings for Ordering 5

There are also three Text Utilities routines that compare two strings and return a value
that indicates whether the first string is less than, equal to, or greater than the
second string. Two of these routines take Pascal string parameters and the other takes
text string parameters.

To compare one Pascal string to another, you have to choose either the RelString
function or the CompareString function. If you want to compare two Pascal strings
using the Macintosh file system comparison rules, use RelString. If you want to
consider the information from a string-manipulation resource, use the CompareString
function. You can explicitly specify the handle of a string-manipulation resource or you
can specify NIL as the value to indicate that you want the current script’s
string-manipulation resource used.

To compare one text string to another, you use the CompareText function, which makes
use of the information in a string-manipulation resource. You can explicitly specify the
handle of a string-manipulation resource or you can specify NIL as the value to indicate
that you want the current script’s string-manipulation resource used.

Modifying Text 5
The Text Utilities include a number of routines that you can use to modify the contents
of strings. Several of these routines operate on Pascal strings, while others operate
on text strings.

Several of the text modification routines also take a script code parameter, which is used
to indicate which script system’s resources should be used to define the results of
various character modifications. Script codes are described in the chapter “Script
Manager” in this book.

There are three kinds of text modification routines:

■ routines that convert the case of characters and strip diacritical marks from characters
in a string

■ routines that truncate a string to make it fit into a specified area on the screen

■ routines that search for a character pattern in a string and replace it with a different
character pattern
5-18 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Converting Characters and Stripping Marks in Strings 5

Several Text Utilities routines allow you to convert the case of characters and strip
diacritical marks from strings. They can be useful when you want to present strings
in a simplified form or to store strings in a form that can increase the efficiency of
a comparison.

You can use the UpperString procedure to convert any lowercase letters in a Pascal
string into their uppercase equivalents; however, this procedure assumes that you are
using the Macintosh file system conversion rules and does not use any of the
information in the international resources to perform its conversion.

You can use the UppercaseText procedure to convert any lowercase letters in a text
string into their uppercase equivalents. This procedure takes a script code parameter and
uses the case conversion information in the string-manipulation resource for the
indicated script system to convert the characters.

The LowercaseText procedure converts any uppercase letters in a text string into their
lowercase equivalents. This procedure takes a script code parameter and uses the case
conversion information in the string-manipulation resource for the indicated script
system to convert the characters.

The StripDiacritics procedure removes any diacritical marks from a text string.
This procedure takes a script code parameter and uses the information in the
string-manipulation resource for the indicated script system to determine what character
results when a diacritical mark is stripped.

The UppercaseStripDiacritics procedure combines the effects of the
UppercaseText and StripDiacritics procedures: it converts any lowercase letters
to their uppercase equivalents and strips any diacritical marks from characters in a text
string. This procedure also takes a script code parameter, which specifies which script
system’s resources are used to determine conversion results.

Certain other routines in Macintosh system software convert characters in a text string.
The TransliterateText function converts characters from one subscript into the
closest possible approximation in a different subscript within the same script system.
The IntlTokenize function converts text into language-independent tokens, for
further processing by interpreters or compilers. TransliterateText and
IntlTokenize are documented in the chapter “Script Manager” in this book.

Fitting a String Into a Screen Area 5

When you want to ensure that a string fits in a certain area of the screen, you can use
either the TruncString or TruncText routine. Each performs the same operation:
truncating the string (removing characters from it) so that it fits into a specified pixel
width. The TruncString function truncates a Pascal string and the TruncText
function truncates a text string.

Both of the truncation functions use the current font—the font currently in use in the
current graphics port—and its script to determine where the string should be truncated.
The font size is used to determine how many characters can completely fit in the number
of pixels specified as a parameter to the function.
Using the Text Utilities 5-19

C H A P T E R 5

Text Utilities
Both functions also take a parameter that specifies where any needed truncation is to
occur. You can specify that characters are to be truncated from the end or from the
middle of the string, as MPW does with pathnames, for example.

A truncation indicator is inserted into a string after characters are truncated; in the U.S.
Roman script system, the ellipsis (…) is used for this purpose. You should specify the
truncation indicator by token, rather than by specific character code, so that the proper
indicator is applied to each script system’s text. Specify a token from the untoken table of
the tokens ('itl4') resource of the script system of the current font. The untoken table
is described in the appendix “International Resources” in this book.

Truncating a string in its middle is commonly used on pathnames, where you want the
user to see the beginning and end of the full path, but are willing to sacrifice some of the
information in the middle, as shown in Figure 5-7.

Figure 5-7 Truncating a pathname in its middle

The code in Listing 5-2 performs the truncation that is illustrated in Figure 5-7.
Assuming that each character in the string requires 12 pixels, then 480 pixels will be
wide enough to hold 40 characters:

Listing 5-2 Truncating a pathname

str := “Mymac:myfolder:mysubfolder:myownfolder:myfile”

ans := TruncString(480, str, truncEnd); {480 pixels available}

{str would be “Mymac:myfolder:mysubfolder:myownfolder:…”}

ans := TruncString(480, str, truncMiddle);

{str would now be “Mymac:myfolder:mysub…:myownfolder:myfile”}

Mymac:myfolder: mysubfolder: myownfolder: myfile

Middle truncated to 480 pixels

Pathname string

Mymac:myfolder: mysubfolder: myownfolder: m... Mymac:myfolder: mysub...r: myownfolder: myfile

End truncated to 480 pixels
5-20 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Since the truncation functions can alter the length and contents of the string that you
pass in, it is good practice to make a copy of a string before passing it to one of them.

Replacing a Portion of a String 5

The Text Utilities include two routines for replacing a portion of a string with another
string. Each of these routines searches through a string looking for the pattern string.
Whenever it finds an occurrence of the pattern string, the routine replaces it with
the new string.

The ReplaceText function takes information about the current script system into
account: it looks through the string character-by-character rather than byte-by-byte.
Specifically, this means that ReplaceText properly examines strings that contain both
1-byte and 2-byte characters.

The Munger function searches for a sequence of bytes and replaces it with another
sequence of bytes that you specify. It provides the same capability as ReplaceText, but
searches for a byte pattern without regard to character length. In a string that contains a
mixture of 1-byte and 2-byte characters, Munger can, under some conditions, wrongly
find a pattern string. This is because the second byte in some 2-byte characters can be
wrongly regarded as a 1-byte character.

For example, suppose that you want to search a string for the copyright (“©”) character
and replace each occurrence with the string “Registered”. If you use Munger to search a
string with Japanese characters in it, Munger will mistakenly find and replace the byte
with value A9, which is really part of a 2-byte character in the Japanese script system.
Figure 5-8 shows how the Japanese word for “morning sun” could be incorrectly
identified as containing the copyright character.

Figure 5-8 Replacing a portion of a string with 1-byte and 2-byte characters

Munger provides a great deal of power, allowing you to perform many interesting
substitutions; however, you need to limit your use of Munger in applications that are
script-aware, or else do your own checking for 2-byte characters.

0

1

2

3

$92

$A9

$93

$FA

Character

codesByte

offsets
In Japanese

i © i
.``

In English

$92A9 $93FA $92 $A9 $93 $FA
Using the Text Utilities 5-21

C H A P T E R 5

Text Utilities
Listing 5-3 uses the ReplaceText and TruncText functions. It assumes that you have
Str255 strings containing base text and substitution text and that you want the result to
fit in a specified number of pixels.

Listing 5-3 Substituting and truncating text

CONST

maxInt = 32767;

VAR

baseString: Str255;

subsString: Str255;

baseHandle: Handle;

subsHandle: Handle;

keyStr: Str15;

sizeL: LongInt;

myWidth: Integer;

length: Integer;

result: Integer;

myErr: OSErr;

BEGIN

baseString:'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz';

subsString := 'KILROY WAS HERE'; {insert this into baseString}

keyStr := 'mnop'; {replace this with subString}

myWidth := 500; {truncate string at this width}

sizeL := ord(baseString[0]);

myErr := PtrToHand(@baseString[1], baseHandle, sizeL);

IF myErr <> noErr

THEN DoError(myErr);

sizeL := ord(subsString[0]);

myErr := PtrToHand(@subsString[1], subsHandle, sizeL);

IF myErr <> noErr

THEN DoError(myErr);

result := ReplaceText(baseHandle, subsHandle, keyStr);

IF result < 0

THEN DoError(result);

sizeL := GetHandleSize(baseHandle);

IF MemError <> noErr

THEN DoError(MemError);

length := sizeL;

HLock(baseHandle);
5-22 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
IF MemError <> noErr

THEN DoError(MemError); {Memory Manager error}

result := TruncText(myWidth, baseHandle^, length, TruncEnd);

IF result < 0

THEN DoError(result);

DrawText(baseHandle^, 0, length);

HUnlock(baseHandle);

IF MemError <> noErr

THEN DoError(myErr); {Memory Manager error}

END;

The code in Listing 5-3 first calls the ReplaceText function to replace a portion of the
base string (the string initialized to contain the alphabet) with another string. Since two
of the parameters to ReplaceText are string handles, the code first creates handles to
the two strings and verifies that no errors occurred. It then calls the TruncText function
to remove characters from the end of the modified base string so that the string can be
displayed, using the text font, size, and style settings in the current graphics port, in an
area 500 pixels wide. Once the string is truncated, the code calls the QuickDraw
procedure DrawText to draw the string in the current graphics port on the screen.

Finding Word, Line, and Script Run Boundaries 5
This section describes the Text Utilities routines that you can use to determine where the
boundaries of the current word in a text sequence are, where to break the line for
drawing text, and where the end of the current subscript text run is. These routines are
commonly used in word-processing applications.

Finding Word Boundaries 5

When working with text in your application, you sometimes need to process each word
in the text. You can use the FindWordBreaks procedure to determine the starting and
ending locations in a string of a word. You pass FindWordBreaks a string and a
starting position, and it searches backward for the start of the word, then searches
forward for the end of the word.

This procedure normally uses the string-manipulation ('itl2') resource of the current
script system in determining where the word boundaries are. Most string-manipulation
resources include a word-selection break table of type NBreakTable that specifies what
constitutes a word boundary in that script; however, some string-manipulation resources
do not include such a table, in which case FindWordBreaks uses default definitions of
word boundaries. Some script systems provide a separate extension that allows
Using the Text Utilities 5-23

C H A P T E R 5

Text Utilities
FindWordBreaks to find word breaks in a more sophisticated fashion such as using a
dictionary lookup. The format of the word-selection break table is described in the
appendix “International Resources” in this book.

This procedure returns the beginning and ending of a word in a string. Theses values are
returned in a table of type OffsetTable, which contains values that indicate the
starting and ending positions in the string of the word. The OffsetTable data
structure is described in the section “The Offset Table Record” on page 5-44.

You can also use FindWordBreaks to break lines of text, although the procedure is
more complicated than using StyledLineBreak, as described in the next section.
For more information, see the discussion of text drawing in the chapter “QuickDraw
Text” in this book.

Finding Line Breaks 5

You display text on the Macintosh screen by calling the QuickDraw text routines. These
routines handle text in different fonts, styles, and sizes, and even draw text that is
displayed in different directions. However, the QuickDraw text display routines do not
break lines for you to fit into screen areas of your own designation, which means that
you have to display your text line-by-line. (The QuickDraw text routines are described in
the chapter “QuickDraw Text” in this book.)

To draw a string line-by-line, you need to use the StyledLineBreak function. What
you do is start at the first character in your text and use StyledLineBreak to search for
the first line break, draw that portion of the string, and then start up again with the
character that follows the line break. You continue this process until the remaining
characters all fit on one line. The size and style of the glyphs are factors in determining
how many characters fit onto a line, since they affect the number of pixels required for
each glyph on the line. Another factor in breaking lines is that it is desirable to break a
line on a word boundary whenever possible.

The StyledLineBreak function looks for the next line break in a string. It
accommodates different fonts, styles, and glyph sizes, and accounts for complications
such as the word boundary rules for the script system of the text. You usually call
StyledLineBreak to traverse a line in memory order, which is not necessarily the
same as display order for mixed-directional text. StyledLineBreak finds line breaks
on word boundaries whenever possible. StyledLineBreak always chooses a line
break for the last style run on the line as if all trailing whitespace in that style run would
be stripped.

The StyledLineBreak function works on one style run at a time. To use
StyledLineBreak, you must represent the text in your documents in a manner that
allows you to quickly iterate through script runs in your text and style runs within
each script run. Figure 5-9 shows an example of a line break in a text string with
multiscript text runs.
5-24 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Figure 5-9 Finding line breaks in multiscript text

Use the StyledLineBreak function when you are displaying text in a screen area to
determine the best place to break each displayed line. You can only use this function
when you have organized your text in script runs and style runs within each script run.
This type of text organization used by most text-processing applications that allow for
multiscript text.

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

fi
∫
¨
¿

$F9

$EC

$E5

$ED

$6D

$65

$61

$6E

$73

$20

$70

$65

$61

$63

$65

$20

$6F

$72

$20

$68

$65

$6C

$6C

$6F

Style
runs

m

e

a

n

s

p

e

a

c

e

o

r

h

e

l

l

o

Script
runs ¿¨∫fi

hello
means peace or
Using the Text Utilities 5-25

C H A P T E R 5

Text Utilities
What you do is iterate through your text, a script run at a time, using
StyledLineBreak to check each style run in the script run until the function
determines that it has arrived at a line break. As you loop through each style run, before
calling StyledLineBreak, you must set the text values in the current graphics port
that are used by QuickDraw to measure the text. These include the font, font size, and
font style of the style run. For details on these parameters, see the chapter “QuickDraw
Text” in this book.

Once StyledLineBreak has arrived at a line break, you can display the line, advance
the pointers into your text, and call the function again to find the next line break. You
continue to follow this sequence until you’ve reached the end of your text.
StyledLineBreak does not break on a space character, so a sequence of spaces of any
length remains with the previous line.

The StyledLineBreak function uses a number of parameters; the value of some of
these parameters must change for each style run, and the value of others must change
for each script run. Figure 5-10 illustrates how the parameters of the StyledLineBreak
function are used when finding a line break in text that contains a number of script
and style runs.

Figure 5-10 Relationships of the parameters of StyledLineBreak

The textPtr parameter points to the start of the script run, the textStart parameter
is the location of the start of the style run, and the textLen parameter is the number of
bytes in the style run. The textWidth parameter specifies the number of pixels in the
display line. Other parameters are textEnd, which specifies the number of bytes in the
script run, and textOffset, in which the location of the break is returned. Declarations
and descriptions of these parameters are found in the section “StyledLineBreak”
beginning on page 5-79.

Note that the style runs in StyledLineBreak must be traversed in memory order, not
in display order. For more information about this, read about the GetFormatOrder
routine in the chapter “QuickDraw Text” in this book. It is also important to remember
that word boundaries can extend across style runs, but cannot extend across script runs.

textWidth

¿¨∫fi
textLen (1)

textPtr (1)

textLen (2 and 3)

Line

break

textPtr (2 and 3)

textStart (1) textStart (2) textStart (3)

means peace or hello
5-26 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
The StyledLineBreak function looks for a line break on a word boundary. The only
time it cannot find such a break is when a word spans across an entire line. If such a
word starts past the beginning of the line, StyledLineBreak determines that a break
should occur before the start of the word; otherwise, it breaks the line in the middle of
the word, at a character boundary instead of at a word boundary. StyledLineBreak
uses the value of the textOffset parameter to differentiate between these two cases.
The textOffset parameter must be nonzero for the first call on a line and zero for each
subsequent call to the function on the line.

No matter which case occurs, StyledLineBreak returns a code that specifies whether
or not it found a break and what kind of break (word or character boundary) it is. This
value is one of the constants defines as the StyledLineBreakCode type:

StyledLineBreak automatically decrements the textWidth variable by the width of
the style run for use on the next call. You need to set the value of textWidth before
calling it to process a line. Listing 5-4 shows a basic loop structure that you can use to
call StyledLineBreak in your application.

Listing 5-4 Using the StyledLineBreak function

REPEAT {repeat for each line}

textOffset := 1

textWidth := number of display pixels available for line

done := FALSE;

WHILE not done DO

BEGIN {for each script run}

textPtr := the address of the first byte of the script run

textLen := the number of bytes in the script run

WHILE not done DO

BEGIN {for each style run}

textStart := byte offset within script run of the start

of the style run

textEnd := byte offset within script run of the end

of the style run

{Set up the QuickDraw font parameters for style run}

...

ans := StyledLineBreak(textPtr, textLen, textStart,

textEnd, flags, textWidth, textOffset);

StyledLineBreak
constant

Value Meaning

BreakOverflow 2 No break is necessary because the current style run fits
on the line (within the width)

BreakChar 1 Line breaks on character boundary

BreakWord 0 Line breaks on word boundary
Using the Text Utilities 5-27

C H A P T E R 5

Text Utilities
if ans <> smBreakOverflow

THEN done := TRUE;

ELSE textOffset := 0;{always 0 after first call}

END;

END;

{Display the text that starts at textPtr & continues }

{ for textOffset bytes}

...

UNTIL {until no more text to process}

Finding Subscripts Within a Script Run 5

Some script systems include subscripts, which are character sets that are subsidiary to
the main character set. One useful subscript is the set of all character codes that have the
same meaning in Roman as they do in a non-Roman script. For other scripts such as
Japanese, there are additional useful subscripts. For example, a Japanese script system
might include some Hiragana characters that are useful for input methods.

When you are displaying or working with a string that contains subscript characters, it is
often convenient to identify the subscript text runs so that you can treat those characters
differently. You might, for instance, want to display the Roman subscript text in a
different font, or apply different rules to it when searching for word boundaries. In
Figure 5-11, the English words “Hebrew” and “Russian” are initially drawn in native
language fonts from their script systems. Each of these words is then extracted and
redrawn using a font from the Roman script system.

Figure 5-11 Extracting blocks of Roman text

The FindScriptRun function is used to identify blocks of subscript text in a string.
FindScriptRun searches a string for such a block, and sets a VAR parameter to the
length in bytes of the subscript run that begins with the first character in the string.

Ramat Gan 24 LatinskijBook 24

Ramat Gan 24 Helvetica 24 LatinskijBook 24 Helvetica 24
5-28 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
FindScriptRun also returns a script-run status record, which specifies the script code
and subscript information for the block of text. The fields of the script-run status record
are described in the section “FindScriptRun,” beginning on page 5-81.

Working With Date and Time Strings 5
Applications that address international audiences must work with how the
numeric-format ('itl0') resource and long-date-format ('itl1') resource handle the
differences in date and time formats used in different countries and regions of the world.

The numeric-format resource contains general conventions for formatting numeric
strings. It provides several different definitions, including separators for decimals,
thousands, and lists; currency information; time values; and short date formats. Some of
the variations in date and time formats are shown in Table 5-3.

For time and date values, the numeric-format resource includes values that specify this
information:

■ the order of the month, day, and year values in short date formats

■ which separator to use in the short date format (for example, : or / or -)

■ the trailing string to display for morning (for example, A.M.)

■ the trailing string to display for evening (for example, P.M.)

■ up to 4 trailing bytes to display for 24-hour times before noon, and another 4 bytes
to display for 24-hour times at noon and after. For example, the German string Uhr
is used for both purposes.

■ whether or not to indicate leading zeros in each of the time elements (hours,
minutes, and seconds)

Table 5-3 Variations in time and short date formats

Morning Afternoon Short date System software

1:02 AM 1:02 PM 2/1/90 United States

1:02 13:02 02/01/90 Canadian French

1:02 AM 1:02 PM 90.01.02 Chinese

1:02 13:02 02-01-1990 Dutch

1:02 Uhr 13:02 Uhr 2.1.1990 German

1:02 13:02 2-01-1990 Italian

01.02 13.02 90-02-01 Swedish
Using the Text Utilities 5-29

C H A P T E R 5

Text Utilities
The long-date-format resource includes conventions for long date formats, abbreviated
date formats, and the regional version of the script the resource is associated with. Some
of the variations in long and abbreviated date formats are shown in Table 5-4.

The long-date-format resource includes values that specify this information:

■ the names of the days

■ the names of the months

■ which punctuation to use for abbreviated day names and month names

You can optionally add an extension to a long-date-format resource that adds a number
of other specification capabilities, including the following:

■ a calendar code for the specification of calendars other than the standard Gregorian
calendar, such as the Arabic calendar

■ a list of extra day names for calendars with more than seven days

■ a list of extra month names for calendars with more than twelve months

■ a list of abbreviated day names

■ a list of abbreviated month names

■ a list of additional date separators

Many of the Apple-supplied long-date-format resources already include such extensions.

The Text Utilities routines that work with dates and times use the information in the
long-date-format and numeric-format resources to create different string representations
of date and time values. The Macintosh Operating System provides routines that return
the current date and time to you in numeric format; you can then use the Text Utilities
routines to convert those values into strings that can be presented in different
international formats.

The Text Utilities also include routines that can parse date and time strings as entered by
users and fill in the fields of a record with the components of the date and time,
including the month, day, year, hours, minutes, and seconds.

For more details on the numeric-format ('itl0') and long-date-format ('itl1')
resources, see the appendix “International Resources” in this book. For information on

Table 5-4 Variations in long and abbreviated date formats

Long date Abbreviated date System software

Tuesday, January 2, 1990 Tue, Jan 2, 1990 United States

Tuesday, 2 January 1990 Tue, 2 Jan 1990 Australian

Mardi 02 janvier 1990 Mard 02 janv 1990 Canadian French

tirsdag 2. januar 1990 tir 2. jan 1990 Danish

Mardi 2 Janvier 1990 Mar 2 Jan 1990 French
5-30 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
obtaining the current date and time values from the Macintosh Operating System, see
Inside Macintosh: Operating System Utilities.

Converting Formatted Date and Time Strings
Into Internal Numeric Representations 5

When your application works with date and time values, it must convert string versions
of dates and times into internal numeric representations that it can manipulate. You
might, for example, need to convert a date typed by the user into a numeric
representation so that you can compute another date some number of days ahead. You
can then format the new value for display as a formatted date string.

The Text Utilities contains two routines that you can use to parse formatted date and
time values from input strings and create an internal numeric representation of the
date and time. The StringToDate function parses an input string for a date, and
the StringToTime function parses an input string (possibly the same input string) for
time information.

Both of these functions pass a date cache record as one of the parameters. A date cache
record is a data structure of type DateCacheRec that you must declare in your
application. Because you must pass this record as a parameter, you must initialize it by
calling the InitDateCache function before calling StringToDate or StringToTime.
You need to call InitDateCache only once—typically in your main program
initialization code. For more information about the date cache record and the
InitDateCache function, see the section “InitDateCache” on page 5-83.

Both the StringToDate and the StringToTime functions fill in fields in a long
date-time record, which is defined by a LongDateRec data structure. This data type is
described in the book Inside Macintosh: Operating System Utilities.

You usually use StringToDate and StringToTime sequentially to parse the date and
time values from an input string and fill in these fields. Listing 5-5 shows how to first call
StringToDate to parse the date, then offset the starting address of the string, and
finally, call StringToTime to parse the time.

Listing 5-5 Using StringToDate and StringToTime

str := "March 27, 1992 08:14 p.m.";

strPtr := ptr(ord(@str) + 1); {Pointer to 1st char of str}

strLen := length(str);

status := StringToDate(strPtr, strLen, myDateCache,

numBytes, lDateRec);

strPtr := ptr(ord(@str)+numBytes+1);

strLen := strLen - numBytes;

status := StringToTime(strPtr, strLen, myDateCache,

numBytes, lDateRec);
Using the Text Utilities 5-31

C H A P T E R 5

Text Utilities
StringToDate parses the text string until it has finished finding all date information or
until it has examined the number of bytes specified by textLen. It returns a status value
that indicates the confidence level for the success of the conversion. StringToDate
recognizes date strings in many formats, including “September 1, 1987,” “1 Sept 1987,”
“1/9/1987,” and “1 1987 sEpT.”

Note that StringToDate fills in only the year, month, day, and day of the week;
StringToTime fills in the hour, minute, and second. You can use these two routines
sequentially to fill in all of the values in a LongDateRec record.

StringToDate assigns to its lengthUsed parameter the number of bytes that it uses
to parse the date; use this value to compute the starting location of the text that you can
pass to StringToTime.

StringToDate interprets the date and StringToTime interprets the time based on
values that are defined in the long-date-format ('itl1') resource. These values, which
include the tokens used for separators and the month and day names, are described in
the appendix “International Resources” in this book.

StringToDate uses the IntlTokenize function, as described in the chapter “Script
Manager” in this book, to separate the components of the strings. It assumes that the
names of the months and days, as specified in the international long-date-format
resource, are single alphanumeric tokens.

When one of the date components is missing, such as the year, the current date value is
used as a default. If the value of the input year is less than 100, StringToDate
determines the year as follows.

1. If (current year) MOD 100 is greater than or equal to 90 and the input year is less than
or equal to 10, the input year is assumed to be in the next century.

2. If (current year) MOD 100 is less than or equal to 10 and the input year is greater than
or equal to 90, the input year is assumed to be in the previous century.

3. Otherwise, the input year is assumed to be in the current century.

If the value of the input year is between 100 and 1000, then 1000 is added to it. Thus the
dates 1/9/87, 1/9/987, and 1/9/1987 are equivalent.

Both StringToDate and StringToTime return a value of type
StringToDateStatus, which is a set of bit values that indicate confidence levels, with
higher numbers indicating low confidence in how closely the input string matched what
the routine expected. Each StringToDateStatus value can contain a number of the
possible bit values that have been OR’ed together. For example, specifying a date with
nonstandard separators may work, but it returns a message indicating that the separator
was not standard.
5-32 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
The possible values of this type are described in Table 5-5.

For example, if StringToDate and StringToTime successfully parse date and
time values from the input string and more characters remain in the string, then the
function result will be the constant leftOverChars. If StringToDate discovers two
separators in sequence, the parse will be successful and the return value will be the
constant tooManySeps. If StringToDate finds a perfectly valid short date, it
returns the value noErr; if StringToDate finds a perfectly valid long date, it returns
the value longDateFound.

Table 5-5 StringToDateStatus values and their meanings

StringToDateStatus
value

Result of the conversion

fatalDateTime A fatal error occurred during the parse.

tokenErr The token processing software could not find a token.

cantReadUtilities The resources needed to parse the date or time value could
not be read.

dateTimeNotFound A valid date or time value could not be found in the string.

dateTimeInvalid The start of a valid date or time value was found, but a valid
date or time value could not be parsed from the string.

longDateFound A valid long date was found. This bit is not set when a short
date or time was found.

leftOverChars A valid date or time value was found, and there were
characters remaining in the input string.

sepNotIntlSep A valid date or time value was found; however, one or more
of the separator characters in the string was not an expected
separator character for the script system in use.

fieldOrderNotIntl A valid date or time value was found; however, the order of
the fields did not match the expected order for the script
system in use.

extraneousStrings A valid date or time value was found; however, one or more
unparsable strings was encountered and skipped while
parsing the string.

tooManySeps A valid date or time value was found; however, one or more
extra separator characters was encountered and skipped
while parsing the string.

sepNotConsistent A valid date or time value was found; however, the separator
characters did not consistently match the expected
separators for the script system in use.
Using the Text Utilities 5-33

C H A P T E R 5

Text Utilities
Date and Time Value Representations 5

The Macintosh Operating System provides several different representations of date and
time values. One representation is the standard date-time value that is returned by the
Macintosh Operating system routine GetDateTime. This is a 32-bit integer that
represents the number of seconds between midnight, January 1, 1904 and the current
time. Another is the date-time record, which includes integer fields for each date and
time component value.

The Macintosh Operating System also provides two data types that allow for longer
spans of time than do the standard date-time value and date-time record: the long
date-time value and the long-date record. The long date-time value, of data type
LongDateTime, is a 64-bit, signed representation of the number of seconds since Jan. 1,
1904, which allows for coverage of a much longer span of time (approximately 30,000
years) than does the standard date-time representation. The long date-time record, of
data type LongDateRec, is similar to the date-time record, except that it adds several
additional fields, including integer values for the era, the day of the year, and the week
of the year.

The Macintosh Operating System provides four routines for converting among the
different date and time data types:

■ DateToSeconds, which converts a date-time record into a standard date-time value

■ SecondsToDate, which converts a standard date-time value into a date-time record

■ LongDateToSeconds, which converts a long-date record into a long date-time value

■ LongSecondsToDate, which converts a long date-time value into a long-date record

The standard date-time value, the long date-time value, and each of the data structures
and routines mentioned in this section are described in the book Inside Macintosh:
Operating System Utilities.

Converting Standard Date and Time Values Into Strings 5

When you want to present a date or time value as a string, you need to convert from one
of the numeric date-time representations into a formatted string. The Text Utilities
include the DateString and TimeString procedures for converting standard
date-time values into formatted strings, and the LongDateString and
LongTimeString procedures for converting long date-time values into formatted
strings. Each of these routines uses information from a long-date-format or
numeric-format resource that you specify as a parameter.

When you use the DateString and LongDateString procedures, you can request an
output format for the resulting date string. The output format can be one of the three
values of the DateForm enumerated data type:

DateForm = (shortDate,longDate,abbrevDate);
5-34 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Here are examples of the date strings that these specifications produce.

When you request a long or abbreviated date format, the formatting information in a
long-date-format resource is used. For short date formats, the information is found in a
numeric-format resource. The DateString and LongDateString procedures use the
long-date-format or numeric-format resource that you specify. If you request a long or
abbreviated date format, you must include the handle to a long-date-format resource,
and if you request a short date format, you must include the handle to a numeric-format
resource. If you specify NIL for the value of the resource handle parameter, both routines
uses the appropriate resource from the current script.

When you use the TimeString and LongTimeString procedures to produce a
formatted time string, you can request an output format for the resulting string. You
specify whether or not you want the time string to include the seconds by passing a
Boolean parameter to these procedures.

The TimeString and LongTimeString procedures use the time formatting
information in the numeric-format resource that you specify. This information defines
which separator to use between the elements of the time string, which suffix strings to
use, and whether or not to add leading zeros in each of the time elements. If you specify
NIL in place of a resource handle, these procedures use the numeric-format resource
from the current script.

Working With Numeric Strings 5
When you present numbers to the user, or when the user enters input numbers for your
application to use, you need to convert between the internal numeric representation of
the number and the output (or input) format of the number. The Text Utilities provide
several routines for performing these conversions. Some of these routines take into
account the many variations in numeric string formats (output formats) of numbers in
different regions of the world.

If you are converting integer values into numeric strings or numeric strings into integer
values, and you don’t need to take international number formats into account, you can
use the two basic number conversion routines: NumToString, which converts an integer
into a string, and StringToNum, which converts a string into an integer. These routines
are described in the section “Converting Between Integers and Numeric Strings,” which
begins on page 5-38.

Value Date string produced

shortDate 1/31/92

abbrevDate Fri, Jan 31, 1992

longDate Friday, January 31, 1992

Value Time string produced

FALSE 03:24 P.M.

TRUE 03:24:17 P.M.
Using the Text Utilities 5-35

C H A P T E R 5

Text Utilities
If you are working with floating-point numbers, or if you want to accommodate the
possible differences in output formats for numbers in different countries and regions of
the world, you need to work with number format specification strings. These are strings
that specify the input and output formats for numbers and allow for a tremendous
amount of flexibility in displaying numbers.

To use number format specification strings and convert numbers, you need to follow
these steps:

1. You first define the format of numbers with a number format specification string. An
example of such a string is ###,###.##;-###,###.##;0. This string specifies three
number formats: for positive number values, for negative number values, and for zero
values. The section “Using Number Format Specification Strings,” which begins on
page 5-39, describes these definitions in detail.

2. You must also define the syntactic components of numeric string formats using a
number parts table. This table is part of the tokens ('itl4') resource for each script
system. It includes definitions of which characters are used in numeric strings for
displaying the percent sign, the minus sign, the decimal separator, the less than or
equal sign, and other symbols. The number parts table is described with the tokens
resource in the appendix “International Resources” in this book.

3. You then use Text Utilities routines to convert the number format specification string
into an internal representation that is stored in a NumFormatStringRec record. This
is a private data type that is used by the number conversion routines. You convert a
number format specification string into a NumFormatStringRec record with the
StringToFormatRec function, and you perform the opposite conversion with the
FormatRecToString function. Both of these functions are described in the section
“Converting Number Format Specification Strings Into Internal Numeric
Representations,” which begins on page 5-43.

4. Once you have a NumFormatStringRec record that defines the format of numbers
for a certain country or region, you can convert floating-point numbers into numeric
strings and numeric strings into floating-point numbers. The StringToExtended
and ExtendedToString functions perform these conversions; these are described in
the section “Using Number Format Specification Strings,” which begins on page 5-39.

To accommodate all of the possibilities for the different number formats used in different
countries and regions, you need to work with numeric strings, number parts tables,
number format specification strings, and floating-point numbers. The Text Utilities
include the routines shown in Figure 5-12 to make it possible for your application to
accept and display numeric strings in many different formats. You can accept an input
string in one format and create an output numeric string that is appropriate for an
entirely different area of the world. Figure 5-12 summarizes the relationships among the
different data and routines used for these conversions.
5-36 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Figure 5-12 Using the number formatting routines

The number format specification string in the upper left box in Figure 5-12 defines how
input and output numeric strings are formatted; in this case, they are formatted in the
style most commonly used in the United States, with a comma as the thousand
separator. The StringToFormatRec format takes the number format specification
string as input, along with a number parts table, and creates an internal representation,
which is stored in a record of data type NumFormatStringRec.

If you later want to create a number format specification string from the internal
representation, you can call the FormatRecToString function. This function takes a
record of type NumFormatStringRec and a parts table, and creates a string that you
can display or edit.

Once you have an internal representation of your formatting specification, you can
use it for converting between strings and floating-point numbers. The
StringToExtended function takes an input string, a NumFormatStringRec, and a
number parts table, and creates a floating-point number. The ExtendedToString
function takes a floating-point number, a NumFormatStringRec, and a number parts
table, and creates a string.

Number format specification string

"###,###.##;-###,###.##;0"

StringToFormatRec

Internal numeric

representation

FormatRecToString

Number

parts table

Number

parts table

Input string

"123,456.78"

StringToExtended

Floating-point number

ExtendedToString

Number format specification string

"###,###.##;-###,###.##;0"

Output string

"123,456.78"
Using the Text Utilities 5-37

C H A P T E R 5

Text Utilities
Each of the four functions shown in Figure 5-12 returns a result of type FormatStatus,
which is an integer value. The low byte of the result is of type FormatResultType, the
values of which are summarized in Table 5-6.

Converting Between Integers and Numeric Strings 5

The simplest number conversion tasks for your application involve integer values and
do not take international output format differences into account. Text Utilities provides
one routine to convert an integer value into a numeric string and another to convert a
numeric string into an integer value.

The NumToString procedure converts a long integer value into a string representation
of it as a base-10 value. The StringToNum procedure performs the opposite operation,
converting a string representation of a number into a long integer value. For example,
Listing 5-6 converts a number into a string and then back again.

Table 5-6 FormatResultType values for numeric conversion functions

FormatStatus value Result of the conversion

fFormatOK The format of the input value is appropriate and the
conversion was successful.

fBestGuess The format of the input value is questionable; the result of
the conversion may or may not be correct.

fOutOfSynch The format of the input number string did not match the
format expected in the number format specification string.

fSpuriousChars There are extra characters in the input string.

fMissingDelimiter A delimiter is missing in the input string.

fExtraDecimal An extra decimal was found in the input number string.

fMissingLiteral The close of a literal is missing in the input number string.

fExtraExp There is an extra exponent in the input number string.

fFormatOverflow The number in the input string exceeded the magnitude
allowed for in the number format specification.

fFormStrIsNAN The format specification string is not valid.

fBadPartsTable The parts table is not valid.

fExtraPercent There is an extra percentage symbol in the input
number string.

fExtraSeparator There was an extra separator in the input number string.

fEmptyFormatString The format specification string was empty.
5-38 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Listing 5-6 Converting a long integer into a numeric string

VAR

str: Str255;

i,j: LongInt;

BEGIN

i := 4329;

NumToString(i, str); {str is now “4329”}

StringToNum(str, j); {j is now 4329 }

END;

Using Number Format Specification Strings 5

When you want to work with floating-point values and numeric strings, you need to
take into account the different formats that are used for displaying numbers in different
countries and regions of the world. Table 5-7 shows some of the numeric string formats
that are used in different versions of system software.

You use number format specification strings to define the appearance of numeric strings
in your application. Each number format specification string contains up to three parts:
the positive number format, the negative number format, and the zero number format.
Each format is applied to a numeric value of the corresponding type: when a positive
value is formatted, the positive format is used, when a negative value is formatted, the
negative format is used, and when a zero value is formatted, the zero format is used.
When a number format specification string contains only one part, that part is used for
all values. When a number format specification string contains two parts, the first part is
used for positive and zero values, and the second part is used for negative values.

Table 5-7 Numeric string formats

Numeric string System software

1,234.56 All versions

1 234,56 French and others

1.234,56 Danish and others

1 234.56 Greek

1.234 56 Russian

1’234.56 Swiss French, Swiss German
Using the Text Utilities 5-39

C H A P T E R 5

Text Utilities
Table 5-8 shows several different number format specification strings, and the output
numeric string that is produced by applying each format to a numeric value.

The three portions of a number format specification string (positive, negative, and zero
formats) are separated by semicolons. If you do not specify a format for negative values,
negative numbers are formatted using the positive format and a minus sign is inserted at
the front of the output string. If you do not specify a format for zero values, they are
presented as a single ‘0’ digit.

These number format specification strings contain different elements:

■ number parts separators for specifying the decimal separator and the thousand
separator

■ literals that you want included in the output formats

■ digit placeholders

■ quoting mechanisms for handling literals correctly

■ symbol and sign characters

Number parts separators come in two types: the decimal separator and the thousand
separator. In the U.S. localized version of the Roman script system, the decimal separator
is the ‘.’ character and the thousand separator is the ‘,’ character. Some script systems use
other characters for these separators. The number conversion routines each take a
number parts table parameter that includes definitions of the separator characters.

Table 5-8 Examples of number format specification strings

Number format specification string Numeric value Output format

###,###.##;-###,###.##;0 123456.78 123,456.78

###,###.0##,### 1234 1,234.0

###,###.0##,### 3.141592 3.141,592

###;(000);^^^ –1 (001)

###.### 1.234999 1.235

###'CR';###'DB';'‘zero’' 1 1CR

###'CR';###'DB';'‘zero’' 0 ‘zero’

##% 0.1 10%
5-40 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Literals in your format strings can add annotation to your numbers. Literals can be
strings or brackets, braces, and parentheses, and must be enclosed in quotation marks.
Table 5-9 shows some examples of using literals in number format specification strings.

Digit placeholders that you want displayed in your numeric strings must be indicated by
digit symbols in your number format specification strings. There are three possible digit
symbols: zero digits (0), skipping digits (#), and padding digits (^). The format string in
line 4 of Table 5-8 contains examples of each. The actual characters used for denoting
each of these are defined in the tokens ('itl4') resource number parts table.

■ Zero digits add leading zeros wherever an input digit is not present. For example, –1
in line 4 of Table 5-8 produces (001) because the negative number format is specified
as “(000)”, meaning that the output is enclosed in parentheses and leading zeros are
added to produce three digits.

■ Skipping digits only produce output characters when an input digit is present. For
example, if the positive number format is “###” and the input string is “1”, then the
output format is “1” (not “ 1” as you might expect. Each skipping digit in the number
format specification string is replaced by a digit character if one is present, and is not
replaced by anything (is skipped) if a digit character is not present.

■ Padding digits are like zero digits except that a padding character such as a
nonbreaking space is used instead of leading zeros to “pad” the output string. You
can use padding digits to align numbers in a column. The number conversion
routines each take a number parts table parameter that includes definitions of
padding characters.

You must specify the maximum number of digits allowed in your formats, as the
number formatting routines do not allow extension beyond them. If the input string
contains too many digits, an error (formatOverflow) will be generated. If the input
string contains too many decimal places, the decimal portion is automatically rounded.
For example, given the format of ###.###, a value of 1234.56789 results in an error
condition, and a value of 1.234999 results in the rounded-off 1.235 value.

Table 5-9 Literals in number format strings

Number format specification string Numeric
value

Output format

###'CR';###'DB';\‘“zero\’” 1 1CR

[###' Million '###' Thousand '###] 300 [300]

[###' Million '###' Thousand '###] 3210432 [3 Million 210 Thousand 432]
Using the Text Utilities 5-41

C H A P T E R 5

Text Utilities
The number formatting routines always fill in integer digits from the right and decimal
places from the left. This can produce the results shown in Table 5-10, which includes a
literal in the middle of the format strings to demonstrate this behavior.

Quoting mechanisms allow you to enclose most literals in single quotation marks in
your number format specification strings. If you need to include single quotation marks
as literals in your output formats, you can precede them with the escape character (\).
Table 5-11 shows several examples of using quoting mechanisms.

Symbol and sign characters in your number format specification strings allow you to
display the percent sign, exponents, and numbers’ signs. The actual glyphs displayed for
these symbols depend on how they are defined in the number parts table of a tokens
resource. The symbols that you can use and the characters used for them in the U.S.
Roman script system are shown in Table 5-12.

Table 5-10 Filling digits in

Number format
specification string

Numeric value Output format

###'my'### 1 1

###'my'### 123 123

###'my'### 1234 1my234

0.###'my'### 0.1 0.1

0.###'my'### 0.123 1.123

0.###'my'### 0.1234 0.123my4

Table 5-11 Quoting mechanisms in number format strings

Number format specification string Numeric
value

Output format

###'CR';###'DB';'‘zero’' 1 1CR

###'CR';###'DB';'‘zero’' -1 1DB

###'CR';###'DB';'‘zero’' 0 ‘zero’
5-42 Using the Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Table 5-12 Symbols in number format strings

For more information about these symbols and the tokens defined for them, see the
section on number parts tables in the appendix “International Resources” in this book.

Converting Number Format Specification Strings Into Internal
Numeric Representations 5

To use a number format specification string in your application, you must first convert
the specification string into an internal numeric representation that is independent of
country, language, and other cultural considerations. This allows you to map the number
into different output formats. This internal representation is sometimes called a
canonical number format. The internal representation of format strings is stored in a
NumFormatStringRec record.

You can use the StringToFormatRec function to convert a number format
specification string into a NumFormatStringRec record. To perform this conversion,
you must also specify a number parts table from a numeric-format resource. The
number parts table defines which characters are used for certain purposes (such as
separating parts of a number) in the format specification string.

You can use the FormatRecToString function to convert a NumFormatStringRec
record back into a number format specification string, in which the three parts (positive,
negative, and zero) are separated by semicolons. This function also uses a number parts
table to define the components of numbers; by using a different table than was used in
the call to StringToFormatRec, you can produce a number format specification string
that specifies how numbers are formatted for a different region of the world. You use
FormatRecToString when you want to display the number format specification string
to a user for perusal or modification.

Converting Between Floating-Point Numbers and Numeric Strings 5

Once you have a NumFormatStringRec record that defines the format of numbers for
a certain region of the world, you can convert between floating-point numbers and
numeric strings.

You can use the StringToExtended function to convert a numeric string into an 80-bit
floating-point value. StringToExtended uses a NumFormatStringRec record and a
number parts table to examine and convert the numeric string into a floating-point value.

Symbol U.S.
Roman

Number format
string

Example

Plus sign + +### +13

Minus sign – -### –243

Percent sign % ##% 14%

EPlus E+ ##.####E+0 1.2344E+3

EMinus E– #.#E-# 1.2E–3
Using the Text Utilities 5-43

C H A P T E R 5

Text Utilities
The ExtendedToString function performs the opposite conversion: it uses a
NumFormatStringRec record and a number parts table to convert an 80-bit
floating-point value into a numeric string that is formatted for output.

Text Utilities Reference 5

This section describes the data structures and routines that comprise the Text Utilities.
The “Data Structures” section provides a description of the data structures that are used
with certain of the Text Utilities routines. The “Routines” section describes the routines
you can use in your applications to work with strings.

Data Structures 5
This section describes the data structures that are used with the Text Utilities routines.
Each is used with one or more of the Text Utilities routines to pass information into or to
receive information back from the routine.

The Offset Table Record 5

The FindWordBreaks procedure uses the offset table, which is defined by the
OffsetTable data type. You pass a record of this type by VAR to FindWordBreaks,
and it fills in the fields to specify the location of the next word in the input string. The
FindWordBreaks procedure is described in the section “FindWordBreaks,” which
begins on page 5-77.

OffsetTable = ARRAY [0..2] of OffPair;

OffPair =

RECORD

offFirst: Integer; {offset of first word boundary}

offSecond: Integer; {offset of second word boundary}

END;

Field descriptions

offFirst The offset in bytes from the beginning of the string to the first
character of the word.

offSecond The offset in bytes from the beginning of the string to the last
character of the word.

Although the offset table contains three OffPair records, the FindWordBreaks
procedure fills in only the first of these records with the offset values for the word
5-44 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
that it finds. The other two entries are for use by the HiliteText procedure, which is
described in the chapter “QuickDraw Text” in this book.

The Date Cache Record 5

The StringToDate and StringToTime functions use the date cache, defined by the
DateCacheRecord data type, as an area to store date conversion data that is used by
the date conversion routines. This record must be initialized by a call to the
InitDateCache function, which is described in the section “InitDateCache” beginning
on page 5-83. The data in this record is private—you should not attempt to access it.

DateCachePtr = ^DateCacheRecord;

DateCacheRecord =

PACKED RECORD

hidden: ARRAY [0..255] OF INTEGER;{only for temporary use}

END;

Field descriptions

hidden The storage used for converting dates and times.

The Number Format Specification Record 5

Four of the numeric string functions use the number formatting specification, defined by
the NumFormatStringRec data type: StringToFormatRec, FormatRecToString,
StringToExtended, and ExtendedToString. The number format specification
record contains the data that represents the internal number formatting specification
information. This data is stored in a private format.

NumFormatStringRec =

PACKED RECORD

fLength: Byte;

fVersion: Byte;

hidden: ARRAY [0..253] OF INTEGER;{only for temporary use}

END;

Field descriptions

fLength The number of bytes (plus 1) in the hidden data actually used for
this number formatting specification.

fVersion The version number of the number formatting specification.
hidden The data that comprises the number formatting specification.
Text Utilities Reference 5-45

C H A P T E R 5

Text Utilities
The Triple Integer Array 5

The FormatRecToString function uses the triple-integer array, defined by the
TripleInt data type, to return the starting position and length in a string of three
different portions of a formatted numeric string: the positive value string, the negative
value string, and the zero value string. Each element of the triple integer array is an
FVector record.

TripleInt =

ARRAY[0..2] OF FVector; {indexed by fPositive..fZero}

FVector =

RECORD

start: Integer;

length: Integer;

END;

Field descriptions

start The starting byte position in the string of the specification
information.

length The number of bytes used in the string for the specification
information.

Each of the three FVector entries in the triple integer array is accessed by one of the
values of the FormatClass type.

FormatClass = (fPositive,fNegative,fZero);

The Script Run Status Record 5

The FindScriptRun function returns the script run status record, defined by the
ScriptRunStatus data type, when it completes its processing, which is to find a run of
subscript text in a string. The FindScriptRun function is described in the section
“FindScriptRun,” which begins on page 5-81.

ScriptRunStatus =

RECORD

script: SignedByte; {script code of block}

variant: SignedByte; {additional CharacterType information}

END;
5-46 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
Field descriptions

script The script code of the subscript run. Zero indicates the Roman
script system.

variant Script-specific information about the run, in the same format as that
returned by the CharacterType function, described in the chapter
“Script Manager” in this book. This information includes the type of
subscript—for example, Kanji, Katakana, or Hiragana for a Japanese
script system.

Routines 5
This section describes the routines that you use to work with strings in your application,
including sorting strings, modifying the contents of strings, converting dates and times
to and from strings, and converting numbers to and from strings.

Defining and Specifying Strings 5

This section describes two routines that you can use to work with string handles and two
routines for accessing string resources.

■ The NewString function creates a copy of the specified string as a relocatable object
in the heap.

■ The SetString procedure changes the contents of a string that has already been
allocated in the heap.

■ The GetString function loads a string from a resource of type 'STR ', reading the
string from the resource file if necessary.

■ The GetIndString procedure copies a string from a string list that is contained in a
resource of type 'STR#'.

NewString 5

The NewString function allocates memory in the heap for a string, copies its contents,
and produces a handle for the heap version of the string.

FUNCTION NewString (theString: Str255): StringHandle;

theString A Pascal string that you want copied onto the heap.
Text Utilities Reference 5-47

C H A P T E R 5

Text Utilities
DESCRIPTION

NewString returns a handle to the newly allocated string. If the string cannot be
allocated, NewString returns NIL. The size of the allocated string is based on the actual
length of theString, which may not be 255 bytes.

Note
Before using Pascal string functions that can change the length of the
string, it is a good idea to maximize the size of the string object on the
heap. You can call either the SetString procedure or the Memory
Manager procedure SetHandleSize to modify the string’s size. ◆

SPECIAL CONSIDERATIONS

NewString may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the NewString function is

SetString 5

The SetString procedure changes the contents of a string referenced by a string
handle, replacing the previous contents by copying the specified string.

PROCEDURE SetString (h: StringHandle; theString: Str255);

h A handle to the string in memory whose contents you are replacing.

theString A Pascal string.

DESCRIPTION

The SetString procedure sets the string whose handle is passed in the h parameter to
the string specified by the parameter theString. If the new string is larger than the
string originally referenced by h, SetString automatically resizes the handle and
copies in the contents of the specified string.

SPECIAL CONSIDERATIONS

SetString may move memory; your application should not call this procedure at
interrupt time.

Trap macro

_NewString
5-48 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the SetString procedure is

GetString 5

The GetString function loads a string from a string ('STR ') resource into memory. It
returns a handle to the string with the specified resource ID, reading it from the resource
file if necessary.

FUNCTION GetString (stringID: Integer): StringHandle;

stringID The resource ID of the string ('STR ') resource containing the string.

DESCRIPTION

The GetString function returns a handle to a string with the specified resource ID. If
GetString cannot read the resource, it returns NIL.

GetString calls the GetResource function of the Resource Manager to access the
string. This means that if the specified resource is already in memory, GetString
simply returns its handle.

Like the NewString function, GetString returns a handle whose size is based upon
the actual length of the string.

Note
If your application uses a large number of strings, it is more efficient to
store them in a string list ('STR#') resource than as individual resources
in the resource file. You then use the GetIndString procedure to
access each string in the list. ◆

SPECIAL CONSIDERATIONS

GetString does not create a copy of the string.

GetString may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the GetString function is

Trap macro

_SetString

Trap macro

_GetString
Text Utilities Reference 5-49

C H A P T E R 5

Text Utilities
GetIndString 5

The GetIndString procedure loads a string from a string list ('STR#') resource into
memory. It accesses the string by using the resource ID of the string list and the index of
the individual string in that list. The list is read from the resource file if necessary.

PROCEDURE GetIndString (VAR theString: Str255; strListID: Integer;

 index: Integer);

theString On output, the Pascal string result.

strListID The resource ID of the 'STR#' resource that contains the string list.

index The index of the string in the list. This is a value from 1 to the number of
strings in the list that is referenced by the strListID parameter.

DESCRIPTION

GetIndString returns in the parameter theString a copy of the string from a string
list that has the resource ID provided in the strListID parameter. If the resource that
you specify cannot be read or the index that you specify is out of range for the string list,
GetIndString sets theString to an empty string.

If necessary, GetIndString reads the string list from the resource file by calling the
Resource Manager function GetResource. GetIndString accesses the string specified
by the index parameter and copies it into theString. The index can range from 1 to
the number of strings in the list.

SPECIAL CONSIDERATIONS

GetIndString may move memory; your application should not call this procedure at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

There is no trap macro for the GetIndString procedure. Instead, you need to use the
_GetResource trap macro with the resource type ('STR#') and string index.

Comparing Strings for Equality 5

This section describes text routines that you can use to determine whether two strings
are equal.

Some of the routines operate on Pascal strings and others on text strings. Pascal strings
are stored using standard Pascal string representation, which precedes the text characters
with a length byte; these strings are limited to 255 bytes of data. Text strings do not use a
length byte and can be up to 32 KB in length. Pascal strings are passed directly as
parameters, while text strings are specified by an address value and an integer length
value.
5-50 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
■ The EqualString function compares two Pascal strings using the comparison rules
of the Macintosh file system. This function does not make use of any script or
language information.

■ The IdenticalString function compares two Pascal strings for equality, making
use of the string comparison information from a specified resource.

■ The IdenticalText function compares two text strings for equality, making use of
the string comparison information from a specified resource.

EqualString 5

The EqualString function compares two Pascal strings for equality, using the
comparison rules of the Macintosh file system. The comparison performed by
EqualString is a simple, character-by-character value comparison. This function does
not make use of any script or language information; it assumes the use of a Roman script
system.

FUNCTION EqualString (aStr, bStr: Str255;

 caseSens, diacSens: Boolean): Boolean;

aStr One of the Pascal strings to be compared.

bStr The other Pascal string to be compared.

caseSens A flag that indicates how to handle case-sensitive information during the
comparison. If the value of caseSens is TRUE, uppercase characters are
distinguished from the corresponding lowercase characters. If it is FALSE,
case information is ignored.

diacSens A flag that indicates how to handle information about diacritical marks
during the string comparison. If the value of diacSens is TRUE,
characters with diacritical marks are distinguished from the
corresponding characters without diacritical marks during the
comparison. If it is FALSE, diacritical marks are ignored.

DESCRIPTION

EqualString returns TRUE if the two strings are equal and FALSE if they are not equal.
If its value is TRUE, EqualString distinguishes uppercase characters from the
corresponding lowercase characters. If its value is FALSE, EqualString ignores diacritical
marks during the comparison.

SPECIAL CONSIDERATIONS

The EqualString function is not localizable.
Text Utilities Reference 5-51

C H A P T E R 5

Text Utilities
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the EqualString function are

This trap macro can take optional arguments, each of which changes the default setting
used by the macro when it is called without arguments. Each of these arguments
corresponds to the Boolean parameters that are used with the Pascal function call. The
various permutations of this trap macro are shown below; you must type each exactly as
it is shown. The syntax shown here applies to the MPW Assembler; if you are using
another development system, be sure to consult its documentation for the proper syntax.

The registers on entry and exit for this routine are

IdenticalString 5

The IdenticalString function compares two Pascal strings for equality, making use
of the string comparison information from a resource that you specify as a parameter.
IdenticalString uses only primary differences in its comparison.

FUNCTION IdenticalString (aStr, bStr: Str255;

 itl2Handle: Handle): Integer;

aStr One of the Pascal strings to be compared.

bStr The other Pascal string to be compared.

Trap macro Selector

_CmpString $A03C

Macro permutation
Value of
diacSen
s

Value of
caseSens

_CmpString FALSE FALSE

_CmpString ,MARKS TRUE FALSE

_CmpString ,CASE FALSE TRUE

_CmpString ,MARKS,CASE TRUE TRUE

Registers on entry

A0 pointer to first character of the first string

A1 pointer to first character of the second string

D0 high-order word: number of bytes in the first string
low-order word: number of bytes in the second string

Registers on exit

D0 long word result: 0 if strings are equal, 1 if strings are not equal
5-52 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string
comparison information.

DESCRIPTION

IdenticalString returns 0 if the two strings are equal and 1 if they are not equal.
It compares the two strings without regard for secondary sorting order, the meaning
of which depends on the language of the strings. For example, for the English language,
using only primary differences means that IdenticalString ignores diacritical
marks and does not distinguish between lowercase and uppercase. For example, if the
two strings are 'Rose' and 'rosé', IdenticalString considers them equal and
returns 0.

The itl2Handle parameter is used to specify a string-manipulation resource. If the
value of this parameter is NIL, IdenticalString makes use of the resource for the
current script. The string-manipulation resource includes tables for modifying string
comparison and tables for case conversion and stripping of diacritical marks.

Specifying a resource as a parameter is described in the section “Obtaining Resource
Information,” which begins on page 5-4.

SPECIAL CONSIDERATIONS

IdenticalString may move memory; your application should not call this function
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

There is no trap macro for the IdenticalString function. Instead, you must convert
the Pascal string into a text string by creating a pointer to its first character and finding
its length, and then use the same macro as you do for the IdenticalText function,
which is described next.

IdenticalText 5

The IdenticalText function compares two text strings for equality, making use of the
string comparison information from a resource that you specify as a parameter.
IdenticalText uses only primary sorting order in its comparison.

FUNCTION IdenticalText (aPtr, bPtr: Ptr; aLen, bLen: Integer;

itl2Handle: Handle): Integer;

aPtr A pointer to the first character of the first text string.

bPtr A pointer to the first character of the second text string.

aLen The number of bytes in the first text string.
Text Utilities Reference 5-53

C H A P T E R 5

Text Utilities
bLen The number of bytes in the second text string.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string
comparison information.

DESCRIPTION

IdenticalText returns 0 if the two text strings are equal and 1 if they are not equal. It
compares the strings without regard for secondary sorting order, which means that it
ignores diacritical marks and does not distinguish between lowercase and uppercase.
For example, if the two text strings are 'Rose' and 'rosé', IdenticalText considers
them equal and returns 0.

The itl2Handle parameter is used to specify a string-manipulation resource. If
the value of this parameter is NIL, IdenticalText makes use of the resource for
the current script. The string-manipulation resource includes routines and tables for
modifying string comparison and tables for case conversion and stripping of
diacritical marks.

Specifying a resource as a parameter is described in the section “Obtaining Resource
Information,” which begins on page 5-4.

SPECIAL CONSIDERATIONS

IdenticalText may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the IdenticalText function are

Determining Sorting Order for Strings in Different Languages 5

This section describes the Text Utilities routines available to help you sort strings in
different languages. When strings from different languages occur in a single list, you
must separate the strings so that all strings from each script system are contained in their
own list. You then sort the list for each script system, using the sorting rules for that
language and script system. You can then concatenate the individual language lists
together, ordering the lists according to language and script ordering information that is
found in the international script-sorting ('itlm') resource.

■ The ScriptOrder function indicates the order in which text from two different script
systems should be sorted.

■ The LanguageOrder function indicates the order in which text from two different
languages from the same script system should be sorted.

Trap macro Selector

_Pack6 $001C
5-54 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
■ The StringOrder function determines the appropriate sorting order for two Pascal
strings, taking into account the script and language codes of each.

■ The TextOrder function determines the appropriate sorting order for two text
strings, taking into account the script and language codes of each.

Note
When determining the order in which text from two different script
systems should be sorted, the system script always sorts first, and
scripts that are not enabled and installed always sort last. Invalid script
or language codes always sort after valid ones. ◆

Script systems and the enabling and installing of scripts are described in the chapter
“Script Manager” in this book and the script-sorting resource is described in the
appendix “International Resources” in this book.

Pascal strings are stored using standard Pascal string representation, which precedes the
text characters with a length byte; these strings are limited to 255 characters. Text strings
do not use a length byte and can be up to 32 KB in length. Pascal strings are passed
directly as parameters, while text strings are specified by two parameters: an address
value and an integer length value.

The functions LanguageOrder, StringOrder, and TextOrder accept as parameters
the implicit language codes listed in Table 5-13, as well as the explicit language codes
listed in the chapter “Script Manager.”

ScriptOrder 5

The ScriptOrder function determines the order in which strings in two different
scripts should be sorted.

FUNCTION ScriptOrder (script1, script2: ScriptCode): Integer;

script1 The script code of the first script.

script2 The script code of the second script.

Table 5-13 Implicit language codes

Constant Value Explanation

systemCurLang –2 Current language for system script (from 'itlb')

systemDefLang –3 Default language for system script (from 'itlm')

currentCurLang –4 Current language for current script (from 'itlb')

currentDefLang –5 Default language for current script (from 'itlm')

scriptCurLang –6 Current language for specified script (from 'itlb')

scriptDefLang –7 Default language for specified script (from 'itlm')
Text Utilities Reference 5-55

C H A P T E R 5

Text Utilities
DESCRIPTION

ScriptOrder takes a pair of script codes and determines in which order strings from
the first script system should be sorted relative to strings from the second script system.
It returns a value that indicates the sorting order: –1 if strings in the first script should be
sorted before strings in the second script are sorted, 1 if strings in the first script should
be sorted after strings in the second script are sorted, or 0 if the sorting order does not
matter (that is, if the scripts are the same).

The script code values are listed in the chapter “Script Manager” in this book.

Note
Text of the system script is always first in a sorted list, regardless of the
result returned by this function. ◆

SPECIAL CONSIDERATIONS

ScriptOrder may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the ScriptOrder function are

LanguageOrder 5

The LanguageOrder function determines the order in which strings in two different
languages should be sorted.

FUNCTION LanguageOrder (language1, language2: LangCode): Integer;

language1 The language code of the first language.

language2 The language code of the second language.

DESCRIPTION

LanguageOrder takes a pair of language codes and determines in which order strings
from the first language should be sorted relative to strings from the second language. It
returns a value that indicates the sorting order: –1 if strings in the first language should
be sorted before sorting text in the second language, 1 if strings in the first language
should be sorted after sorting strings in the second language, or 0 if the sorting order
does not matter (that is, if the languages are the same).

Trap macro Selector

_Pack6 $001E
5-56 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
Explicit language code values are listed in the chapter “Script Manager”; implicit
language codes are listed in Table 5-13 on page 5-55 of this chapter. The implicit
language codes scriptCurLang and scriptDefLang are not valid for
LanguageOrder because the script system being used is not specified as a parameter to
this function.

SPECIAL CONSIDERATIONS

LanguageOrder may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LanguageOrder function are

StringOrder 5

The StringOrder function compares two Pascal strings, taking into account the script
system and language for each of the strings. It takes both primary and secondary sorting
orders into consideration and returns a value that indicates whether the first string is less
than, equal to, or greater than the second string.

FUNCTION StringOrder (aStr, bStr: Str255;

 aScript, bScript: ScriptCode;

 aLang, bLang: LangCode): Integer;

aStr One of the Pascal strings to be compared.

bStr The other Pascal string to be compared.

aScript The script code for the first string.

bScript The script code for the second string.

aLang The language code for the first string.

bLang The language code for the second string.

DESCRIPTION

StringOrder returns –1 if the first string is less than the second string, 0 if the first
string is equal to the second string, and 1 if the first string is greater than the second
string. The ordering of script and language codes, which is based on information in the
script-sorting resource, is considered in determining the relationship of the two strings.

Script code values and explicit language code values are listed in the chapter “Script
Manager”; implicit language codes are listed in Table 5-13 on page 5-55 of this chapter.

Trap macro Selector

_Pack6 $0020
Text Utilities Reference 5-57

C H A P T E R 5

Text Utilities
Most applications specify the language code scriptCurLang for both the aLang and
bLang values.

StringOrder first calls ScriptOrder; if the result of ScriptOrder is not 0 (that is, if
the strings use different scripts), StringOrder returns the same result.

StringOrder next calls LanguageOrder; if the result of LanguageOrder is not 0
(that is, if the strings use different languages), StringOrder returns the same result.

At this point, StringOrder has two strings that are in the same script and language, so
it compares them by using the sorting rules for that script and language, applying both
the primary and secondary sorting orders. If that script is not installed and enabled (as
described in the chapter “Script Manager” in this book), it uses the sorting rules
specified by the system script or the font script, depending on the state of the
international resources selection flag. See the section “Obtaining Resource Information,”
beginning on page 5-4.

The StringOrder function is primarily used to insert Pascal strings in a sorted list; for
sorting, rather than using this function, it may be faster to sort first by script and
language by using the ScriptOrder and LanguageOrder functions, and then to call
the CompareString function, described on page 5-62, to sort strings within a script or
language group.

SPECIAL CONSIDERATIONS

StringOrder may move memory; your application should not call this function at
interrupt time.

TextOrder 5

The TextOrder function compares two text strings, taking into account the script and
language for each of the strings. It takes both primary and secondary sorting orders into
consideration and returns a value that indicates whether the first string is less than,
equal to, or greater than the second string.

FUNCTION TextOrder (aPtr, bPtr: Ptr; aLen, bLen: Integer;

 aScript, bScript: ScriptCode;

 aLang, bLang: LangCode): Integer;

aPtr A pointer to the first character of the first text string.

bPtr A pointer to the first character of the second text string.

aLen The number of bytes in the first text string.

bLen The number of bytes in the second text string.

aScript The script code for the first text string.

bScript The script code for the second text string.

aLang The language code for the first text string.
5-58 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
bLang The language code for the second text string.

DESCRIPTION

TextOrder returns –1 if the first string is less than the second string, 0 if the first string
is equal to the second string, and 1 if the first string is greater than the second string. The
ordering of script and language codes, which is based on information in the
script-sorting resource, is considered in determining the relationship of the two strings.

Script code values and explicit language code values are listed in the chapter “Script
Manager”; implicit language codes are listed in Table 5-13 on page 5-55 of this chapter.
Most applications specify the language code scriptCurLang for both the aLang and
bLang values.

TextOrder first calls ScriptOrder; if the result of ScriptOrder is not 0 (that is, if
the strings use different scripts), TextOrder returns the same result.

TextOrder next calls LanguageOrder; if the result of LanguageOrder is not 0 (that
is, if the strings use different languages), TextOrder returns the same result.

At this point, TextOrder has two strings that are in the same script and language, so it
compares them by using the sorting rules for that script and language, applying both the
primary and secondary sorting orders. If that script is not installed and enabled (as
described in the chapter “Script Manager” in this book), it uses the sorting rules
specified by the system script or the font script, depending on the state of the
international resources selection flag. See the section “Obtaining Resource Information,”
beginning on page 5-4.

The TextOrder function is primarily used to insert text strings in a sorted list; for
sorting, rather than using this function, it may be faster to sort first by script and
language by using the ScriptOrder and LanguageOrder functions, and then to call
the CompareText function, described on page 5-63, to sort strings within a script or
language group.

SPECIAL CONSIDERATIONS

TextOrder may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the TextOrder function are

Determining Sorting Order for Strings in the Same Language 5

This section describes text routines that you can use to determine the sorting order of
two strings.

Trap macro Selector

_Pack6 $0022
Text Utilities Reference 5-59

C H A P T E R 5

Text Utilities
Some of the routines operate on Pascal strings and others on text strings. Pascal strings
are stored using standard Pascal string representation, which precedes the text characters
with a length byte; these strings are limited to 255 bytes of data. Text strings do not use a
length byte and can be up to 32 KB in length. Pascal strings are passed directly as
parameters, while text strings are specified by an address value and an integer length
value.

■ The RelString function compares two Pascal strings using the string comparison
rules of the Macintosh file system. This function does not make use of any script or
language information, assuming the use of a Roman script system.

■ The CompareString function compares two Pascal strings, making use of the string
comparison information from a specified resource.

■ The CompareText function compares two text strings for equality, making use of the
string comparison information from a specified resource.

RelString 5

The RelString function compares two Pascal strings using the string comparison rules
of the Macintosh file system and returns a value that indicates the sorting order of the
first string relative to the second string. This function does not make use of any script or
language information; it assumes the original Macintosh character set only. RelString
uses the sorting rules that are described in Table 5-2 on page 5-17.

FUNCTION RelString (aStr, bStr: Str255;

 caseSens, diacSens: Boolean): Integer;

aStr One of the Pascal strings to be compared.

bStr The other Pascal string to be compared.

caseSens A flag that indicates how to handle case-sensitive information during the
comparison. If the value of caseSens is TRUE, uppercase characters are
distinguished from the corresponding lowercase characters. If it is FALSE,
case information is ignored.

diacSens A flag that indicates how to handle information about diacritical marks
during the string comparison. If the value of diacSens is TRUE,
characters with diacritical marks are distinguished from the
corresponding characters without diacritical marks during the
comparison. If it is FALSE, diacritical marks are ignored.

DESCRIPTION

RelString returns –1 if the first string is less than the second string, 0 if the two strings
are equal, and 1 if the first string is greater than the second string. It compares the two
strings in the same manner as does the EqualString function, by simply looking at the
ASCII values of their characters. However, RelString provides more information
5-60 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
about the two strings—it indicates their relationship to each other, rather than
determining if they are exactly equal.

If the value of the diacSens parameter is FALSE, RelString ignores diacritical marks
and strips them as shown in the appendix “International Resources” in this book.

If the value of the caseSens parameter is FALSE, the comparison is not case-sensitive;
RelString performs a conversion from lowercase to uppercase characters.

SPECIAL CONSIDERATIONS

The RelString function is not localizable and does not work properly with non-Roman
script systems.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the RelString function are

The trap macro for the RelString function can take optional arguments, each of which
changes the default setting used by the macro when it is called without arguments. Each
of these arguments corresponds to the Boolean parameters that are used with the Pascal
function call. The various permutations of this trap macro are shown below; you must
type each exactly as it is shown. The syntax shown here applies to the MPW Assembler;
if you are using another development system, be sure to consult its documentation for
the proper syntax.

The registers on entry and exit for this routine are

Trap macro Selector

_RelString $A050

Macro permutation
Value of
diacSen
s

Value of
caseSen
s

_RelString FALSE FALSE

_RelString ,MARKS TRUE FALSE

_RelString ,CASE FALSE TRUE

_RelString ,MARKS,CASE TRUE TRUE

Registers on entry

A0 pointer to first character of the first string

A1 pointer to first character of the second string

D0 high-order word: number of bytes in the first string
low-order word: number of bytes in the second string

Registers on exit

D0 long word result: –1 if first string is less than second,
0 if equal, 1 if first string is greater than second
Text Utilities Reference 5-61

C H A P T E R 5

Text Utilities
CompareString 5

The CompareString function compares two Pascal strings, making use of the string
comparison information from a resource that you specify as a parameter. It takes both
primary and secondary sorting orders into consideration and returns a value that
indicates the sorting order of the first string relative to the second string.

FUNCTION CompareString(aStr, bStr: Str255;

 itl2Handle: Handle): Integer;

aStr One of the Pascal strings to be compared.

bStr The other Pascal string to be compared.

itl2Handle
The handle to the string-manipulation resource that contains string
comparison information.

DESCRIPTION

CompareString returns –1 if the first string is less than the second string, 0 if the
first string is equal to the second string, and 1 if the first string is greater than
the second string.

The itl2Handle parameter is used to specify a string-manipulation resource. If the
value of this parameter is NIL, CompareString makes use of the resource for the
current script. The string-manipulation resource includes routines and tables for
modifying string comparison and tables for case conversion and stripping of
diacritical marks.

Specifying a resource as a parameter is described in the section “Obtaining Resource
Information,” beginning on page 5-4.

SPECIAL CONSIDERATIONS

CompareString may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

There is no trap macro for the CompareString function. Instead, you must convert the
Pascal string into a text string by creating a pointer to its first character and finding its
length, and then use the same macro as you do for the CompareText function, which is
described next.
5-62 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
CompareText 5

The CompareText function compares two text strings, making use of the string
comparison information from a resource that you specify as a parameter. It takes both
primary and secondary sorting orders into consideration and returns a value that
indicates the sorting order of the first string relative to the second string.

FUNCTION CompareText (aPtr, bPtr: Ptr; aLen, bLen: Integer;

 itl2Handle: Handle): Integer;

aPtr A pointer to the first character of the first text string.

bPtr A pointer to the first character of the second text string.

aLen The number of bytes in the first text string.

bLen The number of bytes in the second text string.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string
comparison information.

DESCRIPTION

CompareText returns –1 if the first string is less than the second string, 0 if the
first string is equal to the second string, and 1 if the first string is greater than the
second string.

The itl2Handle parameter is used to specify a string-manipulation resource. If the
value of this parameter is NIL, CompareText makes use of the resource for the current
script. The string-manipulation resource includes routines and tables for modifying
string comparison and tables for case conversion and stripping of diacritical marks.

Specifying a resource as a parameter is described in the section “Obtaining Resource
Information,” beginning on page 5-4.

SPECIAL CONSIDERATIONS

CompareText may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the CompareText function are

Trap macro Selector

_Pack6 $001A
Text Utilities Reference 5-63

C H A P T E R 5

Text Utilities
Modifying Characters and Diacritical Marks 5

This section provides details on text routines that you can use to modify the characters
in text:

■ The UpperString procedure converts any lowercase letters in a Pascal string to their
uppercase equivalents. UpperString uses the Macintosh file system
string-manipulation rules, which means that it only works properly for Roman
characters with codes through $D8.

The following four routines use tables in the string-manipulation ('itl2') resource to
perform their character-mapping operations. This allows you to customize their
operation for different countries.

■ The LowercaseText procedure converts any uppercase characters in a text string
into their lowercase equivalents, making use of the conversion rules for the specified
script system.

■ The UppercaseText procedure converts any lowercase characters in a text string
into their uppercase equivalents, making use of the conversion rules for the specified
script system.

■ The StripDiacritics procedure strips diacritical characters from a text string,
making use of the conversion rules for the specified script system.

■ The UppercaseStripDiacritics procedure strips diacritical marks and converts
lowercase characters into their uppercase equivalents in a text string, making use of
the conversion rules for the specified script system.

UpperString 5

The UpperString procedure converts any lowercase letters in a Pascal string to their
uppercase equivalents. This procedure converts characters using the Macintosh file
system rules, which means that only a subset of the Roman character set (character codes
with values through $D8) are converted. These rules are summarized in Table 5-2 on
page 5-17. Use this procedure to emulate the behavior of the Macintosh file system.

PROCEDURE UpperString (VAR theString: Str255; diacSens: Boolean);

theString On input, this is the Pascal string to be converted. On output, this
contains the string resulting from the conversion.

diacSens A flag that indicates whether the case conversion is to strip diacritical
marks. If the value of this parameter is FALSE, diacritical marks
are stripped.

DESCRIPTION

UpperString traverses the characters in theString and converts any lowercase
characters with character codes in the range $0 through $D8 into their uppercase
equivalents. If the diacSens flag is TRUE, diacritical marks are considered in the
5-64 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
conversion; if it is FALSE, any diacritical marks are stripped. UpperString places the
converted characters in theString.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UpperString procedure are

The registers on entry and exit for this routine are

The trap macro for the UpperString procedure can take an optional argument, which
changes the default setting used by the macro when it is called without arguments. This
argument corresponds to the Boolean parameter diacSens that is used with the Pascal
function call. The permutations of this trap macro are shown below; you must type each
exactly as it is shown.

The syntax shown here applies to the MPW Assembler; if you are using another
development system, be sure to consult its documentation for the proper syntax.

LowercaseText 5

The LowercaseText procedure converts any uppercase characters in a text string into
their lowercase equivalents. The text string can be up to 32 KB in length.

PROCEDURE LowercaseText (textPtr: Ptr; len: Integer;

 script: ScriptCode);

textPtr A pointer to the text string to be converted.

len The number of bytes in the text string.

script The script code for the script system whose resources are used to
determine the results of converting characters.

Trap macro Selector

_UprString $A054

Registers on entry

A0 pointer to first character of string

D0 the length of the string (a word value)

Registers on exit

A0 pointer to first character of string

Macro permutation Value of
diacSens

_UprString TRUE

_UprString ,MARKS FALSE
Text Utilities Reference 5-65

C H A P T E R 5

Text Utilities
DESCRIPTION

LowercaseText traverses the characters starting at the address specified by textPtr
and continues for the number of characters specified in len. It converts any uppercase
characters in the text into lowercase.

The conversion uses tables in the string-manipulation ('itl2') resource of the script
specified by the value of the script parameter. The possible values for script codes are
listed in the chapter “Script Manager” of this book. You can specify smSystemScript
to use the system script and smCurrentScript to use the script of the current font in
the current graphics port.

If LowercaseText cannot access the specified resource, it generates an error code and
does not modify the string. You need to call the ResError function to determine which,
if any, error occurred. ResError is described in the Resource Manager chapter of the
book Inside Macintosh: More Macintosh Toolbox.

SPECIAL CONSIDERATIONS

LowercaseText may move memory; your application should not call this procedure at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the LowercaseText procedure is

The registers on entry and exit for this routine are

RESULT CODES

Trap macro

_LowerText

Registers on entry

A0 pointer to first character of string

D0 length of string in bytes (word); must be less than 32 KB

Registers on exit

D0 result code

noErr 0 No error
resNotFound –192 Can’t get correct 'itl2' resource or resource is not in

current format
5-66 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
UppercaseText 5

The UppercaseText procedure converts any lowercase characters in a text string into
their uppercase equivalents. The text string can be up to 32 KB in length.

PROCEDURE UppercaseText (textPtr: Ptr; len: Integer;

 script: ScriptCode);

textPtr A pointer to the text string to be converted.

len The number of bytes in the text string.

script The script code of the script system whose case conversion rules are used
for determining uppercase character equivalents.

DESCRIPTION

UppercaseText traverses the characters starting at the address specified by textPtr
and continues for the number of characters specified in len. It converts any lowercase
characters in the text into uppercase.

The conversion uses tables in the string-manipulation ('itl2') resource of the script
specified by the value of the script parameter. The possible values for script codes are
listed in the chapter “Script Manager” of this book. You can specify smSystemScript
to use the system script and smCurrentScript to use the script of the current font in
the current graphics port.

If UppercaseText cannot access the specified resource, it generates an error code and
does not modify the string. You need to call the ResError function to determine which,
if any, error occurred. ResError is described in the Resource Manager chapter of the
book Inside Macintosh: More Macintosh Toolbox.

SPECIAL CONSIDERATIONS

UppercaseText may move memory; your application should not call this procedure at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the UppercaseText procedure is

Trap macro

_UpperText
Text Utilities Reference 5-67

C H A P T E R 5

Text Utilities
The registers on entry and exit for this routine are

RESULT CODES

StripDiacritics 5

The StripDiacritics procedure strips any diacritical marks from a text string. The
text string can be up to 32 KB in length.

PROCEDURE StripDiacritics (textPtr: Ptr; len: Integer;

script: ScriptCode);

textPtr A pointer to the text string to be stripped.

len The number of bytes in the text string.

script The script code for the script system whose rules are used for determining
which character results from stripping a diacritical mark.

DESCRIPTION

StripDiacritics traverses the characters starting at the address specified by
textPtr and continues for the number of characters specified in len. It strips any
diacritical marks from the text.

The conversion uses tables in the string-manipulation ('itl2') resource of the script
specified by the value of the script parameter. The possible values for script codes are
listed in the chapter “Script Manager” of this book. You can specify smSystemScript
to use the system script and smCurrentScript to use the script of the current font in
the current graphics port.

If StripDiacritics cannot access the specified resource, it generates an error code
and does not modify the string. You need to call the ResError function to determine
which, if any, error occurred. ResError is described in the Resource Manager chapter of
the book Inside Macintosh: More Macintosh Toolbox.

Registers on entry

A0 pointer to first character of string

D0 length of string in bytes (word); must be less than 32 KB

Registers on exit

D0 result code

noErr 0 No error
resNotFound –192 Can’t get correct 'itl2' resource or resource is not in

current format
5-68 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
SPECIAL CONSIDERATIONS

StripDiacritics may move memory; your application should not call this procedure
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the StripDiacritics procedure is

The registers on entry and exit for this routine are

RESULT CODES

UppercaseStripDiacritics 5

The UppercaseStripDiacritics procedure converts any lowercase characters in a
text string into their uppercase equivalents and strips any diacritical marks from the text.
The text string can be up to 32 KB in length.

PROCEDURE UppercaseStripDiacritics (textPtr: Ptr; len: Integer;

script: ScriptCode);

textPtr A pointer to the text string to be converted.

len The number of bytes in the text string.

script The script code of the script system whose resources are used to
determine the results of converting characters.

Trap macro

_StripText

Registers on entry

A0 pointer to first character of string

D0 length of string in bytes (word); must be less than 32 KB

Registers on exit

D0 result code

noErr 0 No error
resNotFound –192 Can’t get correct 'itl2' resource or resource is not in

current format
Text Utilities Reference 5-69

C H A P T E R 5

Text Utilities
DESCRIPTION

UppercaseStripDiacritics traverses the characters starting at the address specified
by textPtr and continues for the number of characters specified in len. It converts
lowercase characters in the text into their uppercase equivalents and also strips
diacritical marks from the text string. This procedure combines the effects of the
UppercaseText and StripDiacritics procedures.

The conversion uses tables in the string-manipulation ('itl2') resource of the script
specified by the value of the script parameter. The possible values for script codes are
listed in the chapter “Script Manager” of this book. You can specify smSystemScript
to use the system script and smCurrentScript to use the script of the current font in
the current graphics port.

If UppercaseStripDiacritics cannot access the specified resource, it generates an
error code and does not modify the string. You need to call the ResError function to
determine which, if any, error occurred. ResError is described in the Resource Manager
chapter of the book Inside Macintosh: More Macintosh Toolbox.

SPECIAL CONSIDERATIONS

UppercaseStripDiacritics may move memory; your application should not call
this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the UppercaseStripDiacritics procedure is

The registers on entry and exit for this routine are

RESULT CODES

Trap macro

_StripUpperText

Registers on entry

A0 pointer to first character of string

D0 length of string in bytes (word); must be less than 32 KB

Registers on exit

D0 result code

noErr 0 No error
resNotFound –192 Can’t get correct 'itl2' resource or resource is not in

current format
5-70 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
Truncating Strings 5

This section describes two Text Utilities functions that you can use to truncate portions of
strings. Each of these function can truncate characters from different locations in a string,
and each makes use of the current script and font to perform its operation. The current
script is defined on page 5-4. The current font is the font that is currently in use in the
current graphics port.

■ The TruncString function ensures that a Pascal string fits into the specified pixel
width, by truncating the string as necessary.

■ The TruncText function ensures that a text string fits into the specified pixel width,
by truncating the string as necessary.

TruncString 5

The TruncString function ensures that a Pascal string fits into the specified pixel
width, by truncating the string as necessary. This function makes use of the current
script and font.

FUNCTION TruncString (width: Integer; VAR theString: Str255;

 truncWhere: TruncCode): Integer;

width The number of pixels in which the string must be displayed in the current
script and font.

theString The Pascal string to be displayed. On output, contains a version of the
string that has been truncated (if necessary) to fit in the number of pixels
specified by width.

truncWhere
A constant that indicates where the string should be truncated. You must
set this parameter to one of the constants truncEnd or truncMiddle.

DESCRIPTION

The TruncString function ensures that a Pascal string fits into the pixel width
specified by the width parameter by modifying the string, if necessary, through
truncation. TruncString uses the font script to determine how to perform truncation.
If truncation occurs, TruncString inserts a truncation indicator, which is the
ellipsis (…) in the Roman script system. You can specify which token to use for
indicating truncation as the tokenEllipsis token type in the untoken table of a tokens
('itl4') resource.

The truncWhere parameter specifies where truncation is performed. If you supply the
truncEnd value, characters are truncated off the end of the string. If you supply the
truncMiddle value, characters are truncated from the middle of the string; this is
useful when displaying pathnames.
Text Utilities Reference 5-71

C H A P T E R 5

Text Utilities
The TruncString function returns a result code that indicates whether the string
was truncated.

SPECIAL CONSIDERATIONS

TruncString may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the TruncString function are

RESULT CODES

SEE ALSO

To determine the width of a string in the current font and script, use the QuickDraw
StringWidth function, which is described in the chapter “QuickDraw Text”
in this book.

TruncText 5

The TruncText function ensures that a text string fits into the specified pixel width, by
truncating the string as necessary. This function makes use of the current script and font.
The text string can be up to 32 KB long.

You can use the TruncText function to ensure that a string defined by a pointer and a
byte length fits into the specified pixel width, by truncating the string in a manner
dependent on the font script.

FUNCTION TruncText (width: Integer; textPtr: Ptr;

 VAR length: Integer;

 truncWhere: TruncCode): Integer;

Trap macro Selector

_ScriptUtil $8208 FFE0

Truncated 1 Truncation performed
NotTruncated 0 No truncation necessary
TruncErr –1 Truncation necessary, but cannot be performed within the

specified width
resNotFound –192 Cannot get the correct 'itl4' resource or resource is not

in current format
5-72 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
width The number of pixels in which the text string must be displayed in the
current script and font.

textPtr A pointer to the text string to be truncated.

length On input, the number of bytes in the text string to be truncated. On
output, this value is updated to reflect the length of the (possibly)
truncated text.

truncWhere
A constant that indicates where the text string should be truncated.
You must set this parameter to one of the constants truncEnd
or truncMiddle.

DESCRIPTION

The TruncText function ensures that a text string fits into the pixel width specified by
the width parameter by modifying the string, if necessary, through truncation.
TruncText uses the font script to determine how to perform truncation. If truncation
occurs, TruncText inserts a truncation indicator which is the ellipsis (…) in the Roman
script system. You can specify which token to use for indicating truncation as the
tokenEllipsis token type in the untoken table of a tokens resource.

The truncWhere parameter specifies where truncation is performed. If you supply the
truncEnd value, characters are truncated off the end of the string. If you supply the
truncMiddle value, characters are truncated from the middle of the string; this is
useful when displaying pathnames.

The TruncText function returns a result code that indicates whether the string
was truncated.

SPECIAL CONSIDERATIONS

TruncText may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the TruncText function are

Trap macro Selector

_ScriptUtil $820C FFDE
Text Utilities Reference 5-73

C H A P T E R 5

Text Utilities
RESULT CODES

SEE ALSO

To determine the width of a string in the current font and script, use the QuickDraw
StringWidth function, which is described in the chapter “QuickDraw Text” in
this book.

Searching for and Replacing Strings 5

This section describes two Text Utilities routines that you can use to search for and
replace strings in larger strings:

■ The ReplaceText function searches a text string and replaces all instances of a target
string with another string. ReplaceText uses the string-manipulation resource
tables and works properly for all script systems, including 2-byte script systems.

■ The Munger function searches text for a specified target string and replaces it with
another string. This function operates on a byte-by-byte basis; thus, it does not always
work for 2-byte script systems.

ReplaceText 5

The ReplaceText function searches text, replacing all instances of a string in that text
with another string. ReplaceText searches on a character-by-character basis (as
opposed to byte-by-byte), so it works properly for all script systems.

FUNCTION ReplaceText (baseText, substitutionText: Handle;

 key: Str15): Integer;

baseText A handle to the string in which ReplaceText is to substitute text.

substitutionText
A handle to the string that ReplaceText uses as substitute text.

key A Pascal string of less than 16 bytes that ReplaceText searches for.

DESCRIPTION

ReplaceText searches the text specified by the baseText parameter for instances of
the string in the key parameter and replaces each instance with the text specified by the
substitutionText parameter. ReplaceText searches on a character-by-character

Truncated 1 Truncation performed
NotTruncated 0 No truncation necessary
TruncErr –1 Truncation necessary, but cannot be performed within the

specified width
resNotFound –192 Cannot get the correct 'itl4' resource or resource is not

in current format
5-74 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
basis. It recognizes 2-byte characters in script systems that contain them and advances
the search appropriately after encountering a 2-byte character.

ReplaceText returns an integer value. If the returned value is positive, it indicates the
number of substitutions performed; if it is negative, it indicates an error. The constant
noErr is returned if there was no error and no substitutions were performed.

SPECIAL CONSIDERATIONS

ReplaceText may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the ReplaceText function are

RESULT CODES

Munger 5

The Munger function searches text for a specified string pattern and replaces it with
another string.

FUNCTION Munger (h: Handle; offset: LongInt; ptr1: Ptr;

 len1: LongInt; ptr2: Ptr; len2: LongInt): LongInt;

h A handle to the text string that is being manipulated.

offset The byte offset in the destination string at which Munger begins
its operation.

ptr1 A pointer to the first character in the string for which Munger is searching.

len1 The number of bytes in the string for which Munger is searching.

ptr2 A pointer to the first character in the substitution string.

len2 The number of bytes in the substitution string.

Trap macro Selector

_ScriptUtil $820C FFDC

nilHandleErr 109 GetHandleSize fails on baseText or
substitutionText

memFullErr 108 SetHandleSize fails on baseText
memWZErr –111 GetHandleSize fails on baseText or

substitutionText
Text Utilities Reference 5-75

C H A P T E R 5

Text Utilities
DESCRIPTION

Munger manipulates bytes in a string to which you specify a handle in the h parameter.
The manipulation begins at a byte offset, specified in offset, in the string. Munger
searches for the string specified by ptr1 and len1; when it finds an instance of that
string, it replaces it with the substitution string, which is specified by ptr2 and len2.

IMPORTANT

Munger operates on a byte-by-byte basis, which can produce
inappropriate results for 2-byte script systems. The ReplaceText
function works properly for all languages. You are encouraged to use
ReplaceText instead of Munger whenever possible. ▲

Munger takes special action if either of the specified pointer values is NIL or if either of
the length values is 0.

■ If ptr1 is NIL, Munger replaces characters without searching. It replaces len1
characters starting at the offset location with the substitution string.

■ If ptr1 is NIL and len1 is negative, Munger replaces all of the characters from the
offset location to the end of the string with the substitution string.

■ If len1 is 0, Munger inserts the substitution string without replacing anything.
Munger inserts the string at the offset location and returns the offset of the first
byte past where the insertion occurred.

■ If ptr2 is NIL, Munger searches but does not replace. In this case, Munger returns the
offset at which the string was found.

■ If len2 is 0 and ptr2 is not NIL, Munger searches and deletes. In this case, Munger
returns the offset at which it deleted.

■ If the portion of the string from the offset location to its end matches the beginning
of the string that Munger is searching for, Munger replaces that portion with the
substitution string.

Munger returns a negative value when it cannot find the designated string.

▲ W A R N I N G

Be careful not to specify an offset with a value that is greater than the
length of the destination string. Unpredictable results may occur. ▲

SPECIAL CONSIDERATIONS

Munger may move memory; your application should not call this function at
interrupt time.

The destination string must be in a relocatable block that was allocated by the
Memory Manager.
5-76 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
SEE ALSO

Munger calls the GetHandleSize and SetHandleSize routines to access or modify
the length of the string it is manipulating. These routines are described in the book Inside
Macintosh: Memory Manager.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the Munger function is

Working With Word, Script, and Line Boundaries 5

This section describes the text routines that you can use to edit and display formatted
text. These functions all take into account script and language considerations, making
use of tables in the string-manipulation ('itl2') resource in their computations.

■ The FindWordBreaks procedure determines the beginning and ending boundaries
of a word in a text string.

■ The StyledLineBreak function determines the proper location at which to break a
line of text that may contain multiple script runs, breaking it on a word boundary
if possible.

■ The FindScriptRun function finds the next boundary between main text and a
specified subscript within a script run.

FindWordBreaks 5

The FindWordBreaks procedure determines the beginning and ending boundaries of a
word in a text string.

PROCEDURE FindWordBreaks(textPtr: Ptr; textLength: Integer;

offset: Integer; leadingEdge: Boolean;

nbreaks: BreakTablePtr;

VAR offsets: OffsetTable; script: ScriptCode);

textPtr A pointer to the text string to be examined.

textLength
The number of bytes in the text string.

offset A byte offset into the text. This parameter plus the leadingEdge
parameter determine the position of the character at which to start
the search.

Trap macro

_Munger
Text Utilities Reference 5-77

C H A P T E R 5

Text Utilities
leadingEdge
A flag that specifies which character should be used to start the search. If
leadingEdge is TRUE, the search starts with the character specified in
the offset parameter; if it is FALSE, the search starts with the character
previous to the offset.

nbreaks A pointer to a word-break table of type NBreakTable or BreakTable.
If the value of this pointer is 0, the default word-break table of the script
system specified by the script parameter is used. If the value of
this pointer is –1, the default line-break table of the specified script
system is used.

offsets On output, the values in this table indicate the boundaries of the word
that has been found.

script The script code for the script system whose tables are used to determine
where word boundaries occur.

DESCRIPTION

FindWordBreaks searches for a word in a text string. The textPtr and textLength
parameters specify the text string that you want searched. The offset parameter and
leadingEdge parameter together indicate where the search begins.

If leadingEdge is TRUE, the search starts at the character at the offset. If
leadingEdge is FALSE, the search starts at the character preceding the offset
position.

FindWordBreaks searches backward through the text string for one of the word
boundaries and forward through the text string for its other boundary. It uses the
definitions in the table specified by nbreaks to determine what constitutes the
boundaries of a word. Each script system’s word-break table is part of its
string-manipulation ('itl2') resource. The format of the NBreakTable record is
described in the appendix “International Resources” in this book.

FindWordBreaks returns its results in an OffsetTable record, the format of which is
described in the section “The Offset Table Record” on page 5-44. FindWordBreaks uses
only the first element of this three-element table. Each element is a pair of integers:
offFirst and offSecond.

FindWordBreaks places the offset from the beginning of the text string to just before
the leading edge of the character of the word that it finds in the offFirst field.

FindWordBreaks places the offset from the beginning of the text string to just after the
trailing edge of the last character of the word that it finds in the offSecond field. For
example, if the text “This is it” is passed with offset set to 0 and leadingEdge set to
TRUE, then FindWordBreaks returns the offset pair (0,4).

If leadingEdge is TRUE and the value of offset is 0, then FindWordBreaks returns
the offset pair (0,0). If leadingEdge is FALSE and the value of offset equals the value
of textLength, then FindWordBreaks returns the offset pair with values
(textLength, textLength).
5-78 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the FindWordBreaks procedure are

StyledLineBreak 5

The StyledLineBreak function returns the proper location to break a line of text. It
breaks the line on a word boundary if possible and allows for multiscript runs and style
runs on a single line.

FUNCTION StyledLineBreak(textPtr: Ptr; textLen: LongInt;

textStart, textEnd, flags: LongInt;

VAR textWidth: Fixed;

VAR textOffset: LongInt): StyledLineBreakCode;

textPtr A pointer to the beginning of a script run on the current line to be broken.

textLen The number of bytes in the script run on the current line to be broken.

textStart A byte offset to the beginning of a style run within the script run.

textEnd A byte offset to the end of the style run within the script run.

flags Reserved for future expansion; must be 0.

textWidth The maximum length of the displayed line in pixels. StyledLineBreak
decrements this value for its own use. Your responsibility is to set it
before your first call to StyledLineBreak for a line.

textOffset
Must be nonzero on your first call to StyledLineBreak for a line, and
zero for subsequent calls to StyledLineBreak for that line. This value
allows StyledLineBreak to differentiate between the first and
subsequent calls, which is important when a long word is found (as
described below).

On output, textOffset is the count of bytes from textPtr to the
location in the text string where the line break is to occur.

DESCRIPTION

Use the StyledLineBreak function when you are laying out lines in an environment
that may include text from multiple scripts. To use this function, you need to
understand how QuickDraw draws text, which is described in the chapter “QuickDraw
Text” in this book.

Trap macro Selector

_ScriptUtil $C012 001A
Text Utilities Reference 5-79

C H A P T E R 5

Text Utilities
You can only use the StyledLineBreak function when you have organized your text
in script runs and style runs within each script run. This type of text organization is used
by most text-processing applications that allow for multiscript text. Use this function
when you are displaying text in a screen area to determine the best place to break each
displayed line. For an overview of how to use this function, read the section “Finding
Line Breaks” beginning on page 5-24.

What you do is iterate through your text, a script run at a time starting from the first
character past the end of the previous line. Use StyledLineBreak to check each style
run in the script run (in memory order) until the function determines that it has arrived
at a line break. As you loop through each style run, before calling StyledLineBreak,
you must set the text values in the graphics port record that are used by QuickDraw to
measure the text. These include the font, font size, and font style of the style run. An
example of a loop that uses this function is found in Listing 5-4 on page 5-27.

When used with unformatted text, textStart can be 0, and textEnd is identical to
textLen. With styled text, the interval between textStart and textEnd specifies
a style run. The interval between textPtr and textLen specifies a script run. Note
that the style runs in StyledLineBreak must be traversed in memory order, not in
display order.

If the current style run is included in a contiguous sequence of other style runs of the
same script, then textPtr should point to the start of the first style run of the same
script on the line, and textLen should include the last style run of the same script on
the line. This is because word boundaries can extend across style runs, but not across
script runs.

StyledLineBreak automatically decrements the textWidth variable by the width of
the style run for use on the next call. You need to set the value of textWidth before
calling it to process a line.

The textOffset parameter must be nonzero for the first call on a line and zero for each
call to the function on the line. This allows StyledLineBreak to act differently when a
long word is encountered: if the word is in the first style run on the line,
StyledLineBreak breaks the line on a character boundary within the word; if the
word is in a subsequent style run on the line, StyledLineBreak breaks the line before
the start of the word.

When StyledLineBreak finds a line break, it sets the value of textOffset to the
count of bytes that can be displayed starting at textPtr.

IMPORTANT

When StyledLineBreak is called for the second or subsequent style
runs within a script run, the textOffset value at exit may be less than
the textStart parameter (that is, it may specify a line break before the
current style run). ▲

Although the offsets are in long integer values and the widths are in fixed values for
future extensions, in the current version the long integer values are restricted to the
integer range, and only the integer portion of the widths is used.
5-80 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
StyledLineBreak always chooses a line break for the last style run on the line in
memory order as if all whitespace in that style run would be stripped. The
VisibleLength function, which is a QuickDraw function used to eliminate trailing
spaces from a style run before drawing it, can be called for the style run that is at the
display end of a line. This leads to a potential conflict when both functions are used with
mixed-directional text: if the end of a line in memory order actually occurs in the middle
of the displayed line, StyledLineBreak assumes that the whitespace is stripped from
that run, but VisibleLength does not strip the characters. The VisibleLength
function is described in the chapter “QuickDraw Text” in this book.

The StyledLineBreak result (defined by the StyledLineBreakCode data type)
indicates whether the function broke on a word boundary or a character boundary, or if
the width extended beyond the edge of the text.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StyledLineBreak function are

RESULT CODES

SEE ALSO

For details on the VisibleLength, TextWidth, and PortionText functions, see the
chapter “QuickDraw Text” in this book.

FindScriptRun 5

The FindScriptRun function finds the next block of subscript text within a script run.

FUNCTION FindScriptRun (textPtr: Ptr;

textLen: LongInt;

VAR lenUsed: LongInt): ScriptRunStatus;

textPtr A pointer to the text string to be analyzed.

textLen The number of bytes in the text string.

lenUsed On output, contains the length, in bytes, of the script run that begins with
the first character in the string; this length is always greater than or equal
to 1, unless the string passed in is of length 0.

Trap macro Selector

_ScriptUtil $821C FFFE

BreakOverflow 2 No line break is yet necessary, since the current style run
still fits on the line

BreakChar 1 Line breaks on character boundary
BreakWord 0 Line breaks on word boundary
Text Utilities Reference 5-81

C H A P T E R 5

Text Utilities
DESCRIPTION

The FindScriptRun function is used to identify blocks of subscript text in a string.
Some script systems include subscripts, which are character sets that are subsidiary to
the main character set. One useful subscript is the set of all character codes that have the
same meaning in Roman as they do in a non-Roman script. For other scripts such as
Japanese, there are additional useful subscripts. For example, a Japanese script system
might include some Hiragana characters that are useful for input methods.

FindScriptRun computes the length of the current run of subscript text in the text
string specified by textPtr and textLen. It assigns the length, in bytes, to the
lenUsed parameter and returns a status code. You can advance the text pointer by the
value of lenUsed to make subsequent calls to this function. You can use this function to
identify runs of subscript characters so that you can treat them separately.

The function result identifies the run as either native text, Roman, or one of the defined
subscripts of the script system and returns a record of type ScriptRunStatus. This
record is described in the section “The Script Run Status Record” on page 5-46.

Word processors and other applications can call FindScriptRun to separate style runs
of native text from non-native text. You can use this capability to extract those characters
and apply a different font to them. Figure 5-11 on page 5-28 provides an example of
using the FindScriptRun routine.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the FindScriptRun function are

Converting Date and Time Strings Into Numeric Representations 5

This section describes the Text Utilities routines that you can use to convert date and
time strings into numeric representations:

■ The InitDateCache function initializes the date cache record, which is used by the
StringToDate and StringToTime functions.

■ The StringToDate function parses text for a date specification and fills in numeric
date information in a LongDateRec record.

■ The StringToTime function parses text for a time specification and fills in numeric
time information in a LongDateRec record.

Trap macro Selector

_ScriptUtil $820C 0026
5-82 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
InitDateCache 5

The InitDateCache function initializes the date cache record, which is used to store
data for use by the StringToDate and StringToTime functions.

FUNCTION InitDateCache(theCache: DateCachePtr): OSErr;

theCache A pointer to a record of type DateCacheRecord. This parameter can be
a local variable, a pointer, or a locked handle.

DESCRIPTION

You must call InitDateCache to initialize the date cache record before using either the
StringToDate or StringToTime functions. You must pass a pointer to a date cache
record. You have to declare the record as a variable or allocate it in the heap.

If you are writing an application that allows the use of global variables, you can make
your date cache record a global variable and initialize it once, when you perform other
global initialization.

SPECIAL CONSIDERATIONS

InitDateCache may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the InitDateCache function are

RESULT CODES

SEE ALSO

InitDateCache calls the GetResource and LoadResource routines and it can also
return the error codes they produce. These routines and their return values are described
in the book Inside Macintosh: Operating System Utilities.

Trap macro Selector

_ScriptUtil $8204 FFF8

noErr 0 No error
fatalDateTime –32768 A miscellaneous fatal error occurred, usually a failure

in a call to get a resource
Text Utilities Reference 5-83

C H A P T E R 5

Text Utilities
StringToDate 5

The StringToDate function parses a string for a date and converts the date
information into values in a date-time record. It expects a date specification, in a format
defined by the current script, at the beginning of the string. It returns a status value that
indicates the confidence level for the success of the conversion.

FUNCTION StringToDate(textPtr: Ptr; textLen: LongInt;

theCache: DateCachePtr; VAR lengthUsed: LongInt;

VAR dateTime: LongDateRec): StringToDateStatus;

textPtr A pointer to the text string to be parsed.

textLen The number of bytes in the text string.

theCache A pointer to the date cache record initialized by the InitDateCache
function with data that is used during the conversion process.

lengthUsed
On output, contains the number of bytes of the string that were parsed for
the date.

dateTime On output, this LongDateRec record contains the year, month, day, and
day of the week parsed for the date.

DESCRIPTION

StringToDate parses the text string until it has finished finding all date information or
until it has examined the number of bytes specified by textLen. It returns a status value
that indicates the confidence level for the success of the conversion. For an overview of
how this function operates, see the section “Converting Formatted Date and Time
Strings Into Internal Numeric Representations” beginning on page 5-31.

Note that StringToDate fills in only the year, month, day, and day of the week;
StringToTime fills in the hour, minute, and second. You can use these two routines
sequentially to fill in all of the values in a LongDateRec record.

StringToDate assigns to its lengthUsed parameter the number of bytes that it uses
to parse the date; use this value to compute the starting location of the text that you can
pass to StringToTime (or you can use them in reverse order).

When one of the date components is missing, such as the year, the current date value is
used as a default. If the value of the input year is less than 100, StringToDate
determines the year as described on page 5-32.

StringToDate returns a value of type StringToDateStatus, which is a set of bit
values that indicate confidence levels, with higher numbers indicating low confidence in
how closely the input string matched what the routine expected. For example, specifying
a date with nonstandard separators may work, but it returns a message indicating that
the separator was not standard. The possible values of this type are described in Table
5-5 on page 5-33.
5-84 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
SPECIAL CONSIDERATIONS

StringToDate may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StringToDate function are

StringToTime 5

The StringToTime function parses a string for a time specification and converts the
date information into values in a date-time record. At the beginning of the string, it
expects a time specification in a format defined by the current script. It returns a status
value that indicates the confidence level for the success of the conversion.

FUNCTION StringToTime(textPtr: Ptr; textLen: LongInt;

theCache: DateCachePtr; VAR lengthUsed: LongInt;

VAR dateTime: LongDateRec): StringToDateStatus;

textPtr A pointer to the text string to be parsed.

textLen The number of bytes in the text string.

theCache A pointer to the date cache record initialized by the InitDateCache
function with data that is used during the conversion process.

lengthUsed
On output, contains the number of bytes of the string that were parsed for
the time.

dateTime On output, this LongDateRec record contains the hour, minute, and
second values that were parsed for the time.

DESCRIPTION

StringToTime parses the string until it has finished finding all time information or
until it has examined the number of bytes specified by textLen. It returns a status value
that indicates the confidence level for the success of the conversion.

Note that StringToTime fills in only the hour, minute, and second; StringToDate
fills in the year, month, day, and day of the week. You can use these two routines
sequentially to fill in all of the values in a LongDateRec record.

StringToTime assigns to its lengthUsed parameter the number of bytes that it used
to parse the date.

Trap macro Selector

_ScriptUtil $8214 FFF6
Text Utilities Reference 5-85

C H A P T E R 5

Text Utilities
StringToTime returns the same status value indicator type as does StringToDate: a
set of bit values that indicate confidence levels, with higher numbers indicating low
confidence in how closely the input string matched what the routine expected. The
possible values of this type are described in Table 5-5 on page 5-33.

SPECIAL CONSIDERATIONS

StringToTime may move memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StringToTime function are

Converting Numeric Representations Into Date and Time Strings 5

This section describes the routines that you can use to convert numeric representations
of date and time values into formatted strings. The numeric representation used in these
routines is the standard date-time representation: a 32-bit integer value that is returned
by the GetDateTime routine. This is a long integer value that represents the number of
seconds between midnight, January 1, 1904, and the time at which GetDateTime was
called, as described in the book Inside Macintosh: Operating System Utilities.

■ The DateString procedure converts a date in the standard date-time representation
into a string, making use of the date formatting information from a specified resource.
If you specify NIL as the value of the resource handle parameter, DateString uses
information from the current script.

■ The TimeString procedure converts a time in the standard date-time representation
into a string, making use of the time formatting information from a specified resource.
If you specify NIL as the value of the resource handle parameter, TimeString uses
information from the current script.

DateString 5

The DateString procedure converts a date in the standard date-time representation
into a Pascal string, making use of the date formatting information in the
specified resource.

PROCEDURE DateString (dateTime: LongInt; longFlag: Boolean;

 VAR result: Str255; intlParam: Handle);

dateTime The date-time value in the representation returned by the
GetDateTime procedure.

Trap macro Selector

_ScriptUtil $8214 FFF4
5-86 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
longFlag A flag that indicates the desired format for the date string. This is one
of the three values defined as the DateForm type.

result On output, contains the string representation of the date in the format
indicated by the longFlag parameter.

intlParam A handle to a numeric-format or a long-date-format resource that
specifies date formatting information for use in the conversion. The
numeric-format ('itl0') resource specifies the short date formats and
the long-date-format ('itl1') resource specifies the long date formats.

DESCRIPTION

DateString converts the long integer representation of date and time in the dateTime
parameter into a Pascal string representation of the date. You can call the GetDateTime
function to get the date-time value. GetDateTime is described in the book Inside
Macintosh: Operating System Utilities.

The string produced by DateString is in one of three standard date formats used on
the Macintosh, depending on which of the three DateForm values that you specify for
the longFlag parameter: shortDate, abbrevDate, or longDate. The information in
the supplied resource defines how month and day names are written and provides for
calendars with more than 7 days and more than 12 months. For the Roman script
system’s resource, the date January 31, 1991, produces the following three strings:

DateString formats its data according to the information in the specified
numeric-format resource (for short date formats) or long-date-format resource (for long
date formats). If you specify shortDate, the intlParam value should be the handle to
a numeric-format resource; if you specify abbrevDate or longDate, it should be the
handle to a long-date-format resource. If the intlParam value is NIL, DateString
uses the appropriate resource from the current script.

SPECIAL CONSIDERATIONS

DateString may move memory; your application should not call this procedure at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DateString procedure are

Dateform value Date string produced

shortDate 1/31/92

abbrevDate Fri, Jan 31, 1992

longDate Friday, January 31, 1992

Trap macro Selector

_Pack6 $000E
Text Utilities Reference 5-87

C H A P T E R 5

Text Utilities
TimeString 5

The TimeString procedure converts a time in the standard date-time representation
into a string, making use of the time formatting information in the specified resource.

PROCEDURE TimeString (dateTime: LongInt; wantSeconds: Boolean;

 VAR result: Str255; intlParam: Handle);

dateTime The date-time value in the representation returned by the Operating
System procedure GetDateTime.

wantSeconds
A flag that indicates whether the seconds are to be included in the
resulting string.

result On output, contains the string representation of the time.

intlParam A handle to a numeric-format ('itl0') resource that specifies time
formatting information for use in the conversion.

DESCRIPTION

TimeString converts the long integer representation of date and time in the dateTime
parameter into a Pascal string representation of the time. You can call the GetDateTime
function to get the date-time value. GetDateTime is described in the book Inside
Macintosh: Operating System Utilities.

TimeString produces a string that includes the seconds if you set the wantSeconds
parameter to TRUE.

TimeString formats its data according to the information in the numeric-format
resource specified in the intlParam parameter. If this value is NIL, TimeString
uses the numeric-format resource from the current script. The numeric-format resource
specifies whether or not to use leading zeros for the time values, whether to use a
12- or 24-hour time cycle, and how to specify morning or evening if a 12-hour time
cycle is used.

SPECIAL CONSIDERATIONS

TimeString may move memory; your application should not call this procedure at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the TimeString procedure are

Trap macro Selector

_Pack6 $0010
5-88 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
Converting Long Date and Time Values Into Strings 5

This section describes two procedures that use the LongDateTime data type in their
conversions. This is a 64-bit, signed representation of the number of seconds since Jan. 1,
1904, which allows coverage of a much longer span of time (plus or minus
approximately 30,000 years) than the standard, 32-bit representation. LongDateTime
values are described in the book Inside Macintosh: Operating System Utilities.

■ The LongDateString procedure converts a date in LongDateTime representation
into a string, making use of the date formatting information from a specified resource.
If you specify NIL as the value of the resource handle parameter, LongDateString
uses information from the current script.

■ The LongTimeString procedure converts a time in LongDateTime representation
into a string, making use of the date formatting information from a specified resource.
If you specify NIL as the value of the resource handle parameter, LongTimeString
uses information from the current script.

LongDateString 5

The LongDateString procedure converts a date that is specified as a LongDateTime
value into a Pascal string, making use of the date formatting information in the
specified resource.

PROCEDURE LongDateString(VAR dateTime: LongDateTime;

 longFlag: DateForm;

 VAR result: Str255; intlParam: Handle);

dateTime A 64-bit, signed representation of the number of seconds since Jan. 1, 1904.

longFlag A flag that indicates the desired format for the date string. This is one of
the three values defined as the DateForm type.

result On output, contains the string representation of the date in the format
indicated by the longFlag parameter.

intlParam A handle to a numeric-format or long-date-format resource that specifies
date formatting information for use in the conversion. The
numeric-format ('itl0') resource specifies the short date formats and
the long-date-format ('itl1') resource specifies the long date formats.

DESCRIPTION

LongDateString converts the LongDateTime value in the dateTime parameter into
a Pascal string representation of the date. You can use the LongSecondsToDate and
LongDateToSeconds procedures, which are described in the book Inside Macintosh:
Operating System Utilities, to convert between the LongDateRec (as produced by the
StringToDate function) and LongDateTime data types.
Text Utilities Reference 5-89

C H A P T E R 5

Text Utilities
The string produced by LongDateString is in one of three standard date formats used
on the Macintosh, depending on which of the three DateForm values that you specify
for the longFlag parameter: shortDate, abbrevDate, or longDate. The information
in the supplied resource defines how month and day names are written and provides for
calendars with more than 7 days and more than 12 months. For the U.S. resource, the
date January 31, 1991, produces the following three strings:

LongDateString formats its data according to the information in the specified
numeric-format resource (for short date formats) or long-date-format resource (for long
date formats). If you specify shortDate, the intlParam value should be the handle to
a numeric-format resource; if you specify abbrevDate or longDate, it should be the
handle to a long-date-format resource. If the intlParam value is NIL,
LongDateString uses the resource from the current script.

SPECIAL CONSIDERATIONS

LongDateString may move memory; your application should not call this procedure
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LongDateString procedure are

LongTimeString 5

The LongTimeString procedure converts a time that is specified as a LongDateTime
value into a Pascal string, making use of the time formatting information in the
specified resource.

PROCEDURE LongTimeString(VAR dateTime: LongDateTime;

 wantSeconds: Boolean;

 VAR result: Str255; intlParam: Handle);

dateTime A 64-bit, signed representation of the number of seconds since Jan. 1, 1904.

wantSeconds
A flag that indicates whether the seconds are to be included in the
resulting string.

DateForm value Date string produced

shortDate 1/31/92

abbrevDate Fri, Jan 31, 1992

longDate Friday, January 31, 1992

Trap macro Selector

_Pack6 $0014
5-90 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
result On output, contains the string representation of the time.

intlParam
A handle to a numeric-format ('itl0') resource that specifies time
formatting information for use in the conversion.

DESCRIPTION

LongTimeString converts the LongDateTime value in the dateTime parameter into
a Pascal string representation of the time. You can use the LongSecondsToDate and
LongDateToSeconds procedures, which are described in the book Inside Macintosh:
Operating System Utilities, to convert between the LongDateRec (as produced by the
StringToTime function) and LongDateTime data types.

LongTimeString produces a string that includes the seconds if you set the
wantSeconds parameter to TRUE.

LongTimeString formats its data according to the information in the numeric-format
resource specified in the intlParam parameter. If this value is NIL, LongTimeString
uses the numeric-format resource from the current script. The numeric-format resource
specifies whether or not to use leading zeros for the time values, whether to use a 12- or
24-hour time cycle, and how to specify morning or evening if a 12-hour time cycle
is used.

SPECIAL CONSIDERATIONS

LongTimeString may move memory; your application should not call this procedure
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LongTimeString procedure are

Converting Between Integers and Strings 5

This section describes routines that allow you to convert between string and numeric
representations of numbers. Unless patched by a script system with different rules, these
two routines assume that you are using standard numeric token processing, meaning
that the Roman script system number processing rules are used.

■ The NumToString procedure converts a long integer value to a string representation
of it as a base-10 number.

■ The StringToNum procedure converts a string representation of a base-10 number
into a long integer value.

Trap macro Selector

_Pack6 $0016
Text Utilities Reference 5-91

C H A P T E R 5

Text Utilities
For routines that make use of the token-processing information that is found in the
tokens ('itl4') resource of script systems for converting numbers, see the section
“Using Number Format Specification Strings for International Number Formatting,”
which begins on page 5-94, and the section “Converting Between Strings and
Floating-Point Numbers,” which begins on page 5-98.

NumToString 5

The NumToString procedure converts a long integer value into a Pascal string.

PROCEDURE NumToString (theNum: LongInt; VAR theString: Str255);

theNum A long integer value.

theString On output, contains the Pascal string representation of the number.

DESCRIPTION

NumToString creates a string representation of theNum as a base-10 value and returns
the result in theString.

If the value of the number in the parameter theNum is negative, the string begins with a
minus sign; otherwise, the sign is omitted. Leading zeros are suppressed, except that a
value of 0 produces the string “0”. NumToString does not include thousand separators
or decimal points in its formatted output.

SPECIAL CONSIDERATIONS

NumToString may move memory; your application should not call this procedure at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NumToString procedure are

The registers on entry and exit for this routine are

Trap macro Selector

_Pack7 $0000

Registers on entry

A0 pointer to the length byte that precedes theString

D0 the long integer value to be converted

Registers on exit

D0 pointer to the length byte that precedes theString
5-92 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
StringToNum 5

The StringToNum procedure converts the Pascal string representation of a base-10
number into a long integer value.

PROCEDURE StringToNum (theString: Str255; VAR theNum: LongInt);

theString A Pascal string representation of a base-10 number.

theNum On output, contains the numeric value.

DESCRIPTION

StringToNum converts the base-10 numeric string in the theString parameter to the
corresponding long integer value and returns the result in the parameter theNum. The
numeric string can be padded with leading zeros or with a sign.

The 32-bit result is negated if the string begins with a minus sign. Integer overflow
occurs if the magnitude is greater than or equal to 2 raised to the 31st power.
StringToNum performs the negation using the two’s complement method: the state of
each bit is reversed and then 1 is added to the result. For example, here are possible
results produced by StringToNum:

StringToNum does not check whether the characters in the string are between 0 and 9;
instead, it takes advantage of the fact that the ASCII values for these characters are $30
through $39, and masks the last four bits for use as a digit. For example, StringToNum
converts 2: to the number 30 since the character code for the colon (:) is $3A. Because
StringToNum operates this way, spaces are treated as zeros (the character code for a
space is $20), and other characters do get converted into numbers. For example, the
character codes for 'C', 'A', and 'T' are $43, $41, and $54 respectively, producing
these results:

Value of theString Value returned
in theNum

“–23” –23

“–0” 0

“055” 55

“2147483648” (magnitude is 2^31) –2147483648

“–2147483648” –2147483648

“4294967295” (magnitude is 2^32–1) –1

“–4294967295” 1

Value of
theString

Value returned
in theNum

'CAT' 314

 '+CAT' 314

 '–CAT' –314
Text Utilities Reference 5-93

C H A P T E R 5

Text Utilities
Note
One consequence of this conversion method is that StringToNum does
not ignore thousand separators (the “,” character in the United States),
which can lead to improper conversions. It is a good idea to ensure that
all characters in theString are valid digits before you call
StringToNum. ◆

SPECIAL CONSIDERATIONS

StringToNum may move memory; your application should not call this procedure at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StringToNum procedure are

The registers on entry and exit for this routine are

Using Number Format Specification Strings for International Number Formatting 5

To allow for all of the international variations in numeric presentation styles, you need to
include in your routine calls a number parts table from a tokens ('itl4') resource. You
can usually use the number parts table in the standard tokens resource that is supplied
with the system. You also need to define the format of input and output numeric strings,
including which characters (if any) to use as thousand separators, whether to indicate
negative values with a minus sign or by enclosing the number in parentheses, and how
to display zero values. These details are specified in number format specification strings,
the syntax of which is described in the section “Using Number Format Specification
Strings,” beginning on page 5-39.

To make it possible to map a number that was formatted for one specification into
another format, the Macintosh Operating System defines an internal numeric
representation that is independent of region, language, and other multicultural
considerations: the NumFormatStringRec record. This record is created from a number
format specification string that defines the appearance of numeric strings. Its use is
summarized in Figure 5-12 on page 5-37.

Trap macro Routine selector

_Pack7 $0001

Registers on entry

A0 pointer to the length byte that precedes theString

Registers on exit

D0 the long word value
5-94 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
In brief, what you have to do is create a number format specification string that you
want to use and convert that string into a NumFormatStringRec record. The Text
Utilities include two routines for this purpose:

■ The StringToFormatRec function converts a number format specification string
into a NumFormatStringRec record.

■ The FormatRecToString function converts the internal representation in a
NumFormatStringRec record into a number format specification string, which can
be viewed and modified.

StringToFormatRec 5

The StringToFormatRec function creates a number format specification string record
from a number format specification string that you supply in a Pascal string.

FUNCTION StringToFormatRec(inString: Str255;

partsTable: NumberParts;

VAR outString: NumFormatStringRec): FormatStatus;

inString A Pascal string that contains the number formatting specification.

partsTable
A record usually obtained from the tokens ('itl4') resource that shows
the correspondence between generic number part separators (tokens) and
their localized version (for example, a thousand separator is a comma in
the United States and a decimal point in France).

outString On output, this NumFormatStringRec record contains the values that
form the internal representation of the format specification. The format of
the data in this record is private.

DESCRIPTION

StringToFormatRec converts a number format specification string into the internal
representation contained in a number format string record. It uses information in the
current script’s tokens resource to determine the components of the number.
StringToFormatRec checks the validity both of the input format string and of the
number parts table (since this table can be programmed by the application).
StringToFormatRec ignores spurious characters.

The inString parameter contains a number format specification string that specifies
how numbers appear. This string contains up to three specifications, separated by
semicolons. The positive number format is specified first, the negative number format is
second, and the zero number format is last. If the string contains only one part, that is
the format of all three types of numbers. If the string contains two parts, the first part is
the format for positive and zero number values, and the second part is the format for
negative numbers. The syntax for the number format specification strings is described in
detail in “Using Number Format Specification Strings,” which begins on page 5-39.
Text Utilities Reference 5-95

C H A P T E R 5

Text Utilities
StringToFormatRec returns a value of type FormatStatus that denotes the
confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType, the values of which are described
in Table 5-6 on page 5-38.

IMPORTANT

Be sure to cast the result of StringToFormatRec to a type
FormatResultType before working with it. ▲

SPECIAL CONSIDERATIONS

StringToFormatRec may move memory; your application should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StringToFormatRec function are

SEE ALSO

For comprehensive details on the number parts table, see the appendix “International
Resources” in this book.

To obtain a handle to the number parts table from a tokens resource, use the
GetIntlResourceTable procedure, which is described in the chapter “Script
Manager” in this book.

FormatRecToString 5

The FormatRecToString function converts an internal representation of number
formatting information into a number format specification string, which can be
displayed and modified.

FUNCTION FormatRecToString(myFormatRec: NumFormatStringRec;

partsTable: NumberParts; VAR outString: Str255;

VAR positions: TripleInt): FormatStatus;

myFormatRec
The internal representation of number formatting information, as created
by a previous call to the StringToFormatRec function.

Trap macro Selector

_ScriptUtil $820C FFEC
5-96 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
partsTable
A record obtained from the tokens ('itl4') resource that shows the
correspondence between generic number part separators (tokens) and
their localized version (for example, a thousand separator is a comma in
the United States and a decimal point in France).

outString On output, contains the number format specification string.

positions An array that specifies the starting position and length of each of the three
possible format strings (positive, negative, or zero) in the number format
specification string. Semicolons are used as separators in the string.

DESCRIPTION

FormatRecToString is the inverse operation of StringToFormatRec. The internal
representation of the formatting information in myFormatRec must have been created
by a prior call to the StringToFormatRec function. The information in the number
parts table specifies how to build the string representation.

The output number format specification string in outString specifies how numbers
appear. This string contains three parts, which are separated by semicolons. The first part
is the positive number format, the second is the negative number format, and the third
part is the zero number format. The syntax for this string is described in detail in “Using
Number Format Specification Strings,” which begins on page 5-39.

The positions parameter is an array of three integers (a TripleInt value), which
specifies the starting position in outString of each of three formatting specifications:

FormatRecToString returns a value of type FormatStatus that denotes the
confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType, the values of which are described
in Table 5-6 on page 5-38.

IMPORTANT

Be sure to cast the result of FormatRecToString to a type
FormatResultType before working with it. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the FormatRecToString function are

Array entry What its value specifies

positions[fPositive] the index in outString of the first byte of the
formatting specification for positive number values

positions[fNegative] the index in outString of the first byte of the
formatting specification for negative number values

positions[fZero] the index in outString of the first byte of the
formatting specification for zero number values

Trap macro Selector

_ScriptUtil $8210 FFEA
Text Utilities Reference 5-97

C H A P T E R 5

Text Utilities
SEE ALSO

For comprehensive details on the number parts table, see the appendix “International
Resources” in this book.

To obtain a handle to the number parts table from a tokens resource, use the
GetIntlResourceTable procedure, which is described in the chapter “Script
Manager” in this book.

Converting Between Strings and Floating-Point Numbers 5

Once you have created a NumFormatStringRec record that specifies how numbers are
represented, as described in “Using Number Format Specification Strings for
International Number Formatting,” which begins on page 5-94, you can use two other
Text Utilities routines to convert between string and floating-point representations of
numbers. Floating-point numbers are stored in standard Apple (SANE) format.

■ The StringToExtended function converts the string representation of a number
into a floating-point number, using a NumFormatStringRec record to specify how
the input number string is formatted.

■ The ExtendedToString function converts a floating-point number into a string that
can be presented to the user, using a NumFormatStringRec record to specify how
the output number string is formatted.

StringToExtended 5

The StringToExtended function converts a string representation of a number into a
floating-point number.

FUNCTION StringToExtended(source: Str255;

 myFormatRec: NumFormatStringRec;

 partsTable: NumberParts;

 VAR x: Extended80): FormatStatus;

source A Pascal string that contains the string representation of a number.

myFormatRec
The internal representation of the formatting information for numbers, as
produced by the StringToFormatRec function.

partsTable
A record obtained from the tokens ('itl4') resource that shows the
correspondence between generic number part separators (tokens) and
their localized version (for example, a thousand separator is a comma in
the United States and a decimal point in France).

x On output, contains the 80-bit SANE representation of the
floating-point number.
5-98 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
DESCRIPTION

StringToExtended uses the internal representation of number formatting information
that was created by a prior call to StringToFormatRec to parse the input number
string. It uses the number parts table to determine the components of the number string
that is being converted. StringToExtended parses the string and then converts the
string to a simple form, stripping nondigits and replacing the decimal point before
converting it into a floating-point number. If the input string does not match any of the
patterns, then StringToExtended parses the string as well as it can and returns a
confidence level result that indicates the parsing difficulties.

StringToFormatRec returns a value of type FormatStatus that denotes the
confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType, the values of which are described
in Table 5-6 on page 5-38.

IMPORTANT

Be sure to cast the result of StringToExtended to a type
FormatResultType before working with it. ▲

SPECIAL CONSIDERATIONS

StringToExtended returns an 80-bit, not a 96-bit, representation.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StringToExtended function are

SEE ALSO

For comprehensive details on the number parts table, see the description of the tokens
('itl4') resource in the appendix “International Resources” in this book.

To obtain a handle to the number parts table from a tokens resource, use the
GetIntlResourceTable procedure, which is described in the chapter “Script
Manager” in this book.

Trap macro Selector

_ScriptUtil $8210 FFE6
Text Utilities Reference 5-99

C H A P T E R 5

Text Utilities
ExtendedToString 5

The ExtendedToString function converts an internal floating-point representation of a
number into a string that can be presented to the user.

FUNCTION ExtendedToString(x: Extended80;

 myFormatRec: NumFormatStringRec;

 partsTable: NumberParts;

 VAR outString: Str255): FormatStatus;

x A floating-point value in 80-bit SANE representation.

myFormatRec
The internal representation of the formatting information for numbers, as
produced by the StringToFormatRec function.

partsTable
A record obtained from the tokens ('itl4') resource that shows the
correspondence between generic number part separators (tokens) and
their localized version (for example, a thousand separator is a comma in
the United States and a decimal point in France).

outString On output, contains the number formatted according to the information
in myFormatRec.

DESCRIPTION

ExtendedToString creates a string representation of a floating-point number, using
the formatting information in the myFormatRec parameter (which was created by a
previous call to StringToFormatRec) to determine how the number should be
formatted for output. It uses the number parts table to determine the component parts of
the number string.

StringToFormatRec returns a value of type FormatStatus that denotes the
confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType, the values of which are described
in Table 5-6 on page 5-38.

IMPORTANT

Be sure to cast the result of ExtendedToString to a type
FormatResultType before working with it. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the ExtendedToString function are

Trap macro Selector

_ScriptUtil $8210 FFE8
5-100 Text Utilities Reference

C H A P T E R 5

Text Utilities

5
Text U

tilities
SEE ALSO

For comprehensive details on the number parts table, see the description of the tokens
('itl4') resource in the appendix “International Resources” in this book.

To obtain a handle to the number parts table from a tokens resource, use the
GetIntlResourceTable procedure, which is described in the chapter “Script
Manager” in this book.
Text Utilities Reference 5-101

C H A P T E R 5

Text Utilities
Summary of Text Utilities 5

Pascal Summary 5

Constants 5

CONST

{StringToDate and StringToTime status values }

longDateFound = 1; {mask to long date found}

leftOverChars = 2; {mask to warn of left over chars}

sepNotIntlSep = 4; {mask to warn of non-standard separators}

fieldOrderNotIntl = 8; {mask to warn of non-standard field order}

extraneousStrings = 16; {mask to warn of unparsable strings in text}

tooManySeps = 32; {mask to warn of too many separators}

sepNotConsistent = 64; {mask to warn of inconsistent separators}

fatalDateTime = $8000; {mask to a fatal error}

tokenErr = $8100; {mask for 'tokenizer err encountered'}

cantReadUtilities = $8200; {mask for can’t access needed resource}

dateTimeNotFound = $8400; {mask for date or time not found}

dateTimeInvalid = $8800; {mask for date/time format not valid}

{Constants for truncWhere argument in TruncString and TruncText}

truncEnd = 0; {truncate at end}

truncMiddle = $4000; {truncate in middle}

{Constants for TruncString and TruncText results}

NotTruncated = 0; {no truncation was necessary}

Truncated = 1; {truncation performed}

TruncErr = -1; {general error}

{Special language code values for Language Order}

systemCurLang = -2; { current language for system script (from 'itlb')}

systemDefLang = -3; { default language for system script (from 'itlm')}

currentCurLang = -4; { current language for current script (from 'itlb')}

currentDefLang = -5; { default language for current script (from 'itlm')}

scriptCurLang = -6; { current lang for specified script (from 'itlb')}

scriptDefLang = -7; { default language for specified script (from 'itlm')}
5-102 Summary of Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Data Types 5

TYPE

FormatStatus = Integer;

TruncCode = Integer;

DateForm = (shortDate,longDate,abbrevDate);

FormatResultType =

(fFormatOK,fBestGuess,fOutOfSynch,fSpuriousChars,fMissingDelimiter,

fExtraDecimal,fMissingLiteral,fExtraExp,fFormatOverflow,fFormStrIsNAN,

fBadPartsTable,fExtraPercent,fExtraSeparator,fEmptyFormatString);

FormatClass = (fPositive,fNegative,fZero);

StyledLineBreakCode = {BreakWord, BreakChar, BreakOverflow};

DateCacheRecord =

PACKED RECORD

hidden: ARRAY [0..255] OF Integer;{only for temporary use}

END;

DateCachePtr = ^DateCacheRecord;

NumFormatStringRec =

PACKED RECORD

fLength: Byte;

fVersion: Byte;

data: PACKED ARRAY [0..253] OF SignedByte; {private data}

END;

FVector =

RECORD

start: Integer;

length: Integer

END;

TripleInt = ARRAY[0..2] OF FVector; {index by [fPositive..fZero]}
Summary of Text Utilities 5-103

C H A P T E R 5

Text Utilities
OffPair =

RECORD

offFirst: Integer;

offSecond: Integer;

END;

OffsetTable = ARRAY[0..2] OF OffPair;

ScriptRunStatus =

RECORD

script: SignedByte;

variant: SignedByte;

END;

Routines 5

Defining and Specifying Strings

FUNCTION NewString (theString: Str255): StringHandle;

PROCEDURE SetString (theString: StringHandle; strNew: Str255);

FUNCTION GetString (stringID: Integer): StringHandle;

PROCEDURE GetIndString (VAR theString: Str255; strListID: Integer;
index: Integer);

Comparing Strings for Equality

FUNCTION EqualString (aStr, bStr: Str255;
caseSens, diacSens: Boolean): Boolean;

FUNCTION IdenticalString (aStr, bStr: Str255;
itl2Handle: Handle): Integer;

FUNCTION IdenticalText (aPtr, bPtr: Ptr; aLen, bLen: Integer;
itl2Handle: Handle): Integer;

Determining Sorting Order for Strings in Different Languages

FUNCTION ScriptOrder (script1, script2: ScriptCode): Integer;

FUNCTION LanguageOrder (lang1, lang2: LangCode): Integer;

FUNCTION StringOrder (aStr, bStr: Str255; aScript, bScript:
ScriptCode; aLang, bLang: LangCode): Integer;

FUNCTION TextOrder (aPtr, bPtr: Ptr; aLen, bLen: Integer;
aScript, bScript: ScriptCode;
aLang, bLang: LangCode): Integer;
5-104 Summary of Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Determining Sorting Order for Strings in the Same Language

FUNCTION RelString (aStr, bStr: Str255;
caseSens, diacSens: Boolean): Integer;

FUNCTION CompareString (aStr, bStr: Str255;
itl2Handle: Handle): Integer;

FUNCTION CompareText (aPtr, bPtr: Ptr; aLen, bLen: Integer): Integer;

Modifying Characters and Diacritical Marks

PROCEDURE UpperString (VAR theString: Str255; diacSens: Boolean);

PROCEDURE LowercaseText (textPtr: Ptr; len: Integer;
script: ScriptCode);

PROCEDURE UppercaseText (textPtr: Ptr; len: Integer;
script: ScriptCode);

PROCEDURE StripDiacritics (textPtr: Ptr; len: Integer;
script: ScriptCode);

PROCEDURE UppercaseStripDiacritics
(textPtr: Ptr; len: Integer;
script: ScriptCode);

Truncating Strings

FUNCTION TruncString (width: Integer; VAR theString: Str255;
truncWhere: TruncCode): Integer;

FUNCTION TruncText (width: Integer; textPtr: Ptr;
VAR length: Integer;
truncWhere: TruncCode): Integer;

Searching for and Replacing Strings

FUNCTION ReplaceText (baseText, substitutionText: Handle;
key: Str15): Integer;

FUNCTION Munger (h: Handle; offset: LongInt;
ptr1: Ptr; len1: LongInt;
ptr2: Ptr; len2: LongInt): LongInt;

Working With Word, Subscript, and Line Boundaries

PROCEDURE FindWordBreaks (textPtr: Ptr; textLength: Integer;
offset: Integer; leadingEdge: Boolean;
nBreaks: NBreakTablePtr;
VAR offsets:OffsetTable);
Summary of Text Utilities 5-105

C H A P T E R 5

Text Utilities
FUNCTION StyledLineBreak (textPtr: Ptr; textLen: LongInt;
textStart, textEnd, flags: LongInt;
VAR textWidth: Fixed;
VAR textOffset: LongInt): StyledLineBreakCode;

FUNCTION FindScriptRun (textPtr: Ptr; textLen: LongInt;
VAR lenUsed: LongInt): ScriptRunStatus;

Converting Date and Time Strings Into Numeric Representations

FUNCTION InitDateCache (theCache: DateCachePtr): OSErr;

FUNCTION StringToDate (textPtr: Ptr; textLen: LongInt;
theCache: DateCachePtr;
VAR lengthUsed: LongInt;
VAR dateTime: LongDateRec): StringToDateStatus;

FUNCTION StringToTime (textPtr: Ptr; textLen: LongInt;
theCache: DateCachePtr;
VAR lengthUsed: LongInt;
VAR dateTime: LongDateRec): StringToDateStatus;

Converting Numeric Representations Into Date and Time Strings

PROCEDURE DateString (dateTime: LongInt; longFlag: DateForm;
VAR result: Str255; intlHandle: Handle);

PROCEDURE TimeString (dateTime: LongInt; wantSeconds: Boolean;
VAR result: Str255; intlHandle: Handle);

Converting Long Date and Time Values Into Strings

PROCEDURE LongDateString (VAR dateTime: LongDateTime; longFlag: DateForm;
VAR result: Str255; intlHandle: Handle);

PROCEDURE LongTimeString (VAR dateTime: LongDateTime;
wantSeconds:Boolean; VAR result: Str255;
intlHandle: Handle);

Converting Between Integers and Strings

PROCEDURE NumToString (theNum: LongInt; VAR theString: Str255);

PROCEDURE StringToNum (theString: Str255; VAR theNum: LongInt);

Using Number Format Specification Strings for International Number Formatting

FUNCTION StringToFormatRec (inString: Str255; partsTable: NumberParts;
VAR outString: NumFormatString): FormatStatus;
5-106 Summary of Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
FUNCTION FormatRecToString (myFormatRec: NumFormatString;
partsTable: NumberParts;
VAR outString: Str255;
VAR positions: TripleInt): FormatStatus;

Converting Between Strings and Floating-Point Numbers

FUNCTION StringToExtended (source: Str255; myFormatRec: NumFormatString;
partsTable: NumberParts;
VAR x: Extended80): FormatStatus;

FUNCTION ExtendedToString (x: Extended80; myFormatRec: NumFormatString;
partsTable: NumberParts;
VAR outString: Str255): FormatStatus;

C Summary 5

Constants 5

enum { /*StringToDate and StringToTime status values*/

longDateFound = 1; /*mask to long date found*/

leftOverChars = 2; /*mask to warn of left over chars*/

sepNotIntlSep = 4; /*mask to warn of non-standard separators*/

fieldOrderNotIntl = 8; /*mask to warn of non-standard field order*/

extraneousStrings = 16; /*mask to warn of unparsable strings */

tooManySeps = 32; /*mask to warn of too many separators*/

sepNotConsistent = 64; /*mask to warn of inconsistent separators*/

fatalDateTime = 0x8000; /*mask to a fatal error*/

tokenErr = 0x8100; /*mask for 'tokenizer err encountered'*/

cantReadUtilities = 0x8200;/*mask for can’t access needed resource*/

dateTimeNotFound = 0x8400; /*mask for date or time not found*/

dateTimeInvalid = 0x8800; /*mask for date/time format not valid*/

};

enum { /*constants for truncWhere argument in TruncString and TruncText*/

truncEnd = 0, /*truncate at end*/

truncMiddle = 0x4000, /*truncate in middle*/

};
Summary of Text Utilities 5-107

C H A P T E R 5

Text Utilities
enum { /*constants for TruncString and TruncText results*/

notTruncated = 0, /*no truncation was necessary*/

truncated = 1, /*truncation performed*/

truncErr = -1, /*general error*/

};

enum { /*special language code values for Language Order*/

systemCurLang = -2, /*current lang for system script (from 'itlb')*/

systemDefLang = -3, /*default lang for system script (from 'itlm')*/

currentCurLang = -4, /*current lang for current script (from 'itlb')*/

currentDefLang = -5, /*default lang for current script (from 'itlm')*/

scriptCurLang = -6, /*current lang for specified script (from 'itlb')*/

scriptDefLang = -7, /*default lang for specified script (from 'itlm')*/

};

enum {

BreakWord,

BreakChar,

BreakOverflow

};

enum {

fPositive,

fNegative,

fZero

};

enum{

fFormatOK,

fBestGuess,

fOutOfSynch,

fSpuriousChars,

fMissingDelimiter,

fExtraDecimal,

fMissingLiteral,

fExtraExp,

fFormatOverflow,

fFormStrIsNAN,

fBadPartsTable,

fExtraPercent,

fExtraSeparator,

fEmptyFormatString

};
5-108 Summary of Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
enum {

shortDate,

longDate,

abbrevDate

};

Types 5

typedef short StringToDateStatus;

typedef unsigned char StyledLineBreakCode;

typedef unsigned char FormatClass;

typedef short TruncCode;

typedef unsigned char FormatResultType;

typedef unsigned char DateForm;

struct DateCacheRecord {

short hidden[256]; /*only for temporary use*/

};

typedef struct DateCacheRecord DateCacheRecord;

typedef DateCacheRecord *DateCachePtr;

struct NumFormatString {

char fLength;

char fVersion;

char data[254]; /*private data*/

};

typedef struct NumFormatString NumFormatStringRec;

struct FVector {

short start;

short length;

};

typedef struct FVector FVector;

typedef FVector TripleInt[3]; /* index by [fPositive..fZero] */

struct ScriptRunStatus {

char script;

char variant;
Summary of Text Utilities 5-109

C H A P T E R 5

Text Utilities
};

typedef struct ScriptRunStatus ScriptRunStatus;

struct OffPair {

short offFirst;

short offSecond;

};

typedef struct OffPair OffPair;

typedef OffPair OffsetTable[3];

Routines 5

Defining and Specifying Strings

pascal StringHandle NewString
(ConstStr255Param theString);

pascal void SetString (StringHandle theString,
ConstStr255Param strNew);

pascal StringHandle GetString
(short stringID);

pascal void GetIndString (Str255 theString, short strListID,
short index);

Comparing Strings for Equality

pascal Boolean EqualString (ConstStr255Param aStr, ConstStr255Param bStr,
Boolean caseSens, Boolean diacSens);

pascal short IdenticalString
(ConstStr255Param aStr, ConstStr255Param bStr,
Handle itl2Handle);

pascal short IdenticallText (const void *aPtr, const void *bPtr,
short aLen, short bLen, Handle itl2Handle);

Determining Sorting Order for Strings in Different Languages

pascal short ScriptOrder (ScriptCode script1, ScriptCode script2);

pascal short LanguageOrder (LangCode language1, LangCode language2);

pascal short StringOrder (ConstStr255Param aStr, ConstStr255Param bStr,
ScriptCode aScript, ScriptCode bScript,
LangCode aLang, LangCode bLang);
5-110 Summary of Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
pascal short TextOrder (const void *aPtr, const void *bPtr,
short aLen, short bLen,
ScriptCode aScript, ScriptCode bScript,
LangCode aLang, LangCode bLang);

Determining Sorting Order for Strings in the Same Language

pascal short RelString (ConstStr255Param aStr, ConstStr255Param bStr,
Boolean caseSens, Boolean diacSens);

pascal short CompareString (ConstStr255Param aStr, ConstStr255Param bStr,
Handle itl2Hande);

pascal short CompareText (const void *aPtr, const void *bPtr,
short aLen, short bLen, Handle itl2Handle);

Modifying Characters and Diacritical Marks

pascal void UpperString (Str255 theString, Boolean diacSens);

pascal void LowercaseText (Ptr textPtr, short len, ScriptCode script);

pascal void UppercaseText (Ptr textPtr, short len, ScriptCode script);

pascal void StripDiacritics (Ptr textPtr, short len, ScriptCode script);

pascal void UppercaseStripDiacritics
(Ptr textPtr, short len, ScriptCode script);

Truncating Strings

pascal short TruncString (short width, Str255 theString,
TruncCode truncWhere);

pascal short TruncText (short width, Ptr textPtr, short *textLen,
TruncCode truncWhere);

Searching for and Replacing Strings

pascal short ReplaceText (Handle baseText, Handle substitutionText,
Str15 key);

pascal long Munger (Handle h, long offset, const void *ptr1,
long len1, const void *ptr2, long len2);

Working With Word, Subscript, and Line Boundaries

pascal void FindWordBreaks (Ptr textPtr, short textLen, short offset,
Boolean leadingEdge, NBreakTablePtr breaks,
OffsetTable offsets);

pascal StyledLineBreakCode StyledLineBreak
(Ptr textPtr, long textLen, long textStart,
long textEnd, long flags, Fixed *textWidth,
long *textOffset);
Summary of Text Utilities 5-111

C H A P T E R 5

Text Utilities
pascal ScriptRunStatus FindScriptRun
(Ptr textPtr, long textLen, long *lenUsed);

Converting Date and Time Strings Into Numeric Representations

pascal OSErr InitDateCache (DateCachePtr theCache);

pascal StringToDateStatus StringtoDate
(Ptr textPtr, long textLen,
DateCachePtr theCache, long *lengthUsed,
LongDateRec *dateTime);

pascal StringToDateStatus StringToTime
(Ptr textPtr, long textLen,
DateCachePtr theCache, long *lengthUsed,
LongDateRec *dateTime);

Converting Numeric Representations Into Date and Time Strings

pascal void DateString (long dateTime, DateForm longFlag,
Str255 result, Handle intlHandle);

pascal void TimeString (long dateTime, Boolean wantSeconds,
Str255 result, Handle intlHandle);

Converting Long Date and Time Values Into Strings

pascal void LongDateString (LongDateTime *dateTime, DateForm longFlag,
Str255 result, Handle intlHandle);

pascal void LongTimeString (LongDateTime *dateTime, Boolean wantSeconds,
Str255 result, Handle intlHandle);

Converting Between Integers and Strings

pascal void NumToString (long theNum, Str255 theString);

pascal void StringToNum (ConstStr255Param theString, long *theNum);

Using Number Format Specification Strings for International Number Formatting

pascal FormatStatus StringToFormatRec
(ConstStr255Param inString,
const NumberParts *partsTable,
NumFormatString *outString);

pascal FormatStatus FormatRecToStr
(const NumFormatString *myFormatRec,
const NumberParts *partsTable,
Str255 outString, TripleInt positions);
5-112 Summary of Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Converting Between Strings and Floating-Point Numbers

pascal FormatStatus StringToExtended
(ConstStr255Param source,
const NumFormatString *myFormatRec,
const NumberParts *partsTable, extended80 *x);

pascal FormatStatus ExtendedToString
(extended80 x,
const NumFormatString *myFormatRec,
const NumberParts *partsTable,
Str255 outString);

Assembly-Language Summary 5

Trap Macros 5

Trap Macro Names

Pascal name Trap macro name

CompareText _CompareText

DateString _DateString

ExtendedToString _ExtendedToString

FindScriptRun _FindScriptRun

FindWordBreaks _FindWordBreaks

FormatRecToString _FormatRecToString

IdenticalText _IdenticalText

InitDateCache _InitDateCache

LanguageOrder _LanguageOrder

LongDateString _LongDateString

LongTimeString _LongTimeString

NumToString _NumToString

ReplaceText _ReplaceText

ScriptOrder _ScriptOrder

StringToDate _StringToDate

StringToExtended _StringToExtended

StringToFormatRec _StringToFormatRec

StringToNum _StringToNum

StringToTime _StringToTime

StyledLineBreak _StyledLineBreak
Summary of Text Utilities 5-113

C H A P T E R 5

Text Utilities
TextOrder _TextOrder

TimeString _TimeString

TruncString _TruncString

TruncText _TruncText

Pascal name Trap macro name
5-114 Summary of Text Utilities

C H A P T E R 5

Text Utilities

5
Text U

tilities
Trap Macros With Trap Words

Trap Macros Requiring Routine Selectors

_PACK6

_PACK7

Trap macro name Trap word

_CmpString $A03C

_GetString $A9BA

_LowerText $A056

_Munger $A9E0

_NewString $A906

_RelString $A050

_SetString $A907

_StripText $A256

_StripUpperText $A656

_UpperText $A456

_UprString $A054

Selector Routine

$000E DateString

$0010 TimeString

$0014 LongDateString

$0016 LongTimeString

$001A CompareText

$001C IdenticalText

$001E ScriptOrder

$0020 LanguageOrder

$0022 TextOrder

Selector Routine

$0000 NumToString

$0001 StringToNum
Summary of Text Utilities 5-115

_ScriptUtil

Selector Routine

$8204 FFF8 InitDateCache

$8208 FFE0 TruncString

$820C 0026 FindScriptRun

$820C FFDC ReplaceText

$820C FFEC StringToFormatRec

$820C FFDE TruncText

$8210 FFE6 StringToExtended

$8210 FFE8 ExtendedToString

$8210 FFEA FormatRecToString

$8214 FFF6 StringToDate

$8214 FFF4 StringToTime

$821C FFFE StyledLineBreak

$C012 001A FindWordBreaks

C H A P T E R 5

Text Utilities

5
Text U

tilities
Summary of Text Utilities 5-117

C H A P T E R 5

Text Utilities
5-118 Summary of Text Utilities

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	Text Utilities
	About the Text Utilities
	The Text Utilities and the International Resources...
	Obtaining Resource Information
	Pascal Strings and Text Strings

	Using the Text Utilities
	Defining Strings
	Working With String Handles
	Working With String Resources

	Sorting Strings in Different Languages
	Sorting Strings in the Same Language
	Primary and Secondary Sorting Order
	Expansion and Contraction of Characters
	Ignorable Characters
	Converting and Stripping Characters
	Special Cases for Sorting
	Variations in Sorting Behavior
	Choosing a Comparison Routine�
	Testing Two Strings for Equality
	Comparing Two Strings for Ordering

	Modifying Text
	Converting Characters and Stripping Marks in Strin...
	Fitting a String Into a Screen Area
	Replacing a Portion of a String

	Finding Word, Line, and Script Run Boundaries
	Finding Word Boundaries
	Finding Line Breaks
	Finding Subscripts Within a Script Run

	Working With Date and Time Strings
	Converting Formatted Date and Time Strings Into In...
	Date and Time Value Representations
	Converting Standard Date and Time Values Into Stri...

	Working With Numeric Strings
	Converting Between Integers and Numeric Strings
	Using Number Format Specification Strings
	Converting Number Format Specification Strings Int...
	Converting Between Floating-Point Numbers and Nume...

	Text Utilities Reference
	Data Structures
	Routines
	Defining and Specifying Strings
	Comparing Strings for Equality
	Determining Sorting Order for Strings in Different...
	Determining Sorting Order for Strings in the Same ...
	Modifying Characters and Diacritical Marks
	Truncating Strings
	Searching for and Replacing Strings
	Working With Word, Script, and Line Boundaries
	Converting Date and Time Strings Into Numeric Repr...
	Converting Numeric Representations Into Date and T...
	Converting Long Date and Time Values Into Strings
	Converting Between Integers and Strings
	Using Number Format Specification Strings for Inte...
	Converting Between Strings and Floating-Point Numb...

	Summary of Text Utilities
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Types
	Routines

	Assembly-Language Summary
	Trap Macros

	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

