

C H A P T E R 3

3

Q
uickD

raw
 Text

QuickDraw Text 3

This chapter describes the text-handling components of QuickDraw. You can use the
QuickDraw text routines to measure and draw text ranging in complexity from a single
glyph to a line of justified text containing multiple languages and styles. In addition to
measuring and drawing text, the QuickDraw text routines also help you to determine
which characters to highlight and where to position the caret to mark the insertion point.
These routines translate pixel locations into byte offsets and vice versa.

Read this chapter if you are writing an application that draws static text in a box, such as
a dialog box, or draws and manipulates text of any length in one or more languages.
Before you use the routines described in this chapter, read the chapter “Introduction to
Text on the Macintosh” in this book. To understand the concepts and routines described
in this chapter, you must be familiar with the other parts of QuickDraw described in
Inside Macintosh: Imaging.

Read this chapter along with the chapter “Font Manager,” in this book, because of the
close relationship between QuickDraw and the Font Manager. For help in understanding
the tasks involved in text layout, refer to the chapters “Text Utilities” and “Script
Manager,” also in this book.

This chapter explains how to set up the text-drawing environment and lay out and draw
text, including how to

■ draw and measure a single character, a text segment, or a line of text

■ determine where to break a line of text

■ determine the order in which to draw text segments for a line of text containing
multiple styles and mixed directions

■ eliminate trailing space characters

■ distribute extra space throughout a line of text to justify it appropriately for the
script system

■ draw and measure scaled text

■ identify caret positions for marking an insertion point and highlighting text
3-3

C H A P T E R 3

QuickDraw Text

About QuickDraw Text 3

Text on the Macintosh is graphical. This section provides an overview of how to draw
text using the text-handling components of QuickDraw. These routines let you direct
how the text is to be rendered and drawn, while insulating your application from the
low-level implementation details.

Whether for onscreen display or to be printed, you always draw text in the context of a
graphics port. To draw the text, QuickDraw displays the bitmap of each glyph on the
display device. Although QuickDraw displays the text, you define how the text is to be
rendered by setting the text-drawing parameters in the graphics port record. Text
rendering is the process of portraying the text according to its character attributes, such
as the font, font size, and style. You use the character attribute information associated
with the text to set up the drawing environment each time you draw a segment of text
that begins a new style run. A style run is a sequence of text that is all in the same script
system, font, size, and style.

QuickDraw routines let you accept keyboard input or gain access to existing text stored
in memory. In general, the tasks that you need to perform to draw text on the Macintosh
are easier if your store the text as a simple sequence of character codes separate from all
the character attribute information that describes how QuickDraw is to render the stored
text. (For an example of how to define data structures to store the character attribute
information, you can look at the TextEdit data structures used for this purpose; see the
chapter “TextEdit” in this book.)

Graphics Ports and Text Drawing 3
You draw text on the Macintosh in the current graphics port according to the graphics
environment defined by the graphics port record. A graphics port defines where and
how graphic and text drawing operations are to take place. QuickDraw treats the
graphics port information as its primary set of global information.

You can define many graphics ports on the screen, each with its own complete drawing
environment, and easily switch between them. Because QuickDraw always draws in the
current graphics port, it is essential that you keep track of which one this is.

Each graphics port is tied to a window. To draw in the graphics port of a window, you
first need to make the port the current one. (You do this using the SetPort procedure,
described in Inside Macintosh: Imaging.) The window whose port you want to draw in
does not have to be active or the frontmost window. QuickDraw draws to the current
graphics port identified by SetPort. You can draw to a background window or an
inactive window by making its port the current one.

There are two types of graphics ports: the original version (GrafPort) that supports
mainly black-and-white drawing with some rudimentary color capabilities and the color
graphics port (CGrafPort), which supports all of the characteristics of the
original graphics port, plus additional features including color facilities.
3-4 About QuickDraw Text

C H A P T E R 3

QuickDraw Text

3

Q
uickD

raw
 Text

Both types of graphics port records contain fields that specify the colors to be used for
the foreground (fgColor) and the background (bkColor) of a glyph. You can think
of the foreground as the pixels that constitute the glyph, and the background as
the pixels that surround the glyph. In terms of a black-and-white screen, the foreground
pixels of a glyph are black, and the surrounding background pixels are white.

The original graphics port provides eight colors—black, white, red, green, blue, cyan,
magenta, and yellow; however, on a black-and-white screen nonwhite colors appear as
black. A color graphics port provides a wide range of possible colors that allow you to
portray all aspects of the user interface in color, including the representation of text. Both
types of graphics ports maintain the fractional horizontal pen position, so that a series
of text-drawing calls accumulates the fractional position. For the color graphics port, this
value is maintained in a graphics port record field. For the original graphics port,
this value is maintained in a grafGlobal, which is reset whenever you reposition
the pen.

There is only one QuickDraw text-handling procedure that requires a color graphics
port, CharExtra. (Although you can call CharExtra for an original graphics port
without causing the system to crash, CharExtra produces no result.) You can use all
the other QuickDraw text routines with either an original graphics port or a color
graphics port.

Fields in the graphics port record determine which font QuickDraw is to use to portray
the text, the font style, the font size, and how the bits forming the glyph are to be placed
in the bit image. You control how the text is to be rendered by setting each of these fields
before you measure or draw a segment of text that begins a new style run. QuickDraw
provides procedures that let you set each field. To ensure future compatibility, you
should always use these procedures rather than directly modify a field. You use the
appropriate QuickDraw procedure to set the graphics port field for the style run to
be drawn, if the current value of a field differs from the characteristic that you
want QuickDraw to use. The following sections describe what each of these field
values represents.

Font, Font Style, and Font Size 3

This section provides an overview of how QuickDraw and the Font Manager interact to
provide the font that you specify in the graphics port to be used to render the text.

The Font Manager keeps track of detailed font information, such as the glyphs’ character
codes, whether fonts are fixed-width or proportional, and which fonts are related to each
other by name. When you make a call to QuickDraw to measure or draw text,
QuickDraw passes the font request, including the font’s size and style that you have set
in the current graphics port, to the Font Manager, and the Font Manager satisfies the
request as best as possible, returning to QuickDraw a bitmap of the glyph of the font,
along with some information that QuickDraw uses for stylistic variation and layout.
When QuickDraw receives the bitmap, it transfers the bitmap to the screen. If necessary,
QuickDraw first scales the bitmap, or applies stylistic variation to it if the requested style
was not intrinsic to the font.
About QuickDraw Text 3-5

C H A P T E R 3

QuickDraw Text

The Macintosh supports two types of fonts: bitmapped and outline. A font is a complete
set of glyphs in a specific typeface and style—and in the case of bitmapped fonts, a
specific size. Outline fonts consist of outline glyphs in a particular typeface and style
with no size restriction. The Font Manager can generate thousands of point sizes from
the same TrueType outline font. For example, a single outline Courier font can produce
Courier 10-point, Courier 12-point, and Courier 200-point. (You can read more about
these two types of fonts and the relationship between QuickDraw and the Font Manager
in the chapter “Font Manager” in this book. How the Font Manager responds to a
QuickDraw font request is also explained in detail in the chapter “Font Manager,” and
summarized later in this chapter.)

When multiple fonts of the same typeface are present in system software, the Font
Manager groups them into font families. Each font in a font family can be bitmapped or
outline. Bitmapped fonts in the same family can be different styles or sizes.

A font has a name and a font family ID number. A font name is usually the same as the
typeface from which it is derived, such as Courier. If an intrinsic font is not in plain style,
its style becomes part of the font’s name, for example, Courier Bold. A font family ID is a
resource ID for a font family that identifies the font and also reveals the script system to
which the font belongs. When you set the graphics port font field (txFont) for a style
run, you specify the font family ID. The font family ID identifies to the Font Manager
both the font and the script system to be used.

Some fonts are designed and supplied with stylistic variations integral to the font. If the
Font Manager does not return a font with the requested style integral to the font design,
QuickDraw applies the style. A font designer can design a font in a specific style, such as
Courier Bold, or QuickDraw can add styles, such as bold or italic, to bitmaps.

A style is a specific variation in the appearance of a glyph that can be applied
consistently to all the glyphs in a typeface. A font is described as plain when no styles are
specified for it. The styles that QuickDraw supports include bold, italic, underline,
outline, shadow, extend, and condense.

When QuickDraw requests a font in a specific style, such as Courier Bold, if the Font
Manager has the font whose design includes the style, the Font Manager returns that
font to QuickDraw; QuickDraw does not need to apply the stylistic variation when
drawing the font, in this case. If the Font Manager does not have the font with the
stylistic variation intrinsic to it, the Font Manager returns the plain font to QuickDraw,
and QuickDraw applies the style when drawing the glyphs. When QuickDraw requests
a font with multiple styles, if the Font Manager does not have a font with all of the styles
intrinsic to it, but it has a font with one intrinsic style, the Font Manager returns that
font, and QuickDraw applies the additional style or styles when drawing the glyphs.
The Font Manager does not apply stylistic variations to a font.

Figure 3-1 illustrates the styles that QuickDraw supports as applied to the Helvetica font.
There are many other stylistic variations not explicitly supported by QuickDraw, such as
strikethrough, that you can implement.
3-6 About QuickDraw Text

C H A P T E R 3

QuickDraw Text

3

Q
uickD

raw
 Text

Figure 3-1 Stylistic variations

You can specify stylistic variations alone or in combination. (Certain styles may be
disabled in some script systems.) Most combinations usually look good only for large
font sizes. Here are the results of specifying any of the styles that QuickDraw supports:

■ Bold increases the thickness of a glyph. It causes each glyph to be repeatedly drawn
one bit to the right for extra thickness.

■ Italic adds an italic slant to the glyphs. Glyph bits above the base line are skewed
right; bits below the base line are skewed left.

■ Underline draws a line below the base line of the glyphs. If part of a glyph descends
below the base line (as does the y shown in the fourth line of text in Figure 3-1),
generally, the underline isn’t drawn through the pixel on either side of the descending
part. However, when printing to a PostScript™ LaserWriter printer, the line is drawn
through the descenders.

■ Outline makes a hollow, outlined glyph rather than a solid one. If you specify bold
along with outline, the hollow part of the glyph is widened.

■ Shadow also makes an outlined glyph, but the outline is thickened below and to the
right of the glyph to achieve the effect of a shadow. If you specify bold along with
shadow, the hollow part of the glyph is widened.

■ Condense affects the horizontal distance between all glyphs, including spaces.
Condense decreases the distance between glyphs by the amount that the Font
Manager determines is appropriate.

■ Extend affects the horizontal distance between all glyphs, including spaces. Extend
increases the distance between glyphs by the amount that the Font Manager
determines is appropriate.

Shadowed characters

Plain characters

Bold characters

Italic characters

Underlined characters xyz

Outlined characters

Shadowed characters

Condensed characters

Extended characters

Bold italic characters

Bold outlined underlined characters

About QuickDraw Text 3-7

C H A P T E R 3

QuickDraw Text

The style underline draws the underline through the entire text line, from the pen
starting position through the ending position, plus any offsets from the font or italic
kerning. QuickDraw text clips the right edge of the underline to the ending pen position,
causing outlined or shadowed underlines to match imperfectly when you draw text in
sections. If the underlined text is outlined or shadowed, the ends aren’t capped, that is,
consecutively drawn pieces of text maintain a continuous underline.

Note that the outline and shadow styles cause the outline and shadow of the glyph to be
drawn in the foreground color. The inside of the glyph, if drawn at all, is drawn in the
background color.

Transfer Modes 3

A transfer mode specifies the interaction between what is to be drawn with what
already exists on the screen. When you draw text, QuickDraw uses the foreground and
background colors to determine how the text to be drawn, called the source, interacts
with text already drawn in the current graphics port, called the destination. You define
how this interplay is to occur by specifying a transfer mode, which is a value consisting
of two parts. The first part is the kind of transfer mode. It specifies whether the graphic
to be drawn is a pattern or text. The second part is the operation. It is a Boolean value
that defines the type of interaction that is to occur, resulting in the text display.

There are two basic kinds of transfer modes in QuickDraw: pattern (pat), which is used
to draw lines or shapes in a pattern, and source (src), which is used to draw text. There
are four basic types of operations, totaling eight including their opposites. They are:
Copy, Or, Xor, and Bic. In addition to the basic operations, there are arithmetic drawing
mode operations designed specifically for use with color.

When you draw text, for each bit in the text, the corresponding bit in the destination
bitmap is identified, the specified Boolean operation is performed on the pair of bits, and
the resulting bit is stored into the destination bit image. The basic operations produce the
following results.

The Copy operation replaces the pixels in the destination with the pixels in the source,
painting over the destination.

For black-and-white images, the Or, Xor, and Bic operations leave the destination pixels
under the white part of the source unchanged. These operations differ in how they affect
the pixels under the black part.

■ Or replaces those pixels with black pixels, overlaying the destination with the black
part of the source; it combines the destination with the source.

■ Xor inverts the pixels under the black part. (The Xor mode inverts black in the source
image at all destination depths, including 16-bit and 32-bit direct pixels.)

■ Bic (bit clear) erases the pixels under the black part, leaving it white.
3-8 About QuickDraw Text

C H A P T E R 3

QuickDraw Text

3

Q
uickD

raw
 Text

Figure 3-2 shows how each of the basic transfer modes affects the source and destination
images resulting in what is displayed on the screen.

Figure 3-2 Effect of the basic transfer modes for black-and-white images

These transfer modes work with color images as follows:

■ Copy replaces the destination with the colored source.

■ Or mode results in the source image, regardless of the destination depth.

■ Bic mode causes the foreground color in the source image to erase, resulting in the
background color in the destination image.

■ Xor inverts the foreground color in the source image, but not the background color, at
all destination depths, including 16-bit and 32-bit direct pixels. (Inversion is not well
defined for color pixels.)

The initial transfer mode for drawing text is srcOr. This text drawing mode is
recommended for all applications because it uses the least memory and draws the entire
glyph in all cases. The srcOr mode only affects other parts of existing glyphs if the
glyphs overlap.

Note
The center of shadowed or outlined text is drawn in a graphics port in
srcBic transfer mode if text mode is srcOr, for compatibility with old
applications. (For color graphics ports, the center isn’t drawn at all.) This
allows black text with a white outline on an arbitrary background. ◆

Source Destination

“Paint” “Overlay” “Invert” “Erase”

srcCopy srcOr srcXor srcBic

notSrcCopy notSrcOr notSrcXor notSrcBic
About QuickDraw Text 3-9

C H A P T E R 3

QuickDraw Text

QuickDraw Text, Script Systems, and Other Managers 3
Although QuickDraw provides the routines that are pivotal to drawing text on the
Macintosh, it uses the services of other managers including the Font Manager and the
Script Manager. To draw text consisting of multiple lines and mixed directions, you also
need to use routines that belong to these managers, as well as some Text Utilities
services. This section describes the relationship between QuickDraw and the Script
Manager. It also provides an overview of the line-layout and text-drawing processes. For
specific discussion of the routines that you use to perform the tasks inherent in these
processes, see “Measuring and Drawing Lines of Text” on page 3-29.

When you draw text using QuickDraw, the Script Manager interacts with QuickDraw to
provide the script-specific support. To do this, the Script Manager needs to know which
script you are using. It determines this from the font that you specify in the graphics port
txFont field. For example, if the font is Geneva, the font script is Roman. The script
specified by the current graphics port font is referred to as the font script.

Although you can use most QuickDraw routines with all script systems, some
QuickDraw routines entail restrictions. For example, you use one QuickDraw procedure
to draw the glyph of a single character in a 1-byte script system, but you must use a
different procedure to draw the glyph of a single character in a 2-byte script or a script
system that contains zero-width characters. Some script systems contain fonts that have
only 1-byte characters and some script systems contain fonts that have a mix of 1-byte
and 2-byte characters. Some fonts have zero-width characters; these are usually
overlapping diacritical marks which typically follow the base character in memory.
With 2-byte characters, all but the first (high-order, low-address) byte are measured
as zero width.

Most fonts, whatever script system they belong to, contain Roman characters, typically
consisting of the 128 low-ASCII character set. The inclusion of Roman characters within
another script system allows the user to enter Roman text without having to switch
script systems. For script systems whose text has a left-to-right direction, such as Roman
and Japanese, the direction of the text is uniform within a single style run. However, a
single script system that portrays text read from right to left, such as Hebrew or Arabic,
can also contain left-to-right text, such as numbers within the language of the script
system or Roman-based text such as English. A single style run can also contain
bidirectional text.

Some script systems that include the 128 low-ASCII character set include an associated
font that is used to portray these characters. Use of an associated font is handled by the
script management system without requiring any action on the part of your application.
The way QuickDraw treats Roman space characters within a script system that supports
bidirectional text differs from how it handles them otherwise. This behavior is explained
later in this chapter in relation to eliminating trailing spaces from the end of a line.
3-10 About QuickDraw Text

C H A P T E R 3

QuickDraw Text

3

Q
uickD

raw
 Text

For those script systems that support it, the existence of bidirectional text in a text range
does not violate the concept of a single style run because QuickDraw uses the same
text-related values in the graphics port record fields to draw all the glyphs of the entire
segment of text; you do not need to change any of these values in order to draw the
complete segment of bidirectional text as a single style run.

Figure 3-3 shows mixed Hebrew and Chinese text on a single line. There are three style
runs. Only the first style run includes bidirectional text.

Figure 3-3 Multiple style runs on a single line

For all script systems, you measure and draw text a single style run at a time, whether
the text consists of a single character, a Pascal string, or a segment of characters. A text
segment, as used in this chapter, means the portion of a style run that you may pass to a
single QuickDraw call. It may be a complete style run or any portion of a style run, as
long as it fits on a single line. If a style run extends across a line break, you must make
separate calls for the separate segments of the style run.

A B C

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

A

B

C

†

¢

¶

s

Ù

Ï

†

¢

¶

$41

$42

$43

$E0

$E1

$E2

$A473

$A4F4

$A4EC

$E0

$E1

$E2

Character

codes

¶ ¢ †

Byte

offsets

Characters

Style

runs

Style runs

¶ ¢ †

Primary line direction
About QuickDraw Text 3-11

C H A P T E R 3

QuickDraw Text
Whether you draw the glyph of a single character or a line of text, it is up to you to track
where the text begins, both in terms of vertical and horizontal screen position and offset
into your text stream. With the help of either a Font Manager function
(OutlineMetrics) or a QuickDraw procedure (GetFontInfo), you can assess the line
height based on the measurements of the script system font, and the associated font, if
one exists, used to render the text, then determine the vertical screen position.

In most cases, you also need to know the width of the display area where the text is to be
drawn. For a line of text, you can think of this area as the display line. A display line is
the horizontal length in pixels of the screen area where you draw a line of text; the left
and right ends of the display line constitute its left and right margins. You define the
display line length in pixels and uses this value to determine how much text will fit on
the display line.

You specify where QuickDraw is to begin drawing by setting the current pen location of
the graphics port. Within a single line of text, QuickDraw takes care of correctly
advancing the pen position after it draws each glyph or text segment.

For text that exceeds a single display line, you must control where a line ends and the
next one begins. For unidirectional text, this task essentially constitutes the line layout
process. For mixed-directional text, the order in which you display the style runs may be
different from their storage order. In this case, you also need to determine the drawing
order in the line layout process.

To draw a line of text, you can loop through the text, laying it out first, then loop through
the drawing process. A line-layout loop measures the text and determines where to
break it. In most cases, you can use a Text Utilities function (StyledLineBreak) for this
purpose.

To lay out justified text, a loop needs to include several additional steps that determine
how to distribute the extra space among the text of the line. This process entails
eliminating trailing spaces from the end of the line, then distributing the remaining extra
space among the text. How the distribution of extra space is expressed throughout a line
of text is dependent on the script system. For example, some script systems add
additional width to space characters that are used as word delimiters; some script
systems, which use connecting glyphs, stretch certain glyphs to encompass the
additional width. See the next section, “Text Formatting and Justification,” for more
information.

Before you call a QuickDraw measuring routine, you need to set the graphics port
text-related fields to those of the style run that the text is part of. You set these fields only
for each new style run.

Once you have laid out a line of text, drawing it is fairly simple. An application can have
a text-drawing loop that positions the pen at the beginning of a new line, sets the
text-related fields of the current graphics port to the text characteristics for that style run
if the text string begins a new style run, then draws the text, using one of the QuickDraw
drawing routines to draw aligned text, justified text, or scaled text.
3-12 About QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Text Formatting and Justification 3
When you lay out text, you can change its width and its alignment. You change the
width of text to format it for special purposes, or to justify the text to fit a display area or
a given line. To justify text, you spread or condensed it so that any white space is
distributed evenly throughout the display area or line.

You can draw text that is aligned with either the right margin of the display area or line,
which produces ragged-left text, or the left margin, which produces ragged-right text.
You align text by positioning the pen appropriately so that the first glyph of the text line
is flush against the margin.

There are several ways to change the width of text. You can

■ use the QuickDraw justification routines that measure and draw text, automatically
changing the width of the text appropriately for each script system

■ set the graphics port txFace field to condense or extend the text

■ set the graphics port spExtra and chExtra fields to narrow or widen space and
nonspace characters by a specific number of pixels

You can even justify text that includes special formatting. For example, you can extend
or condense the width of space and nonspace characters, while justifying the text
line overall.

Of these methods, the easiest way to justify text for all script systems is to use the
QuickDraw justification routines. These routines handle the script system requirements
for your application. For example, because the text of some script systems, such as
Arabic and Devanagari, is drawn as connected glyphs, the justification routines do not
add width to or remove it from nonspace characters.

The justification routines assume that a slop value specified in pixels is to be distributed
throughout the text. The slop value is the difference between the width of the text and
the width of the display area or line. You can pass the justification routines a positive or
negative slop value. To extend text to fit the display area or line, you specify a positive
slop value. To justify a line of text more smoothly by condensing it when it only slightly
exceeds the display area or line length, you can use a negative slop value.

How the justification routines distribute this extra space within a style run depends on
the script system.

■ For Roman script systems, text justification is performed by altering the size of the
space characters. You can think of this as interword spacing. (Every space in a style
run is allocated the same amount of extra width and thus is the same size, whether or
not it is at the beginning or end of the line or the style run.)

■ For Arabic, the justification routines insert extension bar glyphs between joined
glyphs and widen space characters to fill any remaining gaps.

■ For scripts that don’t use spaces to delimit words, these routines usually modify the
intercharacter spacing to achieve justification.
About QuickDraw Text 3-13

C H A P T E R 3

QuickDraw Text
Figure 3-4 shows a line of text in the Roman script system containing three style runs
and how extra space is distributed among the space characters within a style run.

Figure 3-4 Justification of Roman text

To correctly handle spacing between multiple style runs on a line, the justification
routines take a parameter that specifies the position of the style run on the line. The style
run position parameter is meaningful only for those script systems that use
intercharacter spacing for justification. For all other script systems, the parameter exists
for future extensibility. Although the style run position parameter is not used, for
example, for justifying text in the Roman script system, to allow for future compatibility,
you should always specify the appropriate value for it for all calls that take it.

For those script systems that do use intercharacter spacing, space between styles is
allocated differently depending upon whether the style is leftmost, rightmost, or
between two other style runs. For example, if a style run occurs at the beginning or end
of a line, extra space is not added to the outer edge of the outermost glyph, whereas if a
style run is interior to a line, all of the glyphs of the text are treated the same: extra space
is allocated to both sides of every glyph including those at either end of the style run.

Note
The text justification routines do not automatically eliminate trailing
spaces from the last style run on the line. However, QuickDraw provides
a routine (VisibleLength) that does not include trailing spaces in the
byte count of the last style run on the line. ◆

If you do not want to justify a range of text, you can change the width of the text for
onscreen display, for example, to format an advertisement by setting the graphics port
spExtra and chExtra fields to an amount by which space and nonspace characters are
to be widened or narrowed. If you use SpaceExtra and CharExtra to widen or
narrow text, you are responsible for handling them properly for the script system.

The original graphics port does not have a chExtra field, so you can only change the
width of nonspace characters if you use a color graphics port. Although line breaks are
maintained, spacing defined by these values is not preserved when you print to a
LaserWriter printer.

Style

runs

Beginning of line End of line

Extra

width

Style run 1 Style run 2 Style run 3

(space)
ABAB (space) (space) AB
3-14 About QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Scaling 3
Text scaling is the process of changing glyphs from one size or shape to another. This
section discusses two kinds of scaling: implicit and explicit. This section also summarizes
how the Font Manager handles scaling requirements when scaling is disabled. The
chapter “Font Manager” in this book describes disabling scaling in greater detail.

Implicit scaling is performed automatically by QuickDraw when the Font Manager
cannot supply a bitmapped font in the size that you request. In this case, the Font
Manager returns to QuickDraw a bitmapped font that is the closest approximation,
along with scaling factors. QuickDraw uses these values to scale the text when drawing
it. This process is transparent to your application. Because the Font Manager can always
satisfy a font request completely when outline fonts are installed, no scaling is necessary.

Explicit scaling is performed in essentially the same way as implicit scaling, but you
specify how the text is to be scaled. Several QuickDraw routines include parameters that
let your application specify (explicitly) how text is to be scaled. You might want to scale
text explicitly, for example, to create unusual glyph shapes, or to increase or decrease the
size of text when a user clicks in a zoom box. You can use the high-level QuickDraw
justification routines to explicitly scale text. Alternatively, you can use the low-level
standard measuring and drawing routines, referred to as bottleneck routines. See “Using
Scaled Text” on page 3-44. To explicitly scale text, you specify values that let you stretch
or shrink a glyph horizontally or vertically. You can change a glyph from a familiar point
size to one that is unusual—for example, a glyph that is 12 points high but as wide as
the entire page.

The same rules apply to the interaction between the Font Manager and QuickDraw
whether scaling is implicit or explicit. However, for explicit scaling, QuickDraw passes
the scaling factors that you specify as routine parameters to the Font Manager in an
input record (FMInput) along with the standard information, which includes the font
family ID number, the size, and the stylistic variation of the font request. Taking the
requested scaling factors into account, the Font Manager follows a standard path looking
for an available font that best satisfies the request, and returns the bitmap information to
QuickDraw via an output record (FMOutput), which contains a handle to the requested
font resource and, among other information, the scaling factors that now apply, if any.
The returned scaling factors describe how QuickDraw is to draw the text to fulfill the
input scaling factors request.

If you use the low-level bottleneck procedure or the higher-level justification procedure
to draw the scaled text and the Font Manager returns scaling factors to be applied to the
text, QuickDraw applies the additional scaling.

The low-level bottleneck measuring function lets you specify scaling factors in reference
parameters. If only bitmapped fonts are installed and a font does not exist that matches
the scale you specify, the Font Manager uses the font that best approximates the request,
and measures the text using that font. The Font Manager returns scaling factors in the
reference parameters, along with the width of the text based on the supplied font. In this
case, QuickDraw does not apply the necessary additional scaling to the text to give you
the correct text measurement including scaling. To measure the text correctly, you need
to apply the additional scaling to the text width of the font that the Font Manager returns.
About QuickDraw Text 3-15

C H A P T E R 3

QuickDraw Text
For example, suppose only bitmapped fonts are installed and you request a point size of
24 with a horizontal scaling factor of 2/1 and a vertical scaling factor of 1/1. The Font
Manager returns the most optimal matching font that it has, which is 12, say, with a
horizontal scaling factor of 4/1 and a vertical scaling factor of 2/1. Now, you must apply
these scaling factors to the text width and height metrics in the 12-point font to get the
correct text measurement.

You can use the Font Manager SetFScaleDisable procedure to enable or disable font
scaling of bitmapped glyphs. When you disable scaling, the Font Manager finds the
closest, smaller-sized font to the one that you request, and adjusts the width table
associated with the font to match the requested size. As a result, the height of the glyphs
is smaller than you requested, but the spacing compensates for it. When scaling is
disabled, the Font Manager returns 1/1 scaling in response to the request.

For a complete discussion of how the Font Manager determines which font to return to
QuickDraw to satisfy a font request, see the chapter “Font Manager” in this book. This
chapter also describes the SetFScaleDisable procedure and the width table.

Carets and Highlighting 3
Highlighting a selection range and marking the insertion point with a caret both involve
converting offsets of characters in a text buffer to pixel locations on a display screen. This
task is prerequisite to both drawing a caret and highlighting text. See the chapter
“Introduction to Text on the Macintosh” in this book for a discussion of the conventions
underlying the relationship of a character at a byte offset to a caret position for
unidirectional text and text at a direction boundary.

When the text is unidirectional, performing these tasks is uncomplicated because storage
order and display order are the same. For unidirectional text, a caret position always falls
between the corresponding glyphs of these characters—on the leading edge of one and
the trailing edge of the other. When the text is bidirectional, it can contain characters that
occur on direction boundaries; although the characters are stored contiguously in
memory, the leading edge of one character’s glyph does not constitute the trailing edge
of the other in display order. Consequently, two physically separate caret positions exist
on the display screen, one associated with each glyph.

There are a number of situations in which you need to know a caret position, and they
fall within two categories: drawing a caret to mark the insertion point, and using a caret
position to denote an endpoint for highlighting a text selection. For a discussion of
marking an insertion point with either a single caret or a dual caret, and caret movement
with arrow keys, see the chapter “Introduction to Text on the Macintosh.”
3-16 About QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
You need to know the caret positions marking the endpoints of a text selection to
highlight it when the user selects either a word or a range of text, and for other features
that the application supports, such as a search operation. Generally, you know the byte
offsets of the characters that begin and end a selection range for tasks such as search
operations. However, when the user clicks in or selects a range of text to be highlighted,
usually you first need to convert the pixel locations marking the cursor locations to the
corresponding characters’ byte offsets in memory, and then convert the characters’ byte
offsets to caret positions.To encompass all of the characters within the text segment to be
highlighted, you use caret positions that mark endpoints which include the beginning
and ending characters of the text.

On a black-and-white screen, highlighting a selection is simple; white pixels turn black
and vice versa. In a color environment, the inversion of multibit pixel values usually
yields many different colors, which is unsuitable for highlighting text. To highlight text
rendered in color, QuickDraw lets you specify a highlight value that it uses instead of the
current graphics ports background color. Generally the user sets the highlighting color,
but your application can change the color. When you use highlight mode, all pixel values
of the current background color are replaced with the value of the highlighting color.

Using QuickDraw Text 3

This section describes how to

■ initialize QuickDraw

■ set up the text drawing environment

■ specify the text characteristics, such as the font, style, spacing, and transfer mode

■ measure and draw text ranging from a single character to a line containing multiple
styles and mixed directions

Preparing to Use QuickDraw 3
The QuickDraw text-handling routines rely on both QuickDraw and the Script Manager.
Therefore, before you call any of these routines, you need to determine what versions of
QuickDraw and the Script Manager are installed, and initialize QuickDraw. For more
information about determining the version of the Script Manager, see the chapter “Script
Manager” in this book.
Using QuickDraw Text 3-17

C H A P T E R 3

QuickDraw Text
Determining the Version and Initializing QuickDraw 3

To determine the current version of QuickDraw, you call the Gestalt function with the
gestaltQuickdrawVersion selector. The gestaltQuickdrawVersion selector
returns a 2-byte value indicating the version of QuickDraw currently present. The
high-order byte of that number represents the major revision number, and the low-order
byte represents the minor revision number. These are the currently defined values for the
QuickDraw selector.

Gestalt returns a 4-byte value in its response parameter; the low-order word contains
QuickDraw version data. In that low-order word, the high-order byte gives the major
revision number and the low-order byte the minor revision. Major revisions currently
defined are the original QuickDraw, the original Color QuickDraw, and the current
32-Bit QuickDraw with direct-pixel capability.

Values having a major revision number of 1 or 2 indicate that Color QuickDraw is
available in either the 8-bit or 32-bit version. These results do not, however, indicate
whether a color monitor is attached to the system. You need to use high-level
QuickDraw routines to obtain that information.

Many Macintosh applications don’t care what version of QuickDraw is available on the
user’s system: they don’t use color at all, use only the basic QuickDraw color model, or
specify all their colors abstractly, in RGB form. If your application does depend on a
specific version of QuickDraw, you can check the version at run time and adapt to make
best use of the available hardware (or at least inform the user gracefully that your
program’s graphics needs aren’t being met).

For more information about the Gestalt function, see the chapter “Gestalt Manager” in
Inside Macintosh: Operating System Utilities.

Initialize QuickDraw at the beginning of your program before any other parts of the
Toolbox. To do so, call the InitGraf procedure. For more information about the
InitGraf procedure, see Inside Macintosh: Imaging.

Constant Value

gestaltOriginalQD $000

gestaltOriginalQD1 $001

gestalt8BitQD $100

gestalt32BitQD $200

gestalt32BitQD11 $210

gestalt32BitQD12 $220

gestalt32BitQD13 $230
3-18 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Setting Up the Text-Drawing Environment 3
You draw text in the current graphics port. You create a distinct graphical environment
for every window on the screen by specifying values for the graphics port. Each graphics
port has its own complete drawing environment—including its own coordinate system,
drawing location, font set, and character attributes.

Because your application can have more than one window open at the same time,
QuickDraw routines access the data structures within the current graphics port only. You
must keep track of the current graphics port and identify it to QuickDraw when you
change windows.

You can use the QuickDraw SetPort procedure, which operates on both types of
graphics ports (GrafPort and CGrafPort), to identify the current graphics port. You
use the global variable thePort to indicate the current port. In the following example,
SetPort identifies the port pointed to by thePort as the current one.

SetPort(thePort);

For more information about the SetPort procedure, see Inside Macintosh: Imaging.

Each time you draw text in a window’s graphics port, you need to set the text-related
fields of the graphics port to the characteristics of the text that you want to draw, if they
differ from the current ones. A graphics port record contains three fields that determine
how text is drawn—the font, style, and size of glyphs—and one that specifies how it will
be placed in the bit image, the transfer mode. In addition to these fields, a graphics port
record contains two fields that let you specify character widths to define how text is to be
formatted on a line.

Specifying Text Characteristics 3
Each time you measure or draw text that begins a new style run and whose
characteristics differ from those of the current graphics port, first you need to set the
graphics port text-related fields to match those of the text. Here is how the text-related
graphic port fields are initialized:

Field Value Explanation

txFont 0 System font

txFace [] Plain style of the current font

txSize 0 Size of the system font used to draw text

spExtra 0 Standard width of the space character for the font

chExtra 0 Standard width of nonspace characters for the font

txMode srcOr Combines the destination with the source
Using QuickDraw Text 3-19

C H A P T E R 3

QuickDraw Text
Do not modify any of these fields directly. Instead, always use the QuickDraw routines
to change their values: TextFace, TextFont, TextMode, TextSize, SpaceExtra,
and CharExtra. Using these routines ensures that your application will benefit from
any future improvements to QuickDraw.

Listing 3-1 shows a simple sequence of QuickDraw calls. These routines set the current
port, set the graphics port text fields, then draw a text string. The calls render the text in
12-point Geneva font using the styles bold and italic, and widen the spaces between
words by 3 pixels to format the text. QuickDraw text-handling procedures that set these
fields are discussed later in this section.

Listing 3-1 Using QuickDraw to set the graphics port text-related fields

SetPort(thePort);

TextFont(geneva);

TextFace([bold, italic]);

TextSize(12);

SpaceExtra(3);

If you must directly change the values of any of the graphics port fields, call the
QuickDraw PortChanged procedure to notify QuickDraw of the change after you
modify the field. For more information about PortChanged, see the QuickDraw
chapters in Inside Macintosh: Imaging.

Setting the Font 3

You use the TextFont procedure to set the font for the text. The value that you specify
for this field is either the font family ID or a predefined constant.

If you know the font name, you can get the font family ID by calling the GetFNum
procedure, passing it the font name. You can get a font’s name if it has a font family ID
by calling the Font Manager GetFontName procedure. For more information about
these procedures and the predefined font constants, see the chapter “Font Manager” in
this book.

If you do not know either the font family ID or the name of the font, you can use the
Resource Manager’s GetIndResource function followed by the GetResInfo
procedure to determine the fonts that are available and what their names and IDs
are. See the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox
for more information.

The values 0 and 1 have special significance. When a graphics port is created, the
txFont field is initialized to 0, which specifies the system font. This is the font that the
system uses to draw text in system menus and system dialog boxes. You can use a font
that is defined by the system—to do so, it sets this field to 1; 1 always specifies the
application font.
3-20 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Note
Do not use the font family ID 0 or the constant 'chicago' to specify
the Chicago font because the ID can vary on localized systems. To
specify the Chicago font, use the following calls.

GetFNum('Chicago', theNum);

TextFont(theNum);

The variable theNum is an integer. ◆

Storing a font name in a document

Always store a font name, rather than its font family ID, in a document
to avoid problems that can arise because IDs are not unique—many font
families share the same font family ID—or because one font family may
have different IDs on different computer systems. ◆

You use TextFont to set the txFont field of the current graphics port for a new style
run that uses a font different from the current one, and in response to a user’s actions, for
example, when a user selects a new font from a menu.

Note
Whenever a user changes the keyboard script, you are responsible for
setting the txFont field to the new font, so that the keyboard script and
the font script are synchronized. ◆

Modifying the Text Style 3

When you create a graphics port, the txFace field value is initially an empty set ([]),
which specifies the plain style of the current font.

To change the text style, you call TextFace, using any combination of the following
constants to specify the text style: bold, italic, underline, outline, shadow,
condense, and extend. In Pascal, you specify the value or values within square
brackets. For example:

TextFace([bold]); {bold}

TextFace([bold,italic]); {bold and italic}

You can also add another style to the current text style, or remove a style. For example:

TextFace(thePort^.txFace+[bold]); {existing style plus bold}

TextFace(thePort^.txFace-[bold]); {existing style minus bold}

To reset the style to plain, you specify an empty set. For example:

TextFace([]); {plain text}

If you want to restore the existing value after you draw the text in another style, save it
before you call TextFace. For a description of how QuickDraw renders text in each of
these styles, see “Font, Font Style, and Font Size” on page 3-5.
Using QuickDraw Text 3-21

C H A P T E R 3

QuickDraw Text
Changing the Font Size 3

When you create a graphics port, the value of the txSize field is 0, which specifies the
size of the font to be used to draw system text, such as menus. The size of the system
font is usually 12 points. You use the TextSize procedure to set the txSize field of the
current graphics port to the font’s point size. Text drawn on the QuickDraw coordinate
plane can range from 1 point to 32,767 points.

Changing the Width of Characters 3

When you create a graphics port, the spExtra and chExtra fields are set to 0, which
specifies the standard width for space and nonspace characters in the font. You change
the width of space characters and nonspace characters using the SpaceExtra and
CharExtra procedures, respectively.

Widening or narrowing space and nonspace characters lets you meet special formatting
requirements that are not satisfied by simply justifying the text. If you want to change
only the width of the space characters in a line of text for onscreen typographical
formatting, you can set the spExtra field value before you draw each style run,
narrowing spaces in some style runs and widening those in others. To change the width
of nonspace characters, either extending them or narrowing them, you set the chExtra
field value before you draw a style run.

You use the SpaceExtra procedure to set the spExtra field of the current graphics
port to the number of pixels to be added to or subtracted from the standard width of the
space character in the style run. (A value specified in the spExtra field is ignored by
script systems that do not use space characters, so don’t to set it for 2-byte script systems
that use only intercharacter spacing.) The text measuring and drawing routines apply
the spExtra field pixel value to every space in the text string, regardless of whether the
space occurs at the beginning or the end of a style run or between words within a style
run. You can use the SpaceExtra procedure, for both a color graphics port
(CGrafPort) and an original graphics port (GrafPort).

You use the CharExtra procedure to set the chExtra field of the current graphics port
to the number of extra pixels to be added to or subtracted from the width of all nonspace
characters in a style run. Because only the color graphics port record has a chExtra
field, use of CharExtra is limited to color graphics ports. The measuring and drawing
routines apply the pixel value that you set in the chExtra field to the right side of the
glyph of each nonspace character.

You can use SpaceExtra and CharExtra together, for example, to format text
consisting of multiple style runs with different fonts in order to create a smooth visual
effect by causing the fonts to measure the same or proportionally.

Note
Although printing on a LaserWriter preserves the line’s endpoints, it
alters the line layout in between. Any formatting internal to the line that
you set through SpaceExtra and CharExtra is lost when you print. ◆
3-22 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text

If you do not want to use the justification routines to draw justified text, you can justify a
line of text using SpaceExtra and CharExtra to widen each glyph (space and
nonspace characters) by the same amount of pixels for onscreen display. Here is how
you do this:

1. Determine the slop value to be applied to the text to justify it.
n Measure the width in pixels of each style run in the line of text using TextWidth.
n Sum the values.
n Subtract the total from the display line length.

2. Count the total number of characters (both space characters and nonspace characters)
that the text contains.

3. Divide the slop value by the number of characters minus 1. Round the slop value to a
whole number.

4. Call the SpaceExtra procedure, passing it the result of step 3.

5. Call the CharExtra procedure, passing it the result of step 3.

6. Call DrawText or DrawString to draw each style run on the line.

Use of CharExtra entails some restrictions. You cannot use intercharacter spacing for
1-byte complex script systems or 1-byte simple script systems that include zero-width
characters, such as diacritical marks, because of the way extra width is applied to a
glyph. For example, for 1-byte simple script systems with diacritical marks,
intercharacter space is added to all glyphs separating the diacritical mark from the glyph
of the character.

Using Fractional Glyph Widths 3

Fractional glyph widths are measurements of a glyph’s width that can include fractions of
a pixel. Using fractional glyph widths allows QuickDraw to place glyphs on the screen
in a manner that will closely match the eventual placement of glyphs on a page printed
by a LaserWriter. Fractional glyph widths make it possible for the LaserWriter printer to
print with better spacing. You can use the Font Manager’s SetFractEnable procedure
to turn the use of fractional glyph widths on or off.

Because screen glyphs are made up of whole pixels, QuickDraw cannot draw a fractional
glyph. To compensate, QuickDraw rounds off the fractional parts resulting in uneven
spacing between glyphs and words. Although the text is somewhat distorted on the
screen, it is correctly proportioned and shows no distortion when printed on a page
using a LaserWriter.

However, to avoid screen distortion, your application can disable the use of fractional
widths. A consequence of this it that placement of text on the printed page is less than
optimal. For more information about fractional glyph widths, see the chapter “Font
Manager” in this book.
Using QuickDraw Text 3-23

C H A P T E R 3

QuickDraw Text
Specifying the Transfer Mode 3
The value of the current graphics port transfer mode (txMode) field determines the way
glyphs are placed in the bit image and how the text is to appear. It defines the way text to
be drawn interacts with text and graphics already drawn. (When a glyph is drawn,
QuickDraw does a bit-by-bit comparison based on the mode and stores the resulting bits
into the bit image.) You set the text mode by calling the TextMode procedure.

By default, the transfer mode field is set to srcOr, which specifies that text to be drawn
should overlay the existing graphics. The srcOr transfer mode produces the best results
for drawing text because it writes only those bits that make up the actual glyph. In most
situations, when drawing text with the basic transfer modes, you should use only srcOr
or srcBic; all other modes can result in clipping of glyphs by adjacent glyphs. For
example, the Copy operation paints over what already exists on the destination,
replacing it entirely.

Basic Transfer Mode Operations 3

For each type of drawing mode, there are four basic kinds of operations: Copy, Or, Xor,
and Bic (bit clear). For Color QuickDraw, there are additional arithmetic drawing mode
operations designed specifically for use with color. They are discussed later in this
section, and fully in Inside Macintosh: Imaging.

The transfer mode operation determines how the text is to be displayed: for each bit in
the item to be drawn, the corresponding bit in the destination bitmap is identified, the
specified Boolean operation is performed on the pair of bits, and the resulting bit is
stored into the destination bit image. When you work with color pixels, transfer modes
produce different results on indexed and direct devices.

In addition to drawing the entire glyph in all cases, the srcOr mode is recommended for
all applications because it uses the least memory. The srcOr mode only affects other
parts of existing glyphs if the glyphs overlap. In srcOr mode the color of the glyph is
determined by the foreground color.

The maximum stack space required for a text drawing operation can be considerable.
Text drawing uses a minimum amount of stack if the following conditions are true:

■ The transfer mode is srcOr.

■ The foreground color is black.

■ The destination of the text is contained within a rectangular portion of the region of
the graphics port that is actually visible on the screen.

■ The text is not scaled.

■ The text does not have to be italicized, outlined, or shadowed by QuickDraw.
3-24 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Otherwise, the amount of stack space required to draw all of the text at once depends
most on the size and the width of the text and the depth of the destination.

If QuickDraw can’t get enough stack space to draw an entire text segment at once, it
draws the segment in pieces. This can produce unusual results in modes other than
srcOr or srcBic if some of the glyphs overlap because of kerning or italicizing. If the
mode is srcCopy, overlapping glyphs are clipped by the last drawn glyph. If the mode
is srcXor, pixels where the glyphs overlap are not drawn at all. If the mode is one of the
arithmetic modes, the arithmetic rules are followed, ignoring that the destination may
include part of the text being drawn.

The stack space required for a drawing operation in Color QuickDraw is roughly
estimated by the following calculation.

(text width) * (text height) * (font depth) / (8 bits per byte) + 3K

Pixel depth normally equals the screen depth. If the amount of stack space available is
small (less than 3.5K), QuickDraw instead uses a pixel depth of 1, which is slow, but uses
less stack space.

For the original QuickDraw, the required stack space is roughly estimated by the
following calculation.

(text width) * (text height) / (8 bits per byte) + 2K

Arithmetic Transfer Mode Operations 3

Arithmetic transfer modes calculate pixel values by adding, subtracting, or
averaging the RGB components of the source and destination pixels. The arithmetic
modes change the destination pixels by performing arithmetic operations on the source
and destination pixels.

Each drawing routine converts the source and destination pixels to their RGB (red,
green, and blue) components, performs an operation on each pair of components to
produce a new RGB value for the destination, and then assigns the destination to a pixel
value close to the calculated RGB value. The arithmetic drawing modes are addOver,
addPin, subOver, subPin, adMax, adMin, and blend. To specify an arithmetic mode,
you pass the operation to be used to the TextMode procedure. For example, the
following calls save the current state of the text mode field, then set it to the
transfer mode blend.

oldTextMode := theport.^txMode;

TextMode(blend);
Using QuickDraw Text 3-25

C H A P T E R 3

QuickDraw Text
The arithmetic modes were designed for use with color. They are most useful for 8-bit
color, but they work on 4-bit and 2-bit color also. When the destination bitmap is one bit
deep, the mode reverts to the basic transfer mode that best approximates the arithmetic
mode requested. For more information about arithmetic mode operations, see the
QuickDraw chapters in Inside Macintosh: Imaging.

Note
To help make color work well on different screen depths, Color
QuickDraw does some validity checking of the foreground and
background colors. If your application is drawing to a CGrafPort with
a depth equal to 1 or 2, and if the RGB values of the foreground and
background colors aren’t the same, but both of them map to the same
pixel value, then the foreground color is inverted. This ensures that, for
instance, red text drawn on a green background doesn’t map to black
on black. ◆

The grayishTextOr Transfer Mode 3

You can use the text drawing mode, grayishTextOr, to draw dimmed text on the
screen. It is especially useful for displaying disabled user interface items. If the
destination device is color and grayishTextOr is the transfer mode, QuickDraw draws
with a blend of the foreground and background colors. If the destination device is black
and white, the grayishTextOr mode dithers black and white. Dithering is a technique
that creates the effect of additional colors, if the destination device is color. If the
destination device is black-and-white, dithering creates the effect of levels of gray.

Note that grayishTextOr is not considered a standard transfer mode because
currently it is not stored in pictures, and printing with it is undefined. (It does not
pass through the QuickDraw bottleneck procedure.) The following calls show how
to use grayishTextOr. They save the current state of the text mode field, then set it to
grayishTextOr.

oldTextMode := theport.^txMode;

TextMode(grayishTextOr);

Text Mask Mode 3

You can add the mask constant to another transfer mode to cause only the glyph portion
of the text to be applied in the current transfer mode to the destination. If the text font
contains more than one color or if the drawing mode is an arithmetic mode, the mask
mode causes only the portion of the glyphs not equal to the background to be drawn.

The arithmetic transfer modes apply the glyph’s background to the destination; this
can lead to undesirable results if you draw the text in pieces. QuickDraw draws the
leftmost part of a piece of text on top of a previous piece if the font kerns to the left.
Using maskMode in addition to these modes causes only the foreground part of the
glyph to be drawn.
3-26 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Because the rightmost glyph is clipped, to kern to the right in text mask mode, you
should use srcOr, or add trailing spaces. The following call sets the transfer mode to
blend with mask mode.

TextMode(blend + mask);

Transparent Transfer Mode 3

The transparent mode replaces the destination pixel with the source pixel when the
source pixel isn’t equal to the background color. For a complete description of the
transparent mode, see the QuickDraw chapters in Inside Macintosh: Imaging.

The arithmetic transfer modes apply the glyph’s background to the destination; this can
produce undesirable results if you draw the text in pieces. QuickDraw draws the
leftmost part of a piece of text on top of a previous piece if the font kerns to the left. If
you use the mask mode (maskMode) in addition to these modes, QuickDraw draws only
the foreground part of the glyph. Because the rightmost glyph is clipped, to kern to the
right in text mask mode, you should use srcOr. For an explanation of kerning, see the
chapter “Font Manager” in this book.

Transfer Modes and Multibit Fonts 3

Multibit fonts can have a specific color. Some transfer modes may not produce the
desired results with a multibit font. However, the arithmetic mode and transparent
mode work equally well with single bit and multibit fonts.

Unlike single bit fonts, multibit fonts draw quickly in srcOr mode only if the
foreground is white. Single bit fonts draw quickly in srcOr mode only if the foreground
is black. Grayscale fonts produce a spectrum of colors, rather than just the foreground
and background colors.

Measuring and Drawing Single Segments of Text 3
This section describes how to draw a single glyph or a series of glyphs that
share the same font and character attributes. Because you usually measure text
before you draw it to determine if it fits on the display area, this section describes
the measuring and drawing routines in pairs. These pairs are CharWidth and
DrawChar to measure and draw the glyph of a single character, StringWidth
and DrawString to measure and draw Pascal strings, and TextWidth and DrawText
to measure and draw text segments.

You are responsible for tracking and specifying the memory location and the character
attributes of the text to be drawn. This is true whether you are working with a single
glyph, a Pascal string, or a text string. For a single glyph, you pass the character code to
the procedure; for a Pascal string, you pass the string.

Note
Before you call a QuickDraw measuring or drawing routine, you need to
set the graphics port text-related fields to those of the character. ◆
Using QuickDraw Text 3-27

C H A P T E R 3

QuickDraw Text
Individual Glyphs 3

You measure text a character at a time by calling the CharWidth function, and you draw
text a character at a time by calling the DrawChar procedure. These routines only work
with 1-byte simple script systems.

Although this section describes how to use these routines, you should understand their
limitations, and avoid using CharWidth and DrawChar for applications drawing
sequences of more than one character. Nevertheless, you may want to use DrawChar for
special purposes, such as including a glyph in a book’s index, to show a single glyph as
it exists apart from contextual transformations.

The CharWidth function takes into account all of the text characteristics defined in the
current graphics port, so make sure these values reflect the attributes that you intend to
draw with. You can draw a sequence of individual glyphs by placing the pen at the
beginning of the leftmost glyph, and making a succession of calls to DrawChar.

Always use CharWidth to measure the width of a sequence of glyphs that you intend to
draw using DrawChar, instead of using StringWidth; StringWidth and
DrawString accumulate fractional portions, while CharWidth and DrawChar do not.
Making successive calls to CharWidth to measure a segment of text and calling
StringWidth to measure the same segment of text produce different results.

In general, you should measure and draw text in segments, rather than as individual
glyphs. In Roman fonts, if you measure fractional-width glyphs singly using
CharWidth, you can get incorrect results, because CharWidth doesn’t accumulate
fractional-width positions. Also, it takes longer to measure the widths of several glyphs
one at a time than it does to measure them together using TextWidth.

For contextual 1-byte fonts, CharWidth and DrawChar do not correctly measure or
draw ligatures, reversals, or other contextual forms. You cannot use CharWidth and
DrawChar for 2-byte fonts, because they take a 1-byte character code as a parameter.

Pascal Strings 3

You can call the StringWidth function to measure the screen pixel width of a Pascal
string to determine how many glyphs will fit on the screen, and you can call the
DrawString procedure to draw a Pascal string with the text characteristics of the
current graphics port. The DrawString procedure accumulates the fractional portion as
it draws each glyph and positions the next glyph correctly.

You cannot use the DrawString and StringWidth routines to draw or measure a
Pascal string that is justified or explicitly scaled. If you want to do this, you must
separate the string from its length byte, and call MeasureJustified or StdTxMeas to
measure it, and then DrawJustified to draw it, passing the text and the text length
separately. Note that a Pascal string is limited to 255 characters. The following code
fragment shows how to adjust for the length byte.

myTextPtr := Ptr(Ord(@myString) + 1);

myTextLength := Ord(myString[0]);
3-28 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Text Segments 3

You can call the TextWidth function to measure a segment of text to see if it fits on a
single line; if it does, then you can the DrawText procedure to draw it.

You pass DrawText a pointer to the text buffer, the byte offset into the text buffer of the
first character to be drawn, and the length of the text segment you want to draw.
QuickDraw draws the text at the current pen position with the text characteristics of the
current graphics port.

Measuring and Drawing Lines of Text 3
This section describes how to lay out and draw a line of text consisting of a single style
run or multiple style runs. A line of text all in the same font, script, and character
attributes constitutes a single style run. A new style run begins when any of these textual
characteristics change. QuickDraw relies on the construct of style runs to track these text
attribute changes throughout a line of text. Before you measure or draw a text segment
that constitutes a new style run, you need to set the text-related graphics port fields
for that style run.

This section also describes how to draw text lines that are right or left aligned, or
justified. Finally, it explains how to draw explicitly scaled text, whether the lines of text
are justified or not.

To draw a line of text, you first need to lay it out. If the text does not contain mixed
directions, the text layout process consists of a single step: determining where to break
the line. If the text contains mixed directions, the order in which you display the style
runs may be different from their storage order, so you also need to determine the
drawing order.

Moreover, if you want to draw a line of justified text, the process entails additional
steps: you need to determine the total amount of extra pixels that remains to be
distributed throughout the line of text and how to distribute these extra pixels
throughout the style runs.

If you want to draw a line of text that is not justified, you can position the pen according
to its alignment. You align text by positioning the pen appropriately so that the first
glyph of the text line is flush against the display line’s margin: at the left margin for
left-aligned text, or at the right margin for right-aligned text.

Your application loops through these steps for each style run and each line of text that it
measures and draws, and it needs to track the text in memory as it proceeds through
each loop. Each time you measure or draw a text segment, you need to pass the
beginning byte offset and its length to the QuickDraw routine. Before you call a
QuickDraw measuring or drawing routine, you need to set the graphics port text-related
fields to reflect the new style run’s values.
Using QuickDraw Text 3-29

C H A P T E R 3

QuickDraw Text
These steps summarize the line layout and drawing process:

1. Determine where to break the line.

2. Determine the display order of the style runs (mixed-directional text).

3. Eliminate trailing spaces (justified text).

4. Calculate the slop value (justified text).

5. Distribute the slop (justified text).

6. Position the pen.

7. Draw the text.

Each step covers the basics, plus any additional information you need to know to
perform the step for justified or scaled text. The following sections elaborate these steps.

Determining Where to Break the Line 3

For text that spans multiple lines, you are responsible for controlling where a text line
starts and ends. To determine where to break a line of text, first you need to know
the screen pixel width of the display line. Then, taking into account all the text
characteristics, you need to assess how much of the text you can display on the line,
and the appropriate point to break the text.

You should always break a line on a word boundary. To allow for text in different
languages, use the QuickDraw and the Text Utilities routines that identify the
appropriate place to break a line in any script system.

The two routines you use for unscaled text are the StyledLineBreak and TextWidth
functions; StyledLineBreak is described in the chapter Text Utilities in this book.
Each time you call StyledLineBreak for a style run, first you need to set the graphics
port text characteristics for that style run.

Saving the screen pixel width of each style run

To draw justified text, you need to determine the amount of extra pixels
to allocate to each style run in the text line. To determine this value, you
need to know the screen pixel width of each style run. You can avoid
having to measure the width of each style run twice in the text-layout
process by using the textWidth parameter of the StyledLineBreak
function to get and save the screen pixel width of each style run. The
StyledLineBreak function maintains the value of the textWidth
parameter, which you initially set to the length of the display line. When
you call StyledLineBreak for each style run in the script run, it
decrements this value by the width of the style run. You can calculate
the screen pixel width of a style run by subtracting the current value of
textWidth from the display line length each time through your
StyledLineBreak loop, and save the value to be used later. ◆
3-30 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
If you do not want to use StyledLineBreak, you can use the TextWidth function to
measure each style run, adding the returned values until the sum exceeds the display
line length. You can next use the Text Utilities FindWordBreaks procedure on the last
style run to identify the ending location of the appropriate word in the style run, then
break the text accordingly.

If a space character occurs at a line’s end, and more space characters follow it in memory,
StyledLineBreak breaks the line after the final space character in memory. This
obviates the need for you to check for space characters in memory, when you lay out the
next line of text. However, if you do not use StyledLineBreak, you need to check for
space characters at the beginning of a line of text, and increment the memory pointer
beyond these space characters. You can use the CharacterType function to identify
space characters. For more information about CharacterType, see the chapter “Script
Manager” in this book.

Listing 3-2 calculates line breaks using StyledLineBreak. The procedure sets the local
variables, the display line length, and a value to control the line-breaking loop. Then it
iterates through the text for each style run, setting the graphics port text fields for the
style run and calling StyledLineBreak to identify where to break the line.

Listing 3-2 Calling StyledLineBreak to identify where to break the text line

PROCEDURE MyBreakTextIntoLines (window: WindowPtr);

VAR

thetextPtr: Ptr;

thetextLength: LongInt;

pixelWidth: Fixed;

textOffset: LONGINT;

StartOfLine: Point;

index: Integer;

tempRect: Rect;

lineData: myLineArray;

lineIndex: Integer;

theBreakCode: StyledLineBreakCode;

theStartOffset: Integer;

BEGIN

thetextPtr := gText.textPtr;

index := 0;

SetPort(window);

tempRect := window^.portRect;

InsetRect(tempRect, 4, 4);

SetPt(StartOfLine, 10, 4);

MoveTo(StartOfLine.h, StartOfLine.v);

{Set up our local flags and variables.}

 lineIndex := 0; {This is the index into the line data.}
Using QuickDraw Text 3-31

C H A P T E R 3

QuickDraw Text
index := 0; {This is the index into the style data.}

WITH gText.runData[index] DO

BEGIN

thetextPtr := Ptr(ORD(gText.textPtr) + runStart);

thetextLength := gText.textLength;

theStartOffset := 0;

END;

{Start walking through the textblock.}

REPEAT

{For the first style run in a line, textOffset must be non-zero.}

textOffset := -1;

{smBreakOverFlow means that the whole style run fits on the }

{ line with space remaining. The routine uses that condition to }

{ control the loop.}

theBreakCode := smBreakOverflow;

{StyledLineBreak expects the width of the display area }

{ to be expressed as a fixed value.}

pixelWidth := BSL((tempRect.right - tempRect.left), 16);

WITH gText DO

BEGIN

WHILE (theBreakCode = smBreakOverflow) DO

BEGIN WITH gText.runData[index] DO

BEGIN

{set the port}

TextFont(font);

TextFace(face);

TextSize(size);

{call StyledLineBreak to break the line}

theBreakCode := StyledLineBreak(thetextPtr,

 thetextLength, theStartOffset,

runEnd, 0, pixelWidth, textOffset);

{now remember the information returned}

 lineData[lineIndex].textStartOffset := theStartOffset;

{remember the beginning of this run}

lineData[lineIndex].textLength := textOffset - theStartOffset;

{and the length of this run length}

lineData[lineIndex].styleIndex := index;

{since the style information is global, just remember }

{ the index to that information}

lineIndex := lineIndex + 1;

END;
3-32 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
{If textoffset == the end of the run, increment the }

{ rundata index and set theStartOffset to be the beginning }

{of the next run.}

IF (textOffset = gText.runData[index].runend) THEN

BEGIN

index := index + 1;

theStartOffset := gText.runData[index].runStart;

END

ELSE

{If textOffset <> the end of the run, the routine splits }

{ a run, so set theStartOffset appropriately}

 theStartOffset := theStartOffset + (textOffset - theStartOffset);

{If there is more text, reset the offset value }

{ returned by StyledLineBreak}

IF textOffset = thetextLength THEN LEAVE

{if textOffset == the textLength there is no more}

{ text, so jump out of the loop}

ELSE

textOffset := 0;

{we haven't found the line break yet, }

{ textOffset must be zero for all runs after }

{ the first in a line}

END; {of while loop}

END;

If the text is explicitly scaled, you cannot use StyledLineBreak to determine where to
break the line. This is because the StyledLineBreak function does not accept scaling
factors. To determine where to break a line of scaled text, you can directly call the
routines that StyledLineBreak uses. The section “Using Scaled Text” on page 3-44
describes these steps.

Determining the Display Order for Style Runs 3

Now that you know where to break the line, you need to determine the display order of
the style runs that constitute the line when the text contains mixed directions; if your text
does not contain mixed directions, you can skip this step.

You draw style runs in their display order, which may be different from how the text is
stored if it contains mixed directions. (For more information about storage order and
display order, see the chapter “Introduction to Text on the Macintosh” in this book.) To
determine the correct order, use GetFormatOrder; this procedure returns the order,
from left to right, in which to draw the style runs on a line.

To use GetFormatOrder, you must have organized your style runs sequentially in
storage order. You pass GetFormatOrder the numbers of the first and last style runs on
the line, and the primary line direction of the text to be drawn. If you do not explicitly
define the primary line direction, you can base it on the value of the SysDirection
Using QuickDraw Text 3-33

C H A P T E R 3

QuickDraw Text
global variable. (The SysDirection global variable is set to –1 if the system direction is
right to left, and 0 if the system direction is left to right.)

You pass GetFormatOrder a pointer to an application-defined Boolean function that
calculates the correct direction for each style run and a pointer to an application-defined
information block, containing font and script information, that the Boolean function uses
to determine the style run direction. The GetFormatOrder procedure calls your
Boolean function for each style run on the line.

Listing 3-3 shows an example Boolean function that calculates the line direction of a style
run. Here is the type declaration for the MyLineDrawingInfo records, which are
created as the application calculates line breaks:

TYPE MyLineDrawingInfo =

RECORD

textPtr: Ptr;

textLength: Integer;

styleIndex: Integer:

END;

MyLineArray = ARRAY[0 ..MaxNumberofStyleRuns] OF

 MyLineDrawingInfo;

myLineDrawingInfoPtr = ^MyLineDrawingInfo;

The styleIndex field of each record of type MyLineDrawingInfo points to an entry
in an array of style run records of type MyStyleRun. A style run record contains style
information including font, size, style, and scaling factors. The declaration for
MyStyleRun follows:

MyStyleRun =

RECORD

runStart: Integer;

runEnd: Integer;

size: Integer;

font: Integer;

face: Style;

numer: Point;

denom: Point;

END;

{This sample program uses a static array to store style run }

{ information. Typically, a program would use a dynamic }

{ data structure.}
3-34 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
The MyDirectionProc function checks the font of the style run to determine if the font
belongs to a right-to-left script system. If it does, the function returns TRUE; otherwise it
returns FALSE. When GetFormatOrder calls MyDirectionProc, it passes an integer
identifying the style run and a pointer to an application-defined parameter block. In
Listing 3-3, the pointer indicates the MyLineArray array. The MyDirectionProc
function uses the style run identifier and the size of a MyLineDrawingInfo record to
find the right MyLineDrawingInfo record in the array. It uses the styleIndex field of
the MyLineDrawingInfo record to locate the right style run record in the array of
MyStyleRun records. The font field of the style run record contains a font family ID that
the function uses to determine the script code. The function calls the Script Manager
with the script code to determine the script direction

Listing 3-3 An application-defined run direction function called by GetFormatOrder

FUNCTION MyDirectionProc(theFormat: Integer;

myDirectionParam: Ptr):Boolean;

VAR

scriptCode: Integer;

p: myLineDrawingInfoPtr;

offset: LongInt;

BEGIN

offset := SIZEOF(MyLineDrawingInfo) * theFormat;

p := myLineDrawingInfoPtr(ORD(myDirectionParam) + offset);

scriptCode := FontToScript(gText.runData[p^.styleIndex].font);

IF Boolean(GetScriptVariable(scriptCode, smScriptRight)) = TRUE

THEN MyDirectionProc := TRUE

ELSE

MyDirectionProc := FALSE;

END;

You reference the format order array to determine the display order when you draw the
text. To draw a line of text that is not justified, after you determine the display order of
the style runs, you can position the pen and draw the text. (To draw a line of text that is
not justified, see “Drawing the Line of Text” on page 3-42.) To draw text that is scaled,
you can skip ahead to “Using Scaled Text” on page 3-44. If you are drawing a line of
justified text, you must complete some additional steps before positioning the pen and
actually drawing the text. These steps are described in the next three sections.
Using QuickDraw Text 3-35

C H A P T E R 3

QuickDraw Text
Listing 3-4 shows an application-defined procedure that declares a format order array; it
passes a pointer to that array when it calls GetFormatOrder for a line of text
containing style runs with mixed directions. Using the information that
GetFormatOrder returns in the format order array, the procedure iterates through the
style runs in display order, setting the graphics for each style run, then drawing the text.

Listing 3-4 Determining the style run display order and drawing the line

PROCEDURE MyGetDisplayOrderAndDrawLine (theLineData: myLineArray; VAR

 index: Integer);

VAR

FormatOrderArray: ARRAY[0..kMaximumNumberOfStyleRuns] OF Integer;

I: Integer;

BEGIN

GetFormatOrder(FormatOrderPtr(@FormatOrderArray), 0, index,

 Boolean(GetSysDirection), @DirectionProc, @theLineData);

{we know the display order, now we are ready to draw}

FOR I := FormatOrderArray[0] TO FormatOrderArray[index] DO

BEGIN

{Set the port.}

WITH gText.runData[theLineData[i].styleIndex] DO

BEGIN

TextFont(font);

TextFace(face);

TextSize(size);

END;

DrawText(theTextPtr, lineData[i].textStartOffset,

 theLineData[i].textLength);

END;

index := 0;

{we found a line, so bump the index into the line data}

END;

Eliminating Trailing Spaces (for Justified Text) 3

If you are justifying text, after you know the line break and display order for your text,
you must determine the total amount of extra pixels that remain to be distributed
throughout the line, and how to spread the extra pixels throughout the style runs. To get
the correct total number of extra pixels, first you need to eliminate any trailing spaces
from the last style run in memory order.
3-36 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
The VisibleLength function returns the length in bytes of the style run minus any
trailing spaces; this is the byte length that you must use for the style run in any
calculations necessary to determine the line layout, and for drawing the text.

The VisibleLength function behaves differently for various script systems. For simple
script systems, such as Roman and Cyrillic, and 2-byte script systems, such as Japanese,
VisibleLength does not include in the byte count it returns trailing spaces that occur
at the display end of the text segment. For 2-byte script systems, VisibleLength does
not count them, whether they are 1-byte or 2-byte space characters.

Figure 3-5 shows that VisibleLength eliminates trailing spaces at the right end of
Roman text when the primary line direction is left to right. However, if you change the
primary line direction, VisibleLength assumes the left end as the display end of the
text, and does not eliminate the spaces on the right.

Figure 3-5 Calling VisibleLength for a Roman style run

For 1-byte complex script systems, VisibleLength does not include in the byte count
that it returns spaces whose character direction is the same as the primary line direction.
The primary line direction is determined by the SysDirection global variable. By
default, the value of SysDirection is the direction of the system script. You can change
this value. Some word processors that allow users to change the primary line direction,
for example, to create a document entirely in English when the system script is Hebrew,
change the value of SysDirection. If you modify the SysDirection global value, be
sure to first save the original value and restore it before your program terminates.

Figure 3-6 shows a Hebrew style run with trailing spaces at the left end, which
VisibleLength eliminates. In this case, the primary line direction is right to left; if it
were left to right, VisibleLength would return 5.

0

1

2

3

4

A

B

C

RS

RS

A B C RS RS

0 1 2 3 4

Length = 3

Character

codesByte

offsets

Characters

$41

$42

$43

$20

$20

RS = Roman space
Using QuickDraw Text 3-37

C H A P T E R 3

QuickDraw Text
Figure 3-6 Calling VisibleLength for a Hebrew style run

For those 1-byte complex script systems that support bidirectional text, Roman spaces
take on a character direction based on the primary line direction. If the Roman spaces
then fall at the end of the text, VisibleLength does not include them in the returned
byte count. Figure 3-7 shows Roman spaces following Hebrew text in storage order. In
the first part of the example, the Roman spaces take on the primary line direction of right
to left, and follow the Hebrew text in display order also. Because they fall at the end of
the display line, VisibleLength does not count them. The second part of the example
shows what happens when the primary line direction is changed to left to right: the
Roman spaces fall at the end of the line again and are not counted.

Figure 3-7 Calling VisibleLength for Hebrew text with Roman space characters

0

1

2

3

4

†

¢

¶
HS

HS

Length = 3

HS = Hebrew space

$E0

$E1

$E2

$A0

$A0

HS HS ¶ ¢ †
4 3 2 1 0

Character

codesByte

offsets

Characters

0

1

2

3

4

†

¢

¶
RS

RS

Length = 3

RS = Roman space

Character

codesByte

offsets

Characters

Length = 3

$E0

$E1

$E2

$20

$20

RS RS ¶ ¢ †
 4 3 2 1 0

2 1 0 3 4

 ¶ ¢ † RS RS
3-38 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Calculating the Slop Value (for Justified Text) 3

To draw justified text, after you eliminate trailing spaces from the line’s last style run in
memory order, you need to determine the amount of remaining extra space to be
distributed throughout the line. This is called the slop value; it is measured in pixels, and
is the difference between the width of the text and the width of the display line. After
you add the widths of all the style runs on the line to get the total width of the text, you
can use the following statement to determine the slop value. Be sure to use the value
returned by VisibleLength for the last style run in memory order when you add the
style run widths.

TotalSlop := DisplayLineLength — SumofStyleRunWidths

If you saved the screen pixel width of each style run when you called
StyledLineBreak, then all you need to do is sum the total of the style run widths and
subtract that total from the display line length to get the total slop value.

If you did not use StyledLineBreak or you did not save the screen pixel width of each
style run when you called StyledLineBreak, first measure the width of each style run,
using TextWidth, then add the widths to get the total. (Remember that each time you
measure a style run, first you need to set the text-related graphics port fields for
that style run.)

The TextWidth function returns the width in pixels of a style run. You pass TextWidth
the number of bytes of the text to be measured. For script systems containing 2-byte
characters, be certain that you pass the correct number of bytes; 2-byte script systems can
contain a mix of one-byte and two-byte characters.

For scaled text, you cannot use the TextWidth function to get the screen pixel width of
a style run. Instead, you can call the StdTxMeas function, which accepts and returns
scaling parameters. Whenever you call StdTxMeas directly, first you must check the
graphics port grafProc field to determine if the bottleneck routines have been
customized, and if so, use the customized version. See “Low-Level QuickDraw Text
Routines” on page 3-98 for more information.

Using a negative slop value

You can pass the justification routines a positive or negative slop value.
Word processing programs can use a negative slop value to justify a line
of text more smoothly by condensing it, when it only slightly exceeds
the display line length. ◆

Allocating the Slop to Each Style Run (for Justified Text) 3

Once you have assessed the total amount of slop to be distributed throughout the line of
text, you need to determine the portion to apply to each style run. When you draw a
style run that is part of a line of justified text, you pass this number as the value of the
slop parameter.
Using QuickDraw Text 3-39

C H A P T E R 3

QuickDraw Text
To determine the actual number of pixels for each style run, first you determine the
percentage of slop to attribute to the style run, and then apply that percentage to the
total slop to get the number of pixels. To get the percentage of slop for a style run, you
compute what percentage each portion is of the sum of all portions.

The following steps summarize this process:

1. Call PortionLine for each style run on the line. The PortionLine function
returns a “magic number” which is the correct proportion of extra space to apply to
a style run.

2. Add the returned values together.

3. For each style run, divide the value returned by PortionLine for that style run by
the sum of the values returned for all of the style runs on the line.

4. For each style run, multiply the result of step 3 by the total slop value for the line.

For example, suppose that there are three style runs on a line: style run A, style run B,
and style run C. The total slop = 11; the line needs to be widened by 11 pixels to be
justified. If you call PortionLine for each of the style runs, it produces the
following results:

Summing the three values together produces a total of 20.9. Now you need to
convert the values into percentages by dividing each by the total. This produces the
following results:

The final step is to multiply the total slop value—11 pixels—by each percentage and
round off to compute the actual number of pixels (slop) allocated to each style run. (To
correct for the roundoff error, add the remainder to the pixels for the final style run.) This
produces these results:

Style
run

Value returned by
PortionLine

A 5.4

B 7.3

C 8.2

Style
run

Proportion Percentage
of total

A 5.4/20.9 25.84%

B 7.3/20.9 34.93%

C 8.2/20.9 39.23%

Style
run

Amount of slop
(in pixels)

A 3

B 4

C 4
3-40 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Listing 3-5 provides a code fragment that illustrates how you can use the PortionLine
function to do this. The application-defined MyCalcJustAmount routine expects an
array of the following type of records.

Type RunRecord =

Record

tPtr: Ptr; {ptr to the text}

tLength: LongInt; {length of run}

tFace: style; {txFace of run}

tFont: Integer; {font family ID}

tSize: Integer; {pt size}

tPlaceOnLine: JustStyleCode;

tnumer,tdenom: Point; {scaling factors}

tJustAmount: Fixed; {this value }

{ calculated here}

END;

RunArray = ARRAY[1..MaxRuns] OF RunRecord;

The MyCalcJustAmount routine also takes as a parameter a count of the total number
of records that the array contains. Finally, the extra screen pixel width to be distributed is
passed in as the TotalPixelSlop parameter. The routine calculates the amount of slop
to be allocated to each run, and assigns that value to the field tJustAmount.

Listing 3-5 Distributing slop value among style runs

PROCEDURE MyCalcJustAmount(rArray: RunArray; NRuns: Integer;

TotalPixelSlop: Integer);

VAR

I: Integer;

TotalSlopProportion: Fixed;

PixelSlopRemainder: Fixed;

BEGIN

{Find the proportion for each run, temporarily storing}

{ it in the tJustAmount field, and sum the }

{ returned values in TotalSlopProportion.}

TotalSlopProportion := 0;

FOR I := 1 TO NRuns DO

WITH rArray[I] DO BEGIN

{Set the graphics port’s fields for each style run}

{ to this style run}

TextFace(tFace);

TextFont(tFont);

TextSize(tSize);
Using QuickDraw Text 3-41

C H A P T E R 3

QuickDraw Text

tJustAmount :=

PortionLine(tPtr,tLength,tstyleRunPosition,tnumer,tdenom);

TotalSlopProportion := TotalSlopProportion + tJustAmount;

END;

{ Normalize the slop to be allocated to each run }

{ (runportion / totalportion), and then convert that value to }

{ UnRounded Pixels: }

{ (runportion / totalportion) * TotalPixelSlop).}

PixelSlopRemainder := Fixed(TotalPixelSlop);

IF NRuns > 1 THEN

FOR I := 1 TO NRuns-1 DO

WITH rArray[I] DO BEGIN

{Use the FixRound routine to round this value.}

tJustAmount := FixMul(FixDiv(tJustAmount,

TotalSlopProportion),TotalPixelSlop);

PixelSlopRemainder := PixelSlopRemainder -

 tJustAmount;

END;

rArray[NRuns].tJustAmount := PixelSlopRemainder;

END;

Drawing the Line of Text 3

Once you have laid out a line of text, drawing it is fairly simple. Your application’s
text-drawing routine needs to loop through the text, following these steps:

1. To position the pen correctly at the beginning of a new line, set the pnLoc graphics
port field to the local coordinates representing the point where you want to begin
drawing the text. You use the QuickDraw MoveTo or Move procedure to reposition
the pen. (For more information about Move or MoveTo, see the QuickDraw chapters
in Inside Macintosh: Imaging.) Within a line of text, after you draw a text segment,
QuickDraw increments the pen location for you and positions the pen appropriately
for the next text segment.

2. Before you draw each text run, set the text-related fields of the current graphics port
to the text characteristics for that style run, if the text segment begins a new style run.

3. Draw the text segment.
n If your text is not justified, use DrawText or StdText to draw it. The StdText

procedure also allows you to draw scaled text that is not justified. If you use
StdText, first you must determine whether the standard routine has been
customized. If so, you must use the customized version. For more information, see
“Low-Level QuickDraw Text Routines” on page 3-98.
3-42 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text

Listing 3-4 on page 3-36 shows how to draw the text using DrawText after
determining the display order.

n If your text is justified, use the DrawJustified procedure to draw it. This
procedure takes a parameter, styleRunPosition, that identifies the location of
the style run in the line of text. You must specify the same value for this parameter
that you used for it when you called the PortionLine function for this style run.
The DrawJustified and PortionLine routines also take numer and denom
parameters for scaling factors. For unscaled text, specify values of 1, 1 for both of
these parameters.

4. After you draw each text segment, increment the pointer in memory to the beginning
of the next text segment to be drawn.

To position the pen horizontally, remember that QuickDraw always draws text from left
to right:

■ For left-aligned text, position the pen at the left margin of the display line.

■ For right-aligned text, indent the pen from the left margin by the difference between
the display line length and the total width of all the style runs. If you have set a
CharExtra value, after you sum the total width of all the style runs, subtract the
value that you passed to CharExtra from the total so that the rightmost character
will be flush against the right margin.

■ For justified text, set the pen at the left margin.

To determine the vertical coordinate of the pen position when you draw lines of text
rendered in varying fonts and styles, you need to assess the required line height for each
new style. You base this on the style run that requires the greatest number of vertical
pixels. You can use the GetFontInfo procedure, which fills a record with information
describing the current font’s ascent, descent, and the width measurements of the largest
glyph in the font, and leading. You can determine the line height by adding the values of
these fields. For outline fonts, you can use the OutlineMetrics function to get the font
measurements. For more information about OutlineMetrics, see the chapter “Font
Manager” in this book. Listing 3-6 shows how to call GetFontInfo, and use the
information it returns in the font information record to determine the line height.

Listing 3-6 Calling GetFontInfo to determine the line height

FUNCTION MyGetMaximumLineHeight (VAR mylineData: myLineArray;

 lastStyleIndex: Integer): Integer;

VAR

info: fontInfo;

I: Integer;

ignore: Integer;

maxHeight: Integer;

BEGIN

maxHeight := 0;

FOR i := 0 TO lastStyleIndex DO

WITH gText.rundata[mylineData[i].styleIndex] DO
Using QuickDraw Text 3-43

C H A P T E R 3

QuickDraw Text
BEGIN

{set the grafport up}

TextFont(font);

TextFace(face);

TextSize(size);

{Get the vertical metrics}

GetFontInfo(info);

{If this style run is taller than any others measured, }

{ remember the height.}

WITH info DO

IF (ascent + leading > maxHeight) THEN

maxHeight := ascent + leading;

END;

MyGetMaximumLineHeight := maxHeight;

END;

Using Scaled Text 3

This section describes how to determine where to break a line of scaled text. Then it
describes how to draw scaled text, whether aligned or justified.

You cannot call StyledLineBreak for scaled text. To determine where to break a
line of scaled text, you can directly call the routines that StyledLineBreak uses. The
StyledLinedBreak function uses the PixelToChar function to locate the byte offset
that corresponds to the pixel location marking the end of the display line.

The primary use of PixelToChar is to locate a caret position associated with a
mouse-down event. For this purpose, the PixelToChar function reorders the text
when the text belongs to a right-to-left script system; this ensures that PixelToChar
returns the correct byte offset associated with the pixel location of a mouse-down event.

If right-to-left text is reordered when you use PixelToChar to determine where to
break a line, it returns the wrong byte offset. For right-to-left text, the end of a line in
memory order can occur either at the left end of a display line or in the middle of one. To
get the correct result, StyledLineBreak turns off reordering before it calls
PixelToChar. Your application must also do this.

You can define a routine that turns off reordering if the font’s script system is right to
left, and call your routine just before you call PixelToChar. Remember to restore
reordering after you have determined where to break the line.

Listing 3-7 shows an application-defined routine that turns off reordering of text in a
right-to-left script system. It tests to determine whether the reordering bit is on or off so
that the application can restore it to its current state, then it clears the reordering bit
(smsfReverse), and sets the script flag with the SetScriptVariable function. See
the chapter “Script Manager” in this book for more information.
3-44 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Listing 3-7 Turning off reordering of right-to-left text before calling PixelToChar
for line-breaking

FUNCTION MySetReordering(font: integer): Boolean

VAR

flags: LongInt;

err: OSErr;

BEGIN

flags := GetScriptVariable(smCurrentScript, smScriptFlags);

MySetReordering := BTST(flags, smsfReverse);

BCLR(flags, smsfReverse);

err := SetScriptVariable(smCurrentScript, smScriptFlags,

 flags);

END;

Here are the steps you take to determine where to break a line of scaled text:

1. Call PixelToChar to determine the byte offset that corresponds to the pixel location
where you want to break the line. You pass the pixel location of the end of the display
line to PixelToChar as the value of the pixelWidth parameter. The PixelToChar
function returns the byte offset corresponding to the pixel location of the end of the
display line, if the corresponding byte offset falls with the style run that you call
PixelToChar for.
If the byte offset corresponding to this pixel location does not fall within the style run,
on return the widthRemaining parameter contains the number of pixels from the
right edge of the text string for which you called PixelToChar to the end of the
display line. You can loop through your text, calling PixelToChar for each style run
until you encounter the byte offset that corresponds to the pixel location of the end of
the display line.

2. Call the Text Utilities FindWordBreaks procedure with an nbreaks parameter of –1
to determine the boundaries of the word containing the byte offset that corresponds to
the pixel location of the end of the display line. If the byte offset that PixelToChar
returns is the beginning boundary or interior to the word, you should break the text
before this word, or after the preceding word.

3. If the byte offset that falls at the end of the display line is a space character, you
should check to determine if there are succeeding space characters in memory;
StyledLineBreak does this. You can use the Script Manager’s CharType function
for this purpose. If there are additional space characters, increment the text pointer
beyond them in memory to determine the starting offset for the next line of text.
Using QuickDraw Text 3-45

C H A P T E R 3

QuickDraw Text
The steps that you follow to draw scaled text are the same as those for unscaled text,
described under “Drawing the Line of Text” on page 3-42. However, you perform some
steps differently for scaled text. The steps are summarized here, and the differences are
elaborated.

1. Set the pnLoc graphics port field to the local coordinates representing the point to
begin drawing the text. You use StdTxMeas to get the font metrics for scaled text in
order to determine the line height, instead of using GetFontInfo, which doesn’t
support scaling. Using the information that StdTxMeas returns, you can scale the
vertical metrics. Listing 3-8 shows one way to do this.

2. Before you draw each style run, set the text-related fields of the current graphics port
to the text characteristics for that style run. This step is the same as for drawing
unscaled text.

3. Use DrawJustified or StdText to draw the scaled text a style run at a time.
To draw scaled text that is not justified, you call StdText or you can call
DrawJustified and pass in onlyStyleRun for the styleRunPosition
parameter.

Listing 3-8 shows how to measure scaled text using StdTxMeas, and use the
information returned in the font information (fontInfo) record to determine the line
height. The gText global variable is initialized before the routine is called.

The application of which this routine is a part stores style runs in a text block, which is
defined by the TextBlock data type.

TextBlock = RECORD

textPtr: Ptr;

textLength: Integer;

runData: StyleRunArray;

END;

Listing 3-8 Using StdTxMeas to get the font metrics for determining the line height
of scaled text

FUNCTION MyGetMaximumLineHeight(VAR lineData: LineArray;

lastStyleIndex: Integer): Integer;

VAR

info: fontInfo;

i: Integer;

ignore:Integer;

MaxHeight:Integer;

localNumer, localDenom: Point;

size, font: Integer;

face: Style;
3-46 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
BEGIN

MaxHeight := 0;

FOR i := 0 TO lastStyleIndex DO

 WITH gText.runData[lineData[i].styleIndex] DO BEGIN

{Set up the graphics port}

TextFont(font);

TextFace(face);

TextSize(size);

{measure the text}

localNumer := numer;

localDenom := denom;

ignore := StdTxMeas(lineData[i].textlength,

 lineData[i].textPtr, localNumer, localDenom, info);

{scale the vertical metrics based on the StdTxMeas }

{ returned values of numer and denom}

info.ascent := FixRound(FixMul(BSL(info.ascent, 16),

 FixRatio(localNumer.v, localDenom.v)));

info.leading := FixRound(FixMul(BSL(info.leading, 16),

FixRatio(localNumer.v, localDenom.v)));

WITH info DO

IF (ascent + leading > maxHeight) THEN

maxHeight := ascent + leading;

END;

Drawing Carets and Highlighting 3
This section discusses how to determine a caret position to be used to mark an insertion
point or endpoint for highlighting a range of text. This section describes how to

■ determine the byte offset of a character whose glyph is closest to an onscreen
pixel location where a mouse-down event occurred

■ determine a caret position from a byte offset, and draw a caret to mark an
insertion point

■ locate the endpoints for a selection range in order to highlight it, using the byte
offsets at characters that begin and end the segment of text to be highlighted

For a discussion of the conventions underlying the relationship of a character at a byte
offset to a caret position for unidirectional text and text at a direction boundary, see the
treatment of caret handling and highlighting in the chapter “Introduction to Text on the
Macintosh” in this book.

Generally, an application draws and blinks the caret in an active document window
from its idle-processing procedure in response to a null event. If your application uses
TextEdit, you can call the TEIdle procedure to do this. If your application does not
use TextEdit, you are responsible for drawing and blinking the caret.
Using QuickDraw Text 3-47

C H A P T E R 3

QuickDraw Text
You should check the keyboard script and change the onscreen pixel location where you
draw the caret, if necessary, to synchronize the caret with the keyboard script. The caret
marks the insertion point where the next character is to be entered, and when the user
changes the keyboard script, the caret location can change. (For more information, see
“Synchronizing the Caret With the Keyboard Script” on page 3-59.)

You call PixelToChar from within a loop that iterates through the style runs on a line
of text until you locate the byte offset of the character associated with the input pixel
location. Once you have the byte offset, you call CharToPixel to get the pixel location
of the caret position. If you already have the byte offset, you do not need to call
PixelToChar. The CharToPixel function returns the length in pixels from the left
edge of the text segment to the caret position corresponding to that character. (The text
segment that you pass to CharToPixel can be a complete style run or the portion of a
style run that fits on the line.)

Once you have the pixel location of the caret position within the context of the text
segment, you must convert it to a pixel location relative to the entire display line’s left
margin. To get the correct display line pixel location, you lay out the line of text,
measuring the screen pixel width of each style run from left to right up to the text
segment that contains the caret position, then add the screen pixel width of the caret
position to the sum of all the preceding style runs. Once you have the pixel location
relative to the display line’s left margin, you can draw the caret. Figure 3-8 shows
Hebrew text between two runs of English text on a line. CharToPixel and
PixelToChar recognize the pixel location in the Hebrew text relative to the left edge of
the Hebrew style run, although the left margin of the display line begins with the
English text.

Figure 3-8 What pixel position means for CharToPixel and PixelToChar

ABC DEF

Pixel position

Text segment

(<= 1 style run)
3-48 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Converting an Onscreen Pixel Location to a Byte Offset 3

You need to find the byte offset and the text direction of the character that corresponds to
a glyph onscreen in order to display the caret correctly. You need this information to
mark an insertion point with a caret, select words, determine the endpoints for
highlighting a range of text, and determine where to break a line of text. You can use the
PixelToChar function to get this information.

The PixelToChar function returns a byte offset and a Boolean value. The Boolean flag
tells you whether the input pixel location is on the leading edge or the trailing edge of
the glyph.

■ When the input pixel location is on the leading edge of the glyph, PixelToChar
returns the byte offset of that glyph’s character and a leadingEdge flag of TRUE. (If
the glyph represents multiple characters, it returns the byte offset of the first of these
characters in memory.)

■ When the input pixel location is on the trailing edge of the glyph, PixelToChar
returns the byte offset of the first character in memory following the character or
characters represented by the glyph, and a leadingEdge flag of FALSE.

■ When the input pixel location is before the leading edge of the first glyph in the
displayed text segment, PixelToChar returns the byte offset of the first character in
the text segment and a leadingEdge flag of FALSE.

■ When the input pixel location is after the trailing edge of the last glyph in the
displayed text segment, PixelToChar returns the next byte offset in memory, the one
after the last character in the text segment, and a leadingEdge flag of TRUE.

If the primary line direction is left to right, before means to the left of all the glyphs for the
characters in the text segment, and after means to the right of all these glyphs. If the
primary line direction is right to left, before and after hold the opposite meanings.

Finding a Caret Position and Drawing a Caret 3

Once you have a byte offset, you need to convert it to a caret position. The
PixelToChar and CharToPixel functions work together to help you determine a
caret position. You use the byte offset that PixelToChar returns as input to
CharToPixel. The CharToPixel function requires a direction parameter to
determine whether to place the caret for text with a left-to-right or right-to-left direction.
You base the value of the direction parameter on the leadingEdge flag that
PixelToChar returns.
Using QuickDraw Text 3-49

C H A P T E R 3

QuickDraw Text
When a mouse-down event in text occurs, if PixelToChar returns a leadingEdge flag
of TRUE, you pass CharToPixel the text direction of the character whose byte offset
PixelToChar returns. Figure 3-9 illustrates a simple case. The user clicks on the leading
edge of the glyph of character D; PixelToChar returns byte offset 3 and a
leadingEdge flag of TRUE. You then call CharToPixel, passing it byte offset 3 and a
direction parameter of leftCaret, based on the text direction of the character D.
The CharToPixel function returns the pixel location equivalent to the caret position;
now you can draw the caret as shown, on the leading edge of D.

Figure 3-9 Caret position for a leading-edge mouse-down event

If PixelToChar returns a leadingEdge flag of FALSE, it returns the next byte offset in
memory, not the one on whose trailing edge the mouse-down event occurred. You still
base the value of the direction parameter on the character of the glyph at whose
trailing edge the mouse-down event occurred, but this character is the one in memory
that is before the byte offset that PixelToChar returned.

A B C D
0

1

2

3

A

B

C

D

Character

codesByte

offsets

Characters

$41

$42

$43

$44

Primary line direction

Offset = 3 (D)

Leading edge flag = TRUE

A B C D

Mouse-down event:

Result from PixelToChar:

Offset = 3 (D)

Direction = leftCaret (direction of D)

Input to CharToPixel:

Caret as drawn:
3-50 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Figure 3-10 illustrates this for the same simple case. The user clicks on the trailing edge
of the glyph of character C; PixelToChar returns byte offset 3, the byte offset of the
next character (D) in memory, and a leadingEdge flag of FALSE. You then call
CharToPixel, passing it byte offset 3 and a direction parameter of leftCaret, based
on the text direction of the character C. The CharToPixel function returns the pixel
location equivalent to the caret position; now the application can draw the caret as
shown, on the trailing edge of C, which is the same position as the leading edge of D.

Figure 3-10 Caret position for a trailing-edge mouse-down event

When a character falls on a direction boundary, the case is more complicated. In display
order, a direction boundary can occur on the trailing edges of two glyphs, the leading
edges of two glyphs, or at the beginning or end of a text segment. The same rules apply
for calling PixelToChar and CharToPixel, but the results can be different.

A B C D
0

1

2

3

A

B

C

D

$41

$42

$43

$44

Primary line direction

Offset = 3 (D)

Leading edge flag = FALSE

Offset = 3 (D)

Direction = leftCaret (direction of C)

A B C D

Mouse-down event:

Result from PixelToChar:

Input to CharToPixel:

Caret as drawn:
Using QuickDraw Text 3-51

C H A P T E R 3

QuickDraw Text
Figure 3-11 shows what happens when the user clicks on the leading edge of the
glyph †, whose character falls on a direction boundary; PixelToChar returns a
leadingEdge flag of TRUE and a byte offset of 3. You pass this byte offset and a
direction of rightCaret, the text direction for Hebrew, to CharToPixel. The
CharToPixel function returns the caret position on the leading edge of †, and you
draw the caret there.

Figure 3-11 Caret position for a leading-edge mouse-down event at a direction boundary

Figure 3-12 shows what happens when the user clicks on the trailing edge of the glyph C
(byte offset 2). The PixelToChar function returns byte offset 3 (the Hebrew character †)
and a leadingEdge flag of FALSE. You pass this byte offset and a direction
parameter of leftCaret, the text direction for English, to CharToPixel. In this case,
CharToPixel returns a caret position on the trailing edge of C, which is where you
draw the caret.

0

1

2

3

4

5

A

B

C

†

¢

¶

$41

$42

$43

$E0

$E1

$E2

Offset = 3 (†)

Leading edge flag = TRUE

Offset = 3 (†)

Direction = rightCaret (direction of †)

¶ ¢ †A B C

¶ ¢ †A B C

Primary line direction

Mouse-down event:

Result from PixelToChar:

Input to CharToPixel:

Caret as drawn:
3-52 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Figure 3-12 Caret position for a trailing-edge mouse-down event at a direction boundary

Using a dual caret

If your application is configured to use a dual caret, you must call
CharToPixel twice to draw the caret. For example, in Figure 3-12, you
would call it once with a leftCaret direction and again with a
rightCaret direction, both times for byte offset 3. You always draw
the high (primary) caret at the caret position obtained when the
direction parameter equals the primary line direction. For more
information, see the discussion of caret positions at direction boundaries
in the chapter “Introduction to Text on the Macintosh” in this book. ◆

Figure 3-11 and Figure 3-12 show how one offset can yield two caret positions.
Figure 3-13, when compared with Figure 3-12, shows how two offsets can yield one
caret position. In Figure 3-13, the user clicks on the trailing edge of the glyph ¶. The
PixelToChar function returns byte offset 6 and a leadingEdge flag of FALSE.
(Although there is no character code associated with byte offset 6, it is the memory
position of the next character to be entered.) You then call CharToPixel, passing it byte
offset 6 and a direction parameter of rightCaret, the text direction for Hebrew. The
CharToPixel function returns the pixel location on the trailing edge of the glyph ¶.

0

1

2

3

4

5

A

B

C

†

¢

¶

$41

$42

$43

$E0

$E1

$E2

¶ ¢ †A B C

¶ ¢ †A B C

Offset = 3 (†)

Leading edge flag = FALSE

Offset = 3 (†)

Direction = leftCaret (direction of C)

Primary line direction

Mouse-down event:

Result from PixelToChar:

Input to CharToPixel:

Caret as drawn:
Using QuickDraw Text 3-53

C H A P T E R 3

QuickDraw Text
Figure 3-13 Caret position for a trailing-edge mouse-down event at a direction boundary

There is one additional complication that occurs at the ends of a text segment that is the
only style run on a line, and at the outer end of a text segment that is the rightmost
or leftmost style run on a line. Again, the rules for calling PixelToChar and
CharToPixel are the same. Here is how they are interpreted for these cases. If a user
clicks the mouse before the text segment that is at the beginning of a line, PixelToChar
returns a leading edge value of FALSE and a byte offset of 0. (The first character of a text
segment that you pass to PixelToChar is always at byte offset 0.)

If a user clicks the mouse after the text segment that is at the end of a line, PixelToChar
returns a leading edge value of TRUE and the next byte offset in memory, following the
last character in the text segment.

Figure 3-14 shows what happens when a mouse-down event occurs beyond the last
glyph of the text segment. The PixelToChar function returns byte offset 3 and a
leadingEdge flag of TRUE. You pass this byte offset and a direction parameter of
leftCaret to CharToPixel. In this case, the direction parameter is based on the
value of SysDirection because there isn’t a character in memory associated with byte
offset 3. The CharToPixel function returns a caret position on the trailing edge of C,
which also marks the insertion point of the next character to be entered. This is where
you draw the caret.

0

1

2

3

4

5

6

A

B

C

†

¢

¶

$41

$42

$43

$E0

$E1

$E2

A B C

¶ ¢ †A B C

Primary line direction

Mouse-down event:

Result from PixelToChar:

Input to CharToPixel:

Caret as drawn:

Offset = 6 (after ¶)

Leading edge flag = FALSE

Offset = 6 (after ¶)

Direction = rightCaret (direction of ¶)

¶ ¢ †
3-54 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Figure 3-14 Caret position for a mouse-down event beyond the last glyph of the text segment

Listing 3-9 is a sample routine that converts mouse clicks to caret positions for drawing
the caret or for highlighting a selection range. It determines a text offset (charLoc) from
a mouse-down position and turns it into caret positions or ends of highlighting
rectangles (leftSide, rightSide). It tracks the mouse and dynamically draws
highlighting as the cursor is moved across the text. The routine calls HiliteText to
determine selection ranges. It calls CharacterType to determine the primary and
secondary caret positions for mixed-directional text. It draws the caret or highlighting
rectangles by calling the application routine MyAddSelectionArea.

Listing 3-9 Drawing the caret and highlighting a selection range

PROCEDURE MyDoTextClick(w: WindowPtr; where: POINT;

cmdKeyIsDown, shiftKeyIsDown,

optionKeyIsDown: BOOLEAN);

VAR

txLineH: TextLineHandle;

horizontalPosition: FIXED;

leadingEdge: BOOLEAN;

widthRemaining: FIXED;

charLoc: INTEGER;

selectionOffsets: OffsetTable;

c: INTEGER;

leftSide, rightSide: INTEGER;

0

1

2

3

A

B

C

$41

$42

$43

A B C

A B C

Primary line direction

Mouse-down event:

Result from PixelToChar:

Input to CharToPixel:

Caret as drawn:

Offset = 3 (after C)

Leading edge flag = TRUE

Offset = 3 (after C)

Direction = leftCaret (based on SysDirection)
Using QuickDraw Text 3-55

C H A P T E R 3

QuickDraw Text
prevMouseLoc: POINT;

direction: INTEGER;

BEGIN

txLineH := TextLineHandle(GetWRefCon(w)); {get the text}

IF txLineH <> NIL THEN BEGIN

LockHandleHigh(txLineH);

WITH txLineH^^ DO BEGIN

{initialize character offsets to invalid values}

IF NOT shiftKeyIsDown THEN

leftOffset := -1;

rightOffset := -1;

{initialize mouse position to invalid values}

SetPt(prevMouseLoc, kMaxInteger, kMaxInteger);

{track mouse and display text selection or caret }

REPEAT

IF DeltaPoint(where, prevMouseLoc) <> 0 THEN BEGIN

{mouse has moved:}

prevMouseLoc := where;

{adjust mouse position relative to lineStart, }

{ convert mouse position's INTEGER to FIXED, }

{ assume style run position doesn’t matter, }

{ assume no scaling (1: 1 ratio)}

charLoc := PixelToChar(@textBuffer, textLength, 0,

BitShift(where.h - lineStart.h, 16),

leadingEdge, widthRemaining,

smOnlyStyleRun,

POINT(kOneToOneScaling),

POINT(kOneToOneScaling));

IF charLoc <> rightOffset THEN BEGIN

{character location has changed:}

IF leftOffset = -1 THEN

{anchor position hasn't been set yet:}

leftOffset := charLoc; {set anchor position}

rightOffset := charLoc; {save new caret pos.}

{erase previous selection; note that it }

{would be more optimal to erase only the }

{ difference between old and new selection}

MyDeleteSelectionAreas(w, txLineH);
3-56 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
{now get the selection ranges to highlight}

HiliteText(@textBuffer, textLength, leftOffset,

rightOffset, selectionOffsets);

{check whether a range of text is selected, }

{ or if it’s only an insertion point}

IF selectionOffsets[0].offFirst <>

selectionOffsets[0].offSecond THEN BEGIN

{it’s a selection range:}

c := 0; {offsetPairs are zero-based}

REPEAT

leftSide := CharToPixel(@textBuffer,

textLength, 0,

selectionOffsets[c].offFirst,

smHilite, smOnlyStyleRun,

POINT(kOneToOneScaling),

POINT(kOneToOneScaling));

rightSide := CharToPixel(@textBuffer,

textLength, 0,

selectionOffsets[c].offSecond,

smHilite, smOnlyStyleRun,

POINT(kOneToOneScaling),

POINT(kOneToOneScaling));

{put rectangle ends in right order}

IF rightSide < leftSide THEN

SwapIntegers(leftSide, rightSide);

{now draw the rectangle}

MyAddSelectionArea(txLineH, leftSide,

lineStart.v - caretHeight,

rightSide,lineStart.v,

TRUE);

c := c + 1;

UNTIL (selectionOffsets[c].offFirst =

selectionOffsets[c].offSecond) OR (c = 3);

END

ELSE BEGIN

{it’s a caret position, not a range:}

{ calculate caret and draw it}

{position of caret depends on character's }

{ direction; call CharacterType to find it}
Using QuickDraw Text 3-57

C H A P T E R 3

QuickDraw Text
IF BAND(CharacterType(@textBuffer,

selectionOffsets[0].offFirst),

smCharRight) <> 0 THEN

direction := smRightCaret

ELSE

direction := smLeftCaret;

leftSide := CharToPixel(@textBuffer,

textLength, 0,

selectionOffsets[0].offFirst,

direction, smOnlyStyleRun,

POINT(kOneToOneScaling),

POINT(kOneToOneScaling));

{if user has specified dual caret, call }

{ CharToPixel again with the opposite }

{ value for the direction parameter}

IF documentSettings.useDualCaret THEN BEGIN

IF direction = smRightCaret THEN

direction := smLeftCaret

ELSE

direction := smRightCaret;

rightSide := CharToPixel(@textBuffer,

textLength, 0,

selectionOffsets[0].offFirst,

direction, smOnlyStyleRun,

POINT(kOneToOneScaling),

POINT(kOneToOneScaling));

END

ELSE

rightSide := leftSide;

IF leftSide = rightSide THEN

{it’s only a single caret:}

MyAddSelectionArea(txLineH, leftSide,

lineStart.v - caretHeight,

leftSide + kCaretWidth,

lineStart.v, TRUE)

ELSE BEGIN

{it’s a split-caret: assume upper caret }

{ is left-to-right text, lower caret is

{ right-to-left text}

IF direction = smRightCaret THEN BEGIN

{rightSide is right-to-left: }

{ use upper caret for leftSide}
3-58 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
MyAddSelectionArea(txLineH, leftSide,

lineStart.v - caretHeight,

leftSide + kCaretWidth,

lineStart.v -

(caretHeight DIV 2), TRUE);

MyAddSelectionArea(txLineH, rightSide,

lineStart.v -

(caretHeight DIV 2),

rightSide + kCaretWidth,

lineStart.v, TRUE);

END

ELSE BEGIN

{rightSide is left-to-right: }

{ use lower caret for leftSide}

MyAddSelectionArea(txLineH, rightSide,

lineStart.v - caretHeight,

rightSide + kCaretWidth,

lineStart.v -

(caretHeight DIV 2), TRUE);

MyAddSelectionArea(txLineH, leftSide,

lineStart.v -

(caretHeight DIV 2),

leftSide + kCaretWidth,

lineStart.v, TRUE);

END;

END;

END

END;

END;

GetMouse(where);

UNTIL NOT WaitMouseUp;

END;

HUnlock(Handle(txLineH));

END

END; {MyDoTextClick}

Synchronizing the Caret With the Keyboard Script 3

If the user changes the keyboard script, you can call the CharToPixel function to
determine the caret position, specifying the direction parameter based on the
keyboard script. However, the user may change the keyboard script between the time
Using QuickDraw Text 3-59

C H A P T E R 3

QuickDraw Text
you draw and erase the caret. You can save the position where you drew the caret, then
invert (erase) at that position again. To do this, save the direction of the keyboard script,
the screen pixel width, or even the whole rectangle.

Highlighting a Text Selection 3

To display a selection range, you typically highlight the text. This process entails
converting the offsets to their display screen pixel locations, and then calling the
InvertRect procedure to display the text selection in inverse video or with a colored or
outlined background.

When a range of text to be highlighted is unidirectional, it is contiguous in both memory
order and display order; the highlighted text constitutes a single range. When the text is
bidirectional, however, it can contain characters that occur on direction boundaries.
Although the characters are stored contiguously in memory, the leading edge of
one character’s glyph does not constitute the trailing edge of the other in display
order. A range of mixed-directional text that is contiguous in memory can produce up to
three physically separate ranges of displayed text to be highlighted. For example,
Figure 3-15 shows two separate ranges of highlighted text whose characters are
contiguous in memory.

Figure 3-15 Highlighting mixed-directional text

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Â

«

—

„

(

A

r

a

b

i

c

)

œ

Í

·

”

Characters

Character

codes

Byte

offsets

$E5

$C7

$D1

$E3

$28

$41

$72

$61

$62

$69

$63

$29

$CF

$EA

$E1

$D3

rabic)fH|œ (A „—UØ

Selection

range Primary line direction = right to left
3-60 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
To highlight a selection range, you need the beginning and ending byte offsets of the
selected text. From these offsets, you determine one or more pairs of offsets of the
displayed text. Once you have the pairs of offsets, you determine the pixel locations that
mark the beginning and the end of the displayed text of each pair. You can include the
following steps in the inner loop of your highlighting routine to determine these values.

1. You call HiliteText to get the individual pairs of byte offsets that encompass the
onscreen ranges of text to be highlighted. The HiliteText procedure always returns
three pairs of offsets. This is because if a text selection contains mixed-directional text,
it can consist of up to three distinct ranges of text when displayed. For unidirectional
text, HiliteText returns one pair that contains the beginning and ending byte
offsets whose text is to be highlighted, and two pairs that each include the same
numbers. You can ignore any pair of duplicate numbers.

2. Using the offset pairs that HiliteText returns, you convert each byte offset of a pair
to its equivalent onscreen pixel location. You call CharToPixel once each for the
beginning and ending offsets of a pair. You might call CharToPixel up to 6 times.
You must pass the CharToPixel function a direction parameter of hilite, which
signals it to use the primary line direction to determine the correct caret position.
When you specify hilite, CharToPixel returns the correct caret position for the
glyph based on the text direction of its character.

Once you have the pixel locations corresponding to the ends of each range of text, you
must convert them to display line pixel locations that are relative to the line’s left
margin. (The CharToPixel function returns the pixel location relative to the left edge of
the text range for which you called it.) If you saved the line layout information and you
have the screen pixel widths of the preceding style runs in display order, you can sum
the widths of these style runs and add the screen pixel width that CharToPixel returns
to the total. You must do this for the beginning and ending pixel locations that mark the
text. If you did not save the screen pixel widths of the preceding style runs on the
display line, you must lay out the text line again to get these values. When you have the
pixel locations relative to left margin of the display line, you can highlight the text.

For text that is rendered in black and white, you call the InvertRect procedure to
highlight each distinct text range; the background color is exchanged with the
foreground color. For text that is rendered in color, all pixel values of the current
background color are replaced with the value of the highlighting color.

Generally, the user chooses the highlighting color from the Color control panel, and the
application uses this color. However, you can reset this color using the QuickDraw
HiliteColor procedure. If a monitor is black-and-white and a highlighting color is
specified, the highlighting color reverts to black.

Before you call InvertRect for colored text, first you must clear the HiliteMode
low-memory global. By default the highlight mode bit of the low-memory global
variable is set to 1. You clear it by setting it to 0. After you highlight the text, you don’t
need to reset the bit; InvertRect resets it automatically.
Using QuickDraw Text 3-61

C H A P T E R 3

QuickDraw Text
The easiest way to clear the highlight mode bit is to call the Toolbox Utilities’ BitClr
procedure, for example:

BitClr(Ptr(HiliteMode), pHiliteBit);

just before calling InvertRect using srcXor mode. (Do not alter the other bits
in HiliteMode.)

Note
Routines that formerly used Xor inversion, such as InvertRect
and the text drawing routines, will use highlight mode if the hilite
bit is clear. ◆

From assembly language, you must call the pHiliteBit selector for highlight mode
when you use the BitClear trap: BCLR must use the assembly-language equate
hiliteBit. For example:

BCLR #hiliteBit, hiliteMode

Customizing QuickDraw’s Text Handling 3
The QuickDraw bottleneck routines are procedures that perform the fundamental tasks
associated with QuickDraw drawing operations. For each type of object that QuickDraw
can draw, including text, there is a low-level routine which the higher-level routines call
that actually performs the operation. These low-level routines, called bottlenecks
because so many of the higher-level routines use them, carry out the actual work of
measuring and drawing text.

The QuickDraw text routines use two of the bottleneck routines extensively—one to
measure text (StdTxMeas) and one to draw it (StdText). Most of the high-level
QuickDraw text routines call the low-level routines. The use of bottleneck routines
provides flexibility to QuickDraw and applications that need to alter or augment the
basic behavior of QuickDraw.

The graphics port record contains a field (grafProcs) which is set by default to
NIL, indicating that QuickDraw should use the standard low-level bottleneck
routines. You can modify this field to point to a record, QDProcs, which holds the
addresses of customized routines for QuickDraw to use instead of the standard ones.
For more information about the QDProcs record, see the QuickDraw chapters in
Inside Macintosh: Imaging.

You can set some of the fields of this record to point to the standard bottleneck routines,
and some to point to your customized routines. Your customized bottleneck routine can
augment the standard bottleneck routine by calling it directly, either before or after
performing its own operations, or it can replace a standard routine. If you replace either
of the two standard bottleneck routines used for measuring (StdTxtMeas) and drawing
3-62 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
(StdText) text, the routines you install must have the same calling sequences as the
standard routines. See “Low-Level QuickDraw Text Routines” on page 3-98 for these
routines and their parameters. For the major discussion of how to customize the
QuickDraw bottleneck routines, see Inside Macintosh: Imaging.

Note
Before replacing a bottleneck routine, consider the possibility that to do
so could jeopardize the future compatibility of the application. If you
replace either StdTxMeas or StdText, you change the behavior of the
high-level routines that call them. ◆

You can also customize QuickDraw’s text drawing and measuring capabilities by
writing high-level routines that do additional processing, but call the standard
bottleneck routines.

Note
If you need to call either StdText or StdTxMeas directly, you must
first check the graphics port grafProc field to determine whether the
bottleneck routines have been customized, and if so, you must call the
customized routine instead of the standard one. The bottleneck routines
are always customized for printing. ◆

Text in QuickDraw Pictures 3
This section describes aspects of how text is stored in picture files, including related
limitations and restrictions, such as the following:

■ The grayishTextOr transfer mode is not stored in pictures files, and therefore you
cannot use it for printing.

■ Inside a picture definition, DrawText cannot have a byteCount greater than 255.

Fonts 3

Whenever you record text in a picture file, QuickDraw stores the name of the current
font and uses it when playing back the picture. This is true for pictures drawn in both
the original and color graphics ports. The opcode that QuickDraw uses to save this
information is $002C. Here is its data type:

PictFontInfo = Record

length: Integer; {length of data in bytes}

fontID: Integer; {ID in the source system}

fontName:STR255;

End;
Using QuickDraw Text 3-63

C H A P T E R 3

QuickDraw Text
QuickDraw saves this information only one time for each font used in a picture.
The code in Listing 3-10 generates a picture file containing the font information that
Listing 3-11 shows.

Listing 3-10 Generating a picture file with font information

GetFNum (‘Venice’, theFontID); {Set a font before opening PICT}

TextFont (theFontID);

pHand2 := OpenPicture (pictRect);

MoveTo(20,20);

DrawString(‘ Better be Venice’);

GetFNum(‘Geneva’, theFontID);

TextFont(theFontID);

MoveTo(20,40);

DrawString(‘Geneva’);

GetFNum(‘Geneva’, theFontID);

TextFont(theFontID);

MoveTo(20,60);

DrawString(‘Geneva’);

ClosePicture;

When QuickDraw plays back a picture, it uses the font family ID (fontID) as a reference
into the list of font names which are used to set the correct font on the target system.

Listing 3-11 A picture file with font information

OpCode 0x002C {9,

“0005 0656 656E 6963 65”} /* save current font */

TxFont ‘venice’

DHDVText {20, 20, “ Better be Venice”}

OpCode 0x002C {9, /* save next font name */

“0003 0647 656E 6576 61”}

TxFont ‘geneva’

DVText {20, “Geneva”}

OpCode 0x002C {11, /* ditto */

“0002 084E 6577 2059 6F72 6B”}

TxFont ‘geneva’ /* second Geneva does not need

another $002C */

DVText {20, “Geneva”}
3-64 Using QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Text With Multiple Style Runs 3

If you used the GetFormatOrder procedure to determine the correct order in which to
draw text consisting of multiple style runs, the style runs are stored in display order
when you record the text in a picture file. To reconstruct the storage order of the text
from the picture file, an application that reads the style runs into memory from the
picture file must then use the GetFormatOrder procedure to reverse the display order
to storage order. Finally, the application must write the text into memory again,
following the order that GetFormatOrder returns.

For example, suppose you have a a text string consisting of three style runs with
different text directions—A (right-to-left), B (left-to-right), and C (left-to-right)—in
storage order. You number them: A=1, B=2, C=3.

You call GetFormatOrder for these style runs with a line direction of right to left, and it
returns 2, 3, 1. When you draw the style runs in display order and record them in a
picture file, they are written to the picture file in display order. Suppose that after you
record the picture file, an application cuts and pastes the text. Now the style runs are
written to memory in display order: B, C, A.

To get the proper storage order, you call GetFormatOrder again, with the same line
direction that you used the first time you called GetFormatOrder to determine the
display order, and it produces the original storage order: A, B, C.

QuickDraw Text Reference 3

This section describes the data structures, routines, and an application-defined routine
that provide the text-handling components of QuickDraw.

In addition to the graphics port record, which all of the routines use and which is
defined in the QuickDraw chapters of Inside Macintosh: Imaging, these routines use two
additional data structures: the font information record and the Style data type. They
are described in the “Data Structures” section.

The “Routines” section describes the QuickDraw routines that you use to define the text
drawing environment, measure and draw text, and identify what glyphs to highlight
and where to position the cursor in a range of text.

The constants that you use to identify the text direction and to specify where a style run
occurs within a line of text are listed in the “Summary of QuickDraw Text.” The
constants that you use to identify a font are listed in the chapter “Font Manager” in this
book. Equivalent declarations in the C language for the declarations and routines
described in this section are listed in the “C Summary.”
QuickDraw Text Reference 3-65

C H A P T E R 3

QuickDraw Text
Data Structures 3
This section describes the data structures that you use to provide information to the
text-handling routines of QuickDraw. The font information record returns measurement
information about the font or fonts used. The Style data type defines the styles that you
use to set the text style.

For more information about QuickDraw pictures, see the QuickDraw chapters in Inside
Macintosh: Imaging.

The Font Information Record 3

The GetFontInfo procedure uses the font information record to return measurement
information based on the font of the current graphics port. If the current font has an
associated font, as do Arabic and Hebrew, GetFontInfo returns information based on
both fonts. The font information record contains the ascent, the descent, the width of the
largest glyph, and the leading for a given font. The StdTxtMeas function also uses a
record of type FontInfo to return information about the current font. The FontInfo
data type defines a font information record.

TYPE FontInfo = RECORD

ascent: Integer; {ascent}

descent: Integer; {descent}

widMax: Integer; {maximum glyph width}

leading: Integer; {leading}

END;

Field descriptions

ascent The measurement in pixels from the baseline to the ascent
line of the font.

descent The measurement in pixels from the baseline to the descent line
of the font.

widMax The width in pixels of the largest glyph in the font.
leading The measurement in pixels from the descent line to the ascent

line below it.

The Style Data Type 3

The Style data type defines the styles that you specify as values to the TextFace
procedure to set the text style in the current graphics port’s txFace field. QuickDraw
draws the glyph in this style.

StyleItem = (bold, italic, underline, outline,

shadow, condense, extend);

Style = SET OF StyleItem;
3-66 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Routines 3
This section describes the routines that you use to set the text characteristics of the
graphics port drawing environment, measure and draw text, lay out lines of text, and
determine where to position the caret and which glyphs to highlight in a range of text. It
also describes two low-level routines that you can use to measure and draw text.

Four parameters that are common to a number of routines are described in detail here.
These parameters are also listed and defined briefly in the each routine.

The slop Parameter 3

The DrawJustified, MeasureJustified, PixelToChar, and CharToPixel
routines take a slop parameter. The value of this parameter is the number of pixels by
which the width of the text segment is to be changed, after the text has been scaled. The
slop is a signed value that specifies how much the text is to be extended or condensed.
The slop is derived from the calculations made using the proportion returned from the
PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

The styleRunPosition Parameter 3

The PortionLine, MeasureJustified, DrawJustified, PixelToChar, and
CharToPixel routines take a styleRunPosition parameter. This parameter specifies
the position of the style run on the display line, and is used to

■ determine the proportion of total slop to apply to a style run

■ measure or draw a line of justified text

■ identify where to break a line of text

■ determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use
intercharacter spacing for justification. For all other script systems, the parameter exists
for future extensibility. Although the style run position parameter is not used, for
example, for justifying text in the Roman script system, to allow for future compatibility,
you should always specify the appropriate value for it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs
may be allocated differently depending upon whether the style run is leftmost,
rightmost, or between two other style runs. For example, depending on the script
system, if a style run occurs at the beginning or end of a line, extra space may not be
added to the outer edge of the outermost glyph, whereas if a style run is interior to a
line, all of the glyphs of the text may be treated the same: extra space is allocated to both
sides of every glyph including those at either end of the style run.
QuickDraw Text Reference 3-67

C H A P T E R 3

QuickDraw Text
Note
The current implementations of simple script systems such as Roman
and Cyrillic do not justify a line of text by changing the width of
nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted
from) every space whether the space is at the beginning or end of the
line or interior to it. ◆

Use one of the following constants (defined as type JustStyleCode) in
the styleRunPosition parameter.

The numer and denom Parameters 3

The PortionLine, DrawJustified, MeasureJustified, PixelToChar,
CharToPixel, StdText, and StdTxMeas routines take numer and denom parameters.
Both numer and denom are point values: numer specifies the numerator for the
horizontal and vertical scaling factors, and denom specifies the denominator for
the horizontal and vertical scaling factors. Together, these values specify the scaling
factors for the text: numer.v over denom.v gives the vertical scaling (height), and
numer.h over denom.h gives the horizontal scaling factors (width). For routines that
take these parameters, you need to specify values for numer and denom even if you are
not scaling the text. For unscaled text, you can specify scaling factors of 1, 1.

For all routines except StdTxtMeas that take these parameters, numer and denom are
input parameters only. For StdTxtMeas, numer and denom are reference parameters.
On output, these parameters contain additional scaling to be applied to the text. Use of
the output values is explained in the description of “StdTxMeas” on page 3-99.

Setting Text Characteristics 3

The routines in this section set values in the text-related fields of the current graphics
port (GrafPort or CGrafPort). You also use these routines to set text characteristics
that vary from style run to style run. You use these routines to set the graphics port fields
to values equivalent to a new style run’s text characteristics before you call other
QuickDraw routines to measure and draw the text.

■ The TextFont procedure specifies the font to be used.

■ The TextFace procedure specifies the glyph style.

■ The TextMode procedure specifies the transfer mode.

■ The TextSize procedure specifies the font size.

Constant Value Meaning

onlyStyleRun 0 Only style run on the line

leftStyleRun 1 Leftmost of multiple style runs on the line

rightStyleRun 2 Rightmost of multiple style runs on the line

middleStyleRun 3 Interior style run: neither leftmost nor rightmost
3-68 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
■ The CharExtra procedure specifies the amount of pixels by which to widen or
narrow each space character in a range of text.

■ The SpaceExtra procedure specifies the amount of pixels by which to widen or
narrow each glyph other than the space characters in a range of text (CharExtra).

Note
To ensure future compatibility and benefit from any future
enhancements, always use these routines to modify the text fields of the
graphics port record, rather than directly change the field values. ◆

TextFont 3

The TextFont procedure sets the font of the current graphics port in which the text is
to be rendered.

PROCEDURE TextFont (font: Integer);

font The font family ID.

DESCRIPTION

The TextFont procedure sets the value of the graphics port text font (txFont) field.
The initial font family ID is 0, which represents the system font. The value that you
specify for this field is either an integer or a constant. The range of integers currently
defined are from 0 to 32767. Currently, negative font family IDs are not supported,
although they may be supported in the future.

For more information about TextFont, see “Setting the Font” on page 3-20.

SPECIAL CONSIDERATIONS

The system font and application font have different font IDs and sizes on various script
systems. However, the special designators 0 and 1 always map to the system font and
the application font for the system script, respectively.

TextFace 3

The TextFace procedure sets the style of the font in which the text is to be drawn in the
current graphics port.

PROCEDURE TextFace (face: Style);

face The style for text to be drawn in the current graphics port.
QuickDraw Text Reference 3-69

C H A P T E R 3

QuickDraw Text
DESCRIPTION

The TextFace procedure sets the value for the style of the font in the text face (txFace)
field of the current graphics port. The Style data type allows you to specify a set of one
or more of the following predefined constants: bold, italic, underline, outline,
shadow, condense, and extend. In Pascal, you specify the constants within square
brackets. For example:

TextFace([bold]); {bold}

TextFace([bold,italic]); {bold and italic}

The style is set to the empty set ([]) by default, which specifies plain. For more
information, see “Modifying the Text Style” on page 3-21.

ASSEMBLY-LANGUAGE INFORMATION

In assembly language, the style set is stored as a word whose low-order byte contains
bits representing the style. The bit numbers are specified by the following global
constants.

If all bits are 0, the low-order byte represents the plain glyph style.

TextMode 3

The TextMode procedure sets the transfer mode for drawing text in the current
graphics port.

PROCEDURE TextMode (mode: Integer);

mode The transfer mode to be used to draw the text.

DESCRIPTION

The TextMode procedure sets the transfer mode in the graphics port txMode field. The
transfer mode determines the interplay between what an application is drawing (the

Constant Bit Meaning

bold 0 Bold style

italicBit 1 Italic style

ulineBit 2 Underlined style

outlineBit 3 Outlined style

shadowBit 4 Shadowed style

condense 5 Condensed style

extendBit 6 Extended style
3-70 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
source) and what already exists on the display device (the destination), resulting in the
text display.

There are two basic kinds of modes: pattern (pat) and source (src). Source is the kind
that you use for drawing text. There are four basic Boolean operations: Copy, Or, Xor,
and Bic (bit clear), each of which has an inverse variant in which the source is inverted
before the transfer, yielding eight operations in all. Original QuickDraw supports these
eight transfer modes. Color QuickDraw enables your application to achieve color effects
within those basic transfer modes, and offers an additional set of transfer modes that
perform arithmetic operations on the RGB values of the source and destination pixels.
See the chapter “Color QuickDraw” in Inside Macintosh: Imaging for a complete
discussion of the arithmetic transfer modes. Other transfer modes are grayishTextOr,
transparent mode, and text mask mode.

Table 3-1 shows the eight basic transfer modes and their effects on the destination pixels.

This is how color affects these transfer modes when the source pixels are either all black
(all 1’s) or white (all 0’s).

Copy 3

The Copy mode applies the foreground color to the black part of the source (the part
containing 1’s) and the background color to the white part of the source (the part
containing 0’s), and replaces the destination with the colored source.

Or 3

The Or mode applies the foreground color to the black part of the source and replaces
the destination with the colored source. The white part of the source isn’t transferred
to the destination. If the foreground is black, the drawing will be faster. Copying to a
white background always reproduces the source image, regardless of the pixel depth.

Table 3-1 Effects of the basic transfer modes

Source Action on the destination pixel

If black source If white source

srcCopy Force black Force white

srcOr Force black Leave alone

srcXOr Invert Leave alone

srcBic Force white Leave alone

NotSrcCopy Force white Force black

NotSrcOr Leave alone Force black

NotSrcXOr Leave alone Invert

NotSrcBic Leave alone Force white
QuickDraw Text Reference 3-71

C H A P T E R 3

QuickDraw Text
Xor 3

The Xor mode complements the bits in the destination corresponding to the bits equal to
1 in the source. When used on a colored destination, the color of the inverted destination
isn’t defined.

Bic 3

The Bic mode applies the background color to the black part of the source and
replaces the destination with the colored source. The white part of the source isn’t
transferred to the destination. The black part of the source is erased, resulting in white
in the destination.

NotCopy 3

The NotCopy mode applies the foreground color to the white part of the source and the
background color to the black part of the source, and replaces the destination with the
colored source. It thus has the effect of reversing the foreground and background colors.

NotOr 3

The NotOr mode applies the foreground color to the white part of the source and
replaces the destination with the colored source. The black part of the source isn’t
transferred to the destination. If the foreground is black, the drawing will be faster.

NotXor 3

The NotXor mode inverts the bits that are 0 in the source. When used on a colored
destination, the color of the inverted destination isn’t defined.

NotBic 3

The NotBic mode applies the background color to the white part of the source and
replaces the destination with the colored source. The black part of the source isn’t
transferred to the destination.

The arithmetic transfer modes are addOver, addPin, subOver, subPin, adMax,
adMin, and blend. For color, the arithmetic modes change the destination pixels
by performing arithmetic operations on the source and destination pixels. Arithmetic
transfer modes calculate pixel values by adding, subtracting, or averaging the RGB
components of the source and destination pixels. They are most useful for 8-bit color,
but they work on 4-bit and 2-bit color also. When the destination bitmap is one bit
deep, the mode reverts to the basic transfer mode that best approximates the arithmetic
mode requested.

The grayishTextOr transfer mode draws dimmed text on the screen. You can
use it for black-and-white or color graphics ports. The grayishTextOr transfer
mode is not considered a standard transfer mode because currently it is not stored in
pictures, and printing with it is undefined. (It does not pass through the QuickDraw
bottleneck routines.)
3-72 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
The transparent mode replaces the destination pixel with the source pixel if the source
pixel isn’t equal to the background color. This mode is most useful in 8-bit, 4-bit, or
2-bit color modes.

Note
Multibit fonts may have a specific color. Some transfer modes may not
produce the desired results with a multibit font. However, the arithmetic
modes, transparent mode, and hilite mode work equally well with
single bit and multibit fonts. Multibit fonts draw quickly in srcOr mode
only if the foreground is white. Single bit fonts draw quickly in srcOr
mode only if the foreground is black. Grayscale fonts produce a
spectrum of colors, rather than just the foreground and background
colors. The following table shows transfer mode constants and
their selectors. ◆

Table 3-2 Transfer mode constants and selectors

For more information about transfer modes, see the chapters “QuickDraw Drawing” and
“Color QuickDraw” in Inside Macintosh: Imaging.

TextSize 3

The TextSize procedure sets the font size for text drawn in the current graphics port to
the specified number of points.

PROCEDURE TextSize (size: Integer);

size The font size in points. If you specify 0, the system font size (normally
12 points) is used.

Transfer mode Selector Transfer mode Selector
srcCopy 0 addPin 33

srcOr 1 addOver 34

srcXor 2 subPin 35

srcBic 3 transparent 36

notSrcCopy 4 adMax 37

notSrcOr 5 subOver 38

notSrcXor 6 adMin 39

notSrcBic 7 grayishTextOr 49

blend 32 mask 64
QuickDraw Text Reference 3-73

C H A P T E R 3

QuickDraw Text
DESCRIPTION

The TextSize procedure sets the font size in the text size (txSize) field of the current
graphics port record. The initial setting is 0, which specifies that the font size of the
system font is to be used. You may specify a value from 0 up to 32,767. For more
information, see “Changing the Font Size” on page 3-22.

SpaceExtra 3

The SpaceExtra procedure specifies the number of pixels by which to widen
(or narrow) each space in a style run to be drawn in the current graphics port.

PROCEDURE SpaceExtra (extra: Fixed);

extra The amount (in pixels or binary fractions of a pixel) to widen (or narrow)
each space in a style run on a line.

DESCRIPTION

The SpaceExtra procedure sets the value of the extra space (spExtra) field in the
current graphics port record. The initial setting is 0. You can pass a negative value for the
extra parameter, but be careful not to narrow spaces so much that the text is
unreadable. The value you specify is added to the width of each space character in the
style run. For those script systems that do not use spaces, any value set in the extra space
field is ignored. For those script systems that use spaces as delimiters, if you do not want
to justify a line of text using DrawJustified, you can use the SpaceExtra procedure
to set a fixed number of pixels to be added to each space character, then call DrawText
or DrawString.

When you use the justification routines (MeasureJustified, DrawJustified) to
measure or draw justified text, they temporarily reset the extra space value. They add to
the current value of the field, if any, the amount of extra space to be added to space
characters in the specified text in order to justify the text, based on calculations that take
into account the slop value for the range of text and all of the text characteristics. On exit,
these routines restore the original value.

For more information about SpaceExtra, see “Changing the Width of Characters” on
page 3-22.

SPECIAL CONSIDERATIONS

For a color graphics port (CGrafPort), you can use SpaceExtra by itself or in
conjunction with the CharExtra procedure to format a line of text in the 1-byte
simple or 2-byte script systems. You should not use CharExtra for 1-byte complex
script systems.
3-74 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
CharExtra 3

For a color graphics port (CGrafPort), the CharExtra procedure specifies the
number of pixels by which to widen (or narrow) the glyphs of each nonspace character
in a style run.

PROCEDURE CharExtra (extra: Fixed);

extra The amount (in pixels or decimal fractions of a pixel) to widen (or
narrow) each glyph other than the space character in a range of text.

DESCRIPTION

The CharExtra procedure sets the value of the chExtra field of the color graphics
port record. This field contains a number that is in 4.12 fractional notation: four bits of
signed integer followed by 12 bits of fraction. The CharExtra procedure uses the value
of the txSize field, so you must call TextSize to set the font size of the text before you
call CharExtra.

The initial setting is 0. You can pass a negative value for the extra parameter, but be
careful not to narrow glyphs so much that the text is unreadable. The measuring and
drawing routines use the value in this field when an application calls them to measure or
draw text. The CharExtra procedure is available only for color graphic ports.

SPECIAL CONSIDERATIONS

Do not use CharExtra for script systems that include zero-width characters, such as
diacritical marks, because intercharacter space is added to all glyphs, separating the
diacritical mark from the glyph of the character. Do not use it for script systems that
include contextual forms, such as ligatures or conjunct characters, which would not be
represented properly were intercharacter space added to these glyphs. For example, you
should not use CharExtra for the Devanagari or Arabic languages, whose text is drawn
as connected glyphs, or with the Sonata font because it includes zero-width characters.

The 2-byte script systems use the chExtra field value properly.

GetFontInfo 3

The GetFontInfo procedure returns information about the current graphics port’s font,
taking into account the style and size in which the glyphs are to be drawn.

PROCEDURE GetFontInfo (VAR info: FontInfo);

info A font information record that contains the font measurement
information, in integer values.
QuickDraw Text Reference 3-75

C H A P T E R 3

QuickDraw Text
DESCRIPTION

The GetFontInfo procedure returns the ascent, descent, leading, and width of the
largest glyph of the font in the text font, size, and style specified in the current graphics
port. If the script system specified by the current graphics port txFont field has an
associated font, as do Hebrew and Arabic, GetFontInfo returns combined information
based on both fonts. This is to accommodate text written in the Roman script when the
primary script system is non-Roman. However, even if all of the text is written in a
non-Roman script, if there is an associated font, GetFontInfo always bases its
information on the combined fonts. You can determine the line height, in pixels, by
adding the values of the ascent, descent, and leading fields.

The GetFontInfo procedure is similar to the Font Manager’s FontMetrics
procedure, except that the GetFontInfo procedure returns integer values. See “The
Font Information Record” on page 3-66 for a description of the record and its fields.

Drawing Text 3

QuickDraw provides routines that allow you to draw a single character, a Pascal string,
or an arbitrary sequence of text. You can also draw a text sequence made narrower or
wider using these routines; this technique is commonly used to justify a line of text.
These routines draw text in the font, style, and size of the current graphics port.
Consequently, you can draw only a single style run at a time using these routines.

■ The DrawChar procedure draws the glyph of a single 1-byte character.

■ The DrawString procedure draws the text of a Pascal string.

■ The DrawText procedure draws the glyphs of a sequence of characters.

■ The DrawJustified procedure draws a sequence of text that is widened or
narrowed by a specified number of pixels.

Whether the text to be drawn has a left-to-right direction, a right-to-left direction, or is
bidirectional, QuickDraw always draws text starting at the current pen location and
always advances the pen to the right by the width of the glyph or glyphs it has just
drawn. Before drawing text that has a right-to-left direction, QuickDraw reorders
the glyphs for display so that they can be read correctly, even though it draws them from
left to right.

DrawChar 3

The DrawChar procedure draws the glyph for the specified character at the current pen
location in the current graphics port.

PROCEDURE DrawChar (ch: CHAR);

ch The character code whose glyph is to be drawn.
3-76 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
DESCRIPTION

The DrawChar procedure draws a single character’s glyph and then advances the pen
by the width of the glyph. If the glyph isn’t in the font, the font’s missing symbol is
drawn. For more information, see “Individual Glyphs” on page 3-28.

Note
If you’re drawing more than one character, it’s faster to make
one DrawString or DrawText call rather than a series of
DrawChar calls. ◆

SPECIAL CONSIDERATIONS

Because it takes a single-byte value as the ch parameter, DrawChar works only for
1-byte script systems. If you want to draw the glyph of a single character in a 2-byte
script, call either DrawText, DrawString, or DrawJustified.

However, a series of calls to DrawChar in a 1-byte complex script system can give
incorrect results because a text string is not always a simple concatenation of a series
of characters. In a contextual script, two different glyphs may be used to represent a
single character in its contextual form and alone. To draw a sequence of text in a 1-byte
complex script system, use DrawText, DrawString, or DrawJustified instead.

However, for 1-byte complex scripts, you can use DrawChar for special purposes, such
as to include the isolated glyph of a character in a book’s index, for example, to show a
single glyph as it exists apart from contextual transformations.

DrawString 3

The DrawString procedure draws the specified Pascal string at the pen location in the
current graphics port (GrafPort or CGrafPort).

PROCEDURE DrawString (s: Str255);

s A Pascal string consisting of the text to be drawn.

DESCRIPTION

The DrawString procedure draws the string with its left edge at the current pen
location, extending right. The final position of the pen location, after the text is drawn, is
to the right of the rightmost glyph in the string. QuickDraw does not do any formatting,
such as handling of carriage returns or line feeds.

Note that you can use DrawString only for a Pascal string containing a single style run.
QuickDraw Text Reference 3-77

C H A P T E R 3

QuickDraw Text
Drawing text visible on the screen

QuickDraw temporarily stores on the stack all of the text you ask it to
draw, even if the text is to be clipped. When drawing large font sizes or
complex style variations, draw only what is visible on the screen. You
can determine the number of characters whose corresponding glyphs
actually fit on the screen by calling the StringWidth function to
determine the length of the string before calling DrawString. ◆

If you specify values in the graphics port spExtra or chExtra fields to change the
width of space or nonspace characters, DrawString takes these values into account.

SPECIAL CONSIDERATIONS

For right-to-left text, such as Hebrew or Arabic, QuickDraw draws the final (leftmost)
glyph first, then moves to the right through all the glyphs, drawing the initial
(rightmost) glyph last.

Note that you should not change the width of nonspace characters for 1-byte simple
script systems with zero-width characters or 1-byte complex script systems. For more
information, see “CharExtra” on page 3-75.

For contextual script systems, DrawString substitutes the proper ligatures, reversals,
and compound characters as needed.

Note
Inside a picture definition, DrawString can’t have a byteCount
greater than 255. ◆

DrawText 3

The DrawText procedure draws the specified text at the current pen location in the
current graphics port.

PROCEDURE DrawText (textBuf: Ptr; firstByte, byteCount: Integer);

textBuf A pointer to a buffer containing the text to be drawn.

firstByte An offset from the start of the text buffer (textBuf) to the first byte of the
text to be drawn.

byteCount The number of bytes of text to be drawn.

DESCRIPTION

The DrawText procedure draws the text with the leftmost glyph at the current pen
location, extending right. After QuickDraw draws the text, it sets the pen location to the
right of the rightmost glyph. For more information, see “Text Segments” on page 3-29.
3-78 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Drawing text visible on the screen

QuickDraw temporarily stores on the stack all of the text you ask it to
draw, even if the text is to be clipped. When drawing a range of text, it’s
best to draw only what is visible on the screen. If an entire text string
does not fit on a line, truncate the text at a word boundary. If possible,
avoid truncating within a style run. You can determine the number of
characters whose glyphs actually fit on the screen by calling the
TextWidth function before calling DrawText. ◆

If you specify values in the graphics port spExtra and chExtra fields to change the
width of nonspace and space characters, both TextWidth and DrawText take these
values into account.

SPECIAL CONSIDERATIONS

For 1-byte complex script systems, DrawText substitutes the proper ligatures, reversals,
and compound characters as needed.

For right-to-left text, such as Hebrew or Arabic, QuickDraw draws the final (leftmost)
glyph first, then moves to the right through all the characters, drawing the initial
(rightmost) glyph last.

For 2-byte script systems, note that byteCount is the number of bytes to be drawn, not
the number of glyphs. Because 2-byte script systems also include characters consisting of
only 1 byte, do not simply multiply the number of characters by 2 to determine this
value; you must determine and specify the correct number of bytes.

Note
Inside a picture definition, DrawText cannot have a byteCount greater
than 255. ◆

DrawJustified 3

The DrawJustified procedure draws the specified text at the current pen location in
the current graphics port, taking into account the adjustment necessary to condense or
extend the text by the slop value, appropriately for the script system.

PROCEDURE DrawJustified (textPtr: Ptr; textLength: LongInt;

 slop: Fixed;

 styleRunPosition: JustStyleCode;

 numer, denom: Point);

textPtr A pointer to the memory location of the beginning of the text to be drawn.

textLength
The number of bytes of text to be drawn.
QuickDraw Text Reference 3-79

C H A P T E R 3

QuickDraw Text
slop The amount of slop for the text to be drawn. A positive value extends the
text segment; a negative value condenses the text segment.

styleRunPosition
The position on the line of this style run. The style run can be the only one
on the line, the leftmost on the line, the rightmost on the line, or one
between two other style runs.

numer A point giving the numerator for the horizontal and vertical
scaling factors.

denom A point giving the denominator for the horizontal and
vertical scaling factors.

DESCRIPTION

The DrawJustified procedure is similar to the DrawText procedure, except that you
use it to draw text that is expanded or condensed by the number of pixels specified by
slop. The DrawJustified procedure is most commonly used to draw a line of
justified text.

The DrawJustified procedure draws the specified text in the font, size, and style of
the current graphics port, taking into account any scaling factors, and it distributes the
slop appropriately for the script system. Regardless of the line direction of the text to be
drawn, you place the pen at the left edge of the line before calling DrawJustified for
the first style run. For all subsequent style runs on that line, QuickDraw advances the
pen appropriately.

If DrawJustified changes the width of spaces, it temporarily resets the space extra
(spExtra) value. It adds to the current value of the field, if any, the amount of extra
space to be applied to each space character within the range of text in order to justify the
text, based on calculations that take into account the slop value and all of the text
characteristics. On exit, DrawJustified restores the original value.

For the slop parameter, pass DrawJustified the value assessed for this style run based
on the proportion returned for it from PortionLine. For more information, see “The
numer and denom Parameters” on page 3-68.

Note
Be sure to pass the same values for styleRunPosition and the scaling
factors (numer and denom) to DrawJustified that you pass to
PortionLine. ◆

See “The styleRunPosition Parameter” on page 3-67 for a description of this parameter
and the values it takes. See “The slop Parameter” on page 3-67 for more information
about the slop parameter.

For more information about how to use DrawJustified in conjunction with the other
routines used to prepare to draw a line of justified text, see“Measuring and Drawing
Lines of Text,” beginning on page 3-29.
3-80 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
SPECIAL CONSIDERATIONS

The DrawJustified procedure works with text in all script systems. For example, to
depict justified Arabic text, DrawJustified uses extension bars to create the additional
width that is distributed as slop within a style run.

For 1-byte complex script systems, DrawJustified substitutes the proper ligatures,
reversals, and compound characters as needed.

For 2-byte script systems that do not use space characters to delimit words,
DrawJustified distributes the slop value in a manner appropriate to the script system.
For script systems, such as Japanese, that use ideographic characters, DrawJustified
distributes the additional screen pixel width appropriately for the text representation.

Note that textLength is the number of bytes to be drawn, not the number of characters.
Because 2-byte script systems also include characters consisting of only 1 byte, do not
simply multiply the number of characters by 2 to determine this value; you must
determine and specify the correct number of bytes.

The DrawJustified procedure may move memory; do not call this procedure at
interrupt time.

Measuring Text 3

Laying out text to determine how much of it fits on the display line entails measuring
the text. QuickDraw provides five high-level routines that let you do this:

■ The CharWidth function returns the horizontal extension of a single glyph.

■ The StringWidth function returns the width of a Pascal string.

■ The TextWidth function returns the width of the glyphs of a text segment.

■ The MeasureText procedure fills an array with an entry for each character
identifying the width of each character’s glyph as measured from the left side of the
entire text segment.

■ The MeasureJustified procedure fills an array with an entry for each character in
a style run identifying the width of each character’s glyph as measured from the left
side of the text segment.

These routines measure text in the font, style, and size of the current graphics port.
Consequently, you need to call them once for each individual style run in any line of text
that contains multiple style runs.

CharWidth 3

The CharWidth function returns the width in pixels of the specified character.

FUNCTION CharWidth (ch: CHAR): Integer;

ch The character whose width is to be measured.
QuickDraw Text Reference 3-81

C H A P T E R 3

QuickDraw Text
DESCRIPTION

The CharWidth function includes the effects of the stylistic variations for the text set in
the current graphics port. If you change any of these attributes after determining the
glyph width but before actually drawing it, the predetermined width may not be correct.
For a space character, CharWidth also includes the effect of SpaceExtra. For a
nonspace character, CharWidth includes the effect of CharExtra. For more
information, see “Individual Glyphs” on page 3-28.

SPECIAL CONSIDERATIONS

Because it takes a single-byte value as the ch parameter, CharWidth works only for
1-byte simple script systems.

A series of calls to CharWidth in a contextual 1-byte font may give incorrect results,
because the width of a text segment may be different from the sum of its individual
character widths. In that case, to measure a line of text you should call TextWidth.

Do not use the CharWidth function for 2-byte script systems. If you want to measure
the width of a single glyph in a 2-byte font, you should use TextWidth.

StringWidth 3

The StringWidth function returns the length in pixels of the specified Pascal string.

FUNCTION StringWidth (s: Str255): Integer;

s A pascal string containing the text to be measured.

DESCRIPTION

You should not call StringWidth to measure scaled text. Although StringWidth
takes into account the graphics port record settings, it does not accept scaling
parameters, and therefore cannot determine the correct text width result for text to be
drawn using scaling factor parameters. For more information, see “Pascal Strings” on
page 3-28.

If you specify values in the graphics port spExtra or chExtra fields to change the
width of space or nonspace characters, StringWidth takes these values into account.
The StringWidth function works with all script systems.
3-82 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
TextWidth 3

The TextWidth function returns the length in pixels of the specified text.

FUNCTION TextWidth (textBuf: Ptr;

 firstByte, byteCount: Integer): Integer;

textBuf A pointer to a buffer that contains the text to be measured.

firstByte An offset from textBuf to the first byte of the text to be measured.

byteCount The number of bytes of text to be measured.

DESCRIPTION

You can use TextWidth to measure the screen pixel width of any text segment that has
uniform character attributes. You can use it to measure the style runs in a line of text,
whether you intend to draw the line using DrawText or DrawJustified. The
TextWidth function takes into account the character attributes set in the graphics
port. If you change any of these attributes after determining the text width but before
actually drawing the text, the predetermined width may not be correct. For a space
character, TextWidth also includes the effect of SpaceExtra. For a nonspace character,
TextWidth includes the effect of CharExtra.

The TextWidth function works with text in all script systems because the script
management system modifies the routine if necessary to give the proper results.

Note
To draw justified lines of text that include multiple style runs, you
calculate the amount of extra pixels, or slop, that remains to be
distributed throughout the line. This process entails measuring the
screen pixel width of each style run on the line: you can use TextWidth
for this purpose. For a complete discussion of how to use TextWidth to
prepare to draw a line of justified text, refer to “Measuring and Drawing
Lines of Text” beginning page 3-29. ◆

SPECIAL CONSIDERATIONS

For 1-byte complex script systems, TextWidth calculates the widths of any ligatures,
reversals, and compound characters that need to be drawn.

Note that byteCount is the number of bytes to be measured, not the number of
characters. Because 2-byte script systems also include characters consisting of only one
byte, you should not simply multiply the number of characters by 2 to determine this
value; you must determine and specify the correct number of bytes.
QuickDraw Text Reference 3-83

C H A P T E R 3

QuickDraw Text
MeasureText 3

The MeasureText procedure provides an array version of the TextWidth function. For
each character in the specified text, MeasureText calculates the width of the character’s
glyph in pixels from the left edge of the text segment.

PROCEDURE MeasureText (count: Integer; textAddr, charLocs: Ptr);

count The number of bytes to be measured.

textAddr A pointer to the memory location of the beginning of the text to be
measured. The value of textAddr must point directly to the first
character whose glyph is to be measured.

charLocs A pointer to an application-defined array of count + 1 integers.

DESCRIPTION

The MeasureText procedure calculates the onscreen pixel width of the glyph of each
character beginning from the left edge of the text segment. On return, the first element in
the charLocs array contains 0 and the last element contains the total width of the text
segment, when the primary line direction is left to right and the text is unidirectional.
When the primary line direction is right to left and the text is unidirectional, the first
element in the array contains the total width of the text segment, and the last element in
the array contains 0. When the text is bidirectional, at a direction boundary,
MeasureText selects the character whose direction maps to that of the primary
line direction.

The MeasureText procedure returns the same results that an application would get if it
called CharToPixel for each character with a direction parameter value of hilite.
Using MeasureText to find the pixel location of a character’s glyph is less efficient than
using the CharToPixel function because the application must define the array pointed
to by charLocs, and then walk the array after MeasureText returns the results.

For more information about MeasureText, contact Developer Technical Support.

SPECIAL CONSIDERATIONS

Some fonts in 1-byte script systems may have zero-width characters, which are usually
overlapping diacritical marks that typically follow the base character in memory. In this
case, MeasureText measures both the glyph of the base character (the high-order,
low-address byte) and the width of the diacritical mark. The charLoc array includes an
entry for each, but both entries contain the same value.

For 1-byte complex script systems, MeasureText calculates the widths of any ligatures,
reversals, compound characters, and character clusters that need to be drawn. For
example, for an Arabic ligature, the entry that corresponds to the trailing edge of each
character that is part of the ligature is the trailing edge of the entire ligature.
3-84 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Note that count is the number of bytes to be measured, not the number of characters.
Because 2-byte script systems also include characters consisting of only one byte, do not
simply multiply the number of characters by 2 to determine this value; you must
determine and specify the correct number of bytes. For 2-byte characters, the charLocs
array contains two entries—one corresponding to each byte—but both entries contain
the same pixel-width value.

MeasureJustified 3

For text that is expanded, condensed, or scaled, the MeasureJustified procedure
calculates the onscreen width in pixels from the left edge of the text segment to the glyph
of the character.

PROCEDURE MeasureJustified (textPtr: Ptr; textLength: LongInt;

 slop: Fixed; charLocs: Ptr;

 styleRunPosition: JustStyleCode;

 numer, denom: Point);

textPtr A pointer to the memory location of the beginning of the text to
be measured.

textLength
The number of bytes of text to be measured. The text length should equal
the entire visible part of the text on a line, including trailing spaces if and
only if they are displayed. Otherwise, the results for the last glyph on the
line may be invalid.

slop The amount of slop for the text to be drawn. A positive value extends the
text segment; a negative value condenses the text segment.

charLocs A pointer to an application-defined array of textLength + 1 integers.

styleRunPosition
The position on the line of this style run. The style run can be the only one
on the line, the leftmost on the line, the rightmost on the line, or one
between two other style runs.

numer A point giving the numerator for the horizontal and vertical
scaling factors.

denom A point giving the denominator for the horizontal and vertical
scaling factors.

DESCRIPTION

The MeasureJustified procedure is similar to the MeasureText procedure, except
that it is used to find the pixel location of a character’s glyph in text that is expanded or
condensed.
QuickDraw Text Reference 3-85

C H A P T E R 3

QuickDraw Text
The MeasureJustified procedure calculates the onscreen pixel width of the glyph of
each character beginning from the left edge of the text segment, taking into account
slop value, scaling, and style run position.

On return, the first element in the charLocs array contains 0 and the last element
contains the total width of the text segment, when the primary line direction is left to
right and the text is unidirectional. When the primary line direction is right to left and
the text is unidirectional, the first element in the array contains the total width of the text
segment, and the last element in the array contains 0. When the text is bidirectional, at a
direction boundary, MeasureJustified selects the character whose direction maps to
that of the primary line direction.

The MeasureJustified procedure returns the same results that an application would
get if it called CharToPixel for each character with a direction parameter value of
hilite. Using MeasureJustified to find the pixel location of a character’s glyph is
less efficient than using the CharToPixel function because the application must define
the array pointed to by charLocs, and then walk the array after MeasureText returns
the results.

The MeasureJustified procedure temporarily resets the space extra (spExtra)
value, adding to the current value of the field, if any, the amount of extra space to be
added to space characters in order to fully justify the text, based on calculations that take
into account the slop value and all the text characteristics. On exit, MeasureJustified
restores the original value.

Because MeasureJustified measures text in only the current font, style, and size, you
need to call it once for each individual style run.

For more information about the scaling factors, see “The numer and denom Parameters”
on page 3-68. See “The styleRunPosition Parameter” on page 3-67 for a description of the
styleRunPosition parameter and the values it takes. See “The slop Parameter” on
page 3-67 for more information about the slop parameter.

For additional information about MeasureJustified, contact Developer
Technical Support.

SPECIAL CONSIDERATIONS

The MeasureJustified procedure works properly for text in all script systems. For
1-byte complex script systems, MeasureJustified calculates the widths of any
ligatures, reversals, and compound characters that would need to be drawn.

Note that textLength is the number of bytes to be drawn, not the number of characters.
Because 2-byte script systems also include characters consisting of only one byte, you
should not simply multiply the number of characters by 2 to determine this value; the
application must determine and specify the correct number of bytes.

Some 1-byte script system fonts may have zero-width characters, which are usually
overlapping diacritical marks that typically follow the base character in memory. In this
case, MeasureJustified measures both the glyph of the base character (the
high-order, low-address byte) and the width of the diacritical mark. The charLoc array
includes an entry for each, but both entries contain the same value.
3-86 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
For 1-byte complex script systems, MeasureJustified calculates the widths of any
ligatures, reversals, compound characters, and character clusters that need to be drawn.
For example, for an Arabic ligature, the entry that corresponds to the trailing edge of
each character that is part of the ligature is the trailing edge of the entire ligature.

The MeasureJustified procedure may move memory; do not call this procedure at
interrupt time.

Laying Out a Line of Text 3

In addition to the routines that measure text, QuickDraw text provides additional
routines that help you perform the tasks involved in laying out a line of text.

■ The GetFormatOrder procedure determines the display order of style runs for a line
of text containing multiple style runs with mixed directions.

■ The VisibleLength function eliminates trailing spaces from the last style run
on the line.

■ The PortionLine function determines how to distribute the total slop value for
a line among the style runs on that line.

GetFormatOrder 3

The GetFormatOrder procedure determines the display order of multiple style runs
with mixed directions.

PROCEDURE GetFormatOrder (ordering: FormatOrderPtr;

 firstFormat: Integer;

 lastFormat: Integer;

 lineRight: Boolean;

 rlDirProc: Ptr; dirParam: Ptr);

ordering A pointer to a format order array. Upon completion of the call, the format
order array contains the numbers identifying the style runs in display
order. This is its type declaration:

TYPE
FormatOrder = ARRAY [0..0] OF Integer;
FormatOrderPtr = ^FormatOrder;

firstFormat
A number greater than or equal to 0 identifying the first style run in
storage order that is part of the line for which you are calling
GetFormatOrder.

lastFormat
A number greater than or equal to 0 identifying the last style run in
storage order that is part of the line for which you are calling
GetFormatOrder.
QuickDraw Text Reference 3-87

C H A P T E R 3

QuickDraw Text
lineRight A flag that you set to TRUE if the primary line direction is right-to-left.

rlDirProc A pointer to an application-supplied function that calculates the correct
direction, given the style run identifier. The GetFormatOrder procedure
calls the application-defined rlDirProc function for each identifier from
firstFormat to lastFormat. The interface to this function looks
like this:

FUNCTION MyRlDirProc(theFormat: Integer;
 dirParam: Ptr): Boolean;

This function returns TRUE for right-to-left text direction and FALSE for
left-to-right. Given dirParam and a style run identifier, the
application-defined rlDirProc routine should be able to determine the
style run direction.

theFormat A number identifying the style run and its associated attribute
information in the information block pointed to by dirParam.

 dirParam A pointer to a parameter block that contains the font and script
information for each style run in the text. This parameter block is used by
the application-supplied routine.

DESCRIPTION

The GetFormatOrder procedure helps you determine how to draw text that contains
multiple style runs with mixed directions. For mixed-directional text, after you
determine where to break the line, you need to call GetFormatOrder to determine the
display order. When you call GetFormatOrder, you supply a Boolean function, and
reference it using the rlDirProc parameter. This function calculates the direction of
each style run identified by number. Do not call GetFormatOrder if there is only one
style run on the line.

You must index the style runs in storage order. You pass GetFormatOrder numbers
identifying the first and last style runs of the line in storage order and the primary line
direction. The GetFormatOrder procedure returns to you an equivalent sequence in
display order.

If you do not explicitly define the primary line direction of the text, base the lineRight
parameter on the value of the SysDirection global variable. (The SysDirection
global variable is set to -1 if the system direction is right to left, and 0 if the system
direction is left to right.)

The ordering parameter points to an array of integers, with (lastFormat –
firstFormat + 1) entries. The GetFormatOrder procedure fills an array (the size of
the number of the style runs) with the display order of each style run. On exit, the array
contains a permuted list of the numbers from firstFormat to lastFormat. The first
entry in the array is the number of the style run to draw first; this is the leftmost style
run in display order. The last entry in the array is the number of the entry to draw last,
the rightmost style run in display order. For more information about how to use the
GetFormatOrder procedure, see “Determining the Display Order for Style Runs,”
which begins on page 3-33. For more information about the rlDirProc function, see
“Application-Supplied Routine” on page 3-100.
3-88 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
VisibleLength 3

The VisibleLength function calculates the length in bytes of a given text segment,
excluding trailing white space.

FUNCTION VisibleLength (textPtr: Ptr;

textLength: LongInt): LongInt;

textPtr A pointer to a text string.

textLength
The number of bytes in the text segment.

DESCRIPTION

The VisibleLength function determines how much of a style run to display, without
displaying trailing spaces. You call VisibleLength for the last style run of a line in
memory order. The last style run in memory order of the text constituting the line is not
always the last style run in display order. For a line of unidirectional left-to-right text, the
last style run in memory order is the rightmost style run in display order. For a line of
unidirectional right-to-left text, the last style run in memory order is the leftmost style
run in display order. However, if the text contains mixed directions, the last style run in
memory order may be an interior style run in display order.

The text justification routines do not automatically exclude trailing spaces, so you pass
them the value that VisibleLength returns as the length of the last style run in
memory order.

The VisibleLength function behaves differently for various script systems.

■ For simple script systems, such as Roman and Cryllic, and for 2-byte script systems,
VisibleLength does not include in the byte count it returns trailing spaces that
occur at the display end of the text segment. For 2-byte script systems,
VisibleLength does not count them, whether they are 1-byte or 2-byte
space characters.

■ For 1-byte complex script systems, VisibleLength does not include in the byte
count that it returns spaces whose character direction is the same as the primary line
direction. For 1-byte complex script systems that support bidirectional text, Roman
spaces take on a character direction based on the primary line direction. If the Roman
spaces then fall at the end of the text, VisibleLength does not include them in the
returned byte count.

Advancing the pointer in memory in response to VisibleLength

The purpose of VisibleLength is to trim off white space at the display
end of the line. The VisibleLength function does not eliminate the
white space by removing its character code from memory. Rather, it does
not include white space characters in the count that it returns as the
length of the range of text for which you call it. ◆
QuickDraw Text Reference 3-89

C H A P T E R 3

QuickDraw Text
For more information about VisibleLength, see the task description “Eliminating
Trailing Spaces (for Justified Text)” on page 3-36.

PortionLine 3

The PortionLine function determines the correct proportion of extra space to apply to
the specified style run in a line of justified text.

FUNCTION PortionLine(textPtr: Ptr; textLen: LongInt;

styleRunPosition: JustStyleCode;

numer: Point; denom: Point) : Fixed;

textPtr A pointer to the style run.

textLen The number of bytes in the text of the style run.

styleRunPosition
The position on the line of this style run. The style run can be the only one
on the line, the leftmost on the line, the rightmost on the line, or one
between two other style runs.

numer A point giving the numerator for the horizontal and vertical
scaling factors.

denom A point giving the denominator for the horizontal and vertical
scaling factors.

DESCRIPTION

You use PortionLine in formatting a line of justified text. It helps you determine how
to distribute the slop for a line among its style runs. When you know the total slop for a
line of text, you need to determine what portion of it to attribute to each style run. To do
this, you call the PortionLine function once for each style run on the line. The
PortionLine function computes the portion of extra space for a style run, taking into
account the font, size, style, and scaling factors of the style run. It returns a number that
represents the portion of the slop to be applied to the style run for which it is called. You
use the value that PortionLine returns to determine the percentage of slop that you
should attribute to a style run.

To determine the percentage of slop to allocate to each style run, you compute what
percentage each portion is of the sum of all portions. To determine the actual slop value
in pixels for each style run, you apply the percentage to the total slop value. The
following steps summarize this process:

1. Call PortionLine for each style run on the line.

2. Add the returned values together.

3. Calculate the percentage of the slop value for each style run using the ratio of the
value returned by PortionLine for that style run and the total of the values
returned for all of the style runs on the line.
3-90 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
4. Calculate the number of pixels to be added to each style run by multiplying the
percentage of the slop for each style run by the total number of pixels.

For more information about the scaling factors, see “The numer and denom Parameters”
on page 3-68. See “The styleRunPosition Parameter” on page 3-67 for a description of the
styleRunPosition parameter and the values it takes.

Note
Be sure to pass the same values for styleRunPosition and the scaling
factors (numer and denom) to PortionLine that you pass to any of the
other justification routines for this style run. ◆

Determining the Caret Position, and Selecting and Highlighting Text 3

To mark an insertion point you need to know where to draw the caret. To highlight text,
you need to know the caret positions that begin and end the text range. This section
describes routines that you use to locate a caret position for marking an insertion point
or highlighting text. You can also use the PixelToChar function to determine where to
break a line, and the CharToPixel function to find the screen pixel width of a text
segment.

■ The PixelToChar function converts a pixel location associated with a glyph in a
range of text to a byte offset within the style run.

■ The CharToPixel function converts a byte offset to a pixel location. The pixel
location is measured from the left edge of the style run.

■ The HiliteText procedure returns three pairs of offsets marking the endpoints of
ranges of text to be highlighted.

PixelToChar 3

The PixelToChar function returns the byte offset of a character in a style run, or part of
a style run, whose onscreen glyph is nearest the place where the user clicked the mouse.

FUNCTION PixelToChar (textBuf: Ptr; textLen: LongInt;

 slop: Fixed; pixelWidth: Fixed;

 VAR leadingEdge: Boolean;

 VAR widthRemaining: Fixed;

 styleRunPosition: JustStyleCode;

 numer: Point; denom: Point): Integer;

textBuf A pointer to the start of the text segment.

textLen The length in bytes of the entire text segment pointed to by textBuf. The
PixelToChar function requires the context of the complete text segment
in order to determine the correct value.
QuickDraw Text Reference 3-91

C H A P T E R 3

QuickDraw Text
slop The amount of slop for the text to be drawn. A positive value extends the
text segment; a negative value condenses the text segment.

pixelWidth
The screen location of the glyph associated with the character whose byte
offset is to be returned. The screen location is measured in pixels
beginning from the left edge of the text segment for which you
call PixelToChar.

leadingEdge
A Boolean flag that, upon completion of the call, is set to TRUE if the pixel
location is on the leading edge of the glyph, and FALSE if the pixel
location is on the trailing edge of the glyph. The leading edge is the left
side if the direction of the character that the glyph represents is
left-to-right (such as a Roman character), and the right side if the
character direction is right-to-left (such as an Arabic or a Hebrew letter).

widthRemaining
Upon completion of the call, contains –1 if the pixel location (specified by
the pixelWidth parameter) falls within the style run (represented by the
textLen bytes starting at textBuf). Otherwise, contains the amount of
pixels by which the input pixel location (pixelWidth) extends beyond
the right edge of the text for which you called PixelToChar.

styleRunPosition
The position on the line of this style run. The style run can be the only one
on the line, the leftmost on the line, the rightmost on the line, or one
between two other style runs.

numer A point giving the numerator for the horizontal and vertical
scaling factors.

denom A point giving the denominator for the horizontal and vertical
scaling factors.

DESCRIPTION

You can use the information that PixelToChar returns for highlighting, word selection,
and identifying the caret position. The PixelToChar function returns a byte offset and
a Boolean value that describes whether the pixel location is on the leading edge or
trailing edge of the glyph where the mouse-down event occurred. When the pixel
location falls on a glyph that corresponds to one or more characters that are part of the
text segment, the PixelToChar function uses the direction of the character or characters
to determine which side of the glyph is the leading edge. (A glyph can represent more
than one character, for example, for a ligature. Generally, if a glyph represents more than
one character, all of the characters have the same text direction.)

If the pixel location is on the leading edge, PixelToChar returns the byte offset
of the character whose glyph is at the pixel location. (If the glyph represents multiple
characters, it returns the byte offset of the first of these characters in memory.) If the pixel
location is on the trailing edge, PixelToChar returns the byte offset of the first
3-92 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
character in memory following the character or characters represented by the glyph. If the
pixel location is on the trailing edge of the glyph that corresponds to the last character
in the text segment, PixelToChar returns a byte offset equal to the length of the
text segment.

When the pixel location is before the leading edge of the first glyph in the displayed text
segment, PixelToChar returns a leading edge value of FALSE and the byte offset of the
first character. When the pixel location is after the trailing edge of the last glyph in the
displayed text segment, PixelToChar returns a leading edge value of TRUE and the
next byte offset in memory, the one after the last character in the text segment. If the
primary line direction is left to right, before means to the left of all of the glyphs for the
characters in the text segment, and after means to the right of all these glyphs. If the
primary line direction is right to left, before and after hold the opposite meanings.

You also use the value of the leadingEdge flag to help determine the value of the
direction parameter to pass to CharToPixel, which you call to get the caret position.
If the leadingEdge flag is FALSE, you base the value of the direction parameter on
the direction of the character at the byte offset in memory that precedes the one that
PixelToChar returns; if leadingEdge is TRUE, you base the value of the direction
parameter on the direction of the character at the byte offset that PixelToChar returns.
If there isn’t a character at the byte offset, you base the value of the direction
parameter on the primary line direction as determined by the SysDirection
global variable.

You specify a value for textLen that is equal to the entire visible part of the style run on
a line and includes trailing spaces if and only if they are displayed. They may not be
displayed, for example, for the last style run in memory order that is part of the
current line.

For more information about the scaling factors, see “The numer and denom Parameters”
on page 3-68. See “The styleRunPosition Parameter” on page 3-67 for a description of the
styleRunPosition parameter and the values it takes. See “The slop Parameter” on
page 3-67 for more information about the slop parameter.

Note
Be sure to pass the same values for styleRunPosition and the scaling
factors (numer and denom) to PixelToChar that you pass to any of the
other justification routines for this style run. ◆

You pass PixelToChar a pointer to the byte offset of the character in the text buffer that
begins the text segment or style run containing the character whose glyph is at the pixel
location. If you do not know which style run on the display line contains the character
whose glyph is at the pixel location, you can loop through the style runs until you find
the one that contains the pixel location. If the style run contains the character,
PixelToChar returns its byte offset. If it doesn’t, you can use the widthRemaining
parameter value to help determine which style run contains the glyph at the pixel
location.
QuickDraw Text Reference 3-93

C H A P T E R 3

QuickDraw Text
If you pass PixelToChar the pixel width of the display line, you can use the returned
value of widthRemaining to calculate the length of a style run. The widthRemaining
parameter contains the length in pixels from the end of the style run for which you call
PixelToChar to the end of the display line, in this case, if the style run for which you
call it does not include the byte offset whose glyph corresponds to the pixel location. You
subtract the returned widthRemaining value from the screen pixel width of the display
line to get the style run’s length.

To truncate a line of text, you can use PixelToChar to find the byte offset of the
character where the line should be broken. To return the correct byte offset associated
with the pixel location of a mouse-down event when the text belongs to a right-to-left
script system, the PixelToChar function reorders the text. If right-to-left text is
reordered when you use PixelToChar to determine where to break a line, it returns the
wrong byte offset. To get the correct result, you must turn off reordering before you call
PixelToChar. Remember to restore reordering after you have determined where to
break the line. See “Using Scaled Text” beginning on page 3-44 for more information.

SPECIAL CONSIDERATIONS

The PixelToChar function works with text in all script systems, and for text that is
justified or not. For contextual script systems, PixelToChar takes into account the
widths of any ligatures, reversals, and compound characters that were created when the
text was drawn.

Because 2-byte script systems also include characters consisting of only one byte, you
should not simply multiply the number of characters by 2 to determine this value; you
must determine and specify the correct number of bytes.

The PixelToChar function may move memory; do not call this procedure at
interrupt time.

CharToPixel 3

The CharToPixel function returns the screen pixel width from the left edge of a text
segment to the glyph of the character whose byte offset you specify.

FUNCTION CharToPixel (textBuf: Ptr; textLen: LongInt;

 slop: Fixed; offset: LongInt;

 direction: Integer;

 styleRunPosition: JustStyleCode;

 numer: Point; denom: Point): Integer;

textBuf A pointer to the beginning of the text segment.
3-94 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
textLen The length in bytes of the entire text segment pointed to by textBuf. The
CharToPixel function requires the context of the complete text in order
to determine the correct value.

slop The amount of slop for the text to be drawn. A positive value extends the
text segment; a negative value condenses the text segment.

offset The offset from textBuf to the character within the text segment whose
display pixel location is to be measured. For 2-byte script systems, if the
character whose position is to be measured is 2 bytes long, this is the
offset of the first byte.

direction This parameter specifies whether CharToPixel is to return the caret
position for a character with a direction of left-to-right or right-to-left. A
direction value of hilite indicates that CharToPixel is to use the caret
position for the character direction that matches the primary line direction
as specified by the SysDirection global variable.

styleRunPosition
The position on the line of this style run. The style run can be the only one
on the line, the leftmost on the line, the rightmost on the line, or one
between two other style runs.

numer A point giving the numerator for the horizontal and vertical
scaling factors.

denom A point giving the denominator for the horizontal and vertical
scaling factors.

DESCRIPTION

You use CharToPixel to find the onscreen pixel location at which to draw a caret and
to identify the selection points for highlighting. The CharToPixel function returns the
horizontal distance in pixels from the start of the range of text beginning with the byte
offset at textBuf to the glyph corresponding to the character whose byte offset is
specified by the offset parameter. The pixel location is relative to the beginning of the
text segment, not the left margin of the display line. To get the actual display line pixel
location of the glyph relative to the left margin, you add the pixel value that
CharToPixel returns to the pixel location at the end of the previous style run (on the
left) in display order. In other words, you need to know the length of the text in pixels on
the display line up to the beginning of the range of text that you call CharToPixel for,
and then you add in the screen pixel width that CharToPixel returns.

You specify a value for textLen that is equal to the entire visible part of the style run on
a line and includes trailing spaces if and only if they are displayed. They may not be
displayed, for example, for the last style run in memory order, which is part of the line.
Do not confuse the textLen parameter with the offset, which is the byte offset of the
character within the text segment whose pixel location CharToPixel is to return.

If you use CharToPixel to get a caret position to mark the insertion point, you
specify a value of leftCaret or rightCaret for the direction parameter. You
can use the value of the PixelToChar leadingEdge flag to determine the direction
parameter value.
QuickDraw Text Reference 3-95

C H A P T E R 3

QuickDraw Text
If the leadingEdge flag is FALSE, you base the value of the direction parameter on
the direction of the character at the byte offset in memory that precedes the one that
PixelToChar returns; if leadingEdge is TRUE, you base the value of the direction
parameter on the direction of the character at the byte offset that PixelToChar returns.
If there isn’t a character at the byte offset, you base the value of the direction
parameter on the primary line direction as determined by the SysDirection
global variable.

You can use the following constants to specify a value for direction.

For more information about the scaling factors, see “The numer and denom Parameters”
on page 3-68. See “The styleRunPosition Parameter” on page 3-67 for a description of the
styleRunPosition parameter and the values it takes. See “The slop Parameter” on
page 3-67 for more information about the slop parameter.

Note
Be sure to pass the same values for styleRunPosition and the scaling
factors (numer and denom) to CharToPixel that you pass to any of the
other justification routines for this style run. ◆

For more information about CharToPixel see “Drawing Carets and Highlighting” on
page 3-47.

SPECIAL CONSIDERATIONS

The CharToPixel function works with text in all script systems. For 1-byte contextual
script systems, CharToPixel calculates the widths of any ligatures, reversals, and
compound characters that need to be drawn.

Note that textLen is the number of bytes to be drawn, not the number of characters.
Because 2-byte script systems also include characters consisting of only one byte, do not
simply multiply the number of characters by 2 to determine this value; you must
determine and specify the correct number of bytes.

The CharToPixel function may move memory; do not call this procedure at
interrupt time.

Constant Value Meaning

leftCaret 0 Place caret for left-to-right text direction.

rightCaret –1 Place caret for right-to-left text direction.

hilite 1 Specifies that the caret position should be determined
according to the primary line direction, based on the
value of SysDirection.
3-96 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
HiliteText 3

The HiliteText procedure finds all the characters between two byte offsets in a text
segment whose glyphs are to be highlighted.

PROCEDURE HiliteText (textPtr: Ptr;

 textLen, firstOffset, secondOffset: Integer;

 VAR offsets: OffsetTable);

textPtr A pointer to a buffer that contains the text to be highlighted.

textLen The length in bytes of the entire text segment pointed to by textPtr.

firstOffset
The byte offset from textPtr to the first character to be highlighted.

secondOffset
The byte offset from textPtr to the last character to be highlighted.

offsets A table that, upon completion of the call, specifies the boundaries of the
text to be highlighted.

DESCRIPTION

The HiliteText procedure returns three pairs of byte offsets that mark the onscreen
ranges of text to be highlighted. This is because for bidirectional text, although the
characters are contiguous in memory, their displayed glyphs can include up to three
separate ranges of text.

The HiliteText procedure takes into account the fact that to highlight the complete
range of text whose beginning and ending byte offsets you pass it, it must return byte
offsets that encompass the glyphs of the first and last characters in the text segment. To
determine the correct offset pairs, HiliteText relies on the primary line direction as
specified by the SysDirection global variable.

Before calling HiliteText, you must set up an offset table (of type OffsetTable)
in your application to hold the results. You can consider the offset table a set of
three offset pairs:

TYPE OffPair =

RECORD

offFirst: Integer;

offSecond: Integer;

END;

OffsetTable = ARRAY [0..2] of OffPair;

If the two offsets in any pair are equal, the pair is empty and you can ignore it.
Otherwise the pair identifies a run of characters whose glyphs are to be highlighted.
QuickDraw Text Reference 3-97

C H A P T E R 3

QuickDraw Text
SPECIAL CONSIDERATIONS

The offsets that HiliteText returns depend on the primary line direction as defined by
the SysDirection global variable. If you change the value of SysDirection,
HiliteText returns the offset that is meaningful according to the primary line
direction for ambiguous offsets on the boundary of right-to-left and left-to-right text.

The HiliteText procedure may move memory; do not call this procedure at interrupt
time. For more information, see “Highlighting a Text Selection” on page 3-60.

Low-Level QuickDraw Text Routines 3

The QuickDraw text routines use two bottleneck routines extensively—one to draw text,
and one to measure it. This section describes the StdText procedure that is used to
draw text and the StdTxMeas function that is used to measure text. Although the
high-level QuickDraw text routines provide most of the functionality needed to measure
and draw text under most circumstances, you can call these low-level routines directly
when necessary. However, if you need to call either StdText or StdTxMeas directly,
you must first check the graphics port grafProc field to determine whether the
bottleneck routines have been customized, and if so, you must call the customized
routine instead of the standard one. The bottleneck routines are always customized
for printing.

If the grafProcs field contains NIL, the standard bottleneck routines have not been
customized. If the grafProcs field contains a pointer, the standard bottleneck routines
have been replaced by customized ones. A pointer (of type QDProcsPtr) in the
grafProc field points to a QDProc record. This record contains fields that point to the
bottleneck routine to be used for a specific drawing function. If the standard bottleneck
routine has been customized, your application needs to use the customized routine
indicated by the QDProcs record field.

The QuickDraw standard low-level bottleneck routines work properly for all script
systems. For more information about replacing or customizing the bottleneck routines,
see “Customizing QuickDraw’s Text Handling” on page 3-62 and the QuickDraw
chapters in Inside Macintosh: Imaging.

StdText 3

The StdText procedure is the standard low-level routine for drawing text. It draws text
from an arbitrary structure in memory specified by textBuf, starting from the first byte
and continuing for count bytes.

PROCEDURE StdText (count: Integer; textBuf: Ptr;

 numer, denom: Point);

count The number of bytes to be counted.

textBuf A pointer to the beginning of the text in memory.
3-98 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
numer A point giving the numerator for the horizontal and vertical
scaling factors.

denom A point giving the denominator for the horizontal and vertical
scaling factors.

DESCRIPTION

The StdText procedure is a QuickDraw bottleneck routine that the QuickDraw text
drawing routines use extensively. However, you can call the StdText routine directly to
draw text that is scaled or unscaled. For more information about the scaling factors, see
“The numer and denom Parameters” on page 3-68.

SPECIAL CONSIDERATIONS

The StdText procedure gives the correct results for all script systems. The count
parameter is the number of bytes of the text to be drawn, not characters. When
specifying this value, consider that 2-byte script systems also include characters
consisting of only one byte.

StdTxMeas 3

The StdTxMeas function measures the width of scaled or unscaled text.

FUNCTION StdTxMeas (byteCount: Integer; textAddr: Ptr;

 VAR numer, denom: Point;

 VAR info: FontInfo): Integer;

byteCount The number of bytes to be counted.

textAddr A pointer to the beginning of the text in memory.

numer A point giving the numerator for the horizontal and vertical
scaling factors.

denom A point giving the denominator for the horizontal and vertical
scaling factors.

info A font information record that describes the current font.

DESCRIPTION

The StdTxMeas function is a QuickDraw bottleneck routine that the QuickDraw
text-measuring routines use extensively. The StdTxMeas function returns the width of
the text stored in memory beginning with the first character at textAddr and
continuing for byteCount bytes. You can call the StdTxMeas function directly, for
example, to measure text that you want to explicitly scale, but not justify. You can also
use StdTxMeas to get the font metrics for scaled text in order to determine the line
height, instead of using GetFontInfo, which doesn’t support scaling.
QuickDraw Text Reference 3-99

C H A P T E R 3

QuickDraw Text
On input, you need to specify values for numer and denom, even if you are not scaling
the text. You can specify 1,1 scaling factors, in this case, so that no scaling is applied. On
return, numer and denom contain the additional scaling to be applied to the text. For
more information about the input scaling factors, see “The numer and denom
Parameters” on page 3-68.

The StdTxtMeas function returns output scaling factors that you need to apply to the
text to get the right measurement if the Font Manager was not able to fully satisfy the
scaling request. You can use the Toolbox Utilities’ FixRound and FixRatio functions to
help with this process. For more information, see “Using Scaled Text” on page 3-44.

SPECIAL CONSIDERATIONS

The StdTxMeas routine gives the correct results for all script systems. The byteCount
parameter is the number of bytes of the text to be drawn, not characters. When
specifying this value, consider that 2-byte script systems also include characters
consisting of only one byte.

Application-Supplied Routine 3
One of the QuickDraw text routines, GetFormatOrder, requires an
application-supplied routine, which is described in this section.

MyRlDirProc 3

The MyRlDirProc function is a callback routine that you supply for use by the
GetFormatOrder procedure. The MyRlDirProc function is a Boolean function that
calculates, for a style run identified by number, the direction of that style run. Your
routine returns TRUE for right-to-left text direction, FALSE for left-to-right.
MyRlDirProc is pointed to by the rlDirProc parameter of GetFormatOrder.

FUNCTION MyRlDirProc (theFormat: Integer;

 dirParam: Ptr): Boolean;

theFormat A value that identifies the style run whose direction is needed.

dirParam A pointer to an application-defined parameter block that contains the font
and script information for each style run in the text. The contents of this
parameter block are used to determine the direction of the style run.
Because of the relationship between the font family ID and the script
code, the font family ID can be used to determine the text direction.
3-100 QuickDraw Text Reference

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
DESCRIPTION

To fill the ordering array (type FormatOrder) for style runs on a line, the
GetFormatOrder procedure calls MyRlDirProc for each style run numbered from
firstFormat to lastFormat. GetFormatOrder passes MyRlDirProc a number
identifying the style run in storage order, and a pointer to the parameter information
block, dirParam, that contains the font and style information for the style run. Given
dirParam and a style run identifier, the application-defined MyRlDirProc routine
should be able to determine the style run direction.

You should store your style run information in a way that makes it convenient for
MyRLDirProc. One obvious way to do this is to declare a record type for style runs that
allows you to save things like font style, font family ID, script number, and so forth. You
then can store these records in an array. When the time comes for GetFormatOrder to
fill the ordering array, MyRlDirProc can consult the style run array for direction
information for each of the numbered style runs in turn.

For more information, see “GetFormatOrder” on page 3-87.
QuickDraw Text Reference 3-101

C H A P T E R 3

QuickDraw Text
Summary of QuickDraw Text 3

Pascal Summary 3

Constants 3

CONST

{CharToPixel directions}

leftCaret = 0; {Place caret for left block}

rightCaret = -1; {Place caret for right block}

hilite = 1; {Direction is SysDirection}

{constants for styleRunPosition parameter in PortionLine, DrawJustified, }

{ MeasureJustified, CharToPixel, and PixelToChar}

onlyStyleRun = 0; {This is the only style run on the line.}

leftStyleRun = 1; {This is the leftmost of multiple style runs on }

{ the line.}

rightStyleRun = 2; {This is the rightmost of multiple style runs }

{ on the line.}

middleStyleRun = 3; {There are multiple style runs on the line }

{ and this one is interior; neither }

{ leftmost nor rightmost.}

Data Types 3

TYPE

{Type declaration for GetFontInfo info VAR parameter}

FontInfo = RECORD

ascent: Integer;

descent: Integer;

widMax: Integer;

leading: Integer;

END;
3-102 Summary of QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
{GetFormatOrder ordering array}

FormatOrder = ARRAY [0..0] OF Integer;

FormatOrderPtr = ^FormatOrder;

FormatStatus = Integer;

{Type declaration for TextFace face parameter}

StyleItem = (bold,italic,underline,outline,shadow,condense,extend);

Style = SET OF StyleItem;

Routines 3

Setting Text Characteristics

PROCEDURE TextFont (font: Integer);

PROCEDURE TextFace (face: Style);

PROCEDURE TextMode (mode: Integer);

PROCEDURE TextSize (size: Integer);

PROCEDURE SpaceExtra (extra: Fixed);

PROCEDURE CharExtra (extra: Fixed);

PROCEDURE GetFontInfo (VAR info: FontInfo);

Drawing Text

PROCEDURE DrawChar (ch: CHAR);

PROCEDURE DrawString (s: Str255);

PROCEDURE DrawText (textBuf: Ptr; firstByte, byteCount: Integer);

PROCEDURE DrawJustified (textPtr: Ptr; textLength: LongInt;slop: Fixed;
styleRunPosition: JustStyleCode;
numer: Point; denom: Point);

Measuring Text

FUNCTION CharWidth (ch: CHAR): Integer;
FUNCTION StringWidth (s: Str255) : Integer;

FUNCTION TextWidth (textBuf: Ptr;
firstByte, byteCount: Integer): Integer;

PROCEDURE MeasureText (count: Integer; textAddr, charLocs: Ptr);

PROCEDURE MeasureJustified (textPtr: Ptr; textLength: LongInt;
slop: Fixed; charLocs: Ptr;
styleRunPosition: JustStyleCode;
numer: Point; denom: Point);
Summary of QuickDraw Text 3-103

C H A P T E R 3

QuickDraw Text
Laying Out a Line of Text

PROCEDURE GetFormatOrder (ordering: FormatOrderPtr; firstFormat: Integer;
lastFormat: Integer; lineRight: Boolean;
rlDirProc: Ptr;dirParam: Ptr);

FUNCTION VisibleLength (textPtr: Ptr; textLength: LongInt): LongInt;

FUNCTION PortionLine (textPtr: Ptr; textLen: LongInt;
styleRunPosition: JustStyleCode;
numer: Point; denom: Point): Fixed;

Determining the Caret Position, and Selecting and Highlighting Text

FUNCTION PixelToChar (textBuf: Ptr; textLen: LongInt;
slop: Fixed; pixelWidth: Fixed;
VAR leadingEdge: Boolean;
VAR widthRemaining: Fixed;
styleRunPosition: JustStyleCode;
numer, denom: Point): Integer;

FUNCTION CharToPixel (textBuf: Ptr; textLen: LongInt;
slop: Fixed; offset: LongInt;
direction: Integer;
styleRunPosition: JustStyleCode;
numer: Point; denom: Point): Integer;

PROCEDURE HiliteText (textPtr: Ptr;textLength, firstOffset,
secondOffset: Integer;
VAR offsets: OffsetTable);

Low-Level QuickDraw Text Routines

PROCEDURE StdText (count: Integer; textAddr: Ptr;
numer, denom: Point);

FUNCTION StdTxMeas (byteCount: Integer; textAddr: Ptr;
VAR numer, denom: Point;
VAR info: FontInfo): Integer;

Application-Supplied Routine

FUNCTION MyRlDirProc (theFormat: Integer; dirParam: Ptr) Boolean;
3-104 Summary of QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
C Summary 3

Constants 3

enum{

/*CharToPixel directions*/

leftCaret = 0, /*Place caret for left block*/

rightCaret = -1, /*Place caret for right block*/

hilite = 1, /*Direction is SysDirection*/

/*constants for styleRunPosition parameter in PortionLine,*/

/*DrawJustified, MeasureJustified, CharToPixel, and PixelToChar*/

onlyStyleRun = 0, /*This is the only style run on the line.*/

leftStyleRun = 1, /*This is the leftmost of multiple style */

/*runs on the line.*/

rightStyleRun = 2, /*This is the rightmost of multiple style runs */

/* on the line.*/

middleStyleRun = 3, /*There are multiple style runs on the line */

/* and this one is interior: neither */

/* leftmost nor rightmost.*/

Types 3

TYPE

/*Type declaration for GetFontInfo info VAR parameter*/

struct FontInfo {

short ascent;

short descent;

short widMax;

short leading;

};

typedef struct FontInfo FontInfo;

/*GetFormatOrder ordering array*/

typedef short FormatOrder[1];

typedef FormatOrder *FormatOrderPtr;

typedef short FormatStatus;

/*Type declaration for TextFace face parameter*/

??StyleItem = (bold,italic,underline,outline,shadow,condense,extend);

Style = SET OF StyleItem;??
Summary of QuickDraw Text 3-105

C H A P T E R 3

QuickDraw Text
Routines 3

Setting Text Characteristics

pascal void TextFont (short font);

pascal void TextFace (short face);

pascal void TextMode (short mode);

pascal void TextSize (short size);

pascal void SpaceExtra (extra: Fixed);

pascal void CharExtra (Fixed extra);

pascal void GetFontInfo (FontInfo *info);

Drawing Text

pascal void DrawChar (short ch);

pascal void DrawString (ConstStr255Param s);

pascal void DrawText (const void *textBuf, short firstByte,
short byteCount);

pascal void DrawJustified (Ptr textPtr, long textLength, Fixed slop,
JustStyleCode styleRunPosition,
Point numer, Point denom);

Measuring Text

pascal short CharWidth (short ch);

pascal short StringWidth (ConstStr255Param s);

pascal short TextWidth (const void *textBuf, short firstByte,
short byteCount);

pascal void MeasureText (short count, const void *textAddr,
void *charLocs);

pascal void MeasureJustified
(Ptr textPtr, long textLength, Fixed slop,
Ptr charLocs, JustStyleCode styleRunPosition,
Point numer, Point denom);

Laying Out a Line of Text

pascal void GetFormatOrder (FormatOrderPtr ordering,
short firstFormat, short lastFormat,
Boolean lineRight,
Ptr rlDirProc, Ptr dirParam);

pascal long VisibleLength (Ptr textPtr,long textLen);

pascal Fixed PortionLine (Ptr textPtr, long textLen, JustStyleCode
styleRunPosition, Point numer, Point denom);
3-106 Summary of QuickDraw Text

C H A P T E R 3

QuickDraw Text

3
Q

uickD
raw

 Text
Determining the Caret Position, and Selecting and Highlighting Text

pascal short PixelToChar (Ptr textBuf, long textLen, Fixed slop,
Fixed pixelWidth, Boolean *leadingEdge,
Fixed *widthRemaining, JustStyleCode
styleRunPosition, Point numer, Point denom);

pascal short CharToPixel (Ptr textBuf, long textLen, Fixed slop,
long offset, short direction, JustStyleCode
styleRunPosition, Point numer, Point denom);

pascal void HiliteText (Ptr textPtr, short textLength,
short firstOffset, short secondOffset,
OffsetTable offsets);

Low-Level QuickDraw Text Routines

pascal void StdText (short count, const void *textAddr,
Point numer, Point denom);

pascal short StdTxMeas (short byteCount, const void *textAddr,
Point *numer, Point *denom, FontInfo *info);

Application-Supplied Routine

pascal Boolean MyRlDirProc (short theFormat,Ptr dirParam);

Assembly-Language Summary 3

Trap Macros 3

Trap Macro Names

Pascal name Trap macro name

DrawJustified _DrawJustified

MeasureJustified _MeasureJustified

GetFormatOrder _GetFormatOrder

VisibleLength _VisibleLength

PortionLine _PortionLine

CharToPixel _CharToPixel

PixelToChar _PixelToChar

HiliteText _HiliteText
Summary of QuickDraw Text 3-107

C H A P T E R 3

QuickDraw Text
Trap Macros With Trap Words

Global Variables 3

Trap macro name Trap word

_MeasureText $A837

_StdText $A882

_DrawChar $A883

_DrawString $A884

_DrawText $A885

_TextWidth $A886

_TextFont $A887

_TextFace $A888

_TextMode $A889

_TextSize $A88A

_GetFontInfo $A88B

_StringWidth $A88C

_CharWidth $A88D

_SpaceExtra $A88E

_StdTxMeas $A8ED

_CharExtra $AA23

HiliteMode Flag used for color highlighting
SysDirection System direction; the primary line direction and alignment for text
thePort The currently active graphics port
3-108 Summary of QuickDraw Text

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	QuickDraw Text
	About QuickDraw Text
	Graphics Ports and Text Drawing
	Font, Font Style, and Font Size
	Transfer Modes

	QuickDraw Text, Script Systems, and Other Managers...
	Text Formatting and Justification
	Scaling
	Carets and Highlighting

	Using QuickDraw Text
	Preparing to Use QuickDraw
	Determining the Version and Initializing QuickDraw...

	Setting Up the Text-Drawing Environment
	Specifying Text Characteristics
	Setting the Font
	Modifying the Text Style
	Changing the Font Size
	Changing the Width of Characters
	Using Fractional Glyph Widths

	Specifying the Transfer Mode
	Basic Transfer Mode Operations
	Arithmetic Transfer Mode Operations
	The grayishTextOr Transfer Mode
	Text Mask Mode
	Transparent Transfer Mode
	Transfer Modes and Multibit Fonts

	Measuring and Drawing Single Segments of Text
	Individual Glyphs
	Pascal Strings
	Text Segments

	Measuring and Drawing Lines of Text
	Determining Where to Break the Line
	Determining the Display Order for Style Runs
	Eliminating Trailing Spaces (for Justified Text)
	Calculating the Slop Value (for Justified Text)
	Allocating the Slop to Each Style Run (for Justifi...
	Drawing the Line of Text
	Using Scaled Text

	Drawing Carets and Highlighting
	Converting an Onscreen Pixel Location to a Byte Of...
	Finding a Caret Position and Drawing a Caret
	Synchronizing the Caret With the Keyboard Script
	Highlighting a Text Selection

	Customizing QuickDraw’s Text Handling
	Text in QuickDraw Pictures
	Fonts
	Text With Multiple Style Runs

	QuickDraw Text Reference
	Data Structures
	The Font Information Record
	The Style Data Type

	Routines
	Setting Text Characteristics
	Drawing Text
	Measuring Text
	Laying Out a Line of Text
	Determining the Caret Position, and Selecting and ...
	Low-Level QuickDraw Text Routines

	Application-Supplied Routine

	Summary of QuickDraw Text
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Types
	Routines

	Assembly-Language Summary
	Trap Macros
	Global Variables

	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

