

A P P E N D I X B

B

International R
esources

International Resources B

This appendix describes the international resources, which constitute the major portion
of each Macintosh script system. The international resources define how a script system
implements its particular writing system and how it allows for language or regional
variations within a writing system.

The Script Manager, the Text Utilities, QuickDraw, and the Font Manager all use the
international resources directly to handle text in various script systems. TextEdit makes
indirect use of information in the international resources through calls to the Script
Manager and other managers.

A text application uses the international resources indirectly whenever it makes a call to
a script-aware routine in QuickDraw, the Text Utilities, or the Script Manager. It can also
access the international resources directly through Script Manager calls, in order to

■ pass a resource handle or pointer as a parameter to a text-handling routine

■ extract formatting information from a table within a resource

■ modify the contents of a resource, to customize text handling

Your most common reason to access the international resources may be to get a handle or
pointer to pass to a text-handling routine. For that task, you do not need the information
in this appendix.

Read this appendix if your application needs information about the internal structure of
one or more international resources. If you need a particular resource table to perform a
specific operation, such as formatting currencies or dates, extracting number parts, or
converting script-independent tokens to the text of a particular script system, this
appendix shows you where to get the information you need.

Read this appendix also if your application requires a custom localized version of some
text-handling feature. To provide that feature, you can modify one or more of the
international resources and supply that modified version with your application or its
documents. In this way, you can localize the formats of numbers, currency, time, dates,
and measurement; you can localize string comparison and word selection; you can
modify the conversion of strings to tokens; you can specify custom character-rendering
behavior; and you can specify custom transliteration rules.

Read this appendix also if you are creating a new script system. A complete script
system requires a full set of the appropriate international resources, certain keyboard
resources (as described in the appendix “Keyboard Resources” in this book), and one
or more fonts.

Before reading this appendix, read the chapter “Introduction to Text on the Macintosh”
in this book. The parts of the Macintosh script management system that make use of the
resources documented here are described in the chapters “QuickDraw Text,” “Text
Utilities,” and especially “Script Manager,” in this book. The Resource Manager, which
manages all Macintosh resources, is described in Inside Macintosh: More Macintosh Toolbox.

This appendix describes the international resources in general, shows the relationship
between resource ID and script code, shows how to gain access to international resources
and use them, and then describes each resource in detail.
B-3

A P P E N D I X B

International Resources

About the International Resources B

This section introduces the international resources, describes how the set of international
resources varies among script systems and among different localized versions of
Macintosh system software, and gives a table showing the relationship between script
code and resource ID number used by fonts and by specific types of international
resources and keyboard resources.

What the International Resources Are B
Each script system consists of a set of international resources and a set of keyboard
resources. These resources, possibly in conjunction with the WorldScript I or WorldScript
II extension—and with the use of the proper font—completely specify a script’s
behavior. Because script-specific behavior is segregated into resources that are
customizable and replaceable, your software can potentially use the same routines to
handle text in any language, even one that is not curently supported.

The international resources that define individual script systems can include all but two
in the following table. Two of the international resources, the international configuration
resource and the script-sorting resource, are unique to each Macintosh System file; they
do not belong to any script system.

Table B-1 lists the international resources and their resource types, and gives a capsule
description of their contents. More complete descriptions follow.

Table B-1 The international resources

Name Resource
type

Partial contents

International configuration 'itlc' Configuration of the system

Script sorting 'itlm' Sorting order among scripts

International bundle 'itlb' IDs of all resources for a script system

Numeric format 'itl0' Number, time, and short-date formats

Long-date format 'itl1' Long date formats

String manipulation 'itl2' Sorting order, word breaks

Tokens 'itl4' Tables of tokens, number parts

Encoding/rendering 'itl5' Character encoding or rendering

Transliteration 'trsl' Tables for phonetic conversion
B-4 About the International Resources

A P P E N D I X B

International Resources

B

International R
esources

■ International configuration resource. Sets up the basic configuration for the system,
including the system script. Specifies the system script code and the region code that
identifies the regional version of the system script; initializes the states of the system
direction, the font force flag, the international resources selection flag, the
international keyboard flag (used for the Macintosh Plus), and the Script Manager
general flags. There is only one 'itlc' resource for each localized version of
system software.

■ Script-sorting resource. Specifies the preferred sorting order for script codes, language
codes, and region codes. Also specifies the default language for each script, the parent
script for each language, and the parent language for each region. There is only one
'itlm' resource for each localized version of system software.

■ International bundle resource. Sets up the basic configuration for an individual script
system. The international bundle resource specifies the resource IDs for the script’s
resources. It also initializes many script variables, such as the script flags, the default
language code, and the numeral and calendar representation codes for the script. The
international bundle resource also specifies font information, script initialization data,
valid styles for the script, and the style to use for designating aliases. Each script
system has one 'itlb' resource.

■ Numeric-format resource. Contains short date and time formats, and formats for
currency and numbers and the preferred unit of measurement. It also contains the
region code for this particular resource. A script system can have one or more
'itl0' resources.

■ Long-date-format resource. Specifies the long date format for a particular region,
including the names of days and months. Each long-date-format resource contains the
region code for this particular resource. A long-date-format resource can have an
optional extension for additional month and day names as well as abbreviated month
and day names. A script system can have one or more 'itl1' resources.

■ String-manipulation resource. Contains routines that control text-sorting behavior,
and tables for character type, case conversion, and word breaks. A script system can
have one or more 'itl2' resources.

■ Tokens resource. Contains tables and code for converting text to tokens. It also has
tables for formatting numbers, for converting tokens to text, and for determining
whitespace characters. A script system can have one or more 'itl4' resources.

■ Encoding/rendering resource. Contains either information related to character
encoding, or information controlling text-rendering behavior, in a script-specific
format. This is an optional resource; a script system can have zero or more
'itl5' resources.

■ Transliteration resource. Specifies how to convert characters from one subscript to
another within a script system. This is an optional resource; a script system can have
zero or more 'trsl' resources.
About the International Resources B-5

A P P E N D I X B

International Resources

International resources and localized system software

When Macintosh system software is localized for a non-U.S. market, it
contains replacements for or modifications to some of the U.S. versions
of the international resources. See the discussion of U.S. international
resources and keyboard resources in the appendix “Built-in Script
Support” for a list of resources that may be replaced during
localization. ◆

Script Codes and Resource ID Ranges B
Fonts, international resources, and keyboard resources that are related to a particular
script system have resource ID numbers in a range specific to that script. The script
management system uses this relationship between resource ID and script code to assign
the proper resources for displaying and formatting text. For example, the Script Manager
FontScript, IntlScript, and FontToScript functions all use a font family ID to
determine the script code that they return. Many other Script Manager, Text Utilities, and
QuickDraw routines that load and use international resources take an explicit or implicit
script code parameter; they will load only resources with ID numbers in the proper
range for the supplied script code.

This numbering convention applies to font family IDs, and to the ID numbers of the
following international and keyboard resources: 'itl0', 'itl1', 'itl2', 'itl4',
'itl5', 'trsl', 'KCHR', 'itlk', 'kcs#', 'kcs4', and 'kcs8'.

Resources with ID numbers below 16384 ($4000) belong to the Roman script system.
Currently, the script management system uses the following formula to calculate the
script code for resources with ID numbers of 16384 and over:

scriptCode = ((resourceID - 16384) DIV 512) + 1

The formula allots half of the range of nonnegative ID values to the Roman script
system, and 512 ID numbers (for each resource type) to each other script system, as
shown in Table B-2. Please note that this formula may change in the future; note also that
future script systems may possibly use negative ID values.

Table B-2 Resource ID ranges for each script system

Script system Script code Resource ID range

Decimal Hexadecimal

Roman 0 2–16383 $0000–$3FFF

Japanese 1 16384–16895 $4000–$41FF

Chinese (Traditional) 2 16896–17407 $4200–$43FF

Korean 3 17408–17919 $4400–$45FF
B-6 About the International Resources

A P P E N D I X B

International Resources

B

International R
esources

Arabic 4 17920–18431 $4600–$47FF

Hebrew 5 18432–18943 $4800–$4FF9

Greek 6 18944–19455 $4A00–$4BFF

Russian 7 19456–19967 $4C00–$4DFF

Right-left symbols 8 19968–20479 $4E00–$4FFF

Devanagari 9 20480–20991 $5000–$51FF

Gurmukhi 10 20992–21503 $5200–$53FF

Gujarati 11 21504–22015 $5400–$55FF

Oriya 12 22016–22527 $5600–$57FF

Bengali 13 22528–23039 $5800–$5FF9

Tamil 14 23040–23551 $5A00–$5BFF

Telugu 15 23552–24063 $5C00–$5DFF

Kannada 16 24064–24575 $5E00–$5FFF

Malayalam 17 24576–25087 $6000–$61FF

Sinhalese 18 25088–25599 $6200–$63FF

Burmese 19 25600–26111 $6400–$65FF

Cambodian 20 26112–26623 $6600–$67FF

Thai 21 26624–27135 $6800–$6FF9

Laotian 22 27136–27647 $6A00–$6BFF

Georgian 23 27648–28159 $6C00–$6DFF

Armenian 24 28160–28671 $6E00–$6FFF

Chinese (Simplified) 25 28672–29183 $7000–$71FF

Tibetan 26 29184–29695 $7200–$73FF

Mongolian 27 29696–30207 $7400–$75FF

Ethiopian 28 30208–30719 $7600–$77FF

Non-Cyrillic Slavic 29 30720–31231 $7800–$79FF

Vietnamese 30 31232–31743 $7A00–$7BFF

Sindhi 31 31744–32255 $7C00–$7DFF

Uninterpreted symbols 32 32256–32767 $7E00–$7FFF

Table B-2 Resource ID ranges for each script system (continued)

Script system Script code Resource ID range

Decimal Hexadecimal
About the International Resources B-7

A P P E N D I X B

International Resources

Starting with a script code, you can back-calculate resource ID ranges as follows:

■ Scripts with script codes in the range 1–32 have a range of 512 resource ID numbers,
beginning with a number calculated according to this formula:

firstID = 16384 + 512 * (script code – 1)

■ Scripts with script codes in the range 33–64 have a range of 512 resource ID numbers,
beginning with a number calculated according to this formula:

firstID = –32768 + 512 * (script code –33)

Note
Some script codes above 32 are not usable because they correspond to
resource ID ranges that are reserved for other purposes. Script codes 33
through 40 are invalid; furthermore, script codes above 48 are currently
unavailable and may become invalid. ◆

Constants for all defined script codes are listed in the chapter “Script Manager” in
this book.

Using the International Resources B

The Script Manager and the other managers that make up the Macintosh script
management system use the information in the international resources to format dates
and times, find word boundaries, transliterate text, and determine character type, among
other tasks. Your application indirectly accesses that information when it makes
script-aware calls that rely on the current script system. In addition, you can directly
access an international resource in order to

■ pass a resource handle or pointer as a parameter to a text-handling routine. Many
text-handling calls may take an explicit handle to an international resource; you first
load the resource with calls to the Script Manager, and then pass its handle as a
parameter to the call.

■ extract formatting information from a table within a resource. If you are formatting
currencies, dates, or numbers (without calling the Text Utilities routines that do
formatting for you) , or if you are converting script-independent tokens to the text of a
particular script system, you can load the appropriate resource with calls to the Script
Manager, and then examine its contents for the information you need.

■ provide a modified version of a resource, to customize text handling. You can load the
appropriate resource with calls to the Script Manager, change it, and then save the
changed resource in such a manner that it is used in place of the original resource.

Keep these points in mind when using a script system’s international resources:

■ You can load the international resources 'itl0', 'itl1', 'itl2', or 'itl4'
directly with GetResource or other related Resource Manager routines, but it is not
recommended. If you use a Script Manager call such as GetIntlResource instead,
B-8 Using the International Resources

A P P E N D I X B

International Resources

B

International R
esources

the Script Manager determines which particular instance of an international resource
to load, given the current font script, the script system’s default preferences, and the
current state of the international resources selection flag.

■ Remember that most of the script-specific international resources have ID numbers
within a range unique to their script system. If you are providing resources that add
to or replace a script system’s default resources, make sure that your resources have
resource IDs in the proper range.

■ If the international resources selection flag is set to TRUE, the international resources
used by several script-aware Text Utilities routines are those of the system script.
However, you can force those routines to use the international resources of the font
script instead by clearing the international resources selection flag to FALSE. You can
set and clear the international resources selection flag by using the Script Manager
SetScriptManagerVariable function. See the discussion on determining script
codes in the chapter “Script Manager” in this book.

■ You can use multiple formats for different languages or regions with the same script
system by adding multiple versions of international resources, each having a different
resource ID within the script’s range. You store those international resources in your
application’s or document’s resource fork, where they can override those in the
System file.

For more information, see the discussions of direct access to international resources and
replacing default international resources in the chapter “Script Manager” in this book.

Note
Several international resources have type definitions that give you direct
access to their components from high-level languages. These definitions
are documented in this appendix. For other international resources
high-level types are not defined, and graphic figures show the
structures instead. ◆

International Configuration Resource (Type 'itlc') B

The international configuration resource (resource type 'itlc') contains script-related
configuration information for the currently executing version of system software. Only
one 'itlc' resource is provided with each localized version of Macintosh system
software. It is in the System file. Its resource ID is 0.

The Script Manager uses the international configuration resource at startup to
configure the system and the system script. The resource includes fields that specify
these attributes:

■ script code for the system script

■ region code for this localized version of system software and the system script

■ initial values for the Script Manager general flags

■ initial value for the system direction
International Configuration Resource (Type 'itlc') B-9

A P P E N D I X B

International Resources
Several Script Manager variables are initialized from this resource. Selectors for the
Script Manager variables are listed in the chapter “Script Manager” in this book.

The ItlcRecord Data Type B
The international configuration record (data type ItlcRecord) describes the contents of
the international configuration resource.

TYPE ItlcRecord =

RECORD

itlcSystem: Integer; {system script}

itlcReserved: Integer; {reserved}

itlcFontForce: SignedByte; {initial font force flag}

itlcIntlForce: SignedByte; {initial int’l res. flag}

itlcOldKybd: SignedByte; {old keyboard}

itlcFlags: SignedByte; {Script Mgr. general flags}

itlcIconOffset: Integer; {reserved}

itlcIconSide: SignedByte; {reserved}

itlcIconRsvd: SignedByte; {reserved}

itlcRegionCode: Integer; {preferred region code}

itlcSysFlags: Integer; {flags for system globals}

itlcReserved4: ARRAY [0..31] OF SignedByte; {reserved}

END;

Field descriptions

itlcSystem The script code defining the system script. The system script affects
system default settings, such as the default font and the text that
appears in dialog boxes and menu bars, and so forth. Script codes
and their constants are listed in the chapter “Script Manager” in this
book. At startup, this value is copied into the Script Manager
variable accessed through the selector smSysScript.

itlcReserved Reserved.
itlcFontForce The initial setting for the font force flag. A value of TRUE ($FF)

forces Roman fonts to be interpreted as belonging to the system
script. The font force flag is described in the chapter “Script
Manager” in this book. At startup, this value is copied into the
Script Manager variable accessed through the selector
smFontForce.

itlcIntlForce The initial setting for the international resources selection flag. A
value of TRUE ($FF) forces Text Utilities routines to use the
international resources for the system script, rather than the font
script. The international resources selection flag is described in the
chapter “Script Manager” in this book. At startup, this value is
copied into the Script Manager variable accessed through the
selector smIntlForce.
B-10 International Configuration Resource (Type 'itlc')

A P P E N D I X B

International Resources

B
International R

esources
itlcOldKybd The initial setting for the international keyboard flag for use by the
Macintosh Plus computer. In addition to the standard Macintosh
Plus keyboard (keyboard type 11), two types of smaller keyboard
without numeric keypad are available: a U.S. version and an
international version. Both have a keyboard type of 3, and the user
uses the Keyboard control panel to indicate which is being used; the
user’s selection is saved in this field. When TRUE ($FF), this flag
indicates that the international keyboard is being used. When
FALSE, this flag indicates that the U.S. keyboard is being used.

itlcFlags The initial settings for the Script Manager general flags. At startup,
this value is copied into the first (high-order) byte of the Script
Manager variable accessed through the selector smGenFlags.

itlcIconOffset (reserved).
itlcIconSide (reserved).
itlcIconRsvd (reserved).
itlcRegionCode The region code for this version of system software. It specifies the

region for which the system and system-script resources were
localized. The constants that define region codes are also described
in the chapter “Script Manager” in this book. At startup, this value
is copied into the Script Manager variable accessed through the
selector smRegionCode.

itlcSysFlags Flags for setting system global variables. Currently only one bit is
defined; it allows the configuration resource to set the system
direction (left-to-right or right-to-left) at startup. It is bit 15, defined
by the following constant:

CONST

itlcSysDirection = 15;

The system global SysDirection is initialized from this value. A
value of 0 for bit 15 sets a system direction of left-to-right
(SysDirection = 0) at startup, whereas a value of 1 for the bit sets
a system direction of right-to-left (SysDirection = $FFFF). You
can access SysDirection through the Script Manager routines
GetSysDirection and SetSysDirection. System direction
may be initially localized to a value appropriate for the system
script, but the user can reset its value at any time if a bidirectional
script system is present.

Note

The itlcSysFlags field was formerly the
itlcReserved3 field. ◆

itlcReserved4 An array of 32 bytes that is reserved for future use.
International Configuration Resource (Type 'itlc') B-11

A P P E N D I X B

International Resources
Script-Sorting Resource (Type 'itlm') B

The script-sorting resource (resource type 'itlm') lists, in preferred sorting order, a
set of script codes, language codes, and region codes. For each listed script system it
defines the default language; for each listed language it defines the script system that
language belongs to; and for each listed regional version it describes the language
that region belongs to. The listing may be sparse; not all defined script, language, and
region codes need appear in the resource. Only one script-sorting resource is provided
with each localized version of Macintosh system software. It is in the System file. Its
resource ID is 0.

One purpose of the script-sorting resource is to aid the sorting of multilanguage lists.
Each individual script system defines, in its string-manipulation ('itl2') resource, how
its own strings are sorted; the script-sorting resource defines how strings in two or more
different scripts (or languages or regions) are ordered. For example, the
string-manipulation resource for the Japanese script system defines the order in which
Japanese strings appear in a sorted list. The script-sorting resource, on the other hand,
defines whether Japanese strings appear before or after Roman strings in a sorted list.

IMPORTANT

Regardless of the sorting order presented in the script-sorting resource,
text in the system script is always sorted to appear ahead of text in any
other script system. ▲

Another purpose of the script-sorting resource is to provide a mapping among scripts,
languages, and regions. From information in the resource you can determine all
the languages of a listed script system, and all the regional variations of a listed language.

The script-sorting resource consists of a resource header followed by three tables.
Figure B-1 shows the format of the resource header.
B-12 Script-Sorting Resource (Type 'itlm')

A P P E N D I X B

International Resources

B
International R

esources
Figure B-1 Format of the script-sorting resource header

The resource header contains these elements:

■ Version number. The version number of this resource.

■ Format code. A number that identifies the format of this resource.

■ Number of offset/length pairs. The number of data tables in the resource.

■ Offsets to, and lengths of, the defined tables for this resource. Offsets are measured
from the beginning of the resource.

Version number

Format code

Number of offset /length pairs

Offset to script data table

Length of script data table

Offset to language data table

Length of language data table

Offset to region data table

Length of region data table

Variable table data

0

2

4

6

10

14

18

22

26

30

Byte

offset
Script-Sorting Resource (Type 'itlm') B-13

A P P E N D I X B

International Resources
Currently there are three defined tables in the script-sorting resource: the script data
table, the language data table, and the region data table. The formats of the three tables
are similar, as shown in Figure B-2.

Figure B-2 Script, language, and region data tables in the script-sorting resource

Script data table
Byte

offset
0

2

4

6

8

10

12

14

Maximum script code

Default language code

Number of entries in table

Script code

Default language code

Script code

Default language code
Sorted

script

array

Language data table
0

2

4

6

8

10

12

14

Maximum language code

Default script code

Number of entries in table

Language code

Parent script code

Language code

Parent script code
Sorted

language

array

Region data table
0

2

4

6

8

10

12

14

Maximum region code

Default language code

Number of entries in table

Region code

Parent language code

Region code

Parent language code
Sorted

region

array
B-14 Script-Sorting Resource (Type 'itlm')

A P P E N D I X B

International Resources

B
International R

esources

Each table consists of a header, followed by an array of paired integers. These are the
fields in the script data table, language data table, and region data table, respectively:

■ Maximum code. The maximum defined value for script, language, or region code
listed in this table. Because entries in the table may be sparse (incomplete), this value
is useful for defining the maximum size of table to construct to hold the information.
For example, a maximum script code of smUninterp means the script data table
might cover any subset of the scripts with codes 0 through 32, but the table does not
contain any script codes above 32.

■ Default code. The default language code for unlisted script codes, the default script
code for unlisted language codes, or the default language code for unlisted region
codes. This assures a defined sorting position for any script, language, or region code,
whether or not it is listed in the resource.

■ Number of entries in table. The number of script codes, language codes, or region
codes in this table.

■ Sorted array. A list of paired integers, in sorting order:
n For the script data table, it is a script array: a list of script codes in their preferred

sorting order, each paired with (followed by) its default language code.
n For the language data table, it is a language array: a list of language codes in their

preferred sorting order, each paired with (followed by) the code for its parent script.
n For the region data table, it is a region array: a list of region codes in their preferred

sorting order, each paired with (followed by) the code for its parent language.

Constants for all defined script codes, language codes, and region codes are listed in the
chapter “Script Manager” in this book.

Table B-3 lists a sorting hierarchy of scripts, languages, and regions generated from a
sample script-sorting resource. Not all scripts and languages are represented in this list
because region codes do not currently exist for all language codes and script codes.

Table B-3 Sorted scripts, languages, and regions from a script-sorting resource

Script code Language code Region code

smRoman langEnglish verUS

verBritain

verAustralia

verIreland

langFrench verFrance

verFrBelgiumLux

verFrCanada

verFrSwiss

continued
Script-Sorting Resource (Type 'itlm') B-15

A P P E N D I X B

International Resources
langGerman verGermany

verGrSwiss

langItalian verItaly

langDutch verNetherlands

langSwedish verSweden

langSpanish verSpain

langDanish verDenmark

langPortuguese verPortugal

langNorwegian verNorway

langFinnish verFinland

langIcelandic verIceland

langMaltese verMalta

langTurkish verTurkey

langLithuanian verLithuania

langEstonian verEstonia

langLettish verLatvia

langSaamisk verLapland

langFaeroese verFaeroeIsl

langCroatian verYugoCroatian

smEastEurRoman langPolish verPoland

langHungarian verHungary

smGreek langGreek verGreece

smCyrillic langRussia verRussia

smArabic langArabic verArabic

langUrdu verPakistan

langFarsi verIran

smHebrew langHebrew verIsrael

smDevanagari langHindi verIndiaHindi

Table B-3 Sorted scripts, languages, and regions from a script-sorting resource (continued)

Script code Language code Region code
B-16 Script-Sorting Resource (Type 'itlm')

A P P E N D I X B

International Resources

B
International R

esources
International Bundle Resource (Type ' itlb') B

The international bundle resource (resource type 'itlb') has two purposes. First, it is
the bundle resource for a particular script system: by analogy with the Finder bundle
resource type, it specifies the resource IDs for the other international resources and
keyboard resources used by that script. (See the Finder Interface chapter of Inside
Macintosh: Macintosh Toolbox Essentials for a description of Finder bundle resources.)
Second, the 'itlb' resource contains configuration information for the script.

Several script variables are initialized from this resource. Selectors for the script variables
are listed in the chapter “Script Manager” in this book. If you need to change the initial
values of those variables, you need to change the content of the international bundle
resource itself. For example, to change the initial keyboard layout (script variable
smScriptKeys) for a script system, you would change the value of the itlbKeys field
of the international bundle resource. The user can makes this change from the Keyboard
control panel; the user can make other changes to the 'itlb' resource from other
control panels, as described under user control of script systems in the chapter
“Introduction to Text on the Macintosh” in this book.

Each script system has one and only one international bundle resource. The resource ID
of the resource is that script system’s script code. Therefore, once you know the script
code for a particular script system, you can find all of the script’s default international
and keyboard resources by examining the international bundle resource whose ID equals
that script code. For a list of defined script codes, see the chapter “Script Manager”
in this book.

The original international bundle resource, defined by the ItlbRecord data type,
was defined for system software versions earlier than 7.0. The extended 'itlb' record,
defined by the ItlbExtRecord data type, is defined for system software versions 7.0
and later. It includes the standard international bundle resource and adds extensions.

smThai langThai verThailand

smTradChinese langTradChinese verTaiwan

smSimpChinese langSimpChinese verChina

smJapanese langJapanese verJapan

smKorean langKorea verKorea

Table B-3 Sorted scripts, languages, and regions from a script-sorting resource (continued)

Script code Language code Region code
International Bundle Resource (Type ' itlb') B-17

A P P E N D I X B

International Resources
The ItlbRecord Data Type B
The structure of the standard international bundle resource, defined by the ItlbRecord
data type, is as follows:

TYPE ItlbRecord =

RECORD

itlbNumber: Integer; {'itl0' ID number}

itlbDate: Integer; {'itl1' ID number}

itlbSort: Integer; {'itl2' ID number}

itlbFlags: Integer; {script flags}

itlbToken: Integer; {'itl4' ID number}

itlbEncoding: Integer; {'itl5' ID number (optional)}

itlbLang: Integer; {current language for script}

itlbNumRep: SignedByte; {current numeral code}

itlbDateRep: SignedByte; {current calendar code}

itlbKeys: Integer; {'KCHR' ID number}

itlbIcon: Integer; {ID of keyboard icon family}

END;

Field descriptions

itlbNumber The resource ID of the numeric-format ('itl0') resource to be
used by this script. The Script Manager initializes the script variable
accessed through the selector smScriptNumber from this field.

itlbDate The resource ID of the long-date-format ('itl1') resource to be
used by this script. The Script Manager initializes the script variable
accessed through the selector smScriptDate from this field.

itlbSort The resource ID of the string-manipulation ('itl2') resource to
be used by this script system. The Script Manager initializes
the script variable accessed through the selector smScriptSort
from this field.

itlbFlags The bit flags that describe the features of this script system. The
Script Manager initializes the script flags variable, accessed through
the selector smScriptFlags, from this field. For example, you can
set the smsfAutoInit bit in the itlbFlags field to instruct the
Script Manager to initialize the script system automatically. For
definitions of the constants that specify the components of the script
flags word, see the list of selectors for script variables in the chapter
“Script Manager” in this book.
B-18 International Bundle Resource (Type ' itlb')

A P P E N D I X B

International Resources

B
International R

esources
itlbToken The resource ID of the tokens ('itl4') resource to be used by this
script. The Script Manager initializes the script variable accessed
through the selector smScriptToken from this field.

itlbEncoding The resource ID of the encoding/rendering ('itl5') resource to be
used by this script system. The Script Manager initializes the script
variable accessed through the selector smScriptEncoding
from this field. If there is no encoding/rendering resource for this
script, this field is set to 0. This field was reserved in versions of
system software prior to 7.0.

itlbLang The language code specifying the default language for this script.
The Script Manager initializes the script variable accessed through
the selector smScriptLang from this field. See the chapter “Script
Manager” in this book for a list of defined language codes.

itlbNumRep The numeral code to be used by this script system. This byte
specifies which types of numerals the script supports. The Script
Manager initializes the high-order byte of the script variable
accessed through the selector smScriptNumDate from this field.
For definitions of the constants that specify numeral codes, see the
list of selectors for script variables in the chapter “Script Manager”
in this book.

itlbDateRep The calendar code to be used by this script system. This byte
specifies which types of calendars the script supports. The Script
Manager initializes the low-order byte of the script variable
accessed through the selector smScriptNumDate from this field.
For definitions of the constants that specify calendar codes, see the
list of selectors for script variables in the chapter “Script Manager”
in this book.

itlbKeys The resource ID of the preferred keyboard-layout ('KCHR')
resource to be used by this script system. The Script Manager
initializes the script variable accessed through the selector
smScriptKeys from this field.

itlbIcon The resource ID of the keyboard icon family (resource types
'kcs#', 'kcs4', and 'kcs8') for the default keyboard layout to
be used with this script. The Script Manager initializes the script
variable accessed through the selector smScriptIcon from this
field. (When loading a keyboard-layout resource, the Script
Manager in fact ignores that variable and looks only for a keyboard
icon suite whose ID matches that of the keyboard-layout resource
being loaded.)
International Bundle Resource (Type ' itlb') B-19

A P P E N D I X B

International Resources
The ItlbExtRecord Data Type B
The extended 'itlb' record adds font and style information to the standard 'itlb'
record. Its structure, defined by the ItlbExtRecord data type, is as follows:

TYPE ItlbExtRecord =

RECORD

base: ItlbRecord; {standard ItlbRecord}

itlbLocalSize: LongInt; {size of script variables}

itlbMonoFond: Integer; {default monospaced font}

itlbMonoSize: Integer; {default monospaced size}

itlbPrefFond: Integer; {not used}

itlbPrefSize: Integer; {not used}

itlbSmallFond: Integer; {default small font}

itlbSmallSize: Integer; {default small font size}

itlbSysFond: Integer; {default system font}

itlbSysSize: Integer; {default system font size}

itlbAppFond: Integer; {default application font}

itlbAppSize: Integer; {default appl. font size}

itlbHelpFond: Integer; {default Help font}

itlbHelpSize: Integer; {default Help font size}

itlbValidStyles: Style; {valid styles for script}

itlbAliasStyle: Style; {styles to mark aliases}

END;

Field descriptions

base The standard'itlb' record for this script.
itlbLocalSize The size of the record of script variables for this script system.

(A script system whose smsfAutoInit bit in its itlbFlags field
is set needs to provide this information for the Script Manager.)

iltbMonoFond The font family ID for the preferred font for monospaced text in this
script system. The Script Manager initializes the high-order word of
the script variable accessed through the selector
smScriptMonoFondSize from this field.

itlbMonoSize The default size for monospaced text in this script system. The
Script Manager initializes the low-order word of the script variable
accessed through the selector smScriptMonoFondSize from
this field.

itlbPrefFond This field is currently unused.
itlbPrefSize This field is currently unused.
B-20 International Bundle Resource (Type ' itlb')

A P P E N D I X B

International Resources

B
International R

esources
itlbSmallFond The font family ID for the default font to display small text in this
script system. The Script Manager initializes the high-order word of
the script variable accessed through the selector
smScriptSmallFondSize from this field.

itlbSmallSize The default size for small text in this script system. The Script
Manager initializes the low-order word of the script variable
accessed through the selector smScriptSmallFondSize from
this field.

itlbSysFond The font family ID for the preferred system font in this script
system. The Script Manager initializes the high-order word of the
script variable accessed through the selector smSysFondSize from
this field.

itlbSysSize The default size for the system font in this script system. The Script
Manager initializes the script variable accessed through the selector
smScriptSysFond, and the low-order word of the script variable
accessed through the selector smSysFondSize, from this field.

itlbAppFond The font family ID for the preferred application font in this script
system. The Script Manager initializes the script variable accessed
through the selector smScriptAppFond, and the high-order word
of the script variable accessed through the selector
smScriptAppFondSize, from this field.

itlbAppSize The default size for the application font in this script system.
The Script Manager initializes the low-order word of the script
variable accessed through the selector smScriptAppFondSize
from this field.

itlbHelpFond The font family ID for the preferred font for Balloon Help in this
script system. The Script Manager initializes the high-order word of
the script variable accessed through the selector
smScriptHelpFondSize from this field.

itlbHelpSize The default size for the Balloon Help font in this script system.
The Script Manager initializes the low-order word of the script
variable accessed through the selector smScriptHelpFondSize
from this field.

itlbValidStylesA style code that defines all of the valid styles for this script system.
(In a style code, the bit corresponding to each QuickDraw style is
set if that style is valid for the specified script. For example, the
extend style is not valid in the Arabic script system.) The Script
Manager initializes the script variable accessed through the selector
smScriptValidStyles from this field.

itlbAliasStyle A style code that defines the styles to use for displaying alias names
in this script system. For example, in the Roman script system, alias
names are displayed in italics. The Script Manager initializes the
script variable accessed through the selector
smScriptAliasStyle from this field.
International Bundle Resource (Type ' itlb') B-21

A P P E N D I X B

International Resources
Numeric-Format Resource (Type 'itl0') B

The numeric-format resource (resource type 'itl0') contains general conventions for
formatting numeric strings. It provides separators for decimals, thousands, and lists; it
determines currency symbols and units of measurement; it specifies formats for
currency, times, and short dates (the specification of dates in purely numeric
representation—for example, in the U.S. Roman script system the short date for Tuesday,
December 3, 1946, is 12/3/46). It also contains the region code for this particular instance
of the 'itl0' resource.

Each enabled script system has one or more numeric-format resources. The resource ID
for each one is within the range of resource ID numbers for that script system. The
default numeric-format resource for a script is specified in the itlbNumber field of the
script’s international bundle ('itlb') resource.

The Text Utilities routines TimeString, LongTimeString, and StringToTime use
information in the numeric-format resource to create time strings and to convert time
strings to internal numeric representations. See the chapter “Text Utilities” in this book.
The Operating System Utilities function IsMetric examines the numeric-format
resource to determine the result it returns. See Inside Macintosh: Operating System Utilities.

Each numeric-format resource specifies the following:

■ Number format. The characters to use as the decimal separator, thousands separator,
and list separator.

■ Currency format. The currency symbol and its position; whether or not to include
leading unit zero or trailing decimal zero; how to show negative values.

■ Short date format. The order of presentation of the day, month, and year elements;
whether or not to include the century and a leading zero for month or days; the
separator for the elements.

■ Time format. Whether or not to present leading zeros for hours, minutes, and seconds;
whether to use a 24-hour time cycle or a 12-hour A.M./P.M. cycle; how to specify a
trailing string (such as a morning or an evening string if a 12-hour time cycle is
being used).

■ Unit of measure. Whether or not the metric system should be used.

Table B-4 lists constants that you can use in the numeric-format and long-date-format
resources to specify separators for standard international formats. For example, in the
U.S., slashSymbol is the separator for the short date 12/3/46, but in Germany
periodSymbol is the separator for the short date 3.12.1946.
B-22 Numeric-Format Resource (Type 'itl0')

A P P E N D I X B

International Resources

B
International R

esources
IMPORTANT

When it specifies the order of elements, the numeric-format resource
describes them in terms of storage order, not display order. Using the
information in a numeric-format resource frees you from assuming a
particular memory order for the components of numbers and short
dates. However, the resource does not necessarily specify the
left-to-right order for displaying the components. ▲

The Intl0Rec Data Type B
You can access the numeric-format resource through the Intl0Rec data type.

TYPE Intl0Rec =

PACKED RECORD

decimalPt: Char; {decimal point character}

thousSep: Char; {thousands separator}

listSep: Char; {list separator}

currSym1: Char; {currency symbol}

currSym2: Char;

currSym3: Char;

currFmt: Byte; {currency format flags}

dateOrder: Byte; {order of short date elements}

shrtDateFmt: Byte; {short date format flags}

dateSep: Char; {date separator}

timeCycle: Byte; {time cycle:0-23, 0-11, or 12-11}

timeFmt: Byte; {time format flags}

mornStr: PACKED ARRAY[1..4] OF Char; {trailing }

{ string for first 12-hour cycle}

eveStr: PACKED ARRAY[1..4] OF Char; {trailing }

{ string for last 12-hour cycle}

timeSep: Char; {time separator}

time1Suff: Char; {trailing string for morning }

time2Suff: Char; { part of 24-hour cycle}

Table B-4 Constants for specifying numeric separators

Constant Symbol

periodSymbol .

commaSymbol ,

semicolonSymbol ;

dollarsignSymbol $

slashSymbol /

colonSymbol :
Numeric-Format Resource (Type 'itl0') B-23

A P P E N D I X B

International Resources
time3Suff: Char;

time4Suff: Char;

time5Suff: Char; {trailing string for afternoon }

time6Suff: Char; { part of 24-hour cycle}

time7Suff: Char;

time8Suff: Char;

metricSys: Byte; {255 if metric, 0 if not}

intl0Vers: Integer; {version information}

END;

Intl0Ptr = ^Intl0Rec;

Intl0Hndl = ^Intl0Ptr;

Note
A NULL character (ASCII code 0) in a field of type Char means that no
such character exists. The currency symbol and the trailing string for the
24-hour cycle are separated into individual Char fields because of Pascal
packing conventions. All strings include any required spaces. ◆

Field descriptions

decimalPt Part of the number format definition. The1-byte character that
appears before the decimal representation of a fraction with a
denominator of 10. In the United States, this format is a period. In
several European countries, it is a comma.

thousSep Part of the number format definition. The 1-byte character that
separates every three digits to the left of the decimal point. In the
United States, this format is a comma. In several European
countries, it is a period.

listSep Part of the number format definition. The 1-byte character that
separates numbers, as when a list of numbers is entered by the user;
it must be different from the decimal point character. If it’s the same
as the thousands separator, the user must not include the latter in
entered numbers. In the United States, this format is a semicolon. In
the United Kingdom, it is a comma.

currSym1 Part of the currency format definition. The initial byte used to
indicate currency. One character is sufficient for the United States
($) and United Kingdom (£).

currSym2 Part of the currency format definition. The second byte used to
indicate currency. Two characters are required for France (Fr).

currSym3 Part of the currency format definition. The third byte used to
indicate currency. Three characters are required for Italy (Li.) and
Germany (DM.).
B-24 Numeric-Format Resource (Type 'itl0')

A P P E N D I X B

International Resources

B
International R

esources
currFmt Part of the currency format definition. The four least significant bits
are unused. The four most significant bits are Boolean values. Bit 7
determines whether there is a leading integer zero; for example, a 1
in this field specifies a format like 0.23, whereas a 0 specifies .23.
Bit 6 determines whether there are trailing decimal zeros; for
example, a 1 in this field specifies a format like 325.00, whereas a 0
specifies 325. Bit 5 determines whether to use a minus sign or
parentheses to denote a negative currency amount; for example,
a 1 in this field specifies a format like –0.45, whereas a 0 specifies
(0.45). Bit 4 determines whether the currency symbol trails or leads;
for example, a value of 1 in this field specifies a format like the $3.00
used in the United States, whereas a value of 0 specifies the
3 DM. used in Germany.
You can use the following predefined constants as masks to set or
test the bits in the currFmt field:

Note

You can also apply the currency format’s leading-zero and
trailing-zero indicators to the number format if desired. ◆

dateOrder Part of the short date format definition. Defines the order of the
elements (month, day, and year) of the short date format. The order
varies from region to region—for example, 12/29/72 is a common
order in the United States, whereas 29.12.72 is common in Europe.
You can indicate the order of the day, month, and year with the
following constants:

Constant Value Explanation

currSymLead 16 Currency symbol leads

currNegSym 32 Use minus sign for negative

currTrailingZ 64 Use trailing decimal zeros

currLeadingZ 128 Use leading integer zero

Constant Value Explanation

mdy 0 Month-day-year

dmy 1 Day-month-year

ymd 2 Year-month-day

myd 3 Month-year-day

dym 4 Day-year-month

ydm 5 Year-day-month
Numeric-Format Resource (Type 'itl0') B-25

A P P E N D I X B

International Resources
shrtDateFmt Part of the short date format definition. The five least significant bits
are unused. The three most significant bit fields are Boolean values
that determine whether to show the century, and whether to show
leading zeros in month and day numbers. For example, if the first
bit is set to 1 it specifies a date format like 10/21/1917, and set to 0
specifies the format 10/21/17. The second bit set to 1 specifies a
format like 05/23/84, and set to 0 specifies the format 5/23/84. The
third bit set to 1 specifies a format like 12/03/46, and set to 0
specifies the format 12/3/46.
To set or test the bits in the shrtDateFmt field, you can use the
following predefined constants as masks:

dateSep Part of the short date format definition. The 1-byte character that
separates the different parts of the date. For example, in the United
States this character is a slash (12/3/46), in Italy it is a hyphen
(3-12-46), and in Japan it is a decimal point (46.12.3).

timeCycle Part of the time format definition. Indicates the time cycle—that is,
whether to use 12 or 24 hours as the basis of time, and whether to
consider midnight and noon to be 12:00 or 0:00. You can use the
following predefined constants to specify the time cycle:

timeFmt Part of the time format definition. Indicates whether to show
leading zeros in time representation. Bit 5 determines whether there
are leading zeros in seconds; for example, a value of 1 in this field
specifies a format like 11:15:05, whereas a 0 specifies the format
11:15:5. Bit 6 determines whether there are leading zeros in minutes;
for example, a value of 1 in this field specifies a format like 10:05,
whereas a 0 specifies the format 10:5. Bit 7 determines whether there
are leading zeros in hours; for example, a value of 1 in this field
specifies a format like 09:15, whereas a 0 specifies the format 9:15.

Constant Value Explanation

dayLdingZ 32 Show leading zero for day

mntLdingZ 64 Show leading zero for month

century 128 Show century

Constant Value Explanation

timeCycle24 0 Use 24-hour format
(midnight = 0:00)

timeCycleZero 1 Use A.M./P.M. format
 (midnight and noon = 0:00)

timeCycle12 255 Use A.M./P.M. format
(midnight and noon = 12:00)
B-26 Numeric-Format Resource (Type 'itl0')

A P P E N D I X B

International Resources

B
International R

esources
You can use the following predefined constants as masks for setting
or testing bits in the time format field:

mornStr Part of the time format definition. A string of up to 4 bytes to follow
the time to indicate morning (for example, “ AM”). Typically, the
string includes a leading space.

eveStr Part of the time format definition. A string of up to 4 bytes to follow
the time to indicate evening (for example, “ PM”). Typically, the
string includes a leading space.

timeSep Part of the time format definition. The 1-byte character that is the
time separator (for example, the colon).

time1Suff, time2Suff, time3Suff, time4Suff
Part of the time format definition. A trailing string of up to 4 bytes
for the morning part of the 24-hour cycle. For example, the German
string “uhr” can be stored here.

time5Suff, time6Suff, time7Suff, time8Suff
Part of the time format definition. A trailing string of up to 4 bytes
for the evening part of the 24-hour cycle. Typically, this string
duplicates the string contained in time1Suff through time4Suff.
For example, the German string “uhr” can be stored here.

metricSys The unit-of-measure definition. Indicates whether to use the metric
system. If 255, the metric system is used; if 0, metric is not used.

intl0Vers Region code and version number. The code number of the region
that this resource applies to is in the high-order byte, and the
version number of this numeric-format resource is in the
low-order byte.

Constant Value Explanation

secLeadingZ 32 Use leading zero for seconds

minLeadingZ 64 Use leading zero for minutes

hrLeadingZ 128 Use leading zero for hours
Numeric-Format Resource (Type 'itl0') B-27

A P P E N D I X B

International Resources
Long-Date-Format Resource (Type 'itl1') B

The long-date-format resource (resource type 'itl1') contains the long date format for
a particular region, including the names of days and months, the exact order of
presentation of the elements, and the specification of whether or not to suppress any
element. (For example, in U.S. format, the long date for 12/3/46 without the name of the
day suppressed is Tuesday, December 3, 1946.) The long-date-format resource also has an
optional extension for additional month and day names as well as abbreviated month
and day names and separators. The extension also specifies the calendar code (for
example, Arabic lunar) to use for long dates.

Each enabled script system has one or more long-date-format resources. The resource ID
for each one is within the range of resource ID numbers for that script system. The
default long-date-format resource for a script system is specified in the itlbDate field
of the script’s international bundle ('itlb') resource.

The Text Utilities routines DateString, LongDateString, and StringToDate use
information in the long-date-format resource to create date strings and to convert date
strings to internal numeric representations. See the chapter “Text Utilities” in this book.

The basic (unextended) long-date-format resource specifies

■ The long date format. Month and day names, order of elements, and which elements
to suppress.

■ Separator strings. What characters (commonly punctuation) appear between elements
of the date.

■ Region code. The number that identifies the regional version of the script system that
this long-date-format resource applies to.

IMPORTANT

When it specifies the order of elements, the long-date-format resource
describes them in terms of storage order, not display order. Using the
information in a long-date-format resource frees you from assuming a
particular memory order for the components of long dates. However,
the resource does not necessarily specify the left-to-right order for
displaying the components. ▲

The Intl1Rec Data Type B
You can access the contents of the long-date-format resource through the
Intl1Rec data type.
B-28 Long-Date-Format Resource (Type 'itl1')

A P P E N D I X B

International Resources

B
International R

esources
TYPE Intl1Rec =

PACKED RECORD

days: ARRAY[1..7] OF Str15; {day names}

months: ARRAY[1..12] OF Str15; {month names}

suppressDay: Byte; {elements to suppress}

lngDateFmt: Byte; {order of elements}

dayLeading0: Byte; {leading 0 in day no.?}

abbrLen: Byte; {abbreviation length}

st0: PACKED ARRAY[1..4] OF Char; {separator string}

st1: PACKED ARRAY[1..4] OF Char; {separator string}

st2: PACKED ARRAY[1..4] OF Char; {separator string}

st3: PACKED ARRAY[1..4] OF Char; {separator string}

st4: PACKED ARRAY[1..4] OF Char; {separator string}

intl1Vers: Integer; {version & region}

localRtn: ARRAY[0..0] OF Integer; {flag for extended itl1}

END;

TYPE Intl1Ptr = ^Intl1Rec;

TYPE Intl1Hndl = ^Intl1Ptr;

Field descriptions

days An array of 7 day names (ordered for days corresponding to
Sunday through Saturday). Each day name may consist of a
maximum of 15 characters.

months An array of 12 month names (ordered for months corresponding to
January through December). Each month name may consist of a
maximum of 15 characters.

suppressDay A byte that lets you omit any element in the long date. To include
the day name in the long date, you set the field to 0. To suppress the
day name, set the field to 255 ($FF).
If the value does not equal 0 or $FF, this field is treated as bit flags.
You can use the following predefined constants as masks to set the
appropriate bits in the suppressDay byte.

Note that a value of 2 is same as a value of $FF in this field.

Constant Value Explanation

supDay 1 Suppress day of month

supWeek 2 Suppress day name

supMonth 4 Suppress month

supYear 8 Suppress year
Long-Date-Format Resource (Type 'itl1') B-29

A P P E N D I X B

International Resources
lngDateFmt The byte that indicates the order of long date elements. If the byte
value of the field is neither 0 (which specifies an order of day/
month/year) nor $FF (which specifies an order of month/day/
year), then its value is divided into 4 fields of 2 bits each. The least
significant bit field (bits 0 and 1) corresponds to the first element in
the long date format, whereas the most significant bit field (bits 6
and 7) specifies the last (fourth) element in the format. You can use
the following predefined constants to set each bit field to the
appropriate value.

Note that these constants represent values for the 2-bit field, and are
neither masks nor bit numbers. For example, suppose you wanted
long dates to appear in this order: day of the week, day of the
month, month, and year. You would set the value of longDateFmt
like this:

longDateFmt :=

longWeek*1 {sets bits 0 and 1}

+ LongDay*4 {sets bits 2 and 3}

+ longMonth*16 {sets bits 4 and 5}

+ longYear*64; {sets bits 6 and 7}

dayLeading0 If 255 ($FF), specifies a leading zero in a day number. If 0, no
leading zero is included in the day number.

abbrLen The number of characters to which month and day names should be
abbreviated when abbreviation is desired.

st0 String that precedes (in memory) the first element in a long date.
See Table B-5 and Figure B-3.

st1 String that separates the first and second elements in a long date.
See Table B-5 and Figure B-3. This string is suppressed if the first
element in the long date is suppressed.

st2 String that separates the second and third elements in a long date.
See Table B-5 and Figure B-3. This string is suppressed if the second
element in the long date is suppressed.

st3 String that separates the third and fourth elements in a long date.
See Table B-5 and Figure B-3. This string is suppressed if the third
element in the long date is suppressed.

Constant Value Explanation

longDay 0 Day of the month

longWeek 1 Day of the week

longMonth 2 Month

longYear 3 Year
B-30 Long-Date-Format Resource (Type 'itl1')

A P P E N D I X B

International Resources

B
International R

esources
st4 String that follows the fourth element in a long date. See Table B-5
and Figure B-3. This string is suppressed if the fourth element in the
long date is suppressed.

intl1Vers Region code and version number. The code number of the region
that this resource applies to is in the high-order byte, and the
version number of this long-date-format resource is in the
low-order byte.

localRtn Originally designed to contain a routine that localizes sorting order;
now unused for that purpose. If an extended long-date-format
resource is available (see the next section), this field contains the
hexadecimal value $A89F as the first word.

Figure B-3 gives two examples of how the Text Utilities routines format dates based on
the fields in the numeric-format resource. The examples assume that the suppressDay
and dayLeading0 fields contain 0. If the SuppressDay field contains a value of 255,
the formatting routines omit the day and the punctuation indicated in the st1 field. If
the dayLeading0 field contains a value of 255, the Text Utilities place a 0 before day
numbers less than 10.

Figure B-3 Examples of long date formatting

The Itl1ExtRec Data Type B
The standard long-date-format resource has several limitations. First, it assumes that
seven day names and 12 month names are sufficient, which is not true for some
calendars. For example, the Jewish calendar can have 13 months in some years. Second,
it assumes that day and month names can be abbreviated by simply truncating them to a
fixed length, but this not true in many languages.

Table B-5 Separator positions in long date format

lngDateFm
t Long date format

0 st0 day
name

st1 day st2
month

st3
year

st4

255 st0 day
name

st1
month

st2 day st3
year

st4

0 " ', ' '. ' ' ' " Mittwoch, 2. February 1985

lngDateFmt Sample resultst0

st1

st2

st3

st4

255 " ' ' ' ' ' ' " Wednesday February 1 1985
Long-Date-Format Resource (Type 'itl1') B-31

A P P E N D I X B

International Resources
An optional extension to the long-date-format resource provides additional information
that solves these problems. The Text Utilities routines that generate date strings use
information in the 'itl1' extension if it is present.

The standard long-date-format resource ends with a variable-length field (localRtn)
originally intended to be used for code that alters the built-in U.S. sorting behavior. This
field is no longer needed, because code for changing the sorting behavior is now in the
string-manipulation ('itl2') resource.

In existing unextended long-date-format resources, the localRtn field contains a single
RTS instruction (hexadecimal $4E75). In extended long-date-format resources, the
hexadecimal value $A89F is the first word in thelocalRtn field. (This is the
unimplemented trap instruction, which could not have been the first word of any valid
local routine.) The resource extension follows immediately after that word.

You can access the contents of the 'itl1' resource extension through the Itl1ExtRec
data type.

TYPE Itl1ExtRec =

RECORD

base: Intl1Rec;{un-extended Intl1Rec}

version: Integer; {version number}

format: Integer; {format code}

calendarCode: Integer; {calendar code for 'itl1'}

extraDaysTableOffset: LongInt; {offset to extra days table}

extraDaysTableLength: LongInt; {length of extra days table}

extraMonthsTableOffset: LongInt; {offset to extra months table}

extraMonthsTableLength: LongInt; {length of extra months table}

abbrevDaysTableOffset: LongInt; {offset to abbrev. days table}

abbrevDaysTableLength: LongInt; {length of abbrev. days table}

abbrevMonthsTableOffset:LongInt; {offset to abbr. months table}

abbrevMonthsTableLength:LongInt; {length of abbr. months table}

extraSepsTableOffset: LongInt; {offset to extra seps table}

extraSepsTableLength: LongInt; {length of extra seps table}

tables: ARRAY[0..0] OF Integer;

{the tables; variable-length}

END;

Field descriptions

base A standard (unextended) long-date-format resource.
version The version number of this extension. Unlike the intl1Vers field

in the unextended 'itl1' resource, this field contains nothing but
the version number.
B-32 Long-Date-Format Resource (Type 'itl1')

A P P E N D I X B

International Resources

B
International R

esources
format A number that identifies the format of this resource. The current
extended long-date-format resource format has a format code of 0.

calendarCode Multiple calendars may be available on some systems, and it is
necessary to identify the particular calendar for use with this
long-date-format resource. Constants for the currently defined
calendars are as follows:

The Script Manager initializes part of the script variable accessed
through the selector smScriptNumDate with the value in this field.

extraDaysTableOffset
The offset from the beginning of the long-date-format resource to
the extra days table.

extraDaysTableLength
The length in bytes of the extra days table.

extraMonthsTableOffset
The offset from the beginning of the long-date-format resource to
the extra months table.

extraMonthsTableLength
The length in bytes of the extra months table.

abbrevDaysTableOffset
The offset from the beginning of the long-date-format resource to
the abbreviated days table.

abbrevDaysTableLength
The length in bytes of the abbreviated days table.

abbrevMonthsTableOffset
The offset from the beginning of the long-date-format resource to
the abbreviated months table.

abbrevMonthsTableLength
The length in bytes of the abbreviated months table.

extraSepsTableOffset
The offset from the beginning of the long-date-format resource to
the extra separators table.

extraSepsTableLength
The length in bytes of the extra separators table.

tables The tables that make up the rest of the 'itl1' resource extension.

Constant Value Explanation

calGregorian 0 Gregorian calendar

calArabicCivil 1 Arabic civil calendar

calArabicLunar 2 Arabic lunar calendar

calJapanese 3 Japanese calendar

calJewish 4 Jewish calendar

calCoptic 5 Coptic calendar

calPersian 6 Persian calendar
Long-Date-Format Resource (Type 'itl1') B-33

A P P E N D I X B

International Resources
Each table in the 'itl1' resource extension is an array consisting of an integer
count followed by a list of Pascal strings specifying names of days, names of months,
or separators.

■ Extra days table. A list of names. This format is for those calendars with more than 7
day names.

■ Extra months table. A list of names. This format is for those calendars with more than
12 months.

■ Abbreviated days table. A table of abbreviations. If the header specifies an offset to
and length of the abbreviated days table, the Text Utilities routines that create date
strings use this table instead of truncating day names to the number of characters
specified in the abbrevLen field of the standard 'itl1' resource.

■ Abbreviated months table. A table of abbreviations. If the header specifies an offset to
and length of the abbreviated months table, the Text Utilities routines that create date
strings use this table instead of truncating month names to the number of characters
specified in the abbrevLen field of the standard 'itl1' resource.

■ Extra separators table. A list of additional date separators. When parsing date strings,
the Text Utilities StringToDate and StringToTime functions permit the separators
in this list to be used in addition to the date separators specified elsewhere in the
numeric-format and long-date-format resources.

String-Manipulation Resource (Type 'itl2') B

The string-manipulation resource (resource type 'itl2') is used by the Text Utilities
and the Script Manager for defining and comparing text elements.

The string-manipulation resource contains routines, called sorting hooks, that perform
string sorting; it also contains tables that define character type, case conversion, and
word boundaries. The Text Utilities routines IdenticalString, IdenticalText,
CompareString, and CompareText call the Text Utilities sorting hooks. The Text
Utilities routines CharacterType, FindWordBreaks, LowercaseText,
UppercaseText, StripDiacritics, and UppercaseStripDiacritics, and the
Script Manager function TransliterateText, may make use of tables in the
string-manipulation resource.

By replacing the sorting hooks, you can modify the way string comparisons are made;
by replacing tables in the string-manipulation resource, you can modify how word
boundaries are determined. See the sections “Supplying Custom Sorting Routines” on
page B-43, and “Supplying Custom Word-Break Tables” on page B-44, for more
information.
B-34 String-Manipulation Resource (Type 'itl2')

A P P E N D I X B

International Resources

B
International R

esources
Each enabled script system has one or more string-manipulation resources. The resource
ID for each one is within the range of resource ID numbers for that script system. The
default 'itl2' resource for a script is specified in the itlbSort field of the script’s
international bundle resource (type 'itlb').

Note
The resource template used by Rez and DeRez specifies a particular
ordering of code and tables in the string-manipulation resource,
although that order is not required for the resource to be used
correctly. ◆

Each string-manipulation resource contains the following elements:

■ header

■ string comparison routines (sorting hooks)

■ character-type tables (optional)

■ case-conversion and stripping tables (optional)

■ word break tables

■ subscript table (optional)

The string-manipulation resource described in this section is sometimes called the
extended 'itl2' resource. Prior to Macintosh system software version 6.0.4, a more
abbreviated 'itl2' version was supported. That original'itl2' resource consisted of
the header and sorting hooks only. The full resource as documented here is supported by
system software versions 7.0 and later.

Resource Header B
The string-manipulation resource header allows you to access the code segments and
tables that make up the resource. All fields in the header are 16-bit words. Each field
designated as an offset contains the signed offset, in bytes, from the beginning of the
resource to the specified code block or table. The header is followed by the actual code
segments and tables, which may be in any order. Figure B-4 shows the structure of
the header.
String-Manipulation Resource (Type 'itl2') B-35

A P P E N D I X B

International Resources
Figure B-4 Format of the string-manipulation resource header

Offset to init hook

Offset to fetch hook

Offset to vernier hook

Offset to project hook

Itl2 version flag

Offset to exit hook

Offset to type list

Offset to class array

Offset to uppercase list

Offset to lowercase list

Offset to uppercase strip list

Offset to word-selection table

Offset to line-break table

Offset to strip list

Version

Format code

Length of init hook

Length of fetch hook

Length of vernier hook

Length of project hook

(reserved)

Length of exit hook

Length of type list

Length of class array

Length of uppercase list

Length of lowercase list

Length of uppercase strip list

Length of word-selection table

Length of line-break table

Length of strip list

Offset to script run table

Length of script run table

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

Offsets to
character type,
conversion, and
word-break tables

Size of the code
blocks and tables

Offsets to sorting
hooks

Offset and length
pairs for additional
tables

Byte

offset
B-36 String-Manipulation Resource (Type 'itl2')

A P P E N D I X B

International Resources

B
International R

esources

The header consists of four sections. The first section contains offsets to the sorting
hooks; the second section contains offsets to tables for character type, case conversion
and diacritical stripping, and word break; the third section contains the lengths of all of
the code blocks and tables; the fourth section contains offset and length pairs for tables
to be added in the future.

■ The first section of the header contains a version flag and five offsets to the sorting
hooks: init hook, fetch hook, vernier hook, project hook, and exit hook. The sorting
hooks are string-comparison routines, code segments that control sorting behavior.
The hooks can replace or modify the built-in U.S. sorting behavior, on a
character-by-character basis.
The Itl2 version flag is a long integer value that describes the format of this
string-manipulation resource. A value of –1 indicates that this string-manipulation
resource is in the system software version 6.0.4 (or newer) format. In versions
previous to 6.0.4, this element contains the offset to the reserved hook, another sorting
hook. In versions previous to 6.0.4, the string-manipulation resource header stops at
this point.

■ The second section of the resource header contains the following elements:
n Offsets to the character-type tables: type list, class array.
n Offsets to the case conversion and diacritical stripping lists: uppercase list,

lowercase list, uppercase strip list, strip list.
n Offsets to the word-break tables: word-selection table, line-break table.
n Version number. The version number of this string-manipulation resource.
n Format code. Contains 0 if the string-manipulation resource header stops at this

point (true for system software version 6.0.4); contains 1 if the string-manipulation
resource header has the format shown in Figure B-4 (true for system software
version 7.0 and later).

■ The third section of the header contains the lengths of all of the code blocks and tables
for which there are offsets in the first two sections. The Script Manager requires valid
length values in this section only for those tables that can be accessed through the
GetIntlResourceTable procedure (the word-selection and line-break tables).

■ The fourth section contains offset and length pairs for additional tables. The first pair
in this section is used for an optional table (findScriptTable) defining characters
of a subscript within a non-Roman script system. It is used by the Script Manager
FindScriptRun function. See “Script Run Table Format” beginning on page B-40. If
this table is not present, the offset and length are 0.

The 'itl2' Sorting Hooks B
The string-manipulation resource contains five sorting hooks, each of which can modify
the functioning of its equivalent default sorting routine that is built into Text Utilities. If
the sorting hooks are all empty, the default U.S. Roman sorting behavior results. For
example, the 'itl2' resource in the version of the Roman script system that has been
localized for the United States contains the built-in sorting behavior and empty hooks.
For other script systems, one or more of the hooks are replaced with actual routines, to
handle characters that need to be sorted differently from the default—for example, the
String-Manipulation Resource (Type 'itl2') B-37

A P P E N D I X B

International Resources
Spanish character combination “rr” or the Norwegian “ñ”. Most of the sorting routines
are called in turn for each character in each string of a pair that are being compared.
Here is what each of the routines does:

■ Init routine. The init routine prepares two strings for comparison. The Text Utilities
sorting routines compare a pair of strings byte for byte, and pass control to the init
routine as soon as a pair of unequal byte values occur. All the init routine does is
check to see if either of the byte values is the second byte of a 2-byte character (or
other sorting unit, such as “rr” in Spanish). If it is, the init routine backs up one byte in
the string, and passes control to the fetch routine.

■ Fetch routine. The fetch routine fetches the next sorting unit from each string, taking
into account whether the unit is composed of one or two bytes. Many, though not all,
characters in 2-byte script systems are 2 bytes long. Character combinations in 1-byte
scripts can also be considered as single sorting units during sorting—such as “ch” in
Spanish and “dz” in Croatian. For example, consider the second characters in these
two strings:
b c h a
b c a d
In analyzing the second sorting unit of each string, English versions of the fetch
routine would return “c” in each case. Spanish versions, which combine “c” and “h”
into a singular sorting unit “ch”, would return “ch” for the upper string and “c” for
the lower string.

■ Project routine. The project routine defines the primary sorting position for the
individual sorting unit passed to it. In the example just presented, the English version
of the project routine would give the same result for the second sorting unit of each
string, whereas the Spanish version would give them different values.
Where secondary sorting exists, the project routine “projects” each character into the
sorting position of its equivalent primary character (perhaps uppercase with
diacritical marks stripped). For example, consider the following two strings:
b C a d f
B c å d g
The project routine would give identical results for all the character pairs until passed
the “f” and “g”. In terms of the project routine, the strings would be sorted as if
they were
B C A D F
B C A D G
The Text Utilities use the project routine to establish decision characters to be used
later if a primary difference is not available. The first pair of sorting units that have
the same projected position but are not byte-for-byte identical is saved from this.
Those decision characters are acted upon by the vernier routine.

■ Vernier routine. The vernier routine is the tie breaker that determines the sorting order
for strings that are equivalent in terms of primary sorting. It defines the secondary
sorting position for the sorting unit passed to it. Suppose, in the previous example,
that the strings were
b c a d f
b c å d f
B-38 String-Manipulation Resource (Type 'itl2')

A P P E N D I X B

International Resources

B
International R

esources
Primary equivalence exists between the two strings. The decision characters “a” and
“å” are passed in turn to the vernier routine; the vernier routine passes back a sorting
position for each one. The return values determine whether “a” sorts before or after
“å”, and thus establish the sorting order for the strings.

■ Exit routine. This sorting hook exists to allow for any needed post-processing after the
sorting order for a pair of strings has been determined. It is called just before the Text
Utilities string-comparison routine returns to the caller.

For information on providing custom versions of the sorting hooks, see “Supplying
Custom Sorting Routines” on page B-43.

The 'itl2' Tables B
The following tables in the string-manipulation resource define character and word
features for processing strings.

■ Type list. Contains character-type information for each class of character (as specified
by the class array) in the script system’s character set. The Script Manager
CharacterType function uses this table. The type list is used by 1-byte script
systems only; character-type information for a 2-byte script system is in that script’s
encoding/rendering ('itl5') resource.

■ Class array. Maps each character in the script system’s character set to a class, which is
used to index into the other character tables in the string-manipulation resource. The
Script Manager CharacterType function uses this table. The class array is used by
1-byte script systems only; character-class information for a 2-byte script system is in
that script’s encoding/rendering ('itl5') resource.

■ Uppercase list. Used to generate uppercase equivalents for all lowercase characters in
the script system’s character set. For each character class, contains a value to be added
to the character code to convert all characters to uppercase. The Text Utilities
UppercaseText procedure uses this table. The uppercase list is used by 1-byte script
systems only.

■ Lowercase list. Used to generate lowercase equivalents for all uppercase characters in
the script system’s character set. For each character class, contains a value to be added
to the character code to convert all characters to lowercase. The Text Utilities
LowercaseText procedure uses this table. The lowercase list is used by 1-byte script
systems only.

■ Uppercase strip list. Used to generate uppercase equivalents—without diacritical
marks—for all characters in the script system’s character set. For each character class,
contains a value to be added to the character code to convert all characters to
uppercase versions without diacritical marks. The Text Utilities
UppercaseStripDiacritics procedure uses this table. The uppercase strip list is
used by 1-byte script systems only.

■ Strip list. Used to generate equivalents—without diacritical marks—for all characters
in the script system’s character set. For each character class, contains a value to be
added to the character code to strip diacritical marks. The Text Utilities
StripDiacritics procedure uses this table. The strip list is used by 1-byte script
systems only.
String-Manipulation Resource (Type 'itl2') B-39

A P P E N D I X B

International Resources
■ Word-selection table. A table of data type NBreakTable or BreakTable, used by the
Text Utilities FindWordBreaks procedure to find word boundaries for the purposes
of word selection. See “Supplying Custom Word-Break Tables” on page B-44 for a
description of the break-table formats.

■ Line-break table. A table of data type NBreakTable or BreakTable, used by theText
Utilities FindWordBreaks procedure to find word boundaries for breaking lines of
text. The rules governing word boundaries for line breaking are generally somewhat
different from those for word selection.

■ Script run table. A data structure used by the Text Utilities FindScriptRun function.
It is used to find runs of a subscript, such as Roman, within text of a non-Roman script
system. See the next section.

Script Run Table Format B

The script run table is used by the Text Utilities FindScriptRun function.
FindScriptRun locates runs of text that belong to a subscript, such as Roman, within a
single script run. The FindScriptRun function is described in the chapter “Text
Utilities” in this book.

There are two formats of script run table. The original format, used in versions of system
software earlier than 7.1, consists of a series of byte pairs with the format character code,
script code. The character code is the final character code in a range of characters that
belongs to the script specified by the script code. (The table contains only final character
codes; the initial character code of a range is assumed to be one greater than the final
character code in the previous range—or 0 for the first range.) The last pair must
have character code $FF. For example, if the character set encoding for script smSample
were defined such that $00–7F and $A0 were Roman characters and the remaining
characters were native characters in smSample, the table would appear as follows:

This simple format is appropriate for script systems whose text can be separated into
Roman or native characters based purely upon character code, and for which other
subscript information (returned in the variant field of the ScriptRunStatus record
by FindScriptRun) is always 0. For 2-byte script systems, or when the same character
could be designated as either Roman or native (depending on its context), this simple
format is insufficient.

The newer format for the script run table is used in versions of system software starting
with 7.1. It consists of a header, a state table, and a set of associated tables, similar in
structure to the word-break table of type NBreakTable (described on page B-44). It is
more flexible than the old format: for example, it can consider punctuation marks such

Character
code

Script code

$7F smRoman

$9F smSample

$A0 smRoman

$FF smSample
B-40 String-Manipulation Resource (Type 'itl2')

A P P E N D I X B

International Resources

B
International R

esources
as the period (ASCII code $2E) to be either to Roman or non-Roman, depending upon
whether they are associated with Roman or non-Roman characters in the text. The script
run table format is shown in Figure B-5.

Figure B-5 Format of the script run table header (new format)

The table header has these elements:

■ Flags 1 and flags 2. The flags are not defined and should be 0, except that the
high-order bit of the second byte (flags 2) must be 1 to mark this as a new-format
script run table.

■ Version. The version number of this script run table format.

■ Length. The length in bytes of this script run table.

■ Offset to class table. The offset in bytes from the beginning of the script run table to
the beginning of the class table.

■ Offset to auxiliary class table. The offset in bytes from the beginning of the script run
table to the beginning of the auxiliary class table.

■ Offset to state table. The offset in bytes from the beginning of the script run table to
the beginning of the state table.

■ Offset to return table. The offset in bytes from the beginning of the script run table to
the beginning of the return table.

■ (reserved). Reserved.

The header is immediately followed by the data of the class table, auxiliary class table,
state table, and return table. The tables have this format and content:

■ The class table is an array of 256 signed bytes. It assigns class values to 1-byte
characters and works with the auxiliary class table to assign class values for 2-byte
characters. It has the same format as the class table used by the word-break table
described under “NBreakTable Format” beginning on page B-44.

Version

Length

Offset to class table

Offset to auxiliary class table

Offset to state table

Offset to return table

(reserved)

Bytes

2

2

2

2

2

2

2

2

Flags 1 Flags 21
String-Manipulation Resource (Type 'itl2') B-41

A P P E N D I X B

International Resources
■ The auxiliary class table assigns character classes to 2-byte characters. It has the same
format as the auxiliary class table used by the word-break table described under
“NBreakTable Format” beginning on page B-44.

■ The state table is used by FindScriptRun to determine the subscript assignment for
a given character class, accounting for its context. Using the state table,
FindScriptRun starts at a specified character, moving forward through the text
until it encounters a subscript boundary.

The state table is shown in Figure B-6. The table begins with a list of words containing
byte offsets from the beginning of the state table to the rows of the state table; this
is followed by a c-by-s byte array, where c is the number of classes (columns) and s is
the number of states (rows). The bytes in this array are stored with the column index
varying most rapidly—that is, the bytes for the state 0 row precede the bytes for
the state 1 row. There is a maximum of 128 classes and 64 states (including the start
and exit states).

Figure B-6 Script run table state table

Each entry in this array is an action code, which specifies

■ whether to mark the current offset

■ whether to exit

■ the next state or (if exiting) the exit code

State 0 row

State 1 row

State 2 row

State 3 row

action

action

action

action

action

action

action

action

action

action

action

action

action

action

action

action action actionaction action

Class 0 Class 1 Class 3 Class 4Class 2

Offset to state 0 row

Offset to state 1 row

Offset to state 2 row

Offset to state 3 row

Bytes

2

2

2

2

B-42 String-Manipulation Resource (Type 'itl2')

A P P E N D I X B

International Resources

B
International R

esources
The format of an action code is shown in Figure B-7.

Figure B-7 Format of a script run table action code

The return table is a list of script code–variant pairs, as shown in Figure B-8. The table
lists possible return values for the FindScriptRun function. Each pair in the table is a
ScriptRunStatus record, as described in the chapter “Text Utilities” in this book. The
variant associated with each script code gives subscript information for 2-byte script
systems. When FindScriptRun exits the state table, it has encountered a subscript
boundary; it uses the exit code to index into the return table and determine the script
code of the subscript run it has just exited from.

Figure B-8 Format of the script run table return table

Supplying Custom Sorting Routines B
String comparison in a given script system is controlled by routines accessed through the
sorting hooks in the string-manipulation resource. However, there is also a default
sorting behavior built into the Text Utilities, and the sorting hooks are designed to allow
a given script system to use, modify, or replace parts of that default behavior, on a
character-by-character basis. The U.S. version of the Roman script system, for example,
uses the built-in sorting behavior exclusively; its 'itl2' resource has only
nonfunctional (empty) sorting hooks. The built-in sorting behavior used by the Text
Utilities is described in the appendix “Built-in Script Support” in this book.

Next state or
exit code

Exit bit (1 = exit)

7 6 05

Mark bit (1 = mark current offset)

Bytes

2

2

2

Script

Script

Script

Variant

Variant

Variant

Word

offset

0

1

2

String-Manipulation Resource (Type 'itl2') B-43

A P P E N D I X B

International Resources
The sorting hooks are described under “The 'itl2' Sorting Hooks” on page B-37. You can
supply a replacement string-manipulation resource with nonempty versions of any
sorting hooks, to create sorting behavior more appropriate for your target region.

Note
Even “empty” sorting hooks cannot be completely empty. All 'itl2'
sorting hooks are responsible for setting the condition codes that
indicate whether or not they have taken any sorting action. If these
condition codes have not been set, the Text Utilities uses the default
Roman sorting behavior. ◆

For more information on replacing any or all of the sorting hooks, see Macintosh
Technical Note #178, available from Macintosh Developer Technical Support.

Supplying Custom Word-Break Tables B
The Text Utilities FindWordBreaks procedure uses state machines and associated
tables in a script’s string-manipulation resource to determine word boundaries and
line breaks.

The FindWordBreaks procedure examines a block of text to determine the
boundaries of the word that includes a specified character in the block. Usually,
FindWordBreaks uses different state tables to define words for word selection than it
does for line breaking.

To replace the word-selection criteria, you can supply a replacement string-manipulation
resource with a modified break table. This section describes the break table and how
FindWordBreaks uses it.

NBreakTable Format B

FindWordBreaks uses word-break tables of type NBreakTable, defined for system
software version 7.0 and later:

TYPE NBreakTable =

RECORD

flags1: SignedByte; {break table format flags}

flags2: SignedByte; {break table format flags}

version: Integer; {version no. of break table}

classTableOff: Integer; {offset to ClassTable array}

auxCTableOff: Integer; {offset to auxCTable array}

backwdTableOff: Integer; {offset to backwdTable array}

forwdTableOff: Integer; {offset to forwdTable array}

doBackup: Integer; {skip backward processing?}

length: Integer; {length of the break table}
B-44 String-Manipulation Resource (Type 'itl2')

A P P E N D I X B

International Resources

B
International R

esources
charTypes: ARRAY[0..255] OF SignedByte;

tables: ARRAY[0..0] OF Integer;

{break tables}

END;

TYPE NBreakTablePtr = ^NBreakTable;

Field descriptions

flags1 The high-order byte of the break table format flags. If the high-order
bit of this byte is set to 1, this break table is in the format used by
FindWordBreaks.

flags2 The low-order byte of the break table format flags. If the value in
this byte is 0, the break table belongs to a 1-byte script system; in
this case FindWordBreaks does not check for 2-byte characters.

version The version number of this break table.
classTableOff The offset in bytes from the beginning of the break table to the

beginning of the class table.
auxCTableOff The offset in bytes from the beginning of the break table to the

beginning of the auxiliary class table.
backwdTableOff

The offset in bytes from the beginning of the break table to the
beginning of the backward-processing table.

forwdTableOff The offset in bytes from the beginning of the break table to the
beginning of the forward-processing table.

doBackup The minimum byte offset into the buffer for doing backward
processing. If the selected character for FindWordBreaks has a
byte offset less than doBackup, FindWordBreaks skips backward
processsing altogether and starts from the beginning of the buffer.

length The length in bytes of the entire break table, including all the
individual tables.

charTypes The class table. See explanation below.
tables The data of the auxiliary class table, backward table, and

forward table.

The tables have this format and content:

■ The class table is an array of 256 signed bytes. Offsets into the table represent byte
values; if the entry at a given offset in the table is positive, it means that a byte
whose value equals that offset is a single-byte character, and the entry at that offset is
the class number for the character. If the entry is negative, it means that the byte is the
first byte of a 2-byte character code, and the auxiliary class table must be used to
determine the character class. Odd negative numbers are handled differently from
even negative numbers.

■ The auxiliary class table assigns character classes to 2-byte characters. It is used when
the class table determines that a byte value represents the first byte of a 2-byte
character.
String-Manipulation Resource (Type 'itl2') B-45

A P P E N D I X B

International Resources

n Here is how the auxiliary class table handles odd negative values from the class
table. If the first word of the auxiliary class table is equal to or greater than zero, it
represents the default class number for 2-byte character codes—the class assigned
to every odd negative value from the class table. If the first word is less than zero, it
is the negative of the offset from the beginning of the auxiliary class table to a
first-byte class table (a table of 2-byte character classes that can be determined from
just the first byte). The value from the class table is negated, 1 is subtracted from it
to obtain an even offset, and the value at that offset into the first-byte class table is
the class to be assigned.

n Here is how the auxiliary class table handles even negative values from the class
table. The auxiliary class table begins with a variable-length word array. The words
that follow the first word are offsets to row tables. Row tables have the same format
as the class table, but are used to map the second byte of a 2-byte character code to
a class number. If the entry in the class table for a given byte is an even negative
number, FindWordBreaks negates this value to obtain the offset from the
beginning of the auxiliary class table to the appropriate word, which in turn
contains an offset to the appropriate row table. That row table is then used to map
the second byte of the character to a class number.

■ The backward-processing table is a state table used by FindWordBreaks for
backward searching. Using the backward-processing table, FindWordBreaks starts
at a specified character, moving backward as necessary until it encounters a word
boundary.

■ The forward-processing table is a state table used by FindWordBreaks for forward
searching. Using the forward-processing table, FindWordBreaks starts at one word
boundary and moves forward until it encounters another word boundary.

The backward-processing table and the forward-processing table have the same format,
as shown in Figure B-9. The table begins with a list of words containing byte offsets from
the beginning of the state table to the rows of the state table; this is followed by a c-by-s
byte array, where c is the number of classes (columns) and s is the number of states
(rows). The bytes in this array are stored with the column index varying most rapidly—
that is, the bytes for the state 1 row precede the bytes for the state 2 row.

Note
There is a maximum of 128 classes and 64 states (including the start and
exit states). ◆
B-46 String-Manipulation Resource (Type 'itl2')

A P P E N D I X B

International Resources

B
International R

esources
Figure B-9 NBreakTable state table

Each entry in this array is an action code, which specifies

■ whether to mark the current offset

■ the next state, which may be the exit state (state 0)

The format of an action code is shown in Figure B-10.

Figure B-10 Format of an NBreakTable action code

State 1 row

State 2 row

State 3 row

State 4 row

State 5 row

action

action

action

action

action

action

action

action

action

action

action

action

action

action

action

action action actionaction action

action action actionaction action

Class 0 Class 1 Class 3 Class 4Class 2

Reserved (must be 0)

Offset to state 1 row

Offset to state 2 row

Offset to state 3 row

Offset to state 4 row

Offset to state 5 row

Bytes

2

2

2

2

2

2

Next state

Mark bit (1 = mark current offset)

7 6 1 0

0

String-Manipulation Resource (Type 'itl2') B-47

A P P E N D I X B

International Resources
Table B-6 shows an example of the classes used in a state table. It is taken from the
word-selection table of the U.S. localized version of the Roman script system.

Table B-7 shows an example of the defined states for a state table. It is taken from the
forward-processing table of the word-selection table of the U.S. localized version of the
Roman script system.

Table B-6 Example of classes for an NBreakTable state table

Class
number

Class name Used for

0 break Everything not included below

1 nonBreak Nonbreaking spaces

2 letter Letters, ligatures, and accents

3 number Digits

4 midLetter Hyphen

5 midLetNum Apostrophe (vertical or right single quote)

6 preNum $ £ ¥ ¤

7 postNum % ‰ ¢

8 midNum , ⁄

9 preMidNum .

10 blank Space, tab, null

11 cr Return

Table B-7 Example of states for an NBreakTable state table

State
number

Explanation

0 Exit

1 Start, or has detected initial nonBreak sequence

2 Has detected a letter

3 Has detected a number

4 Has detected a non-whitespace character that should stand alone;
now anything but nonBreak generates an exit

5 Has detected preMidNum or preNum;
now anything but number or nonBreak generates an exit

6 Has detected a blank
B-48 String-Manipulation Resource (Type 'itl2')

A P P E N D I X B

International Resources

B
International R

esources
How FindWordBreaks Uses the Break Table B

FindWordBreaks uses a state machine to determine the word boundaries on either side
of a given character in a text buffer. The state machine must start at a point in the buffer
at or before the beginning of the word that includes that character. If the specified
character is sufficiently close to the beginning of the text buffer (controlled by the
doBackupMin parameter in the break table), the state machine simply starts from the
beginning of the buffer. Otherwise, FindWordBreaks uses the backward-processing
table to work backwards from the specified character, analyzing characters until it
encounters a word boundary.

Once determined, this starting location is saved as an initial word boundary. From this
point the FindWordBreaks state machine moves forward using the forward-processing
table until it encounters another word boundary. If that word boundary is still before the
specified character, its location is saved as the starting point and the state machine is
restarted from that location. This process repeats until the state machine finds a word
boundary that is after the specified character. At that point, FindWordBreaks returns
the location of the previously saved word boundary and the current word boundary as
the offset pair defining the word.

The state machine operates in a similar manner whether moving backward or forward;
any differences in behavior are determined by the tables. The machine begins in the start
state (state 1). It then cycles one character at a time until it finds a boundary break and
exits. In each cycle, the current character is mapped to a class number, and the character
class and the current state are used as indices into the array of action codes in the state
table. Each action code specifies the next state and whether to mark the current offset.
When the state machine exits, it has encountered a word boundary. The location of the
word boundary is the last character offset that was marked.

7 Has detected letter followed by midLetter, midLetNum, or preMidNum; now
anything but letter generates an exit

8 Has detected a non-whitespace character followed by nonBreak
(the nonBreak should be treated as non-whitespace)

9 Has detected number followed by midNum, midLetNum, or preMidNum;
now anything but number generates an exit

10 Marks current offset, then exits

11 Has detected blank followed by nonBreak
(the nonBreak should be treated as a blank)

Table B-7 Example of states for an NBreakTable state table (continued)

State
number

Explanation
String-Manipulation Resource (Type 'itl2') B-49

A P P E N D I X B

International Resources
Figure B-11 gives two examples of the forward operation of the state machine for word
selection. It shows that an exit may or may not be generated at a hyphen, depending on
the character that follows. It also shows that the marked offset on exit may or may not
include the last character before the exit was generated.

Figure B-11 Forward operation of the state machine for word selection

Tokens Resource (Type 'itl4') B

The tokens resource (resource type'itl4') contains information needed to convert text
into a series of language-independent tokens. Compilers, interpreters, and other
expression evaluators convert source text to tokens as an initial step in their processing.
The Script Manager IntlTokenize function uses information in the tokens resource to
produce tokens from source text.

The tokens resource also contains tables for converting tokens into text, for formatting
numbers, and for determining whitespace characters.

Each enabled script system has one or more tokens resources. The resource ID for each
one is within the range of resource ID numbers for that script system. The default
'itl4' resource for a script is specified in the itlbToken field of the script’s
international bundle ('itlb') resource.

Each tokens resource contains the following:

■ Header

■ Tokenizing tables and code

■ Untoken table

Start Exit

UH-327
*

Word defined at exit by
marked offsets: “UH”

Start Exit

UH-oh. Word defined at exit by
marked offsets: “UH-oh”

Marked
offsets

* *

* *

* * * *
B-50 Tokens Resource (Type 'itl4')

A P P E N D I X B

International Resources

B
International R

esources
■ Number parts table

■ Whitespace table

The tokenizing tables and code are used by the IntlTokenize function. The untoken
table is used by the IntlTokenize function and by applications that want to convert
tokens to strings. The number parts table is used by the Text Utilities number-formatting
routines and by applications that do their own number formatting. The whitespace table
is available for application use.

The NItl4Rec Data Type B
The tokens resource is defined by the NItl4Rec data type as follows:

TYPE NItl4Rec =

RECORD

flags: Integer; {reserved}

resourceType: LongInt; {contains 'itl4'}

resourceNum: Integer; {resource ID}

version: Integer; {version number}

format: Integer; {format code}

resHeader: Integer; {reserved}

resHeader2: LongInt; {reserved}

numTables: Integer; {number of tables}

mapOffset: LongInt; {offset to token table}

strOffset: LongInt; {offset to string-copy rtn.}

fetchOffset: LongInt; {offset to ext. fetch routine}

unTokenOffset: LongInt; {offset to untoken table}

defPartsOffset: LongInt; {offset to number parts table}

whtSpListOffset: LongInt; {offset to whitespace table}

resOffset7: LongInt; {reserved}

resOffset8: LongInt; {reserved}

resLength1: Integer; {reserved}

resLength2: Integer; {reserved}

resLength3: Integer; {reserved}

unTokenLength: Integer; {length of untoken table}

defPartsLength: Integer; {length of number parts table}

whtSpListLength: Integer; {length of whitespace table}

resLength7: Integer; {reserved}

resLength8: Integer; {reserved}

END;

TYPE NItl4Ptr = ^NItl4Rec;

TYPE NItl4Handle = ^NItl4Ptr;
Tokens Resource (Type 'itl4') B-51

A P P E N D I X B

International Resources
Field descriptions

flags (reserved)
resourceType 'itl4' (the resource type of the tokens resource).
resourceNum The resource ID number of this tokens resource.
version The version number of this tokens resource.
format The format code, a number that identifies the format of this tokens

resource.
resHeader (reserved)
resHeader2 (reserved)
numTables The number of tables in this tokens resource.
mapOffset The offset in bytes from the beginning of the resource to the token

table, an array that maps each byte to a token type.
strOffset The offset in bytes from the beginning of the resource to the

token-string copy routine, a code segment that creates strings that
correspond to the text that generated each token.

fetchOffset The offset in bytes from the beginning of the resource to the
extension-fetching routine, a code segment that fetches the second
byte of a 2-byte character for the IntlTokenize function.

unTokenOffset The offset in bytes from the beginning of the resource to the
untoken table, an array that maps token types back to the canonical
strings that represent them.

defPartsOffset
The offset in bytes from the beginning of the resource to the number
parts table, an array of characters that correspond to each part of a
number format (used primarily by the FormatRecToString and
StringToExtended functions).

whtSpListOffset
The offset in bytes from the beginning of the resource to the
whitespace table, a list of all the characters that should be treated
as whitespace—for example, blank and tab for the Roman
script system.

resOffset7 (reserved)
resOffset8 (reserved)
resLength1 (reserved)
resLength2 (reserved)
resLength3 (reserved)
unTokenLength The length in bytes of the untoken table.
defPartsLength

The length in bytes of the number parts table.
whtSpListLength

The length in bytes of the whitespace table.
resLength7 (reserved)
resLength8 (reserved)
B-52 Tokens Resource (Type 'itl4')

A P P E N D I X B

International Resources

B
International R

esources
The Token Table B
The 'itl4' resource includes the token table, an array of type mapCharTable. The
token table, also called the character-mapping table, maps each possible byte value in a
1-byte character set into a token type. Its format is shown in Figure B-12.

Figure B-12 Format of the token table

The table consists of 256 bytes. The byte offset of each location in the table represents a
character code: location 0 represents a character code of 0, location 255 represents a
character code of 255. Each location in the table contains a token code that represents the
type of token corresponding to that character code. Constants for all defined token codes
are listed in the chapter “Script Manager” in this book.

The token table is used to define tokens in 2-byte script systems also. Any location in the
table that has a value of –1 represents the first byte of a 2-byte character. When it
encounters such a byte, the IntlTokenize function calls the extension-fetching routine,
described next, which analyzes that byte and the subsequent byte in the source text to
determine what type of token is represented.

tokenWhite

tokenNumeric

tokenAlpha

$20

$41

$30

Byte

offset
Tokens Resource (Type 'itl4') B-53

A P P E N D I X B

International Resources

The Extension-Fetching Routine B
The IntlTokenize function uses the extension-fetching routine to retrieve the second
byte of a 2-byte character and determine what type of token should represent it. When
IntlTokenize encounters a byte value in the source text that is represented by a –1 in
the token table, IntlTokenize calls the extension-fetching routine with register A0
pointing to the second byte of the 2-byte character.

The extension-fetching routine consults internal, script-specific tables and returns the
token code associated with the byte pair. IntlTokenize adds that token to the token
list, and continues processing with the first byte following the byte pair.

The Token-String Copy Routine B
When it creates a token list, the IntlTokenize function offers the option of also
returning Pascal strings that are the normalized equivalents of the tokens it generates.
IntlTokenize uses the token-string copy routine to create those strings and store them
in a canonical format in a string list.

Canonical format means that the string-copy routine converts all numerals into standard
ASCII numbers and converts the decimal separator to a period. For example, it would
convert the Thai number “248” into one token, tokenAltNum, with an associated
Pascal string of '248'.

The Untoken Table B
The untoken table provides a Pascal string for any type of fixed token. A fixed token is a
token whose representation is unvarying, like punctuation. Alphabetic and numeric
tokens are not fixed; specifying the token does not specify the string it represents.

The untoken table contains standard representations for the fixed tokens. You can use
it to display the canonical format for any fixed token in the script system of the
tokens resource.

The unTokenTable data type describes the format of the untoken table:

TYPE

UntokenTable =

RECORD

len: Integer; {length of untoken table}

lastToken: Integer; {maximum token code to be used}

index: ARRAY[0..255] OF Integer;

{offsets to Pascal strings for }

{ tokens; last entry = lastToken}

END;

UntokenTablePtr = ^UntokenTable;

UntokenTableHandle = ^UntokenTablePtr;
B-54 Tokens Resource (Type 'itl4')

A P P E N D I X B

International Resources

B
International R

esources
Field descriptions

len The length in bytes of the untoken table.
lastToken The highest token code used in this table (for range-checking).
index An array of byte offsets from the beginning of the untoken table to

Pascal strings—one for each possible token type—that give the
canonical format for each fixed token type. The entries in the array
correspond, in order, to token code values from 0 to lastToken.
For example, the offset to the Pascal string for tokenColonEqual
(token code = 39) is found at offset 39 in the array.

The string data directly follows the index array. It is a simple concatenation of Pascal
strings; for example, the Pascal string for the token type tokenColonEqual may consist
of a length byte (of value 2) followed by the characters “:=”.

The Number Parts Table B
The number parts table contains standard representations for the components of
numbers and numeric strings. The Text Utilities number-formatting routines
StringToExtended and ExtendedToString use the number parts table, along with
a number-format string created by the StringToFormatRec and
FormatRecToString routines, to create number strings in localized formats.

The NumberParts data type defines the number parts table:

TYPE NumberParts =

RECORD

version: Integer; {version of this table}

data: ARRAY[1..31] OF WideChar;

{2-byte number parts}

pePlus: WideCharArr; {positive exp. notation}

peMinus: WideCharArr; {negative exp. notation}

peMinusPlus: WideCharArr; {neg. or pos. exp.}

altNumTable: WideCharArr; {alternate digits}

reserved: PACKED ARRAY[0..19] OF Char;

{reserved}

END;

TYPE NumberPartsPtr = ^NumberParts;

version An integer that specifies which version of the number parts table is
being used. A value of 1 specifies the first version.

data An array of 31 wide characters (2 bytes each), indexed by a set of
constants. Each element of the array, accessed by one of the
constants, contains 1 or 2 bytes that make up that number part. (If
the element contains only one 1-byte character, it is in the low-order
byte and the high-order byte contains 0.) Each number part, then,
may consist of one or two 1-byte characters, or a single 2-byte
character.
Tokens Resource (Type 'itl4') B-55

A P P E N D I X B

International Resources
Of the 31 allotted spaces, 15 through 31 are reserved for up to 17
unquoted characters—special literals that do not need to be
enclosed in quotes in a numeric string. See the discussion of
number formatting in the chapter “Text Utilities” in this book for
more information.
These are the defined constants for accessing number parts in the
data array:

IMPORTANT

Note that these constants are unrelated to the token-type constants
defined for the IntlTokenize function. ▲

pePlus An array that specifies how to represent positive exponents for
scientific notation. It is a wide character array, an 11-word data
structure defined by the WideCharArr data type. It contains up to
ten 1-byte or 2-byte number parts for representing positive
exponents.

peMinus An array that specifies how to represent negative exponents for
scientific notation. It is a wide character array, an 11-word array
defined by the WideCharArr data type. It contains up to ten 1-byte
or 2-byte number parts for representing negative exponents.

Constant Value Explanation

tokLeftQuote 1 Left quote

tokRightQuote 2 Right quote

tokLeadPlacer 3 Spacing leader format marker

tokLeader 4 Spacing leader character

tokNonLeader 5 No leader format marker

tokZeroLead 6 Zero leader format marker

tokPercent 7 Percent

tokPlusSign 8 Plus

tokMinusSign 9 Minus

tokThousands 10 Thousands separator

11 (reserved)

tokSeparator 12 List separator

tokEscape 13 Escape character

tokDecPoint 14 Decimal separator

tokUnquoteds 15 (first unquoted character)

(15 through 31 reserved)

tokMaxSymbols 31 Maximum symbol (for range check)
B-56 Tokens Resource (Type 'itl4')

A P P E N D I X B

International Resources

B
International R

esources
peMinusPlus An array that specifies how to represent positive exponents for
scientific notation when the format string exponent is negative.
Symbols from this array can be used with the input number string
to the StringToExtended function; they are not for use with the
StringToFormatRec function. The array is a wide character array,
an 11-word array defined by the WideCharArr data type. It
contains up to ten 1-byte or 2-byte number parts for representing
positive exponents.

altNumTable A wide character array that specifies the alternate representation of
numerals. The array contains ten character codes, each of which
represents an alternate numeral. If the smsfB0Digits bit of the
script-flags word is set, you should substitute the characters in this
array for the character codes $30–$39 (regular ASCII numerals) in a
string whose token code is tokenAltNum or tokenAltReal.
Alternate numerals and the script flags word are described with the
list of selectors for script variables in the chapter “Script Manager”
in this book.

reserved (reserved for future expansion)

The wide character (data type WideChar) is a format for representing a character that
may be either 1 or 2 bytes long. For a 1-byte character, the high-order (first) byte in the
record is 0, and the low-order (second) byte contains the character code. For a 2-byte
character, the high-order byte is nonzero.

TYPE

WideChar = RECORD

CASE BOOLEAN OF

TRUE:

(a: PACKED ARRAY[0..1] OF Char); {0 = high-order char}

FALSE:

(b: INTEGER);

END;

The wide character array (data type WideCharArr) consists of an integer count
followed by a packed array of wide characters.

TYPE

WideCharArr = RECORD

size: INTEGER; {no. of entries -1}

data: PACKED ARRAY[0..9] OF WideChar;

END;

Field descriptions

size The number of items in the table minus 1.
data Up to ten wide characters. If the number part is only a single 1-byte

character, that character is in the low-order byte of the word.
Tokens Resource (Type 'itl4') B-57

A P P E N D I X B

International Resources
The Whitespace Table B
The whitespace table contains characters that may be used to indicate white space, such
as blanks, tabs, and carriage returns. Figure B-13 shows the format of the whitespace
table. Each entry pointed to by the table is a Pascal string specifying a single whitespace
character (which may be 1 or 2 bytes long). The strings immediately follow the
offset fields.

Figure B-13 Format of the whitespace table

Encoding/Rendering Resource (Type 'itl5') B

The encoding/rendering resource (resource type 'itl5') specifies character encoding
or display behavior in a given script system. The resource has different formats and
functions for 1-byte and 2-byte script systems. In 1-byte script systems, it specifies
character rendering behavior. In 2-byte script systems, it contains byte-type and
character-type information.

The encoding/rendering resource is optional; it does not exist for all script systems. The
Roman script system does not include an 'itl5' resource.

Length of whitespace table

Number of entries

Offset from beginning to first entry

Offset from beginning to second entry

First entry (Pascal string)

Second entry (Pascal string)

Bytes

2

2

2

2

B-58 Encoding/Rendering Resource (Type 'itl5')

A P P E N D I X B

International Resources

B
International R

esources
The resource ID of an encoding/rendering resource is within the range of resource ID
numbers for that script system. Although more than one encoding/rendering resource
may be associated with a given script system, the script by default uses the resource
specified in the itlbEncoding field of its international bundle ('itlb') resource.

Resource Header B
The header for the encoding/rendering resource is the same for 1-byte and 2-byte script
systems. Its format is general enough to allow new tables to be added in the future. This
is the definition of the resource-header format:

TYPE Itl5Record =

RECORD

versionNumber: Fixed;

numberOfTables: Integer;

reserved: ARRAY[0..2] OF Integer;

tableDirectory: ARRAY[0..0] OF TableDirectoryRecord;

END;

Field descriptions

versionNumber The version of this 'itl5' resource.
numberOfTables

The number of tables this resource contains.
reserved (for internal use)
tableDirectory

A directory of all the tables in the resource. Each entry in the
directory is a table directory record, with this format:

 TYPE TableDirectoryRecord =

RECORD

tableSignature: OSType ;

reserved: LongInt;

tableStartOffset: LongInt;

tableSize: LongInt;

END;

Field descriptions

tableSignature
A 4-byte tag (of type OSType) that identifies the kind of table this
record refers to.

reserved (for internal use)
tableStartOffset

The number of bytes from the beginning of the resource to the
beginning of the table.

tableSize The length of the table, in bytes.
Encoding/Rendering Resource (Type 'itl5') B-59

A P P E N D I X B

International Resources
Tables for 1-Byte Script Systems B
In 1-byte script systems, the encoding/rendering resource specifies character-rendering
behavior. In general, only 1-byte complex script systems—those that work with the
WorldScript I script extension—include an encoding/rendering resource. The defined
table types at this time are

■ Script configuration table

■ Line-layout metamorphosis table

■ Line-layout glyph-properties table

■ Character-expansion table

■ Glyph-to-character table

■ Break-table directory

■ FindScriptRun tables

■ Feature-list table

■ Kashida priorities table

■ Reordering table

Script Configuration Table B

The script configuration table (OSType = 'info') defines certain settings that affect the
characteristics of a script system. The table exists so that user preferences for script
configuration can be saved in a preferences file, called the script preferences file, between
system restarts.

The script configuration table consists of a 6-byte header followed by a set of table
entries, each of which contains a SetScriptVariable selector. The table entries
correspond to script settings that the user can make, typically through a script-system
control panel.

The format of the script configuration table is shown in Figure B-14.
B-60 Encoding/Rendering Resource (Type 'itl5')

A P P E N D I X B

International Resources

B
International R

esources
Figure B-14 Format of the script configuration table

The resource header consists of three elements:

■ Version number. The version number of this resource. The major version number is in
the high-order byte; the minor version number is in the low-order byte.

■ Reserved. A 2-byte reserved element.

■ Number of entries. The number of entries in the script configuration table.

The entries immediately follow the header. Each entry has four elements:

■ Tag. A 4-byte identifier of type OSType.

■ Selector. A selector to access a script variable through the Script Manager
SetScriptVariable function.

■ Parameter length. The length of the parameter to pass to the SetScriptVariable
function. This value always equals 4, unless this entry refers to variable-length data.
See below.

■ Parameter. This element contains the parameter to pass to the SetScriptVariable
function, unless this entry refers to variable-length data. See below.

For most entries in the script configuration table, the tag is 'long', the parameter
length is 4 (the length of a SetScriptVariable parameter), and the parameter
element contains the SetScriptVariable parameter. However, a table entry may
reference variable-length data, such as a string representing the name of a script system.

Version number

Reserved

Number of entries

Entry 1

Entry n

Variable data

Header

2

2

2

14

14

Bytes

Table
entries

Tag

Selector

Parameter length

Parameter

4

2

4

4

Bytes
Encoding/Rendering Resource (Type 'itl5') B-61

A P P E N D I X B

International Resources
Such data follows the last entry in the table, and its location is specified—as an offset
from the beginning of the table—in the parameter element of the table entry that
references it. The data length in bytes is specified in the parameter length element of that
table entry.

For example, a Hebrew encoding/rendering resource might have a script configuration
table with the information shown in Table B-8.

Table B-8 A script configuration table for a Hebrew encoding/rendering resource

Offset Value Explanation

00 0x0100 Version number (first release = 1.0)

02 0x0000 (reserved)

04 0x0004 Four tables follow

(The table entries start here)

06 'long' The data type is a long

10 0x006 SetScriptVariable selector smScriptRight

12 0x0004 Four bytes follow

16 0xFFFF –1 = right-to-left line direction

20 'long' The data type is a long

24 0x0008 SetScriptVariable selector smScriptJust

26 0x0004 Four bytes follow

30 0xFFFF –1 = right-aligned

34 'long' The data type is a long

38 0x000A SetScriptVariable selector smScriptRedraw

40 0x0004 Four bytes follow

44 0xFFFF –1 = redraw entire line for each character

48 'pstr' The data type is a Pascal string

52 0x002C SetScriptVariable selector smScriptName

54 0x0008 The string is 8 bytes long (with length byte and pad)

58 62 Offset from beginning of table to data

62 0x6,'Hebrew' The data string
B-62 Encoding/Rendering Resource (Type 'itl5')

A P P E N D I X B

International Resources

B
International R

esources
In this case, the script configuration table causes the execution of four
SetScriptVariable calls, to set the script’s line direction, alignment, redraw
characteristics, and name.

Each script system generally has two versions of the script configuration table: one in the
encoding/rendering resource and one in a script preferences file in the Preferences folder
within the user’s System Folder. The table in the encoding/rendering resource has an
OSType tag of 'info'; the corresponding table in the preferences file is a resource of
type 'CNFG'. The script preferences file is a file of type 'pref' with creator 'univ'.

Both script configuration tables are used at startup. When installing a 1-byte complex
script system, WorldScript I locates the script configuration table in the script’s
encoding/rendering resource, and loops through the table for as many times as there are
entries in it, making a SetScriptVariable call for each entry. WorldScript I then looks
for a 'CNFG' resource for that script system in the script preferences file, and loops
through that table. Thus a script system is always configured to its default settings at
initialization, and then those settings are modified to reflect any user changes that have
been saved. WorldScript I is described in the appendix “Built-in Script Support” in
this book.

Line-Layout Metamorphosis Table B

The line-layout metamorphosis table (OSType = 'mort') specifies a set of
transformations that the WorldScript I contextual formatting routines can apply to
the glyphs of a font. WorldScript I is described in the appendix “Built-in Script Support”
in this book.

A transformation can be something simple, such as a ligature, or something complex,
such as a number of changes (ligatures plus ornateness of style plus positioning of
glyphs in a word). These transformations are called text features in the context of the
metamorphosis table. Each text feature can have different settings, or levels of operation.

These are the text features and settings currently supported by the contextual formatting
routines in WorldScript I:

■ Ligature formation. Whether to form ligatures and to what extent.

■ Contextual ornateness. Whether to use contextual glyphs and which set of them to use.

■ Noncontextual ornateness. Which of various style and case-substitution options to use.

■ Character reordering. Whether or not to reorder characters.

■ Diacritical marks. Whether to show diacritical marks, hide them, or make them
separate glyphs.

The line-layout metamorphosis table is identical in format to the “glyph metamorphosis
table” described in the currently unpublished document TrueType GX Font Table Formats,
available from Macintosh Developer Technical Support.
Encoding/Rendering Resource (Type 'itl5') B-63

A P P E N D I X B

International Resources
Line-Layout Glyph-Properties Table B

The line-layout glyph properties table (OSType = 'prop') defines the properties
associated with each glyph in a font. Examples of a glyph’s properties are its line
direction and whether or not it is a space character.

The line-layout glyph properties table is identical in format to the “glyph properties
table” described in the currently unpublished document TrueType GX Font Table Formats,
available from Macintosh Developer Technical Support.

Character Expansion Table B

The character expansion table (OSType = 'c2c#') gives multiple-character equivalents
to compound characters in a script system’s character set. This table expands ligatures
into their component characters, analogous to expanding the Roman ligature “fi” into “f”
and “i”. The contextual formatting routines need the character expansion table
because they are specifically designed to work with a script system’s fundamental
character codes.

Figure B-15 shows the format of the character expansion table.

Figure B-15 Format of the character expansion table

The table has these elements:

■ Version. The version number of this table. A value of $0100 means version 1.

■ Format. The format code, a number that identifies the format of this table.

Version

Format

First character

Number of entries – 1

Offset to first entry

First entry

2

2

2

2

2

Bytes

Number of characters
Controlling character

Character codes

1
1

Character entryOffsets Bytes

Character
entries
B-64 Encoding/Rendering Resource (Type 'itl5')

A P P E N D I X B

International Resources

B
International R

esources
■ First character. The character code of the first character to be expanded.

■ Number of entries – 1. The number of entries in this table, as a zero-based count.

■ Offsets to entries. The offset from the beginning of the table to each character entry.

The character entries immediately follow the offsets. Because the table always covers a
continuous range of a character set, the character code corresponding to each character
entry is calculated as (first character) + (entry number), where the first character entry is
numbered 0. Each character entry has these elements:

■ The total number of (expanded) characters in this entry.

■ The controlling character, the character whose position is considered equivalent to the
position of the ligature as a whole. By analogy with Roman, the controlling character
in the “fi” ligature might be considered the “f”, so that a mouse-down event on the
leading edge of the ligature would translate, after expansion, to a mouse-down event
on the leading edge of the “f”.

■ The character codes of the characters that are the expanded equivalent to the character
code for this entry.

Any character within the range of character codes for this table that does not have an
expanded equivalent has a value of 0 for its offset.

Glyph-to-Character Table B

The glyph-to-character table (OSType = 'pamc') maps 2-byte glyph indexes to 1-byte
character codes, or to 1-byte glyph codes in bitmapped fonts whose font layouts do not
exactly correspond to their script system’s character encoding. The glyph-to-character
table is conceptually the opposite of the TrueType character-code mapping table (type
'cmap'). It is used by the WorldScript I contextual formatting routines.

Figure B-16 shows the format of the glyph-to-character table.

Figure B-16 Format of the glyph-to-character table

Version

Format

Platform

Script code

Language code

Array of

character

code records

2

2

2

2

2

Bytes

Character code

Script code

1

1

Character code record
Encoding/Rendering Resource (Type 'itl5') B-65

A P P E N D I X B

International Resources
The table header has these elements:

■ Version. The version number of this table. A value of $0100 means version 1.

■ Format. The format code, a number that identifies the format of this table.

■ Platform. The computer system this table is designed for. A value of 1 means
Macintosh.

■ Script code. The script system of this glyph set.

■ Language code. The language of this glyph set.

The table header is followed by an array of character code records. There is one record
for each glyph index, which ranges from zero to a maximum value that can be greater
than $FF. Each character code record has two elements:

■ Character code. The character code corresponding to this glyph code.

■ Script code. The script system of the character. For example, most glyphs that map to
low-ASCII characters have a script code of smRoman in their character code record.

Break-Table Directory B

The break-table directory (OSType = 'fwrd') provides access to one or more break
tables (of type NBreakTable) for use by the Text Utilities FindWordBreaks procedure.
It consists of a header, followed by entries that give offsets to the break tables, followed
by the break tables themselves. Figure B-17 shows the format of the break-table directory.

Figure B-17 Format of the break-table directory

Version

Format

Number of entries

Entry for first break table

First break table

2

2

2

12

Bytes

Selector

Offset to table

Length of table

4

4

4

Table
entries

Bytes

Break
tables

Table entry
B-66 Encoding/Rendering Resource (Type 'itl5')

A P P E N D I X B

International Resources

B
International R

esources
The directory header has these elements:

■ Version. The version number of this directory. A value of $0100 means version 1.

■ Format. Another type of version number.

■ Number of entries. The number of entries, and therefore the number of break tables,
in this directory.

The table entries consist of three elements each:

■ Selector. A number that designates the specific type of break table referenced by this
entry. The currently defined values are 0, signifying a table for word selection, and –1,
signifying a table for line-breaking. These are the same default values that may be
passed as break-table pointers to the FindWordBreaks procedure.

■ Offset to table. The byte offset from the beginning of the directory to the break table
referenced by this entry.

■ Length of table. The length in bytes of the break table referenced by this entry.

The break tables themselves follow the table entries.

Most script systems’ break tables are in their string-manipulation ('itl2') resources.
For some 1-byte complex script systems, break tables are in the encoding/rendering
resource so that the Script Manager routines for replacing the WorldScript I script
utilities will function correctly. See the discussions of the GetScriptUtilityAddress
and SetScriptUtilityAddress routines in the chapter “Script Manager” in this
book, and the discussion of WorldScript I in the appendix “Built-in Script Support.”

Script Run Tables B

Typically, tables to control the Text Utilities FindScriptRun function are in a script
system’s string-manipulation ('itl2') resource. For some 1-byte complex script
systems, the script run tables (OSType = 'fstb') are in the encoding/rendering
resource so that the Script Manager routines for replacing the WorldScript I script
utilities will function correctly.

The set of script run tables in the encoding/rendering resource consists of a header
followed by one or more tables. The header has this format:

■ Version number (2 bytes).

■ Format code (2 bytes).

■ Chain header (12 bytes). This part of the header is identical in format to the chain
header in the line-layout metamorphosis table (see page B-63).

The header is followed by one or more tables. Each script run table consists of a table
flags element (4 bytes), followed by a table identical to the new-format script run table in
the string-manipulation resource. See “Script Run Table Format” beginning on page B-40.

For more information, see the discussions of the GetScriptUtilityAddress and
SetScriptUtilityAddress routines in the chapter “Script Manager” in this book,
and the discussion of WorldScript I in the appendix “Built-in Script Support.”
Encoding/Rendering Resource (Type 'itl5') B-67

A P P E N D I X B

International Resources
Kashida Preferences Table B

The kashida preferences table (OSType = 'kash'), used in Arabic versions of the
encoding/rendering resource, maps each glyph code to a kashida priority class. It
specifies which glyphs can have kashida inserted between them, in what priority, when
justifying Arabic text.

Feature List Table B

The feature list table (OSType = 'flst') contains information used to override default
line-layout behaviors (features) specified in the metamorphosis table (page B-63). It
includes an array of feature entries, each of which specifies a feature type and a setting
for that feature.

Reordering Table B

The reordering table (OSType = 'reor') is a state table that specifies the classes and
states used to reorder glyphs for contextual formatting. The reordering table contains
offsets to three state tables and two arrays of level adjustments. The WorldScript I
contextual formatting routine makes a first pass to resolve ordering of numbers, a second
pass to resolve neutrals (whitespace, number separators, and terminators), and a third
pass (using the values in the level adjustments arrays) to adjust nesting levels for each
glyph. Finally, the routine reorders the line according to the resolved nesting levels.

Tables for 2-Byte Script Systems B
In 2-byte script systems, the encoding/rendering resource contains byte-type and
character-type information. The tables immediately follow the directory in the
'itl5' header.

A byte-type table contains character-size information about a specific byte in the range of
$00 to $FF. A character-type table contains detailed information about the character
represented by a specific byte, given a particular character-encoding scheme.

Table B-9 shows the general structure of a typical encoding/rendering resource for a
2-byte script system.

Table B-9 Sample encoding/rendering resource for a 2-byte script system

Offset Value Explanation

0 $00010000 Version number (first release = 1.0)

4 2 Two tables in this resource

6 $000000000000 (reserved)

12 'btyp' Tag for byte-type table

16 $00000000 (reserved)

20 30 Offset to the byte-type table
B-68 Encoding/Rendering Resource (Type 'itl5')

A P P E N D I X B

International Resources

B
International R

esources
Byte-Type Table B

A byte-type table has 256 integer entries, one for each possible byte value in the range
$00 to $FF. Each byte value is an index into the table. At each byte value, the table entry
can have one of three values, specifying what kind of character or part of a character that
byte value can represent.

■ 1 = 1-byte character only

■ 0 = 1-byte character or low-order byte of a 2-bye character

■ –1 = high-order or low-order byte of a 2-byte character

When processing text sequentially in a buffer, you encounter a 2-byte character’s
high-order byte before its low-order byte. Thus you can determine the character
relationship of a given byte (1-byte or 2-byte, high-order or low-order byte) by
determining its byte type and, if necessary, comparing it with the byte type of the
previous byte in the buffer.

Character-Type Table B

The character-type table consists of one high-order byte table and a series of low-order
byte tables.

The high-order byte table contains 256 word-length entries. The index position of each
entry represents a high-order byte value. Nonzero entries mark valid high-order bytes of
a 2-byte character. If a given entry is nonzero, it specifies which low-order byte table to
consult to get character-type information.

There are one or more low-order byte tables, each of which can contain either a single
entry or 256 word-length entries. If all low-order bytes for a given high-order byte have
the same character type, the low-order byte “table” for that high-order byte consists of a
single character-type value. Otherwise, every possible low-order byte is represented by
an index into the table, with an appropriate character-type value at each valid index
position.

24 256 Length of the byte-type table

28 'ctyp' Tag for the character-type table

32 $00000000 (reserved)

36 286 Offset to the character-type table

40 variable Length of the character-type table

44 Start of byte-type table (256 bytes long)

300 Start of character-type table

Table B-9 Sample encoding/rendering resource for a 2-byte script system (continued)

Offset Value Explanation
Encoding/Rendering Resource (Type 'itl5') B-69

A P P E N D I X B

International Resources
For example, to find character-type information for the Japanese character with character
code $EA40, you would examine location $EA in the high-order byte table; it would
indicate the existence of a low-order byte table, and in that table you would examine
location $40. That location would contain information showing that the character is a
2-byte JIS level-2 ideographic character that is part of the main character set.

Character types are discussed under the description of the CharacterType function in
the chapter “Script Manager” in this book.

Transliteration Resource (Type 'trsl') B

The transliteration resource (resource type 'trsl') contains information used by the
Script Manager TransliterateText function, which performs phonetic conversion
among subscripts in 2-byte script systems.

The transliteration resource is optional. Currently, no 1-byte script systems, including the
Roman script system, have transliteration resources. All 2-byte script systems have
transliteration resources.

The resource ID for a transliteration resource is within the range of resource ID numbers
for its script system. There is one transliteration resource for each kind of transliteration
supported by the script system. The name of an individual 'trsl' resource, such as
“Jamo to Hangul”, specifies the kind of transliteration that the resource performs.

There are two formats for the transliteration resource: one supplies table-based
transliteration from Jamo and Hangul, and vice versa, in the Korean script system; the
other provides a more general rule-based transliteration.

Note
In the Roman script system, and for Roman text within other script
systems, the TransliterateText function performs case conversion.
The tables that control case conversion are in a script system’s
string-manipulation ('itl2') resource, not in a transliteration
resource. ◆
B-70 Transliteration Resource (Type 'trsl')

A P P E N D I X B

International Resources

B
International R

esources
Resource Header B
Figure B-18 shows the format of the transliteration resource header.

Figure B-18 Format of the transliteration resource header

The resource header is the same for both the table-based and the rule-based formats:

■ Source type. The type of text to perform the transliteration on. Specified by an integer;
the currently defined mask constants for source type are listed under the discussion of
the TransliterateText function in the chapter “Script Manager” in this book.

■ Target type. The type of text to convert to. Specified by an integer; the currently
defined target format constants are listed under the discussion of the
TransliterateText function in the chapter “Script Manager” in this book.

■ Format code. A number that identifies the format of this transliteration resource.

■ Property flag. A bit field that specifies the kinds of operations to perform on a
piece of text before or after transliteration. These are the currently defined bits of the
property flag:

The property flag is needed because of the complex nature of the Chinese, Japanese, and
Korean character sets, which include 1-byte and 2-byte characters as well as lowercase
and uppercase characters. For example, to transliterate the Roman string “ki” into 2-byte
Hiragana characters, the two-character string could be interpreted with as many as eight
combinations of 1-byte Roman, 2-byte Roman, uppercase, and lowercase characters.

Bit
number

Operation

1 Convert all 1-byte characters into 2-byte characters before
performing the transliteration.

2 Convert all Roman characters to uppercase before performing
the transliteration.

Source type

Target type

Format code

Property flag

Byte

offset

0

2

4

6

8

Transliteration Resource (Type 'trsl') B-71

A P P E N D I X B

International Resources
To simplify matters the transliteration resource allows you to convert your source text
into a common set of characters before it matches them against the transliteration rules.
So, to translate the Roman string “ki” into Hiragana, you can first convert the characters
into their 2-byte equivalents, then convert them into uppercase, and then perform the
transliteration.

Note
In most 2-byte transliteration resources, bits 1 and 2 in the
property flag are set (= 1). The reason for the preliminary conversion
of all source text to 2 bytes is that 2-byte Katakana is a superset of all
the Katakana characters; thus, it is possible to convert all the
1-byte Katakana characters to 2-byte characters but not vice versa. ◆

Rule-Based Format B
In the rule-based version of the transliteration resource, the header is followed
immediately by a 2-byte field containing a count of the number of rules in the resource;
the rules immediately follow the count field and constitute the remainder of the
resource. This is the definition of the rule-based resource header:

TYPE RuleBasedTrslRecord =

RECORD

sourceType: Integer; {target type for left side of rule}

targetType: Integer; {target type for right side of rule}

formatNumber: Integer; {format of this resource}

propertyFlag: Integer; {transliteration property flags}

numberOfRules: Integer; {number of rules that follow}

END;

Figure B-19 shows the format of a rule.

Figure B-19 Format of a transliteration rule

■ The length of the rule is a byte that specifies the actual number of bytes in the rule,
excluding the length byte itself.

Left
side of

rule

Space
(0x20)

Length of
rule

Right
side of

rule
B-72 Transliteration Resource (Type 'trsl')

A P P E N D I X B

International Resources

B
International R

esources
■ The left side of the rule contains the source pattern, a sequence of one or more
character codes that the TransliterateText function compares to the source
string. If it finds a match, it returns the right side of the rule (the target pattern). The
rules are organized to implement the longest match algorithm, meaning that the
longest source pattern that matches a particular target pattern is the one that is
converted. For instance, the rule
abb → hello

takes precedence over the rule
ab → hello

Some rules in some versions of the transliteration resource incorporate a look-ahead
feature, in which a particular source pattern is converted to its target pattern only if it is
followed by other specific characters. For example, if “[” represents the look-ahead
symbol, the characters preceding it in the left side of the rule are converted to the right
side of the rule only if the characters following “[” in the left side of the rule match the
subsequent characters in the input string.

If these are the matching rules:

Then if we have the input string

abcdf

the output string will be:

ABCdF

because, in the input string, the characters “bc” follow “a”, but the characters “ef” do not
follow “d”.

Table-Based Format B
The Jamo-to-Hangul transliteration resource contains a set of conversion tables. The
structure of the tables is private.

Jamo-to-Hangul transliteration is used by the input method supplied with the Korean
script system; see the discussion of input methods in the chapter “Introduction to Text
on the Macintosh” in this book.

Left side Rignt side

a[bc A

b B

c C

d[ef D

f F
Transliteration Resource (Type 'trsl') B-73

A P P E N D I X B

International Resources
Summary of the International Resources B

Pascal Summary B

Constants B

{ Bits in the itlcFlags byte.}

itlcShowIcon = 7; {show icon even if only one script}

itlcDualCaret = 6; {use dual caret for mixed direction text}

{ Bits in the itlcSysFlags word.}

itlcSysDirection = 15; {system direction - left/right or right/left}

{ the NumberParts indices }

tokLeftQuote = 1;

tokRightQuote = 2;

tokLeadPlacer = 3;

tokLeader = 4;

tokNonLeader = 5;

tokZeroLead = 6;

tokPercent = 7;

tokPlusSign = 8;

tokMinusSign = 9;

tokThousands = 10;

tokSeparator = 12; {11 is a reserved field}

tokEscape = 13;

tokDecPoint = 14;

tokUnquoteds = 15;

tokMaxSymbols = 31;

curNumberPartsVersion = 1; {current version of NumberParts record}

currSymLead = 16;

currNegSym = 32;

currTrailingZ = 64;

currLeadingZ = 128;
B-74 Summary of the International Resources

A P P E N D I X B

International Resources

B
International R

esources
zeroCycle = 1; {0:00 AM/PM format}

longDay = 0; {day of the month}

longWeek = 1; {day of the week}

longMonth = 2; {month of the year}

longYear = 3; {year}

supDay = 1; {suppress day of month}

supWeek = 2; {suppress day of week}

supMonth = 4; {suppress month}

supYear = 8; {suppress year}

dayLdingZ = 32;

mntLdingZ = 64;

century = 128;

secLeadingZ = 32;

minLeadingZ = 64;

hrLeadingZ = 128;

{ Date Orders }

mdy = 0;

dmy = 1;

ymd = 2;

myd = 3;

dym = 4;

ydm = 5;

Data Types B

TYPE ItlcRecord =

RECORD

itlcSystem: Integer; {default system script}

itlcReserved: Integer; {reserved}

itlcFontForce: SignedByte; {default font force flag}

itlcIntlForce: SignedByte; {default intl force flag}

itlcOldKybd: SignedByte; {MacPlus intl keybd flag}

itlcFlags: SignedByte; {general flags}

itlcIconOffset: Integer; {reserved}

itlcIconSide: SignedByte; {reserved}

itlcIconRsvd: SignedByte; {reserved}

itlcRegionCode: Integer; {preferred verXxx code}

itlcSysFlags: Integer; {flags for setting system globals}

itlcReserved4: ARRAY[0..31] OF SignedByte; {for future use}

END;
Summary of the International Resources B-75

A P P E N D I X B

International Resources
ItlbRecord =

RECORD

itlbNumber: Integer; {itl0 id number}

itlbDate: Integer; {itl1 id number}

itlbSort: Integer; {itl2 id number}

itlbFlags: Integer; {Script flags}

itlbToken: Integer; {itl4 id number}

itlbEncoding: Integer; {itl5 ID # (optional; char encoding)}

itlbLang: Integer; {current language for script }

itlbNumRep: SignedByte; {number representation code}

itlbDateRep: SignedByte; {date representation code }

itlbKeys: Integer; {KCHR id number}

itlbIcon: Integer; {ID# of SICN or kcs#/kcs4/kcs8 family}

END;

ItlbExtRecord =

RECORD

base: ItlbRecord; {unextended ItlbRecord}

itlbLocalSize: LongInt; {size of script's local record}

itlbMonoFond: Integer; {default monospace FOND ID}

itlbMonoSize: Integer; {default monospace font size}

itlbPrefFond: Integer; {preferred FOND ID}

itlbPrefSize: Integer; {preferred font size}

itlbSmallFond: Integer; {default small FOND ID}

itlbSmallSize: Integer; {default small font size}

itlbSysFond: Integer; {default system FOND ID}

itlbSysSize: Integer; {default system font size}

itlbAppFond: Integer; {default application FOND ID}

itlbAppSize: Integer; {default application font size}

itlbHelpFond: Integer; {default Help Mgr FOND ID}

itlbHelpSize: Integer; {default Help Mgr font size}

itlbValidStyles: Style; {set of valid styles for script}

itlbAliasStyle: Style; {style (set) to mark aliases}

END;

Intl0Rec =

PACKED RECORD

decimalPt: Char; {decimal point character}

thousSep: Char; {thousands separator character}

listSep: Char; {list separator character}

currSym1: Char; {currency symbol}

currSym2: Char;

currSym3: Char;

currFmt: Byte; {currency format flags}
B-76 Summary of the International Resources

A P P E N D I X B

International Resources

B
International R

esources
dateOrder: Byte; {order of short date elements: mdy, dmy, etc.}

shrtDateFmt: Byte; {format flags for each short date element}

dateSep: Char; {date separator character}

timeCycle: Byte; {specifies time cycle: 0..23, 1..12, or 0..11}

timeFmt: Byte; {format flags for each time element}

mornStr: PACKED ARRAY[1..4] OF Char;

{trailing string for AM if 12-hour cycle}

eveStr: PACKED ARRAY[1..4] OF Char;

{trailing string for PM if 12-hour cycle}

timeSep: Char; {time separator character}

time1Suff: Char; {trailing string for AM if 24-hour cycle}

time2Suff: Char;

time3Suff: Char;

time4Suff: Char;

time5Suff: Char; {trailing string for PM if 24-hour cycle}

time6Suff: Char;

time7Suff: Char;

time8Suff: Char;

metricSys: Byte; {255 if metric, 0 if inches etc.}

intl0Vers: Integer;

{region code (hi byte) and version (lo byte)}

END;

Intl0Ptr = ^Intl0Rec;

Intl0Hndl = ^Intl0Ptr;

Intl1Rec =

PACKED RECORD

days: ARRAY[1..7] OF Str15; {day names}

months: ARRAY[1..12] OF Str15; {month names}

suppressDay: Byte;

{255 for no day, or flags to suppress any element}

lngDateFmt: Byte; {order of long date elements}

dayLeading0: Byte; {255 for leading 0 in day number}

abbrLen: Byte; {length for abbreviating names}

st0: PACKED ARRAY[1..4] OF Char;

{separator strings for long date format}

st1: PACKED ARRAY[1..4] OF Char;

st2: PACKED ARRAY[1..4] OF Char;

st3: PACKED ARRAY[1..4] OF Char;

st4: PACKED ARRAY[1..4] OF Char;

intl1Vers: Integer;

{region code (hi byte) and version (lo byte)}

localRtn: ARRAY[0..0] OF Integer;

{a flag for optional extension}
Summary of the International Resources B-77

A P P E N D I X B

International Resources
END;

Intl1Ptr = ^Intl1Rec;

Intl1Hndl = ^Intl1Ptr;

Itl1ExtRec =

RECORD

base: Intl1Rec;{un-extended Intl1Rec}

version: Integer; {version number}

format: Integer; {format code}

calendarCode: Integer; {calendar code for 'itl1'}

extraDaysTableOffset: LongInt; {offset to extra days table}

extraDaysTableLength: LongInt; {length of extra days table}

extraMonthsTableOffset: LongInt; {offset to extra months table}

extraMonthsTableLength: LongInt; {length of extra months table}

abbrevDaysTableOffset: LongInt; {offset to abbrev. days table}

abbrevDaysTableLength: LongInt; {length of abbrev. days table}

abbrevMonthsTableOffset:LongInt; {offset to abbr. months table}

abbrevMonthsTableLength:LongInt; {length of abbr. months table}

extraSepsTableOffset: LongInt; {offset to extra seps table}

extraSepsTableLength: LongInt; {length of extra seps table}

tables: ARRAY[0..0] OF Integer;

{the tables; variable-length}

END;

NItl4Rec =

RECORD

flags: Integer; {reserved}

resourceType: LongInt; {contains 'itl4'}

resourceNum: Integer; {resource ID}

version: Integer; {version number}

format: Integer; {format code}

resHeader: Integer; {reserved}

resHeader2: LongInt; {reserved}

numTables: Integer; {number of tables, one-based}

mapOffset: LongInt; {table that maps byte to token}

strOffset: LongInt; {routine that copies string}

fetchOffset: LongInt; {routine to get next byte of character}

unTokenOffset: LongInt; {table that maps token to string}

defPartsOffset: LongInt; {offset to default number parts table}

whtSpListOffset: LongInt; {offset to whitespace table}

resOffset7: LongInt; {reserved}

resOffset8: LongInt; {reserved}

resLength1: Integer; {reserved}

resLength2: Integer; {reserved}
B-78 Summary of the International Resources

A P P E N D I X B

International Resources

B
International R

esources
resLength3: Integer; {reserved}

unTokenLength: Integer; {length of untoken table}

defPartsLength: Integer; {length of number parts table}

whtSpListLength: Integer; {length of whitespace table}

resLength7: Integer; {reserved}

resLength8: Integer; {reserved}

END;

NItl4Ptr = ^NItl4Rec;

NItl4Handle = ^NItl4Ptr;

UntokenTable =

RECORD

len: Integer;

lastToken: Integer;

index: ARRAY[0..255] OF Integer; {index table; last=lastToken}

END;

UntokenTablePtr = ^UntokenTable;

UntokenTableHandle = ^UntokenTablePtr;

WideChar = RECORD

 CASE Boolean OF

 TRUE:

 (a: PACKED ARRAY[0..1] OF Char);{0 is the high order character}

 FALSE:

 (b: Integer);

 END;

WideCharArr = RECORD

 size: Integer;

 data: PACKED ARRAY[0..9] OF WideChar;

 END;

NumberParts =

RECORD

version: Integer;

data: ARRAY[1..31] OF WideChar;

pePlus: WideCharArr;

peMinus: WideCharArr;

peMinusPlus: WideCharArr;

altNumTable: WideCharArr;

reserved: PACKED ARRAY[0..19] OF Char;

END;

NumberPartsPtr = ^NumberParts;
Summary of the International Resources B-79

A P P E N D I X B

International Resources
Itl5Record =

RECORD

versionNumber: Fixed; {itl5 resource version number}

numberOfTables: Integer; {number of tables it contains}

reserved: ARRAY[0..2] OF Integer;

{reserved for internal use}

tableDirectory: ARRAY[0..0] OF TableDirectoryRecord;

{table directory records}

END;

TableDirectoryRecord =

RECORD

tableSignature: OSType ; {4 byte long table name}

reserved: LongInt; {reserved for internal use}

tableStartOffset: LongInt ; {table start offset in bytes}

tableSize: LongInt; {table size in bytes}

END;

RuleBasedTrslRecord =

RECORD

sourceType: Integer; {target type for left side of rule}

targetType: Integer; {target type for right side of rule}

formatNumber: Integer; {transliteration resource format number}

propertyFlag: Integer; {transliteration property flags}

numberOfRules: Integer; {Number of rules following this field}

END;

C Summary B

Constants B

enum {

/* Bits in the itlcFlags byte. */

 itlcShowIcon = 7, /*show icon even if only one script*/

 itlcDualCaret = 6, /*use dual caret for mixed direction text*/

/* Bits in the itlcSysFlags word. */

 itlcSysDirection = 15, /*System direction--left/right or right/left*/
B-80 Summary of the International Resources

A P P E N D I X B

International Resources

B
International R

esources
/* the NumberParts indices */

 tokLeftQuote = 1,

 tokRightQuote = 2,

 tokLeadPlacer = 3,

 tokLeader = 4,

 tokNonLeader = 5,

tokZeroLead = 6,

 tokPercent = 7,

 tokPlusSign = 8,

 tokMinusSign = 9,

 tokThousands = 10,

 tokSeparator = 12, /*11 is a reserved field*/

 tokEscape = 13,

 tokDecPoint = 14,

 tokUnquoteds = 15,

 tokMaxSymbols = 31,

curNumberPartsVersion = 1 /*current version of NumberParts record*/

};

enum {

 currSymLead = 16,

 currNegSym = 32,

 currTrailingZ = 64,

 currLeadingZ = 128,

};

enum {mdy,dmy,ymd,myd,dym,ydm};

enum {

 zeroCycle = 1, /*0:00 AM/PM format*/

 longDay = 0, /*day of the month*/

 longWeek = 1, /*day of the week*/

 longMonth = 2, /*month of the year*/

 longYear = 3, /*year*/

 supDay = 1, /*suppress day of month*/

 supWeek = 2, /*suppress day of week*/

 supMonth = 4, /*suppress month*/

 supYear = 8, /*suppress year*/

 dayLdingZ = 32,

 mntLdingZ = 64,

 century = 128,

 secLeadingZ = 32,
Summary of the International Resources B-81

A P P E N D I X B

International Resources
 minLeadingZ = 64,

 hrLeadingZ = 128

};

Data Types B

typedef unsigned char DateOrders;

struct ItlcRecord {

 short itlcSystem; /*default system script*/

 short itlcReserved; /*reserved*/

 char itlcFontForce; /*default font force flag*/

 char itlcIntlForce; /*default intl force flag*/

 char itlcOldKybd; /*MacPlus intl keybd flag*/

 char itlcFlags; /*general flags*/

 short itlcIconOffset; /*reserved*/

 char itlcIconSide; /*reserved*/

 char itlcIconRsvd; /*reserved*/

 short itlcRegionCode; /*preferred verXxx code*/

 short itlcSysFlags; /*flags for setting system globals*/

 char itlcReserved4[32]; /*for future use*/

};

typedef struct ItlcRecord ItlcRecord;

struct ItlbRecord {

 short itlbNumber; /*itl0 id number*/

 short itlbDate; /*itl1 id number*/

 short itlbSort; /*itl2 id number*/

 short itlbFlags; /*Script flags*/

 short itlbToken; /*itl4 id number*/

 short itlbEncoding; /*itl5 ID # (optional; char encoding)*/

 short itlbLang; /*current language for script */

 char itlbNumRep; /*number representation code*/

 char itlbDateRep; /*date representation code */

 short itlbKeys; /*KCHR id number*/

 short itlbIcon; /*ID # of SICN or kcs#/kcs4/kcs8 family.*/

};

typedef struct ItlbRecord ItlbRecord;

/* New ItlbExtRecord structure for System 7 */

struct ItlbExtRecord {

 ItlbRecord base; /*unextended ItlbRecord*/

 long itlbLocalSize; /*size of script's local record*/
B-82 Summary of the International Resources

A P P E N D I X B

International Resources

B
International R

esources
 short itlbMonoFond; /*default monospace FOND ID*/

 short itlbMonoSize; /*default monospace font size*/

 short itlbPrefFond; /*preferred FOND ID*/

short itlbPrefSize; /*preferred font size*/

 short itlbSmallFond; /*default small FOND ID*/

 short itlbSmallSize; /*default small font size*/

 short itlbSysFond; /*default system FOND ID*/

 short itlbSysSize; /*default system font size*/

 short itlbAppFond; /*default application FOND ID*/

 short itlbAppSize; /*default application font size*/

 short itlbHelpFond; /*default Help Mgr FOND ID*/

 short itlbHelpSize; /*default Help Mgr font size*/

 Style itlbValidStyles; /*set of valid styles for script*/

 Style itlbAliasStyle; /*style (set) to mark aliases*/

};

typedef struct ItlbExtRecord ItlbExtRecord;

struct Intl0Rec {

 char decimalPt;/*decimal point character*/

 char thousSep;/*thousands separator character*/

 char listSep; /*list separator character*/

 char currSym1;/*currency symbol*/

 char currSym2;

 char currSym3;

 unsigned char currFmt; /*currency format flags*/

 unsigned char dateOrder; /*order of short date elements:mdy,dmy,etc.*/

 unsigned char shrtDateFmt; /*format flags for each short date element*/

 char dateSep; /*date separator character*/

 unsigned char timeCycle; /*specifies time cycle:0..23,1..12,or 0..11*/

 unsigned char timeFmt; /*format flags for each time element*/

 char mornStr[4]; /*trailing string for AM if 12-hour cycle*/

 char eveStr[4]; /*trailing string for PM if 12-hour cycle*/

 char timeSep; /*time separator character*/

 char time1Suff; /*trailing string for AM if 24-hour cycle*/

 char time2Suff;

 char time3Suff;

 char time4Suff;

 char time5Suff; /*trailing string for PM if 24-hour cycle*/

 char time6Suff;

 char time7Suff;

 char time8Suff;

 unsigned char metricSys; /*255 if metric, 0 if inches etc.*/

 short intl0Vers; /*region code (hi byte) and version (lo byte)*/
Summary of the International Resources B-83

A P P E N D I X B

International Resources
};

typedef struct Intl0Rec Intl0Rec;

typedef Intl0Rec *Intl0Ptr, **Intl0Hndl;

struct Intl1Rec {

 Str15 days[7]; /*day names*/

 Str15 months[12]; /*month names*/

 unsigned char suppressDay; /*255 = no day, or flags to suppress elements*/

 unsigned char lngDateFmt; /*order of long date elements*/

 unsigned char dayLeading0; /*255 for leading 0 in day number*/

 unsigned char abbrLen; /*length for abbreviating names*/

 char st0[4]; /*separator strings for long date format*/

 char st1[4];

 char st2[4];

 char st3[4];

 char st4[4];

 short intl1Vers; /*region code (hi byte) and version (lo byte)*/

 short localRtn[1]; /*now a flag for opt extension*/

};

typedef struct Intl1Rec Intl1Rec;

typedef Intl1Rec *Intl1Ptr, **Intl1Hndl;

struct Itl1ExtRec { /*fields for optional itl1 extension*/

 Intl1Rec base; /*un-extended Intl1Rec*/

 short version;

 short format;

 short calendarCode; /*calendar code for this itl1 resource*/

 long extraDaysTableOffset; /*offset in itl1 to extra days table*/

 long extraDaysTableLength; /*length of extra days table*/

 long extraMonthsTableOffset; /*offset in itl1 to extra months table*/

 long extraMonthsTableLength; /*length of extra months table*/

 long abbrevDaysTableOffset; /*offset in itl1 to abbrev days table*/

 long abbrevDaysTableLength; /*length of abbrev days table*/

 long abbrevMonthsTableOffset; /*offset in itl1 to abbrev months table*/

 long abbrevMonthsTableLength; /*length of abbrev months table*/

 long extraSepsTableOffset; /*offset in itl1 to extra seps table*/

 long extraSepsTableLength; /*length of extra seps table*/

 short tables[1]; /*now a flag for opt extension*/

};

typedef struct Itl1ExtRec Itl1ExtRec;

struct UntokenTable {

 short len;

 short lastToken;
B-84 Summary of the International Resources

A P P E N D I X B

International Resources

B
International R

esources
 short index[256]; /*index table; last = lastToken*/

};

typedef struct UntokenTable UntokenTable;

typedef UntokenTable *UntokenTablePtr, **UntokenTableHandle;

union WideChar {

 char a[2]; /*0 is the high-order character*/

 short b;

};

typedef union WideChar WideChar;

struct WideCharArr {

 short size;

 WideChar data[10];

};

typedef struct WideCharArr WideCharArr;

struct NumberParts {

 short version;

 WideChar data[31]; /*index by [tokLeftQuote..tokMaxSymbols]*/

 WideCharArr pePlus;

 WideCharArr peMinus;

 WideCharArr peMinusPlus;

 WideCharArr altNumTable;

 char reserved[20];

};

typedef struct NumberParts NumberParts;

typedef NumberParts *NumberPartsPtr;

/* New NItl4Rec for System 7.0: */

struct NItl4Rec {

 short flags; /*reserved*/

 long resourceType; /*contains 'itl4'*/

 short resourceNum; /*resource ID*/

 short version; /*version number*/

 short format; /*format code*/

 short resHeader; /*reserved*/

 long resHeader2; /*reserved*/

 short numTables; /*number of tables, one-based*/

 long mapOffset; /*offset to table that maps byte to token*/

 long strOffset; /*offset to routine that copies canonical string*/

 long fetchOffset; /*offset to routine that gets next byte of char.*/

 long unTokenOffset; /*offset to table that maps token to canon. string*/

 long defPartsOffset; /*offset to number parts table*/
Summary of the International Resources B-85

A P P E N D I X B

International Resources
 long whtSpListOffset; /*offset to whitespace table*/

 long resOffset7; /*reserved*/

 long resOffset8; /*reserved*/

 short resLength1; /*reserved*/

 short resLength2; /*reserved*/

 short resLength3; /*reserved*/

 short unTokenLength; /*length of untoken table*/

 short defPartsLength; /*length of default number parts table*/

 short whtSpListLength; /*length of whitespace table*/

 short resLength7; /*reserved*/

 short resLength8; /*reserved*/

};

typedef struct NItl4Rec NItl4Rec;

typedef NItl4Rec *NItl4Ptr, **NItl4Handle;

struct TableDirectoryRecord {

 OSType tableSignature; /*4 byte long table name */

 unsigned long reserved; /*reserved for internal use */

 unsigned long tableStartOffset; /*table start offset in byte*/

 unsigned long tableSize; /*table size in byte*/

 };

typedef struct TableDirectoryRecord TableDirectoryRecord;

struct Itl5Record {

 Fixed versionNumber; /*itl5 resource version number */

 unsigned short numberOfTables; /*number of tables it contains */

 unsigned short reserved[3]; /*reserved for internal use */

 TableDirectoryRecord tableDirectory[1]; /*table directory records */

 };

typedef struct Itl5Record Itl5Record;

struct RuleBasedTrslRecord {

 short sourceType; /*target type for left side of rule */

 short targetType; /*target type for right side of rule */

 short formatNumber; /*transliteration resource format number */

 short propertyFlag; /*transliteration property flags */

 short numberOfRules; /*number of rules following this field */

 };

typedef struct RuleBasedTrslRecord RuleBasedTrslRecord;
B-86 Summary of the International Resources

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	Appendix B, International Resources
	About the International Resources
	What the International Resources Are
	Script Codes and Resource ID Ranges

	Using the International Resources
	International Configuration Resource (Type 'itlc')...
	The ItlcRecord Data Type

	Script-Sorting Resource (Type 'itlm')
	International Bundle Resource (Type ' itlb')
	The ItlbRecord Data Type
	The ItlbExtRecord Data Type

	Numeric-Format Resource (Type 'itl0')
	The Intl0Rec Data Type

	Long-Date-Format Resource (Type 'itl1')
	The Intl1Rec Data Type
	The Itl1ExtRec Data Type

	String-Manipulation Resource (Type 'itl2')
	Resource Header
	The 'itl2' Sorting Hooks
	The 'itl2' Tables
	Script Run Table Format

	Supplying Custom Sorting Routines
	Supplying Custom Word-Break Tables
	NBreakTable Format
	How FindWordBreaks Uses the Break Table

	Tokens Resource (Type 'itl4')
	The NItl4Rec Data Type
	The Token Table
	The Extension-Fetching Routine
	The Token-String Copy Routine
	The Untoken Table
	The Number Parts Table
	The Whitespace Table

	Encoding/Rendering Resource (Type 'itl5')
	Resource Header
	Tables for 1-Byte Script Systems
	Script Configuration Table
	Line-Layout Metamorphosis Table
	Line-Layout Glyph-Properties Table
	Character Expansion Table
	Glyph-to-Character Table
	Break-Table Directory
	Script Run Tables
	Kashida Preferences Table
	Feature List Table
	Reordering Table

	Tables for 2-Byte Script Systems
	Byte-Type Table
	Character-Type Table

	Transliteration Resource (Type 'trsl')
	Resource Header
	Rule-Based Format
	Table-Based Format

	Summary of the International Resources
	Pascal Summary
	Constants
	Data Types

	C Summary
	Constants
	Data Types

	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

