CHAPTER 2

TextEdit

TextEdit is a collection of routines and data structures that give your application

basic text formatting and editing capabilities, including text display in multiple scripts.
TextEdit manages fundamental text processing tasks on text limited to 32 KB. You can
use the TextEdit routines in many kinds of applications, such as spreadsheets, online
(data-entry) forms, online advertising programs, simple programming-language or
text-file text editors, electronic mail programs, drawing and painting programs with
simple text-editing features, and electronic note cards. However, TextEdit was not
designed to be used to implement word-processing applications with complex support
that manipulate lengthy documents.

To use TextEdit and the information provided in this chapter, you should be familiar
with the basic concepts and structures behind QuickDraw and how it handles text—
particularly points, rectangles, graphics ports, fonts, and character style—the

Event Manager, the Window Manager—particularly update and activate events—the
Font Manager, the Script Manager, and Text Ultilities.

WpIeL -

For information on non-text features of QuickDraw, see Inside Macintosh: Imaging. For
information on the Event Manager and the Window Manager, see Inside Macintosh:
Macintosh Toolbox Essentials.

This book includes chapters that cover the Font Manager, Text Utilities, the Script
Manager, and QuickDraw Text. Although these chapters pertain to TextEdit, the only
chapter in this book that you need to read as a prerequisite to TextEdit is “Introduction
to Text on the Macintosh.”

This chapter describes how to use TextEdit to perform a range of editing and formatting
capabilities including

= inserting new text
= selecting and highlighting ranges of text

= deleting selected text and possibly inserting it elsewhere, or copying text without
deleting it

= replacing selected text
= translating mouse activity into text selection

= scrolling text within a window, including automatically scrolling text that is not
visible but is affected by the editing activity

= changing the characteristics of text, including font family, style, and size

= customizing some TextEdit behavior

2-5

CHAPTER 2

TextEdit

About TextEdit

2-6

TextEdit was originally designed to handle editable text items in dialog boxes and other
parts of the system software. Although TextEdit has been enhanced to provide more
text-handling support since its inception, especially in its handling of multi-script text, it
retains some of its original limitations. TextEdit was not originally intended to
manipulate lengthy documents or text requiring more than rudimentary formatting. For
example, TextEdit does not handle tabs. (Your application can provide support for tabs
to supplement TextEdit.)

However, TextEdit handles some of the cumbersome tasks that a text processor needs to
perform, and provides you with an alternative to writing your own text processor. For
example, when you use TextEdit routines to edit text, your application does not need to
allocate memory for blocks of text that change dynamically during the editing session
because TextEdit takes care of this for you. When the user selects a range of displayed
text of a TextEdit edit record, TextEdit recognizes this and responds by highlighting

the text.

TextEdit relies on the Script Manager, QuickDraw, and Text Utilities to handle text
correctly, and eliminates the need for your application to call these routines directly.
Because TextEdit supports text from more than one script system and manages scripts
having different primary line directions, you can use its routines and features to develop
applications that support multiple languages.

TextEdit uses Text Utilities routines: the Fi ndWor dBr eaks procedure for determining
word breaks and the St yl edLi neBr eak function for determining line breaks. TextEdit
also allows you to customize how word boundaries and line breaks are defined.

TextEdit and Standard Macintosh Features

Because TextEdit routines follow the Macintosh user interface guidelines, using them
ensures the presentation of a consistent user interface in your application. Your
application can rely on TextEdit to support these standard features instead of having to
implement them directly:

= selecting text by clicking and dragging with the mouse

= double-clicking to select words, which are defined according to the rules of the script
system in which they are written

= line breaking, which prevents a word from being split inappropriately between lines
when text is drawn

About TextEdit

CHAPTER 2

TextEdit

= extending or shortening a selection range by Shift-clicking

= highlighting of the current text selection, or display of a blinking vertical bar at an
insertion point

= cutting, copying, and pasting within and between applications

= the use of more than one font, size, color, and stylistic variation from character to
character within a single block of text

= display of text in more than one language on a single line

Multistyled and Monostyled Text

WpIeL -

Text is rendered in a certain font, style, size, and color. These aspects of text are
collectively referred to as character attributes. TextEdit supports the display of text in
various character attributes (different fonts, styles, sizes, and colors) within the context
of a single edit record.

Text that uses a variety of fonts, styles, sizes, or colors is referred to in this chapter as
multistyled text to distinguish it from text that uses a single font, style, size, and color,
which is referred to as monostyled text.

TextEdit lets you boldface, italicize, underline, outline, condense, extend, and shadow
text. Using TextEdit routines, you can change the font family and type size of the entire
text of an edit record (or a selected range of text that the user has chosen or the
application has set). You can even increase the type size incrementally across a range of
text containing various sizes, for example, so that all 10 point text is changed to 12 point
and all 12 point text is changed to 14 point. If your application uses multistyled TextEdit
and allows users to select fonts, TextEdit displays text correctly in all scripts. Apart from
the TextEdit routines that deal with multistyled text exclusively, you can use all of the
TextEdit routines to simplify and manage your application’s text editing tasks for both
multistyled and monostyled text.

Note

In the original Inside Macintosh documentation that describes TextEdit,
the term face is used to refer to the following text style attributes: bold,
italic, underline, outline, condense, extend, and shadow. The term style
is now used instead of face to refer to these attributes. O

TextEdit organizes multistyled text into style runs. The characters comprising a style run
are contiguous in memory and are all displayed in the same font, size, color, and script
as well as style. TextEdit tracks style runs in the data structures that are allocated for a
multistyled edit record and uses this information to correctly display multistyled text.

About TextEdit 2-7

CHAPTER 2

TextEdit

Figure 2-1 shows four style runs in a line of text.

Figure 2-1 Style runs in a line of text
0] 0E
DDV peace on earth DYDY
G | W W | G
RamatGan Helvetica Helvetica RamatGan
24 plain 18 italic 18 plain 24 plain

TextEdit supports mixed-directional text: the combination of scripts with left-to-right
and right-to-left directional text within a single line. Figure 2-2 shows an example of
Hebrew and Roman text on the same line. The two runs of Hebrew text have a
right-to-left direction, and the Roman text direction is left to right.

2-8

Figure 2-2 Mixed-directional text display
= =&
DYV peace on earth DOV H

Font and Keyboard Script Synchronization

TextEdit handles synchronization of the font script, the script system that corresponds to
the font of the current graphics port, and the keyboard script, the script system used for
keyboard input, for multistyled and monostyled text.

For monostyled text, the primary script system determines whether or not TextEdit
synchronizes the font script and the keyboard script, based on the value of a flag in the
script system’s international bundle resource (' i t | b'). TextEdit uses this flag, without
requiring any action on the part of your application.

About TextEdit

CHAPTER 2

TextEdit

For multistyled text, TextEdit always synchronizes the font script and the keyboard
script. (If the font script at the selection range or insertion point is the same as

the keyboard script, then this font is used.) The following sections explain the conditions
that determine whether TextEdit matches the keyboard script to the font script or

vice versa. TextEdit synchronizes the keyboard script with the font script under the
following conditions:

= When your application calls a TextEdit routine to change the font of a text selection or
to process a mouse-down event in text as either an insertion point or a selection. This
means, for example, that if a user types Arabic text followed by Roman text and clicks
in the Arabic text, the keyboard adjusts and changes to Arabic without the user’s
needing to change the keyboard manually. Similarly, if a user clicks in the Roman text,
the keyboard changes to Roman without the user’s altering the keyboard.

WpIeL -

= If the selection range encompasses text—if it is not an insertion point—then TextEdit
uses the font corresponding to the first character of the selected text to determine the
keyboard script. When an insertion point falls on a script boundary, the keyboard is
synchronized to the font of the character preceding the boundary (in storage order).
(A selection range is a series of characters, selected by the user or the application,
where the next editing operation is to occur. Although the character representations
are contiguous in memory, they can be discontinuous on the display screen when the
text is bidirectional. For more information, see “The Selection Range, the Insertion
Point, and Highlighting in TextEdit” on page 2-10.)

TextEdit synchronizes the font script with the keyboard script under the following condition:

= When your application calls a TextEdit routine to input a character and if the
keyboard script is different from the font script at the selection range (or insertion
point). If a font was selected and never used, thus remaining in the scrap that TextEdit
uses for character attributes (null scrap) and if the font script coincides with the
keyboard script, then this font is used. Otherwise, TextEdit searches through the
preceding fonts in the style run table until it locates a font that corresponds to the
keyboard. If one does not exist, then it uses the application font. For more information
about the null scrap, see “The TextEdit Private, Null, and Style Scraps” on page 2-15.

Cutting, Copying, and Pasting Text

TextEdit provides routines that let you cut, copy, and paste text
= within a single edit record

= between edit records within an application

= between an application and a desk accessory

= across applications

You use the same routines to cut and copy monostyled and multistyled text. There are,
however, separate routines for pasting monostyled and multistyled text. For multistyled
text, the TextEdit routines preserve any stylistic variation along with the cut or copied
text in order to restore it when you paste the text.

About TextEdit 2-9

CHAPTER 2

TextEdit

The TextEdit User Interface

This section describes the TextEdit user interface, that is, how TextEdit displays text on
the screen and the methods it uses to communicate information about that text to an
application user. It explains some of the processes that TextEdit performs automatically
for your application, including how TextEdit uses highlighting or a caret to identify
where the next editing operation is to occur, how TextEdit handles line measurement for
your application, and how TextEdit uses buffering to handle 2-byte characters.

This section also covers some aspects of the user interface that your application can
control through TextEdit routines, such as the kind of text alignment and the use of
buffering to enhance performance.

The Selection Range, the Insertion Point, and Highlighting in TextEdit

Depending on the purpose of an application, a user might select a range of text to be
edited or the application might set the selection range. In either case, the selected text
becomes the current selection range. TextEdit uses a byte offset to identify the position of
a character in the text buffer of an edit record, and an edit record includes fields that
specify the byte offsets of the characters in the text buffer that correspond to the
beginning and the end of the current selection range in the displayed text. (See “An
Overview of the Edit Record” on page 2-16 for more about edit records.)

When the byte offset values for the beginning and the end of the selection range are the
same, the selection range is an insertion point. TextEdit marks an insertion point with a
blinking caret in the form of a vertical bar ().

TextEdit uses highlighting to display a selection range. Because TextEdit supports
mixed-directional text, the selection range can appear as discontinuous text. Displayed
text is highlighted according to the storage order of the characters. When multiple script
systems having different line directions are installed, a continuous sequence of
characters in memory may appear as a discontinuous selection when displayed.

Figure 2-3 shows how TextEdit highlights a range of text whose displayed glyphs are not
contiguous, although their corresponding byte offsets are contiguous in memory. In this
example, the primary line direction is left to right.

Figure 2-3 Discontinuous highlighting display

2-10

(= F
D19V peace ikt 0By H

About TextEdit

CHAPTER 2

TextEdit

TextEdit provides a function that lets you to turn outline highlighting, the framing of
text in a selection range, in an inactive window, on or off. See Figure 2-4. (For more
information about outline highlighting, see “TEFeatureFlag” on page 2-109.)

Figure 2-4 Outline highlighted text selection in background window
S=————— fActive Window =——— 1=

Here is an example of background outline highlighting [— Inactive window

ina styled TextEdit document: EGERE & of background outline highlighting
th m be true. And it must faoll Hit docurment: [This, above all: to
true, &nd it must follow, as the

I can not be false to any man.”

m
NpaxaL -

=[]

<ali

Caret Position and Movement

This section describes how TextEdit displays and moves a caret. For more information,
see the discussion of caret handling in the chapter “Introduction to Text on the
Macintosh” in this book.

TextEdit marks the position in the displayed text where the next editing operation is to
occur with a caret. When TextEdit pastes text into a record, it positions a caret after the
newly pasted text on the screen. TextEdit uses a single caret for text that does not include
mixed directions. When TextEdit displays a single caret in unidirectional text and the
user presses an arrow key to move the caret left or right across the text, TextEdit moves
the caret in the direction of the arrow key.

When the text includes mixed directions, TextEdit uses either a moving caret or a dual
caret, depending on the value of a Script Manager flag. For example, if this flag specifies
a moving caret, TextEdit displays the caret at the screen location where the next glyph is
to appear, based on the text direction of the keyboard script.

If this flag specifies a dual caret, TextEdit displays a high caret and a low caret, each
measuring half the line’s height. The high caret is displayed at the screen location
associated with the glyph that has the same direction as the primary line direction, and
the low caret is displayed at the screen location associated with the glyph that has a
different direction from the primary line direction.

When TextEdit displays a dual caret on a direction boundary, only the primary caret
moves in the direction of the arrow. Figure 2-5 shows a sequence of two Right Arrow
keypresses and their impact on caret display and movement in a line containing
mixed-directional text. In this example, the primary line direction is right to left.

About TextEdit 2-11

CHAPTER 2

TextEdit

Figure 2-5 Caret movement across a direction boundary

2-12

Original caret ||

position

Dual caret I.l
positions —

New caret
position

In the first instance of the text segment, the caret is positioned within the Arabic text.
When the user presses the Right Arrow key once, the insertion point is positioned on a
direction boundary and the caret splits into a dual caret. When the user presses the Right
Arrow key again, TextEdit displays a single, full caret after the parenthesis in the Roman
text. Because the caret position is again in the middle of a style run, TextEdit no longer
uses the dual caret.

Note

TextEdit currently deviates from this model for caret movement in
monostyled left-to-right text (displayed in a non-Roman font) on any
primary right-to-left script system. On the Arabic script system, for
example, it is possible to display the low-ASCII Roman characters from
an Arabic font. If a user presses the arrow keys to move through these
characters, the caret moves in the opposite direction of the arrow. O

Vertical movement of the caret is less complex. When the user presses the Up Arrow key,
the caret moves up by one line, even in lines of text containing fonts of different sizes.
When the caret is positioned on the first line of an edit record, and the user presses the
Up Arrow key, TextEdit moves the caret to the beginning of the text on that line, at
primary caret position 0. (This position corresponds to the visible right end of a line
when the primary line direction is right to left and to the left end of the line when the
primary line direction is left to right.)

About TextEdit

CHAPTER 2

TextEdit

Similarly, when the user presses the Down Arrow key, the caret moves down one line.
When the caret is positioned on the last line of an edit record, and the user presses the
Down Arrow key, TextEdit moves the caret to the end of the text on that line (that is, the
visible left end of a line when the primary line direction is right to left and to the right
end of a line when the primary line direction is left to right).

Note

TextEdit does not support the use of modifier keys, such as the Shift key
or the Option key, in conjunction with the arrow keys. O

If spaces at the end of a text line extend beyond the view rectangle, TextEdit draws the
caret at the edge of the view rectangle, not beyond it. Whether TextEdit displays a caret
at the beginning or end of a line when a mouse-down event occurs at a line’s end
depends on the current caret position and the value in a field (cl i kSt uf f) of the edit
record. TextEdit sets this field to reflect whether the most recent mouse-down event
occurred on the leading or trailing edge of a glyph.

For example, if the mouse-down event occurs on the leading edge of a glyph, TextEdit
displays the caret at the caret position corresponding to the leading edge of that glyph. If
the mouse-down event is on the trailing edge of a glyph, TextEdit displays the caret at
the beginning of the next line. For more information about determining a caret position,
see the sections that discuss caret handling in the chapters “Introduction to Text on the
Macintosh” and “QuickDraw Text” in this book.

Text Alignment

TextEdit allows you to specify the alignment of the lines of text, that is, their horizontal
placement with respect to the left and right edges of the text area or destination
rectangle. The different types of alignment that TextEdit supports accommodate script
systems that are read from right to left, as well as those that are read from left to right.
The types of alignment supported are

» default alignment (positions the text according to the line direction of the system
script. It can be either left or right. Line direction is the direction in which textin a
particular language is written and read. The English language has a rightward, or
left-to-right, line direction. Arabic and Hebrew have a [primarily] leftward, or
right-to-left, line direction.)

= center alignment (centers each line of text between the left and right edges of the
destination rectangle)

» right alignment (positions the text along the right edge of the destination rectangle)
» left alignment (lines up the text with the left edge of the destination rectangle)

If your application requires justified alignment, you can use the QuickDraw routines that
support full justification; TextEdit does not support justified alignment. See the chapter
“QuickDraw Text” in this book for more information.

About TextEdit 2-13

WpIeL -

2-14

CHAPTER 2

TextEdit

Line Measurement

TextEdit measures a line of text appropriately for all script systems by removing any
trailing white space from the end of it, taking the line direction into account. It uses the
QuickDraw Vi si bl eLengt h function to exclude trailing white space, based on the
script system, the text direction, and the primary line direction. For more information
about the behavior of Vi si bl eLengt h for various script systems, see the chapter
“QuickDraw Text” in this book.

An anomaly exists, however, in the way TextEdit draws at the end of a line. When the
primary line direction of a script system is right to left (for instance, on a Hebrew
system), when the alignment is left or center, and when spaces are entered in a
right-to-left font, TextEdit measures spaces at the end of the line and therefore may draw
the text beyond the edge of the view rectangle. The caret, however, remains in view and
is pinned to the left edge of the view rectangle.

This anomaly also exists when the primary line direction of a script system is left to right
and the alignment is center. In this instance, TextEdit measures spaces at the end of the
line, and as more spaces are added (and, therefore, measured), the visible text in the line
is drawn out of view beyond the left edge of the view rectangle. The caret, however,
remains in view and is pinned to the right edge of the view rectangle.

Text Buffering

TextEdit uses two methods of text buffering; one method, which is automatic, is used to
handle 2-byte characters properly. The other method, which you can enable or disable,
improves performance in relation to how TextEdit handles input of 2-byte characters.

For the first method, which is automatic, TextEdit relies on the Script Manager. The
Script Manager handles 2-byte characters properly, and TextEdit takes advantage of this.
If a 2-byte character, such as a Kanji character, is typed, TextEdit buffers the first byte
until it processes the second byte, at which time it displays the character. The internal
buffer that TextEdit uses for a 2-byte character is unique to each edit record. For example,
TextEdit can buffer the first byte of a 2-byte character in a record, then the application
can call the TextEdit TEKey procedure for another edit record. While TEKey processes
the character for the second edit record, the first byte of the 2-byte character remains in
the first edit record’s buffer until TextEdit processes the second byte of that 2-byte
character, and then displays the character.

The second method of text buffering enhances performance, and you can turn it on or off
through the TextEdit function, TEFeat ur eFl ag. In this case, TextEdit uses a global
buffer—it differs from the TEKey procedure’s internal 2-byte buffer—that is used across
all active edit records. These records may be in a single application or in multiple
applications. Because of this, you should exercise care when you enable the
text-buffering capability in more than one active record; otherwise, the bytes that are
buffered from one edit record may appear in another edit record.

» Ensure that buffering is not turned off in the middle of processing a 2-byte character.
To guarantee the integrity of your record, it is important that you wait for an idle
event before you disable buffering or enable buffering in a second edit record.

About TextEdit

CHAPTER 2

TextEdit

s When text buffering is enabled, ensure that TEI dl e is called before any pause of more
than a few ticks—for example, before Wai t Next Event . A possibility of a long delay
before characters appear on the screen exists—especially in non-Roman systems. If
you do not call TEI dI e, the characters may end up in the edit record of another
application.

If you enable text buffering for performance enhancement on a non-Roman script system
and the keyboard has changed, TextEdit flushes the text of the current script from the
buffer before buffering characters in the new script.

The TextEdit Private, Null, and Style Scraps

There are three scrap areas that TextEdit uses exclusively: the TextEdit private scrap, the
TextEdit null scrap, and the TextEdit style scrap. The TextEdit routines use all of these
scraps to hold transient information.

WpIeL -

TextEdit uses the private scrap for all cut, copy, and paste activity whether the text is
multistyled or monostyled. The private scrap belongs to the application. When the text is
multistyled, TextEdit also copies the text to the Scrap Manager’s desk scrap.

TextEdit uses the null scrap to store character attribute information associated with a
null selection (an insertion point) or text that is deleted when the user backspaces over it.
The null scrap belongs to the multistyled edit record. Character attribute information
stored in the null scrap is retained until it is used, for example, when applied to newly
inserted text, or until some other editing action renders it unnecessary, such as when
TextEdit sets a new selection range. A number of routines that deal with multistyled text
check the null scrap for character attribute information and, if there is any, apply it to
newly inserted text when character attributes for that text are not available.

When you cut or copy multistyled text, memory is allocated dynamically for the style
scrap and the character attribute information is copied to it. Your application can also
use the style scrap for other purposes. For example, to save and restore multistyled text
both the text and the associated character attribute information must be preserved;

you can save character attributes associated with a range of text in the style scrap. Also,
you can create a style scrap record and store character attribute information in it to

be applied to inserted text. Your application can create as many style scraps as it needs.
For more information, see the discussion of the style scrap record under “Data
Structures” on page 2-65.

As part of TextEdit initialization, TEI ni t creates the private scrap and allocates a handle
to it. TextEdit creates and initializes a null scrap for a multistyled edit record when an
application calls TESt yl eNew to create the edit record. (The null scrap remains
throughout the life of the edit record: it is disposed of when the application calls

TEDi spose to destroy the edit record and release the memory allocated for it.) TextEdit
allocates memory used for the style scrap dynamically when your application calls a
routine that uses it.

Note

Because these scraps are in RAM, they are volatile, and a power failure
can cause the data in a scrap to be lost. O

About TextEdit 2-15

CHAPTER 2

TextEdit

An Overview of the TextEdit Data Structures

To edit text on the screen, TextEdit maintains information about where the text is stored,
where to display it, and the text style. This information is contained in a record that
defines the complete editing environment. You can allocate a monostyled edit record to
contain text that is set in a single font, size, and style, or you can allocate a multistyled
edit record to contain text with attributes that can vary from character to character.

An Overview of the Edit Record

An edit record, which is the primary data structure that TextEdit uses, carries text
storage, display, and editing information. When you allocate an edit record, you specify
where the text is to be drawn and where it is to be made visible. The destination
rectangle is the area in which the text is drawn, and the view rectangle is that portion of
the window within which the text is actually displayed. (For a complete discussion of
destination and view rectangles, see the QuickDraw chapters in Inside Macintosh:
Imaging.) Figure 2-6 shows two sets of destination and view rectangles. The view
rectangles are shaded and defined by dotted lines. The text is drawn in the destination
rectangle; the part of it that is displayed is defined by the view rectangle.

Figure 2-6 Destination and view rectangles
View
rectangles‘
\ !

"What a piece of work "Whatla piece of work is & man, how
is @ man, how noble in noble in reason, how infinite in faculties,
reason, how infinite in in form and moving, how e?(press and
faculties, in form and admirable in action, how like an angel in
moving, how express apprehension, how like agod!, the
and admirable in action, beauty of the world; the p;lragon of
how like an angel in animals; and yet to me what is this
apprehension, how like quintessence of dust?"
a god!, the beauty of
the world; the paragon
of animals; and yet to
mé what'is this
quintessence of dust?"

Destination
rectangles

2-16 About TextEdit

CHAPTER 2

TextEdit

The edit record includes fields that point to these rectangles. In addition to the two
rectangles, the edit record also contains

= a handle to the text to be edited

= the current selection range that determines exactly which characters are to be affected
by the next editing operation

= the alignment of the text, as left, right, or center

= for multistyled edit records, a handle to a subsidiary record, the style record,
containing the character attributes used to portray the text. This style record, itself,
contains subsidiary data structures.

Related Data Structures

Stemming from the main TextEdit edit record, relationships exist among the rest of the
TextEdit data structures.

When TextEdit creates an edit record, the record contains a field that stores the handle to
the dispatch record. The dispatch record is an internal data structure whose fields,
referred to as hook fields or hooks, contain the addresses of routines that TextEdit uses
internally, for example, to measure and draw text, or to determine a character’s position
on a line. These routines, called hook routines, determine the way TextEdit behaves. You
can use a TextEdit customization routine to replace the address of a default hook routine
with the address of your own customized routine. For example, you can provide a
routine to be used for word selection that defines word boundaries more precisely for
any script system.

When you allocate a monostyled edit record, the edit record, a handle to the text, and a
single subsidiary internal data structure, the dispatch record, are created. However,
when you allocate a multistyled edit record, a number of additional subsidiary data
structures are created to support the text styling capabilities and the display of text in
multiple languages.

For a multistyled edit record, the edit record contains a handle to the style record. The
style record stores the character attribute information for the text, and contains a handle
to the style table, which has one entry for each distinct set of character attributes. Each
entry in the style table is a style element record. The style record also contains a style run
table, which is an array that gives the start of each style run, and an index into the style
table. The style run table array identifies the byte offset of the starting character to which
the character attributes, stored in the style table, apply.

About TextEdit 2-17

WpIeL -

2-18

CHAPTER 2

TextEdit

The style record contains two other handles: a handle to the line-height table and a
handle to the null style record. The line-height table provides vertical spacing and line
ascent information for the text to be edited with one element for each line of an edit
record. A line number is a direct index into this array. The null style record consists of a
reserved field and a handle to the style scrap record.

The style scrap record, which is part of the null scrap, stores character attribute
information associated with a null selection to be applied to inserted text. It also holds
character attribute information associated with a selected range of multistyled text when
the character attributes are to be copied, or the text and its attributes are to be cut

or copied.

Part of the style scrap record is the scrap style table which has a separate element for
each style run in the style scrap record. The character attribute information for each of
these elements is stored in a scrap style element record.

Several TextEdit routines use a text style record to pass character attribute information
between the application and the routine.

Figure 2-7 shows the two data structures that TextEdit creates for monostyled text.
Figure 2-8 shows the data structures that TextEdit creates for multistyled text and
how they are related; these data structures consist of the two records that TextEdit
also creates for monostyled text plus additional structures needed to store character
attribute information. See Figure 2-15 on page 2-67 for a version of the data structures
including fields.

About TextEdit

CHAPTER 2

Relationship between the TextEdit data structures for monostyled text

TextEdit
Figure 2-7
Edit record
Dispatch record
TEDispatchHandle
hDispatchRec i-»—
About TextEdit

2-19

WpIeL -

CHAPTER 2

TextEdit

Figure 2-8 Relationships among the TextEdit data structures for multistyled text

2-20 About TextEdit

CHAPTER 2

TextEdit
Edit record Style record Style table
styleTab STHandle
LHHandIe= IhTab

nullStyle hullSTHandle
o)

array of X

StyleRun "9”_

Null style record
Style run table
STScrpHandIeﬁ nullScrap
Line height table Style scrap record
> >
Dispatch record
—»>
Scrap style - (array of
table ScrpSTElement)
TEDispatchHandle
hDispatchRec > %
(if txSize = -1)
txFont TEStyleHandle
txFace "
Scrap style
element record

TFE22 Cin Q

About TextEdit 2-21

CHAPTER 2

TextEdit

Using TextEdit

2-22

This section describes how to initialize TextEdit and use the TextEdit routines and data
structures to display text and implement editing features in an application. It also
describes how to customize the behavior of TextEdit, for example, to better suit the
requirements of your application and the script systems it supports.

» “Getting Started With TextEdit” describes how to display static text in a box, create an
edit record for modifiable text, set the text of an edit record and scroll it, set its
insertion point, and dispose of the edit record.

» “Responding to Events Using TextEdit” describes how to handle mouse-down,
key-down, and idle events.

s “Moving Text In and Out of Edit Records” describes how to cut, copy, and paste text
and its character attributes within or across applications, or between an application
and a desk accessory.

s “Text Attributes” describes how your application can check the current attributes of a
range of text to determine which ones are consistent across the text. It also describes
how you can manipulate the font, style, size, and color of a range of text.

» “Saving and Restoring a TextEdit Document, and Implementing Undo” describes how
to save to disk the contents of a document created using TextEdit, and restore it when
the user opens the document.

» “Customizing TextEdit” describes how to replace the default end-of-line, drawing,
width-measuring, and hit test hook routines, use the multi-purpose low-memory
global variable TEDOText hook routine, customize word selection and automatic
scrolling, and determine the length of a line of text.

This section includes sample application-defined routines and code fragments that show
some of the ways you can use TextEdit. These examples are provided for illustrative
purposes only; they are not meant to be used in applications you write.

Note

For both monostyled and multistyled edit records, the text is limited to
32 KB. Whenever you insert or paste text, you need to ensure that
adding the new text does not exceed the 32 KB limit. Your application
can check for this limit before you insert or paste text. O

Using TextEdit

CHAPTER 2

TextEdit

Getting Started With TextEdit

You can use TextEdit to display static text, for example, in a dialog box; the TextEdit
procedure that you use to do this creates its own edit record. You can use TextEdit to
display and manipulate modifiable text, for which purpose you must first create an edit
record. This section discusses these two uses of TextEdit. It describes how you create an
edit record and bring existing text into its text buffer, then set the text selection range or
insertion point, scroll the text, and, finally, release the memory allocated for the edit
record when you are finished with it. The topics are described in the following order:

= preparing to use TextEdit

= displaying static text

= creating an edit record

= setting the text of an edit record

» setting the selection range or the insertion point
= scrolling text

= disposing of an edit record

Preparing to Use TextEdit

This section describes two basic tasks that your application needs to perform before
using TextEdit. It must

s determine the installed version of TextEdit

= initialize other managers and TextEdit

To determine the installed version of TextEdit, you use the Gestalt Manager, which is
fully documented in the chapter “The Gestalt Manager” in Inside Macintosh: Operating
System Utilities.

You can get information about the current version of TextEdit using the Gest al t
function with the Gest al t selector gest al t Text Edi t Ver si on, which returns one of
the values listed and described below. In this list, a new feature is shown only when it is
first introduced in the software, although it is part of TextEdit in succeeding versions.
For system software version 6.0.4, different patches were made to TextEdit for different
hardware platforms. In these cases, unique values are returned that also identify

the hardware.

Using TextEdit 2-23

WpIeL -

2-24

CHAPTER 2

TextEdit
Returned value New features System software/hardware
gest al t Undef Sel ect or Err Multistyled Systems before 6.0.4/all
TextEdit hardware
gestal t TEL System 6.0.4 Roman
script system /Ilci-family
hardware
gestal t TE2 New width System 6.0.4 non-Roman
measurement hook script system /1lci-family
hardware
Script Manager
compatible
gestal t TE3 System 6.0.4 non-Roman
script system/all non-Ilci
family hardware
gestal t TE4 TEFeat ur eFl ag System 6.0.5/all
hardware
gest al t TES Text width System 7.0/all hardware

measurement hook

You need to initialize other managers and TextEdit before your application calls any
TextEdit routines, including TEI ni t . First, you initialize QuickDraw, the Font Manager,
and the Window Manager, and then TextEdit, in that order. To do this, call the following
routines from an initialization procedure that is called from your application’s

main routine.

BEG N
InitGaf(@hePort);
I nitFonts;
I ni t Wndows;
| ni t Menus;
TElni t;

In addition to initializing miscellaneous global variables, such as TEDoText and
TERecal , the TEIl ni t procedure sets up the private scrap and allocates a handle to it.

Note

You should call TEI ni t even if your application doesn’t use TextEdit so
that desk accessories and dialog and alert boxes, which use TextEdit
routines, work correctly. O

Using TextEdit

CHAPTER 2

TextEdit

Displaying Static Text

TextEdit provides an easy way for your application to display static text whether or

not it uses other TextEdit features to implement editing services. The TEText Box
procedure displays unchanging text that you cannot edit. You don’t create an edit record
because the TEText Box procedure creates its own edit record, which it deletes when it’s
finished with it.

The TEText Box procedure draws the text in a rectangle whose size you specify in the
local coordinates of the current graphics port. You can also specify how text is aligned in
the box. Text can be right aligned, left aligned, or centered.

You can use any of the following constants to specify how text is aligned in the box that
TEText Box creates.

Constant Description

t eFl ushDef aul t Default alignment according to the primary line direction
teCenter Center for all scripts

t eFl ushRi ght Right for all scripts

t eFl ushLef t Left for all scripts

Listing 2-1 shows how to use TEText Box. The first parameter is a pointer to the text to
be drawn, which is a Pascal string. Because Pascal strings start with a length byte, you
need to advance the pointer one position past the beginning of the string to point to the
start of the text.

Listing 2-1 Using TEText Box to draw static text

str ;= '"String in a box';

Set Rect (r, 100, 100, 200, 200) ;

TEText Box(PO NTER(ORD(@t r) +1), LENGTH(str),r,teCenter);
FrameRect (r);

Creating an Edit Record

To use all other TextEdit routines in your application except the TEText Box procedure,
first you need to create an edit record. This section discusses how to create an edit
record. It also describes

» which type of edit record to use, monostyled or multistyled, and why

= some ways to store the edit record handle that the function returns when you create
an edit record

= what to consider when you specify values for the destination and view rectangles
when you create an edit record

» how TextEdit initializes those edit record fields that are used differently for
monostyled and multistyled edit records, and those that are used the same

Using TextEdit 2-25

WpIeL -

CHAPTER 2

TextEdit

The TESt y| eNew function allocates a multistyled edit record which contains text with
character attribute information that can vary from character to character. The TENew
function allocates a monostyled edit record which contains text in a single font, face, and
size. (Before your application calls either of these functions, the window must be the
current graphics port.)

If your application supports only monostyled text, use TENewto avoid the unnecessary
allocation of additional data structures used to store character attribute information for
multistyled edit records. You can use TESt y| eNewin this case also, although it is not
recommended.

Both TENewand TESt y| eNewreturn a handle to the newly created record. Most
TextEdit routines require you to pass this handle as a parameter, so your application
needs to store it using any of the following methods:

» You can store the edit record handle in a private data structure whose handle is stored
in your application window’s r ef con field.

= You can create a record in which to store information about the window, and include a
field to store the edit record handle. Listing 2-2 provides an example of this method.

» You can define a variable in your application for each edit record handle, and then use
the variable to store the handle.

Listing 2-2 shows a sample document record declaration for an application that handles
text files. The document record is an application-specific data structure that contains the
handle to the edit record, and any controls for scroll bars.

2-26

Listing 2-2 A sample document record
TYPE
MyDocRecHnd = ~MyDocRecPtr;
MyDocRecPtr = “M/DocRec;
MyDocRec =
RECORD
edi t Rec: TEHandl e; {handl e to TextEdit record}
vScrol | Bar: Control Handl e; {vertical scroll bar}
hScrol | Bar: Control Handl e; {horizontal scroll bar}
END;

To associate an application-defined document record with a particular window, you can
set a handle to that record as the reference constant of the window by using the Window
Manager procedure Set WRef Con. This technique is described further in the chapter
“Introduction to File Management” in Inside Macintosh: Files.

When you create an edit record, you specify the area in which the text is drawn as the
destination rectangle, and the portion of the window in which the text is actually
displayed as the view rectangle.

Using TextEdit

CHAPTER 2

TextEdit

To ensure that the first and last characters in each line are legible in a document window,
you can inset the destination rectangle at least four pixels from the left and right edges of
the graphics port (20 pixels from the right edge if the window contains a scroll bar

or size box).

The destination rectangle must always be at least as wide as the first character drawn.
The view rectangle must not be empty; for example, if you do not want any text visible,
specify a rectangle off the screen—don’t make its trailing edge less than its leading edge.

Editing operations may lengthen or shorten the text. The bottom of the destination
rectangle can extend to accommodate the end of the text. In other words, you can think
of the destination rectangle as bottomless. The sides of the destination rectangle
determine the beginning and the end of each line of text, and its top determines the
position of the first line.

Your program should not have a destination rectangle that is wider than the view
rectangle if you are displaying mixed-directional text. For example, the Dialog Manager
makes the destination rectangle extend twice as far on the right as the view rectangle, so
that horizontal scrolling can be used in normal dialog boxes. When the Arabic script
system is installed, this extension is disabled, because the text may be right aligned, and
therefore out of view. Your application can include the following code to check that the
destination and view rectangles have the same width.

IF scriptsinstalled > 1 THEN
| F Get Environs (snBidirect)<>0 THEN
BEG N
{make the rectangles the sanme w dth}
END;

When you create an edit record, TextEdit initializes the record’s fields, based on values in
the current graphics port record and the kind of edit record you create. Although most
edit record fields are initialized similarly for both monostyled and multistyled edit
records, there are some fields that are used differently, and their initial values depend on
how they are used.

For a monostyled edit record that you create by calling TENew the t xSi ze,

| i neHei ght, and f ont Ascent fields of the edit record hold actual values reflecting the
text size, the line height, and the font ascent. Because the text is monostyled, these values
apply to all of the text of the edit record.

s Thet xSi ze field is set to the value of the current graphics port’s text size (t xSi ze)
field, which indicates that all text is set in a single font, size, and face.

s The value of the | i neHei ght field specifies the fixed vertical distance from the
ascent line of one line of text down to the ascent line of the next. The line height
corresponds to the ascent plus descent for the font and leading to create
single-spacing for the lines in the new edit record.

Using TextEdit 2-27

WpIeL -

2-28

CHAPTER 2

TextEdit

The value of the f ont Ascent field specifies how far above the base line the pen is
positioned to draw the caret or to highlight the text. For single-spaced text, this is the
ascent of the text in pixels (the height of the tallest characters in the font from the base
line). The font ascent corresponds to the ascent of the font indicated by the t xFont
and t XSi ze fields of the current graphics port.

Note

To adjust the spacing for a monostyled edit record, you can alter the
values in the f ont Ascent and | i neHei ght fields of the edit record. O

For more information, see the discussion of font measurements in the chapter “Font
Manager” in this book.

For a multistyled edit record, TESt y| eNewinitializes the t xSi ze, | i neHei ght, and
f ont Ascent fields of the edit record to —1. A value of —1 in each of these fields means:

txSi ze

The edit record contains associated character attribute information and the t xFont
and t XxFace fields combine to contain the text style record handle for the character
attribute information.

I i neHei ght

The vertical distance from the ascent line of one line of text down to the ascent line of
the next is calculated independently for each line, based on the maximum value for
any individual character attribute on that line. These values are stored in the line
height table (LHTabl e).

f ont Ascent

The font ascent is calculated independently for each line, based on the maximum
value for any individual character attribute on that line. These values are stored in the
line height table (LHTabl e).

For both multistyled and monostyled records, the following fields are initially set to the
same values:

The record initially contains no text. The text handle (hText) points to a zero-length
block in the heap, and the text length field (t eLengt h) of the edit record is set to 0. To
furnish text to be edited, you use the TESet Text procedure if you are incorporating
existing text and the TEKey procedure if the user is entering text.

The value of the j ust field determines the alignment of text in the edit record. The
default value is t eFl ushDef aul t, indicating that the alignment is to follow the
primary line direction. For languages that are read from left to right, the default value
is left; for languages that are read from right to left, the default value is right. To
change the alignment of text in the record, you use the TESet Al i gnment procedure.

The sel St art and sel End fields are initially set to 0; this places the insertion point
at the beginning of the text.

The edit record uses the drawing environment of the graphics port specified by the
dest Rect and vi ewRect parameters. These parameters contain the local
coordinates of rectangles within the current graphics port, which becomes the
graphics port for the new edit record. The text in the new edit record is to have the
characteristics of the current graphics port.

Using TextEdit

CHAPTER 2

TextEdit

Listing 2-3 shows the My AddTE function, which is a sample application-defined function
that creates a new multistyled edit record for an existing window. The TESt y| eNew
function call returns a handle to the edit record that it creates. The code stores the handle
in the docTE variable. The TEAut oVi ew procedure call turns on automatic scrolling for
the newly created edit record. For a complete discussion of scrolling, see the chapter
“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Listing 2-3 Creating a multistyled edit record

FUNCTI ON MYAddTE (nmyW ndow. W ndowPtr): TEHandl e;

VAR
dest Rect, viewRect: Rect;
docTE: TEHandl e;
CONST
kMaxDocW dt h = 576;

BEA N

My CGet TERect (nyW ndow, viewRect); {get TextEdit rectangl e}
dest Rect : = vi ewRect;
dest Rect.right := destRect.left + kMaxDocW dt h;
docTE : = TEStyl eNew dest Rect, viewRect);
| F docTE <> NIL THEN
BEG N
TEAut oVi ew{ TRUE, docTE);
docTEM. cl i kLoop : = @\snC i kLoop;
END;
MyAddTE : = docTE;
END;

Specifying the Destination and View Rectangles

When you create an edit record, whether monostyled or multistyled, you specify the area
in which the text is drawn as the destination rectangle, and the portion of the window in
which the text is actually displayed as the view rectangle.

To ensure that the first and last glyphs in each line are legible in a document window,
you can inset the destination rectangle at least four pixels from the left and right edges of
the graphics port (20 pixels from the right edge if the window contains a scroll bar

or size box).

The destination rectangle must always be at least as wide as the first glyph drawn. The
view rectangle must not be empty; for example, if you do not want any text visible,
specify a rectangle off the screen—don’t make its trailing edge less than its leading edge.

Using TextEdit 2-29

WpIeL -

2-30

CHAPTER 2

TextEdit

Editing operations may lengthen or shorten the text. The bottom of the destination
rectangle can extend to accommodate the end of the text. In other words, you can think
of the destination rectangle as bottomless. The sides of the destination rectangle
determine the beginning and the end of each line of text, and its top determines the
position of the first line.

Your program should not have a destination rectangle that is wider than the view
rectangle if you are displaying mixed-directional text. For example, the Dialog Manager
makes the destination rectangle extend twice as far on the right as the view rectangle, so
that horizontal scrolling can be used in normal dialog boxes. When the Arabic script
system is installed, this extension is disabled, because the text may be right aligned, and
therefore out of view. Your application can include the following code to check that the
destination and view rectangles have the same width.

| F scriptsinstalled > 1 THEN
| F Get Environs (snBidirect)<>0 THEN
BEG N
{make the rectangl es the sane w dth}
END;

Setting the Text of an Edit Record

When you create an edit record, it doesn’t contain any text until either the user enters
text through the keyboard or opens an existing document. This section describes how to
specify existing text to be edited. “Accepting Text Input Through Key-Down Events” on
page 2-37 discusses how to insert text that the user enters through the keyboard.

When a user opens a document, your application can bring the document’s text into the
text buffer of an edit record by calling TESet Text . If the text has associated character
attribute information, your application also needs to manage it.

There are two ways to specify existing text to be edited. The easier method is to use
TESet Text , which creates a copy of the text and stores the copy in the existing handle
of the edit record’s hText field. One of the parameters that you pass to TESet Text
specifies the length of the text. The TESet Text procedure resets the t eLengt h field of
the edit record with this value and uses it to determine the end of the text; it sets the

sel Start and sel End fields to the last byte offset of the text so that the insertion point
is positioned at the end of the displayed text. The TESet Text procedure calculates line
breaks, eliminating the need for your application to do this.

You can use the second method to save space if you have a lot of text. Using this method,
you can bring text into an edit record by directly changing the hText field of the edit
record, replacing the existing handle with the handle of the new text. When you do this
for a monostyled edit record, you need to modify the t eLengt h field to specify the
length of the new text, and then call TECal Text to recalculate the |l i neSt art s array
and nLi nes values to match the new text.

Using TextEdit

CHAPTER 2

TextEdit

Using the second method is somewhat more complicated for multistyled text because
TECal Text does not update the style run table (St yl eRun) properly. To compensate for
this, your application needs to perform the following tasks:

» Before changing the edit record’s hText field, reduce the style run table to one entry.
Do this by setting the edit record’s sel St art field to 0 and its sel End field to 32767,
then call TESet St yl e.

= Before calling TECal Text, set the start character (st ar t Char) field of the style run
table to the length of the new text plus one, that is:

TEStyl eRec.runs[1] to Il ength(hText)+1

WpIeL -

Using the same edit record for different pieces of text

Rather than allocate a new edit record for each piece of text you want to
edit, you can use the same record to edit different pieces of text. For
example, you can create an edit record and either accept user input or
call TESet Text to incorporate existing text. If you know that you'll
want to edit the text again whose handle is currently stored in the

hText field, first you need to save the text before you call TESet Text,
because TESet Text uses the same handle, resizing it for the new text, if
necessary. O

The TESet Text procedure doesn’t affect the text drawn in the destination rectangle, so
call the Window Manager’s | nval Rect procedure afterward, if necessary. For more
information about the | nval Rect procedure, see the chapter “Window Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Setting the Selection Range or the Insertion Point

You can use the TESet Sel ect procedure to specify the selection range or the position of
the insertion point as determined by the application. For example, you can use

TESet Sel ect to highlight an initial default value in an application such as an online
data-entry form, or to position the caret at the start of the field where you want the user
to enter a value. You can also use it to implement a Select All menu command.

You can set the selection range (or insertion point) to any character positions within

the text of the edit record corresponding to byte offsets 0 through 32767. To select a range
of text, you pass TESet Sel ect the handle to the edit record along with the byte offsets
corresponding to the beginning and the ending characters of the text to be highlighted.
The TESet Sel ect procedure modifies the sel St art and sel End fields of the

edit record.

To display a caret at an insertion point, specify the same value for both the sel St ar t
and sel End parameters. To encompass the edit record’s entire text block as the selection
range, specify 0 as the value of sel St art and 32767 as the value of sel End. You can
implement a Select All menu command by specifying the edit record’s entire range of
text, as shown in the following code fragment, by using the t eLengt h field.

i Sel ect Al'l :
TESet Sel ect (0, nyTERec”™.telLength, nyTERec);

Using TextEdit 2-31

2-32

CHAPTER 2

TextEdit

Scrolling Text

Using TextEdit routines, your application can allow the user to control text scrolling
through the scroll bars; in this case, you scroll the text by calling a TextEdit procedure. It
can also automatically scroll the text of an edit record into view when the user clicks in
the view rectangle, and then drags the mouse outside of it, if you enable automatic
scrolling through another TextEdit procedure.

To scroll the text when a mouse-down event occurs in a scroll bar, your application needs
to determine how far to scroll the text. For example, to vertically scroll the text of a
monostyled edit record, you can use the | i neHei ght field of the edit record to calculate
the number of pixels to scroll; you multiply every click in the scroll bar by the number of
pixels in the | i neHei ght field and by the number of lines displayed in the view
rectangle. For multistyled text, you need to use the value of the | hHei ght field of the
line height table for each line in the view rectangle because line height can vary from line
to line.

To scroll the text, you call either TEScr ol | or TEPi nScr ol | specifying the number of
pixels to scroll. The only difference between TEScr ol | and TEPi nScr ol | is that
TEPi nScr ol | stops scrolling when the last line is scrolled into the view rectangle.

When the user clicks in the scroll arrow pointing down, you scroll the text up. When the
user clicks in the scroll arrow pointing up, you scroll the text down. Passing a positive
value to either routine moves the text right and down, passing a negative value moves
the text left and up. The destination rectangle is offset by the amount you scroll. For
example, the following call scrolls the text of a monostyled edit record up one line.

TEScrol 1 (0, -hTEM.|ineHei ght, hTE)

There are two ways to enable or disable automatic scrolling for an edit record. You can
use the TEAut oVi ew procedure or the t eFAut oScr ol | feature of the TEFeat ur eFl ag
function. However, neither of these routines actually scrolls the text. To ensure that the
selection range is always visible, your application should call TESel Vi ew When
automatic scrolling is turned on, TESel Vi ewscrolls the selection range into view,

if necessary.

Listing 2-3 on page 2-29 creates a multistyled edit record and turns on automatic
scrolling for it. It saves the address of the default click loop procedure installed in the
edit record’s ¢l i kLoop field, then replaces it with the address of its own customized
click loop routine.

The cl i kLoop field of the edit record contains the address of a click loop procedure that
is called continuously as long as the mouse button is held down. When automatic
scrolling is turned on, the default click loop routine determines if the mouse has been
dragged out of the view rectangle; if it has, the default click routine scrolls the text using
TEPi nScr ol | . For example, if the user clicks in the text and drags the mouse outside of
it to the right, the text is automatically scrolled left.

How much the text is scrolled vertically is determined by the | i neHei ght field of the
edit record for a monostyled edit record and by the | hHei ght field of the line height
table for a multistyled edit record.

Using TextEdit

CHAPTER 2

TextEdit

Scroll bars are not scrolled automatically with the text if the default click loop routine is
used. However, you can replace the default click loop routine with a routine that updates
scroll bars. For more information about customizing scrolling, see “Customizing
Automatic Scrolling” on page 2-62. For a complete discussion of scrolling, see the
chapter “Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Disposing of an Edit Record

When your application is completely finished with an edit record, you should release
any memory allocated for it by calling TEDi spose. To continue to refer to the text once
you've destroyed the edit record, use the Operating System Utilities HandToHand
function before you call TEDi spose. It copies the text (whose handle is stored in the edit
record’s hText field), and returns a new handle to it. (See Inside Macintosh: Operating
System Utilities for more information.) For a multistyled edit record, you also need to
save the character attribute information. If your program retains the original handle to
the text stored in the hText field after you call TEDi spose, the handle becomes invalid
because the text is removed—the memory used for it is deallocated.

Responding to Events Using TextEdit

This section discusses some of the TextEdit routines that your application can call in
response to event notification. You can use TextEdit routines to

» handle idle processing in response to null events (TEl dl e)

» identify the active edit record in response to an activate event (TEAct i vat e and
TEDeact i vat e)

= handle mouse-down events (TEC i ck)
» update the destination rectangle in response to an update event (TEUpdat e)

» handle key-down events (TEKey)

Handling a Null Event

Your program needs to call TEIl dl e whenever it receives a null event. If there is more
than one edit record associated with an active window, make sure you pass TEl dl e the
handle to the currently active edit record. (See “Activating an Edit Record” in the
following section for more information.)

If you have turned on text buffering through the TEFeat ur eFl ag function, you should
call TEI dI e before any pause of more than a few ticks—for example, before

Wi t Next Event . A possibility of a long delay before characters appear on the screen
exists—especially in non-Roman systems. Blinking the caret alerts the user to this delay.

To blink the caret at a constant frequency, you should call TEI dl e at least once through
your main event loop—otherwise, the caret blinks irregularly. No matter how often you
call TEIl dl e, the time between blinks is never to be less than the minimum interval.

Using TextEdit 2-33

WpIeL -

CHAPTER 2

TextEdit

Listing 2-4 shows a sample application-defined procedure, MyDol dl e, that calls TEI dl e
to handle a null event.

Listing 2-4 An idle-processing procedure

2-34

PRCCEDURE MyDol dI e(nyW ndow. W ndowPtr) ;
VAR
my Dat a: MyDocRecHnd; {handl e to a docunent record}
nyTERec: TEHandl e; {handl e to TextEdit record}
BEG N
myDat a : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
|F nyData <> NIL THEN
BEG N
myTERec := nyData™”. editRec;
| F nyTERec <> NIL THEN
TEl dl e(myTERec) ;
END;
END;

Note

The value stored in the low-memory global Car et Ti me determines the
blinking time for the caret. (The user can also set the minimum interval
through the General Controls control panel.) You can use the Event
Manager’s Get Car et Ti ne function to retrieve this value. For more
information, see the chapter “The Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials. O

Activating an Edit Record

When a window becomes active or inactive, the Window Manager updates the frames of
the windows on the screen, and then informs the Event Manager that an activate event
has occurred. The next time Wi t Next Event is called from your main event loop, the
Event Manager notifies your application that an activate event has occurred. (An activate
event can have a flag set indicating that a window is to be deactivated.) When your
application receives this notification, it needs to call TEAct i vat e for an activate event
and TEDeact i vat e for a deactivate event. When you call TEAct i vat e, you pass it the
handle to the edit record to be activated; when you call TEDeact i vat e, you pass it the
handle to the currently active edit record.

An application can have more than one edit record associated with it. The active edit
record is the one where the next editing operation is to take place. The TEAct i vat e
procedure identifies an edit record as the active one by either highlighting the selection
range or displaying a caret at the insertion point. The TEDeact i vat e procedure
changes an edit record’s status from active to inactive and removes the highlighting or
the caret. If outline highlighting is on, TEDeact i vat e frames the selection range or
displays a dimmed caret.

Using TextEdit

CHAPTER 2

TextEdit

Note

The TEAct i vat e procedure does not set the selection range; it uses the
current values in the sel St art and sel End fields of the edit record

to highlight the specified text or display a caret at the insertion point.
The TEDeact i vat e procedure does not affect the current settings of
these fields. O

Before you can activate an edit record, you need to deactivate the currently active edit
record, if there is one. If your application has a routine which it calls to activate and
deactivate its own windows, you can include processing in that routine to make an edit
record the active one or make the currently active record inactive. Because deactivate
events happen before activate events, these events occur in the proper order when the
user switches from one window to another.

If there is more than one edit record associated with a window, you’ll probably want to
call TEDeact i vat e whenever the mouse button is clicked in an edit record other than
the active one. In this case, each TEDeact i vat e call not associated with a window
deactivate event would be coupled with a call to TEAct i vat e.

You can modify the text of an edit record associated with a background window;
however, to do so, you need to call TEAct i vat e for that edit record before you call any
other TextEdit routines.

Note

When you use TECI i ck and TESet Sel ect to set the selection range or
insertion point, the selection range is not highlighted nor is a blinking
caret displayed at the insertion point until the edit record is activated
through TEAct i vat e. However, if you had already turned on outline
highlighting (through the TEFeat ur eFl ag function), the text of the
selection range is framed or a gray, unblinking caret is displayed at the
insertion point. O

Handling Mouse-Down Events

When your application receives notification of a mouse-down event that it determines
TextEdit should handle, it needs to pass the click on to the TECI i ck procedure. Before
calling TEQ i ck, your application needs to perform the following steps:

1. Convert the mouse location that is passed in the event record from global to local
coordinates, so that it can pass those local coordinates to TEC i ck. To perform the
conversion, you can use the G obal ToLocal QuickDraw procedure. (For more
information, see Inside Macintosh: Imaging.)

2. Determine if the Shift key was held down at the time of the click to extend the
selection. The behavior of TECI i ck depends on the user’s actions.
o If the Shift key was down, TEC i ck extends the current selection range.

o If the Shift key was not held down, TEQ i ck removes highlighting of the current
selection range and positions the insertion point as close as possible to the location
where the mouse click occurred.

Using TextEdit 2-35

WpIeL -

CHAPTER 2

TextEdit

o When the mouse is moved or dragged, TEC! i ck expands or shortens the selection
range a character at a time. The TEC i ck procedure keeps control until the user
releases the mouse button.

o If the mouse button is clicked twice (a double-click), TEQ i ck extends the selection
to include the entire word where the cursor is positioned.

Note

As long as the mouse button is held down, TEC i ck repeatedly calls

the click loop routine pointed to from the cl i kLoop field of the

edit record. O

Listing 2-5 shows an application-defined procedure, MyDoCont ent Ol i ck, that calls
TEC i ck, passing it a mouse-down event.

Listing 2-5 Passing a mouse-down event to TextEdit

PROCEDURE MyDoContentClick (nyW ndow. W ndowPtr; event: Event Record);
VAR

nyDat a: MyDocRecHnd; {handl e to a docunent record}
nyTERec: TEHandl e; {handl e to TextEdit record}
nouse: Poi nt ;
BEG N
nyDat a .= MyDocRecHnd(Get W ef Con(nyW ndow)); {get wi ndow s data record}
IF myData = NIL THEN
exi t (MyDoCont ent d i ck);
nyTERec := nyData"”. editRec; {get TERec}

IF nyTERec = NIL THEN
exi t (MyDoCont ent d i ck);
Set Port (myW ndow) ;

nouse : = event.where; {get the click position}
d obal ToLocal (nouse) ; {convert to | ocal coordinates}
| F PtInRect (nouse, nyTERec"”.vi ewRect) THEN

BEG N

shift Down := BAnd (event.nodifiers, shiftKey) <> 0;
{extend if Shift is down}
TEQ i ck(mouse, shiftDown, nyTERec);
END;
END;

When TECQ i ck is called, the cl i ckTi ne field of the edit record contains the time when
TEQ i ck was last called. When TEQ i ck returns, it sets the cl i ckTi ne field, adjusting
the current tick count. The default click loop procedure uses this value.

2-36 Using TextEdit

CHAPTER 2

TextEdit

Responding to an Update Event

After changing any fields of the edit record that affect the appearance of the text or after
any editing or scrolling operation that alters the onscreen appearance of the text, you
need to call TEUpdat e.

Your application needs to call TEUpdat e every time the Event Manager function

Wi t Next Event reports an update event for a text editing window—after you call the
Window Manager procedure Begi hUpdat e, and before you call the EndUpdat e
procedure. You call the following routines when an update event occurs:

Begi nUpdat e(nyW ndow) ;

Er aseRect (myW ndow®. port Rect) ;
TEUpdat e(nyW ndow*. port Rect, hTE);
EndUpdat e(nyW ndow) ;

If you don’t include the Er aseRect procedure, the caret may sometimes remain visible
when the window is deactivated. For more information about responding to events, see
the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials. For more
information about the Window Manager, see the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

Accepting Text Input Through Key-Down Events

When the user enters text through the keyboard, your application needs to call the
TEKey procedure to accept the keyboard input a byte at a time or to delete a character
when the user backspaces over it. Call TEKey every time the Event Manager function
Wi t Next Event reports a key-down event that your application determines TextEdit
should handle.

Because TEKey accepts every character it is passed, your application needs to first filter
out Command-key equivalents, special keys, and nonprinting characters as appropriate,
such as Enter or Tab, and only pass TEKey a text, a Return key character, an arrow key
character, or a backspace key character.

Note

If you want to display the text as multiple paragraphs, don't filter out
Return key characters. O

Listing 2-6 shows the MyHandl eKeyDown procedure which calls TEKey to

accept text a character at a time. First MyHandl eKeyDown filters out special characters.
For example, it treats the Tab key as a special character, and calls an application-defined
routine, MyDoTab, to handle this character appropriately for the document. Then it
checks to make sure that inserting the character won’t exceed the maximum text length
allowed. It does not count the Delete or arrow keys because they are not text characters.

If the maximum text length is not exceeded, the code passes the character to TEKey.
Otherwise, it calls an application-defined routine, MyAl er t User, to notify the user that
the character is not inserted, and that inserting it would exceed the edit record text

Using TextEdit 2-37

WpIeL -

CHAPTER 2

TextEdit

limitation. In this example listing, the maximum text length is set to the highest possible
value; you can specify a lower limit.

Listing 2-6 Inserting text in a document

PROCEDURE MyHandl eKeyDown(myW ndow. W ndowPtr; event: EventRecord);
CONST

kMaxTELengt h = 32767;

kTab = $09;

kDel = $08;

kRi ght Arrow = $1D;

kLeft Arrow = $1C;

kDownArrow = $1F;

kKUpArrow = $1E;

VAR
nyDat a: MyDocRecHnd; {handl e to a docunent record}
my TERec: TEHandl e; {handl e to TextEdit record}
key: CHAR,
BEG N
myDat a : = MyDocRecHnd(Get WRef Con(myW ndow)); {get wi ndow s data record}
IF myData = NIL THEN
exi t (MyDoContent d i ck);
myTERec := nyData™”. editRec; {get TERec}

IF nyTERec = NIL THEN
exi t (MyDoContent d i ck);
key := CHR(BAnd(event. nessage, char CodeMask));
| F key = char(kTab) THEN {handl e speci al characters}
MyDoTab(event)
ELSE
BEG N
I F (key = CHR(kDel)) | (key = CHR(kRi ghtArrow)) |
(key = CHR(kLeftArrow)) | (key = CHR(kUpArrow)) |
(key = CHR(kDownArrow)) | {don’t count deletes or arrow keys}
(Longl nt (myTERec”".teLength - MyGet TESel Lengt h(nmyTERec) + 1 <
kMaxTELengt h)

THEN
BEG N
TEKey(key, nyTERec); {insert character in docunent}
MyAdj ust Scrol | bar s(w ndow, FALSE);
END
ELSE

2-38 Using TextEdit

END;
END;

CHAPTER 2

TextEdit

M/Al ert User (eExceedChar) ;

Before testing to ensure that the input character does not exceed the edit record’s text
limitation, the code subtracts the length of the selection range, which the inserted
character is to replace, from the current length of the text. To get the length of the
selection range, the code calls an application-defined function, MyGet TESel Lengt h.
Listing 2-7 shows this function. Several other sample application-defined routines in this
chapter also call this function.

Listing 2-7 Getting the selection range length

FUNCTI ON MyGet TESel Lengt h (nmyTERec: TEHandl e): | nteger;
Begi n
MyCGet TESel Length : = nyTERec””. sel End - nyTERec”".sel Start;
END;

If the selection range is an insertion point and the key is not an arrow key character or a
Backspace key character, TEKey inserts the character before the insertion point. When
the character direction is right-to-left, the character is inserted to the right of the insertion
point. When the character direction is left-to-right, the character is inserted to the left of
the insertion point.

When you call TEKey and the keyboard script is different from the font script, TextEdit
changes the font script to correspond to the keyboard script. If the font at the insertion
point is the same as the keyboard script, then this font is used. If a font was written to
the TextEdit style scrap record (in the null scrap) and never used and that font script
coincides with the keyboard script, then it is used. Otherwise, TextEdit searches through
the fonts in the style table until it locates a font that corresponds to the keyboard. If one
does not exist, then it uses the application font.

When the user backspaces over characters of a multistyled edit record, TEKey deletes the
characters but it saves the character attributes associated with the last character deleted
in order to apply it to any new characters that the user might enter; the character
attributes are saved in the null scrap’s style scrap record. As soon as the user clicks in
another area of the text, TEKey clears the attributes from the null scrap.

Moving Text In and Out of Edit Records

This section describes how to cut, copy, and paste text, and insert and delete it. Because
TextEdit manages the varying character attribute information associated with
multistyled text, you use separate routines for monostyled and multistyled text

to perform some of these tasks; this section explains those differences. If your
application supports both monostyled and multistyled text, you need to handle these
cases separately.

Using TextEdit 2-39

WpIeL -

2-40

CHAPTER 2

TextEdit

Using TextEdit to Cut, Copy, and Paste Text

You can use TextEdit to cut, copy, and paste text within a single edit record, between edit
records, or across applications, and to handle menu commands that let the user perform
these actions. You use the TECut and TECopy procedures to cut and copy both
monostyled and multistyled text. To paste monostyled text, you use the TEPast e
procedure. To paste multistyled text, you use the TESt y| ePast e procedure. To move
monostyled text across applications or between an application and a desk accessory, you
use the TEFr onScr ap and TEToScr ap functions. This section describes how to use
these routines and what they do.

Note

This section and those that follow do not describe how to create menus
and their commands. For guidelines and a complete discussion of how
to create and manage the menus in your application, see the chapter
“The Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials. O

The TECut procedure removes and transfers the selected text. The TECopy procedure
copies the selected text, leaving the original text intact. To implement cut-and-paste
or copy-and-paste services, you can couple either of these calls with TEPast e or
TESt y| ePast e to overlay a text selection or insert the text to be pasted at an
insertion point.

To cut, copy, and paste text within the same edit record or between two edit records
within the same application, you do not need to write the text to and from the desk
scrap, although this is always done automatically for multistyled text. However, to carry
text across applications or between an application and a desk accessory, whether the text
is multistyled or monostyled, you must write it to and from the desk scrap.

For monostyled text, TECut and TECopy write the text to the private scrap only. The
TEPast e procedure pastes the monostyled text from the private scrap to the edit record.
To determine the length of the text to be pasted, you can call the TEGet Scr apLengt h
function which returns the size in bytes of the text in the private scrap, or you can check
the value of the global variable TEScr apLengt h.

To move monostyled text across applications or between an application and a desk
accessory, you need to use the TEFr onScr ap and TEToScr ap functions, which write
text to and from the desk scrap.

For multistyled text, TECut and TECopy always write both the text and its associated
character attribute information to the Scrap Manager’s desk scrap under scrap types

" TEXT' and' styl'.For more information, see the chapter “Scrap Manager” in Inside
Macintosh: More Macintosh Toolbox.

The TESt y| ePast e procedure reads both the text and its attributes back from the desk
scrap and writes the multistyled text into the edit record’s text buffer at the current
selection range or insertion point.

Using TextEdit

CHAPTER 2

TextEdit

You can use these procedures to move multistyled text across two applications or
between an application and a desk accessory; you don’t need to call TEFr onfScr ap and
TEToScr ap for multistyled text. To either copy or move the text selection from the text
buffer to the desk scrap, TECut and TECopy write the text to the private scrap and to the
Scrap Manager’s desk scrap. To copy or move the attributes along with the text, TECut
and TECopy write the character attribute information stored in the style table to both the
style scrap and the Scrap Manager’s desk scrap. Figure 2-9 shows what happens when
you cut multistyled text using TECut .

Figure 2-9 Cutting text from a multistyled edit record

WpIeL -

Before TECut | The exception probes the rule;
it does not prove it.

TextEdit TextEdit
private scrap style scrap

After TECut | The exception probes therule;
it does not prove it.

Times
often 12 point, italic
TextEdit TextEdit
private scrap style scrap
" TEXT' "styl’
Times
often 12 point, italic

Scrap Manager’s desk scrap

The TESt y| ePast e procedure either pastes the text from the desk scrap at the insertion
point or replaces the current selection range with the text to be pasted. Along with the
text, TESt y| ePast e writes the character attribute information to the style record’s style
table and applies it to the inserted text.

For multistyled text, text is pasted from the desk scrap. Therefore, before you call
TESt y| ePast e, use the Scrap Manager’s Get Scr ap procedure to check the size of the
text (' TEXT' data) to be pasted.

Using TextEdit 2-41

CHAPTER 2

TextEdit

To calculate the amount of memory required for the style scrap before you cut or copy
multistyled text, you can use the information returned by the TENunSt y| es function.
This function returns the number of attribute changes contained in a range of text. Since
the style scrap is linear in structure, with one element for each attribute change, you can
multiply the number returned by TENunt yl es by Si zeOf (Scr pSTEl enent) and
add 2 to get the number of bytes needed.

Listing 2-8 shows a sample application-defined procedure that handles cut, copy, and
paste menu commands. Before the application pastes the multistyled text into the edit
record’s text at the current selection range, it calls the Scrap Manager’s Get Scr ap
function to get the size of the text to be pasted. The code adds the returned value to

the size of the text in the edit record, subtracts the size of the selection range, then
compares the result against the maximum length of the edit record text to make sure that
pasting the text won’t exceed it. (To get the selection range length, the code calls the
application-defined function MyGet TESel Lengt h, as shown in Listing 2-7 on page 2-39.)

To avoid copying the data when you want only the length of the text returned, pass a
value of NI L for the hDest parameter to Get Scr ap. For more information about
Get Scr ap, see the chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox.

Listing 2-8 Handling Cut, Copy, and Paste commands on an Edit menu

PROCEDURE MyHandl eEdi t Menu (nyW ndow. W ndowPtr; nenultem |Integer);
CONST
kMaxTELengt h = 32000;
KTESl op = 1024,
{KTESI op provides sonme extra security when preflighting edit commands.}

VAR
nyDat a: MyDocRecHnd; {handl e to a docunent record}
ny TERec: TEHandl e; {handl e to TextEdit record}
myErr: OSErr;
of f set: LONG NT;
aHandl e: Handl e;
ol dSi ze, newSi ze: LONG NT;
saveErr: CSErr;
BEG N
nmyDat a = MyDocRecHnd(Get W ef Con(nyW ndow)); {get wi ndow s data record}
IF nyData = NIL THEN
exi t (MyDoContent d i ck);
nyTERec := nyData"”. editRec; {get TERec}

IF nyTERec = NIL THEN
Exit (MyDoContent Cl i ck);
CASE nenultem OF
i Cut:

2-42 Using TextEdit

CHAPTER 2

TextEdit

BEG N
I F ZeroScrap = noErr THEN
BEG N
Pur geSpace(total, contig);
| F MyGet TESel Lengt h(nyTERec) + KTES| op >
contig THEN
M/Al ert User (eNoSpaceCut)
ELSE
TECut (nyTERec) ;
END;
END;
i Copy:
BEG N
I F ZeroScrap = noErr THEN
TECopy(myTERec) ;
END;
i Past e:
BEG N
| F GetScrap(NIL, 'TEXT', offset) +
(nmyTERec™". teLength - MyGet TESel Lengt h(nmyTERec)) >
kMaxTELengt h
THEN
M/Al ert User (eExceedPast e)
ELSE
BEG N
aHandl e : = Handl e(TEGet Text (nyTERec)) ;
ol dSi ze : = Get Handl eSi ze(aHandl e) ;
newSi ze : = ol dSize + GetScrap + kTESI op
Set Handl eSi ze(aHandl e, newSi ze);
{see if handl e can be resized}
saveErr := MenError,
Set Handl eSi ze(aHandl e, ol dSi ze);
| F saveErr <> noErr THEN
M/Al ert User (eNoSpacePast e)
ELSE
TESt yl ePast e(nyTERec) ;
END;
END;
END;
END;

Using TextEdit

2-43

WpIeL -

2-44

CHAPTER 2

TextEdit

Inserting and Deleting Text

You can use TextEdit routines to delete and insert text. You use TEl nsert to insert
monostyled text into the edit record’s text buffer if the current selection range is an
insertion point. If the current selection range is a range of text, TEl nsert replaces it
with the text to be inserted. You use TESt y| el nsert to insert multistyled text in
the same way; however, the text and its associated character attribute information
are inserted.

To delete text, your application calls the same routine whether the text is multistyled or
monostyled. The TEDel et e procedure removes the text of the current selection range.
When the text is multistyled, TEDel et e saves the character attributes in the null scrap to
be applied to characters that the user might enter following the deletion. After each
editing procedure, TextEdit redraws the text if necessary from the insertion point to the
end of the text.

You can handle a Clear command using TEDel et e; you call TEDel et e with the handle
to the edit record containing the text you want to eliminate. The TEDel et e procedure
removes the selected text without transferring it to the scrap.

i Clear:
TEDel et e(nyTERec) ;

Text Attributes

This section describes how your application can check the current attributes of a range of
text to determine which ones are consistent across the text. It also describes how you can
manipulate the font, style, size, and color of a range of text; the text selection can consist
of a segment of text, the entire text of the edit record, a single character, or even an
insertion point.

You use the TECont i nuousSt yl e function to determine the current attributes for a
range of text, and you use the TESet St y| e procedure to change them. You can change
character attributes singly, collectively, or in any combination using TESet St y| e. For
example, you can change the font style to bold or italic, and you can underline, outline,
or shadow the selected text. You can increase or decrease the type size incrementally, or
change the color in which the text is displayed. You use the TESet Al i gnrment
procedure to change the alignment of the entire text of an edit record.

This section describes these tasks in this order:

» checking the text attributes across a selection range

= toggling an attribute

» handling a font menu that lets the user change the font family

» handling a font size menu that lets the user change the text size

» handling a style menu that lets the user change the style of the text

» changing the text alignment

Using TextEdit

CHAPTER 2

TextEdit

Some general information about TESet St y| e that applies to many of the tasks for
which you can use it is discussed here. If you call TESet St y| e for an insertion point,
TextEdit stores the input character attribute information in the null scrap’s style scrap
record. If the user then enters text (pastes without attributes, inserts, or types it), the
attributes are written to the style record and applied to that text.

There are many ways in which you can use TESet St y| e to handle menu commands
that let the user modify text attributes. If your application allows a user to change any or
all the text attributes from a single format menu before redrawing the text, you can make
one call to TESet St yl e specifying the particular attributes to be changed. If your
application provides separate menus to let a user manipulate different aspects of the
text, you can make separate calls to TESet St y| e specifying the discrete text attribute to
be changed.

WpIeL -

Note

A field in the text style record is only valid if the corresponding bit is set
in the mbde parameter; otherwise, the field contains invalid
information. O

The value of nbde specifies which existing character attributes are to be changed to the
new character attributes specified by newst yl e.

Constant Value Description

doFont 1 Sets the font family ID

doFace 2 Sets the character style

doSi ze 4 Sets the type size

doCol or 8 Sets the color

doAl | 15 Sets all attributes

addSi ze 16 Increases or decreases the type size
doToggl e 32 Modifies the mode

Checking the Text Attributes Across a Selection Range

When a particular attribute is set for an entire selection range, that attribute is said to be
continuous over the selection. For example, in the selected text in Figure 2-10, the bold
attribute is continuous over the selection range and italic is not.

Figure 2-10 Continuous attributes over a selection range

“Take each man’s censure,
but reserve thy judgement.”

N | J
Bold, 16 point Times

Using TextEdit 2-45

CHAPTER 2

TextEdit

To determine the actual values for continuous attributes, you can use the

TECont i nuousSt yl e function. This function takes two variable parameters: nbde and
ast yl e. For its input value, node specifies the attributes to be checked; for its output
value, mode specifies those attributes that are continuous over the selection range. For
the input value of aSt yl e, you pass a pointer to a text style record (of type

Text St yl e); for those attributes that are continuous, the text style record fields contain
the actual values when TECont i nuousSt yl e returns.

A field in the text style record is only valid if the corresponding bit is set in the nbde
parameter; otherwise, the field contains invalid information. Possible values for the
TECont i nuousSt yl e node parameter are defined by the following constants.

Constant Value Description

doFont 1 Specifies the font family number
doFace 2 Specifies the character style
doSi ze 4 Specifies the type size

doCol or 8 Specifies the color

doAl | 15 Specifies all the attributes

Listing 2-9 illustrates how to use the TECont i nuousSt yl e function to determine the
font, style, size, and color of the current selection range. The code sets the mode
parameter. Then it calls TECont i nuousSt yl e, passing it the text style record. When
TECont i nuousSt yl e returns, it checks each bit of the nbde parameter to see which
attributes are continuous across the selection.

Listing 2-9 Determining the font, style, size, and color of the current selection range

2-46

PROCEDURE MyGet Current Sel ection (VAR node: | nteger
VAR continuous: Bool ean; VAR astyle: TextStyle;
myTERec: TEHandl e);
BEG N
node : = doFont + doFace + doSize + doCol or
conti nuous : = TEConti nuousStyl e(node, aStyle, nmyTERec);
| F Bi t And(node, doFont) <> 0 THEN
{font for selection = aStyle.tsFont}
ELSE
{nore than one font in selection};
| F Bi t And(node, doFace) <> 0 THEN
{aStyl e.tsFace contains the text faces (or plain) that }
{ are comon to the selection.}
ELSE
{No text face is comopn to the entire selection.};
| F Bi t And(node, doSize) <> 0 THEN
{size for selection = aStyle.tsSize}

Using TextEdit

CHAPTER 2

TextEdit

ELSE
{nmore than one size in selection};
| F Bi t And(node, doCol or) <> 0 THEN
{color for selection = aStyle.tsCol or}
ELSE
{nore than one color in selection}
END;

Toggling an Attribute

Once you know what attributes are continuous across a selection range, you can use
TESet St y| e to toggle an attribute on and off. For example, if you specify a node
parameter for TESet St yl e that includes both doToggl e and doFace, and an attribute
that has been set in the t sFace field of the text style record exists across the current
selection range, then TESet St y| e removes that attribute. However, if the attribute isn't
continuous over the current selection, then all of the selected text is set to include it.

For example, in the selected text shown in Figure 2-11, the bold style is continuous over
the selection range and the italic style is not.

Figure 2-11 An initial selection before TESet St yl e is called

“This, above all: to thine own self be true,
And it must follow, as the night the day,
Thou can not be false to any man.”

L J \ . J J

Bold Bold Bold
italic

If you call TESet St yl e with a nbde of doFace + doToggl e and a text style record
parameter with its t sSFace field set to bol d, the resulting selection is no longer bold, as
shown in Figure 2-12.

Figure 2-12 The result of calling TESet St yl e to toggle to bold

“This, above all: to thine own self be true,
And it must follow, as the night the day,

Thou can not be false to any man.”

N\ . J _'_J ;'_J
Plain Italic Plain

Using TextEdit 2-47

WpIeL -

CHAPTER 2

TextEdit

On the other hand, if instead you call TESet St y| e with a node of doFace + doToggl e
and a text style record with its t sFace field set toi t al i c, the resulting selection is all
bold italic as shown in Figure 2-13.

Figure 2-13 The result of calling TESet St y| e to toggle italics

“This, above all: to thine own self be true,
And it must follow, as the night the day,
Thou can not be false to any man.”

i\ . J
Bold
italic

Handling a Font Menu

You can use TESet St yl e to handle a Font menu that allows the user to change the font
family for a text selection. The user might select the entire text of an edit record or a
portion of it, then choose a different font family from your menu to be used to render the
text. Listing 2-10 shows how to handle a Font menu that allows the user to do this. The
code determines which font the user has selected from the menu. Next, it calls the Font
Manager’s Get FNumprocedure to get the font family ID for the font of the selected text.
Then it calls TESet St yl| e passing it the text style record with the t sFont field set to the
font ID. Because the r edr aw parameter is set to TRUE, the current selection range is
redrawn immediately in the new font.

Listing 2-10 Handling the Font menu

PROCCEDURE MyHandl eFont Menu (nyW ndow. W ndowPtr; mnyTERec: TEHandl e;

menultem | nteger);

VAR
txStyl e: Text Style; {holds style sel ected}
f ont Nane: Str 255; {nane of font sel ected}
fontlD: | nt eger; {1D of font sel ected}
BEG N

Get | t em(Get MenuHandl e(nfFont), nenultem fontNane);
Get FNurm(f ont Nane, fontlID);

txStyl e.

tsFont := fontl D

TESet Styl e(doFont, txStyle, true, nyTERec);
MyAdj ust Scrol | Bar s(w ndow, FALSE);

END;

2-48

Using TextEdit

CHAPTER 2

TextEdit

Handling a Font Size Menu

If your application includes a menu that allows users to change the font size of the
selected text, you can use the TESet St y| e procedure to handle this modification. The
code in Listing 2-11 sets the t SSi ze field of the text style record to the font size that the
user selects; then it calls TESet St y| e to apply the new font size immediately. The

doSi ze mode parameter value forces all the text to the new size.

Listing 2-11 Handling the Size menu

PROCEDURE MyHandl eSi zeCommand (nyTERec: TEHandl e; menultem |Integer);
VAR
txStyl e: Text Styl e;
BEG N
MyGet Si ze(Get MenuHandl e(nSi ze), menultem sizeChosen);
txStyle.tsSize : = sizeChosen;
TESet Styl e(doSi ze, txStyle, TRUE, nyTERec);
MyAdj ust Scr ol | Bar s(wi ndow, FALSE);
END;

Handling a Style Menu

Your application can also use TESet St y| e to handle Style menu commands. For
example, you can set the nbde parameter to doFace and set the t sFace field of the text
style record to any of the font attributes that the user selects. If your menu supports a
Plain option to remove all attributes from the text selection, you need to explicitly set

t sFace. Because of the behavior of TESet St yl e, you cannot implement a Plain
selection by passing a null (empty set) text style record to remove the current attributes.
Listing 2-12 shows how to use TESet St y| e to change the text attributes, including how
to render plain text.

Listing 2-12 Handling a Style menu

PROCEDURE MyHandl eStyl eMenu (myW ndow. W ndowPtr; nyTERec: TEHandl e;
menultem | nteger);

VAR
txStyl e: Text Styl e;
anlntPtr: | nt eger;

BEG N {nfttyl e}
WTH txStyle DO BEG N
CASE nenultem OF
pl ai nl tem
BEA N
anlntPtr := @xStyle.tsFace;

Using TextEdit 2-49

WpIeL -

CHAPTER 2

TextEdit

anlntbPtr™ := 0;
tsFace :=[];
END;
bol dl tem
tsFace := [bol d];
italicltem

tsFace := [italic];
underlineltem

tsFace : = [underline];
outlineltem

tsFace := [outline];

shadow t em
tsFace : = [shadow;
END; {case}

I F menultem <> 1 THEN
TESet Styl e(doFace + doToggle, txStyle, TRUE, nyTERec)
{if we don't select plain then use doToggl e}
ELSE
TESet Styl e(doFace, txStyle, TRUE, nmyTERec);
{TESet Styl e has problens with plain and doToggl e }
{ has no effect!so we need to special case it.}
MyAdj ust Scr ol | Bar s(w ndow, FALSE);

END;

END;

2-50

If you set r edr awto TRUE, TextEdit redraws the current selection with the new
attributes, recalculating line breaks, line heights, and font ascents. If you call

TESet St yl e with a value of FALSE for the r edr aw parameter, TextEdit does not
redraw the text or recalculate line breaks, line heights, and font ascents until the next
update event occurs. Consequently, when your application calls a routine that uses any
of this information, such as TEGet Hei ght (which returns a total height between two
specified lines), the routine uses the old character attribute information that existed
before you called TESet St yl e to change it. To be certain that the new information is
always reflected immediately, call the TESet St y| e procedure with a r edr aw parameter
of TRUE.

Listing 2-13 shows a sample procedure that calls TECont i nuousSt yl e to check the
character attributes of the current selection range; it determines whether the style is
plain, bold, or italic. For each style that is continuous across the text, the

MyAdj ust St yl eNew procedure marks the item on the style menu. In this case, if
TECont i nuousSt yl e returns a node parameter that contains doFace and the text
style record t sFace field is bold, it means that the selected text is all bold, but may
contain other text styles, such as italic, as well. Italic does not apply to all of the selected
text, or it would have been included in the t sFace field. If the t sFace field is an empty
set, then all of the selected text is plain.

Using TextEdit

CHAPTER 2

TextEdit

Listing 2-13 Checking the style and marking Style menu items to reflect

the current selection range

PROCEDURE MyAdj ust Styl eNew (nyTERec: TEHandl e);

VAR
styl eMenu: MenuHandl e;
asStyl e: Text Styl e;
node: I nt eger;
BEG N

node : = doFace;

styl eMenu : = Get MenuHandl e(nStyl e);
| F TEConti nuousStyl e(node, aStyle, myTERec) THEN
BEG N

{There is at least one style that is continuous over }

{ the selection. Note that it mght be plain, which is }
{ actually the absence of all styles.}

Checkl tenm(styl eMenu, plainltem aStyle.tsFace =[]);
Checkl tem(styl eMenu, bolditem bold IN aStyl e.tsFace);
Checkltem(styl eMenu, italicltem italic IN aStyle.tsFace);
{Set other nenu itens appropriately.}

END
ELSE
BEG N

{No text face is common to the entire selection.}
Checkltem(styl eMenu, plainltem FALSE);
Checkl tem(styl eMenu, boldltem FALSE);
Checklten(styl eMenu, italicltem FALSE);
{Set other menu itens appropriately.}

END;

END;

Changing the Text Alignment

Your application can change the alignment of the entire text of an edit record by calling
the TESet Al i gnent procedure. The default alignment used to display the text of an
edit record is based on the primary line direction of the system script. For example, when
the system script is Arabic or that of any language that is read from right to left, the
default line direction is right to left and the text is right aligned.

For a script system whose primary line direction is right to left, you can force left
alignment of the text by specifying t eFl ushLef t as the value of the al i gn parameter,
as shown in the following example:

TESet Al i gnnent (teFl ushLeft, nyTERec);

Using TextEdit 2-51

WpIeL -

2-52

CHAPTER 2

TextEdit

You can use any of the following constants to specify how text is aligned.

Constant Description

t eFl ushDef aul t Default alignment according to the primary line direction
t eCenter Center for all scripts

t eFl ushRi ght Right for all scripts

t eFl ushLef t Left for all scripts

Make sure that you call the Window Manager’s | nval Rect procedure after you change
the alignment so the text is redrawn with the new alignment. For more information
about | nval Rect, see the chapter “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials.

Saving and Restoring a TextEdit Document, and
Implementing Undo

This section describes how to save to disk the contents of a document created using
TextEdit, and restore it when the user opens the document. For both monostyled and
multistyled text, you need to save and restore the text and its character attribute
information. This section also discusses how to implement an Undo feature.

Saving a TextEdit Document

To save the contents of a document created using TextEdit and a monostyled edit record,
you store the text. You can also save the text characteristics, such as the font and its size
and style, and the text margins; you can store this information in a resource. (Save the
font name, not the font number.)

To save the contents of a document created using TextEdit and a multistyled edit record,
you need to save all of the associated character attribute information in addition to the
text. Because the text format of the character attribute information in the style scrap is
easier to export than the style record itself—it uses the Desk Manager’s ' styl ' format—
you should use the TextEdit routines that use the style scrap for moving character
attribute information: TEGet St yl eScr apHandl e and TEUseSt yl eScr ap. For
example, you can use the following steps to save a multistyled text document to disk:

1. Create a text file, select all the text of the edit record, and save it in the text file’s
data fork.

2. Call TEGet St yl eScr apHandl e to get a handle to the style scrap record. This creates
the style scrap record and uses it to store the character attribute information.

3. Save the character attribute information in the resource fork of the file.

The application-defined procedure MyDoSaveAsText Edi t shown in Listing 2-14 uses
this method. Notice that this procedure avoids using TESet Sel ect to select all of the

edit record’s text. The TESet Sel ect procedure sets and highlights the selection range
that you specify. Because you are selecting the text to save it, you don’t want it to be

Using TextEdit

CHAPTER 2

TextEdit

highlighted. (Highlighting the text before saving it can mislead a user to presume that
some other action is required.)

However, if you want to use TESet Sel ect, you can circumvent highlighting of the
selection range if you first render the edit record inactive; before you call TESet Sel ect,
call TEDeact i vat e. Also, if you have outline highlighting turned on through the
TEFeat ur eFl ag function’st eFQut | i neHi | i t e feature, turn it off. When the edit
record is not the active one, TESet Sel ect can set the selection range without causing it
to be highlighted.

Listing 2-14 Saving a multistyled text edit record to disk

WpIeL -

PROCEDURE MyDoSaveAsText Edit (t ext ToSave: TEHandl e);
CONST
kFi | eType
kFi | eCr eat or

"TEXT'; {file type of text file}
"NIIM; {creator code of text file}

VAR
reply: StandardFil eReply;
{location, name of file to save text to}

styl es: St Scr pHandl e; {contains all character }

{ attributes in text}
dat aLengt h: Longlnt; {number of bytes of text to wite}
dat aRef Num Integer; {ref nunber of text file's data fork}
rsrcRef Num Integer; {ref nunber of text file's rsrc fork}
savedStart: Integer; {saves offset of start of selection}
savedEnd: Integer; {saves offset of end of selection}
error: OSErr; {error code from tool box}

BEG N
StandardPutFile("', "', reply);
| F reply. sf Good THEN
BEG N
{save the current starting and endi ng of fsets of selection}
savedStart := textToSave™".sel Start;
savedEnd : = text ToSave””. sel End;

{select all text; don't use TESet Sel ect because it }
{ draws sel ection}
t ext ToSave™”. sel Start : = 0;
t ext ToSave™”. sel End : = text ToSave™”.telLengt h;

{get a list of all the attributes in the text}
styles : = TEGet Styl eScrapHandl e(t ext ToSave) ;

Using TextEdit 2-53

2-54

CHAPTER 2

TextEdit

{reset the selection back to what it was}
t ext ToSave"”. sel Start : = savedStart;
t ext ToSave~”. sel End : = savedEnd;

{create the text file if it didn't exist before}
I F NOT reply.sfReplacing THEN
BEG N
error := FSpCreate(reply.sfFile,
kFil eCreator, kFileType, reply.sfScript);
FSpCreat eResFil e(reply.sfFile, kFileCreator
kFi |l eType, reply.sfScript);
error := ResError;
END;

{open the text file}

error := FSpOpenDF(reply.sfFile, fsCurPerm dataRefNunj;
rsrcRef Num : = FSpOpenResFil e(reply.sfFile, fsCurPern;
error := ResError,

{wite the text to the file}

dat aLength : = text ToSave™”".telLengt h;

error := FSWite(dataRef Num datalLength,
t ext ToSave™”. hText ™);

{Wite the attributes to the file}
AddResour ce(Handl e(styles), 'styl', 0, '");
Wit eResource(Handl e(styles));

Rel easeResour ce(Handl e(styl es));

{close the text file}
error := FSC ose(dat aRef Nunj ;
Cl oseResFi |l e(rsrcRef Num ;
error := ResError,
END;
END;

Restoring an Existing TextEdit Document

You can restore the text of an edit record when a user opens a document that was created
using TextEdit. One way to do this is to read the text from the data fork into a handle,
then write the handle to the hText field of the edit record; call TECal Text after you do
this. Before you write the new handle to the hText field, dispose of the existing handle,
if there is one. For a multistyled edit record, you need to reinstate both the text and the
character attribute information for it. (For information about how to open a file, see
Inside Macintosh: Files.)

Using TextEdit

CHAPTER 2

TextEdit

You can use a method similar to the one shown in Listing 2-14 on page 2-53 to save a
multistyled text document. However, to restore the text, you retrieve the data from the
file’s data fork and write it to a buffer, then call TESet Text to make a copy of the text
and set the hText field of the edit record to point to it. The MyDoQpenText Edi t
procedure shown in Listing 2-15 shows an example of this. Before copying the text to a
buffer, the MyDoOpenText Edi t procedure checks to ensure that the text length does not
exceed the 32 KB limit; if it does, TextEdit truncates the text before it copies it.

The MyDoQpenText Edi t procedure retrieves the character attribute information from
the resource fork of the disk file and reinstates it in the edit record’s style record by
calling TEUseSt yl eScr ap.

WpIeL -

Listing 2-15 Restoring a document that uses multistyled TextEdit

PROCEDURE MyDoQpenText Edi t (t ext ToOpen: TEHandl e);

CONST

kFil eType = '"TEXT'; {file type of text file}

VAR

reply: St andar dFi | eReply; {location, nane of file to get text from
typelLi st: SFTypeli st ; {specifies 'TEXT" files in SF dial og}

dat aRef Num Integer; {ref nunber of text file's data fork}

rsrcRef Num Integer; {ref nunber of text file's rsrc fork}

textBuffer: Handle; {holds text fromfile}

textLength: Longlnt; {nunber of bytes of text to read}

styl es: St ScrpHandl e; {contains all character attributes in text}
error: OSErr; {error code from tool box}

savedState: SignedByte; {saves state of 'styl' resource}

BEG N

typeList[0] := kFileType;
StandardCGetFil e(NIL, 1, typeList, reply);
| F reply. sf Good THEN

BEG N

{open the data fork of the text file}
error := FSpOpenDF(reply.sfFile, fsCurPerm dataRefNum;
error := SetFPos(dataRef Num fsFrontStart, 0);
{get the nunber of bytes of text in the file; lint to 32KB}
error := Get EOF(dataRefNum textLength);
| F textLength > 32767 THEN
textLength : = 32767,
{allocate a buffer for the text}
text Buf fer : = NewHandl e(textLength);
{read the text into the buffer}

Using TextEdit 2-55

END;

2-56

CHAPTER 2

TextEdit

error := FSRead(dataRefNum textLength, textBuffer”);
{put the text into the TextEdit record}

LockHHi (Text Buffer);

TESet Text (text Buf fer”~, textLength, textToQpen);

HUNnl ock(t ext Buffer);

{get rid of the text buffer}

Di sposeHandl e(textBuffer);

{close the data fork of the text file}

error := FSC ose(dataRef Num ;

{open the resource fork of the text file}

rsrcRef Num : = FSpQpenResFil e(reply.sfFile, fsCurPerm;
error := ResError;

{get the style scrap}

styles := St ScrpHandl e(Get Resource('styl', 0));

error := ResError;
I F styles <> NIL THEN
BEGA N

savedState : = HGet State(Handl e(styles));
{apply the character attributes to the TextEdit record}
TEUseStyl eScrap(0, textLength, styles, true, textToQpen);
{restore state of 'styl' resource}
HSet St at e(Handl e(styl es), savedState);
END;
{close the forks of the text file}
error := FSC ose(dataRef Num ;
Cl oseResFi | e(rsrcRef Nunj ;
error := ResError;

END;

Handling Undo

Application users find Undo an especially useful feature. Users might accidently choose
Clear from the Edit menu instead of Cut, or they might backspace over more words than
intended. In these and cases like them, Undo is invaluable.

If you are implementing Undo for multistyled text, you need to save the character
attribute information along with the text. Although this section discusses one method,
there are a number of ways that you can do this. For example, when you want to save
the current attributes of the selected text to allow the user to revert to them, your
application calls the TEGet St yl eScr apHandl e function, which returns a handle to the
style scrap’s style record containing the attributes used for the selected text. To restore
the style later, you call the TEUseSt y| eScr ap procedure. You also need to save the
offsets into the edit record’s text buffer of the first and last characters to which the
character attribute information is to be applied.

Using TextEdit

CHAPTER 2

TextEdit

If your application supports any 2-byte script systems, your Undo operations needs to
check for 2-byte characters. Normal cut or paste operations do not present a problem,
but be careful when undoing a backspace. When TextEdit backspaces over single
characters, it checks Char Byt e to determine if the character to be removed is a 2-byte
character. If it is, it removes 2 bytes. (For more information about the Char Byt e
function, see the chapter the “Script Manager,” in this book.) When an application
program maintains a buffer of characters that have been backspaced over in order to
support Undo, it needs to make a test similar to that in Listing 2-16.

Listing 2-16 Checking for 2-byte characters when backspacing

| F nyChar = BS then aTeHandl e*" do begin
{support backspace undo}
I F sel Start <> sel End then begin
{not an insertion point save the selection}

END
ELSE begin
i := selStart;
IFi > 0 then begin
repeat i =i - 1

until CharByte(hText”, i) <= 0;
{Note: Guarantees that CharByte(x,0) <= 0}
{Al so, CharByte does not touch the heap}
{Put bytes fromi to selStart into buffer}
END;
END;
END;

Customizing TextEdit

This section describes how to customize TextEdit using the TECust onHook routine to
replace the end-of-line, drawing, width-measuring, and hit test default hook routines.

It also describes the multi-purpose low-memory global variable TEDoText hook routine
that displays, highlights, and hit-tests characters, and positions the pen to draw a caret.
Finally, this section discusses how to customize word selection, automatic scrolling, and
how to determine the length of a line of text in order to justify it. (For a brief discussion
of hook fields and hook routines, see “Related Data Structures” on page 2-17.)

The next four sections describe how to customize TextEdit using the TECust onHook
procedure. Information about the use of TECust onmHook that is common to all four
sections is provided here.

Using TextEdit 2-57

WpIeL -

2-58

CHAPTER 2

TextEdit

You can customize TextEdit’s behavior by replacing any of the default hook

routines with those of your own. You use the TECust onmHook procedure to replace

a routine installed in a hook field of the dispatch record (TEDi spat chRec). Initially,
each hook field of the dispatch record contains the address of the default hook routine
that TextEdit uses.

The TECust onHook procedure returns the address of the default routine that it replaces
so that your application-supplied routine can call the default routine, daisy-chaining it, if
you want it to. For example, your routine can add additional functionality, then call the
default routine instead of replicating all of its behavior. If you replace the address of a
default hook routine with that of your own customized version, the next time you call
TECust onHook for that hook field, TECust omHook will return the address of your
routine. (For more information, see “TECustomHook” on page 2-112.) To ensure future
compatibility, use the TextEdit customization routines to modify hooks rather than write
directly to these fields.

If you replace a default hook routine with a customized version that you write in a
high-level language, such as Pascal or C, you need to provide assembly-language glue
code that utilizes the registers for your high-level language routine. Refer to
“TECustomHook” on page 2-112 for a description of the register contents on entry and
return for each of the hook routines.

If you replace a default routine, take the following precautions:

» Before placing the address of your routine in the TextEdit dispatch record, strip the
addresses, using the Operating System Utilities St r i pAddr ess function, to
guarantee that your application is 32-bit clean. For more information, see Inside
Macintosh: Operating System Utilities.

» Before replacing a TextEdit routine with a customized one, determine whether more
than one script system is installed, and, if so, ensure that your customized routine
accommodates all of the installed script systems. This avoids the problem of your
customized routine producing results that are incompatible with the Script Manager.

= When you use assembly language, note that all registers must be preserved except
those specified as containing return values. Register A3 contains a pointer to the edit
record and Register A4 contains a handle to it. You can obtain line start positions from
the | i neSt art s array in the edit record. Register A5 is always valid. Refer to
TECust omHook in the TextEdit Reference section for complete coverage of the
register content requirements for all hook routines.

Replacing the End-of-Line Routine

You can replace the address of the default end-of-line hook routine with the address of
your own routine that determines an end-of-line character if you want the end-of-line to
be defined by a character other than the carriage return.

The default routine compares a given character with $0D (a carriage return) to determine
whether it is an end-of-line character, and returns with the appropriate status flags
(either TRUE or FALSE) in the status register.

Using TextEdit

CHAPTER 2

TextEdit

Replacing the Drawing Routine

TextEdit calls the draw hook routine any time the various components of a line are
drawn. The appropriate font, face, and size characteristics have already been set into the
current graphics port by the time this routine is called.

If your application uses an outline font, the default behavior of the Font Manager
ensure’s that glyphs fit within the font’s ascent and descent. Glyphs that extend beyond
the ascent or descent, such as certain accented fonts, are scaled down to fit.

If your application has set the pr eser ve@ yph parameter of the Font Manager’s

Set Preser ved yph procedure to TRUE to preserve the original unscaled shape of the
glyph, note that TextEdit sets it to FALSE before it calls the draw hook to perform any
drawing. This is to guarantee that the glyphs whose bounding boxes exceed the font’s
ascent or descent are scaled down to prevent them from colliding with other glyphs on
the lines above or below. TextEdit then restores the pr eser ved yph parameter to its
previous value before proceeding.

WpIeL -

Replacing the Width-Measuring Routines

A width measurement hook routine measures portions of a line of text, and TextEdit
calls one each time the width of various components of a line is calculated. There are
three width measurement hooks: the width measurement hook, the new width
measurement hook, and the text width measurement hook. Default hook routines of the
same name as the hook field are installed in each of these hooks.

The width measurement hook, which TextEdit used in the past, now exists to provide
backward compatibility for applications that have replaced the default routine with a
customized one. TextEdit uses the routine whose address is installed in this field only
when both of the following conditions exist: when only the Roman script system is
installed and the field contains the address of a customized routine.

In all other cases—when more than one script system is installed or when the width
measurement hook has not been customized—TextEdit calls the routine whose address
is installed in the new width measurement hook field to measure text.

Figure 2-14 shows a flow chart illustrating when the width measurement hook and the
new width measurement hook routines are used.

Using TextEdit 2-59

CHAPTER 2

TextEdit

Figure 2-14 Determining when to use W DTHHook and nW DTHHook

Determine the
width-measuring
routine to use

Is script
count number
>1?

Yes

No

Is
width hook
customized?

No

Use Use
width hook new width hook

The new width measurement hook routine is called to measure text for both Roman and
non-Roman script systems. If you replace this routine, make sure that your customized
routine is script-aware.

The default action for the new width measurement hook routine is to call the QuickDraw
Manager’s Char ToPi xel function or Text W dt h procedure to measure for non-Roman
scripts. By default, the Text W dt hHook field contains the address of the QuickDraw
Text W dt h function. You can use this hook to replace TextEdit’s use of the

QuickDraw Text W dt h function with your own measuring routine. If you replace

this hook routine with a customized version, when the routine whose address is installed
in the new width measurement hook field makes a call to Text W dt h, your customized
routine is invoked.

2-60 Using TextEdit

CHAPTER 2

TextEdit

To test for the availability of the width-measuring hooks, you can call the Gest al t
function with the gest al t Text Edi t Ver si on selector. A result of gest al t TE2 or
greater returned in the r esponse parameter indicates that the new width measurement
hook is available, and a result of gest al t TE5 or greater indicates that Text W dt hHook
is available.

Replacing the Hit Test Routine

TextEdit calls the hit test hook routine to determine the glyph position in a line, given the
pixel width from the left edge of the view rectangle. For versions of software earlier than
7.0, the default action is to call the Text W dt h function to determine if the pixel width
of the measured text is greater than the input width. If it is, then the hit test hook routine
calls the QuickDraw Pi xel ToChar function and returns. For system software version 7
and later, the default action is to call the QuickDraw Pi xel ToChar function. In addition
to the values defined by the register contents on entry, when TextEdit calls the

Pi xel ToChar function, it passes a value of Onl ySt yl eRun for the

st yl eRunPosi t i on parameter and scaling factors of 1/1 for the numer and denon
parameters. See “Hit Test Hook Registers” on page 2-115.

Customizing Word Selection

A word-selection break routine determines which word is highlighted when the user
double-clicks in the text. It also determines where TextEdit breaks the text at the end of a
line. You can use TESet Wor dBr eak to replace the default routine, installed in the edit
record’s wor dBr eak field, that is used for word selection and line breaking under
certain circumstances. Whether or not TextEdit uses the word break hook routine
installed in this field is determined by the algorithm implemented in the default

TEFi ndWbr d routine, which is described below.

When you replace the wor dBr eak field hook routine, your customized word-selection
break routine is used instead of the default one. The default routine breaks words at
any character with an ASCII value of $20 or less (the space character or nonprinting
control characters).

Before non-Roman script systems were supported, TextEdit used the word-selection
break routine referenced by the wor dBr eak field for all word selection and line
breaking. However, in order to support both Roman and non-Roman script systems,
TextEdit now uses the routine referenced by the low-memory global variable

TEFi ndWor d. The default TEFi ndWor d hook routine determines which hook TextEdit
should use for word selection and line breaking—the wor dBr eak hook or the Text
Utilities Fi ndWor dBr eaks procedure—based on what script systems are installed
and some other factors. You can replace the TEFi ndWor d hook routine with a
customized version.

The TEFi ndWor d hook routine is a higher level routine than wor dBr eak. Because of
this, when you customize the TEFi ndWbr d hook you are completely changing how
TextEdit handles word selection and line breaking. However, when you replace

wor dBr eak, you are only impacting those aspects of word selection and line breaking
that are normally handled by the wor dBr eak routine.

Using TextEdit 2-61

WpIeL -

2-62

CHAPTER 2

TextEdit

The TEFi ndWor d hook routine gives your application more control over the breaking
process and allows you to write more efficient routines. However, unless you include
explicit tests for scripts in your customized routine, the algorithms you provide may be
incorrect for non-Roman scripts. If you replace TEFi ndWbr d, you should understand the
behavior of the default routine.

Here’s how the default TEFi ndWor d routine works:

» TextEdit initially determines whether a non-Roman script system is installed. If more
than the Roman script system is installed, TextEdit always uses the Text Utilities
Fi ndWor dBr eaks procedure for line breaking and word selection.

s When TextEdit determines that only the Roman script system is installed and the
TEFi ndWor d routine is being called for line breaking (not word selection), TextEdit
calls the wor dBr eak hook.

» If TEFi ndWor d is called for word selection for system software with only the Roman
script system installed, TextEdit checks to see if your application has placed the
address of a customized word-selection breaks routine in the wor dBr eak field of the
edit record. If so, TextEdit calls your word-selection breaks routine. Otherwise, if the
wor dBr eak field contains the address of TextEdit’s internal word-selection breaks
routine, TextEdit uses the Text Utilities Fi ndWor dBr eaks procedure to determine
word-selection breaks.

When TextEdit calls the Text Utilities Fi ndWor dBr eaks procedure, it uses information
in the edit record to provide the necessary parameters. TextEdit determines the current
script boundaries from the Text Utilities Fi ndWor dBr eaks procedure by using the font
run information in the style record (of type TESt y| eRec). TextEdit also determines the
length of the script run and the offset within the script run from which to begin
searching for a word boundary. TextEdit uses the value in the cl i kSt uf f field of the
edit record to determine the leading edge flag for the Fi ndWor dBr eaks procedure. You
must use similar information to replace TEFi ndWor d correctly for non-Roman scripts.

Customizing Automatic Scrolling

Scroll bars associated with the text are not automatically scrolled with the text unless
you replace the address of the default click loop routine with that of a customized
routine that updates the scroll bars. You can write your own click loop routine that
includes code to update the scroll bars along with the text and install its address in the
cl i kLoop field. To replace the default click loop routine with your customized version,
you call the TESet O i ckLoop procedure.

You can write a routine that manages the scroll bars, then calls the default click loop
routine, rather than replicating its behavior in your routine. However, if your routine
scrolls the text and updates scroll bars, you should consider what the default click loop
routine does. It adjusts the value in the cl i ckTi ne field of the edit record to allow for
slower scrolling.

When TEQ i ck is called, the cl i ckTi ne field contains the time when TEC i ck was
last called. TextEdit sets the cl i ckTi e field with the current tick count on exit from the
TEQ i ck procedure and uses the new value at reentry the next time TEC i ck is called.

Using TextEdit

CHAPTER 2

TextEdit

If you code a click loop routine in Pascal, it should have no parameters and it should
return a Boolean value. You can declare a click loop routine named MyCl i ckLoop
like this:

FUNCTI ON Mydl i ckLoop: Bool ean;

The function should return TRUE. Returning FALSE from your click loop routine tells the
TEQ i ck procedure that the mouse button has been released, which aborts TEQ i ck.

Installing a customized default click loop routine

If you code a click loop routine in Pascal, then call the

TESet O i ckLoop procedure to install the Pascal routine in the

cli kLoop field, TESet O i ckLoop installs a glue code routine in the
cl i kLoop field because cl i kLoop expects a routine that uses
assembly-language conventions. Because of this, you must always use
TESet O i ckLoop to install a Pascal routine, while you must always
directly install an assembly routine in the cl i kLoop field. O

WpIeL -

If you code a click loop routine in assembly, it should set register DO to 1 and preserve
register D2. Returning 0 in register D0 aborts TECI i ck.

You can write a routine that manages the scroll bars, then calls the default click loop
routine, rather than replicating its behavior in your routine. If your customized routine
calls the default click loop routine, it must use assembly-language calling convention.

Determining the Line Length

This section describes how to determine the length of a line. You can use this
information, for example, to justify a line of text; although TextEdit aligns text with the
right or left margins, or centers it, it does not justify it.

To determine the length of a line, you use the information contained in the edit record’s
line starts array and nLi nes field. The line starts array is a variable-length field in the
edit record that contains the byte offset for the first character of each line. This array has
the following boundary conditions:

= The first entry has index 0 and value 0.

= The last entry in the array has index nLi nes and value t eLengt h (therefore, there
are nLi nes + 1 entries).

= The beginning of the first line is given by | i neSt ar t s[0], and the beginning of the
second line is given by | i neSt ar t s[1]; therefore, the length of the first line is given
bylineStarts[l]-IineStarts[0].

s The maximum number of entries is 16,000.

Using TextEdit 2-63

CHAPTER 2

TextEdit

For example, if you want to determine the length of the line n (where n = 0 for the first
line), subtract its start location (contained in the array entry with index n) from its end
location (contained in the array with index n + 1):

l engthOfLineN := nyTE*.lineStarts[n+l] — nyTE*.lineStarts[n];
The terminating condition for this measurement is when 7 is equal to nLi nes plus 1.

IMPORTANT
Do not change the information contained in the | i neSt art s array. a

Advanced Customization

The low-memory global variable TEDoText is a hook which contains the address of a
multi-purpose text editing routine that advanced programmers may find useful. It lets
you display, highlight, and hit-test characters, and position the pen to draw the caret.
Hit-testing is the process of determining where to place the insertion point when the
user clicks the mouse button; the point selected with the mouse is in the Sel Poi nt field.
The registers contain the following values.

Registers on entry
A3 Pointer to the locked edit record

D3 Position of the first character (word)

D4 Position of the last character; used as defined below (word)
D7 Selectors for TEDoText (word)
t eFi nd EQU 0 to hit-test the character specified in D3
t eH ghli ght EQU 1 to highlight the text range specified in D3
and D4
t eDr aw EQU -1 todisplay the range of text specified in D3
and D4
t eCar et EQU -2 to draw the caret at the position specified
in D3
teFind EQU 0 to hit-test the character specified in D3

Registers on exit
A0 Pointer to current graphics port
DO If hit-testing, byte offset where hit, or -1 for none (word)

Note

You need to use the value stored in the edit record sel Poi nt field
for hit-testing if you replace the routine pointed to by the global
variable TEDoText . (The assembly-language offset for this field
isnamed t eSel Poi nt.) O

2-64 Using TextEdit

CHAPTER 2

TextEdit

TextEdit Reference

This section describes the data structures and routines that comprise TextEdit. The “Data
Structures” section shows the Pascal data structures including the edit record and
subsidiary structures that allow for text styling and customization of TextEdit. Together
with the TextEdit private scrap and the TextEdit style scrap, these data structures define
the TextEdit environment.

The “Routines” section describes the routines that provide applications with the means
of creating edit records and accessing, editing, and displaying multistyled and
monostyled text, including text highlighting and scrolling.

WpIeL -

The constants that define values for some of the parameters used in several of these
routines are listed in the “Summary of TextEdit” on page 2-120.

Data Structures

This section describes the data structures and their contents which provide information
to the TextEdit routines. Both monostyled and multistyled edit records have a 32 KB
maximum text size.

The TextEdit data structures are defined as follows:

s The edit record, defined by the TERec data type, stores the display and editing
information for TextEdit.

» Along with various subsidiary data structures, the style record, defined by the
TESt yl eRec data type, stores the character attribute information for the text of the
edit record.

s The style run table, defined by the St yl eRun data type, is an array that contains the
boundaries of each style run and an index to its character attribute information in the
style element array.

» The style table, defined by the TESt y| eTabl e data type, contains one entry for each
distinct set of character attributes used in the text of the edit record.

» The line-height table, defined by the LHTabl e data type, provides an array of line
heights to hold the vertical spacing information for a given edit record. It also contains
line ascent information.

TextEdit Reference 2-65

2-66

CHAPTER 2

TextEdit

= The null style record, defined by the Nul | St Rec data type, contains the null scrap
which is used to store character attribute information for a null selection.

= The style scrap record, defined by the St Scr pRec data type, is used by routines to
store character attribute information temporarily.

= The scrap style table, defined by the scr pSt yl eTab data type, is contained in the
style scrap record.

= The scrap style element record, defined by the Scr pSTEl enent data type, contains
the character attribute information for an element in the scrap style table. One scrap
style element record exists for each sequential attribute change in the associated text.

s The TextEdit dispatch record, defined by the TEDi spat chRec data type, contains the
internal addresses of the TextEdit routines for the end-of-line hook, the draw hook,
the width measurement hook, the new width measurement hook, and the text width
measurement hook, unless you replace them with the addresses of your own
customized versions of these routines.

= The text style record, defined by the Text St y| e data type, is used by several routines
to pass character attribute information between the application and a routine. The
record is passed as a variable or reference parameter.

Figure 2-15 shows the TextEdit data structures and their fields to help you understand
how the TextEdit data structures are organized and related. (For a monostyled edit
record, TextEdit creates only the TERec and TEDi spat chRec data structures.) To read
from and write to these data structures, use the TextEdit routines rather than modifying
these fields directly. This practice ensures future compatibility.

For most operations, you do not need to know the exact structure of an edit record;
TextEdit routines gain access to the record for you. However, when manipulating
character attribute information, you might find it helpful to understand how the data
structures used to contain and track character attribute information are organized.

Note

The space beyond the hooks in the TextEdit dispatch record is reserved
for internal use. If you attempt to use this private area, you may corrupt
TextEdit data. O

TextEdit Reference

CHAPTER 2

TextEdit

Figure 2-15 The TextEdit data structures and fields

TextEdit Reference

2-67

WpIeL -

CHAPTER 2

TextEdit
TERec TEStyleRec TEStyleTable
0 »| 0 nRuns 0 stCount
2 nStyles 2 stHeight
—— destRect
4 styleTab STHandle 4 stAscent
6 stFont
LHHandl 118
8 andle <8 IhTab STElement sthce
— I A stSize
— viewRect
C C
— — teRefCon stColor
10 | 10 _nullSTHandle
nullStyle o 12 (O...nStyles)
—— selRect —] .
One each per unique style in
array of record. stylelndex (in StyleRun
18 TneHeight runs StyleRun array elements) is an index
— — into this array.
1A fontAscent (0...nRuns) 4
1C NullStRec
selPoint StyleRun
> T 0 startChar > teReserved
lel
22 selEnd 2 Zty eF?dex STScrpHandle |4 nullScrap
24 active 4 (0..nRuns)
26 One each per style change.
wordBreak Kept in ascending order of StScrpRec
offsets into record L »[0 scrpNStyles |
2A kLo op (sorted by startChar). >
2E LHTable
clickTime —>{ 0 IhHeight
LHElement
32 clickLoc 2 IhAsgent
34 4 (0...nLines)
caretTime One each per line in record. SCTPStyleTab] L __(arayof ___
% S Line number is a direct index ScrpSTElement)
cargt tate into this array.
3A just (Only if lineHeight = —1)
3C telLength
3E hText TEDispatchRec 16
) (Access through TECust omHook.) 7(0...scrpNStyles —1) 7
42 hDispatchRec TI;EDlspatchHardle 5 -
J = L—» | end-of-line hook
46 clikStuff 0
46 crOnly (if txSize = -1) draw hook scrpStartChar
4A txFont | TEStyleHandle P) 4 scrpHeight
4C txFace] width hook 6 scrpAscent
4E txMode ScrpSTElement | 8 scrpFont
50 txSize hit test hook A scrpFace
52 . C scrpSize
inPort Reserved E
56 . scrpColor
highHook Reserved
5A One each per sequential
caretHook 18 ew width hook style change in associated text
S5E__ nlLines 1C
60 array of text width hook
Int i
n eqer lineStarts Resen e
(0...nLines)
—»—> = handle
| one word | =16 bits
2-68 TextEdit Reference

CHAPTER 2

TextEdit

The Edit Record

The edit record contains display, storage, styling, and other information related to
editing that TextEdit requires. Although some fields are used differently for multistyled
edit records and monostyled edit records, the structure of an edit record is the same
whether the text is multistyled or monostyled.

TYPE TERec =

RECORD

dest Rect :
vi ewRect :
sel Rect :
i neHei ght :
font Ascent :

sel Poi nt:
sel Start:
sel End:
active:

wor dBr eak:
cli kLoop:
clickTine:
clickLoc:
caret Ti ne:
caretState
just:
teLengt h:
hText :

hDi spat chRec

clikStuff:
crOnly:
t xFont :

t xFace:

t xMbde:
t xSi ze:

i nPort:

TextEdit Reference

Rect ;
Rect ;
Rect ;
| nt eger;
I nt eger;

Poi nt ;

I nt eger;
I nt eger;
| nt eger;

ProchPtr;
Prochtr;
Longl nt;
I nt eger;
Longl nt ;
I nt eger;
I nt eger;
| nt eger;
Handl e;

| nt eger;

I nt eger;
I nt eger;

Styl e;

| nt eger;
I nt eger;

GafbPtr;

Handl e;

{destination rectangl e}

{view rectangl e}

{the sel ection rectangl e}
{used for vertical spacing of
{used for caret/highlighting }
{ position}

{point selected with the nmouse}
{start of selection range}

{end of selection range}

{set when record is activated or }

{ deacti vat ed}

{word break hook}

{click | oop hook}

{used internally}

{used internally}

{used internally}

{used internally}

{alignnent of text}

{length of text}

{handl e to text to be edited}
{handl e to TextEdit dispatch record}
{used internally}

{if <0, new line at Return only}
{text font.OQtherwise, if txSize is }
{ -1, conbines with txFace to hold }
{ a handle to the style record.}
{character style; unpacked byte. }

{ OGherwise, if txSizeis -1, }

{ conbines with txFont to hold a }

{ handle to the style record}

WpIeL -

i nes}

{pen node}
{tells if multistyled }
{ edit record; if not, font size}

{a pointer to the graphics port }
{ for this TERec}

2-69

2-70

CHAPTER 2

TextEdit
hi ghHook: ProcPtr; {used for text highlighting}
caret Hook: ProcPtr; {used for caret appearance}
nLi nes: I nteger; {nunmber of |ines}
lineStarts: ARRAY[O0..16000] OF Integer
{positions of line starts}
END;
TYPE TEPtr = "TERec;
TEHandl e = "TEPtr

Field descriptions
dest Rect

vi ewRect
sel Rect

I i neHei ght

f ont Ascent

sel Poi nt

sel Start

sel End

active

TextEdit Reference

The destination rectangle, in local coordinates.
The view rectangle, in local coordinates.

The selection rectangle, whose boundaries are defined in
local coordinates. This value is the current selection range or
insertion point.

The vertical spacing of lines of text. Vertical spacing may be fixed or
it may vary from line to line, depending upon specific text
attributes. If the value of | i neHei ght is greater than 0, this field
specifies the fixed vertical distance from the ascent line of one line
of text down to the ascent line of the next.

If the value of | i neHei ght is less than 1, then this field specifies
the vertical distance from the ascent line of one line of text down to
the ascent line of the next calculated independently for each line,
based on the maximum value for any individual character attribute
on that line.

The font ascent line. If the value of f ont Ascent is greater than 0,
this field specifies how far above the base line the pen is positioned
to begin drawing the caret or highlighting.

For single-spaced text, this is the height of the text in pixels (the
height of the tallest characters in the font from the base line). If the
value of f ont Ascent is less than 1, this field specifies the font
ascent calculated independently for each line, based on maximum
value for any individual character attribute on that line.

The point selected with the mouse, in the local coordinates of the
current graphics port. The assembly-language offset for this field is
named t eSel Poi nt .

The byte offset of the beginning of a selection range. Note that byte
offset 0 refers to the first byte in the text buffer.

The byte offset of the end of a selection range. To include that byte,
this value must be 1 greater than the position of the last byte offset
of the text.

This field is used internally by TextEdit. It is set when an edit record
is activated through TEAct i vat e and then reset when the edit
record is rendered inactive through TEDeact i vat e. To ensure
future compatibility, use TEAct i vat e or TEDeact i vat e to access
this field.

CHAPTER 2

TextEdit

wor dBr eak

cli kLoop

clickTine
clickLoc
caret Ti ne
caret State
j ust

teLength

hText

hDi spat chRec

clikStuff

crOnly

t xFont

t xFace

TextEdit Reference

The record’s word selection break routine. This routine determines
the word that is highlighted when the user double-clicks in the text
and the position at which text is wrapped at the end of a line.

The pointer to the click loop routine.The specified click loop routine
is called repeatedly by the TECI i ck procedure as long as the mouse
button is held down within the text.

This field is for internal use only.
This field is for internal use only.
This field is for internal use only.
This field is for internal use only.

The type of text alignment: default (according to primary line
direction), left, center, or right.

The number of bytes in the text to be edited. For two-byte systems,
potentially twice the number of characters. Initially set to zero. The
maximum length is 32767 bytes.

A handle to the text. Initially, it points to a zero-length block of text
in the heap.

The handle to the TextEdit dispatch record. This field is for internal
use only; do not modify this field, or copy it to another edit record.
Each edit record has its own dispatch record. Attempting to use the
dispatch record of one edit record with another edit record can
cause TextEdit to crash.

This field is for internal use only. TextEdit sets this field to reflect
whether the most recent mouse-down event occurred on the
leading or trailing edge of a glyph. TextEdit uses this value in
determining a caret position.

A value specifying whether or not text wraps at the right edge of
the destination rectangle. If cr Onl y is positive, text does wrap.

If cr Onl y is negative, new lines are specified explicitly by Ret ur n
characters only; text does not wrap at the edge of the destination
rectangle. (This is useful in an application similar to a
programming-language editor, where you may not want a single
line of code to be split onto two lines.)

The font of all the text in the edit record if the t xSi ze field of this
edit record = 0. If you change this value, the entire text of this

edit record has the new characteristic when it is redrawn; also,
remember to change the | i neHei ght and f ont Ascent fields

as well.

If the t XSi ze field is -1, this field combines with t xFace to hold a
handle to the associated style record.

The character attributes of all the text in an edit record if the

t xSi ze field of this edit record = 0. If you change this value, the
entire text of this edit record has the new characteristic when it is
redrawn; also, remember to change the | i neHei ght and

f ont Ascent fields as well.

If the t XSi ze field is —1, this field combines with t xFont to hold a
handle to the associated style record.

2-71

WpIeL -

CHAPTER 2

TextEdit

t xMbde The pen mode of all the text in the edit record. If you change this
value, the entire text of this edit record has the new characteristic
when it is redrawn; also, remember to change the | i neHei ght and
f ont Ascent fields as well.

txSi ze Depending on its value, t XSi ze either contains the point size of all
of the text or it acts as a flag indicating whether or not there is
associated character attribute information. If t xSi ze >0, thisis a
monostyled edit record, that is, all text is set in a single font, size,
and face, and the value of t XSi ze is the size of the text. If t XSi ze
is =1, the edit record contains associated character attribute
information and the t xFont and t xFace fields combine to form a
handle to the style record.

i nPort A pointer to the graphics port associated with this edit record.

hi ghHook A pointer to the routine that deals with text highlighting. In
assembly language, the hi ghHook field is located at the offset
t eH Hook. For more information, see the following section, “The
High Hook and Caret Hook Fields.”

car et Hook A pointer to the routine that controls the appearance of the caret. In
assembly language, the car et Hook field is located at the offset
t eCar Hook. For more information, see the following section, “The
High Hook and Caret Hook Fields.”

nLi nes The number of lines in the text.

lineStarts An array containing the character position of the first character in
each line. It is declared to have 16001 elements to comply with
Pascal range checking. This is a dynamic data structure having only
as many elements as needed. TextEdit calculates these values
internally, so do not change the elements of the | i neSt art s array.
Because this data structure grows and shrinks, the size of the edit
record changes.

The High Hook and Caret Hook Fields

2-72

The hi ghHook and car et Hook fields—at the offsets t eHi Hook and t eCar Hook in
assembly language—contain the addresses of routines that deal with text highlighting
and the caret. These routines pass parameters in registers; if you replace these routines,
your application must save and restore the registers’ contents.

If you store the address of a routine in t eH Hook, that routine is used instead of the
QuickDraw procedure | nvert Rect, which is called by default, whenever a selection
range is to be highlighted. Your routine can destroy the contents of registers A0, A1, DO,
D1, and D2. On entry, A3 is a pointer to a locked edit record; the stack contains the
rectangle enclosing the text being highlighted. (Use of the A3 register is equivalent to the
I nvert Rect r parameter of type RECT. See the QuickDraw chapters in Inside Macintosh:
Imaging for more information about the | nvert Rect procedure.) For example, if you
store the address of the following routine in t eHi Hook, selection range is underlined
instead of inverted.

TextEdit Reference

CHAPTER 2

TextEdit

Under Hi gh
MOVE. L 4(SP), A0 ;get address of rectangle to be

; hi ghli ght ed

MOVE bot t on{ A0), t op(AO) ;make the top coordinate equal to
SUBQ #1, t op(AO0) ;the bottom coordinate minus 1
_I'nver Rect ;invert the resulting rectangle
RTS

The routine whose address is stored in t eCar Hook acts exactly the same way as the

t eHi Hook routine, but on the caret instead of the selection range, allowing you to
change the appearance of the caret. The routine is called with the stack containing the
rectangle address that encloses the caret.

The Style Record

The style record stores the character attribute information for the text of a multistyled
edit record. If an edit record has associated character attribute information, its t X Font
and t XxFace fields combine to hold a style handle, of type TESt y| eHandl e, to its style
record. The text is divided into style runs, summarized in the style run table, of type

St yl eRun, which is part of the style record. Each entry in the style run table gives the
starting character position of a run and an index into the style table, of type

TEStyl eTabl e.

The style table element pointed to by the style run index describes the character
attributes for that run.

To determine the length of a run, you subtract its start position from that of the next
entry in the style run table. A dummy entry at the end of the style run table delimits the
length of the last run; its start position is equal to the overall number of characters in the
text, plus 1. The TESt yl eRec data type defines the style record.

TYPE TEStyl eRec =

RECORD
nRuns: I nt eger; {nunber of style runs}
nStyl es: I nt eger; {size of style table}
styl eTab: STHandl e; {handl e to style table}
| hTab: LHHandl e; {handl e to |ine-height table}
t eRef Con: Longl nt ; {reserved for application use}

null Style: Null StHandle; {handle to style set at }
{ null selection}
runs: ARRAY [0..8000] OF Styl eRun;
END;

TEStyl ePtr = ~"TEStyl eRec;
TEStyl eHandl e = A"TEStyl ePtr;

TextEdit Reference 2-73

WpIeL -

CHAPTER 2

TextEdit

Styl eRun = RECORD

startChar: |Integer; {starting character position}
styl el ndex: Integer; {index in style table}
END;

Field descriptions

nRuns The number of style runs in the text.

nStyl es The number of distinct sets of character attributes used in the text;
this forms the size of the style table.

styl eTab A handle to the style table.

| hTab A handle to the line height table.

t eRef Con A reference constant for use by applications. The application can
use this 32-bit field to suit its needs.

nul | Style A handle to the style scrap record used to store the character
attribute information for a null selection.

runs A table of style runs that is of indefinite length.

TEStyl ePtr = "TEStyl eRec;
TEStyl eHandl e = "TEStyl ePtr;

Styl eRun = RECORD

startChar: |Integer; {starting character position}
styl el ndex: Integer; {index in style table}
END;
The Style Table

The style table contains one entry for each distinct set of character attributes used in the
text of an edit record. Each entry is defined in a style element record. The size of the table
is given by the nSt yl es field of the style record. There is no duplication; each set of
character attributes appears exactly once in the table. A reference count tells how many
times each set of attributes is used in the table. The TESt y| eTabl e data type defines the
style table. The STEl ement data type defines the style element record.

TYPE STEl enent =

RECORD
st Count : I nt eger; {nunmber of runs in this style}
st Hei ght : I nt eger; {l'i ne height}
st Ascent : I nt eger; {font ascent}
st Font : I nt eger; {font fanmily ID}
st Face: Styl e; {character style}
st Si ze: I nt eger; {size in points}
st Col or: RGBCol or; {absol ute RGB col or}
END;

2-74 TextEdit Reference

CHAPTER 2

TextEdit
STHandl e = ~STPtr;
STPt r = ATEStyl eTabl e;

TEStyl eTabl e = ARRAY [0..1776] OF STEl enent;

Field descriptions

st Count A reference count of character runs using this set of character
attributes.
st Hei ght The line height for this run, in points.
st Ascent The font ascent for this run, in points. =
st Font The font family ID. =3
st Face The character style (bold, italic, and so forth). This field consists of =

two bytes. The low-order byte contains the character style. TextEdit
uses the high bit (bit 15) of the high-order byte to store the style run
direction: it uses 0 for left-to-right text, and 1 for right-to-left text.

st Si ze The text size, in points.
st Col or The RGB (red, green, blue) color.
The Line Height Table

The line height table holds vertical spacing information for the text of an edit record.
This table parallels the | i neSt ar t s array in the edit record itself. Its length equals the
edit record’s nLi nes field plus 1 for a dummy entry at the end, just as the | i neStarts
array ends with a dummy entry that has the same value as the length of the text. The
table’s contents are recalculated whenever the line starting values are themselves
recalculated with the TECal Text routine or whenever an editing action causes
recalibration.

The line height table is used only if the | i neHei ght and f ont Ascent fields in the edit
record are negative; positive values in those fields specify fixed vertical spacing,
overriding the information in the table. The line height table is of type LHTabl e, which
is an array of elements of LHEl enent .

TYPE LHEl enent =

RECORD
| hHei ght : I nt eger; {maxi mum hei ght in Iine}
| hAscent : I nt eger; {maxi num ascent in |ine}
END;

LHPtr = ~LHTabl e;
LHHandl e = ~LHPtr;

LHTabl e = ARRAY [0..8000] OF LHEl enent;

TextEdit Reference 2-75

CHAPTER 2

TextEdit

Field descriptions
| hHei ght The line height in points. This is the maximum value for any
individual character attribute in the line.

I hAscent The font ascent in points; this is the maximum value for any
individual character attribute in a line.

The Null Style Record

The null style record contains the null scrap, which is used to store the character
attribute information for a null selection (insertion point). A number of routines either
write this character attribute information to the null scrap or read it from this scrap (to
be applied to inserted text). The null scrap is created and initialized when an application
calls TESt yl eNewto create a multistyled edit record. The null scrap is retained for the
life of the edit record; it is destroyed when TEDi spose destroys the edit record and
releases the memory allocated for it.

The Nul | STRec data type defines the null style record.

TYPE Nul | St Rec =

RECORD
t eReser ved: Longlnt; {reserved for future expansion}
nul | Scr ap: St ScrpHandl e; {handle to the style scrap }
{ record}
END;
Nul I StPtr = ~Nul | St Rec;
Nul | St Handl e = "“Nul | St Ptr;
Field descriptions
t eReserved This field is reserved for future expansion.
nul | Scr ap A handle to the style scrap record.

The Style Scrap Record

2-76

The style scrap is used for storing character attribute information associated with the
current text selection or insertion point, character attribute information to be applied to
text, or multistyled text that is cut or copied. When multistyled text is cut or copied, the
character attribute information is written to both the style scrap and the desk scrap.

In most cases, the style scrap is created dynamically as needed by routines. However, a
style scrap record can be created directly without using the TEGet St yl eScr apHandl| e
function; the character attribute information written to it can be applied to inserted text
through TESt yl el nsert or to existing text through TEUseSt yl eScr ap.

The format of the style scrap is defined by a style scrap record of type STScr pRec.

TextEdit Reference

CHAPTER 2

TextEdit

TYPE St ScrpRec =
RECORD
scrpNStyl es: Integer; {nunber of sets of }
{ character attributes in scrap}
scrpStyl eTab: ScrpSTTable; {table of attributes for }
{ scrap}
END;

StScrpPtr = St Scr pRec;
St Scr pHandl e = St ScrpPtr;

Field descriptions

scrpNSt yl es The number of style runs used in the text. This determines the size
of the style table. When character attribute information is written to
the null scrap, this field is set to 1; when the character attribute
information is removed, this field is set to 0.

scrpStyl eTab The scrap style table containing an element for each style run.

The Scrap Style Table

The style scrap record contains the scrap style table. Unlike the main style table for an
edit record, the scrap style table may contain duplicate elements; the entries in the table
correspond one-to-one with the style runs in the text. The scr pSt ar t Char field of each
entry gives the starting position for the run.

The scr pSt yl eTab data type defines the scrap style table data structure, which is an
array of scrap style element records. The Scr pSTEl enent data type defines each scrap
style element record.

TYPE ScrpSTEl emrent =

RECORD

scrpStartChar: Longlnt; {of fset to start of style}

scr pHei ght : I nt eger; {l'ine height}

scrpAscent : I nt eger; {font ascent}

scrpFont: I nt eger; {font famly ID}

scr pFace: Styl e; {character style}

scrpSi ze: I nt eger; {size in points}

scrpCol or: RGBCol or; {absolute (RGB) color}
END;

ScrpSTTabl e = ARRAY[0..1600] OF ScrpSTEl enent ;

Field descriptions
scrpStartChar The offset to the beginning of a style record in the scrap.

TextEdit Reference 2-77

WpIeL -

CHAPTER 2

TextEdit

scr pHei ght The line height. You can determine the line height and the font
ascent using the QuickDraw routine Get Font | nf o described in the
chapter “QuickDraw Text” in this book.

scr pAscent The font ascent. See scr pHei ght .

scr pFont The font family ID.

scr pFace The style (such as plain, bold, underline).

scrpSi ze The size in points.

scr pCol or The RGB (red, green, blue) color for the style scrap.

Text Style Record

Routines

Text style records are used for communicating character attribute information between
the application and several TextEdit routines, such as TECont i nuousSt yl e and
TERepl aceSt yl e. They carry the same information as the style element records in the
style table, but without the reference count, line height, and font ascent.

The Text St yl e data type defines a text style record.

TYPE TextStyle =

RECORD
tsFont: Integer; {font family nunber}
tsFace: Style; {character style}
tsSize: Integer; {size in points}
t sCol or: RGBCol or; {absol ute RGB col or}
END;

Text Styl ePtr = ~Text Styl e;
Text Styl eHandl e = "Text Styl ePtr;

Field descriptions

t sFont The font family number.

t sFace The character style (bold, italic, plain, and so forth).
tsSize The text size in points.

t sCol or The RGB (red, green, blue) color.

2-78

This section describes the TextEdit routines that an application can call to
» initialize TextEdit and create an edit record
= activate and deactivate an edit record

= set and get the text and character attribute information of an edit record

TextEdit Reference

CHAPTER 2

TextEdit

= set the caret and selection range

= display and scroll text

= modify the text of an edit record

= manage the TextEdit private scrap

= check, set, and replace character attributes

= use byte offsets and corresponding points

= toggle automatic scrolling, outline highlighting, and text buffering on and off
= customize TextEdit

Each routine description defines a Pascal interface, provides related assembly-language
information, and lists possible result codes, if any are returned.

Initializing TextEdit, Creating an Edit Record, and Disposing of an Edit Record

TEInit

Preparation of a window for text editing involves setting up TextEdit’s internal data
structures by calling the TEI ni t procedure and creating an edit record for the window
with the TESt y| eNew function or the TENew function.

The TESt y| eNew function creates a new multistyled edit record. A multistyled edit
record contains text whose attributes, including font, size, and style, can vary from
character to character. The TENew function creates a new monostyled edit record. A
monostyled edit record contains text that is set in a single font, size, and style. Before
either of these functions is called, the window must be in the current graphics port.

The TEDi spose procedure destroys an edit record and releases the memory used for it.
For a complete description of the edit record and its fields, see “An Overview of the
TextEdit Data Structures” on page 2-16 and “Data Structures” on page 2-65.

DESCRIPTION

The TEI ni t procedure initializes TextEdit.

PROCEDURE TEI ni t;

In addition to initialization of miscellaneous global variables, such as TEDoText and
TERecal , the TEl ni t procedure sets up the private scrap and allocates a handle to it.
Call TEI ni t at the beginning of your program after you initialize QuickDraw, the Font
Manager, and the Window Manager, in that order, and before you initialize the Dialog
Manager. You should call TEI ni t even if your application doesn’t use TextEdit, so that
desk accessories and dialog and alert boxes, which use TextEdit routines, work correctly.

TextEdit Reference 2-79

WpIeL -

CHAPTER 2

TextEdit

TEStyleNew

DESCRIPTION

The TESt yl eNew function creates a multistyled edit record and allocates a handle to it.
FUNCTI ON TEStyl eNew (dest Rect: Rect; viewRect: Rect): TEHandl e;

dest Rect The destination rectangle for the new edit record, specified in the local
coordinates of the current graphics port. This is the area in which text is
laid out.

vi ewRect The view rectangle for the new edit record, specified in the local
coordinates of the current graphics port. This is the area of the window in
which text is actually displayed.

Always use the TESt y| eNew function to create an edit record for text that uses varying
character attributes. The TESt y| eNew function sets the t XSi ze, | i neHei ght, and

f ont Ascent fields of the edit record to -1, allocates a style record, and stores a handle
to the style record in the t xFont and t xFace fields. The TESt y| eNew function creates
and initializes a null scrap that is used by TextEdit routines throughout the life of the
edit record.

Call TESt yl| eNew once for every edit record you want allocated. Your application needs
to store the handle to the edit record that is returned; many routines require it as an
input parameter.

If your application contains more than one window where text editing occurs, you need
to create an edit record for each window.

TENew

The TENew function creates and initializes a monostyled edit record and allocates a

handle to it.

FUNCTI ON TENew (dest Rect, vi ewRect: Rect): TEHandl e;

dest Rect The destination rectangle for the new edit record, specified in the local
coordinates of the current graphics port. This is the area in which text is
laid out.

vi ewRect The view, or visible, rectangle for the new edit record, specified in the
local coordinates of the current graphics port. This is the area of the
window in which text is actually displayed.

2-80 TextEdit Reference

DESCRIPTION

TEDispose

CHAPTER 2

TextEdit

A monostyled edit record is one in which all text is restricted to a single font, size, and
style. Use TENew when the text is to be rendered in attributes that are consistent from
character to character. Otherwise, use TESt y| eNew

Call TENew once for every edit record you want allocated. Your application should store
the handle to the edit record that is returned; many routines require it as an input
parameter. The edit record assumes the drawing environment of the graphics port.

If your application contains more than one window where text editing occurs, you need
to create an edit record for each window.

DESCRIPTION

The TEDi spose procedure removes a specified edit record and releases all memory
associated with it.

PROCEDURE TEDi spose (hTE: TEHandl e);

hTE A handle to the edit record for which the allocated memory should be
released.

Call the TEDi spose procedure only when you're completely through with an
edit record.

Note that if your program retains a handle to text associated with the edit record that
you are destroying with TEDi spose, the handle becomes invalid because the

TED spose procedure disposes of it, as well as the dispatch record handle. If the record
is multistyled, TEDi spose also disposes all of the style-related handles: STHandl e,
LHHandl e, STScr pHandl e, nul | STHandl e, and TESt yl eHandl e.

To continue to refer to the text after you've destroyed the edit record, you need to make a
copy of the handle in the hText field of the edit record using the Operating System
Utilities HandToHand function before you call TEDi spose. (See Inside Macintosh:
Operating System Utilities for more information.)

In addition to disposing of the edit record, the edit record handle, and the dispatch
record handle, the TEDi spose procedure destroys the null scrap associated with the
edit record and releases the memory used for it.

TextEdit Reference 2-81

WpIeL -

CHAPTER 2

TextEdit

Activating and Deactivating an Edit Record

TEActivate

When your application receives notification of an activate event, it can call the

TEAct i vat e procedure, which activates an edit record and highlights the selection
range or displays a caret at the insertion point. When the activate event flag is set to
deactivate the window, your application can call the TEDeact i vat e procedure, which
changes an edit record’s status from active to inactive and removes the selection range
highlighting or the caret. (When outline highlighting is on, TEDeact i vat e frames the
text or displays a dimmed caret.)

DESCRIPTION

SEE ALSO

The TEAct i vat e procedure activates the specified edit record.
PROCCEDURE TEActi vate (hTE: TEHandl e);

hTE A handle to the specified edit record.

When you call TEAct i vat e for an edit record, the selection range is highlighted. If the
selection range is an insertion point, TEAct i vat e displays a caret there.

Call this procedure every time the Event Manager function Wi t Next Event reports
that the window containing the edit record has become active.

If you do not call TEAct i vat e before you call TEQ i ck, TEIl dl e, or TESet Sel ect, the
selection range is not highlighted, or, if the selection range is set to an insertion point, a
caret is not displayed at the insertion point. However, if you have turned on outline
highlighting through the TEFeat ur eFl ag function for the edit record, the text of the
selection range is framed or a dimmed or an unblinking caret is displayed at the
insertion point.

For a description of the Wi t Next Event function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

TEDeactivate

2-82

The TEDeact i vat e procedure deactivates an edit record.
PRCCEDURE TEDeactivate (hTE: TEHandl e);

hTE Ahandle to the specified edit record.

TextEdit Reference

DESCRIPTION

SEE ALSO

CHAPTER 2

TextEdit

When you call TEDeact i vat e for an edit record, the highlighted selection range is no
longer displayed. If the selection range is an insertion point, TEDeact i vat e no longer
displays the caret. However, if you turned on outline highlighting through the

TEFeat ur eFl ag function for the edit record, the text of the selection range is framed
or a dimmed or an unblinking caret is displayed at the insertion point when the record
is deactivated.

Call this procedure every time the Event Manager function VWi t Next Event reports
that the window containing the edit record has become inactive.

WpIeL -

For a description of the Wi t Next Event function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Setting and Getting an Edit Record’s Text and Character Attribute Information

The TextEdit procedure TEKey allows you to handle key-down events and enter text
input through the keyboard. The procedure TESet Text lets you incorporate existing
text into the text buffer of an edit record. Once an edit record contains text, you can use
the TEGet Text function to get a handle to the text itself. For a multistyled edit record,
you can get a handle to the style record by calling Get St yl eHandl e. You can set the
handle to the style record using the TESet St yl eHandl e procedure. This section
describes these routines.

TEKey
The TEKey procedure replaces the selection range in the text of the specified edit record
with the input character and positions the insertion point just past the inserted character.
PRCCEDURE TEKey (key: Char; hTE: TEHandl e);
key The input character.
hTE A handle to the edit record in whose text the character is to be entered.
DESCRIPTION

If the selection range is an insertion point, TEKey inserts the character. (Two-byte
characters are passed one byte at a time.) If the key parameter contains a backspace
character, the selection range or the character immediately before the insertion point is
deleted. When the primary line direction is right-to-left, the character to the right of the
insertion point is deleted. When the primary line direction is left-to-right, the character
to the left of the insertion point is deleted.

TextEdit Reference 2-83

CHAPTER 2

TextEdit

When the user deletes text up to the beginning of a set of character attributes, TEKey
saves the attributes in the null scrap’s style scrap record. The attributes are saved
temporarily to be applied to characters inserted after the deletion. As soon as the user
clicks in another area of the text, TEKey removes the attributes. TEKey redraws the text
as necessary.

Call TEKey every time the Event Manager function Wai t Next Event reports a keyboard
event that your application determines should be handled by TextEdit.

Because TEKey inserts every character passed in the key parameter, your application
must filter all characters which aren’t actual text, such as keys typed in conjunction with
the Command key.

SEE ALSO
For a description of the Wi t Next Event function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.
TESetText
The TESet Text procedure incorporates a copy of the specified text into the designated
edit record.
PROCEDURE TESet Text (text: Ptr; length: Longlnt; hTE: TEHandl e);
t ext A pointer to the text to be copied and incorporated.
l ength The number of characters in the text to be incorporated.
hTE A handle to the edit record into which the text is to be copied.
DESCRIPTION

2-84

The TESet Text procedure copies the specified text into the existing hText handle of
the edit record, resizing the buffer, if necessary; it doesn’t bring in the original text. The
copied text is wrapped to the destination rectangle, and its | i neSt art s and nLi nes
fields are calculated accordingly. The selection range is set to an insertion point at the
end of the incorporated text. The TESet Text procedure does not display the copied text
on the screen. To do this, call TEUpdat e.

TextEdit Reference

TEGetText

CHAPTER 2

TextEdit

DESCRIPTION

The TEGet Text function returns a handle to the text of the specified edit record.
FUNCTI ON TEGet Text (hTE: TEHandl e): Char sHandl e;

hTE A handle to the edit record containing the text whose handle you want
returned. You pass this handle as an input parameter.

Char sHandl e
A handle to the text of the edit record.

WpIeL -

The TEGet Text function doesn’t make a copy of the text. Rather, it returns the handle to
the text which is stored as a packed array of characters. (This handle belongs to TextEdit;
your application must not destroy it.) The t eLengt h field of the edit record contains the
length of the text whose handle is returned.

The handle of type Char sHandl e that is returned by TEGet Text corresponds to the
hText field of the edit record, but the data type is defined as follows:

TYPE CharsHandl e ACharsPtr;
CharsPtr = ~Chars;
Chars PACKED ARRAY[0..32000] OF CHAR

TESetStyleHandle

DESCRIPTION

The TESet St yl eHandl e procedure sets an edit record’s style handle, which is stored in
the t xFont and t xFace fields.

PROCEDURE TESet Styl eHandl e (t heHandl e: TEStyl eHandl e;
hTE: TEHandl e);

t heHandl e The style handle to be set in the combined t xFont and t xFace fields of
the specified edit record.

hTE A handle to the edit record.

The TESet St yl eHandl e procedure has no effect on monostyled edit records.

Your application should always use TESet St y| eHand| e rather than manipulate the
fields of the edit record directly.

TextEdit Reference 2-85

CHAPTER 2

TextEdit

TEGetStyleHandle

DESCRIPTION

The TEGet St yl eHandl e function returns the style handle stored in the designated
edit record’s t xFont and t xFace fields. The style handle points to the associated
style record.

FUNCTI ON TEGet Styl eHandl e (hTE: TEHandl e): TEStyl eHandl e;

hTE A handle to the multistyled edit record containing the style handle to
be returned.

The TEGet St yl eHandl e function returns a handle to the style record (of type

TESt y| eRec), not a copy of it. Because only multistyled edit records have style records,
TEGet St yl eHandl e returns NI L when used with a monostyled edit record. To ensure
future compatibility, your application should always use this function rather than
manipulate the fields of the edit record directly.

Setting the Caret and Selection Range

TEIdle

Your application can call TEI dI e to blink a caret at an insertion point during idle
processing, the TECH i ck procedure to control the placement and highlighting of the text
selection range in response to mouse-down events generated when a user clicks the
mouse button, and the TESet Sel ect procedure to set the text selection range to be
edited next or denote the insertion point. This section describes these routines.

DESCRIPTION

2-86

When called repeatedly, the TEI dl e procedure displays a blinking caret at the insertion
point, if any exists, in the text of the specified edit record of an active window.

PRCCEDURE TEl dl e (hTE: TEHandl e);

hTE A handle to the edit record.

You need to call TEI dl e only when the window containing the text is active; the caret is
blinked only then. TextEdit observes a minimum blink interval, initially set to 32 ticks.
No matter how often you call TEI dl e, the time between blinks is never less than the
minimum interval. (The user can adjust the minimum interval setting with the General
Controls control panel.)

TextEdit Reference

TEClick

CHAPTER 2

TextEdit

To maintain a constant frequency of blinking, you need to call TEI dl e at least once each
time through your main event loop. Call it more than once if your application does an
unusually large amount of processing each time through the loop.

Call the Event Manager’s Get Car et Ti ne function to get the blink rate. (See the chapter
“Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.)

DESCRIPTION

SEE ALSO

The TEQ i ck procedure controls placement and highlighting of the selection range as
determined by mouse events.

PROCEDURE TEC ick (pt: Point; extend: Bool ean; hTE: TEHandl e);

pt The mouse location in local coordinates at the time the mouse button was
pressed, obtainable from the event record (in global coordinates).

ext end A flag denoting the state of the Shift key at the time of the click as
indicated by the Event Manager. If the Shift key was held down at the
time of the click to extend the selection, pass a value of TRUE.

hTE A handle to the edit record whose text is displayed in the view rectangle
where the click occurred.

Call TEC i ck whenever a mouse-down event occurs in the view rectangle of the edit
record and the window associated with that edit record is active. The TEQ i ck
procedure keeps control until the mouse button is released. Use the QuickDraw
procedure A obal ToLocal to convert the global coordinates of the mouse location
given in the event record to the local coordinate system for pt .

The TEC i ck procedure removes highlighting of the old selection range unless the
selection range is being extended. If the mouse moves, meaning that a drag is occurring,
TEQ i ck expands or shortens the selection range accordingly a character at a time. In
the case of a double-click, the word where the cursor is positioned becomes the
selection range.

For more information about the G obal ToLocal procedure, see the QuickDraw
chapters in Inside Macintosh: Imaging.

TextEdit Reference 2-87

WpIeL -

CHAPTER 2

TextEdit

TESetSelect

DESCRIPTION

The TESet Sel ect procedure sets the selection range within the text of the specified
edit record.

PROCEDURE TESet Sel ect (sel Start, sel End: Longlnt; hTE: TEHandl e);

sel Start The byte offset at the start of the text selection range.
sel End The byte offset at the end of the text selection range.
hTE A handle to the edit record.

The TESet Sel ect procedure removes highlighting of the old selection range and
highlights the new one. If sel St art equals sel End, the new selection range is an
insertion point, and a caret is displayed. If sel End is anywhere beyond the last character
of the text, TESet Sel ect uses the first position past the last character. The sel End and
sel St art fields can range from 0 to 32767.

SPECIAL CONSIDERATIONS

When only the Roman script system is used, the selection range is always displayed and
highlighted as a continuous range of text. However, when one or more script systems
requiring mixed-directional display of text are installed, a continuous sequence of
characters in memory may appear as a discontinuous selection when displayed.

Displaying and Scrolling Text

2-88

The routines that this section describes let you control how text is displayed.

TESet Al i gnmrent lets you specify whether text is to be right aligned, left aligned, or
centered. TEUpdat e draws the text, updating the text editing window. TEText Box lets
you draw static text in a box, such as a dialog box, without requiring that you first create
an edit record. TECal Text recalculates line breaks. TEGet Hei ght returns the height of
all the lines of text between two lines. TEScr ol | scrolls the text by the amount you
specify. TEPi nScr ol | scrolls the text, automatically stopping when it scrolls the last
line into view. TEAut oVi ewlets you turn automatic scrolling on or off. TESel Vi ew
automatically scrolls the text into view, if automatic scrolling is turned on through
TEAuUt oVi ew

TextEdit Reference

CHAPTER 2

TextEdit

TESetAlignment

DESCRIPTION

SEE ALSO

The TESet Al i gnnent procedure sets the alignment of the specified text in an edit
record so that it is centered, right aligned, or left aligned, or aligned according to the
line direction.

PROCEDURE TESet Al i gnnent (align: Integer; hTE: TEHandl e);

align The alignment for the specified text.
hTE Ahandle to the edit record containing the text.

WpIeL -

You can use the following constants to specify the text alignment through the
al i gn parameter.

Constant Value Description

t eFl ushDef aul t 0 Align according to primary line direction
teCent er 1 Centered for all scripts

t eFl ushRi ght -1 Right aligned for all scripts

t eFl ushLeft -2 Left aligned for all scripts

For compatibility, the previous names of these constants are still supported. They are
tedust Left,tedust Center,tedJustRi ght,andt eForcelLeft.

The default value of the j ust field of the edit record is t eFl ushDef aul t . This means
that text alignment is based on the primary line direction which is set by default
according to the system script.

For languages that are read from right to left, text is right aligned by default. For
languages that are read from left to right, text is left aligned by default. If you change the
alignment, call the | nval Rect procedure after TESet Al i gnment to redraw the text
with the new alignment.

TextEdit does not support justified alignment. To draw justified text, use the QuickDraw
Text routines.

For more information about the | nval Rect procedure, see the chapter “Window
Manager” in Inside Macintosh: Macintosh Toolbox Essentials. For more information about
drawing justified text, see the chapter “QuickDraw Text” in this book.

TextEdit Reference 2-89

TEUpdate

CHAPTER 2

TextEdit

DESCRIPTION

SEE ALSO

TETextBox

The TEUpdat e procedure draws the specified text within a given update rectangle.
PROCEDURE TEUpdat e (rUpdate: Rect; hTE: TEHandl e);

r Updat e The update rectangle, given in the coordinates of the current graphics
port, where the specified text is to be drawn.

hTE A handle to the edit record containing the text to be drawn.

Call TEUpdat e every time the Event Manager function Wai t Next Event reports an
update event for a text editing window—after you call the Window Manager procedure
Begi nUpdat e, and before you call the EndUpdat e procedure. You also need to erase
the update region with the Er aseRect procedure. If you don’t the caret can sometimes
remain visible when the window is deactivated.

For a description of the Wai t Next Event function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials. For more information about the

Begi nUpdat e and EndUpdat e procedures, see the chapter “Window Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

2-90

The TEText Box procedure draws the indicated text in a given rectangle with the
specified alignment.

PROCEDURE TEText Box (text: Ptr; length: Longlnt; box: Rect;
align: Integer);

t ext A pointer to the text to be drawn.
| engt h The number of bytes comprising the text.
box The rectangle where the text is to be drawn. The rectangle is specified in

local coordinates (of the current graphics port) and must be at least as
wide as the first character drawn. (A good rule of thumb is to make the
rectangle at least 20 pixels wide.)

align The kind of alignment for the specified text.

TextEdit Reference

DESCRIPTION

TECalText

CHAPTER 2

TextEdit

The TEText Box procedure provides you with an easy way to display static text to a
user. It creates its own monostyled edit record, which it deletes when finished with it, so
you cannot edit the text it draws. The TEText Box procedure breaks a line of text
correctly. You can specify how text is aligned in the box using any of the following
alignment constants:

Constant Description

t eFl ushDef aul t Aligned according to primary line direction
t eCenter Centered for all scripts

t eFl ushRi ght Right aligned for all scripts

WpIeL -

t eFl ushLef t Left aligned for all scripts

DESCRIPTION

The TECal Text procedure recalculates the beginnings of all lines of text in the specified
edit record.

PROCEDURE TECal Text (hTE: TEHandl e);

hTE A handle to the edit record whose text lines are to be recalculated.

The TECal Text procedure updates elements of the |l i neSt art s array in an edit
record. Call TECal Text if you've changed the destination rectangle, the hText field, or
any other property of the edit record that pertains to line breaks and the number of
characters per line—for example, font, size, style, and so on.

ASSEMBLY-LANGUAGE INFORMATION

The low-memory global variable TERecal contains the address of the routine called by
TECal Text to recalculate the line starts and set the first and last characters that need to
be redrawn. The TERecal default hook routine calls the Text Utilities

St yl edLi neBr eak function. If you replace the default TERecal hook routine with a
customized version and your application supports non-Roman script systems, make sure
that your customized hook routine is script-aware. The registers on entry and exit for
this hook routine are:

Registers on entry
A3 Pointer to the locked edit record
D7 Change in the length of the record (word)

TextEdit Reference 2-91

CHAPTER 2

TextEdit

Registers on exit

D2 Line start of the line containing the first character to be redrawn (word)

D4 Position of last character to be redrawn (word)

TextEdit uses the low-memory global variable Wr dRedr awwidely, but primarily for
line calculations and to determine how much of a line to redraw after the user types in a
character. TextEdit sets the correct value for Wor dRedr awin TEI ni t based upon the
installed script systems. If a 2-byte script is installed, TEl ni t performs an OR operation
on Wor dRedr awwith a 1; if a right-to-left script is installed, TEl ni t performs an OR
operation on Wr dRedr aw with an $FF. The size of this global is one byte.

TextEdit interprets the final value of Wor dRedr awas follows:

Value Description
0 Redraws the character before the entered character.
1 Redraws the word before the entered character.
$FF Redraws the whole line.

TEGetHeight

DESCRIPTION

2-92

The TEGet Hei ght function returns the total height of all of the lines in the text between
and including the specified starting and ending lines.

FUNCTI ON TEGet Hei ght (endLi ne, startLine: LONG NT;
hTE: TEHandl e): | NTEGER;

endLi ne The number of the last line of text whose height is to be included in the
total height. You can specify a value that is greater than or equal to 1 for
this parameter.

startLine Thenumber of the first line of text whose height is to be included in the
total height. You can specify a value that is greater than or equal to 1 for
this parameter.

hTE A handle to the edit record containing the lines of text whose height is to
be returned.

For monostyled text, the TEGet Hei ght function uses the value of the edit record’s

I 'i neHei ght field. For multistyled text, it uses the line height element (LHEI enent) of
the line height table (LHTabl e). Note that TEGet Hei ght does not take into account
the height of any blank lines at the end of the text. You need to consider this

when scrolling text.

TextEdit Reference

CHAPTER 2

TextEdit

TEScroll
The TEScr ol | procedure scrolls the text within the view rectangle of the specified edit
record by the designated number of pixels.
PROCEDURE TEScroll (dh,dv: Integer; hTE: TEHandl e);
dh The distance in pixels that the text is to be scrolled horizontally. A positive
value moves the text to the right; a negative value moves the text to ™
the left. =
dv The distance in pixels that the text is to be scrolled vertically. A positive X
value moves the text down; a negative value moves the text up. rgj.
hTE A handle to the edit record whose text is to be scrolled.
DESCRIPTION
The TEScr ol | procedure updates the text on the screen automatically to reflect the new
scroll position. The destination rectangle is offset by the amount scrolled. The TEScr ol |
and TEPi nScrol | procedures behave the same, except that TEPi nScr ol | stops
scrolling when the last line of text is scrolled into view.
TEPinScroll
The TEPi nScr ol | procedure scrolls the text within the view rectangle of the specified
edit record by the designated number of pixels. Scrolling stops when the last line of text
is scrolled into view.
PROCEDURE TEPi nScrol |l (dh: Integer; dv: Integer; hTE: TEHandl e);
dh The distance in pixels that the text is to be scrolled horizontally. A positive
value moves the text to the right; a negative value moves the text to
the left.
dv The distance in pixels that the text is to be scrolled vertically. A positive
value moves the text down; a negative value moves the text up.
hTE A handle to the edit record whose text is to be scrolled.
DESCRIPTION

The TEPi nScr ol | procedure updates the text on the screen automatically to reflect the
new scroll position, as does the TEScr ol | procedure. The destination rectangle is offset
by the amount scrolled. When the edit record is longer than the text it contains,

TEPi nScr ol | displays up to the last line of text inclusive, and not beyond it.

TextEdit Reference 2-93

CHAPTER 2

TextEdit

TEAutoView

DESCRIPTION

SEE ALSO

TESelView

The TEAut oVi ew procedure enables and disables automatic scrolling of the text in the
specified edit record.

PROCEDURE TEAut oVi ew (f Auto: Bool ean; hTE: TEHandl e);

fAut o A flag indicating whether to enable or disable automatic scrolling. A
value of TRUE enables automatic scrolling. A value of FALSE disables
automatic scrolling.

hTE A handle to the edit record for which automatic scrolling is to be enabled
or disabled.

The TEAut oVi ew procedure does not actually scroll the text automatically: TESel Vi ew
does. However, when f Aut 0 is set to FALSE, a call to TESel Vi ewhas no effect.

If there is a scroll bar associated with the edit record, your application must manage
scrolling of it. You can replace the default click loop routine, which scrolls the text only,
with a customized version that also updates the scroll bar.

You can also enable or disable automatic scrolling for an edit record through the
t eFAut oScr ol | feature of the TEFeat ur eFl ag function.

For more information, see “TEFeatureFlag” on page 2-109.

DESCRIPTION

2-94

Once automatic scrolling has been enabled by a call to the TEAut oVi ew procedure or
through the TEFeat ur eFl ag function, the TESel Vi ew procedure ensures that the
selection range is visible and scrolls it into the view rectangle if necessary.

PROCEDURE TESel Vi ew (hTE: TEHandl e);

hTE Ahandle to the edit record containing the text selection range.

The top left part of the selection range is scrolled into view. If the text is displayed in a
rectangle that is not high enough, automatic scrolling can cause text to appear to flicker.
If automatic scrolling is disabled, TESel Vi ewhas no effect.

TextEdit Reference

SEE ALSO

TEDelete

CHAPTER 2

TextEdit

For more information, see “TEFeatureFlag” on page 2-109.

Modifying the Text of an Edit Record

Although all of the TextEdit routines provide and support editing capabilities, the set of
routines described in this section implement the standard Macintosh editing features. An
application can use these routines to delete, insert, cut, copy, or paste multistyled or
monostyled text. The routines that you use for these purposes are TEDel et e to remove
a selected range of text, TEl nsert to insert text, TECut to remove the text, but save it to
be inserted, TECopy to copy the selected text with affecting the selection range,

TEPast e to replace the selected text with the text in the private scrap, without applying
character attribute information, TESt y| ePast e to replace the selected text with text and
its character attribute information from the desk scrap, and TEToScr ap and

TEFr onScr ap to move monostyled text across applications or between applications and
a desk accessory.

DESCRIPTION

The TEDel et e procedure removes the selected range of text from the text of the
designated edit record and redraws the remaining text as necessary.

PROCEDURE TEDel ete (hTE: TEHandl e);

hTE Ahandle to the edit record containing the text to be deleted.

When the TEDel et e procedure deletes a selected range of text, it does not transfer the
text to either the private scrap or the Scrap Manager’s desk scrap.

For multistyled records, when you use TEDel et e to delete a selected range of text, the
associated character attributes are saved in the null scrap to be applied to characters
entered after the text is deleted. When the user clicks in some other area of the text, the
character attributes are removed from the null scrap. You can use TEDel et e to
implement the Clear command. The TEDel et e procedure recalculates line starts and
line heights.

TextEdit Reference 2-95

WpIeL -

TEInsert

CHAPTER 2

TextEdit

DESCRIPTION

TECut

The TEI nsert procedure inserts the specified text immediately before the selection
range or the insertion point in the text of the designated edit record, redrawing the
text as necessary.

PROCCEDURE TEl nsert (text: Ptr; length: Longlnt; hTE TEHandl e);

t ext A pointer to the text to be inserted.
l ength The number of characters to be inserted.

hTE A handle to the edit record containing the text buffer into which the new
text is to be inserted.

When you call the TEl nsert procedure and a range of text is selected, TEl nsert
doesn’t affect the selection range. The TEl nsert procedure does not check for a 32 KB
limit, so your application must ensure that the inserted text does not exceed this text size
limit of 32 KB. The TEI nser t procedure recalculates line starts and line heights to
adjust for the inserted text.

DESCRIPTION

2-96

The TECut procedure removes the current selection range from the text of the
designated edit record, redrawing the text as necessary.

PROCEDURE TECut (hTE: TEHandl e);

hTE A handle to the edit record containing the text to be cut.

For monostyled text, the TECut procedure writes the cut text to the private scrap.

For multistyled text, TECut writes the cut text to the private scrap and its character
attributes to the style scrap; it also writes both to the Scrap Manager’s desk scrap. For
multistyled text, the TECut procedure removes the character attributes from the style
record’s style table when the text is cut.

For both monostyled and multistyled text, if the selection range is an insertion point,
TextEdit deletes everything from the private scrap. When the selection range is an
insertion point and the text is multistyled, TECut has no effect on the style scrap or the
Scrap Manager’s desk scrap.

TextEdit Reference

SEE ALSO

TECopy

CHAPTER 2

TextEdit

For more information about the desk scrap, see the chapter “Scrap Manager” in
Inside Macintosh: More Macintosh Toolbox.

DESCRIPTION

SEE ALSO

TEPaste

The TECopy procedure copies the text selection range from the edit record, leaving the
selection range intact.

PROCCEDURE TECopy (hTE: TEHandl e);

hTE A handle to the edit record containing the text to be copied.

The TECopy procedure copies the text to the private scrap. For text of a monostyled edit
record, the text is written to the private scrap only. For text of a multistyled edit record,
the text is written to the TextEdit private scrap, the character attribute information is
written to the TextEdit style scrap, and both are written to the Scrap Manager’s desk
scrap. Anything previously in the private scrap is deleted before the copied text is
written to it.

For both multistyled and monostyled text, if the selection range is an insertion point,
TECopy empties the TextEdit private scrap. When the selection range is an insertion
point and the text is multistyled, TECopy has no effect on the null scrap, the style scrap,
or the Scrap Manager’s desk scrap.

For more information about the desk scrap, see the chapter “Scrap Manager” in
Inside Macintosh: More Macintosh Toolbox.

The TEPast e procedure replaces the edit record’s selected text with the contents of the
private scrap and leaves an insertion point after the inserted text. If the selection range is
an insertion point, TEPast e inserts the contents of the private scrap there.

PROCEDURE TEPaste (hTE: TEHandl e);

hTE A handle to the edit record into which the text is to be pasted.

TextEdit Reference 2-97

WpIeL -

DESCRIPTION

CHAPTER 2

TextEdit

When you call TEPast e, after it pastes the text from the private scrap, it redraws all

of the text as necessary. If the private scrap is empty, TEPast e deletes the selection
range. If you call TEPast e for a multistyled edit record, it pastes only the text in the
private scrap. In this case, TEPast e ignores any associated character attribute
information stored in the style scrap; instead, it applies the character attributes of the
first character of the selection range being replaced to the text. If the selection range is an
insertion point, TEPast e applies the character attributes of the character preceding

the insertion point.

TEStylePaste

DESCRIPTION

2-98

The TESt y| ePast e procedure pastes text and its associated character attribute
information from the desk scrap into the edit record’s text at the insertion point—if the
current selection range is an insertion point—or it replaces the current selection range.

PROCEDURE TEStyl ePaste (hTE: TEHandl e);

hTE A handle to the edit record into which the text is to be pasted.

When you call TESt yl ePast e and there is no character attribute information associated
with text in the desk scrap, TESt y| ePast e first checks the null scrap. If the null scrap
contains character attribute information, this is used. If the null scrap is empty,

TESt y| ePast e gives the text the same attributes as those of the first character of

the replaced selection range or that of the preceding character if the selection is an
insertion point.

For a monostyled edit record, TESt y| ePast e pastes the text only; there is no associated
character attribute information because all the text uses the same attributes.

TextEdit Reference

CHAPTER 2

TextEdit

TEToScrap
The TEToScr ap function copies the contents of the TextEdit private scrap to the
desk scrap.
FUNCTI ON TEToScr ap: OSErr;

DESCRIPTION

You use the TEToScr ap function to move monostyled text across applications or
between an application and a desk accessory. Call the Scrap Manager function
Zer oScr ap to initialize the desk scrap or clear its contents before calling TEToScr ap.

ASSEMBLY-LANGUAGE INFORMATION

Copy the contents of the private scrap to the desk scrap by calling the Scrap Manager
function Put Scr ap; you can get the values you need from the global variables
TEScr pHandl e and TEScr pLengt h.

RESULT CODES

noErr 0 No error
noScr apErr -100 Desk scrap isn’t initialized

SEE ALSO
For more information about the Put Scr ap function, the Zer 0Scr ap function, and the

desk scrap, see the chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox.

TEFromScrap

The TEFr onScr ap function copies the contents of the desk scrap to the TextEdit
private scrap.

FUNCTI ON TEFr onfscr ap: OSErr;

DESCRIPTION

You use this function to move monostyled text across applications or between an
application and a desk accessory.

TextEdit Reference 2-99

WpIeL -

CHAPTER 2

TextEdit

ASSEMBLY-LANGUAGE INFORMATION

You can store a handle to the desk scrap in the global variable TEScr pHandl e and the
size of the desk scrap in the global variable TEScr pLengt h; get the desk scrap’s handle
and size by calling the Scrap Manager’s | nf oScr ap function.

RESULT CODE
noErr 0 No error

SEE ALSO

For more information about the | nf 0Scr ap function and the desk scrap, see the chapter
“Scrap Manager” in Inside Macintosh: More Macintosh Toolbox.

Managing the TextEdit Private Scrap

This section describes the routines that you use to manage the private scrap. You use the
TEScr apHandl e function get a handle to the private scrap, the TEGet Scr apLengt h
function to determine its size, and the TESet Scr apLengt h procedure to set its size.

TEScrapHandle

The TEScr apHand! e function returns a handle to the TextEdit private scrap.

FUNCTI ON TEScr apHandl e: Handl e;

ASSEMBLY-LANGUAGE INFORMATION
You can get the handle to the private scrap from the global variable TEScr pHandl e.

TEGetScrapLength

The TEGet Scr apLengt h function returns the size of the TextEdit private scrap in bytes.

FUNCTI ON TEGet ScrapLengt h: Longl nt;

ASSEMBLY-LANGUAGE INFORMATION

You can get the size of the private scrap in bytes from the global
variable TEScr pLengt h.

2-100 TextEdit Reference

CHAPTER 2

TextEdit

TESetScrapLength

ASSEMBLY-LANGUAGE INFORMATION

The TESet Scr apLengt h procedure sets the size of the TextEdit private scrap
to the specified number of bytes.

PROCEDURE TESet ScrapLength (length: Longlnt);

[ength The size of the private scrap in bytes.

WpIeL -

You can set the global variable TEScr pLengt h to the size of the private scrap.

Checking, Setting, and Replacing Styles

TESetStyle

The routines described in this section let you manipulate the character attribute
information associated with a range of text. You can use the following routines to set,
replace, or copy character attribute information, or to check aspects of the text’s character
attributes. These routines are TESet St yl e, TERepl aceSt yl e, TECont i nuousStyl e,
TEStyl el nsert, TEGet St yl eScr apHandl e, TEUseSt yl eScr ap, and

TENuntt yl es.

Note

In the original Inside Macintosh documentation the term style was used to
refer to the text font, size, style (face), and color. In this chapter the term
character attributes is used instead. This is so that the term style can be
used consistently throughout all of the documentation to refer to the
following text style attributes: bold, italic, underline, outline, condense,
extend, and shadow. In the past, the term face, which is now obsolete,
was used to refer to these attributes instead of style. O

The TESet St yl| e procedure sets new character attributes for the current selection range
in the specified edit record.

PROCEDURE TESet Styl e (node: Integer; newStyle: TextStyle;
redraw. Bool ean; hTE: TEHandl e);

nmode A selector that specifies which character attributes are to be changed. The
value for node can be any additive combination of the node constants for
font, style, type size, color, and so forth.

newStyle Arecord of type Text St yl e that specifies the new attributes to be set.
This record contains the character attributes to be applied to the current
selection range based on the value of node.

TextEdit Reference 2-101

DESCRIPTION

2-102

CHAPTER 2

TextEdit

redraw A flag that specifies whether or not TextEdit should immediately redraw
the affected text to reflect the new character attribute changes. A value of
TRUE causes the text to be redrawn immediately. Line breaks, line heights,
and line ascents are recalculated. A value of FALSE delays redrawing
until another event forces the update.

hTE Ahandle to the multistyled edit record containing the selected text.

The TESet St yl e procedure has no effect on a monostyled record. You can use any
combination of the following constants to specify a value for the node parameter. The
value of node specifies which existing character attributes are to be changed to the new
character attributes specified by newSt yl e.

Constant Value Description

doFont 1 Sets the font family ID

doFace 2 Sets the character style

doSi ze 4 Sets the type size

doCol or 8 Sets the color

doAl | 15 Sets all attributes

addSi ze 16 Increases or decreases the current type size
doToggl e 32 Modifies the mode

If doToggl e is specified along with doFace and if an attribute specified in the given
newst yl e parameter exists across the entire selected range of text, then TESet St yl e
removes that attribute. Otherwise, if the attribute doesn’t exist across the entire selection
range, all of the selected text is set to include that character attribute.

If the r edr aw parameter is set to TRUE, TextEdit redraws the current selection range
using the new character attributes, recalculating line breaks, line heights, and line
ascents. If the r edr aw parameter is set to FALSE, TextEdit does not redraw the text or
recalculate line breaks, line heights, and line ascents. Consequently, when you call a
routine that uses any of this information, such as TEGet Hei ght (which returns a total
height between two specified lines), it does not reflect the new character attributes set
with TESet St yl e. Instead, the routine uses the information that was available before
TESet St yl e was called. To update this information, call the TECal Text procedure.
(See “TECalText” on page 2-91 for more information.) To be certain that the new
information is always reflected, call the TESet St yl e procedure with the r edr aw
parameter set to TRUE.

If you call the TESet St y| e routine when the value of the sel St art field of an edit
record equals the value of the sel End field (specifying an insertion point), TextEdit
stores the input character attributes in the null scrap record pointed to by the null
style handle.

TextEdit Reference

CHAPTER 2

TextEdit

TEReplaceStyle

DESCRIPTION

The TERepl aceSt yl e procedure replaces any character attributes in the current
selection range that match the specified existing character attributes with the specified
new character attributes.

PROCEDURE TERepl aceStyl e (node: | NTEGER,
ol dStyl e, newStyl e: Text Styl e;
redraw. BOOLEAN; hTE: TEHandl e);

node A selector that specifies which attributes to replace. It corresponds to any
additive combination of the mbde constants for font, character style, type
size, color, and so forth.

WpIeL -

ol dStyle A pointer to a text style record that specifies the current character
attributes to search for in the selected text.

newStyl e A pointer to a text style record that specifies the new attributes to be set.
This record contains the character attributes to be applied to the current
selection range based on the value of node.

redraw A flag that specifies whether or not TextEdit should immediately redraw
the text to reflect the attribute changes. A value of FALSE delays
redrawing until another event forces the update. A value of TRUE causes
the text to be redrawn immediately using the new character attributes.

hTE A handle to the multistyled edit record containing the text selection
whose character attributes are to be changed.

The TERepl aceSt yl e procedure replaces any attribute in the current selection range
that matches the attribute specified by ol dSt yl e with that given by newSt yl e. Only
the character attributes specified by node are affected.

Attribute changes are made directly to the style elements (STEl enent) within the style
table itself (TESt yl eTabl e). If you specify the value doAl | for the node parameter,
newsSt yl e replaces ol dSt yl e outright. Possible values for the nbde parameter are
defined by the following constants. The TERepl aceSt yl e procedure has no effect on a
monostyled edit record.

Constant Value Description

doFont 1 Sets the font family ID

doFace 2 Sets the character style

doSi ze 4 Sets the type size

doCol or 8 Sets the color

doAl | 15 Sets all attributes

addSi ze 16 Increases or decreases the current type size

TextEdit Reference 2-103

CHAPTER 2

TextEdit

TEContinuousStyle

DESCRIPTION

2-104

The TECont i nuousSt yl e function determines whether a given character attribute is
continuous over the current selection range.

FUNCTI ON TECont i nuousStyl e (VAR node: |nteger;
VAR aStyl e: TextStyle;
hTE: TEHandl e): Bool ean;

node On input, a selector specifying the attributes to be checked. On output,
nmode identifies only those attributes determined to be continuous over
the selection range.

aStyle On input, a text style record. On output, this record contains the values
for the node attributes determined to be continuous over the selection.

hTE Ahandle to the edit record containing the selected text whose attributes
are to be checked.

This function does not modify the text selection. Possible values for the nbde parameter
are defined by the following constants.

Constant Value Description

doFont 1 Specifies the font family ID
doFace 2 Specifies the character style
doSi ze 4 Specifies the type size
doCol or 8 Specifies the color

doAl | 15 Specifies all the attributes

The TECont i nuousSt yl e function returns TRUE if all of the attributes to be checked
are continuous and returns FALSE if none or some are continuous.

If the current selection range is an insertion point, TECont i nuousSt y| e first checks the
null scrap. If the null scrap contains character attributes, then they are used based on the
value of the nbde parameter. Otherwise, if the null scrap is empty,

TECont i nuousSt yl e returns the attributes of the character preceding the insertion
point. The TECont i nuousSt yl e function always returns TRUE in this case, and each
field of the text style record is set if the corresponding bit in the mbde parameter is set.

If the value of hTE is a handle to a monostyled edit record, TECont i nuousStyl e
returns the set of character attributes that are consistent for the entire record.

Note that fields in the text style record specified by aSt y| e are only valid if the
corresponding bits are set in the nbde variable.

How the t sFace field of the aSt y| e record is used requires some consideration. For
example, if TECont i nuousSt yl e returns a node parameter that contains doFace and
the text style record t sFace field is bold, it means that the selected text is all bold, but

TextEdit Reference

CHAPTER 2

TextEdit

may contain other text styles, such as italic, as well. Italic does not apply to all of the
selected text, or it would have been included in the t sFace field. If the t sSFace field is
an empty set, then all of the selected text is plain.

TEStylelnsert

DESCRIPTION

The TESt yl el nsert procedure inserts the specified text immediately before the
selection range or the insertion point in the edit record’s text and applies the specified
character attributes to the text, redrawing the text if necessary.

WpIeL -

PROCEDURE TEStyl el nsert (text: Ptr; length: Longlnt;
hST: STScrpHandl e; hTE: TEHandl e) ;

t ext A pointer to the text to be inserted.

[ength The length in bytes of the text to be inserted.

hST A handle to the style scrap record containing the character attribute
information to be applied to the inserted text.

hTE A handle to the edit record into which the text is to be inserted.

You should create your own style scrap record, specifying the character attributes to be
inserted and applied to the text, and pass its handle to TESt y| el nsert as the value of
the hST parameter. The character attributes are copied directly into the style record’s
(TESt yI eRec) style table.

The TESt yl el nsert procedure does not affects the current selection range.

TEGetStyleScrapHandle

DESCRIPTION

The TEGet St yl eScr apHandl e function creates a style scrap record, copies the
character attributes associated with the current selection range into it, and returns a
handle to it.

FUNCTI ON TEGet Styl eScrapHandl e (hTE: TEHandl e): STScr pHandl e;

hTE The handle to the edit record containing the text selection range whose
character attributes are to be copied.

The TEGet St yl eScr apHandl e function creates a style scrap record of type
St Scr pRec and copies the character attributes associated with the current selection

TextEdit Reference 2-105

CHAPTER 2

TextEdit

range of the designated edit record into it. If the current selection range is an insertion
point, TEGet St yl eScr apHandl e first checks the null scrap. If the null scrap contains
character attributes, they are written to the newly created style scrap record. If the null
scrap is empty, the attributes associated with the character preceding the insertion point
are copied to the style scrap record.

The TEGet St yl eScr apHandl e function has no impact on the Scrap Manager’s desk
scrap. The TEGet St yl eScr apHandl e function returns a NI L value if called with a
handle to a monostyled record.

TEUseStyleScrap

DESCRIPTION

2-106

The TEUseSt yl eScr ap procedure assigns new character attributes to the specified
range of text in the designated edit record.

PROCEDURE TEUseStyl eScrap (rangeStart: Longlnt; rangeEnd: Longlnt;
newSt yl es: STScrpHandl e; redraw. Bool ean;
hTE: TEHandl e);

rangeSt art
The offset of the first character in the text of the edit record to which the
character attributes are to be applied.

rangeEnd The offset of the last character in the text of the edit record to which the
character attributes are to be applied.

newStyl es A handle to a style scrap record. The style scrap record contains the
attributes to be applied to the specified range of text. If the value of
newsSt yl es is NI L, no action is performed.

redraw A flag that specifies whether TextEdit should immediately redraw the
selection range using the new character attributes.
hTE A handle to the edit record containing the range of text to which the

character attributes are to be applied. If the handle points to a monostyled
edit record (created using TENew), no action is performed.

The TEUseSt yl eScr ap procedure writes the character attribute information into

the style record’s style table and updates the style run table. If the r edr aw parameter

is set to TRUE, the attributes are applied immediately to the specified range of text, and
line breaks, line heights, and line ascents are recalculated. If r edr awis set to FALSE, the
new character attributes are not reflected in the view rectangle until the next update
event occurs.

Regardless of whether the text is redrawn, the current selection range is not changed; if
characters are highlighted before TEUseSt y| eScr ap is called, they remain highlighted
after it is called. However, if characters within the current selection range also fall within

TextEdit Reference

CHAPTER 2

TextEdit

the specified range of text, they are rendered in the new character attributes when the
text is redrawn.

Each element in the style scrap record contains a field that is the offset of the beginning
of the element’s character attributes. This field (scr pSt ar t Char) defines the
boundaries for the scrap’s style runs.

The TEUseSt yl eScr ap procedure applies the first element’s attributes to the characters
fromrangeSt art up to the scr pSt art Char field of the next element. The

TEUseSt yl eScr ap procedure terminates without error if it prematurely reaches the
end of the range or if there are not enough scrap style elements to cover the whole range.
In the latter case, TEUseSt yl eScr ap applies the last set of character attributes in the
style scrap record to the remainder of the range.

Depending on the requirements of your application, you can create a style scrap record
directly and pass its handle to TEUseSt y| eScr ap as the value of newSt yl es or you
can use a style scrap record created by TEGet St yl eScr apHand| e.

TENumStyles

DESCRIPTION

The TENunst yl es function returns the number of character attribute changes contained
in the specified range, counting one for the start of the range.

FUNCTI ON TENunfStyl es (rangeStart: Longlnt; rangeEnd: Longlnt;
hTE: TEHandl e): Longlnt;

rangeSt art
The beginning of the range of text for which the number of style runs
(sets of character attributes) or changes is counted and returned.

rangeEnd The end of the range of text for which the number of style runs (sets of
character attributes) or changes is counted and returned.

hTE A handle to the edit record containing the range of text.

The number of character attribute changes that TENunst y| es returns does not
necessarily represent the number of unique sets of attributes for the range because
some sets of attributes may be repeated. For monostyled edit records, TENunftt yl es
always returns 1.

Using Byte Offsets and Corresponding Points

You can use the TEGet Of f set function to convert a point to its corresponding byte
offset and the TEGet Poi nt function to convert a byte offset to its corresponding point.
These functions are discussed in this section.

TextEdit Reference 2-107

WpIeL -

CHAPTER 2

TextEdit

TEGetOffset

DESCRIPTION

TEGetPoint

The TEGet Of f set function finds the byte offset of a character in an edit record’s text
that corresponds to the specified point.

FUNCTI ON TEGet O fset (pt: Point; hTE: TEHandl e): Integer;

pt A point in the displayed text of the specified edit record.
hTE A handle to the edit record containing the text.

The TEGet Of f set function works for both monostyled and multistyled edit
records. The TEGet Of f set function returns the byte offset of the first byte for a
2-byte character.

DESCRIPTION

2-108

The TEGet Poi nt function determines the point that corresponds to the specified byte
offset of a character and returns the coordinates of that point.

FUNCTI ON TEGet Poi nt (offset: Integer; hTE: TEHandl e): Point;

of f set Abyte offset into the text buffer of an edit record.
hTE A handle to the edit record containing the text.

The TEGet Poi nt function returns a valid result even when the edit record does not
contain any text. The point returned is based on the values in the record’s destination
rectangle. In the case of an offset being equal to a line end, which is also the start of the
next line, TEGet Poi nt returns a point corresponding to the line start of the next line. In
the case of a dual caret, the primary caret position, the one corresponding to the primary
line direction, is returned.

The line height, taken either from the | i neHei ght field for a monostyled edit record or
from the line-height array, LHEl errent , for a multistyled edit record, is also used to
determine the vertical component. Both the text direction and the primary line direction
are used to determine the horizontal component.

The TECet Poi nt function works for both monostyled and multistyled edit records.

TextEdit Reference

CHAPTER 2

TextEdit

Additional TextEdit Features

The TEFeat ur eFl ag function lets you check the status of additional TextEdit features
and enable or disable them. It is described in this section.

TEFeatureFlag

The TEFeat ur eFl ag function turns a specified feature on or off or returns the current
status of that feature. Features supported are automatic scrolling, text buffering, outline
highlighting, inline input, and text services.

FUNCTI ON TEFeat ureFl ag (feature: Integer; action: Integer;
hTE: TEHandl e): Integer;

feature The feature for which the action is to be performed.

action A selector stipulating that the feature, specified by the f eat ur e
parameter, is to be turned on or off, or that the current status of the
feature is to be returned.

hTE Ahandle to the edit record for which the action should be performed.

DESCRIPTION

You can use the TEFeat ur eFl ag function to check the status of additional TextEdit
features—automatic scrolling, outline highlighting, and text buffering—and to enable or
disable the feature. You can also use this function to disable inline input in a particular
edit record and to enable several features that have been provided so that inline input
works correctly with TextEdit.

To identify a feature, you specify one of the following constants as the value of the
f eat ur e parameter.

Constant Value Description

t eFAut oScr ol | 0 Automatic scrolling
teFText Buffering 1 Text buffering
teFQutlineHilite 2 Outline highlighting

t eFl nli nel nput 3 Inline input

t eFUseText Ser vi ces 4 Use inline input service

You specify the act i on to be performed on a feature through the following constants.

Constant Value Description

teBitC ear 0 Disables the specified feature

t eBi t Set 1 Enables the specified feature

teBit Test -1 Returns the current setting of the specified feature

TextEdit Reference 2-109

WpIeL -

2-110

CHAPTER 2

TextEdit

Ift eBi t Test returnst eBi t Set, the feature is enabled; if it returns t eBi t Cl ear,
it is disabled.

You can use the TEFeat ur eFl ag function to turn automatic scrolling on and off as an
alternative to calling TEAut oVi ew The effect is the same.

Thet eFQut | i neHi | i t e selector specifies outline highlighting as the feature for which
an action is to be performed. If a highlighted region exists in an edit record and the
window is inactive, then the highlighted region is outlined or framed.

In the case that outline highlighting is enabled and the current selection range is an
insertion point, the caret is then drawn in a gray pattern so that it appears dimmed. To
do the framing and caret dimming, TextEdit temporarily replaces the current address in
the hi ghHook and car et Hook fields of the edit record, redraws the caret or the
highlighted region, and then immediately restores the hooks to their previous addresses.

The t eFText Buf f eri ng selector enables or disables text buffering for performance
improvements of 2-byte scripts. This is a global buffer, as opposed to the TEKey
procedure’s internal 2-byte buffer, and it is used across all active edit records. When
using text buffering, take the following precautions:

= Exercise care when you enable the text-buffering capability in more than one active
record; otherwise, the bytes that are buffered from one edit record may appear in
another edit record.

= Ensure that buffering is not turned off in the middle of processing a 2-byte character.
To guarantee the integrity of your record, it is important that you wait for an idle
event before you disable buffering or enable buffering in a second edit record.

= When text buffering is enabled, ensure that TEI dl e is called before any pause of more
than a few ticks—for example, before the Event Manager procedure
Wi t Next Event . A possibility of a long delay before characters appear on the screen
exists, especially in non-Roman systems. If you do not call TEl dl e, the characters can
end up in the edit record of another application. For more information, see “TEIdle”
on page 2-86.
If text buffering is enabled on a non-Roman script system and the keyboard has changed,
TextEdit flushes the text of the current script from the buffer before bringing characters
of the new script into the buffer.

If your application follows the guidelines for inline input available from Macintosh
Developer Technical Support, then you should set the useText Edi t Ser vi ces flag in
the Size resource in your application. This allows inline input to work with your
application. Inline input is a keyboard input method (often used for double-byte script
systems) in which conversion from a phonetic to an ideographic representation of a
character takes place at the current line position where the text is intended to appear.
This allows the user to type text directly in the line as opposed to a special conversion
window. If inline input is installed and the useText Edi t Ser vi ces flag in the Size
resource is set, inline input sets TextEdit's t eFUseText Ser vi ces feature bit whenever
an edit record is created. TextEdit does not use this bit.

TextEdit Reference

SEE ALSO

CHAPTER 2

TextEdit

Inline input checks the t eFUseText Ser vi ces bit during text editing to determine if an
inline session should begin. If you want to disable inline input for a particular edit
record, your application can clear this bit after the edit record is created. You can also
clear this bit to disable inline input temporarily and then restore it, but the edit record
must always be deactivated before the state of the bit is changed.

IMPORTANT
You must deactivate an edit record (using TEDeact i vat e) before
changing the state of the feature bits or any fields in the edit record. a

In the future, other text services may use this same mechanism. If you follow the
guidelines specified here, your application should also work with future text services.
When an inline edit session begins, inline input also sets the t eFl nl i nel nput bit to
provide the following features so that inline input works correctly with TextEdit:

WpIeL -

» disabling font and keyboard synchronization

» forcing a multiple-line selection to be highlighted line by line using a separate
rectangle for each line rather than using a minimum number of rectangles for
optimization

» highlighting a line only to the edge of the text rather than beyond the text to the edge
of the view rectangle

IMPORTANT

The t eFl nl i nel nput bit is cleared by inline input when an inline
session ends. Use the t eFl nl i nel nput constant in the feature
parameter of TEFeat ur eFl ag to include these features in your
application even when inline input is not installed. Be careful about
changing the state of this bit if the t eFUseText Ser vi ces bit is set.
Again, the edit record should always be deactivated before you change
the state of the t eFl nl i nel nput bit. If you clear the

t eFUseText Ser vi ces bit and you set the t eFI nl i nel nput bit,
inline input is disabled, but your application retains the features
listed above. a

To test for the availability of these features, you can call the Gest al t function with the
gest al t Text Edi t Ver si on selector. A result of gest al t TE4 or greater returned in
the response parameter indicates that outline highlighting and text buffering are
available. A result of gest al t TE5 or greater returned in the response parameter
indicates that the two inline input features are available.

The inline input features are also available on version 6.0.7 systems with
non-Roman script systems installed. However, there is no Gestalt constant that indicates
this availability.

For a description of the Wi t Next Event function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

TextEdit Reference 2-111

CHAPTER 2

TextEdit

Customizing TextEdit

The TextEdit TECust onHook, TESet Wor dBr eak, and TESet O i ckLoop routines
described in this section let you customize the behavior of TextEdit. You can use these
routines to replace the default hook routines with your customized versions.

However, if you use any of the TextEdit hooks to override default TextEdit behavior, the
results may no longer be Script Manager—compatible. Before replacing TextEdit routines,
you should determine whether more than one script system is installed, and, if so,
ensure that the replacement routine you provide is script-aware.

TECustomHook

DESCRIPTION

2-112

The TECust onmHook procedure replaces a default TextEdit hook routine with a
customized routine and returns the address of the replaced routine.

PROCEDURE TECust omHook (whi ch: TEI nt Hook; VAR addr: ProcPtr;
hTE: TEHandl e);

whi ch The hook whose default routine is to be replaced.
addr On input, the address of your customized procedure.

On output, the addr parameter contains the address of the routine that
was previously installed in the field identified by the whi ch parameter.
This address is returned so that you can daisy-chain routines.

hTE A handle to the edit record to be modified.

The TECust onHook procedure lets you alter the behavior of TextEdit to better suit your
application’s requirements and those of the script systems installed. If you replace a
default hook routine with a customized version that you write in a high-level language,
such as Pascal or C, you need to provide assembly-language glue code that utilizes the
registers for your high-level language routine. The register contents for each of the hook
routines are described in this section under “Assembly-Language Information.”

TextEdit Reference

CHAPTER 2

TextEdit

The end-of-line hook, width measurement hook, new width measurement hook, text
width measurement hook, draw hook. and hit test hook fields are hook fields in

the TextEdit dispatch record. The whi ch parameter identifies the hook whose
default routine is to be replaced; you use the following constants to specify a value
for this parameter.

Constant Value Description

i nt EOLHook 0 End-of-line hook

i nt Dr awHook 1 Draw hook
i nt W dt hHook 2 Width measurement hook 5

i nt Hi t Test Hook 3 Hit test hook i

i nt N\W dt hHook 6 New width measurement hook -

i nt Text W dt hHook 7 Text width measurement hook

(low-memory global width measurement hook)

ASSEMBLY-LANGUAGE INFORMATION

The end-of-line hook, width measurement hook, new width measurement hook, text
width measurement hook, draw hook, and hit test hook fields are hook fields in the
TextEdit dispatch record. When you use TECust omHook to replace the default routines
installed in these hook fields with customized ones, remember that the replacement
routine must preserve all registers except those specified as containing return values.

End-of-Line Hook Registers

You specify the i nt EOLHook constant as the value of the whi ch parameter to identify
the end-of-line hook routine as the one you want to replace. This hook routine
determines whether an incoming character is an end-of-line character. It tests the
character, sets the appropriate status flags in the status register, and returns. The default
action is to compare the character with $0D (a carriage return).

Registers on entry

DO Character to compare (byte)

A3 Pointer to the edit record

A4 Locked handle to the edit record

Registers on exit
V4 (Zero) flag in the status register clear if end-of-line character; set otherwise.

TextEdit Reference 2-113

2-114

CHAPTER 2

TextEdit

Draw Hook Registers

You specify the i nt Dr awHook constant as the value of the whi ch parameter to identify
the drawing hook routine as the one you want to replace. The draw hook routine is
called any time the components of a line are drawn. The appropriate font, style, and size
characteristics have already been set into the current port by the time this routine is
called. By default, the address of the QuickDraw Dr awText procedure is stored in the
draw hook field.

If your application is using outline (TrueType) fonts, TextEdit has also set the

pr eser ved yph parameter of the Font Manager’s Set Pr eser ve@ yph procedure to
FALSE, so your customized hook procedure may need to reset this parameter if your
application depends on it.

Registers on entry

DO Offset into text (word)

D1 Length of text to draw (word)
A0 Pointer to text to draw

A3 Pointer to the edit record

A4 Locked handle to the edit record

Width Measurement Hook Registers

You specify the i nt W dt hHook constant as the value of the whi ch parameter to identify
the width measurement hook routine as the one you want to replace. The width
measurement hook routine measures portions of a line of text. It is used when only the
Roman script system is installed and the field contains the address of a customized
routine. It is supported for backward compatibility. In all other cases, when more than
one script system is installed or when the width measurement hook field has not been
customized, TextEdit calls the routine whose address is installed in the new width
measurement hook field.

Registers on entry

DO Length (in bytes) of text to measure (word)

D1 First byte of text to measure (word)

A0 Pointer to text buffer

A3 Pointer to the edit record

A4 Locked handle to the edit record

Registers on exit
D1 Pixel width of measured text (word)

TextEdit Reference

CHAPTER 2

TextEdit

Hit Test Hook Registers

You specify the i nt Hi t Test Hook constant as the value of the whi ch parameter to
identify the hit test hook routine as the one you want to replace. The hit test hook routine
determines the glyph position in a line given the pixel width from the left edge of the
view rectangle. For system software before System 7, the default action is to call the
QuickDraw Text W dt h function to determine if the pixel width of the measured text is
greater than the input width. If it is, then the hit test hook routine calls the QuickDraw

Pi xel ToChar function and returns. For System 7, the default action is to call the
QuickDraw Pi xel ToChar function.

Registers on entry

WpIeL -

DO Length of text block (style run) to measure (word)
D1 Pixel width from start of text block (word)

D2 Slop (should equal 0) (word)

A0 Pointer to start of text block

A3 Pointer to the edit record

A4 Locked handle to the edit record

Registers on exit
DO Pixel width to character offset in text block (low word)

A Boolean that is TRUE if a character offset corresponding to the given pixel
width was found (high word). Otherwise, FALSE.

D1 Character offset (word)

D2 ABoolean that is TRUE if the pixel width falls within the leading edge of the
character (low word). Otherwise, FALSE.

TextEdit also uses the least significant bit of the high word. If the hit test hook
routine calls Pi xel ToChar, TextEdit sets this bit. If it uses Text W dt h, TextEdit
clears this bit. Your customized routine needs to do the same if you call either

Pi xel ToChar or Text W dt h (high word). See the chapter “QuickDraw Text” in
this book for more about these routines.

Note

In earlier versions of TextEdit, the value in register D2 on entry was not
always used. If you daisy-chain in a routine and then call t he hit test
hook routine, D2 must be 0 (on entry). O

New Width Measurement Hook Registers

You specify the i nt NW dt hHook constant as the value of the whi ch parameter to
identify the new width measurement hook routine as the one you want to replace. The
new width measurement hook routine measures portions of a line of text when a
non-Roman script system is installed. It is also used when only a Roman script system is
installed and the width hook field does not contain the address of a customized routine.

TextEdit Reference 2-115

CHAPTER 2

TextEdit

The default procedure calls Char ToPi xel or Text W dt h, depending on the primary
line direction. The appropriate font, style, and size characteristics have already been set
into the current graphics port by the time this routine is called.

The new width measurement hook routine is called to measure text for both Roman and
non-Roman script systems, so make sure that your customized routine is script-aware.
Registers on entry

DO Overall style run length, bounded by the line end (word)

D1 Offset position within style run on the current line (word)

D2 Slop (low word); direction flag (high word)

A0 Pointer to text buffer

A2 Pointer to current line start (from TextEdit's | i neSt art s array)

A3 Pointer to the edit record

A4 Locked handle to the edit record

Registers on exit
D1 Pixel width of measured text (word)

Text Width Measurement Hook Registers

You specify the i nt Text W dt hHook constant as the value of the whi ch parameter to
identify the low-memory global text width measurement hook routine as the one you
want to replace. By default, this hook field contains the address of the QuickDraw
Text W dt h function and provides a way to replace TextEdit’s use of Text W dt h. The
new width measurement hook routine uses the routine whose address is installed in
this field.

Registers on entry

DO Length (in bytes) of text to be measured (word)

D1 Offset in text of first byte to measure (word)

A0 Pointer to text to measure

A3 Pointer to the edit record

A4 Locked handle to the edit record

Registers on exit
D1 Pixel width of measured text (word)

SEE ALSO

For more information about the Set Pr eser ve@ yph procedure, see the chapter “Font
Manager” in this book. For more information about Dr awText , Text W dt h,
Pi xel ToChar, and Char ToPi xel , see the chapter “QuickDraw Text” in this book.

2-116 TextEdit Reference

CHAPTER 2

TextEdit

SPECIAL CONSIDERATIONS

Take the following precautions if you replace a default routine:

= Before placing the address of your routine in the TextEdit dispatch record, strip the
addresses, using the Operating System Ultilities St r i pAddr ess function, to
guarantee that your application is 32-bit clean. For more information, see Inside
Macintosh: Operating System Utilities.

» Before replacing a TextEdit routine with a customized one, determine whether more
than one script system is installed, and, if so, ensure that your customized routine
accommodates all of the installed script systems. This avoids the problem of your
customized routine producing results that are incompatible with the Script Manager.

= When you use assembly language, note that all registers must be preserved except
those specified as containing return values. Registers A3 contains a pointer to the edit
record and Register A4 contains a handle to it. You can obtain line start positions from
thel i neSt art s array in the edit record. Register A5 is always valid. Refer to
TECust omHook in the “TextEdit Reference” section for complete coverage of the
register content requirements for all hook routines.

TESetWordBreak

DESCRIPTION

The TESet Wor dBr eak procedure installs the address of a customized word-selection
break routine in the wor dBr eak field of the specified edit record.

PROCEDURE TESet Wr dBreak (wBrkProc: ProcPtr; hTE: TEHandl e);

wWBrkProc A pointer to the customized word-selection break routine.

hTE A handle to the edit record containing the wor dBr eak field to
be modified.

A word break routine determines which word is highlighted when the user double-clicks
in the text. It also determines where TextEdit breaks the text at the end of a line. You can
use TESet Wor dBr eak to replace the default routine in the wor dBr eak field that is used
for word selection and line breaking under certain circumstances. Whether or not
TextEdit uses the word-selection break routine referenced by this field is determined by
the algorithm implemented in the default TEFi ndWr d routine. For a description of this
algorithm, see “Customizing Word Selection” on page 2-61; this section also describes
what to consider if you replace the TEFi ndWr d hook routine.

When you replace the wor dBr eak field hook routine, your customized word break
routine is used instead of the default one. The default routine breaks words at any
character with an ASCII value of $20 or less (the space character or nonprinting
control characters). Your routine can use a different value.

Before non-Roman script systems were supported, TextEdit used the word break hook
routine installed in the wor dBr eak field for all word selection and line breaking.

TextEdit Reference 2-117

WpIeL -

CHAPTER 2

TextEdit

However, in order to support both Roman and non-Roman script systems, TextEdit now
uses the routine installed in the low-memory global variable TEFi ndWor d. The default
TEFi ndWor d hook routine determines which hook TextEdit should use for word
selection and line breaking—the wor dBr eak hook or the Text Utilities

Fi ndWor dBr eaks procedure—based on what script systems are installed and some
other factors. You can replace the TEFi ndWor d hook routine with a customized version.

ASSEMBLY-LANGUAGE INFORMATION

2-118

You must directly set the wor dBr eak field to point to your own word break routine; do
not use the TESet Wor dBr eak procedure.The registers for the word break routine must
contain the following values.

Registers on entry
A0 Pointer to text
DO Character position (word)

Register on exit

Z bit (zero Condition code:
flag)
status register 0 to break at specified character

1 not to break there

If you replace TEFi ndWor d, be careful to set the correct values in the appropriate
registers. For TEFi ndWor d, the registers are set on entry as specified below, and TextEdit
depends on the registers being set at exit as specified below.

Registers on entry

DO Current position (the value of sel St art field in edit record) (word)

D2 Identifier of routine that called Fi ndWor dBreaks (word)

Identifier Value Explanation

t eWor dSel ect 4 called for word selection

t eWor dDr ag 8 called for extending word selection

t eFr onFi nd 12 called for determining new line breaks

t eFr onRecal 16 called for word breaking in line recalculation

A3 Pointer to the edit record
A4 Locked handle to the edit record

Registers on exit
DO Word start (word)
D1 Word end (word)

TextEdit Reference

CHAPTER 2

TextEdit

SEE ALSO
For more information about the Fi ndWor dBr eaks procedure, see the chapter “Text
Utilities” in this book.
TESetClickLoop
The TESet O i ckLoop procedure installs in the cl i kLoop field of the edit record the
address of the application-supplied click loop routine.
PROCEDURE TESet O i ckLoop (clickProc: ProcPtr; hTE: TEHandl e);
clickProc A pointer to the customized click loop routine.
hTE A handle to the edit record whose cl i kLoop field is to be modified.
DESCRIPTION

The TESet Cl i ckLoop procedure lets you replace the default click loop routine. The

TEQ i ck procedure repeatedly calls the routine that the click loop field points to as long

as the user holds down the mouse button within the text of the view rectangle. The
default click loop routine scrolls only the text. However, you can provide a customized
click loop procedure that scrolls the text and the scroll bars in tandem.

If automatic scrolling is enabled, the default click loop routine checks to see if the mouse

has been dragged out of the view rectangle; if it has, the routine scrolls the text using
TEPi nScr ol | . (For more information, see “TEPinScroll” on page 2-93.) The amount by
which TEPi nScrol | scrolls the text vertically is determined by the | i neHei ght field
of the edit record for monostyled text and the LHTabl e for multistyled text.

ASSEMBLY-LANGUAGE INFORMATION

You can directly set the click loop (cl i kLoop) field; you don’t need to use the
TESet A i ckLoop procedure. Your routine should set register DO to 1 and preserve
register D2. Returning 0 in register DO terminates TEC! i ck.

TextEdit Reference 2-119

WpIeL -

CHAPTER 2

TextEdit

Summary of TextEdit

Pascal Summary

Constants

CONST

{Gestalt returned val ues}

gest al t Undef Sel ectorErr {Systens before 6.0.4, nultistyled TextEdit }
{ on all hardware}
{System 6. 0.4 Roman script systemon }

gestaltTEL = 1;
gestalt TE2 = 2;
gestalt TE3 = 3;
gestalt TE4 = 4;
gestalt TES = 5;

{alignnent styles: new constant

{ llci

{Script

-fam |y hardwar e}

Manager - conpati bl e. System 6.0.4 }

{ non-Roman script systens on all }
fam |y hardware. New neasuri ng hook }
{ nW DTHHook. }

{ llci

{Script

Manager —conpati bl e. System 6.0.4 }

{ non-Roman script systens on all non-llci }

{ fani

{Scri pt

{ all

{Script

Iy hardware.}

Manager - conpati bl e. System6.0.5 on }

har dwar e. New TEFeat ur eFl ag function.}

{ har dwar e}

{ of TESet Alignment and TEText Box}

t eFl ushDef aul t 0;
teCenter = 1
t eFl ushRi ght -1;
t eFl ushLeft -2;

{alignnent styles; old constant

{ backward-conpati bility}

teJust Left
teJust Cent er
t eJust Ri ght
t eForcelLeft

2-120 Summary of TextEdit

{flush according to

Manager —conpati bl e. System 7.0 on all

nanes for the align paranmeter }

systemdirection }

{centered for all scripts }

{flush right for all
{flush left for all

scri pts}
scri pts}

nanes supported for }

}

CHAPTER 2

TextEdit

{val ues for TEFeatureFlag feature paraneter}

t eFAut oScr ol | = 0;
t eFAut oScr =
t eFText Buf feri ng =
teFQutlineH lite =
t eFl nl i nel nput =
t eFUseText Servi ces

RPLWUNREO

{val ues for TEFeatureFl ag action

teBitd ear = 0;
t eBi t Set = 1;
teBit Test = -1;

{automatic scrolling

{old constant for automatic scrolling}
{text buffering}

{outline highlighting}

{inline input}

{use inline input service}

par anet er}

{cl ear TEFeatureFl ag features}

{set TEFeat ureFl ag features}

{test TEFeatureFl ag features: return }
{ the current setting}

{selectors for identifying the routine that called TEFi ndWrd }

t eWor dSel ect = 4;
t eWor dDr ag = 8;
t eFr onfi nd = 12;

t eFr onRecal

16;

{call ed for deternining new}

{ l'ine breaks}

{called for extending word sel ection}
{called for word sel ection}

{called for word breaking in line }

{ recal cul ati on}

{val ues for TESet Styl e/ TEConti nuousStyl e/ TERepl aceStyl e nodes}

doFont = 1;
doFace = 2;
doSi ze = 4,
doCol or = 8;
doAl | = 15;
addSi ze = 16;
doToggl e = 32;

{sel ectors for TECust onHook}
i nt EOLHook = 0;

nt Dr awHook =
nt W dt hHook =
nt H t Test Hook
nt NW dt hHook

nt Text W dt hHook

1

Summary of TextEdit

{set font fanmily nunber}
{set character style}

{set type size}

{set color}

{set all attributes}

{adj ust type size }

{toggl e node for TESet Styl e}

{end-of -1i ne hook}
{drawi ng hook}
{wi dt h nmeasur enent hook}

; {hit-test hook}
; {nW DTHHook neasur enent hook}
; {Text Wdt h neasurenment hook}

2-121

WpIeL -

CHAPTER 2

TextEdit
Data Types
TYPE TERec =
RECORD
dest Rect : Rect ; {destination rectangl e}
Vi ewRect : Rect ; {view rectangl e}
sel Rect : Rect ; {the sel ection rectangl e}
i neHei ght: Integer; {used for vertical spacing of |ines}
font Ascent: |nteger; {used for caret/highlighting position}
sel Poi nt: Poi nt ; {point selected with the nouse}
sel Start: I nt eger; {start of selection range}
sel End: I nt eger; {end of selection range}
active: I nt eger; {set when record is }
{ activated/deacti vat ed}
wor dBreak: ProcPtr; {word break hook}
cli kLoop: ProcPtr; {click | oop hook}
clickTime: Longlnt; {used internally}
clickLoc: I nt eger; {used internally}
caret Tinme: Longlnt; {used internally}
caret State: Integer; {used internally}
just: I nt eger; {alignnent of text}
t eLengt h: I nt eger; {length of text}
hText : Handl e; {handl e to text to be edited}

hDi spatchRec: Longlnt; {handle to TextEdit }
{ dispatch record}

clikStuff: Integer; {used internally}

crOnly: I nt eger; {if <0, new line at Return only}

t xFont : I nt eger; {text font}

t xFace: Styl e; {character style; unpacked byte}

t xMode: I nt eger; {pen node}

txSi ze: I nt eger; {value indicates either a multistyled }

{ edit record or a font size}

i nPort: Gafbtr; {a pointer to the grafPort for this TERec}
hi ghHook: ProcPtr; {used for text highlighting }

car et Hook: ProcPtr; {used for the caret appearance}

nLi nes: I nt eger; {nunber of Iines}

lineStarts: ARRAY[O0..16000] OF Integer
{positions of line starts}

END;
TEPt r = "TERec
TEHandl e = "TEPtr

2-122 Summary of TextEdit

CHAPTER 2

TextEdit

Char s= PACKED ARRAY[0..32000] OF CHAR

Char sHandl e = "CharsPtr;

CharsPtr = "Chars;

TEStyl eRec =

RECORD IHIII
nRuns: I nt eger; {nunber of style runs}
nStyl es: I nt eger; {size of style table} 5
styl eTab: STHandl e; {handl e to style table} %
| hTab: LHHandl e; {handl e to |ine-height table} 3
t eRef Con: Longl nt ; {reserved for application use}

null Style: Null StHandle; {handle to style set at }
{ null selection}
runs: ARRAY [0..8000] OF Styl eRun;
{ ARRAY [0..8000] OF Styl eRun}
END;

TEStyl ePtr = ~"TEStyl eRec;
TEStyl eHandl e = "TEStyl ePtr;

Styl eRun =
RECORD
start Char: Integer; {starting character position}
styl el ndex: | nteger; {index in style table}
END;
STEl ement =
RECORD
st Count : I nt eger; {nunber of runs in this style}
st Hei ght : I nt eger; {l'ine hei ght}
st Ascent : I nt eger; {font ascent}
st Font : I nt eger; {font (fanmily) nunber}
st Face: Styl e; {character style}
st Size: I nt eger; {size in points}
st Col or: RGBCol or; {absol ute RGB col or}
END;
STPtr = "TEStyl eTabl e;
STHandl e = ~STPtr;

TEStyl eTabl e = ARRAY [0..1776] OF STEl enent ;

Summary of TextEdit 2-123

2-124

CHAPTER 2

TextEdit
LHEl emrent =
RECORD
| hHei ght : I nt eger; {maxi mum hei ght in |ine}
| hAscent : I nt eger; {maxi mum ascent in |ine}

END;

LHPtr = ~LHTabl e;
LHHandl e = ~LHPtr;

LHTabl e = ARRAY [0..8000] OF LHEl enent;

Scr pSTEl enent =

RECORD
scrpStart Char: Longl nt; {offset to start of style}
scr pHei ght : I nt eger; {l'i ne height}
scrpAscent: I nt eger; {font ascent}
scrpFont: I nt eger; {font (family) nunber}
scrpFace: Styl e; {character style}
scrpSi ze: I nt eger; {size in points}
scrpCol or: RGBCol or; {absol ute (RGB) color}
END;

ScrpStyl 2Tab = ARRAY[0..1600] OF ScrpSTEl erent ;

St ScrpRec =
RECORD
scrpNStyl es: I nt eger; {nunber of styles in scrap}
scrpStyl eTab: ScrpSTTabl e; {table of styles for scrap}
END;

StScrpPtr = St Scr pRec;
St ScrpHandl e = ~St ScrpPtr;

Nul | St Rec =
RECORD
t eReserved: Longl nt ; {reserved for future expansion}
nul | Scr ap: St ScrpHandl e; {handle to scrap style tabl e}
END;

Nul | StPtr = ~Nul | St Rec;
Nul | St Handl e = ~Nul | St Ptr;

TextStyle =
RECORD

Summary of TextEdit

CHAPTER 2

TextEdit
tsFont: Integer; {font (fanmily) nunber}
tsFace: Style; {character Styl e}
tsSi ze: Integer; {size in points}
t sCol or: RGBCol or; {absol ute (RGB) color}

END;

Text Styl ePtr = ~Text Styl e;
Text Styl eHandl e = *"Text Styl ePtr;

TEl nt Hook = I nt eger;

WpIeL -

Routines

Initializing TextEdit, Creating an Edit Record, and Disposing of an Edit Record
PROCEDURE TEI ni t;

FUNCTI ON TESt yl eNew (destRect: Rect; viewRect: Rect): TEHandl e;
FUNCTI ON TENew (destRect, viewRect: Rect): TEHandl e;
PROCEDURE TEDI spose (hTE: TEHandl e) ;

Activating and Deactivating an Edit Record

PROCEDURE TEActi vate (hTE: TEHandl e);
PROCEDURE TEDeacti vate (hTE: TEHandl e) ;

Setting and Getting an Edit Record’s Text and Character Attribute Information

PROCEDURE TEKey (key: Char; hTE: TEHandl e);
PROCEDURE TESet Text (text: Ptr; length: Longlnt; hTE: TEHandl e);
FUNCTI ON TEGet Text (hTE: TEHandl e): CharsHandl e;

PROCEDURE TESet Styl eHandl e (theHandl e: TEStyl eHandl e; hTE: TEHandl e);
FUNCTI ON TEGCet St yl eHandl e (hTE: TEHandl e): TEStyl eHandl e;

Setting the Caret and Selection Range

PROCEDURE TEI dl e (hTE: TEHandl e);
PROCEDURE TEC i ck (pt: Point; extend: Bool ean; hTE: TEHandl e);
PROCEDURE TESet Sel ect (sel Start, sel End: Longlnt; hTE: TEHandl e);

Displaying and Scrolling Text

PROCEDURE TESet Al i gnnent (align: Integer; hTE TEHandl e);
PROCEDURE TEUpdat e (rUpdate: Rect; hTE: TEHandl e);

Summary of TextEdit 2-125

CHAPTER 2

TextEdit
PROCEDURE TEText Box (text: Ptr; length: Longlnt;
box: Rect; just: Integer);
PROCEDURE TECal Text (hTE: TEHandl e) ;
FUNCTI ON TEGet Hei ght (endLi ne, startLine: LONG NT;
hTE: TEHandl e): | NTEGER;
PROCEDURE TEScr ol | (dh,dv: Integer; hTE TEHandl e);
PROCEDURE TEPi nScr ol | (dh: INTEGER; dv: |INTECER;, hTE: TEHandl e);
PROCEDURE TEAuUt oVi ew (f Aut o: Bool ean; hTE: TEHandl e);
PROCEDURE TESel Vi ew (hTE: TEHandl e);

Modifying the Text of an Edit Record

PROCEDURE TEDel et e (hTE: TEHandl €);
PROCEDURE TEI nsert (text: Ptr; length: Longlnt; hTE: TEHandl e);
PROCEDURE TECut (hTE: TEHandl e);
PROCEDURE TECopy (hTE: TEHandl €);
PROCEDURE TEPast e (hTE: TEHandl e) ;
PROCEDURE TESt yl ePast e (hTE: TEHandl e) ;

FUNCTI ON TEToScr ap: OSErr;
FUNCTI ON TEFr onfscr ap: OSErr;

Managing the TextEdit Private Scrap

FUNCTI ON TEScr apHandl e: Handl e;
FUNCTI ON TEGet Scr apLengt h: Longl nt;
PROCEDURE TESet ScrapLength (length: Longlnt);

Checking, Setting, and Replacing Styles

PROCEDURE TESet Styl e (rmode: Integer; newStyle: TextStyle;
redraw. Bool ean; hTE: TEHandl e);

PROCEDURE TERepl aceStyl e (rmode: | NTECGER, ol dStyle, newStyle: TextStyle;
redraw. BOOLEAN, hTE: TEHandl e);

FUNCTI ON TEConti nuousStyle (VAR node: Integer; VAR aStyle: TextStyle;
hTE: TEHandl e) : Bool ean;

PROCEDURE TESt yl el nsert (text: Ptr; length: Longlnt;
hST: STScrpHandl e; hTE: TEHandl e);
FUNCTI ON TEGet Styl eScr apHandl e
(hTE: TEHandl e): Styl eScrpHandl e;

PROCEDURE TEUseStyl eScrap (rangeStart: Longlnt; rangeEnd: Longlnt;
newSt yl es: STScrpHandl e; redraw. Bool ean;
hTE: TEHandl e);

2-126 Summary of TextEdit

CHAPTER 2

TextEdit

FUNCTI ON TENuntt yl es (rangeStart: Longlnt; rangeEnd:

hTE: TEHandl e): Longlnt;

Using Byte Offsets and Corresponding Points

FUNCTI ON TEGet Of f set (pt: Point; hTE: TEHandl e): Integer;
FUNCTI ON TEGCet Poi nt (of fset: Integer; hTE TEHandl e):

Additional TextEdit Features

FUNCTI ON TEFeat ur eFl ag (feature: Integer; action: |nteger;

hTE: TEHandl e) : Integer;

Customizing TextEdit

PROCEDURE TECust ormmHook (whi ch: TEI nt Hook; VAR addr:
hTE: TEHandl e);

PROCEDURE TESet Wbor dBr eak (wWBrkProc: ProcPtr; hTE: TEHandl e);
PROCEDURE TESet O i ckLoop (clickProc: ProcPtr; hTE: TEHandl e);

ProcPtr;

C Summary
Constants
enum {
/*alignment styles of TESet Ali gnnent and TEText Box*/
t eFl ushDef aul t = 0, /*flush according to systemdirection*/
teCent er = 1, /*centered for all scripts*/
t eFl ushRi ght = -1, [*flush right for all scripts*/
teFl ushLef t = -2, [*flush left for all script*/

/*alignment styles; old nanes supported for backward-conpatibility*/

teJust Left = 0,
t eJust Cent er =1,
t eJust Ri ght = -1,
t eForceleft = -2,

/*feature or bit definitions for TEFeatureFl ag feature paraneter*/
t eFAut oScrol | = 0, /*automatic scrolling*/
, /*old constant for autonmatic scrolling*/

t eFAut oScr =
t eFText Buf f eri ng
teFQutlineH lite

0
1, /*text buffering*/
2

Summary of TextEdit

, /*outline highlighting*/

2-127

WpIeL -

CHAPTER 2

TextEdit
t eFl nl i nel nput = 3, /*inline input*/
t eFUseText Servi ces = 4, /*use inline input service*/

/* action for the new bit (un)set interface, TEFeatureFl ag */

teBi td ear = 0, /*set the selector bit*/

t eBi t Set =1,

b

enum {

teBit Test = -1, /*no change; just return the current setting*/
teBitC ear = 0,

t eBi t Set =1, /*set the selector bit*/

teBit Test = -1, /*no change; just return the current setting*/

/*constants for identifying the routine that called TEFi ndWrd */

t eWor dSel ect = 4, /*clickExpand to sel ect word*/

t eWor dDr ag = 8, /*clickExpand for extending word sel ection*/
t eFr onFi nd = 12, /*FindLine called it ($0C)*/

t eFr onRecal = 16,

/*called for word breaking in line recal cul ati on*/

/*val ues for TESet Styl e/ TEConti nuousStyl e/ TERepl aceStyl e nodes*/

doFont = 1, /*set font fam |y nunber*/
doFace = 2, /*set character style*/
doSi ze = 4, /*set type size*/
doCol or = 8, /*set col or*/
doAl | = 15, /*set all attributes*/
addSi ze = 16, /*adj ust type size*/
b
enum {
doToggl e = 32, /*toggl e node for TESet Styl e*/
/*sel ectors for TECust omHook*/
i nt EOLHook = 0, /*end- of -1 i ne hook*/
i nt Dr anHook = 1, /*drawi ng hook*/
i nt W dt hHook = 2, /*wi dt h neasurenment hook*/
i nt H t Test Hook = 3, /*hit-test hook*/
i nt N\W dt hHook = 6, /*nW DTHHook neasurement hook*/
i nt Text Wdt hHook = 7, [*TextWdth neasurenment hook*/
}

2-128 Summary of TextEdit

CHAPTER 2

TextEdit

Types

t ypedef pascal
t ypedef pascal

struct TERec {
Rect dest Rect;
Rect vi ewRect;
Rect sel Rect;
short |ineHei ght;
short fontAscent;
Poi nt sel Poi nt;
short sel Start;
short sel End,;
short active;

Wor dBr eakPr ocPtr wor dBr eak;
Qi kLoopProcPtr clikLoop

[ong clickTine;
short clickLoc;
| ong caretTi ne;
short caret State;

short just;
short telength;
Handl e hText;

| ong hDi spat chRec;
short clikStuff;
short crOnly;
short txFont;
Styl e txFace;

char filler;

short txMode;
short txSize;

/*val ue indicates

Graf Ptr inPort;
ProcPtr hi ghHook
ProcPt s car et Hook;
short nLi nes;
short

b

Bool ean (*WbrdBreakProcPtr) (Ptr text,
Bool ean (*C i kLoopProcPtr) (void);

lineStarts[16000];/*positions of

short char Pos);

/*destination rectangl e*/

/*view rectangl e*/

/*the selection rectangl e*/

/*used for vertical spacing of |ines*/
/*used for caret/highlighting position*/
/*point selected with the nouse*/

/*start of selection range*/

/*end of selection range*/

/*set when record is activated/ deactivated*/
/*word break hook*/

/*click | oop hook*/

/*used internally*/

/*used internally*/

/*used internally*/

/*used internally*/

/*alignment of text*/

/*length of text*/

/*handl e to text to be edited*/

/*handl e to TextEdit dispatch record*/
/*used internally*/
/*if <0, new line at
/[*text font*/
/*character style

WpIeL -

Return onl y*/
unpacked byt e*/
/*pen node*/

either a nultistyled edit record or a font size*/

/*a pointer to the grafPort for this TERec*/

/*used for text highlighting and the caret appearance*/
/*used from assenbly | anguage*/

[*nunber of |ines*/

line starts*/

typedef struct TERec TERec;

typedef TERec *TEPtr,

Summary of TextEdit

** TEHand| e;

2-129

CHAPTER 2

TextEdit

t ypedef char Chars[32001];
typedef char *CharsPtr, **CharsHandl e;

struct StyleRun {
short startChar; /*starting character position*/

short stylelndex; /*index in style table*/

1
typedef struct StyleRun Styl eRun;

struct STEl enent {

short st Count; /*nunmber of runs in this style*/
short stHeight; /*1'ine height*/

short st Ascent; /*font ascent*/

short stFont; /[*font fam |y nunber*/

Styl e stFace; /*character style*/

char filler; /*stFace i s unpacked byte*/
short st Size; /*size in points*/

R@&BCol or stCol or; /*absolute Red G een Bl ue col or*/
s

typedef struct STEl enent STEl enent;
typedef STEl ement TEStyl eTabl e[1777], *STPtr, **STHandl e;

struct LHEl enent {
short | hHei ght; [*maxi mum hei ght in line*/
short | hAscent; [*maxi mum ascent in |ine*/

b
t ypedef struct LHEl enent LHEl enent;

t ypedef LHEl ement LHTabl e[8001], *LHPtr, **LHHandl e;
/* ARRAY [0..8000] OF LHEl ement */

struct ScrpSTEl emrent {
| ong scrpStartChar; /*starting character position*/
short scrpHeight; /*l'ine height*/
short scrpAscent;
short scrpFont;
Styl e scrpFace; / *unpacked byt e*/
char filler; /*scrpFace is unpacked byte*/
short scrpSize;

2-130 Summary of TextEdit

CHAPTER 2

TextEdit

RGBCol or scrpCol or;
b

t ypedef struct ScrpSTEl enent ScrpSTEl enent;
t ypedef ScrpSTEl enent ScrpSTTabl e[1601]; /*ARRAY [0..1600] OF Scr pSTE! enent */

struct STScrpRec {

short scrpNStyl e; [*nunber of styles in scrap*/
ScrpSTTabl e scrpStyleTab; /*table of style for scrap*/
b

typedef struct StScrpRec StScrpRec;
typedef St ScrpRec *St ScrpPtr, **St ScrpHandl e;

struct Null STRec {

| ong teReserved; /*reserved for future expansion*/
St Scr pHandl e nul | Scr ap; /*handl e to scrap style tabl e*/
1

typedef struct Null StRec Null STRec;
typedef Null StRec *Nul | StPtr, **Nul | St Handl e;

struct TEStyl eRec {

short nRuns; /*nunber of style runs*/

short nStyl es; /*size of style table*/

STHandl e styl eTab; /*handl e to style table*/
LHHandl e | hTab; /*handl e to |ine-height table*/
| ong t eRef Con; /*reserved for application use*/

Nul | STHandl e nul I Style; /*handle to style set at null selection*/
Styl eRun runs [8001]; /*ARRAY [0..8000] OF Styl eRun*/
b

typedef struct TEStyl eRec TEStyl eRec;
typedef TEStyl eRec *TEStyl ePtr, **TEStyl eHandl e;

struct TextStyle {

short tsFont; /*font fam |y numnber*/
Style tsFace; /*character Style*/

char filler; /*tsFace i s unpacked byte*/
short tsSize; /*size in points*/

RGBCol or tsColor; /*absolute red, green, and bl ue col or*/

Summary of TextEdit 2-131

WpIeL -

CHAPTER 2

TextEdit

typedef struct TextStyle TextStyle;
typedef TextStyle *TextStylePtr, **TextStyl eHandl e;

t ypedef short TEI nt Hook;

Routines

Initializing TextEdit, Creating an Edit Record, and Disposing of an Edit Record

pascal void TElnit (voi d);

pascal TEHandl e TEStyl eNew (const Rect *destRect, const Rect *viewRect);
pascal TEHandl e TENew (const Rect *destRect, const Rect *viewRect);
pascal voi d TEDi spose (TEHandl e hTE);

Activating and Deactivating an Edit Record

pascal void TEActivate (TEHandl e hTE);
pascal void TEDeactivate (TEHandl e hTE);

Setting and Getting an Edit Record’s Text and Character Attribute Information

pascal void TEKey (short key, TEHandl e hTE);
pascal void TESet Text (const void *text, long length, TEHandl e hTE);

pascal CharsHandl e TEGet Text
(TEHandl e hTE);

pascal voi d TESet Styl eHandl e
(TEStyl eHandl e t heHandl e, TEHandl e hTE);

pascal TEStyl eHandl e TEGet Styl eHandl e
(TEHandl e hTE);

Setting the Caret and Selection Range

pascal void TEldle (TEHandl e hTE);
pascal void TEC i ck (Poi nt pt, Bool ean fExtend, TEHandl e hTE);
pascal void TESet Sel ect (long sel Start, |ong sel End, TEHandl e hTE);

Displaying and Scrolling Text
pascal void TESet Alignment (short just, TEHandl e hTE);

pascal void TEUpdat e (const Rect *rUpdate, TEHandl e hTE);

pascal void TEText Box (const void *text, long |length, const Rect *box,
short just);

pascal void TECal Text (TEHandl e hTE);

pascal |ong TEGet Hei ght (long endLine, long startLine, TEHandl e hTE);

2-132 Summary of TextEdit

CHAPTER 2

TextEdit
pascal void TEScroll (short dh, short dv, TEHandl e hTE);
pascal void TEPi nScroll (short dh, short dv, TEHandl e hTE);
pascal void TEAut oVi ew (Bool ean fAuto, TEHandl e hTE);
pascal void TESel Vi ew (TEHandl e hTE);

Modifying the Text of an Edit Record

pascal void TEDel ete (TEHandl e hTE);

pascal void TEl nsert (const void *text, long |l ength, TEHandl e hTE);
pascal void TECut (TEHandl e hTE);

pascal void TECopy (TEHandl e hTE);

pascal void TEPaste (TEHandl e hTE);

pascal void TEStyl ePaste (TEHandl e hTE);

pascal OSErr TEToScrap (voi d);

pascal OSErr TEFronfcrap (void);

Managing the TextEdit Private Scrap

#defi ne TEScrapHandl e() (* (Handl e*) OxAB4)
#def i ne TEGet ScrapLength() ((long) * (unsigned short *) 0xO0ABO)

pascal void TESet ScraplLength
(long length);

Checking, Setting, and Replacing Styles
pascal void TESet Styl e (short node, const TextStyle *newStyle, Bool ean
f Redraw, TEHandl e hTE);

pascal void TERepl aceStyle (short npde, onst TextStyle *ol dStyl e,
const TextStyle *newStyl e, Bool ean f Redraw,
TEHandl e hTE);

pascal Bool ean TEConti nuousStyl e
(short *node, TextStyle *aStyle, TEHandl e hTE);

pascal void TEStyl el nsert (const void *text, long |ength,
STScr pHandl e hSt, TEHandl e hTE);

pascal St ScrpHandl e TEGet Styl eScr apHandl e
(TEHandl e hTE);

pascal void TEUseStyleScrap (long rangeStart, |ong rangeEnd, St ScrpHandle
newSt yl es, Bool ean fRedraw, TEHandl e hTE);

pascal |ong TENunstyl es (long rangeStart, |ong rangeEnd, TEHandl e hTE);

Summary of TextEdit 2-133

WpIeL -

Using Byte Offsets and Corresponding Points

pascal short TEGet O f set (Point pt, TEHandl e hTE);
pascal Poi nt TEGet Poi nt (short offset, TEHandl e hTE);

Additional TextEdit Features
pascal short TEFeatureFlag (short feature, short action, TEHandl e hTE);

Customizing TextEdit

pascal void TECust omHook (TEl nt Hook whi ch, ProcPtr *addr, TEHandl e hTE);
pascal void TESet Wr dBreak (WordBreakProcPtr wBrkProc, TEHandl e hTE);
pascal void TESetd ickLoop (dikLoopProcPtr clickProc, TEHandl e hTE);

Assembly-Language Summary

Trap Macros

Trap Macro Names

Pascal name Trap macro name
TECont i nuousStyl e _TEConti nuousStyl e
TEUseSt yl eScr ap _TEUseSt yl eScr ap
TECust omHook _TECust onHook
TENuntt yl es _TENuntt yl es
TEFeat ur eFl ag _TEFeat ur eFl ag
TEStyl ePast e _TEStyl ePast e
TERepl aceStyl e _TERepl aceStyl e
TEGet St yl eHandl e _TEGet St yl eHandl e
TESet St yl eHandl e _TESet St yl eHandl e
TERepl aceStyl e _TERepl aceStyl e
TEGet Styl eScr ap _TEGet St yl eScr ap
TEGet St yl eHandl e _TEGet St yl eHandl e
TEGet St yl eScr apHandl e _TEGet St yl eScr apHandl e
TEStyl el nsert _TEStyl el nsert
TEGet Poi nt _TEGet Poi nt

TEGet Hei ght _TEGet Hei ght

CHAP

TextEdit

Global Variables

TER 2

Wor dRedr aw

TEFi ndWor d
TERecal

TEDoText

TEScr pHandl e
TEScr apLengt h

Used for line calculations to determine how much of a line must be redrawn after
a character is entered.

TextEdit’s word selection and line breaking routine.

The address of the routine called by TECal Text to recalculate the line starts
and set the first and last characters that need to be redrawn.

The address of a multi-purpose text editing routine used to display, highlight,
and hit-test characters, and position the pen to draw the caret.

A handle to the TextEdit private scrap.
The size of the TextEdit scrap in bytes.

Summary of TextEdit 2-135

WpIeL -

CHAPTER 2

TextEdit

2-136 Summary of TextEdit

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	TextEdit
	About TextEdit
	TextEdit and Standard Macintosh Features
	Multistyled and Monostyled Text
	Font and Keyboard Script Synchronization
	Cutting, Copying, and Pasting Text
	The TextEdit User Interface
	The Selection Range, the Insertion Point, and High...
	Caret Position and Movement
	Text Alignment
	Line Measurement
	Text Buffering

	The TextEdit Private, Null, and Style Scraps
	An Overview of the TextEdit Data Structures
	An Overview of the Edit Record
	Related Data Structures

	Using TextEdit
	Getting Started With TextEdit
	Preparing to Use TextEdit
	Displaying Static Text
	Creating an Edit Record
	Specifying the Destination and View Rectangles
	Setting the Text of an Edit Record
	Setting the Selection Range or the Insertion Point...
	Scrolling Text
	Disposing of an Edit Record

	Responding to Events Using TextEdit
	Handling a Null Event
	Activating an Edit Record
	Handling Mouse-Down Events
	Responding to an Update Event
	Accepting Text Input Through Key-Down Events

	Moving Text In and Out of Edit Records
	Using TextEdit to Cut, Copy, and Paste Text
	Inserting and Deleting Text

	Text Attributes
	Checking the Text Attributes Across a Selection Ra...
	Toggling an Attribute
	Handling a Font Menu
	Handling a Font Size Menu
	Handling a Style Menu
	Changing the Text Alignment

	Saving and Restoring a TextEdit Document, and Impl...
	Saving a TextEdit Document
	Restoring an Existing TextEdit Document
	Handling Undo

	Customizing TextEdit
	Replacing the End-of-Line Routine
	Replacing the Drawing Routine
	Replacing the Width-Measuring Routines
	Replacing the Hit Test Routine
	Customizing Word Selection
	Customizing Automatic Scrolling
	Determining the Line Length
	Advanced Customization

	TextEdit Reference
	Data Structures
	The Edit Record
	The High Hook and Caret Hook Fields
	The Style Record
	The Style Table
	The Line Height Table
	The Null Style Record
	The Style Scrap Record
	The Scrap Style Table
	Text Style Record

	Routines
	Initializing TextEdit, Creating an Edit Record, an...
	Activating and Deactivating an Edit Record
	Setting and Getting an Edit Record’s Text and Char...
	Setting the Caret and Selection Range
	Displaying and Scrolling Text
	Modifying the Text of an Edit Record
	Managing the TextEdit Private Scrap
	Checking, Setting, and Replacing Styles
	Using Byte Offsets and Corresponding Points
	Additional TextEdit Features
	Customizing TextEdit

	Summary of TextEdit
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Types
	Routines

	Assembly-Language Summary
	Trap Macros
	Global Variables

	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

