

A P P E N D I X C

C

K
eyboard R

esources

Keyboard Resources C

This appendix describes the Macintosh keyboard resources. The keyboard resources
make text input possible; they provide a hardware interface to different types of
keyboards and a software interface to different script systems. Some of the keyboard
resources belong to an individual script system and are independent of any particular
keyboard; others belong to a type of keyboard and are independent of any script system.

By installing the appropriate keyboard resources, you can perform text input in any
script system, from any Macintosh-supported keyboard. By modifying the keyboard
resources, you can localize or customize text input by changing keyboard layouts,
remapping key combinations, creating keyboard icons, modifying the keyboard-layout
display in the Key Caps desk accessory, and changing the way the user switches among
keyboard layouts and keyboard scripts.

Most text-processing applications have no need for direct access to keyboard resources.
You may need to read this appendix, however, if you are

■ using the Event Manager KeyTranslate function to get specific information from a
custom keyboard-layout resource or to make Command-key handling more
script-independent

■ creating your own localized version of a script system

■ designing a new type of keyboard

Before reading this appendix, read the chapter “Introduction to Text on the Macintosh”
in this book. The keyboard resources are used by the Script Manager, described in this
book, and by the Event Manager and Menu Manager, described in Inside Macintosh:
Macintosh Toolbox Essentials. Resources in general are described in the Resource Manager
chapter of Inside Macintosh: More Macintosh Toolbox. Additional information on keyboards
themselves can be found in Inside Macintosh: Devices and in Guide to the Macintosh Family
Hardware.

This appendix starts with a brief discussion of keyboards. It then lists the keyboard
resources, shows how they may differ in different versions of localized software, and
presents the concept of key translation. It then discusses each keyboard resource in detail.

Note
All keyboard information that relates to virtual key codes and their
relation to raw key codes is discussed under “Key-Map Resource (Type
'KMAP')” beginning on page C-11, even if it is not specifically related to
the key-map resource. ◆
C-3

A P P E N D I X C

Keyboard Resources

About Keyboards C

The Macintosh computer supports over 12 separate physical types of keyboards. Your
application needs to be able to handle text input from the domestic and ISO layouts of all
Apple keyboards. It also needs to be able to distinguish multiple keyboards and to use
the modifier flag that detects the state of the modifier keys (Shift, Caps Lock, Command,
Option, and Control) on keyboards.

Table C-1 lists the keyboard types. These type values are used in some of the keyboard
resources discussed later in this appendix.

* Keyboard type is also the resource ID of the corresponding 'KMAP' or 'KCAP' resource.
The KbdType low-memory global variable contains the low byte of this value for the last
keyboard used.

Table C-1 The keyboard types

Keyboard
type*

Keyboard

1 Apple Keyboard and Apple Keyboard II (domestic layout)

2 Apple Extended Keyboard and Apple Extended Keyboard II
(domestic layout)

3 Small Macintosh 512K Keyboard (no keypad; domestic layout)

4 Apple Keyboard (ISO layout)

5 Apple Extended Keyboard II (ISO layout)

6 Apple Macintosh Portable Keyboard (domestic layout)

7 Apple Macintosh Portable Keyboard (ISO layout)

8 Apple Macintosh Keyboard II (domestic layout)

9 Apple Macintosh Keyboard II (ISO layout)

11 Macintosh Plus Keyboard with the built-in keypad

12 Macintosh PowerBook Keyboard (domestic layout)

13 Macintosh PowerBook Keyboard (ISO layout)

259 Small Macintosh 512K Keyboard (no keypad; ISO layout)
C-4 About Keyboards

A P P E N D I X C

Keyboard Resources

C

K
eyboard R

esources

Figure C-1 and Figure C-2 show the U.S. layout of the Apple Keyboard II and Apple
Extended Keyboard II and the virtual key codes produced by each key. The codes are the
values that result after the raw key codes produced by the hardware have been mapped
through the key-map resource. See “Key Translation” on page C-8. Other keyboards can
produce different virtual key codes; some produce raw key codes only.

The Apple Extended Keyboard may be connected to the Apple Desktop Bus (ADB) of
any computer in the Macintosh II or Macintosh SE family. It contains duplicated Shift,
Option, and Control keys to the right of the Space bar. Other keyboards have different
physical layouts.

Figure C-1 Apple Keyboard II (domestic layout)

Figure C-2 Apple Extended Keyboard II (domestic layout)

81 75 6771

91 92 7889

87 88 6986

84

65

76

82

83 85

1 2 3 4 5 6 7 8 9 0
+! @ # % ^ & ()

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

$

{
[]

}

?
/.,

=

: "
; '

ctrl

= /

7 8 9

4 5 6

1 2 3

0 .

_

+

ð

shift

esc

shift

return

delete`
~

tab

enter

clear

|

55

18 19 20 21 23 22 26 28 25 29

12 13 14 15 17 16 32 34 31 35

0 1 2 3 5 4 38 40 37

6 7 8 9 11 45 46

33 30

564743

41

27 512410

48

59

39

56

49 12458 123 125 12655

57

44

42

36

\

lock
caps

optionl

F13 F14 F15 num

lock

caps

lock

scroll

lock

= /
num

lock

del

help

ins

home
page

up

end
page

down

esc F6 F7 F8F5F1 F2 F3 F4 F9 F10 F11 F12

alt alt

1 2 3 4 5 6 7 8 9 0
+! @ # % ^ & ()

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

$

control

{
[]

}

?
/.,

=

: "
; '

control

~
`

shift

caps

lock

tab

option option

shift

delete

return

clear

7 8 9 _

4 5 6 +

1 2 3

enter0 .

53 122 120 99 118 96 97 98 100 101 109 103

114 115 116

117 119 121

105 107 113

123 125 124

126

81 75 6771

5955 55

18 19 20 21 23 22 26 28 25 29

12 13 14 15 17 16 32 34 31 35

0 1 2 3 5 4 38 40 37

7 8 9 11 45 46 43

33 30

564447

41

27 512450

48

57 39 36

656

49 58

42

5559 58

100

59

111

91 92 7889

87 88 6986

84 7683 85

6582
About Keyboards C-5

A P P E N D I X C

Keyboard Resources

Table C-2 shows the keyboard modifier bits in the high byte of the modifiers field of
an event record (defined by the EventRecord data type). The byte consisting of these
bits is used to control the selection of tables in the keyboard-layout resource. See
“Keyboard-Layout Resource (Type 'KCHR')” beginning on page C-18.

About the Keyboard Resources C

The keyboard resources are Macintosh resources that facilitate worldwide keyboard
handling and support the Macintosh script management system. They specify how
keyboard input is converted to text for a particular writing system, language, or region.
The Event Manager, the Script Manager, and the Menu Manager use the information in
these resources to convert keystrokes to character codes, to switch input among different
script systems, and to display the icon of the current keyboard in the Keyboard menu.

Note
Other Apple publications use the term ASCII code for character code (the
8-bit integer representing a text character generated by a key or a
combination of keys on the keyboard or keypad) and the terms key-down
transition code and response code for virtual key code (the key code that
actually appears in keyboard events—that is, the value produced after a
raw key code [the original value generated by a keyboard] has been
mapped through the key-map resource). The terms character code, raw key
code, and virtual key code are preferred in this book. ASCII code is limited
here to the 7-bit code representing a character from the lower half of the
Standard Roman character set. ◆

* See “Reassigning Right-Hand Key Codes” beginning on page C-14.

Table C-2 The keyboard modifier bits in an event record

Bit Key

7 (Right Control if used)*

6 (Right Option if used)*

5 (Right Shift if used)*

4 Control (Left Control if different from Right Control)

3 Option (Left Option if different from Right Option)

2 Caps Lock

1 Shift (Left Shift if different from Right Shift)

0 Command
C-6 About the Keyboard Resources

A P P E N D I X C

Keyboard Resources

C

K
eyboard R

esources

What the Keyboard Resources Are C
The keyboard resources fall into two categories: those that are hardware-dependent
(and script-independent) and those that are script-dependent (and
hardware-independent). It is this division that allows many different physical keyboards
to work correctly with many different script systems. Table C-3 lists the keyboard
resources and their resource types, and gives a capsule description of their contents.
More complete descriptions follow.

■ Key-map resource. Maps the raw key codes that have been generated by a specific
keyboard microprocessor into hardware-independent standard virtual key codes.
There is a maximum of one key-map resource per physical keyboard (several
keyboards can share a single key-map resource).

■ Key-remap resource. Remaps the virtual key codes for certain key combinations on
certain keyboards to other virtual key codes, to allow a single keyboard-layout
resource to work with all keyboards. This resource is optional; it is provided with
certain keyboard-layout resources.

■ Keyboard-layout resource. Maps virtual key codes to character codes. The
keyboard-layout resource implements the character set for a script system. It is with
different keyboard-layout resources that text input for different script systems and
localized versions of system software is enabled. A script system has one or more
keyboard-layout resources.

Table C-3 The keyboard resources

Name Resource type Contents

Key map 'KMAP' Tables to map raw key codes to virtual key
codes

Key remap 'itlk' Tables to remap virtual key codes for
certain key combinations

Keyboard layout 'KCHR' Tables to map virtual key codes to
character codes

Keyboard icons 'kcs#' Keyboard icon (1-bit; black-and-white)

'kcs4' Keyboard icon (4-bit)

'kcs8' Keyboard icon (8-bit)

Keyboard swap 'KSWP' Table specifying key combinations for
changing keyboard script or input method

Key caps 'KCAP' Data that determines keyboard display
About the Keyboard Resources C-7

A P P E N D I X C

Keyboard Resources

■ Keyboard icon family. Implements keyboard icons—small icons that represent a
keyboard script or input method—for screens of different bit depths (black-and white,
4-bit, and 8-bit, respectively). These icons are used in the Keyboard menu and in the
Keyboard control panel. There is one icon family per keyboard-layout resource (or
input method).

■ Keyboard-swap resource. Lists modifier-plus-key combinations that can be used to
change the keyboard script, or the keyboard layout or input method within a script.
There is one keyboard-swap resource per version of system software.

■ Key-caps resource. Specifies the physical arrangement of keys on a keyboard and is
used to display the characters produced by each keypress. The key-caps resource is
independent of any script system, but the Key Caps desk accessory uses it along with
the keyboard-layout resource of the current script system—and a font in the current
script system—to display the characters corresponding to each keypress or
combination of keypresses.There is one key-caps resource per physical keyboard.

Keyboard resources and localized system software

When Macintosh system software is localized for a non-U.S. market,
it contains replacements for or modifications to some of the U.S.
versions of the keyboard resources. See the discussion of U.S.
international resources and keyboard resources in the appendix
“Built-in Script Support” for a list of resources that may be replaced
during localization. ◆

Key Translation C
Key translation is the conversion of keystrokes to character codes. In early versions of
the Macintosh, keyboard translation was simple and direct: two low-memory pointers
in the System file (accessed through global variables Key1Trans or Key2Trans)
pointed to the translation routines. Those pointers are still available and are called by the
Macintosh Plus but are not called by newer systems. The pointers are preserved so that
applications that call them can still function correctly. However, they now point to a
routine that implements a new standard mechanism.

The standard mechanism was developed with the advent of ADB keyboards; it was
needed to map the different sets of raw key codes to a standard set of virtual key codes,
which could in turn be mapped to character codes. In the standard method, a keystroke
generates an interrupt; the keyboard driver maps the raw key code to a virtual key code,
which it sends to the Event Manager; the Event Manager maps the virtual key code to a
character code, and returns the character code to the driver. The driver in turn posts the
key-down event. This method has two advantages:
C-8 About the Keyboard Resources

A P P E N D I X C

Keyboard Resources

C

K
eyboard R

esources

■ The mapping from raw key code to virtual key code achieves keyboard hardware
independence. The raw mapping routine uses the table of a key-map resource for the
keyboard, in the System file or in ROM.

■ The mapping from virtual key code to character code allows support of multiple
character sets. It is performed by the Event Manager KeyTranslate function, which
is accessed through the _KeyTrans trap (not to be confused with the Key1Trans or
Key2Trans pointers). KeyTranslate maps the virtual key code (plus modifiers, if
any) to a character code, using tables in a keyboard-layout resource, also in the
System file or in ROM. (KeyTranslate also handles dead keys; see page C-19.)

The Macintosh keyboard routines handle the keyboard properly for all script systems.
Except for purely hardware-specific characteristics such as controlling lights on
the keyboard, the function of the keyboard is completely determined by
character-encoding tables in the keyboard-layout resource (with an optional associated
key-remap resource). For each virtual key code and each possible modifier-key state,
the character-encoding tables specify the equivalent character code. Figure C-3
summarizes the key translation process:

1. A keystroke initially produces a raw key code.

2. The keyboard driver uses the hardware-dependent key-map resource to map that raw
key code into a hardware-independent virtual key code, and to set bits indicating the
state of the modifier keys.

3. It then calls the Event Manager KeyTranslate function. The optional key-remap
resource specifies how KeyTranslate should remap certain key combinations on
certain keyboards before it performs its mapping. The key-remap resource
reintroduces hardware dependence because certain scripts, languages, and regions
need subtle differences in layout for specific keyboards. Generally, the key-remap
resource affects only a few keys.

4. KeyTranslate uses the keyboard-layout resource to map a modifier state and a
virtual key code into a character code, such as an ASCII code.

5. KeyTranslate returns the character code, and if the character code is nonzero the
keyboard driver posts the key-down event into the event queue.

The net result of the process of key translation is a virtual key code and a character code
in the message field of an event record, and modifier-key information in the
modifiers field of the event record.

Note
On the Macintosh Plus, the event record contains raw key codes, not
virtual key codes. However, except in the case of the small Macintosh
512K Keyboard with ISO layout, the Macintosh Plus raw key codes are
identical to the virtual key codes that would have been produced. ◆
About the Keyboard Resources C-9

A P P E N D I X C

Keyboard Resources

Figure C-3 The key translation process

Using the Keyboard Resources C

The Operating System, along with the Script Manager and other Macintosh system
software managers, uses information in the keyboard resources to convert keystrokes
into character codes; to display keyboard icons; to change the current keyboard script,
keyboard layout, or input method when the user enters Command-key combinations;
and to properly display keyboard layout with the Key Caps desk accessory.

Most applications do not handle any of these tasks and therefore have no need for
direct access to any of the keyboard resources. However, if you have the following
special software needs related to text input, you can use the keyboard resources to
help meet them:

■ If your application needs to provide better international support for Command-key
equivalents or a custom keyboard-layout resource, you can use the Event Manager
KeyTranslate function to get the information you need from the appropriate
keyboard-layout resource. See “Special Uses for the KeyTranslate Function” beginning
on page C-22.

'KMAP'

Raw key
code

Virtual
key code

'KCHR'
'itlk'

(if present)

New modifier
state

New virtual
key code

Character
code

Virtual
key code

KeyTranslate function

Event message

Character
code

Modifier
state
C-10 Using the Keyboard Resources

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
■ If you are creating your own localized version of a script system and need to allow
text input in that script system, you may need to create or modify a keyboard-layout
resource, and possible a key-remap resource. If you do make a new keyboard-layout
resource, you also need to create a keyboard icon family to accompany it. To do that
you will need the information in “Keyboard-Layout Resource (Type 'KCHR')”
beginning on page C-18, “Key-Remap Resource (Type 'itlk')” beginning on page C-16,
and “Keyboard Icon Family (Types 'kcs#', 'kcs4', 'kcs8')” beginning on page C-25.

■ If you are designing a new type of keyboard, you need to make sure it produces the
appropriate raw key codes. See the next section. Each new keyboard also needs to
work correctly with the Key Caps desk accessory; see “Key-Caps Resource (Type
'KCAP')” beginning on page C-28. Note that hardware development is beyond the
scope of Inside Macintosh. See Guide to the Macintosh Family Hardware and contact
Macintosh Developer Technical Support for more information.

Key-Map Resource (Type 'KMAP') C

The key-map resource (resource type 'KMAP') is used for converting the raw key codes
produced by a keyboard’s microprocessor into hardware-independent virtual key codes.
There is one key-map resource per physical keyboard on a Macintosh; it belongs to the
Operating System, not to any script system.

The key-map resource ID number equals the ID number of the type of keyboard it is
associated with. See Table C-1 on page C-4. If a matching key-map resource cannot be
found for the keyboard in use, the Operating System substitutes the 'KMAP' resource
whose ID is 0; on all Macintosh systems later than the Macintosh Plus, the key-map
resource with ID = 0 is in ROM.

Note
Most current keyboards use the key-map resource with ID = 0. However,
keyboard types 2 and 5, for example, require their own key-map
resources. ◆

The key-map resource contains a 128-byte table that provides a one-to-one mapping of
raw key codes to virtual key codes—the first byte contains the virtual key code for a raw
key code of $00, the second for $01, and so forth. The table is followed by an array of
exceptions. The high bit of the byte containing the virtual key code signals an exception
entry in the exception array. (Virtual key codes themselves are only 7 bits long.)
Key-Map Resource (Type 'KMAP') C-11

A P P E N D I X C

Keyboard Resources

The exception array lets the device driver initiate communication with the device,
usually to perform a state change—for example, to send codes to the keyboard that
instruct it to turn on lights when a given key such as Caps Lock is down. The exception
array begins with a 2-byte record count followed by that many records. The format of the
key-map resource and its exception array is shown in Figure C-4.

Figure C-4 Format of the key-map resource

The elements in the resource have these meanings:

■ ID. The resource ID for this particular key-map resource.

■ Version. The version number of this key-map resource format.

■ Key code map. A 128-byte table that contains virtual key codes. At each byte offset
into the table, the entry is the virtual key code (plus possibly an exception entry flag)
for the raw key code whose value equals that offset.

■ Count of exception records. The number of entries in the exception array.

■ Exception array. An array of exception records, which map raw key codes to
communication instructions.

Each exception record has these elements (see also Figure C-4):

■ A raw key code.

■ One byte containing the following elements:
n A Boolean (Xor or noXor) field that determines whether to instruct the driver to

invert the state of the key instead of using the state provided by the hardware.
n Filler (3 bits in length).
n The ADB opcode, an instruction to the keyboard to perform some task. ADB

opcodes are described in Inside Macintosh: Devices.

Bytes

2

2

128

2

ID

Version

Key code map

Count of exception records

Exception array

Raw key code

Length of string

String

ADB opcodeBoolean

Bytes

1

1

1

Exception record
C-12 Key-Map Resource (Type 'KMAP')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
■ A variable length Pascal data string that is passed to the ADB op trap along with the
ADB opcode. The first byte in the string is the length byte.

The following is an example of the exception array used to turn the Caps Lock light of
the Apple Extended Keyboard II on and off, to match the state of the Caps Lock key.

{

$39, noXor, $E, "\$00\$02";

$B9, noXor, $E, "\$00\$02";

}

Note
Do not change the key-map resource. Everything your application needs
to support any kind of text input is in the keyboard-layout and
key-remap resources. You need to work with the key-map resource only
if you are making your own keyboard. ◆

Apple Extended Keyboard C
With the Apple Extended Keyboard (and Apple Extended Keyboard II, shown in Figure
C-2), the standard key-map resource that is supplied with the system converts the
following raw key codes to virtual key codes, as listed in Table C-4.

The standard key-map resource leaves all other virtual key codes identical to the raw key
codes they are generated from.

Table C-4 Key-map resource assignment of raw key codes to virtual key codes

Key Raw key
code

Virtual key
code

Control $36 $3B

Left Arrow $3B $7B

Right Arrow $3C $7C

Down Arrow $3D $7D

Up Arrow $3E $7E
Key-Map Resource (Type 'KMAP') C-13

A P P E N D I X C

Keyboard Resources
Reassigning Right-Hand Key Codes C
It is possible to reassign the standard raw key codes and virtual key codes for the Shift,
Option, and Control keys on the right side of the Apple Extended Keyboard, in order to
distinguish right-side keystrokes from left-side keystrokes for those keys. To do so, you
need to obtain the special values listed in Table C-5.

The normal raw and virtual key codes for Right-Shift, Right-Option, and Right-Control
keys correspond to the left versions of these keys. You can obtain the special raw and
virtual key codes only by changing the value of the device handler ID field in the Apple
Extended Keyboard’s register 3 from 2 to 3. For details about the device handler ID field,
see Inside Macintosh: Devices.

▲ W A R N I N G

This capability is included for compatibility with certain existing
operating systems that distinguish between the left and right versions of
these keys. Its use by new applications violates the Apple human
interface guidelines and is strongly discouraged. ▲

Other Hardware Dependencies C
The principle underlying virtual key codes is to have a single unique code per
character code, regardless of the keyboard used. Nevertheless, some hardware
dependencies remain:

■ The small Macintosh 512K Keyboard with ISO layout and the ISO ADB keyboards
have an extra key not present on domestic keyboards. This key produces a virtual
key code of $0A.

Table C-5 Reassigning right key codes for Shift, Option, and Control keys

Right
key

Normal
raw

Normal
virtual

Special
raw

Special
virtual

Shift $38 $38 $7B $3C

Option $3A $3A $7C $3D

Control $36 $3B $7D $3E
C-14 Key-Map Resource (Type 'KMAP')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
■ There is a different virtual key code for the Enter key, depending on whether it is on
the keypad ($4C on the Macintosh Plus keyboard and most ADB keyboards), or on the
main section of the keyboard ($34 on the original Macintosh keyboard and the
Macintosh Portable and PowerBook keyboards).

■ Virtual key codes for cursor keys and some keypad operator keys differ between ADB
keyboards and non-ADB (Macintosh Plus) keyboards, as shown in Table C-6. Note
that on Macintosh Plus keyboards, the virtual key codes for keypad operators are the
same as the virtual key codes for cursor keys. The Shift modifier controls which
character code is generated. On these keyboards, for example, holding down the Shift
key and pressing the Left Arrow key produces the plus character (+).

Virtual Key Codes for Non-ADB Keyboards C
The original Macintosh keyboard (for both the 128K and 512K versions) and the
Macintosh Plus keyboard produce event records with raw key codes rather than virtual
key codes, because there is no key-map resource for them. For domestic versions of these
keyboards it is not a problem, because the raw key codes are identical to the virtual key
codes expected by the U.S. keyboard-layout resource. The international version of the
Macintosh Plus keyboard, however, and the ISO layout of the small Macintosh 512K
keyboard, produce raw key codes that cannot be treated as virtual.

Table C-6 ADB and non-ADB virtual key codes for cursor keys and keypad keys

Key ADB code Non-ADB code (Macintosh Plus)

Left Arrow $7B $46

Right Arrow $7C $42

Down Arrow $7D $48

Up Arrow $7E $4D

Keypad Plus (+) $45 $46 (with Shift bit set in modifiers)

Keypad Asterisk (*) $43 $42 (with Shift bit set in modifiers)

Keypad Equal (=) $51 $48 (with Shift bit set in modifiers)

Keypad Slash (/) $4B $4D (with Shift bit set in modifiers)
Key-Map Resource (Type 'KMAP') C-15

A P P E N D I X C

Keyboard Resources
When a keypress from the international version of the Macintosh Plus keyboard occurs,
the interrupt handler calls the _Key1Trans hook, which translates the raw key codes to
virtual key codes before calling KeyTranslate. Thus your application normally
receives the correct character codes even if an international version of the Macintosh
Plus keyboard is attached. However, the raw key code is what is placed in the event
record. Therefore, if you need to explicitly convert raw key codes to virtual key codes,
you can use the values in Table C-7. Raw key codes are offsets into the table; the byte
at each offset represents the virtual key code for that raw key code. (The keyboard
produces raw key codes up to $3F only; key codes above that value are generated by an
optional keypad.)

The domestic and ISO layouts of the small Macintosh 512K keyboard have keyboard
types of 3 and 259, respectively. However, in both cases the low-memory global that
specifies current keyboard type (KbdType) holds the value 3. The user indicates which
keyboard is in use through a control in the Keyboard control panel that appears only on
non-ADB systems. The user’s selection is kept in the itlcOldKeyboard field of the
system script’s international configuration ('itlc') resource. You can examine that
field if you need to know whether the ISO or domestic layout of the small Macintosh
512K keyboard is in use.

Key-Remap Resource (Type 'itlk') C

The key-remap resource (resource type 'itlk') is used by the KeyTranslate function
to ensure that all international keyboard layouts work on all Macintosh keyboards. The
key-remap resource specifies how to remap the virtual key codes produced by certain
key combinations before KeyTranslate converts the virtual key codes to character
codes with a keyboard-layout ('KCHR') resource. KeyTranslate is described in the
chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Table C-7 Virtual key codes for the international Macintosh Plus keyboard

Raw codes Virtual codes

$00–$07 $00 $01 $02 $03 $04 $05 $32 $06

$08–$0F $07 $08 $2C $09 $0C $0D $0E $0F

$10–$17 $10 $11 $12 $13 $14 $15 $16 $17

$18–$1F $18 $19 $1A $1B $1C $1D $1E $1F

$20–$27 $20 $21 $22 $23 $2A $25 $26 $27

$28–$2F $28 $29 $24 $2E $2F $0B $2D $2B

$30–$37 $30 $34 $0A $33 $31 $35 $36 $37

$38–$3F $38 $39 $3A $3B $3C $3D $3E $3F
C-16 Key-Remap Resource (Type 'itlk')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
There is one key-remap resource per keyboard-layout resource that needs it. The 'itlk'
resource has the same resource ID as the keyboard-layout resource with which it is
associated. The Operating System loads key-remap resources from the System file only.

The key-remap resource consists of an integer count of entries followed by a set of 8-byte
entries. Figure C-5 shows the format of an entry.

Figure C-5 Format of an entry in the key-remap resource

Before the KeyTranslate function begins processing with the keyboard-layout
resource, it determines which entry in the key-remap resource to use. It tests each entry
in the key-remap resource to see whether

■ the actual keyboard type matches the keyboard type element

■ the product of an AND operation on the actual virtual key code with the key code
mask matches the current key code element

■ the product of an AND operation on the actual modifiers with the modifiers mask
matches the current modifiers element

If all three match, KeyTranslate substitutes the new modifiers and virtual key code
from that entry before applying them to the keyboard-layout resource.

To allow for a more compact table when several virtual key codes produced from one
key (using different modifiers) are all mapped together to a different key, an additional
step is taken. KeyTranslate uses the modifiers mask and key-code mask in the
key-remap entry to produce a number of new modifiers and virtual key codes. Here is
how a single entry can remap all modifier combinations for a given key:

1. An AND operation is performed on the new modifiers and new virtual key code with
the modifiers mask and the key-code mask from the entry.

2. An AND operation is performed on the actual modifiers and actual virtual key code
with the 1’s complement of the modifiers mask and key code mask from the entry.

3. The OR of these two operations is the final result that is used for key translation.

Note
If the keyboard type is 259 (the ID for the ISO layout of the small
Macintosh 512K Keyboard), the third field in the key-remap resource
(which usually contains the current virtual key code) consists of the raw
key code. See Table C-1 on page C-4 of this appendix for a list of the
keyboard types. ◆

Current

modifiers

(byte)

Current

key code

(byte)

Keyboard type

(integer)

Key code

mask

(byte)

Modifiers

mask

(byte)

New

key code

(byte)

New

modifiers

(byte)
Key-Remap Resource (Type 'itlk') C-17

A P P E N D I X C

Keyboard Resources
Keyboard-Layout Resource (Type 'KCHR') C

The keyboard-layout resource (resource type 'KCHR') specifies the mapping of virtual
key codes to character codes. Each installed script system has one or more
keyboard-layout resources; there may be one or more for each language or region to suit
the preference of the user. The resource ID for each keyboard-layout resource is within
the range of resource ID numbers for its script system. The ID number of the default
'KCHR' resource for a script system is specified in the itlbKeys field of the script’s
international bundle ('itlb') resource.

U.S. keyboard-layout resource

Specific features of the U.S. keyboard-layout resource (ID = 0) are
described in the appendix “Built-in Script Support” in this book. ◆

Keyboard-layout resources for 2-byte script systems

Keyboard-layout resources for 2-byte script systems have the same size
and function as those for 1-byte script systems; they generate 1-byte
character codes only. It is the input method that is responsible for
producing the final 1-byte or 2-byte character codes. ◆

Resource Format C
Figure C-6 shows the format of the keyboard-layout resource. Its header consists of a
version number only. The header is followed by a 256-byte table-selection index that is
used to access character-mapping tables. The index is followed by the character-mapping
tables, a series of 128-byte tables that map virtual key codes to character codes,
depending on what modifier keys are pressed. The final part of the resource is a
dead-key table, a series of records that define dead keys and completers. The dead-key
records allow the user to enter special character forms, such as accented characters, from
the keyboard. How dead keys are processsed is described under “The KeyTranslate
Function and the Keyboard-Layout Resource” beginning on page C-19.

The dead-key table consists of a 2-byte count of dead-key records, followed by that many
records. A dead key record consists of a 1-byte table number (corresponding to a
character-mapping table), a 1-byte virtual key code (without up/down bit), a completion
table, and a no-match character.

Each completion table in a dead-key record consists of a count of completion records,
followed by that number of completion records. A completion record is simply a
substitution pair for character codes. If the character code matches the first byte in the
completion record, the second byte is substituted for it.
C-18 Keyboard-Layout Resource (Type 'KCHR')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
Figure C-6 Format of the keyboard-layout resource

The KeyTranslate Function and the Keyboard-Layout Resource C
During the process of key translation, the Event Manager KeyTranslate function
applies the virtual key code and the state of the modifier keys to the keyboard-layout
resource to determine a character code. Table C-2 on page C-6 shows the meanings of the
keyboard modifier bits in the high-order byte of the modifiers field of an event record
(defined by the EventRecord data type). The KeyTranslate function uses the byte
value determined by the settings of these bits to control the selection of tables in the
keyboard-layout resource.

Bytes

2

256

2

128

128

2

Version

Table-selection index

Number of tables

Character-mapping

table 1

Character-mapping

table 2

Number of dead-key records

Dead-key record 1

Dead-key record 2

Table number

Virtual key code

Number of completion records

Completion character

Substitution character

Completion character

Substitution character

No-match character

No-match character

Completion

record 1

Completion

record 2

Dead-key record Bytes

1

1

2

2

2

1

1

Keyboard-Layout Resource (Type 'KCHR') C-19

A P P E N D I X C

Keyboard Resources
Figure C-7 gives an overview of how the parts of the keyboard-layout resource are
used. It starts when the user presses a key or combination of keys, and the Event
Manager passes the virtual key code and the state of the modifier keys to the
KeyTranslate function:

1. First, KeyTranslate treats the modifier state information—8 bits, each bit indicating
the state of one modifier key—as a byte whose value is used as an index into the
256-byte table-selection index to get a table code. The table code specifies which
of the 128-byte character-mapping tables to use to map the virtual key code to a
character code.

2. KeyTranslate uses the virtual key code as an index into the selected
character-mapping table. If the table has a nonzero entry for the virtual key code, that
entry is the desired character code. KeyTranslate returns that character code and
the Event Manager posts a key-down event—unless the previous keypress had been a
dead key. See step 4.

3. If the entry in the character-mapping table is 0, KeyTranslate searches the dead-key
table. It looks for a match with both the virtual key code and the table number fields
in a dead-key record. If there is no match, KeyTranslate returns 0. If there is a
match,the dead-key information is preserved in the state parameter of the
KeyTranslate function. KeyTranslate returns 0, so no event is posted, but the
state information affects how the next virtual key code is to be processed.

4. If the previous key was a dead key, KeyTranslate searches the completion table in
the dead-key record corresponding to the previous keypress. If the character code of
the current keypress matches the first byte of any completion record in the completion
table, the second byte in the record is substituted for it. If it does not match any first
bytes in the completion table, the current character code is preceded by the no-match
character found at the end of the dead key record and KeyTranslate returns both
characters.
For instance, in the U.S. keyboard-layout resource the Option-E combination is a dead
key. When pressed, no character appears on the screen, but the state parameter of
KeyTranslate is modified to hold the information that the dead key for the acute
accent (´) has been pressed. If the next character is a valid completer key (such as a, e,
i, o, or u), KeyTranslate returns the equivalent substitution character (á, é, í, ó, ú),
an event is posted, and the character appears on the screen. If the next character is not
a valid completer (for example, x), KeyTranslate returns both the no-match
character (typically the accent character by itself) and the current character code; two
events are posted, and both characters appear on the screen (´x).

As far as your application is concerned, no event is generated by pressing a dead key.
The only information you receive regarding the dead key is after the fact. When the user
produces “Á” by pressing Option-E followed by “A”, you receive a single event
containing a virtual key code corresponding to “A”, no modifiers, and a character
code of “Á”.
C-20 Keyboard-Layout Resource (Type 'KCHR')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
Figure C-7 Inside the keyboard-layout resource

Table-selection

index

Modifiers

value

Character-mapping

tables

Virtual

key code

Dead-key

records

Match?

No

Return no-match

character

and current

character code

Yes

Return

substitution

character

Previous key was

a dead key

(Completion

table)

Table-selection

index

Modifiers

value

Character-mapping

tables

Virtual

key code

Zero?

No

Yes

Return

character

code

Dead-key

records

Match?

No

Return zero

Yes

Return state

change for

keyTranslate

Previous key was

not a dead key
Keyboard-Layout Resource (Type 'KCHR') C-21

A P P E N D I X C

Keyboard Resources
Special Uses for the KeyTranslate Function C
In normal key translation, the Event Manager KeyTranslate function performs the
conversion from virtual key code to character code and passes the result to your
application in the message field of the event record for a key-down event. The script
management system provides KeyTranslate with a pointer to the proper
keyboard-layout resource to use, based on the current script.

There may be situations, however, in which you may want to explicitly call
KeyTranslate, either to install your own keyboard layout or to perform special
processing.

Installing a Custom Keyboard-Layout Resource C

The script management system loads and uses only those keyboard-layout resources that
are installed in the System file. It cannot load a keyboard-layout resource that is, for
example, in the resource fork of your application. However, if your application needs to
modify the keyboard layout temporarily without forcing users to install a new keyboard
layout, you can load a keyboard-layout resource from your own application resource
fork and call KeyTranslate directly after each key-down event, passing it a pointer to
that keyboard-layout resource and using the same virtual key code and modifiers that
you received in the event message.

To more permanently replace a script system’s keyboard layout, you can have the user
install a keyboard-layout resource and a keyboard-icon family in the System file. Both
resources must have identical ID numbers, in the range for the script system for which
they will be used. You call the Script Manager SetScriptVariable procedure twice,
to make those IDs the defaults for the given script system. You then call the Script
Manager KeyScript procedure to load the resources and make them available to the
system. Listing C-1 demonstrates the calls for a Dvorak keyboard layout in the Roman
script system.

Listing C-1 Loading a non-system keyboard-layout resource

CONST

DvorakID = 500;

VAR

err: OSErr;

BEGIN

err := SetScriptVariable(smRoman, smScriptKeys, DvorakID);

err := SetScriptVariable(smRoman, smScriptIcon, DvorakID);

KeyScript(smRoman);

END;
C-22 Keyboard-Layout Resource (Type 'KCHR')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
In this example you do not need to call KeyTranslate to get character codes for the
new keyboard layout, and the new keyboard layout will be in effect until the system is
restarted or until your application restores the original keyboard layout.

The most permanent way to replace the keyboard layout is to make the system use your
keyboard layout as its default. To do that you must modify the itlbKeys field of the
target script system’s international bundle ('itlb') resource. The international bundle
resource is described in the appendix “International Resources” in this book.

IMPORTANT

Apple Computer’s system software licensing policy forbids shipping a
modified System file. If you want to modify the System file, it is best to
have the user either run the Installer to install your resources, or drag a
file consisting of those resources onto the System Folder. Contact
Macintosh Developer Technical Support for information on the
Installer. ▲

You can inspect and edit any keyboard-layout resource by using a resource editor such
as ResEdit.

Using KeyTranslate for Command-Key Equivalents C

In some cases you may need to call KeyTranslate to regenerate a different character
code using the same keyboard-layout resource. For example, the U.S. 'KCHR' and some
other Roman keyboard layouts ignore the Shift modifier key if the Command modifier
key is also pressed. That means you cannot directly use uppercase characters or shifted
symbols as Command equivalents. Furthermore, for those keyboard layouts where the
period is a shifted key, it means that the standard Macintosh command to cancel an
operation (Command-period) cannot be generated. As another example, some
applications that accept Command-? as a request for Help simply assume that “?” is a
shifted version of “/”, and thus bring up a Help window whenever the Command key
and “/” are pressed simultaneously. This gives incorrect behavior on keyboards in which
“?” is not generated by Shift-/.

To overcome this and similar difficulties, you can use the virtual key code you receive in
the key-down event record, and call KeyTranslate to run it back through the same
keyboard-layout resource, but without the modifier(s) that applied when the character
code was first generated. If the resulting character code is one that is significant for a
command equivalent, you can use it plus the modifier state that originally applied to
decide what action to take.

Listing C-2 is a routine that removes the Command-key bit from the modifiers field of an
event record and runs the same virtual key code through KeyTranslate, using the
same keyboard-layout resource, to see if a different character code results.
Keyboard-Layout Resource (Type 'KCHR') C-23

A P P E N D I X C

Keyboard Resources
Listing C-2 Regenerating a character code with KeyTranslate

FUNCTION TryAgain(myEvent: EventRecord): LongInt;

CONST

newModifierMask = $FE00; {turn off cmdKey bit}

VAR

Modifiers: Integer;

VirtualCode: Integer;

KeyCode: Integer;

someState: LongInt;

KCHRPtr: Ptr;

BEGIN

{don't keep cmdKey bit}

Modifiers := BAnd(myEvent.modifiers, newModifierMask);

{keep virtual key code, put in low byte}

VirtualCode := BSR(BAnd(myEvent.message, keyCodeMask), 8);

{assemble new key code for KeyTranslate}

KeyCode := BOr(Modifiers, VirtualCode);

{get pointer to current 'KCHR'}

KCHRPtr := Ptr(GetScriptManagerMVariable(smKCHRCache));

someState := 0; {initialize KeyTranslate dead-key state}

{see what ascii code is returned}

TryAgain := KeyTranslate(KCHRPtr, KeyCode, someState);

{look for returned values in both }

{ high and low word of result}

END;

In designing Command equivalents for your application, keep in mind that there may be
less chance of inconsistency and confusion if you present Command equivalents to the
user—and interpret them yourself—as grouped modifiers applied to the basic
(unshifted) character you want to use for the command. (Note, however, that to do so
you would have to write your own custom menu-definition resource.) For example, you
might show “Command-Option-P” in the menu rather than “Command-π”; when
interpreting it, you could use KeyTranslate and the virtual key code in the event
record to make sure that the key for “p” was pressed, rather than just assuming that “π”
is produced by Option-P.

Another possibility is to define few Commmand-key equivalents yourself, and to let the
user create as many equivalents as desired.
C-24 Keyboard-Layout Resource (Type 'KCHR')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
Keyboard Icon Family (Types 'kcs#', 'kcs4', 'kcs8') C

The keyboard icon family is a set of resources (resource types 'kcs#', 'kcs4', and
'kcs8') that specify a family of small icons representing a keyboard layout. They define
black-and-white, 4-bit, and 8-bit small color icons, respectively. There is one keyboard
icon family per keyboard-layout resource; each of the keyboard icon resources has the
same resource ID as the keyboard-layout resource with which it is associated.

The Operating System loads keyboard icon resources from the System file only. The ID
number of the default keyboard icon family for a script system is specified in the
itlbIcon field of the script’s international bundle ('itlb') resource. However, the
Operating System ignores this value and instead looks for a keyboard icon family whose
resource ID matches the ID of the keyboard-layout resource it is loading. If it cannot find
an icon family with that ID, the Operating System loads the default keyboard icon suite
(ID = –16491).

Some differences exist between the keyboard icon family and the color icon families used
elsewhere in the Macintosh Operating System. First, only small icons (16-by-16 pixels)
are supplied; there are no large keyboard icons (32-by-32 pixels). Second, the resource
type for keyboard small color icons is different from the resource type used elsewhere for
small color icons ('ics#', 'ics4', and 'ics8'). This difference is to avoid resource ID
conflicts with those icon resources, because the keyboard color icons may have IDs
anywhere in the range 0–32767, and certain negative ranges as well. The keyboard icon
types and the equivalent standard color icon types are shown in Table C-8.

Note
If the 4-bit and 8-bit icons (resources 'kcs4' and 'kcs8') in your
application have exactly the same appearance and colors, then you only
need to provide a 4-bit icon. ◆

Table C-8 Keyboard color icon types and standard icon equivalents

Keyboard
icon type

Standard icon
equivalent

Bit
depth

'kcs#' 'ics#' 1

'kcs4' 'ics4' 4

'kcs8' 'ics8' 8
Keyboard Icon Family (Types 'kcs#', 'kcs4', 'kcs8') C-25

A P P E N D I X C

Keyboard Resources
The keyboard icons are used in the Keyboard control panel and in the Keyboard menu
when it is displayed. In Macintosh system software versions 7.0 and later, the Keyboard
menu always appears when more than one script system is enabled, and may be forced
to appear even if only one script system is present (if the smfShowIcon flag in the Script
Manager general flags is set at startup).

Figure C-8 Sample keyboard icons

See the Finder Interface chapter of Inside Macintosh: Macintosh Toolbox Essentials for
additional information on color icons and icon families. See also Macintosh Human
Interface Guidelines for design suggestions for color icon families.

Keyboard-Swap Resource (Type 'KSWP') C

The keyboard-swap resource (resource type 'KSWP') specifies the modifier-plus-key
combinations with which the user can change keyboard scripts, keyboard layouts within
scripts, and input methods. For example, the standard keyboard-swap resource specifies
that pressing Command–Space bar changes the keyboard to the default keyboard for the
next script. (In this case, next means next in the Keyboard menu.)

There is one keyboard-swap resource per localized version of system software. A
localized system may either use the standard 'KSWP' resource or replace it with one of
its own. The keyboard-swap resource is in the System file; its resource ID is 0.

The keyboard-swap resource consists of an array with series of entries, each of which
specifies modifier-plus-key combinations that can be used to change keyboard layouts
and scripts. Figure C-9 shows the format of entries in the 'KSWP' resource.

Figure C-9 Format of entries in the keyboard-swap resource

Virtual

key code

(byte)

Modifier

state

(byte)

Script code or special

negative code

(integer)
C-26 Keyboard-Swap Resource (Type 'KSWP')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
The elements of the entry have these meanings:

■ Script code or negative code. The code number of a script system—such as 0
(smRoman)—or a special negative code for switching. The special negative codes are
identical to the selectors for the Script Manager KeyScript procedure. The selectors
are listed and described along with the KeyScript procedure in the chapter “Script
Manager” in this book.

■ Virtual key code. The virtual key code (for example, $31 for Space bar) required to
generate the script code or special negative code of this element.

■ Modifier state. The modifier-key setting (for example, Command key down) that must
accompany the virtual key code.

Listing C-3 is a Rez-format definition of a hypothetical keyboard-swap resource.

Listing C-3 A hypothetical keyboard-swap resource

resource 'KSWP' (0, sysheap) {

{/* array: 2 elements */

/* [1] = smKeyNextScript */

-1, $31, controlOff, optionOff, shiftOff, commandOn,

/* [2] = smKeyNextKybd */

-4, $31, controlOff, optionOn, shiftOff, commandOn,

}

};

This resource defines a rotation to the next script system on Command–Space bar, and a
rotation to the next keyboard layout on Command–Option–Space bar.

Note
The expression that evaluates the size of a keyboard-swap resource is
complicated. If you need to perform a DeRez operation on a
keyboard-swap resource, contact Macintosh Developer Technical
Support for details. ◆

IMPORTANT

The Script Manager removes from the event queue any Command-key
combinations involving the Space bar if that Command-key
combination indicates a feature supported by the current script system.
For example, if multiple script systems are installed, the Script Manager
strips the Command–Space bar combination (which specifies changing
script systems) from the event queue. If multiple script systems are not
installed, this event is not removed, so users can use it in Command-key
macros. Applications, however, should never depend on Command-key
combinations involving the Space bar. ▲
Keyboard-Swap Resource (Type 'KSWP') C-27

A P P E N D I X C

Keyboard Resources
Key-Caps Resource (Type 'KCAP') C

The key-caps resource (resource type 'KCAP') reflects the physical layout of a particular
keyboard and is used by the Key Caps desk accessory. The resource indicates the shapes
and positions of all keys, and defines the virtual key codes that correspond to each
physical key. Key Caps uses this resource to draw a representation of the current
keyboard layout—using the current keyboard-layout resource—for the current
physical keyboard. If you are creating a new keyboard, you can define its physical
layout in a key-caps resource.

For system software versions 7.0 and later, the key-caps resource is located in the System
file. There is one 'KCAP' resource per physical keyboard on a Macintosh; it belongs to
the Operating System, and not to any script system. The resource ID for each key-caps
resource is equal to the keyboard type of the keyboard it is associated with. See Table C-1
on page C-4 for a list of keyboard types. For ADB keyboards, the ID of the key-caps
resource is the same as the keyboard handler ID.

IMPORTANT

The key-caps resource should never require localization. The only time a
key-caps resource needs to be added is for a keyboard that has a new
physical arrangement (or a new keyboard handler ID). ▲

Resource Format C
Figure C-10 shows the format for the key-caps resource.
C-28 Key-Caps Resource (Type 'KCAP')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
Figure C-10 Format of the key-caps resource

Boundary rectangle

Text rectangle

Count of shape entries in main array

Shape array

Count of key entries – 1

Key entry

Key entry

8

8

2

2

6

6

Bytes

Shape

entry 1

Modifier mask

Vertical delta

Horizontal delta

Virtual key code Boolean

Key entry

1

1

2

2

Bytes

Count of point entries – 1

Point entry

Shape array

2

4

Bytes

Shape

entry 2
Key-Caps Resource (Type 'KCAP') C-29

A P P E N D I X C

Keyboard Resources
The key-caps resource has these elements:

■ Boundary rectangle. The position of the content region of the Key Caps window.

■ Text rectangle. The position of the text box within the Key Caps window.

■ Main array. The remainder of the resource. It consists of an array of one shape entry
for each key shape.

Each shape entry in the main array has two components:

■ Shape array. A (zero-based) count of entries followed by one or more entries. Each
entry is a point, representing the relative pixel offset from the origin of the key, that
define a particular key shape. The shape array is a single point for rectangular keys.
More complex keys, like the Return key, need two points in their shape array.

■ Key array. A set of key entries, describing all the keys with that shape.

Each key entry in a shape entry specifies the following information:

■ Vertical delta and horizontal delta. Vertical and horizontal values to move the pen
before drawing the current key. For each shape (that is, for each shape entry in the
main array), the pen starts out at the upper-left corner of the content region of the Key
Caps window, so the vertical and horizontal delta values for the first key in the key
array for that shape are distances from the upper-left corner to the origin of the first
key. For subsequent keys in the key array, the deltas are distances from the origin of
the previous key to the origin of the current key. Each key is drawn with the shape
defined by the shape array for that shape.

■ Virtual key code. The virtual key code for the current key. Because it uses virtual key
codes, each key-caps resource is tied directly to a particular key-map resource and
hardware keyboard but can work with any keyboard-layout resource.

■ Modifier mask and Boolean. A modifier mask and a Boolean flag for how to use it.
When Key Caps draws the current key, it retrieves the byte that represents the real
modifier key state, combines it with this mask performing an OR or AND operation as
specified, calls the KeyTranslate function with the resulting modifier byte and the
virtual key code from the key-caps resource, and draws the resulting character or
characters in the current key’s location. The modifier mask is only required for
non-ADB keyboards, which use artificial modifier key states to overlap the key codes
for arrow keys and keypad operator keys. For other keyboards, the mask is 0 and the
flag is set to specify an OR operation.
C-30 Key-Caps Resource (Type 'KCAP')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
Listing C-4 is an abridged example of the data in a key-caps resource, shown in
Rez format.

Listing C-4 Sample key-caps resource data in Rez format

resource 'KCAP' ($01) {

{60, 45, 220, 455}, /* boundsRect */

{12, 42, 36, 368}, /* textRect */

{

{ {21, 21} }, { /* Shape No. 1 */

0, or, $35, 50, 10; /* escape */

0, or, $12, 0, 20; /* 1 ! */

0, or, $13, 0, 20; /* 2 @ */

…

0, or, $7D, 0, 20; /* Down arrow */

0, or, $7E, 0, 20; /* Up arrow */

0, or, $41, 0, 80; /* Keypad . */

0, or, $55, -20, 0; /* Keypad 3 */

…

};

{ {21, 31} }, { /* Shape No. 2 */

0, or, $30, 70, 10; /* Tab */

0, or, $33, -20, 260 /* Backspace */

};

…

{ {-21, 36}; {-41, 15} }, { /* Shape No. 3 */

0, or, $24, 111, 265 /* Return */

};

…

}

};

The basic square key has a shape array of { {21, 21} }, which puts the origin in the
upper-left corner of the key. The first key in the key array for this shape is the Escape key
(key code $35) in the upper-left corner of the keyboard; this key is at vertical and
horizontal delta offsets of (50, 50) from the upper-left corner of the window’s content
region. The next key with this shape is immediately to the right, with its origin at delta
offsets of (0, 20) from the origin of the previous key.
Key-Caps Resource (Type 'KCAP') C-31

A P P E N D I X C

Keyboard Resources
The next shape is the slightly wider key with a shape array of { {21, 31} }, used for
the Tab and Backspace keys. The origin of the Tab key is at offsets (70, 10) from the
upper-left corner of the window’s content region (which puts the Tab key one row below
the Escape key).

The shape array for the Return key is { {-21, 36}; {-41, 15} }, which means
that it is the union of two rectangles: the first rectangle is from the origin of the key to the
first point, and the second rectangle is from the first point to the second point. (Both
points are measured relative to the key origin, however.) This shape array puts the
Return key’s origin in the lower-left corner of the key. See Figure C-11. The origin is at
offsets (111, 265) from the upper-left corner of the window’s content region.

Figure C-11 Shape array and resulting region for the Return key

Key Caps Desk Accessory C
This section discusses how the Key Caps desk accessory uses information in its key-caps
resource to represent the physical layout of a keyboard. It also describes how the
Key Caps desk accessory provides feedback to the user on how dead keys produce
accented characters.

(–41,15)

(–21,36)

(0,0) key orgin(0,0) key orgin

Rectangles for

return key:

Resulting

region:
C-32 Key-Caps Resource (Type 'KCAP')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
Listing C-4 on page C-31 is a portion of the data from the key-caps resource ('KCAP'
ID = 1), which is used with the standard ADB keyboard (keyboard type 1, the domestic
layout of the Apple Keyboard II). Working with that resource, the Key Caps desk
accessory produces the display shown in Figure C-12 when it is used with the standard
U.S. keyboard-layout resource ('KCHR' ID = 0).

Figure C-12 Key Caps display with key origins

The Key Caps desk accessory provides feedback on using dead keys to produce accented
characters. It indicates dead keys with dotted borders, as shown in the Key Caps
window in Figure C-13, which shows the U.S. keyboard layout with the Option
key pressed.

Figure C-13 Key Caps display of dead keys with Option key pressed

Origin for

Escape key

Origin for

Return key

Dead keys

Option key
Key-Caps Resource (Type 'KCAP') C-33

A P P E N D I X C

Keyboard Resources
If a dead key is entered, such as the circumflex dead-key combination (Option-I), the
display changes to highlight the completer keys for this dead key. The user can press any
completer key to generate valid accented character combinations, as shown in Figure
C-14. If your application displays keyboards, you should use a similar method of
indicating dead keys and completers.

Figure C-14 Key Caps display of completer keys after circumflex dead key has been pressed

Completer keys
C-34 Key-Caps Resource (Type 'KCAP')

A P P E N D I X C

Keyboard Resources

C
K

eyboard R
esources
Summary of the Keyboard Resources C

Assembly-Language Summary C

Global Variables C

KbdType The keyboard type of the most recently used keyboard
Key1Trans Pointer to key-translation routine (for non-ADB keyboards)
Key2Trans Pointer to key-translation routine (for non-ADB keyboards)
Summary of the Keyboard Resources C-35

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	Appendix C, Keyboard Resources
	About Keyboards
	About the Keyboard Resources
	What the Keyboard Resources Are
	Key Translation

	Using the Keyboard Resources
	Key-Map Resource (Type 'KMAP')
	Apple Extended Keyboard
	Reassigning Right-Hand Key Codes
	Other Hardware Dependencies
	Virtual Key Codes for Non-ADB Keyboards

	Key-Remap Resource (Type 'itlk')
	Keyboard-Layout Resource (Type 'KCHR')
	Resource Format
	The KeyTranslate Function and the Keyboard-Layout ...
	Special Uses for the KeyTranslate Function
	Installing a Custom Keyboard-Layout Resource
	Using KeyTranslate for Command-Key Equivalents

	Keyboard Icon Family (Types 'kcs#', 'kcs4', 'kcs8'...
	Keyboard-Swap Resource (Type 'KSWP')
	Key-Caps Resource (Type 'KCAP')
	Resource Format
	Key Caps Desk Accessory

	Summary of the Keyboard Resources
	Assembly-Language Summary
	Global Variables

	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

