

C H A P T E R 4

4

F
ont M

anager

Font Manager 4

The Font Manager is a collection of routines and data structures that you can use to
manage the fonts your application uses to display and print text. The Font Manager
takes care of reading font data from font resources and creating the bitmap images that
QuickDraw uses to display text.

This chapter describes how your application can use the Font Manager to find specific
fonts and to get font display information, such as the size of the letters, the amount of
space between letters, and how sizing and spacing change if the user decides to apply a
style such as bold or italic. It also describes how the Font Manager keeps track of fonts
and font families.

You need to read this chapter if you are designing a font or if your application uses
different font families or allows the user to choose from a variety of fonts. Two types
of fonts can be used on the Macintosh computer: bitmapped fonts and TrueType outline
fonts. Your application should be able to handle both types. The information in this
chapter about outline fonts applies only to TrueType fonts on the Macintosh, and not
to other kinds of outline fonts or to TrueType fonts on any other platform.

Almost half of the information in this chapter describes the tables that make up the
resources that are used to define fonts on the Macintosh. Unless you are writing an
application, such as a font editor, that needs access to these details, you can skip over
most of the material in the “The Bitmapped Font ('NFNT') Resource,” “The Outline Font
('sfnt') Resource,” and “The Font Family ('FOND') Resource” sections of the Reference
portion of the chapter.

Before reading this chapter, read the chapter “Introduction to Text on the Macintosh” in
this book. General font-related information and programming suggestions are found in
the discussion of font handling in that chapter. You should also be familiar with the
information in the chapter “QuickDraw Text” in this book. If you are writing a font
editor for TrueType fonts, you also need to read the TrueType Font Format Specification,
available from APDA.

This chapter begins with an overview of the terminology used throughout
Inside Macintosh to describe fonts and basic Font Manager concepts, including

■ characters, character codes, and glyphs

■ bitmapped and outline fonts

■ font families, font names, and font IDs

■ system and application font usage

■ font measurements such as left-side bearing, advance width, base line, leading,
and kerning
4-5

C H A P T E R 4

Font Manager

The chapter then describes

■ how font resources are used to store fonts

■ how the Font Manager finds the information your application or QuickDraw requests

■ how the Font Manager and QuickDraw work together to create or alter glyph bitmaps
for displaying and printing

■ how to use the Font Manager routines to manipulate information about fonts

■ the data structures and font resources used by the Font Manager

About Fonts 4

This section describes the terminology used throughout this chapter to refer to the
individual elements of a font, different types of fonts, and the different functions a font
can have. Even if you are already familiar with the basic terminology of fonts and
typography, you need to know the specific Font Manager concepts described in this
section in order to understand the functions of all the Font Manager resources, data
structures, and routines.

Characters, Character Codes, and Glyphs 4
The smallest element in any character set is a character, which is a symbol that
represents the concept of, for example, a lowercase “b”, the number “2”, or the
arithmetic operator “+”. You do not ever see a character on a display device. What you
actually see on a display device is a glyph, the visual representation of the character. One
glyph can represent one character, such as a lowercase “b”; more than one character,
such as the “fi” ligature, which is a single glyph that could represent two characters; or a
nonprinting character, such as the space character.

When you want to print or display text, you generally refer to characters rather than
glyphs. The Font Manager identifies an individual character by a character code and
provides the glyph for that character to QuickDraw. Character codes for most character
sets are single byte values between $00 and $FF; however, the character codes for some
large character sets, such as the Japanese character set, are two bytes long. A font
designer must supply a missing-character glyph—usually an empty rectangle ()—for
characters that are not included in the font. QuickDraw displays this glyph whenever
the user presses a key for a character that is not in the font. The Font Manager does not
use the missing-character glyph for nonprinting characters, such as the space character,
that are included in the 'FONT', bitmapped font, and outline font resources.
4-6 About Fonts

C H A P T E R 4

Font Manager

4

F
ont M

anager

Although most fonts assign the same glyphs to character code values $00 to $7F, there
are differences in which glyphs are assigned to the remaining character codes. For
example, the glyph assigned to byte value $F0 (ð) in the Apple Standard Roman
character set is not typically included in a font defined for a non-Apple software system.
And different regions of the world require different glyphs for their typography, which
makes it impossible for any one standard to be complete.

The character-encoding scheme was developed to manage the assignment of different
glyphs to character codes in different fonts. It names each character and then maps that
name into a character code in each font. PostScript fonts that use an encoding scheme
that differs from the standard Apple encoding scheme can specify their glyph
assignments in the encoding table of the font family resource, which is described in the
section “The Style-Mapping Table,” beginning on page 4-99. This table contains a
collection of assignments of glyph names to character codes. For example, the PostScript
name of the character “ñ” is “ntilde”; a font designer can specify in the encoding table
that this character is assigned to character code $B9.

The Font Manager uses two types of glyphs: bitmapped glyphs and glyphs from outline
fonts. A bitmapped glyph is a bitmap—a collection of bits arranged in rows and
columns—designed at a fixed point size for a particular display device, such as a
monitor or a printer. For example, after deciding that a glyph for a screen font should
be so many pixels tall and so many pixels wide, a font designer carefully chooses the
individual pixels that constitute the bitmapped glyph. A pixel is the smallest dot
the screen can display. The font stores the bitmapped glyph as a picture for the
display device.

A glyph from an outline font is a model of how a glyph should look. A font designer
uses lines and curves rather than pixels to draw the glyph. The outline, a mathematical
description of a glyph from an outline font, has no designated point size or display
device characteristic (such as the size of a pixel) attached to it. The Font Manager uses
the outline as a pattern to create bitmaps at any size for any display device.

Kinds of Fonts 4
Each glyph has some characteristics that distinguish it from other glyphs that represent
the same character: for example, the shape of the oval, the design of the stem, or whether
or not the glyph has a serif. If all the glyphs for a particular character set share certain
characteristics, they form a typeface, which is a distinctly designed collection of glyphs.
Each typeface has its own name, such as New York, Geneva, or Symbol. The same
typeface can be used with different hardware, such as typesetting machines, monitors, or
laser printers.

A style is a specific variation in the appearance of a glyph that can be applied
consistently to all the glyphs in a typeface. Styles available on the Macintosh computer
include plain, bold, italic, underline, outline, shadow, condensed, and extended.
QuickDraw can add styles such as bold or italic to bitmaps, or a font designer can design
a font in a specific style (for instance, Courier Bold).
About Fonts 4-7

C H A P T E R 4

Font Manager

A font refers to a complete set of glyphs in a specific typeface and style—and, in the case
of bitmapped fonts, a specific size. Bitmapped fonts are fonts of the bitmapped font
('NFNT') resource type or 'FONT' resource type that provide an individual bitmap for
each glyph in each size and style. Courier plain 10-point, Courier bold 10-point, and
Courier plain 12-point, for example, are considered three different fonts. If the user
requests a font that is not available in a particular size, QuickDraw can alter a bitmapped
font at a different size to create the required glyphs. However, this generated bitmap
often appears to be irregular in some way.

Outline fonts are fonts of the outline font ('sfnt') resource type that consist of glyphs
in a particular typeface and style with no size restriction. TrueType outline fonts are
outline fonts that use the Apple TrueType format. The Font Manager can generate
thousands of point sizes from the same TrueType outline font: a single outline Courier
font can produce Courier 10-point, Courier 12-point, and Courier 200-point.

Identifying Fonts 4
When multiple fonts of the same typeface are present in system software, the Font
Manager groups them into font families of the font family ('FOND') resource type. Each
font in a font family can be bitmapped or outline. Bitmapped fonts in the same family
can be different styles or sizes. For example, an outline plain font for Geneva and two
bitmapped fonts for Geneva plain 12-point and Geneva italic 12-point might make
up one font family named Geneva, to which a user could subsequently add other sizes
or styles.

A font has a font name, which is stored as a string such as “Geneva” or “New York”. The
font name is usually the same name as the typeface from which it was derived. If a font
is not in plain style, its style becomes part of the font’s name and distinguishes it from
the plain style of that font: for example, “Palatino” and “Palatino Bold”.

A font family ID is the resource ID for a font family. Because there are so many font
families available for the Macintosh, many families have the same font ID. Therefore, to
avoid confusion, when your application stores font references in a document, it should
refer to fonts by name and not by number.

Font Measurements 4
Font designers use specific terms for the measurements of different parts of a glyph,
whether outline or bitmapped. Figure 4-1 shows the terms used for the most frequently
used measurements.
4-8 About Fonts

C H A P T E R 4

Font Manager

4

F
ont M

anager

Figure 4-1 Terms for font measurements

Note
The terms given here are based on the characteristics of the Roman
script system, which is associated with most European languages and
uses fonts that are meant to be read from left to right. Some other script
systems use different definitions for some of these terms. However,
QuickDraw always draws glyphs using the glyph origin and advance
width measurement, even if the font is read from right to left. ◆

As shown in Figure 4-1, the bounding box of a glyph is the smallest rectangle that
entirely encloses the pixels of the bitmap. The glyph origin is where QuickDraw begins
drawing the glyph. Notice that there is some white space between the glyph origin and
the visible beginning of the glyph: this is the left-side bearing of the glyph. The left-side
bearing value can be negative, which lessens the spacing between adjacent characters.
The advance width is the full horizontal measurement of the glyph as measured from its
glyph origin to the glyph origin of the next glyph on the line, including the white space
on both sides.

Ascent line

Glyph origin

Left-side bearing

Descent line

Advance width

Bounding box

Base line
About Fonts 4-9

C H A P T E R 4

Font Manager

If all of the glyph images in the font were superimposed using a common glyph origin,
the smallest rectangle that would enclose the resulting image is the font rectangle.

The glyphs of a fixed-width font all have the same advance width. Fixed-width fonts are
also known as monospaced fonts. In Courier, a fixed-width font, the uppercase “M” has
the same width as the lowercase “i”. In a proportional font, different glyphs may have
different widths, so the uppercase “M” is wider than the lowercase “i”. For example, the
proportionally spaced text “iMaGe” has a different appearance from the fixed-width
version of the same string “iMaGe”.

Most glyphs in a font appear to sit on the base line, an imaginary horizontal line.
The ascent line is an imaginary horizontal line chosen by the font’s designer that
corresponds approximately with the tops of the uppercase letters in the font, because
these are generally the tallest commonly used glyphs in a font. The ascent line is
the same distance from the base line for all glyphs in the font. The descent line is
an imaginary horizontal line that usually corresponds with the bottoms of descenders
(the tails on glyphs like “p” or “g”), and it’s the same distance from the base line
for every glyph in the font. The ascent and descent lines are part of the font designer’s
recommendations about line spacing as measured from base line to base line. All of
these lines are horizontal because Roman text is read from left to right, in a straight
horizontal line.

For bitmapped fonts, the ascent line marks the maximum y-value and the descent line
marks the minimum y-value used for the font. The y-value is the location on the vertical
axis of each indicated line: the minimum y-value is the lowest location on the vertical
axis and the maximum y-value is the highest location on the vertical axis. For outline
fonts, a font designer can create individual glyphs that extend above the ascent line or
below the descent line. The integral sign in Figure 4-2, for example, is much taller than
the uppercase “M”. In this case, the maximum y-value is more important than the ascent
line for determining the proper line spacing for a line containing both of these glyphs.
You can have the Font Manager reduce such oversized glyphs so that they fit between
the ascent and descent lines. See “Preserving the Shapes of Glyphs,” which begins on
page 4-35, for details.
4-10 About Fonts

C H A P T E R 4

Font Manager

4

F
ont M

anager

Figure 4-2 The ascent line and maximum y-value

Font size (or point size) indicates the size of a font’s glyphs as measured from the base
line of one line of text to the base line of the next line of single-spaced text. In the United
States, font size is traditionally measured in points, and there are 72.27 traditional points
per inch. However, QuickDraw and the PostScript language define 1 point to be 1⁄72 of an
inch, so there are exactly 72 points per inch on the Macintosh.

Previously, the Font Manager required fonts to be less than or equal to 127 points in size,
but this restriction no longer applies to any type of font. All bitmaps must fit on the
QuickDraw coordinate plane; on a 72-dpi display device, fonts have an upper size limit
of 32,767 points.

There is no strict typographical standard for defining a point size: it is often, but not
always, the sum of the ascent, descent, and leading values for a font. Point size is used
by a font designer to indicate the size of a font relative to other fonts in the same family.
Glyphs from fonts with the same point size are not necessarily of the same height. This
means that a 12-point font can exceed the measurement of 12 points from the base line of
one line of text to the base line of the next.

Note
The Font Manager does not force fonts that are specified as having a
certain point size to be of that size. This can have an impact when laying
out text in your application, so you need to take it into account. You may
need to determine the actual height of the text that you are displaying
by using the QuickDraw routine MeasureText (which is described in
the chapter “QuickDraw Text” in this book) rather than relying on the
point size of the font. ◆

Maximum y-value

Ascent line

Base line
About Fonts 4-11

C H A P T E R 4

Font Manager

Leading (pronounced “LED-ing”) is the amount of blank vertical space between the
descent line of one line of text drawn using a font and the ascent line of the next line
of single-spaced text drawn in the same font. The Font Manager returns the font’s
suggested leading, which is in pixels, in the FontMetrics procedure for both outline
and bitmapped fonts. QuickDraw returns similar information in the GetFontInfo
procedure. Although the designer specifies a recommended leading value for each font,
you can always change that value if you need more or less space between the lines of
text in your application. The line spacing for a font can be calculated by adding
the value of the leading to the distance from the ascent line to the descent line of a single
line of text.

Although each glyph has a specific advance width and left-side bearing measurement
assigned to it, you can change the amount of white space that appears between glyphs.
Kerning is the process of drawing part of a glyph so that it overlaps another glyph. The
period in the top portion of Figure 4-3 stands apart from the uppercase “Y”. In the
bottom portion of the figure, the word and the period have been kerned: the period has
been moved under the right arm of the “Y” and the glyphs of the word are closer.
Kerning data—the distances by which pairs of specified glyphs should be moved closer
together—is stored in the kerning tables of the different font resources. The kerning table
of the outline font resource is described on page 4-84. The kerning table of the font
family resource is described on page 4-106.

Figure 4-3 Unkerned text (top) and kerned text (bottom)

About Font Resources 4

This section provides a general description of the resources used for font management
on the Macintosh, including

■ an overview of each of the font resource types

■ a brief history of the evolution of font resource use on the Macintosh

■ information about font family IDs
4-12 About Font Resources

C H A P T E R 4

Font Manager

4

F
ont M

anager

Font Resource Types 4
Although the display of different fonts has always been an important aspect of using the
Macintosh computer, the need for increased font availability and flexibility has
expanded significantly since the introduction of the Macintosh. The built-in font
management software has increased in power and complexity to accommodate the
expanded needs of users. There used to be only one font resource type, of type 'FONT',
but it is now out of date. There are now three additional font resource types.

■ Bitmapped font ('NFNT') resources describe bitmapped fonts. These bitmapped font
resources have an identical structure to the earlier 'FONT' resources, which they have
replaced, but the bitmapped font resources add a more flexible font ID number
scheme. This chapter assumes that you are working with bitmapped font resources
rather than 'FONT' resources. The fields of the bitmapped font resource are described
in the section “The Bitmapped Font ('NFNT') Resource,” which begins on page 4-66.

■ Outline font ('sfnt') resources describe outline fonts. The fields and tables of the
outline font resource are described in the section “The Outline Font ('sfnt') Resource,”
which begins on page 4-72.

■ Font family ('FOND') resources describe font families, including information such as
which fonts are included in the family and the recommended width for a glyph at a
given point size. The fields and tables of the font family resource are described in the
section “The Font Family ('FOND') Resource,” which begins on page 4-90.

Each font that you use is represented by either a bitmapped font or outline font resource
(or a 'FONT' resource, in some cases), and each is part of a font family. A single font
family can contain a mixture of bitmapped and outline fonts. The font association table
in the font family resource refers to the font resources that the family includes.

Handles to font resources, found in data structures such as the global width table and
the FMOutput record, can point to either kind of font.

A Brief History of Font Resource Use 4
The use of font resources has evolved considerably since the early days of the Macintosh
computer. Knowing how the changes have evolved can help you understand their use
in current software.

The earliest versions of Macintosh system software stored and created all font data in
'FONT' resources. Font families were created by storing a unique family ID in bits 7–14
of the resource ID of each font in the family. To name a font family, a designer included a
'FONT' resource with a point size of zero. This method severely restricted the range of
both family IDs and point sizes.

With the introduction of the 128K ROM, there were two new resource types: the font
family ('FOND') resource, which stores size-independent information for a font family,
and the bitmapped font ('NFNT') resource, which has the same internal format as
the 'FONT' resource, but can use any resource ID. Each font family resource names the
family and contains a font association table, which consists of a number of individual
font entries. Each entry contains a word for the font style, a word for the font size, and a
About Font Resources 4-13

C H A P T E R 4

Font Manager
word for the 'FONT' resource ID or bitmapped font resource ID of the font. This new
scheme expanded the range of both font sizes and font family IDs to allow values from
0 to 32,767.

When TrueType outline font support was added for System 7, a new font resource type
was added: the outline font resource, the internal format of which is substantially
different from that of the bitmapped font resources.

Note
Because of the way that 'FONT' resources were originally constructed, a
'FONT' resource can exist independently of a font family resource. This
is not true of bitmapped font and outline font resources, each of which
must be associated with a font family resource. ◆

Font Family IDs 4
Several of the Font Manager routines and data structures make use of a font ID value,
which is actually a font family ID value. The valid values for font family IDs, like the
resource IDs of all script-specific resources, are subdivided into ranges for each script
system, with half of the total range allocated for Roman font families and 512 IDs
allocated for each other script system. The ranges for each non-Roman script system are
listed in the appendix “International Resources” in this book.

The system software keeps track of two font family IDs. It uses the system font for
drawing items such as system menus and system dialog boxes. The application font is
the font that your application will use for text unless specified otherwise by you or the
user. In Roman script systems, the system font is Chicago, the system font size is 12
points, and the application font is Geneva. In other script systems, the system and
application fonts are defined in the international resources. The Script Manager variables
smScriptSysFond, smScriptAppFond, smScriptSysFondSize, and
smScriptAppFondSize, which define the system and application fonts and font sizes
for each script system, are described in the “Script Manager” chapter in this book.

Font family ID values 0 and 1 are reserved. The system software always maps the system
font to font 0 and the application font to font 1. The Roman font family ID range is itself
subdivided as shown in Table 4-1.

Table 4-1 Subdivisions of Roman font family IDs

ID range Use

2–255 Mostly older font families that use the 'FONT' resource numbering
method. Do not use these IDs.

256–1023 Reserved numbers that should not be used for family IDs. The Font/
DA Mover program uses this range of IDs to resolve font conflicts.

1024–16382 Commercial fonts. This is the range of IDs that all Roman font families
should use.

16383 Reserved. Do not use.
4-14 About Font Resources

C H A P T E R 4

Font Manager

4
F

ont M
anager
The Font Manager defines constants for the system font and the application font, as well
as for several of the older font IDs in the range from 2 to 255. These constants are
presented here; however, you need to use the older font ID constants with caution, since
most of them have become obsolete.

CONST

systemFont = 0; {the system font}

applFont = 1; {the application font}

newYork = 2; {hard-coded New York font ID}

geneva = 3; {hard-coded Geneva font ID}

monaco = 4; {hard-coded Monaco font ID}

venice = 5; {hard-coded Venice font ID}

london = 6; {hard-coded London font ID}

athens = 7; {hard-coded Athens font ID}

sanFran = 8; {hard-coded San Francisco font ID}

toronto = 9; {hard-coded Toronto font ID}

cairo = 11; {hard-coded Cairo font ID}

losAngeles = 12; {hard-coded Los Angeles font ID}

times = 20; {hard-coded Times Roman font ID}

helvetica = 21; {hard-coded Helvetica font ID}

courier = 22; {hard-coded Courier font ID}

symbol = 23; {hard-coded Symbol font ID}

mobile = 24; {hard-coded Mobile font ID}

The Script Manager provides functions that allow you to determine which script a font
belongs to. For more information, see the chapter “Script Manager” in this book.

Restrictions on the Use of 'FONT' Resources 4
Since some older applications only work with'FONT' resources, you might need to
create a 'FONT' resource to retain compatibility. If this is necessary, you need to follow
these restrictions on 'FONT' resources that are part of a font family.

■ The font name and family name must be identical.

■ The font ID and font family ID must be identical.

■ The resource ID of the font must equal the number produced by concatenating the
font ID times 128 with the font size. Remember that fonts stored in 'FONT' resources
are restricted to a point size of less than 128 and to a font ID in the range 0 to 255. The
resource ID is computed by the following formula:

resourceID := (font ID * 128) + font size;

These restrictions ensure that both the 64K ROM found in older Macintosh computers
and the newer 128K ROM versions of the Font Manager will associate the font family
ID and point size with the proper corresponding 'FONT' resource ID, whether or not
there is a family resource.
About Font Resources 4-15

C H A P T E R 4

Font Manager
Font Resource Tables 4
The Font Manager takes care of the details of how fonts are stored in resources, reading
the resource files when required and building internal representations of the data stored
in them. The Font Manager provides routines to interact with fonts, meeting the
font-manipulation needs of most application developers.

However, if you are developing an application that requires you to work directly with
font resource data, you may need to understand how the font data is stored in resource
files. Each font resource consists of a number of tables, each of which has a specific
structure. Some of these tables are described in the section “Font Manager Reference”
beginning on page 4-39, while others are described in the TrueType Font Format
Specification.

About the Font Manager 4

QuickDraw draws text to the screen and, sometimes, to a printer. For its purposes,
the glyphs that make up text are simply little images that make up a large, albeit
well-ordered, image. QuickDraw uses size information, such as height and width,
as it might use that information when arranging any graphic image.

The Font Manager, by contrast, keeps track of detailed font information such as the
glyphs’ character codes, whether fonts are fixed-width or proportional, and which fonts
are related to each other by name.

When QuickDraw needs to draw some text in a particular font, it sends a request for that
font to the Font Manager. The Font Manager finds the font or the closest match to it that
is available, and sends the font back to QuickDraw with some information that
QuickDraw uses for stylistic variations and layout.

Note
Although the terms glyph and character code have different
meanings, QuickDraw routines and data structure fields often use the
word character for both. Review the purpose of the routine or data
structure you’re using before deciding whether it handles character
codes or glyphs. ◆

How QuickDraw Requests a Font 4
When your application calls a QuickDraw routine that does anything with text (for
example, DrawText or TextFont), QuickDraw gets information from the Font Manager
about the font specified in the current graphics port record and the individual glyphs of
that font. The Font Manager performs any necessary calculations and returns the
requested information to QuickDraw.
4-16 About the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
QuickDraw makes its request for font information using a font input record (of data type
FMInput), which is described on page 4-40. This record contains the font family ID, the
size, the style, and the scaling factors of the font request.

QuickDraw makes a font request by filling in a font input record and calling the
FMSwapFont function. If your application needs to make a font request in the same way
that QuickDraw does, you can call FMSwapFont. Since responding to a font request can
be a lot of work, FMSwapFont has been optimized to return as quickly as possible if the
request is for the same font as was most recently requested. Building the global width
table, which is described in “How the Font Manager Calculates Glyph Widths” on
page 4-23, is one of the more time-consuming tasks in this process, which is why the
Font Manager maintains a cache of up to 12 width tables.

The Font Manager looks for the font family resource of the requested font and from that
determines information about which font it can use to meet the request. If necessary, the
Font Manager calls the Resource Manager to read the font.

For certain types of devices, such as a screen or the ImageWriter printer, the Font
Manager uses the font characterization table from the device driver to determine any
additional information that QuickDraw may need. The font characterization table
contains information about the dots per vertical inch and dots per horizontal inch for
that device, along with information about the different styles that the device can
produce. Non-QuickDraw devices, such as the LaserWriter printer, return an error when
the Font Manager requests their font characterization table.

▲ W A R N I N G

Never assume that the font resource is a bitmapped font resource or
outline font resource. If you need to read information from the resource,
you should first call the Resource Manager GetResInfo procedure
with the handle to the resource. The GetResInfo procedure is
described in the Resource Manager chapter in Inside Macintosh: More
Macintosh Toolbox. ▲

How the Font Manager Responds to a Font Request 4
The Font Manager returns the needed information to QuickDraw in a font output record
(of data type FMOutput), which is described on page 4-41. This record contains a handle
to the font resource that the FMInput record requested, information on how different
stylistic variations affect the display of the font’s glyphs, and the scaling factors.

When the Font Manager gets a request for a font in a font input record, it attempts to
find a font family resource for the requested font family by following these steps:

1. The Font Manager checks the global variable LastFOND, which contains a handle to
the last font family resource used.

2. If the last font family resource used is not the one requested, the Font Manager checks
its memory cache, in which it keeps the last 12 width tables used.

3. If the font family resource is not in the cache, the Font Manager calls the Resource
Manager GetResource function to get the resource.
About the Font Manager 4-17

C H A P T E R 4

Font Manager
If the font family resource is available, the Font Manager looks in the font family
resource for the ID of the appropriate font resource to match the request. If a font
family resource isn’t available, the Font Manager follows these steps:

1. The Font Manager looks for a 'FONT' resource, since such resources can exist without
being associated with a font family resource.

2. If it can’t find a 'FONT' resource, the Font Manager looks for the application font.

3. If it can’t find the application font, the Font Manager looks for a neighborhood base
font, which is the font with the lowest font ID for that script system. For fonts
numbered below 16384, this is font 0. For fonts above 16384, the Font Manager
looks for the nearest font resource that is a multiple of 512 and less than the
specified font value.

4. If it can’t find a neighborhood font, the Font Manager gets the system font.

5. If it can’t find the system font, the Font Manager always uses Chicago 12.

When responding to a font request, the Font Manager first looks for a font family
resource of the specified size. It then looks for the stylistic variation that was requested.
It does this by assigning weights to the various styles (for example, a weight of 8 for
italic, 4 for bold) and then choosing the font whose style weight most closely matches the
weight of the requested style.

If the Font Manager cannot find the exact font style that QuickDraw has requested, it
uses the closest font style that it does find for that font and QuickDraw then applies the
correct style to that font. For example, if an italic version of the requested font cannot be
found, the Font Manager returns the plain version of the font and QuickDraw will slant
the characters as it draws them. The QuickDraw styles are given in the QuickDraw data
type Style, which includes the values bold, italic, underline, outline, shadow,
condense, and extend.

With the additional complication of having both outline and bitmapped fonts available,
this process can sometimes produce results other than those that you expected. The Font
Manager can be set to favor either outline or bitmapped fonts when both are available to
meet a request, as described in “Favoring Outline or Bitmapped Fonts” on page 4-35.
The following scenario is one example of how the font that is selected can be a surprise:

1. You have specified that bitmapped fonts are to be preferred over outline fonts when
both are available in a specific size.

2. The system software on which your application is running has the bitmap font Times
12 and the outline fonts Times, Times Italic, and Times Bold.

3. The user requests Times Bold 12.

4. The Font Manager chooses the bitmapped version of Times 12 and QuickDraw
algorithmically smears it to create the bold effect.

There’s not much that you can do about such situations except to be aware that telling
the Font Manager to prefer one kind of a font over another has implications beyond
what you might initially expect.
4-18 About the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
How the Font Manager Scales Fonts 4
Font scaling is the process of changing a glyph from one size or shape to another. The
Font Manager and QuickDraw can scale bitmapped and outline fonts in three ways:
changing a glyph’s point size, modifying the glyph (but not its point size) for display on
a different device, and altering the shape of the glyph.

For bitmapped fonts, the Font Manager does not actually perform scaling of the glyph
bitmaps. Instead, the Font Manager finds an appropriate font and computes the
horizontal and vertical scaling factors that QuickDraw must apply to scale the bitmaps.
QuickDraw performs all modifications of bitmapped font glyphs.

The simplest form of scaling occurs when the Font Manager returns scaling factors for
QuickDraw to change a glyph from one point size to another on the same display device.
If the glyph is bitmapped and the requested font size is not available, there are certain
rules the Font Manager follows to create a new bitmapped glyph from an existing one
(see “The Scaling Process for a Bitmapped Font” on page 4-22). If the glyph is from an
outline font, the Font Manager uses the outline for that glyph to create a bitmap.

Figure 4-4 shows how the Font Manager and QuickDraw scale a bitmapped font and an
outline font from 9 points to 40 points for screen display. The sizes of the bitmapped
fonts available to the Font Manager to create all 32 sizes were 9, 10, 12, 14, 18, and 24
points. A single glyph outline produces a smoother bitmap in all point sizes.

Figure 4-4 A comparison of scaled bitmapped and outline fonts

The Font Manager produces better results by scaling glyphs from outline fonts, because
it changes the font’s original outline to the new size or shape, and then makes the
bitmap. Outlines give better results than bitmaps when scaled, because the outlines are
intended for use at all point sizes, whereas the bitmaps are not.

Bitmapped screen font scaled from 9 points to 40 points

dddddddddddddddddddddddddddddddd
Outline screen font scaled from 9 points to 40 points
About the Font Manager 4-19

C H A P T E R 4

Font Manager
The Font Manager also determines that a glyph must be scaled when moving it from one
device to another device with a different resolution: for instance, from the screen to a
printer. A bitmap that is 72 pixels high on a 72-dpi screen measures one inch, but on a
144-dpi printer it measures a half inch. In order to print a figure the same size as the
original screen bitmap, QuickDraw needs a bitmap twice the size of the original. If there
are no bitmaps available in twice the point size of the bitmap that appears on the screen,
the Font Manager returns the proper scaling factors, and QuickDraw scales the original
bitmap to twice its original size in order to draw it on the printer.

With some QuickDraw calls, your application can also use the Font Manager to explicitly
scale a glyph by stretching or shrinking it, which changes the glyph from a familiar point
size to something a little stranger—for example, a glyph that is 12 points high but as
wide as a whole page of text. Your application tells the Font Manager how to scale a
glyph using font scaling factors, which are represented as proportions or fractions that
indicate how the Font Manager should scale the glyph in the vertical and horizontal
directions. The ratio given by the font scaling factors determines whether the glyph
grows or shrinks: if the ratio is greater than one, the glyph increases in size, and if it is
less than one, the glyph decreases in size. If the font scaling factors are 1-to-1 (1/1) for
both horizontal and vertical scaling, the glyph does not change size.

In some circumstances, the Font Manager finds a font and returns different scaling
factors to QuickDraw. The scaling factors in a QuickDraw font request tell the Font
Manager how much QuickDraw wants to scale the font, and the scaling factors returned
by the Font Manager tell QuickDraw how much to actually scale the glyphs before
drawing them.

In Figure 4-5, the font scaling factors are 2/1 in the horizontal direction and 1/1 in the
vertical direction. The glyph stays the same height, but grows twice as large in width.

Figure 4-5 A glyph stretched horizontally

A A
y

x 2x
4-20 About the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
In Figure 4-6, the font scaling factors are 2/1 in the vertical direction and 1/1 in
the horizontal direction. The glyph stays the same width, but grows to twice its
original height.

Figure 4-6 A glyph stretched vertically

In Figure 4-7, the font scaling factors are 1/1 in the vertical direction and 1/2 in the
horizontal direction. The glyph stays the same height but retains only half its width.

Figure 4-7 A glyph condensed horizontally

If the font scaling factors are 2/1 in both directions and the font is an outline font, then
the Font Manager computes the size of the glyph as twice the specified size and
QuickDraw draws the glyph. With bitmapped fonts, QuickDraw first looks for a bitmap
at twice the size of the original before redrawing the glyph at the new point size.

Many routines use the value of the font scaling factors in order to calculate the best
measurements for text in the current graphics port record. You can find the current
horizontal and vertical scaling factors in the global variables FScaleHFact and
FScaleVFact. The exact value of the font output scaling factors can be found by
multiplying the value of the global width table’s hOutput and vOutput fields by the
values of the hFactor and vFactor fields, also of the global width table, respectively.
The description of the global width table begins on page 4-43.

A
y

x

2y

A
x

A
y

x 1/2x

A

About the Font Manager 4-21

C H A P T E R 4

Font Manager
The Scaling Process for a Bitmapped Font 4

Although the Font Manager does not scale the glyph bitmaps of a bitmapped font, it
does compute the scaling factors that QuickDraw uses to perform the scaling. The Font
Manager computes scaling factors other than 1/1 when the exact point size requested is
not available. Font scaling is the default behavior; however, you can disable it, as
described below. When the Font Manager cannot find the proper bitmapped font that
QuickDraw has requested and font scaling is enabled, it uses the following procedure:

1. The Font Manager looks for a font of the same font family that is twice the size of the
font requested. If it finds that font, the Font Manager computes and returns to
QuickDraw factors to scale it down to the requested size.

2. The Font Manager looks for a font of the same font family that is half the size of the
font requested. If it finds that font, the Font Manager computes and returns to
QuickDraw factors to scale it up to the requested size.

3. The Font Manager looks for a font of the same font family that is the next larger size
of the font requested. If it finds that font, the Font Manager computes and returns to
QuickDraw factors to scale it down to the requested size.

4. The Font Manager looks for a font of the same font family that is the next smaller size
of the font requested. If it finds that font, the Font Manager computes and returns to
QuickDraw factors to scale it up to the requested size.

5. If the Font Manager cannot find any size of that font family, it returns the application
font, system font, or neighborhood base font, as described in the section “How the
Font Manager Responds to a Font Request” beginning on page 4-17. The Font
Manager computes and returns to QuickDraw the factors to scale that font to the
requested size.

You can disable the scaling of bitmapped fonts in your programs by calling the
SetFScaleDisable procedure. When the Font Manager cannot find the proper
bitmapped font that QuickDraw has requested and font scaling is disabled, the Font
Manager looks for a different font to substitute instead of scaling. The
SetFScaleDisable procedure is described on page 4-59.

With scaling disabled, the Font Manager looks for a font with characters with the correct
width, which may mean that their height is smaller than the requested size. The Font
Manager returns this font and returns scaling factors of 1/1, so that QuickDraw does not
scale the bitmaps. QuickDraw draws the smaller font, the widths of which produce the
spacing of the requested font. This is faster than font scaling and accurately mirrors the
word spacing and line breaks that the document will have when printed, especially if
fractional character widths are used. Disabling and enabling of font scaling are described
in the section “Using Fractional Glyph Widths and Font Scaling” on page 4-38.
4-22 About the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
Note
A font request made with scaling disabled does not necessarily return
the same result as an identical request with scaling enabled. The widths
are sure to be the same only if fractional widths are enabled, the font
does not have a glyph-width table, and the font is a member of a family
record with a family character-width table. Fractional widths and width
tables are discussed in “How the Font Manager Calculates Glyph
Widths” on page 4-23. ◆

The Scaling Process for an Outline Font 4

The Font Manager always scales an outline font in order to produce a bitmapped glyph
in the requested size, regardless of whether font scaling for bitmapped fonts is enabled
or disabled. An outline font is considered to be the model for all possible point sizes, so
the Font Manager is not scaling it from one “real” size to a “created” size, the way it does
with a bitmapped font; it is drawing the outline in the requested point size, so that it can
then create the bitmapped glyph.

How the Font Manager Calculates Glyph Widths 4
Integer glyph widths are measurements of a glyph’s width that are in whole pixels.
Fractional glyph widths are measurements that can include fractions of a pixel. For
instance, instead of a glyph measuring exactly 5 pixels across, it may be 5.5 pixels across.
Fractional glyph widths allow the sizes of glyphs as stored by the Font Manager to be
closer in proportion to the original glyphs of the font than integer widths allow.
Fractional widths also make it possible for high-resolution printers to print with
better spacing.

You can enable or disable the use of fractional glyph widths in your application, as
described in “Using Fractional Glyph Widths and Font Scaling” on page 4-38. As a
default, fractional widths are disabled to retain compatibility with older applications.

When using fractional glyph widths, the Font Manager stores the locations of
glyphs more accurately than any actual screen can display: since screen glyphs are made
up of whole pixels, QuickDraw cannot draw a glyph that is 5.5 pixels wide. The
placement of glyphs on the screen matches the eventual placement of glyphs on a page
printed by the high-resolution printers more closely, but the spacing between glyphs and
words is uneven as QuickDraw rounds off the fractional parts. The extent of the
distortion that is visible on the screen depends on the font point size relative to the
resolution of the screen.
About the Font Manager 4-23

C H A P T E R 4

Font Manager
The Font Manager communicates fractional glyph widths to QuickDraw through the
global width table, which is a data structure that is allocated in the system heap. The
Font Manager fills in this table by accessing data from one of several places:

■ Integer glyph widths are taken from the width/offset table of the bitmapped font
resource and the horizontal device metrics table of the outline font resource.

■ Fractional glyph widths are taken from the glyph-width table in the bitmapped font
resource, the horizontal metrics table in the outline font resource, and the family
glyph-width table in the font family resource.

The Font Manager looks for width data in the following sequence:

1. For a bitmapped font, it first looks for a font glyph-width table in the font record,
which is the record used to represent in memory the data in a bitmapped font
resource. For an outline font, it first looks for data in the horizontal metrics table. The
width table for bitmapped fonts is described in the section “The Bitmapped Font
('NFNT') Resource,” which begins on page 4-66. The width table for outline fonts is
described in “The Horizontal Device Metrics Table” on page 4-78.

2. If it doesn’t find this table, the Font Manager looks in the font family record for
a family glyph-width table. The font family record is used to represent in memory
the data in a font family resource. This is described in “The Family Glyph-Width
Table” on page 4-98.

3. If the Font Manager doesn’t find a family glyph-width table, it derives the
global character widths from the integer widths contained in the width/offset table
in the bitmapped font record, as described in “The Bitmapped Font ('NFNT')
Resource” on page 4-66.

Note
If you need to use different widths than those returned by the global
width table, you should change the values in the global width table only.
You should never change any values in the font resources themselves. ◆

To use fractional glyph widths effectively, your application must get accurate widths
when laying out text. Your application should obtain glyph widths either from the
QuickDraw procedure MeasureText or by looking in the global width table. The
MeasureText procedure is described in the chapter “QuickDraw Text” in this book.
You can get a handle to the global width table by calling the FontMetrics procedure,
which is described on page 4-54.
4-24 About the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
Synthetic Fonts 4
You may want your application to handle fonts that have a font depth greater than the
normal 1-bit depth. (The font depth is the number of bits per pixel; it is specified in bits 2
and 3 of the fontType field of the bitmapped font resource, which is described
beginning on page 4-70. The Font Manager supports font depths of 1, 2, 4, and 8 bits.) An
advantage of using fonts with a larger font depth is that the Font Manager draws
bitmapped fonts to the screen considerably faster if the font depth matches the screen
depth specified by the user in the Monitors control panel.

The Font Manager can create a synthetic font from a 'FONT' or bitmapped font
resource (but not from an outline font resource) by expanding the 1-bit font into a
font that matches the current screen depth. The Font Manager creates and maintains
synthetic fonts internally, for performance reasons. However, if there is not enough
memory to support synthetic fonts, the Font Manager displays a font at 1-bit depth, no
matter what the current screen depth is. Font manufacturers can specify that the Font
Manager should not expand a font by setting bit 14 of the fontType field of the
bitmapped font resource.

How the Font Manager Renders Outline Fonts 4
Outline fonts are stored in an outline font ('sfnt') resource as a collection of outline
points. (Don’t confuse these outline points with the points that determine point size, or
the Point data type, which specifies a location in the QuickDraw coordinate plane.) The
Font Manager calculates lines and curves between the points, sets the bits that make the
bitmap, and then sends the bitmap to QuickDraw for display.

There are two types of outline points: on-curve points define the endpoints of lines, and
off-curve points determine the curve of the line between the on-curve points. Two
consecutive on-curve points define a straight line. To draw a curve, the Font Manager
needs a third point that is off the curve and between the two on-curve points.

The Font Manager uses this parametric Bézier equation to draw the curves of the glyph
from an outline font:

F(t) = (1 – t)2 * A + 2t(1 – t) * B + t2 * C

where t ranges between 0 and 1 as the curve moves from point A to point C. A and C are
on-curve points; B is an off-curve point.
About the Font Manager 4-25

C H A P T E R 4

Font Manager
Figure 4-8 shows two Bézier curves. The positions of on-curve points A and C remain
constant, while off-curve point B shifts. The curve changes in relation to the position
of point B.

Figure 4-8 The effect of an off-curve point on two Bézier curves

A font designer can use any number of outline points to create a glyph outline.
These points must be numbered in a logical order, because the Font Manager draws
lines and curves sequentially. This process produces a glyph such as the lowercase “b”
in Figure 4-9.

A

B

C A

B

C

= on-curve point

= off-curve point
4-26 About the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
Figure 4-9 An outline with points on and off the curve

1

2

3 4 5

6

7

8

9

101112
13

14

1516

19 18 30

29

28

27

26

25
24

23

22

21

20

17 0

= on-curve point

= off-curve point
About the Font Manager 4-27

C H A P T E R 4

Font Manager
There are several groups of points in Figure 4-9 that include two consecutive off-curve
points. For instance, points 2 and 3 are both off-curve. In this case, the Font Manager
interpolates an on-curve point midway between the two off-curve points, thereby
defining two Bézier curves, as shown in Figure 4-10. Note that this additional on-curve
point is used for creation of the glyph only; the Font Manager does not alter the outline
font resource’s list of points.

Figure 4-10 A curve with consecutive off-curve points

When the Font Manager has finished drawing a closed loop, it has completed one
contour of the outline. The font designer groups the points in the outline font resource
into contours. In Figure 4-9, the Font Manager draws the first contour in the glyph from
point 0 to point 17, and the second contour from point 18 to the end, creating the glyph
in Figure 4-11.

1

2

3
4

Interpolated point

= on-curve point

= off-curve point
4-28 About the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
Figure 4-11 A glyph from an outline font

At this stage, the glyph does not have a fixed point size. Remember that point size is
measured as the distance from the base line of one line of text to the base line of the next
line of single-spaced text. Because the Font Manager has the measurements of the outline
relative to the base line and ascent line, it can correlate the measurements with the
requested point size and calculate how large the outline should be for that point size.

The Font Manager uses the contours to determine the boundaries of the bitmap for this
glyph when it is displayed. For example, the Macintosh computer’s screen is a grid
made of pixels. The Font Manager fits the glyph, scaled for the correct size, to this grid. If
the center of one section of this grid—comparable to a pixel or a printer dot—falls on a
contour or within two contours, the Font Manager sets this bit for the bitmap.

Because there are two contours for the glyph in Figure 4-11, the Font Manager begins
with pixels at the boundary marked by contour 1 and stops when it gets to contour 2.
Some glyphs need only one contour, such as the uppercase “I” in some fonts. Others
have three or more contours, such as the ✍ glyph from the ITC Zapf Dingbats font.

If the pixels (or dots) are tiny in proportion to the outline (when resolution is high or the
point size of the glyph is large), they fill out the outline smoothly, and any pixels that jut
out from the contours are not noticeable. If the display device has a low resolution or the
point size is small, the pixels are large in relation to the outline. You can see in Figure
4-12 that the outline has produced an unattractive bitmap. There are gaps and blocky
areas that would not be found in the high-resolution versions of the same glyph.

Contour 1

(outside)

Contour 2

(inside)
About the Font Manager 4-29

C H A P T E R 4

Font Manager
Figure 4-12 An unmodified glyph from an outline font at a small point size

Because the size of the pixels or dots used by the display device cannot change, the
outline should adapt in order to produce a better bitmap. To achieve this end, font
designers include instructions in the outline font resource that indicate how to change
the shape of the outline under various conditions, such as low resolution or small point
size. The lowercase “b” outline in Figure 4-13 is the same one depicted in Figure 4-12,
except that the Font Manager has applied the instructions to the figure and produced a
better bitmapped glyph. These instructions are equivalent to “move these points here” or
“change the angle formed by these points.” A font designer includes programs
consisting of these instructions in certain outline font resource tables, where the Font
Manager finds them and executes them under specified conditions. Most applications do
not need to use instructions; however, if you want to know more about them, see the
book TrueType Font Format Specification.

Once the Font Manager has produced the outline according to the design and
instructions, it creates a bitmap and sends the bitmap to QuickDraw, which draws it on
the screen. The Font Manager then saves the bitmapped glyph in memory (caches it) and
uses it the next time the user requests this glyph in this font at this point size.
4-30 About the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
Figure 4-13 An instructed glyph from an outline font

Using the Font Manager 4

You can use the Font Manager to take full advantage of the information that fonts
contain about their widths and scaling possibilities and present this information to the
user. The Font Manager provides routines that give your application control over
selecting fonts and measuring the individual glyphs of the font. It also helps you to
handle the coexistence of bitmapped and outline versions of fonts.

This section describes how to use the capabilities of the Font Manager in your program
to handle tasks, including

■ initializing the Font Manager

■ adding font names and sizes to the Font menu

■ storing font names in your documents

■ getting font measurement information

■ setting the Font Manager to favor outline or bitmapped fonts

■ preserving or scaling the shapes of glyphs

■ using the font tables

■ getting the system or application font ID

■ enabling and disabling font scaling and fractional width use
Using the Font Manager 4-31

C H A P T E R 4

Font Manager
To initialize the Font Manager, you must call the InitFonts procedure. Before calling
InitFonts, you need to initialize QuickDraw by calling the InitGraf procedure,
which is described in Inside Macintosh: Imaging.

Adding Font Sizes and Names to the Menu 4
When you use the Menu Manager to add font sizes to a menu, make sure that you
construct the menu so that it displays appropriate sizes for both bitmapped and outline
fonts. Keep the following guidelines in mind:

■ Support all possible font sizes. The maximum point size on the QuickDraw coordinate
plane is 32,767 points.

■ Provide a short list of the most useful font sizes. For the menu that your application
uses to display font sizes, you shouldn’t predefine a static list of sizes available to the
user or allow the default to be every possible font size, because outline fonts can
produce thousands of sizes.

■ Provide a method of increasing or decreasing the font size by one point at a time. You
can add Larger and Smaller commands, which make choosing slightly different sizes
for outline fonts easier for the user. Also, the user should be able to choose any
possible point size at any time in a simple manner.

■ Place a check next to the current size.

■ Display available font sizes in outline style. For a bitmapped font, the RealFont
function returns TRUE if the font is available in the requested point size and FALSE if
the font is not; you can thereby determine which bitmapped fonts are available. For
outline fonts, the RealFont function returns TRUE for almost any size. The font’s
designer may decide that there is a lower limit to the point sizes at which the font
looks acceptable. The RealFont function returns FALSE for an outline font if the size
requested is smaller than this lower limit.

Figure 4-14 shows one possible method for accomplishing these goals in a menu.

Figure 4-14 A sample Size menu and font size dialog box

To create a menu that displays font names, use the AddResMenu procedure. This
procedure ensures that any changes to the Font Manager do not affect your application
4-32 Using the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
and that the menu that displays font names is not dependent on how fonts are stored in
system software. The AddResMenu procedure is documented in the chapter “Menu
Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Storing a Font Name in a Document 4
When presenting a font to a user, you should always refer to a font by name rather than
by font family ID; this prevents several problems that can arise if you use the font family
ID. One problem with identifying fonts by font family ID rather than by name is the
plethora of font families available for the Macintosh computer. Many share the same font
family ID, and even though the font the user wants is present in the System file, another
font with the same ID may appear in a font menu. Another problem is that one font
family may have different IDs on different computer systems, so that when the
application opens the document using this font family on a different computer system, it
can’t find the proper font, even though it is available, and substitutes another.

If you’ve stored the name of the font in the document, you can find its font family ID by
calling the GetFNum procedure, which is described on page 4-52. However, if the font
isn’t present in the system software when the user opens the document, GetFNum
returns 0 for the ID. Since 0 is also the system font ID (or the neighborhood base font for
the active script system), you need to double-check the name of the font from the
document against the name of the system font, as illustrated in Listing 4-1.

Listing 4-1 Checking a font name against the system font name

FUNCTION MyGetFontNumber(fontName: Str255;

 VAR fontNum: Integer): Boolean;

{MyGetFontNumber returns in the fontNum parameter the number for }

{ the font with the given font name. If there’s no such font, }

{ it returns FALSE.}

VAR

systemFontName: Str255;

BEGIN

GetFNum(fontName, fontNum);

IF fontNum = 0 THEN

BEGIN {either the font was not found, or it is the system font}

GetFontName(0, systemFontName);

GetFontNumber := EqualString(fontName, systemFontName, FALSE, FALSE);

END{ if theNum was not 0, the font is available }

ELSE

GetFontNumber := TRUE;

END;
Using the Font Manager 4-33

C H A P T E R 4

Font Manager
Storing a font’s name rather than its ID is a more reliable method of finding a font,
because the name, unlike the font family ID, does not change from one computer system
to another. You may also want to store the checksum of a font (the sum of the values of
the bytes in the font data) with its name, to be sure that the version of the font is the
same on different computer systems. Listing 4-2 on page 4-76 provides a function for
computing a checksum.

If the font versions are different—that is, if the checksums don’t match—you should
offer users the option of substituting for the font temporarily (until they can find the
proper version of the font) or permanently (with another font that is currently available).

If you are developing software for use with non-Roman fonts and the font is not found
(by a function such as MyGetFontNumber above), you can use the neighborhood base
font rather than the system font. The neighborhood base font is the lowest font ID for a
particular script.

Getting Font Measurement Information 4
You sometimes need to get font measurement information for the text font in the
current graphics port. The Font Manager provides two routines for this purpose:
FontMetrics and OutlineMetrics. In addition, QuickDraw provides font
measurement information in the GetFontInfo procedure. You can use this information
when arranging the glyphs of one font or several fonts on a line or to calculate
adjustments needed when font size or style changes.

The FontMetrics procedure can be used on any kind of font, whether bitmapped or
outline. It returns the ascent and descent measurements, the width of the largest glyph in
the font, and the leading measurements. The FontMetrics procedure returns these
measurements in a font metrics record (of data type FMetricRec), which allows
fractional widths, whereas QuickDraw’s GetFontInfo procedure returns a font
information record (of data type FontInfo), which uses integer widths. In addition to
these four measurements, the font metrics record includes a handle to the global width
table, which in turn contains a handle to the font family resource for the current
text font. The GetFontInfo procedure and the font information record are described
in the chapter “QuickDraw Text” in this book. The global width table is
described on page 4-36. The FontMetrics procedure and the font metrics record
are described on page 4-54.

The OutlineMetrics function returns measurements for glyphs to be displayed in an
outline font. The function returns an error if the text font in the current graphics port is
any other kind of font. These measurements include the maximum y-values, minimum
y-values, advance widths, left-side bearings, and bounding boxes. (For the definitions
of these terms, see the section “About Fonts,” which begins on page 4-6.) The
OutlineMetrics function is described beginning on page 4-56.

For a font of a non-Roman script system that uses an associated font, the font
measurements reflect combined values from the current font and the associated font.
This is to accommodate the script system’s automatic display of Roman characters in the
4-34 Using the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
associated font instead of the current font. See the discussion of associated fonts in the
chapter “Introduction to Text on the Macintosh” in this book.

Favoring Outline or Bitmapped Fonts 4
When a document uses a font that is available as both an outline font and a bitmapped
font, the Font Manager has to decide which kind of font to use. Its default behavior is to
use the bitmapped font when your application opens the document. This behavior
avoids problems with documents that were created on a computer system on which
outline fonts were not available. See “How the Font Manager Responds to a Font
Request” on page 4-17 for more information.

You can change this default behavior by calling the SetOutlinePreferred procedure.
If you call SetOutlinePreferred with the outlinePreferred parameter set
to TRUE, the Font Manager chooses outline fonts over bitmapped fonts when both
are available.

The GetOutlinePreferred function returns a Boolean value that indicates which
kind of font the Font Manager has been set to favor. You should call this function and
save the value that it returns with your documents. Then, when the user opens a
document in your application, you can call SetOutlinePreferred with that value to
ensure that the same fonts are used.

If only one kind of font is available, the Font Manager chooses that kind of font to use in
the document, no matter which kind of font is favored. You can determine whether the
font being used in the current graphics port is an outline font by using the IsOutline
function, which is described on page 4-61.

Preserving the Shapes of Glyphs 4
Most glyphs in an alphabetic font fit between the ascent line and the descent line, which
roughly mark (respectively) the tops of the lowercase ascenders and the bottoms of the
descenders. Bitmapped fonts always fit between the ascent line and descent line. One
aim of outline fonts is to provide glyphs that are more accurate renditions of the original
typeface design, and there are glyphs in some typefaces that exceed the ascent or descent
line (or both). An example of this type of glyph is an uppercase letter with a diacritical
mark: “N” with a tilde produces “Ñ”. Many languages use glyphs that extend beyond
the ascent line or descent line.

However, these glyphs may disturb the line spacing in a line or a paragraph. The glyph
that exceeds the ascent line on one line may cross the descent line of the line above it,
where it may overwrite a glyph that has a descender. You can determine whether glyphs
from outline fonts exceed the ascent and descent lines by using the OutlineMetrics
function. OutlineMetrics returns the maximum and minimum y-values for whatever
glyphs you choose. You can get the values of the ascent and descent lines using the
FontMetrics procedure. If a glyph’s maximum or minimum y-value is greater than,
respectively, the ascent or descent line, you can opt for one of two paths of action: you
can change the way that your application handles line spacing to accommodate the
glyph, or you can change the height of the glyph.
Using the Font Manager 4-35

C H A P T E R 4

Font Manager
The Font Manager’s default behavior is to change the height of the glyph, providing
compatibility with bitmapped fonts, which are scaled between the ascent and descent
lines. Figure 4-15 shows the difference between an “Ñ” scaled to fit in the same amount
of space as an “N” and a preserved “Ñ”. The tilde on the preserved “Ñ” clearly exceeds
the ascent line.

Figure 4-15 The difference between a scaled glyph and a preserved glyph

You can change this default behavior by calling the SetPreserveGlyph procedure. If
you call SetPreserveGlyph with the preserveGlyph parameter set to TRUE, the
Font Manager preserves the shape of the glyph intended by the font’s designer.

The GetPreserveGlyph function returns a Boolean value that indicates whether or not
the Font Manager has been set to preserve the shapes of glyphs from outline fonts. You
should call this function and save the value that it returns with your documents. Then,
when the user opens a document in your application, you can call SetPreserveGlyph
with that value to ensure that glyphs are scaled appropriately.

Using Width Tables 4
When the Font Manager responds to a request to make a font available, the font resource
is loaded into memory and the Font Manager allocates memory for various tables that
are needed to use the font. To make font usage more efficient, the Font Manager
maintains a cache of the tables for the most recently used fonts, so that it does not have
to reread the resources and rebuild the tables more often than necessary. The Font
Manager can cache the tables for up to 12 fonts. For outline fonts, the cached information
includes the width tables and any bitmaps that have been created from the outlines.

The global width table contains the widths of all the glyphs of one font. If you are
measuring text to be displayed on the screen, you can use the QuickDraw procedure
MeasureText to determine glyph widths; however, if you are printing text and need to
determine glyph widths, you have to use widths from the global width table. The
OutlineMetrics function returns the individual widths of glyphs for an outline font

Scaled glyph

Preserved glyph
4-36 Using the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
and the FontMetrics procedure returns the width of the largest glyph in a bitmapped
font. You can also directly access the global width table, which is defined by the
WidthTable data type. This data type is described in the section “The Global Width
Table” beginning on page 4-43.

To use the global width table, you can get a handle to it from the FontMetrics
procedure, or you can use the handle stored in the global variable WidthTabHandle.
The global variable WidthPtr contains a pointer to the global width table; however,
this variable is reliable only immediately after a call to FMSwapFont. Like all pointers to
data in handles, WidthPtr may become invalid after a call to the Memory Manager.
In general, use the WidthTabHandle global variable instead of the WidthPtr
global variable.

The global variable WidthListHand is a handle to a list of up to 12 handles to recently
used width tables. You can scan this list and look for width tables that match the
font family ID, size, and style of the font you wish to measure. If you reach a width-table
handle that contains –1 in the tabFont, fID, and aFID fields, that width table
is invalid. When you reach a handle that is equal to NIL, you have reached the end of
the list.

IMPORTANT

Do not use the values from the global width table if your application is
running on a computer on which non-Roman script systems are
installed. You can check to see if a non-Roman script system is present
by calling the GetScriptManagerVariable function with a selector
of smEnabled; if the function returns a value greater than 0, at least one
non-Roman script system is present and you need to call MeasureText
to measure text that is displayed on the screen. Measuring text from a
non-Roman script system for printing is handled by the printer driver. ▲

If your application directly manipulates data in a font resource (for example, if your
application edits fonts), you may need to flush the Font Manager’s cache, so that the
cached information reflects any changes that your application makes. The FlushFonts
function, which is described on page 4-66, erases all of the Font Manager’s caches. The
Font Manager then rebuilds the cache as new fonts are called into use again.

Normally, fonts are purgeable, which means that the space used for each font’s resource
information can be released from memory. You can temporarily prevent a font from
being purged by locking it with a call to the SetFontLock procedure. A subsequent call
to SetFontLock unlocks the font, allowing the Font Manager to purge it from memory.
The SetFontLock procedure is described on page 4-65.

If you are calculating the amount of extra width that is added to a glyph as a result of
adding a font style, you can choose how you want the Font Manager to determine the
extra pixels needed. It can find the information in the style property field of the font
family resource or from the style extra field in the Font Manager’s internal tables. If
the value of the global variable FDevDisable is 0, the Font Manager uses the style extra
value from its internal tables; if FDevDisable is any other value, the Font Manager uses
the value from the style property field, which is described on page 4-93.
Using the Font Manager 4-37

C H A P T E R 4

Font Manager
Getting the System or Application Font ID 4
When your application does not allow the user to change the font, your application has
to tell the Font Manager to use either the system font or the application font. You do this
by passing either the systemFont constant or the applFont constant to the TextFont
procedure, which is described in the chapter “QuickDraw Text” in this book. The Font
Manager maps fonts with other resource IDs to these values, as described in the chapter
“Script Manager” in this book.

If you need to know the true font family ID of the system font, you can call the
GetSysFont function, which checks the global variable SysFontFam and returns that
resource ID. Similarly, if you want to know the true font family ID of the application
font, you can call the GetAppFont function or check the global variable ApFontID.

The global variable SysFontSize contains the point size of the current system font. If
you call the TextSize procedure (which is described in the chapter “QuickDraw Text”
in this book) with a value of 0, the default application font size is used. You can find the
default system font size value by calling the GetDefFontSize function. If the default
system font point size is set to 0, the Font Manager uses 12 as its value.

You can read more about the system and application fonts in the chapter “Introduction
to Text on the Macintosh” in this book.

Using Fractional Glyph Widths and Font Scaling 4
Using fractional glyph widths allows the Font Manager to place glyphs on the screen
in a manner that closely matches the eventual placement of glyphs on a page printer
by high-resolution printers. (See “How the Font Manager Calculates Glyph Widths” on
page 4-23.)

You can enable the use of fractional glyph widths with the SetFractEnable procedure.
If you set the parameter fractEnable to TRUE, the Font Manager uses fractional glyph
widths. If you set it to FALSE, the Font Manager uses integer glyph widths. The Font
Manager sets the global variable FractEnable to FALSE by default. You can find out
whether the Font Manager has used fractional widths in the calculations for the global
width table or other tables by checking the value of the UsedFWidths global variable; if
the value is nonzero, the Font Manager used fractional widths.

When a bitmapped font is not available in a specific size, the Font Manager can compute
scaling factors for QuickDraw to use to create a bitmap of the requested size. You can set
the Font Manager to compute scaling factors for bitmapped fonts by using the
SetFScaleDisable procedure, which sets the value of the FScaleDisable global
variable. If you set the fontScaleDisable parameter of this procedure to TRUE, the
Font Manager disables font scaling.

When font scaling is disabled, the Font Manager responds to a request for a font size that
is not available by returning a bitmapped font with the requested widths, which may
mean that their height is smaller than the requested size. If you set it to FALSE, the Font
Manager computes scaling factors for bitmapped fonts and QuickDraw scales the glyph
bitmaps. The Font Manager sets the global variable FScaleDisable to FALSE by
4-38 Using the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
default. If the value of this global variable is FALSE, scaling is enabled. (See “The Scaling
Process for a Bitmapped Font” on page 4-22.) If scaling is enabled, you can get the
current horizontal and vertical scaling factors from the global variable FScaleHFact
and FScaleVFact, respectively.

The Font Manager always scales an outline font, regardless of the value of the
FScaleDisable global variable.

Fractional glyph widths and font scaling are also described in the chapter “QuickDraw
Text” in this book.

Font Manager Reference 4

This section describes the data structures, routines, and resources provided by
the Font Manager.

The “Data Structures” section shows the Pascal data structures used by the bitmapped
font resource, the font family resource, and the Font Manager routines. Many, but not all
of the tables in these resources have corresponding high-level data structures and
detailed descriptions of the tables in each resource type are found in the sections
dedicated to each resource.

The “Routines” section describes the routines you can use to get information about the
font in the current graphics port record—such as its name, ID, and measurements for
layout—or to get a handle to a specific font.

The resources sections describe the resources used by the Font Manager: the bitmapped
font ('NFNT') resource, the outline font ('sfnt') resource, and the font family
('FOND') resource. You only need to understand most of the information in this section
if you are writing an appliction, such as a font editor, that works directly with font
resource data.

Equivalent declarations in the C language for the data structures and routines presented
here can be found in the “Summary of the Font Manager” section at the end of this
chapter.

Data Structures 4
This section describes the data structures that you use to provide information to the
Font Manager.

You use the font input record to request a font that matches the specified characteristics.
The actual characteristics of the font that the Font Manager chooses for the request are
returned in a font output record.

You use the global width table record to find the widths of all glyphs in a font.
Font Manager Reference 4-39

C H A P T E R 4

Font Manager
You use the font record to access the contents of a bitmapped font ('NFNT') resource
and a font family record to access the contents of a font family ('FOND') resource.
The font family resource includes a number of other tables, each of which has a
corresponding data structure, including the font association table record, the
bounding-box table record, the family glyph-width table record, the style-mapping
table record, and the family kerning table record.

Although some of the resource tables have corresponding data types, many of them
do not. If you need to define a data type for a table that does not yet have one defined
for it, the resources sections contain pictures of each table, including the length of each
table element.

The Font Input Record 4

The font input record, of data type FMInput, is used by QuickDraw to request a font
from the Font Manager, as described in the section “How QuickDraw Requests a Font”
on page 4-16. You can also use this data type to request a font with the FMSwapFont
function, which is described on page 4-64.

TYPE FMInput =

PACKED RECORD

family: Integer; {font family ID}

size: Integer; {requested point size}

face: Style; {requested font style}

needBits: Boolean; {if bitmaps need to be constructed}

device: Integer; {device driver ID}

numer: Point; {scaling factor numerators}

denom: Point; {scaling factor denominators}

END;

Field descriptions

family The font family ID of the requested font.
size The point size of the requested font.
face The requested font style. The defined QuickDraw styles are bold,

italic, underline, outline, shadow, condense, and extend.
needBits Indicates whether QuickDraw draws the glyphs. If QuickDraw

does not draw the glyphs, as is the case for measurement routines
such as MeasureText, then the glyph bitmaps do not have to be
read or constructed. If QuickDraw draws the glyphs and the font is
contained in a bitmapped font resource, all of the information
describing the font, including the bit image, is read into memory.

device The high-order byte contains the device driver reference number.
The low-order byte is reserved.
4-40 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
numer The numerators of the vertical and horizontal scaling factors. (For
more information about font scaling, see “How the Font Manager
Scales Fonts” on page 4-19.) The numer field is of type Point and
contains two integers: the first is the numerator of the ratio for
vertical scaling and the second is the numerator of the ratio for
horizontal scaling.

denom The denominators of the vertical and horizontal scaling factors. (For
more information about font scaling, see “How the Font Manager
Scales Fonts” on page 4-19.) The denom field is of type Point and
contains two integers: the first is the denominator of the ratio for
vertical scaling and the second is the denominator of the ratio for
horizontal scaling.

The Font Output Record 4

The font output record, of data type FMOutput, contains a handle to a font and
information about font measurements. It is filled in by the Font Manager upon
responding to a font request. You can request a font using the FMSwapFont function,
which is described on page 4-64.

TYPE FMOutput =

PACKED RECORD

errNum: Integer; {reserved for internal use}

fontHandle: Handle; {handle to font}

bold: Byte; {for drawing of bold style}

italic: Byte; {for drawing of italic style}

ulOffset: Byte; {for drawing of underline style}

ulShadow: Byte; {for drawing of underline shadow style}

ulThick: Byte; {for drawing of underline thickness}

shadow: Byte; {for drawing of shadow style}

extra: SignedByte; {# of pixels added for styles}

ascent: Byte; {ascent measurement of font}

descent: Byte; {descent measurement of font}

widMax: Byte; {maximum width of glyphs in font}

leading: SignedByte; {leading value for font}

fOutCurStyle:

Byte; {actual output font style}

numer: Point; {scaling factor numerators}

denom: Point; {scaling factor denominators}

END;

Field descriptions

errNum Reserved for use by Apple Computer, Inc.
Font Manager Reference 4-41

C H A P T E R 4

Font Manager
fontHandle A handle to the font resource requested by the font input record,
which may either be a bitmapped font or outline font resource.
The bitmapped font is described in the section “The Bitmapped
Font ('NFNT') Resource,” which begins on page 4-66. The outline
font is described in the section “The Outline Font ('sfnt') Resource,”
which begins on page 4-72.

bold Modifies how QuickDraw applies the bold style on the screen
and on raster printers. Other display devices may handle
styles differently.

italic Modifies how QuickDraw applies the italic style on the screen
and on raster printers. Other display devices may handle
styles differently.

ulOffset Modifies how QuickDraw applies the underline style on the
screen and on raster printers. Other display devices may handle
styles differently.

ulShadow Modifies how QuickDraw applies the underline shadow style on
the screen and on raster printers. Other display devices may handle
styles differently.

ulThick Modifies how QuickDraw applies the thickness of the underline
style on the screen and on raster printers. Other display devices
may handle styles differently.

shadow Modifies how QuickDraw applies the shadow style on the screen
and on raster printers. Other display devices may handle styles
differently.

extra The number of pixels by which the styles have widened each glyph.
ascent The ascent measurement of the font. Any algorithmic styles or

stretching that may be applied to the font are not taken into account
for this value.

descent The descent measurement of the font. Any algorithmic styles or
stretching that may be applied to the font are not taken into account
for this value.

widMax The maximum width of the font. Any algorithmic styles or
stretching that may be applied to the font are not taken into account
for this value.

leading The leading assigned to the font. Any algorithmic styles or
stretching that may be applied to the font are not taken into account
for this value.

fOutCurStyle The actual style being made available for QuickDraw’s text
drawing, as opposed to the requested style.

numer The numerators of the vertical and horizontal scaling factors. (For
more information about font scaling, see “How the Font Manager
Scales Fonts” on page 4-19.) The numer field is of type Point and
contains two integers: the first is the numerator of the ratio for
vertical scaling and the second is the numerator of the ratio for
horizontal scaling.
4-42 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
denom The denominators of the vertical and horizontal scaling factors. (For
more information about font scaling, see “How the Font Manager
Scales Fonts” on page 4-19.) The denom field is of type Point and
contains two integers: the first is the denominator of the ratio for
vertical scaling and the second is the denominator of the ratio for
horizontal scaling.

The bold, italic, ulOffset, ulShadow, ulThick, and shadow values are all used to
communicate to QuickDraw how to modify the way it renders each stylistic variation.
Each byte value is taken from the font characterization table of the printer driver and is
used by QuickDraw when it draws to a screen or raster printer.

The ascent, descent, widMax, and leading values can all be different in this record
than the corresponding values in the FontInfo record that is produced by the
GetFontInfo function in QuickDraw. This is because GetFontInfo takes into account
any algorithmic styles or stretching that QuickDraw performs, while the Font Manager
routines do not.

The numer and denom values are used to designate how font scaling is to be done. The
values for these fields in the font output record can be different than the values specified
in the font input record. For more information about font scaling, see the section “How
the Font Manager Scales Fonts,” which begins on page 4-19.

The Global Width Table 4

The global width table record, of data type WidthTable, contains the widths of all the
glyphs of one font. The font family, point size, and style of this font are specified in this
table. Your application should use the widths found in the global width table for
placement of glyphs and words both on the screen and on the printed page. You can use
the FontMetrics procedure, described on page 4-54, to get a handle to the global width
table. However, you should not assume that the table is the same size as shown in the
record declaration; it may be larger because of some private system-specific information
that is attached to it.

Type WidthTable =

PACKED RECORD

tabData: ARRAY [1..256] OF Fixed;

{character widths}

tabFont: Handle; {font record used to build table}

sExtra: LongInt; {extra line spacing}

style: LongInt; {extra line spacing due to style}

fID: Integer; {font family ID}

fSize: Integer; {font size request}

face: Integer; {style (face) request}

device: Integer; {device requested}

inNumer: Point; {scale factors requested}

inDenom: Point; {scale factors requested}

aFID: Integer; {actual font family ID for table}
Font Manager Reference 4-43

C H A P T E R 4

Font Manager
fHand: Handle; {family record used to build up table}

usedFam: Boolean; {used fixed-point family widths}

aFace: Byte; {actual face produced}

vOutput: Integer; {vertical scale output value}

hOutput: Integer; {horizontal scale output value}

vFactor: Integer; {vertical scale output value}

hFactor: Integer; {horizontal scale output value}

aSize: Integer; {size of actual font used}

tabSize: Integer; {total size of table}

END;

Field descriptions

tabData The widths for the glyphs in the font, in standard 32-bit fixed-point
format. If a glyph is missing in the font, its entry contains the width
of the missing-character glyph.

tabFont A handle to the font resource used to build this table.
sExtra The average number of pixels by which QuickDraw widens each

space in a line of text.
style The average number of pixels by which QuickDraw widens a line of

text after applying a style.
fID The font family ID of the font represented by this table. This is the

ID that was used in the request to build the table. It may be
different from the ID of the font family that was used, which is
indicated by the aFID field.

fSize The point size that was originally requested for the font represented
by this table. The actual size used is specified in the aSize field.

face The font style that was originally requested for the font represented
by this table. The actual style used is specified in the aFace field.

device The device ID of the device on which these widths may be used.
inNumer The numerators of the vertical and horizontal scaling factors. The

numer field is of type Point and contains two integers: the first is
the numerator of the ratio for vertical scaling and the second is the
numerator of the ratio for horizontal scaling.

inDenom The denominators of the vertical and horizontal scaling factors. The
denom field is of type Point and contains two integers: the first is
the denominator of the ratio for vertical scaling and the second is
the denominator of the ratio for horizontal scaling.

aFID The font family ID of the font family actually used to build this
table. If the Font Manager could not find the font requested, this
value may be different from the value of the fID field.

fHand The handle to the font family resource used to build this table.
usedFam Set to TRUE if the fixed-point family glyph widths were used rather

than integer glyph widths.
aFace The font style of the font whose widths are contained in this table.
4-44 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
vOutput The factor by which glyphs are to be expanded vertically in the
current graphics port. This is a 16-bit fixed-point number, with the
integer part in the high-order byte and a fractional part in the
low-order byte.

hOutput The factor by which glyphs are to be expanded horizontally in the
current graphics port. This is a 16-bit fixed-point number, with the
integer part in the high-order byte and a fractional part in the
low-order byte.

vFactor The factor by which widths of the chosen font, after a style has been
applied, have been increased vertically in the current graphics port.
This is a 16-bit fixed-point number, with the integer part in the
high-order byte and a fractional part in the low-order byte. The
value of the vFactor field is not used by the Font Manager.

hFactor The factor by which widths of the chosen font, after a style has been
applied, have been increased horizontally in the current graphics
port. This is a 16-bit fixed-point number, with the integer part in the
high-order byte and a fractional part in the low-order byte.

aSize The size of the font actually used to build this table. Both the point
size and the font used to build this table may be different from the
requested point size and font. If font scaling is disabled, the Font
Manager may use a size different from the size requested and add
more or less space to approximate the appearance of the font
requested. See “The Scaling Process for a Bitmapped Font” on
page 4-22 for more information.

tabSize The total size of the global width table.

Multiplying the values of the hOutput and vOutput fields by the values of the
hFactor and vFactor fields, respectively, gives the font scaling. (Because the value of
the vFactor field is ignored, the Font Manager multiplies the value of the vOutput
field by 1.) The product of the value of the hOutput field and an entry in the global
width table is the scaled width for that glyph.

The Font Manager gathers data for the global width table from one of three
data structures:

1. The Font Manager looks in the font resource for a table that stores fractional glyph
widths. For bitmapped fonts, the Font Manager uses the glyph-width table of the
bitmapped font resource (described on page 4-70). For outline fonts, the Font Manager
uses the advance width and left-side bearing values in the horizontal metrics table of
the outline font (described on page 4-83). In both cases, the values are stored in 16-bit
fixed format, with the integer part in the high-order byte and the fractional part in the
low-order byte.

2. If there is no glyph-width table in the font resource, the Font Manager looks for the
font family’s glyph-width table in the font family resource, which contains fractional
widths for a hypothetical 1-point font. The Font Manager calculates the actual values
by multiplying these widths by the requested font size. The font family’s glyph-width
table is described in “The Family Glyph-Width Table” on page 4-98.

3. If there is no glyph-width table in the font family resource, and if the font is contained
in a bitmapped font resource, the Font Manager derives the glyph widths from the
Font Manager Reference 4-45

C H A P T E R 4

Font Manager
integer widths contained in the glyph-width table of the bitmapped font resource,
which is described on page 4-70. There is no corresponding table for the outline font
resource.

Your application should obtain glyph widths either from the global width table or from
the QuickDraw procedure MeasureText. The MeasureText procedure works only
with text to be displayed on the screen, not with text to be printed. You can get the
individual widths of glyphs of an outline font using the OutlineMetrics function.
The FontMetrics procedure returns only the width of the largest glyph in a font
contained in a bitmapped font resource.

IMPORTANT

Do not use the values from the global width table if your application is
running on a computer on which non-Roman script systems are
installed. You can check to see if a non-Roman script system is present
by calling the GetScriptManagerVariable function with a selector
of smEnabled; if the function returns a value greater than 0, at least one
non-Roman script system is present and you need to call MeasureText
to measure text that is displayed on the screen. Measuring text from a
non-Roman script system for printing is handled by the printer driver. ▲

For more information about the MeasureText procedure, see the chapter “QuickDraw
Text” in this book. The FontMetrics procedure is described on page 4-54 and the
OutlineMetrics function is described on page 4-56.

The Font Record 4

The font record, of data type FontRec, describes the format of the bitmapped font
('NFNT') resource (and, likewise, the 'FONT' resource). It is shown here as a
guide to the format of the resource. The font record is not used directly by any
Font Manager routines.

TYPE FontRec =

RECORD

fontType: Integer; {font type}

firstChar: Integer; {character code of first glyph}

lastChar: Integer; {character code of last glyph}

widMax: Integer; {maximum glyph width}

kernMax: Integer; {maximum glyph kern}

nDescent: Integer; {negative of descent}

fRectWidth: Integer; {width of font rectangle}

fRectHeight:Integer; {height of font rectangle}

owTLoc: Integer; {offset to width/offset table}

ascent: Integer; {maximum ascent measurement}

descent: Integer; {maximum descent measurement}

leading: Integer; {leading measurement}

rowWords: Integer; {row width of bit image in 16-bit wds}

END;
4-46 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The fields of the font record are described in the section “The Bitmapped Font ('NFNT')
Resource,” beginning on page 4-66.

The Font Family Record 4

The font family record, of data type FamRec, describes the format of the font family
('FOND') resource. It is shown here as a guide to the format of the resource. The font
family record is not used directly by any Font Manager routines.

TYPE FamRec =

RECORD

ffFlags: Integer; {flags for family}

ffFamID: Integer; {family ID number}

ffFirstChar:Integer; {ASCII code of first character}

ffLastChar: Integer; {ASCII code of last character}

ffAscent: Integer; {maximum ascent for 1-pt font}

ffDescent: Integer; {maximum descent for 1-pt font}

ffLeading: Integer; {maximum leading for 1-pt font}

ffWidMax: Integer; {maximum glyph width for 1-pt font}

ffWTabOff: LongInt; {offset to family glyph-width table}

ffKernOff: LongInt; {offset to kerning table}

ffStylOff: LongInt; {offset to style-mapping table}

ffProperty: ARRAY [1..9] OF Integer;

{style properties info}

ffIntl: ARRAY [1..2] OF Integer;

{for international use}

ffVersion: Integer; {version number}

END;

The fields of the font family record are described in the section “The Font Family
('FOND') Resource,” beginning on page 4-90.

The Font Association Table Record 4

The font association table record, which is part of the font family resource, maps a point
size and style to a specific font that is part of the family. The table record, of data type
FontAssoc, consists of a count of the entries in the table and is followed by the
entry records.

TYPE FontAssoc =

RECORD

numAssoc: Integer; {number of entries - 1}

{entries: ARRAY[0..n] of AsscEntry;}

END;
Font Manager Reference 4-47

C H A P T E R 4

Font Manager
Each entry in the font association table is a font association entry record, of data type
AsscEntry.

TYPE AsscEntry =

RECORD

fontSize: Integer; {point size of font}

fontStyle: Integer; {style of font}

fontID: Integer; {font resource ID}

END;

The fields of the font association table and font association table entry record are
described in the section “The Font Association Table,” beginning on page 4-95.

The Family Glyph-Width Table Record 4

The font family glyph-width table record, which is part of the font family resource, is
used to specify glyph widths for the font family on a per-style basis. The table record, of
data type WidTable, consists of a count of the entries in the table and is followed by the
entry records.

TYPE WidTable =

RECORD

numWidths: Integer; {number of entries - 1}

END;

Each entry in the family glyph-width table is a family glyph-width table entry record, of
data type WidEntry, which specifies a style and a variable length array of glyph-width
values.

TYPE WidEntry =

RECORD

widStyle: Integer; {style code}

{widths: ARRAY[0..n] of Fixed;}

END;

The fields of the family glyph-width table and family glyph-width table entry records
are described in the section “The Family Glyph-Width Table,” beginning on page 4-98.
4-48 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The Style-Mapping Table Record 4

The style-mapping table record, which is part of the font family resource, provides
information that is used by printer drivers to implement font styles. Each font family can
have its own character encoding and its own set of font suffix names for style
designations. Each style of a font has its own name, typically created by adding a style
suffix to the base name of the font, as described in the section “The Style-Mapping Table”
beginning on page 4-99. The table record, of data type StyleTable, provides
information about the font class and is followed by the font name suffix subtable and the
font glyph-encoding subtable.

TYPE StyleTable =

RECORD

fontClass: Integer; {font class of this font family}

offset: LongInt; {offset to glyph-encoding subtable}

reserved: LongInt; {reserved}

indexes: PACKED ARRAY [0..47] OF SignedByte;

{indexes into the font suffix name }

{ table that follows this table}

END;

The font suffix name subtable record, of data type NameTable, contains the base name
and suffixes for a font family.

TYPE NameTable =

RECORD

stringCount: Integer; {string count}

baseFontName: Str255; {base font name}

{suffix strings} {strings}

END;

The fields of the style-mapping table and font suffix name subtable are described in the
section “The Style-Mapping Table,” beginning on page 4-99.

The Font Family Kerning Table Record 4

The font family kerning table record, which is part of the font family resource, contains a
number of kerning subtable entries, with different subtables for different stylistic
variations. The table record, of data type KernTable, consists of a count of the entries in
the table and is followed by the entry records.

TYPE KernTable =

RECORD

numKerns: Integer; {number of subtable entries}

{kernPairs: ARRAY[0..n] of KernEntry}

END;
Font Manager Reference 4-49

C H A P T E R 4

Font Manager
Each kerning subtable record entry, of data type KernEntry, contains kerning pair
records for a specific stylistic variation of the font family. It is followed by the kerning
pair records.

TYPE KernEntry =

RECORD

kernStyle: Integer; {kern style}

kernLength: Integer; {entry length}

{kernRec: ARRAY[0..n] of kernPair}

{the kerning data records}

END;

Each kerning pair record, of data type KernPair, specifies a kerning value for a pair of
glyphs. Each glyph in the pair is specified by its ASCII character code.

TYPE KernPair =

RECORD

kernFirst: CHAR; {Code of 1st character of kerned pair}

kernSecond: CHAR; {Code of 2nd character of kerned pair}

kernWidth: Integer; {kerning value in 1pt fixed format}

END;

The fields of the kerning table, kerning subtable entry, and kerning pair records are
described in the section “The Font Family Kerning Table,” beginning on page 4-106.

Routines 4
This section describes the routines you use to initialize the Font Manager and to get
information about a font, such as its name, ID, or measurements. It also describes the
routines you use to get a handle to a font and to control aspects of the way the Font
Manager manipulates fonts, such as font scaling and fractional widths.

▲ W A R N I N G

Do not change any data in a font or in any of the font data structures or
global variables (except where expressly noted). ▲

Initializing the Font Manager 4

Typically, the Font Manager has already been initialized when your application opens.
However, you should call the InitFonts procedure before you call any Font Manager
or QuickDraw text routines, just to be sure.
4-50 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
InitFonts 4

The InitFonts procedure initializes the Font Manager.

PROCEDURE InitFonts;

DESCRIPTION

If the system font isn’t already in memory, the InitFonts procedure reads it into
memory. Call this procedure once, after calling the InitGrafs procedure and before
calling any other Font Manager routines or any Toolbox routine that calls the
Font Manager.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro for the InitFonts procedure is

Getting Font Information 4

The Font Manager provides three routines that allow you to get basic information about
a font. The GetFontName procedure gets the name of a font family with a specified ID,
and the GetFNum procedure gets the font family ID for a font with a specified name. The
RealFont function tells you whether a font is available in a specific point size.

GetFontName 4

The GetFontName procedure gets the name of a font family that has a specified family
ID number.

PROCEDURE GetFontName (familyID: Integer; VAR theName: Str255);

familyID The font family ID.

theName On output, this parameter contains the font family name for the font
family specified in familyID.

DESCRIPTION

Given a font family ID, the GetFontName procedure returns, in the parameter
theName, the name of the font family. If the font specified in the familyID parameter
does not exist, theName contains an empty string.

Trap macro

_InitFonts
Font Manager Reference 4-51

C H A P T E R 4

Font Manager
ASSEMBLY–LANGUAGE INFORMATION

The trap macro for the GetFontName procedure is

GetFNum 4

The GetFNum procedure gets the font family ID for a specified font family name.

PROCEDURE GetFNum (theName: Str255; VAR familyID: Integer);

theName The font family name.

familyID On output, this parameter contains the font family ID for the font family
specified in theName.

DESCRIPTION

Given a font name, the GetFNum procedure returns, in the familyID parameter, the
font family ID for the font family. If the font specified in the parameter theName does
not exist, familyID contains 0.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro for the GetFNum procedure is

RealFont 4

The RealFont function determines whether a font is available or is intended for use in a
specified size.

FUNCTION RealFont (fontNum: Integer; size: Integer): Boolean;

fontNum The font family ID.

size The font size requested.

Trap macro

_GetFontName

Trap macro

_GetFNum
4-52 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
DESCRIPTION

The RealFont function returns TRUE if the requested size of a font is available.
RealFont first checks for a bitmapped font from the specified family. If one is not
available, RealFont checks next for an outline font. If neither kind of font is available,
RealFont returns FALSE.

If an outline font exists for the requested font family, RealFont normally considers the
font to be available in any requested size; however, the font designer can include
instructions in the font that outlines should not be used at certain point sizes, in which
case the RealFont function will consider the font unavailable and return FALSE. The
Font Manager determines whether the size is valid by testing the value of the smallest
readable size element of the font family header table, which is described in “The Font
Header Table,” beginning on page 4-79.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro for the RealFont function is

Using the Current, System, and Application Fonts 4

The GetDefFontSize, GetSysFont, and GetAppFont functions return the current
values of the global variables that contain the default size of the system font, the ID
number of the system font, and the ID number of the application font.

GetDefFontSize 4

The GetDefFontSize function determines the default size of the system font.

FUNCTION GetDefFontSize: Integer;

DESCRIPTION

The GetDefFontSize function returns the current value of the global variable
SysFontSize if that value is not 0. If the value of SysFontSize is 0,
GetDefFontSize returns 12 as the default font size.

 At system startup, the value of SysFontSize is set to 0.

SEE ALSO

You can determine the preferred size for either the system font or the application font of
any enabled script system by calling the GetScriptManagerVariable function. See
the chapter “Script Manager” in this book.

Trap macro

_RealFont
Font Manager Reference 4-53

C H A P T E R 4

Font Manager
GetSysFont 4

The GetSysFont function determines the font family ID of the current system font.

FUNCTION GetSysFont: Integer;

DESCRIPTION

The GetSysFont function returns the current value of the global variable SysFontFam,
which is the font family ID of the current system font. This is the font family ID that has
been mapped to 0 by the system software.

GetAppFont 4

The GetAppFont function returns the font family ID of the current application font.

FUNCTION GetAppFont: Integer;

DESCRIPTION

The GetAppFont function returns the current value of the global variable ApFontID,
which is the font family ID of the current application font. This is the font family ID that
has been mapped to 1 by the system software.

Getting the Characteristics of a Font 4

The FontMetrics procedure and the OutlineMetrics function both return font
measurement information. The FontMetrics procedure returns the ascent and descent
measurements, width of the largest glyph, and leading measurements for either a
bitmapped or an outline font. The OutlineMetrics function returns measurements for
text to be written in an outline font.

FontMetrics 4

The FontMetrics procedure gets fractional measurements for the font, size, and style
specified in the current graphics port.

PROCEDURE FontMetrics (VAR theMetrics: FMetricRec);

theMetrics
A font metrics record that contains the font measurement information, in
fractional values.
4-54 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
DESCRIPTION

The FontMetrics procedure returns measurements for the ascent, descent, leading,
and width of the largest glyph in the font for the font, size, and style specified in the
current graphics port. FontMetrics returns this information in a font metrics record.

The font metrics record (of data type FMetricRec) contains a handle to the global width
table, which in turn contains a handle to the associated font family resource for the
current font (the font in the current graphics port). It also contains the values of four
measurements for the current font.

Type FMetricRec =

RECORD

ascent: Fixed; {baseline to top}

descent: Fixed; {baseline to bottom}

leading: Fixed; {leading between lines}

widMax: Fixed; {maximum glyph width}

wTabHandle: Handle; {handle to global width table}

END;

Field descriptions

ascent The measurement from the baseline to the ascent line of the font.
descent The measurement from the baseline to the descent line of the font.
leading The measurement from the descent line to the ascent line below it.
widMax The width of the largest glyph in the font.
wTabHandle A handle to the global width table.

You can determine the line height, in pixels, by adding the values of the ascent,
descent, and leading fields of the font metrics record.

The FontMetrics procedure is similar to QuickDraw’s GetFontInfo procedure,
except that FontMetrics returns fractional values for greater accuracy in
high-resolution printing. FontMetrics also does not take into account any additional
widths that are added by QuickDraw when it applies styles to the glyphs in a font.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro for the FontMetrics procedure is

SEE ALSO

The GetFontInfo procedure is described in the chapter “QuickDraw Text” in this book.

Trap macro

_FontMetrics
Font Manager Reference 4-55

C H A P T E R 4

Font Manager
OutlineMetrics 4

The OutlineMetrics function gets font measurements for a block of text to be drawn
in a specified outline font.

FUNCTION OutlineMetrics (byteCount: Integer; textPtr: UNIV Ptr;

 numer,denom: Point;

 VAR yMax: Integer; VAR yMin: Integer;

 awArray: FixedPtr; lsbArray: FixedPtr;

 boundsArray: RectPtr): OSErr;

byteCount The number of bytes in the block of text that you want measured.

textPtr A pointer to the block of text that you want measured.

numer The numerators of the vertical and horizontal scaling factors. The numer
parameter is of type Point, and contains two integers: the first is the
numerator of the ratio for vertical scaling, and the second is the
numerator of the ratio for horizontal scaling. The Font Manager applies
these scaling factors to the current font in order to calculate the
measurements for glyphs in the block of text.

denom The denominators of the vertical and horizontal scaling factors. The
denom parameter is of type Point, and contains two integers: the first is
the denominator of the ratio for vertical scaling, and the second is the
denominator of the ratio for horizontal scaling. The Font Manager applies
these scaling factors to the current font in order to calculate the
measurements for glyphs in the block of text.

yMax On output, this is the maximum y-value for the text. Pass NIL in this
parameter if you don’t want this value returned.

yMin On output, this is the minimum y-value for the text. Pass NIL in this
parameter if you don’t want this value returned.

awArray A pointer to an array that, on output, is filled with the advance width
measurements for the glyphs being measured. These measurements are in
pixels, based on the point size and font scaling factors of the current font.
There is an entry in this array for each glyph that is being measured.

The awArray parameter is of type FixedPtr. The FixedPtr data type
is a pointer to an array, and each entry in the array is of type Fixed,
which is 4 bytes in length. Multiply byteCount by 4 to calculate the
memory you need in bytes.

If the FractEnable global variable has been set to TRUE through the
SetFractEnable procedure, the values in awArray have fractional
character widths. If FractEnable has been set to FALSE, the Font
Manager returns integer values for the advance widths, with 0 in the
decimal part of the values.
4-56 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
lsbArray A pointer to an array that is, on output, filled with the left-side bearing
measurements for the glyphs being measured. The measurements are in
pixels, based on the point size of the current font. There is an entry in this
array for each glyph that is being measured.

The lsbArray parameter is of type FixedPtr. The FixedPtr data type
is a pointer to an array, and each entry in the array is of type Fixed,
which is 4 bytes in length. Multiply byteCount by 4 to calculate the
memory you need in bytes.

Left-side bearing values are not rounded.

boundsArray
A pointer to an array that is, on output, filled with the bounding boxes for
the glyphs being measured. Bounding boxes are the smallest rectangles
that fit around the pixels of the glyph. There is an entry in this array for
each glyph that is being measured.

The coordinate system used to describe the bounding boxes is in pixel
units, centered at the glyph origin, and with a vertical positive direction
upwards, which is the opposite of the QuickDraw vertical orientation.

The boundsArray parameter is of type RectPtr. The RectPtr data
type is a pointer to QuickDraw’s Rect data type, which is 8 bytes in
length. Multiply byteCount by 8 to calculate the memory you need in
bytes. Allocate the memory needed for the array and pass a pointer to the
array in the boundsArray parameter.

DESCRIPTION

The OutlineMetrics function computes the maximum y-value, minimum y-value,
advance widths, left-side bearings, and bounding boxes for a block of text. It uses the
font, size, and style specified in the current graphics port. You can use these
measurements when laying out text. You may need to adjust line spacing to
accommodate exceptionally large glyphs.

The OutlineMetrics function works for outline fonts only and is the preferred
method for measuring text that is drawn with an outline font.

When you are using OutlineMetrics to compute advance width values, left-side
bearing values, or bounding boxes, you need to bear in mind that when a text block
contains 2-byte characters, not every byte in the awArray, lsbArray, and
boundsArray structures is used. Each of these arrays is indexed by the glyph index;
thus, if you have five characters in a string and two of them are 2-byte characters, only
the first five entries in each array contains a value. Call the CharByte function
(described in the chapter “Script Manager” in this book) to determine how many
characters there are in the text block, and ignore the unused array entries (which occur at
the end of each array).

If you don’t want OutlineMetrics to compute one of these three values, pass NIL in
the applicable parameter. Otherwise, allocate the amount of memory needed for the
array and pass a pointer to it in this parameter.
Font Manager Reference 4-57

C H A P T E R 4

Font Manager
ASSEMBLY–LANGUAGE INFORMATION

The trap macro and selector for the OutlineMetrics procedure are

SEE ALSO

The terms used for measuring text, including advance width, left-side bearing, and
bounding box, are described in the section “Font Measurements,” which begins on
page 4-8. Scaling of fonts and the use of the font scaling factors are described in the
section “How the Font Manager Scales Fonts,” which begins on page 4-19.

Enabling Fractional Glyph Widths 4

The SetFractEnable procedure enables or disables fractional glyph widths. When
fractional glyph widths are enabled, the Font Manager can determine the locations of
glyphs more accurately than is possible with integer widths, as described in the section
“How the Font Manager Calculates Glyph Widths” on page 4-23.

SetFractEnable 4

The SetFractEnable procedure enables or disables fractional glyph widths.

PROCEDURE SetFractEnable (fractEnable: Boolean);

fractEnable
Specifies whether fractional widths or integer widths are to be used to
determine glyph measurements. A value of TRUE indicates fractional
glyph widths; a value of FALSE indicates integer glyph widths.

DESCRIPTION

The SetFractEnable procedure establishes whether or not the Font Manager provides
fractional glyph widths to QuickDraw, which then uses them for advancing the pen
during text drawing. If you set the fractEnable parameter to TRUE, the Font Manager
provides fractional glyph widths. If you set it to FALSE, the Font Manager provides
integer glyph widths.

The SetFractEnable procedure assigns the value that you specify in the
fractEnable parameter to the global variable FractEnable.

The Font Manager defaults to integer widths to ensure compatibility with existing
applications.

Trap macro Selector

_FontDispatch $7008
4-58 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
Disabling Font Scaling 4

The SetFScaleDisable procedure enables or disables font scaling of bitmapped
glyphs. When font scaling is enabled, the Font Manager can scale a bitmapped glyph
that is present in the System file to imitate the appearance of a bitmapped glyph in
another point size that is not present. For more information about scaling of bitmapped
fonts, see “The Scaling Process for a Bitmapped Font” on page 4-22.

SetFScaleDisable 4

The SetFScaleDisable procedure enables or disables the computation of font scaling
factors by the Font Manager for bitmapped glyphs.

PROCEDURE SetFScaleDisable (fontScaleDisable: Boolean);

fontScaleDisable
Specifies whether bitmapped fonts are to be scaled. A value of TRUE
indicates that font scaling is disabled; a value of FALSE indicates that font
scaling is enabled.

DESCRIPTION

The SetFScaleDisable procedure establishes whether or not the Font Manager
computes font scaling factors for bitmapped fonts. If you set the fontScaleDisable
parameter to TRUE, the Font Manager disables font scaling, which means it responds to a
request for a font size that is not available by computing font scaling factors of 1/1 and
returning a smaller, unscaled bitmapped font with the widths of the requested size. If
you set the fontScaleDisable parameter to FALSE, the Font Manager computes
scaling factors for bitmapped fonts.

QuickDraw performs the actual scaling of glyph bitmaps for bitmapped fonts by using
the font scaling factors computed and returned by the Font Manager.

As a default, the Font Manager scales fonts to ensure compatibility with existing
applications.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro for the SetFScaleDisable procedure is

Trap macro

_SetFScaleDisable
Font Manager Reference 4-59

C H A P T E R 4

Font Manager
Favoring Outline Fonts Over Bitmapped Fonts 4

The SetOutlinePreferred procedure causes either outline fonts or bitmapped fonts
to be favored when the Font Manager receives a font request. You can use the
GetOutlinePreferred function to find out whether outline or bitmapped fonts are
currently favored. You can use the IsOutline function to find out if the font used in the
current graphics port is an outline font.

SetOutlinePreferred 4

The SetOutlinePreferred procedure sets the preference for whether to use
bitmapped or outline fonts when both kinds of fonts are available.

PROCEDURE SetOutlinePreferred (outlinePreferred: Boolean);

outlinePreferred
Specifies whether the Font Manager chooses an outline font or a
bitmapped font when both are available to fill a font request. A value
of TRUE indicates an outline font; a value of FALSE indicates a
bitmapped font.

DESCRIPTION

If an outline font and a bitmapped font are both available for a font request, the default
behavior for the Font Manager is to choose the bitmapped font, in order to maintain
compatibility with documents that were created on computer systems on which outline
fonts were not available. The SetOutlinePreferred procedure sets the Font
Manager’s current preference for either bitmapped or outline fonts when both are
available. If you want the Font Manager to choose outline fonts over any bitmapped font
counterparts, set the outlinePreferred parameter to TRUE; if you want it to choose
bitmapped fonts, set the outlinePreferred parameter to FALSE.

If only outline fonts are available, the Font Manager chooses them regardless of the
setting of outlinePreferred; if only bitmapped fonts are available, they are
chosen. The Font Manager chooses bitmapped versus outline fonts on a size basis,
before it takes stylistic variations into account, which can lead to unexpected results.
For further information, see “How the Font Manager Responds to a Font Request,”
beginning on page 4-17.

The preference you set is valid only during the current session with your application.
The outlinePreferred parameter does not set a global variable.
4-60 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
ASSEMBLY–LANGUAGE INFORMATION

The trap macro and routine selector for the SetOutlinePreferred procedure are

GetOutlinePreferred 4

The GetOutlinePreferred function determines whether outline or bitmapped fonts
are to be favored when the Font Manager receives a font request.

FUNCTION GetOutlinePreferred: Boolean;

DESCRIPTION

The GetOutlinePreferred function returns the value of the Font Manager’s
current preference for outline or bitmapped fonts. If GetOutlinePreferred returns
TRUE, then the Font Manager chooses the outline font when both an outline font and a
bitmapped font are available for a particular request. If GetOutlinePreferred
returns FALSE, then the Font Manager chooses the bitmapped font when both types
are available.

Use the SetOutlinePreferred procedure to change this preference.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro and routine selector for the GetOutlinePreferred function are

IsOutline 4

The IsOutline function determines if the Font Manager chooses an outline font for the
current graphics port to meet the specified scaling factors.

FUNCTION IsOutline (numer: Point; denom: Point): Boolean;

numer The numerators of the vertical and horizontal scaling factors. The numer
parameter is of type Point, and contains two integers: the first is the
numerator of the ratio for vertical scaling, and the second is the
numerator of the ratio for horizontal scaling.

Trap macro Routine selector

_FontDispatch $7001

Trap macro Routine selector

_FontDispatch $7009
Font Manager Reference 4-61

C H A P T E R 4

Font Manager
denom The denominators of the vertical and horizontal scaling factors. The
denom parameter is of type Point, and contains two integers: the first is
the denominator of the ratio for vertical scaling, and the second is the
denominator of the ratio for horizontal scaling.

DESCRIPTION

The IsOutline function returns TRUE if the Font Manager would choose an outline
font for the current graphics port. The Font Manager uses the font scaling factors
specified in the numer and denom parameters, as well as the current preference (as set
by the SetOutlinePreferred procedure) to make a decision as to which font to use.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro and routine selector for the IsOutline function are

Scaling Outline Fonts 4

The SetPreserveGlyph procedure determines whether a glyph from an outline font is
displayed as designed or whether the Font Manager scales the glyph to fit between the
ascent and descent lines. These two behaviors are discussed in “Preserving the Shapes of
Glyphs” on page 4-35. You can use the GetPreserveGlyph function to find out
whether glyphs from outline fonts are to be scaled.

SetPreserveGlyph 4

The default behavior for the Font Manager is to scale a glyph from an outline font so that
it fits between the ascent and descent lines; however, this alters the appearance of the
glyph. The SetPreserveGlyph procedure changes this behavior temporarily so that
the Font Manager does not scale oversized glyphs.

PROCEDURE SetPreserveGlyph (preserveGlyph: Boolean);

preserveGlyph
Specifies whether or not glyphs from an outline font are scaled to fit
between the ascent and descent lines.

Trap macro Routine selector

_FontDispatch $7000
4-62 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
DESCRIPTION

The SetPreserveGlyph procedure establishes how the Font Manager treats glyphs
that do not fit between the ascent and descent lines for the current font. If you set the
value of the preserveGlyph parameter to TRUE, the measurements of all glyphs are
preserved, which means that your application may have to alter the leading between
lines in a document if some of the glyphs extend beyond the ascent or descent lines. If
you set the value of the preserveGlyph parameter to FALSE, all glyphs are scaled to fit
between the ascent and descent lines.

You can determine the current behavior of the Font Manager in this regard by calling the
GetPreserveGlyph function. To ensure that documents have the same appearance
whenever they are opened, you need to call GetPreserveGlyph and save the value
that it returns with your documents and restore it each time a document is displayed by
your application.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro and routine selector for the SetPreserveGlyph procedure are

GetPreserveGlyph 4

The GetPreserveGlyph function determines whether the Font Manager preserves the
shapes of glyphs from outline fonts.

FUNCTION GetPreserveGlyph: Boolean;

DESCRIPTION

The GetPreserveGlyph function returns a Boolean value indicating whether the Font
Manager preserves the shapes of glyphs from outline fonts. Your application can set the
value of this variable with the SetPreserveGlyph procedure. If GetPreserveGlyph
returns TRUE, the Font Manager preserves glyph shapes; if GetPreserveGlyph returns
FALSE, then the Font Manager scales glyphs to fit between the ascent and descent lines
for the font in use.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro and routine selector for the GetPreserveGlyph function are

Trap macro Routine selector

_FontDispatch $700A

Trap macro Routine selector

_FontDispatch $700B
Font Manager Reference 4-63

C H A P T E R 4

Font Manager
Accessing Information About a Font 4

The FMSwapFont function gets a handle to a font, and some information about that font.
It is used extensively by system software to access fonts.

FMSwapFont 4

The FMSwapFont function returns a handle to a font and information about that font.
This function is used by QuickDraw and other parts of the system software to access
font handles.

FUNCTION FMSwapFont (inRec: FMInput): FMOutPtr;

inRec A font input record, which contains the font family ID, the style
requested, scaling factors, and other information.

DESCRIPTION

The FMSwapFont function takes a font request and returns a pointer to a font output
record. FMSwapFont is the heart of the Font Manager: it does all of the hard work of
preparing font data for text measuring and text drawing.

The inRec parameter specifies the characteristics of the font that is requested.
QuickDraw fills in the fields of the CurFmInput global variable and passes that record
in this parameter.

The font output record contains a handle to a font resource that fulfills the font request,
along with information about the font, such as the ascent, descent, and leading
measurements. You supply the FMSwapFont function with the font request in the inRec
parameter, using a font input record, and the Font Manager returns the font handle and
the other information in a font output record.

QuickDraw calls the FMSwapFont function every time a QuickDraw text routine is used.
If you want to call the FMSwapFont function in order to get a handle to a font resource
or information about that font, you must build a font input record and then use the
pointer returned to access the resulting font output record.

You cannot assume that the font resource pointed to by the fontHandle field of the font
output record returned by this function is of any particular type, such as 'NFNT' or
'sfnt'. If you need to access specific information in the font resource, call the Resource
Manager procedure GetResInfo with the handle returned in the font output record to
determine the font resource type.

IMPORTANT

The pointer to the font output record returned as the value of
FMSwapFont points to a record allocated in low memory by the Font
Manager. The same record is reused for each call made to FMSwapFont.
Do not free the memory allocated for this record. ▲
4-64 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
ASSEMBLY–LANGUAGE INFORMATION

The trap macro for the FMSwapFont function is

SEE ALSO

For more information about the font input record, see “How QuickDraw Requests a
Font” on page 4-16. For more information about the font output record, see
“How the Font Manager Responds to a Font Request” on page 4-17. For descriptions
of the records themselves, see “The Font Input Record” on page 4-40 and “The Font
Output Record” on page 4-41.

The GetResInfo procedure is described in the Resource Manager chapter in
Inside Macintosh: More Macintosh Toolbox.

Handling Fonts in Memory 4

The Font Manager provides two routines that allow you to manipulate fonts in memory.
The SetFontLock procedure makes a font resource, which is normally purgeable data
in memory, unpurgeable. The FlushFonts function erases the Font Manager’s memory
caches, including resource data and any width tables the Font Manager may have built.

SetFontLock 4

The SetFontLock procedure makes the most recently used font unpurgeable. You can
use this procedure when you want a font to remain in memory for the sake of efficiency.

PROCEDURE SetFontLock (lockFlag: Boolean);

lockFlag Specifies whether or not the current font is considered purgeable.

DESCRIPTION

If you set the lockFlag parameter to TRUE, the SetFontLock procedure makes the
most recently used font resource unpurgeable, and reads it into memory if it isn’t
already there. If you set the lockFlag parameter to FALSE, the SetFontLock
procedure releases the memory occupied by the most recently used font by calling the
ReleaseResource procedure.

The font considered to be the most recently used is the one referenced by the font output
record in low memory, which is filled in by the FMSwapFont function. This is often, but
not always, the font in which text has most recently been drawn. Since both QuickDraw
and your application program can call FMSwapFont, you have to be careful about which

Trap macro

_FMSwapFont
Font Manager Reference 4-65

C H A P T E R 4

Font Manager
font has most recently been used in a call to that function. To ensure that you are locking
the font that you want to lock, explicitly call FMSwapFont immediately before calling
SetFontLock.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro for the SetFontLock procedure is

SEE ALSO

The ReleaseResource procedure is described in the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox.

FlushFonts 4

The FlushFonts function erases the Font Manager’s memory caches.

FUNCTION FlushFonts: OSErr;

DESCRIPTION

The FlushFonts function erases all of the Font Manager’s memory caches. Your
application doesn’t need this function unless it directly manipulates data in the outline
font resource. Font Manager caches include the width tables, the bitmaps created from
the outlines of the outline font resource, the calculations for the outlines, and a small
cache of font family resources that have been read into memory.

ASSEMBLY–LANGUAGE INFORMATION

The trap macro and routine selector for the FlushFonts function are

The Bitmapped Font ('NFNT') Resource 4
The bitmapped font ('NFNT') resource describes a bitmapped font—a font whose
glyphs are represented by bit images. The structure of the bitmapped font resource is
identical to that of the older 'FONT' resource, which can be used for bitmapped fonts as
well; however, the bitmapped font resource has a more flexible ID numbering scheme
and is preferred over the 'FONT' resource.

Trap macro

_SetFontLock

Trap macro Routine selector

_FontDispatch $700C
4-66 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The bitmapped font resource consists of a header component, which describes the font,
and a glyph data information component, which contains the definitions of the glyphs in
the font. The header component of this resource is represented by the FontRec data
type, the declaration of which is shown in the section “The Font Record,” beginning on
page 4-46. The structure of this resource is shown in Figure 4-16.

Figure 4-16 The bitmapped font ('NFNT') resource

Bytes

Font type

First character code

Last character code

Maximum width

Maximum kerning

Negated descent value

Font rectangle width

Font rectangle height

Offset to width/offset table

Maximum ascent

Maximum descent

Leading

Bit image row width

Bit image table

Bitmap location table

Width offset table

Glyph-width table

Image height table

2

2

2

2

2

2

2

2

2

2

2

2

2

Variable

Variable

Variable

Variable

Variable

Font header

component

Glyph data

component
Font Manager Reference 4-67

C H A P T E R 4

Font Manager
The bitmapped font header component consists of the elements listed below, each of
which corresponds to a field in the FontRec data type.

■ Font type. An integer value that is used to specify the general characteristics of the
font, such as whether it is fixed-width or proportional, whether the optional
image-height and glyph-width tables are attached to the font, and information about
the font depth and colors. This value is represented by the fontType field in the
FontRec data type. For the meaning of the bits in this field, see “The Font Type
Element” on page 4-70.

■ First character code. An integer value that specifies the ASCII character code of the
first glyph in the font. This value is represented by the firstChar field in the
FontRec data type.

■ Last character code. An integer value that specifies the ASCII character code of
the last glyph in the font. This value is represented by the lastChar field in the
FontRec data type.

■ Maximum width. An integer value that specifies the maximum width of the widest
glyph in the font, in pixels. This value is represented by the widMax field in the
FontRec data type.

■ Maximum kerning. An integer value that specifies the distance from the font
rectangle’s glyph origin to the left edge of the font rectangle, in pixels. If a glyph in the
font kerns to the left, the amount is represented as a negative number. If the glyph
origin lies on the left edge of the font rectangle, the value of the kernMax field is 0.
This value is represented by the kernMax field in the FontRec data type.

■ Negated descent value. If this font has very large tables and this value is positive, this
value is the high word of the offset to the width/offset table. For more information,
see “The Offset to the Width/Offset Table” on page 4-71. If this value is negative, it is
the negative of the descent and is not used by the Font Manager. This value is
represented by the nDescent field in the FontRec data type.

■ Font rectangle width. An integer value that specifies the width, in pixels, of the image
created if all the glyphs in the font were superimposed at their glyph origins. This
value is represented by the fRectWidth field in the FontRec data type.

■ Font rectangle height. An integer value that specifies the height, in pixels, of the image
created if all the glyphs in the font were superimposed at their glyph origins. This
value equals the sum of the maximum ascent and maximum descent measurements
for the font. This value is represented by the fRectHeight field in the FontRec
data type.

■ Offset to width/offset table. An integer value that specifies the offset to the offset/
width table from this point in the font record, in words. If this font has very large
tables, this value is only the low word of the offset and the negated descent value is
the high word, as explained in the section “The Offset to the Width/Offset Table” on
page 4-71. This value is represented by the owTLoc field in the FontRec data type.
4-68 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
■ Maximum ascent. An integer value that specifies the maximum ascent measurement
for the entire font, in pixels. The ascent is the distance from the glyph origin to the top
of the font rectangle. This value is represented by the ascent field in the FontRec
data type.

■ Maximum descent. An integer value that specifies the maximum descent
measurement for the entire font, in pixels. The descent is the distance from the glyph
origin to the bottom of the font rectangle. This value is represented by the descent
field in the FontRec data type.

■ Leading. An integer value that specifies the leading measurement for the entire font,
in pixels. Leading is the distance from the descent line of one line of single-spaced text
to the ascent line of the next line of text. This value is represented by the leading
field in the FontRec data type.

■ Bit image row width. An integer value that specifies the width of the bit image, in
words. This is the width of each glyph’s bit image as a number of words. This value is
represented by the rowWords field in the FontRec data type.

The glyph data component of the bitmapped font resource consists of five tables that
describe the glyphs in the font.

■ Bit image table. The bit image of the glyphs in the font. The glyph images of every
defined glyph in the font are placed sequentially in order of increasing ASCII code.
The bit image is one pixel image with no undefined stretches that has a height given
by the value of the font rectangle element and a width given by the value of the bit
image row width element. The image is padded at the end with extra pixels to make
its length a multiple of 16.

■ Bitmap location table. For every glyph in the font, this table contains a word that
specifies the bit offset to the location of the bitmap for that glyph in the bit image
table. If a glyph is missing from the font, its entry contains the same value for its
location as the entry for the next glyph. The missing glyph is the last glyph of the bit
image for that font. The last word of the table contains the offset to one bit beyond the
end of the bit image. You can determine the image width of each glyph from the
bitmap location table by subtracting the bit offset to that glyph from the bit offset to
the next glyph in the table.

■ Width/offset table. For every glyph in the font, this table contains a word with
the glyph offset in the high-order byte and the glyph’s width, in integer form, in the
low-order byte. The value of the offset, when added to the maximum kerning
value for the font, determines the horizontal distance from the glyph origin to the left
edge of the bit image of the glyph, in pixels. If this sum is negative, the glyph origin
is to the right of the glyph image’s left edge, meaning the glyph kerns to the left.
If the sum is positive, the origin is to the left of the image’s left edge. If the sum equals
zero, the glyph origin corresponds with the left edge of the bit image. Missing glyphs
are represented by a word value of –1. The last word of this table is also –1,
representing the end.
Font Manager Reference 4-69

C H A P T E R 4

Font Manager
■ Glyph-width table. For every glyph in the font, this table contains a word that
specifies the glyph’s fixed-point glyph width at the given point size and font style, in
pixels. The Font Manager gives precedence to the values in this table over those in the
font family glyph-width table. There is an unsigned integer in the high-order byte and
a fractional part in the low-order byte. This table is optional.

■ Image height table. For every glyph in the font, this table contains a word that
specifies the image height of the glyph, in pixels. The image height is the height of the
glyph image and is less than or equal to the font height. QuickDraw uses the image
height for improved character plotting, because it only draws the visible part of the
glyph. The high-order byte of the word is the offset from the top of the font rectangle
of the first non-blank (or nonwhite) row in the glyph, and the low-order byte is the
number of rows that must be drawn. The Font Manager creates this table.

The Font Type Element 4

The font type element of the bitmapped font resource is represented as the fontType
field in the FontRec data type. This integer field defines the general characteristics of
the font and records whether certain tables are present. Its bits are used as follows.

Bit Meaning

0 This bit is set to 1 if the font resource contains an image height table.

1 This bit is set to 1 if the font resource contains a glyph-width table.

2–3 These two bits define the depth of the font. Each of the four possible values
indicates the number of bits (and therefore, the number of colors) used to
represent each pixel in the glyph images.

Valu
e Font depth Number of colors

0 1-bit 1

1 2-bit 4

2 4-bit 16

3 8-bit 256

Normally the font depth is 0 and the glyphs are specified as monochrome
images. If bit 7 of this field is set to 1, a resource of type 'fctb' with the same
ID as the font can optionally be provided to assign RGB colors to specific
pixel values.

If this font resource is a member of a font family, the settings of bits 8 and 9 of
the fontStyle field in this font’s association table entry should be the same
as the settings of bits 2 and 3 in the fontType field. For more information, see
“The Font Association Table” on page 4-95.

4–6 Reserved. Should be set to 0.

7 This bit is set to 1 if the font has a font color table ('fctb') resource. The font
is for color Macintosh computers only if this bit is set to 1.
4-70 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The Offset to the Width/Offset Table 4

The offset to the width/offset table element of the bitmapped font resource is
represented as the owtLoc field in the FontRec data type. This field defines the offset
from the beginning of the resource to the beginning of the width/offset table.

The value of nDescent, when positive, is used as the high-order 16 bits in the 32-bit
value that is used to store the offset of the width table from the beginning of the
resource. To compute the actual offset, the Font Manager uses this computation:

actualOffsetWord := BSHL(nDescent, 16) + owTLoc;

If the value of nDescent is negative, it is still the negative of the descent measurement,
as it was in the original usage of these values; however, the Font Manager no longer
uses this value.

Note
This field was originally defined as an integer value, because it was not
foreseen that this value could exceed 32 KB. The negated descent
element, represented in the nDescent field of the FontRec data type,
was created purely for the convenience of the Font Manager. It stored
the negative of the value of the descent field, which is always positive by
QuickDraw convention. When the depth of fonts increased, the values
of the owTLoc field had to increase, and the extra bits needed to be
stored somewhere. Since the nDescent field was created as a
convenience, it was a handy place to store more information. ◆

8 This bit is set to 1 if the font is a synthetic font, created dynamically
from the available font resources in response to a certain color and screen
depth combination. The font is for color Macintosh computers only if this bit
is set to 1.

9 This bit is set to 1 if the font contains colors other than black. This font is for
color Macintosh computers only if this bit is set to 1.

10–11 Reserved. Should be set to 0.

12 Reserved. Should be set to 1.

13 This bit is set to 1 if the font describes a fixed-width font, and is set to 0 if the
font describes a proportional font. The Font Manager does not check the
setting of this bit.

14 This bit is set to 1 if the font is not to be expanded to match the screen depth.
The font is for color Macintosh computers only if this bit is set to 1. This is for
some fonts, such as Kanji, which are too large for synthetic fonts to be effective
or meaningful, or bitmapped fonts that are larger than 50 points.

15 Reserved. Should be set to 0.

Bit Meaning
Font Manager Reference 4-71

C H A P T E R 4

Font Manager
The Outline Font ('sfnt') Resource 4
The outline font ('sfnt') resource, which describes a TrueType outline font, consists of
a sequence of tables that contain the data necessary for drawing the glyphs of the font,
measurement information about the font, and any instructions that the font designer
might include. These tables can appear in any order in the resource. Some of the tables
are required, such as the description of the font’s glyphs, and others are optional, such as
kerning information. TrueType outline fonts are available on platforms other than the
Macintosh computer, and some tables reflect the variety of information needed for these
different operating systems. A table directory at the beginning of the outline font
resource contains a version number and keys to access the tables.

Note
There are no data type definitions of the outline font resource tables and
there are no fields, although the divisions of the tables are referred to as
fields in this chapter. You must access the data using the routines and
data structures that are described in this chapter or write table-specific
code. Listing 4-2 beginning on page 4-76 shows how to read the contents
of the various tables. ◆

The Font Manager uses some of the tables defined for the outline font resource to
construct the font’s glyphs or to store the font designer’s information about creating
bitmaps from the font data. Developers of general-purpose applications do not need
these tables; consequently, the internal specifications of these tables are not provided in
this chapter, although descriptions of their functions are. The needs of platforms other
than the Macintosh computer are also not discussed.

Some of the terms used in descriptions of these tables pertain solely to the font
designer’s creation of the font. The em square is the imaginary area on which the glyphs
of the font are first designed. The term units per em describes the resolution of the grid;
the greater the number of units per em, the finer the detail of design that the designer
can achieve. Apple’s TrueType fonts use a resolution of 2048 units per em. The
measurement pixels per em describes the relationship of the point size to the em square;
the units per em measurements of the font are translated, using this pixels per em
measurement, into bitmaps. The Font Manager handles this translation for you.

Similarly, the instruction set is for the use of the font designer only and cannot be used or
altered by the Font Manager routines, and so is not included in this chapter. If you want
the complete description of all of the tables in the outline font resource, consult the
TrueType Font Format Specification.
4-72 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
Each table in the outline font resource is aligned on a longword boundary in memory
(long-aligned) and may have been padded when necessary to make it long-aligned. Each
table is named with a four character identifier known as its tag name. The only table that
does not have a tag name is the font directory table. This table is a guide to the contents
of the resource and is mandatory in all outline font resources.

Note
Detailed descriptions of many of the values in the outline font resource
tables are found in the TrueType Font Format Specification and are not
repeated in this chapter. If you are designing a font editor or similar
application that requires detailed knowledge of these tables, please refer
to that book. ◆

These are the required tables in the outline font resource:

Some of the optional tables in the 'sfnt' resource are

Font designers can define additional tables for the outline font resource to support other
platforms where outline fonts are available or to provide for future expansion of a font.
Tag names consisting of all lowercase letters are reserved for use by Apple Computer, Inc.

Tag name Table

(none) Font directory

'cmap' Character code mapping table

'glyf' Glyph data table

'head' Font header table

'hhea' Horizontal header table

'hmtx' Horizontal metrics table

'loca' Location table

'maxp' Maximum profile table

'name' Font-naming table

'post' PostScript table

Tag Table

'cvt ' Control-value table

'fpgm' Font program table

'hdmx' Horizontal device metrics table

'kern' Kerning table

'prep' Preprogram (control value program) table
Font Manager Reference 4-73

C H A P T E R 4

Font Manager
The Font Directory 4

The font directory is a guide to the tables in the outline font resource. It provides you
with the information that is needed to efficiently find the other parts of the resource.
Each table in the resource has a tag name, a checksum, a location that is defined as an
offset in bytes from the first byte of the resource, and a length in bytes. To use the data in
a table, you first find the table’s tag name in the font directory and then access its data
starting at the specified location.

The font directory consists of an offset component and a variable length array of
directory entries, as shown in Figure 4-17.

Figure 4-17 The font directory

Bytes

4

2

2

2

2

4

4

4

4

Version

Number of tables

Search range

Entry selector

Range shift

Tag name

Checksum

Offset

Length

Offset

component

First

directory

component
4-74 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The font directory offset component specifies the number of tables in the resource (and
thus in the directory component). It contains several values that you can use to optimize
searching through the directory components for a tag name:

■ Version. The version number of the font, given as a 32-bit fixed point number. For
version 1.0 of any font, this number is $00010000.

■ Number of tables. The number of tables in the outline font resource, not counting the
font directory or any subtables in the font. This is an unsigned integer value.

■ Search range. An unsigned integer value that is used, along with the entry selector
and range shift values, to optimize a binary search through the directory.

■ Entry selector. An unsigned integer value that is used, along with the search range
and range shift values, to optimize a binary search through the directory.

■ Range shift. An unsigned integer value that is used, along with the search range and
entry selector values, to optimize a binary search through the directory.

The search range, entry selector, and range shift values are used together to construct a
binary search through the directory if it is too large for an efficient sequential search.
Note, however, that most programs that access kerning data use a linear search and do
not make use of these values.

If a font does contain a large number of tables, you can perform a binary search
of the directory components. You use the range shift value as the initial position in the
directory to examine. Compare the tag name of the component at this position with
the one you are searching for. If the target tag name comes before the one you are
searching for, search from the beginning of the directory to the range shift position. If the
target name comes after the one you are searching for, search from that position to
the end of the directory.

The font directory table entries are sorted alphabetically by tag name. Each component
consists of the following elements:

■ Tag name. The identifying name for this table, such as 'cmap'.

■ Checksum. The checksum for this table, which is the unsigned sum of the long values
in the table. This number can be used to verify the integrity of the data in the table.

■ Offset. The offset from the beginning of the outline font resource to the beginning of
this table, in bytes.

■ Length. The length of this table, in bytes.
Font Manager Reference 4-75

C H A P T E R 4

Font Manager
Listing 4-2 shows a function that determines the checksum of a given table.

Listing 4-2 Calculating the checksum of a given table

TYPE

LongPtr = ^LongInt;

FUNCTION MyCalcTableChecksum (table: LongPtr;

 lngth: LongInt): LongInt;

VAR

sum : LongInt;

mask: LongInt;

BEGIN

sum := 0;

WHILE lngth > 0 DO BEGIN

IF lngth > 3 THEN

sum := sum + table^

ELSE BEGIN

mask := BitShift($FFFFFFFF, 8 * (4 - lngth));

sum := sum + BitAnd(table^, mask);

table := LongPtr(ord(table) + 4);

lngth := lngth - 4;

END;

END;

MyCalcTableChecksum := sum;

END;

The Character-Code Mapping Table 4

The character-code mapping table, with a tag name of 'cmap', maps character codes
(like ASCII codes) to glyph indexes. The glyph repertoire of an outline font is indexed
consecutively from zero to the number of glyphs in the font. The encoding method
selected by the font designer depends on the conventions used by the intended platform
and sometimes on other platform-specific selectors, such as which script system is in use.
A font intended for use on multiple platforms with different conventions requires
multiple encoding tables; however, double-byte fonts require various special formats for
efficient encoding. As a result, the 'cmap' table may contain multiple encoding
components, one for each supported encoding scheme, often in different formats.
4-76 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
Character codes that do not correspond to any glyph in the font should be mapped to
glyph index 0. At this location in the font there should be a special glyph representing a
missing character, which typically is a box (). For more information on requirements
for character-to-glyph mapping, see the TrueType Font Format Specification.

In the simplest case, the character-code mapping table consists of a header component
and only one character-mapping format component, which includes an array of glyph
indexes. In other cases, there are several character-mapping components in the table.

The Control-Value Table 4

The control-value table, with a tag name of 'cvt ', is an optional table that can be used
by fonts that contain instructions. This table contains data (control values) used by the
instructions. Each entry in this table is 4 bytes long. The number of values in the table
can be computed by dividing the length of the table by 4. The length of the table is found
in the directory component for this table in the outline font resource directory.

The font directory is described in “The Font Directory,” beginning on page 4-74.

The control-value program, which uses these values, is contained in the preprogram
table, which is described on page 4-89.

The Font Program Table 4

The font program table, with a tag name of 'fpgm', is an optional table that contains the
font program, a list of instructions that the Font Manager executes once, when it loads
the font into memory. The font program is a variable length sequence of bytes that are
interpreted by the Font Manager. The length of this table is found in the directory
component for this table in the outline font resource directory.

The font directory is described in “The Font Directory,” beginning on page 4-74.

The Glyph Data Table 4

The glyph data table, with a tag name of 'glyf', contains the data that defines the
appearance of the glyphs in the font: the specification of points that make up the
contours of a glyph and the instructions that help change the shape of the glyph under
various conditions. Glyphs can be stored in any character-code mapping order, since the
location of the data for each is specified separately, through the character-code mapping
table, which is described beginning on page 4-76, and the location table, which is
described on page 4-84.
Font Manager Reference 4-77

C H A P T E R 4

Font Manager
The data for each glyph consists of some descriptive information, as shown in
Figure 4-18, followed by the actual instructions and coordinate values that define the
glyph. The format of the definition data for glyphs is described in the TrueType Font
Format Specification. Note that the glyph data is compressed.

Figure 4-18 A glyph description

■ Number of contours. If this integer value is positive, it specifies the number of closed
curves defined in the outline data for the glyph. If it is –1, it indicates that the glyph is
composed of other simple glyphs (see the explanation of component glyphs in the
section “The Maximum Profile Table” beginning on page 4-84).

■ xMin. The left edge of the glyph’s bounding box, specified in units per em.

■ yMin. The top edge of the glyph’s bounding box, specified in units per em.

■ xMax. The right edge of the glyph’s bounding box, specified in units per em.

■ yMax. The bottom edge of the glyph’s bounding box, specified in units per em.

■ Glyph definition data. The data that defines the appearance of the glyph, as described
in the TrueType Font Format Specification.

The Horizontal Device Metrics Table 4

The horizontal device metrics table, with a tag name of 'hdmx', is an optional table that
stores integer advance widths scaled to pixel-per-em sizes for the Macintosh computer’s
screen. The horizontal device metrics table is used only for certain screen sizes that are
determined by the font’s designer and only when fractional widths are disabled (as
described in “SetFractEnable” on page 4-58). This table contains fine-tuned integer
widths for the glyphs at low pixel-per-em values. These values can be used to reduce the
unpleasant consequences of rounding the widths for small point sizes at low resolution.

Bytes

2

2

2

2

2

Number of contours

xMin

yMin

xMax

yMax

Glyph definition data
4-78 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The Font Header Table 4

The font header table, with a tag name of 'head', is shown in Figure 4-19. This table
contains global information about the font: the font version number; creation and
modification dates; revision number; basic typographic data that applies to the font as a
whole, such as the direction in which the font’s glyphs are most likely to be written; and
other information about the placement of glyphs in the em square.

Figure 4-19 The font header table

Bytes

4

4

4

4

2

2

8

8

2

2

2

2

2

2

2

2

2

Version

Font revision

Checksum adjustment

Magic number

Flags

Units per em

Creation date

Modification date

xMin

yMin

xMax

yMax

Style

Smallest readable size

Font direction

Location table format

Glyph data format
Font Manager Reference 4-79

C H A P T E R 4

Font Manager
For a complete description of the individual fields in this table, see the TrueType Font
Format Specification. Application developers may be interested in the following fields:

■ Version. The version number of the table, as a fixed-point value. This value is
$00010000 if the version number is 1.0.

■ Font revision. A fixed-point value set by the font designer.

■ Checksum adjustment. The checksum of the font, as an unsigned long integer.

■ Units per em. This unsigned integer value represents a power of 2 that ranges from
64 to 16,384. Apple’s TrueType fonts use the value 2048.

■ Creation date. The date this font was created. This is a long date-time value of data
type LongDateTime, which is a 64-bit, signed representation of the number of
seconds since Jan. 1, 1904.

■ Modification date. The date this font was last modified. This is a long date-time value
of data type LongDateTime, which is a 64-bit, signed representation of the number of
seconds since Jan. 1, 1904.

■ Smallest readable size. The smallest readable size for the font, in pixels per em.
The RealFont function, which is described in the section “RealFont” beginning on
page 4-52, returns FALSE for a TrueType font if the requested size is smaller than
this value.

■ Location table format. The format of the location table (tag name: 'loca'), as an
signed integer value. The table has two formats: if the value is 0, the table uses the
short offset format; if the value is 1, the table uses the long offset format. The location
table is described in the section “The Location Table” on page 4-84.

You can use the value of the checksum adjustment element to verify the integrity of the
data in the font, to confirm that no data has been changed, or to compare two similar
fonts. This value is the designer’s checksum value for the font. The checksum value is an
unsigned long word that you compute as follows:

1. Set the value of the checksum word to 0 (so that it does not factor into the value that
you are computing).

2. Calculate the checksum for each table in the outline font resource and store the table’s
checksum in the table directory.

3. Now sum the entire font as an unsigned, 32-bit value.

4. Subtract the sum from $B1B0AFBA, which is a magic number for this checksum
computation. Store the result.

Listing 4-2 provides an example of a function to compute the checksum of a font. This
example includes type declarations for the outline font header information and uses the
MyCalcTableChecksum function (from Listing 4-2 on page 4-76) to compute the
checksum for each table.
4-80 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
Listing 4-3 Calculating the checksum of a font

TYPE

DirectoryEntry =

RECORD

tag: OSType;

checksum: LongInt;

offset: LongInt;

lngth: LongInt;

END;

OffsetTable =

RECORD

version: LongInt;

numTables: Integer;

searchRange: Integer;

entrySelector: Integer;

rangeShift: Integer;

tableDir: ARRAY[1..1] OF DirectoryEntry;

 { actually 1..numTables }

END;

SfntPtr = ^OffsetTable;

SfntHandle = ^SfntPtr;

HeaderTable =

RECORD

version: LongInt;

fontRevision: LongInt;

checkSumAdjustment: LongInt;

magicNumber: LongInt;

flags: Integer;

unitsPerEm: Integer;

created: LongDateTime; { defined in Script.p }

modified: LongDateTime;

xMin: Integer;

yMin: Integer;

xMax: Integer;

yMax: Integer;

macStyle: Integer;
Font Manager Reference 4-81

C H A P T E R 4

Font Manager
lowestRecPPEM: Integer;

fontDirectionHint: Integer;

indexToLocFormat: Integer;

glyphDataFormat: Integer;

END;

HeaderTablePtr = ^HeaderTable;

FUNCTION CalcSfntChecksum (sp: SfntPtr): LongInt;

CONST

checkSumMagic = $B1B0AFBA;

VAR

i: Integer;

cs, sum, size: LongInt;

htp: HeaderTableptr;

BEGIN

sum := 0;

FOR i := 1 TO sp^.numTables DO BEGIN

IF sp^.tableDir[i].tag = 'head' THEN

BEGIN

htp := HeaderTablePtr(ord(sp) +

sp^.tableDir[i].offset);

htp^.checkSumAdjustment := 0;

cs := CalcTableChecksum(LongPtr(htp),

SizeOf(HeaderTable));

END

ELSE

cs := MyCalcTableChecksum(

LongPtr(ord(sp) + sp^.tableDir[i].offset),

sp^.tableDir[i].lngth);

sp^.tableDir[i].checksum := cs;

sum := sum + cs;

END;

size := SizeOf(OffsetTable) +

(sp^.numTables - 1) * SizeOf(DirectoryEntry);

sum := sum + CalcTableChecksum(LongPtr(sp), size);

CalcSfntChecksum := checkSumMagic - sum;

{ to be written into htp^.checkSumAdjustment }

END;
4-82 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The Horizontal Header Table 4

The horizontal header table, with a tag name of 'hhea', contains information needed to
lay out fonts whose glyphs are written horizontally (either left to right or right to left)
across a page. This table contains information that pertains to the font as a whole.
Information that pertains to specific glyphs is given in the horizontal metrics table,
which is described in the next section “The Horizontal Metrics Table.”

The Horizontal Metrics Table 4

The horizontal metrics table, with a tag name of 'hmtx', consists of arrays that contain
metrics information—the advance widths and left-side bearings—for the horizontal
layout of each glyph in the font. The horizontal metrics table structure is shown in
Figure 4-20.

Figure 4-20 The horizontal metrics table

The first component of the horizontal metrics table contains two values for each entry:
the advance width and the left-side bearing for the associated glyph. The number of
value pairs in this component is specified in the number of advance widths element of
the horizontal header table, which is described in the preceding section, “The Horizontal
Header Table.”

The horizontal metrics table may have a second component that is used for fixed-width
glyphs. It contains the left-side bearings only. The advance width is the same as the last
entry in the first component of this table.

Bytes

2

2

variable

Advance width

Left-side bearing

Left-side bearings

First

horizontal

metrics

component

Monospaced

left-side

bearing
Font Manager Reference 4-83

C H A P T E R 4

Font Manager
The Kerning Table 4

The kerning table, with a tag name of 'kern', is an optional table that contains the
values you can use to adjust the spacing between glyphs in a font. Kerning can be
parallel to the flow of text or perpendicular to the flow of text. For example, if you
specify perpendicular kerning and if text is normally read horizontally, the glyphs are
kerned vertically. Kerning is always applied to pairs of glyphs.

The kerning table in the outline font resource consists of a header and a series
of subtables. The TrueType Font Format Specification documents a basic set of kerning
subtables.

The Location Table 4

The location table, with a tag name of 'loca', stores the offsets to the locations of actual
glyph data in the outline font resource relative to the beginning of the glyph table. It
provides quick access to the data for a particular glyph. The location table is an array of
offset values, one for each glyph in the font, including the 0th or missing character glyph.

Offsets are stored in one of two forms: in the short format, each offset is a 16-bit
unsigned integer value that specifies the number of words from the beginning of the
glyph data table to the data for the glyph. In the long format, each offset is a 32-bit
unsigned integer value that specifies the number of bytes from the beginning of the
glyph data table to the data for the glyph. The format that is used for a font is specified
in the location table format element of the font header table, whose description begins on
page 4-79.

The Maximum Profile Table 4

The maximum profile table, with a tag name of 'maxp', establishes the memory
requirements for a font. Most of the information in this table is for the use of the
font’s designer, a font editor that may alter the makeup of the resource, or the
Font Manager itself.

Some of the elements in the maximum profile table refer to simple versus component
glyphs. A simple glyph is one that is defined as a single equation, such as an “e”. A
component glyph is a design that the font designer builds by adding a simple glyph to
another equation or by adding two glyphs together. For example, the glyph “ê” can be
created as a single entity or as a component glyph: the simple glyph “e” plus the simple
glyph “^”. In this way, a small set of simple glyphs can create a much larger set of
component glyphs. The font designer could also design the glyph “ê” as a simple glyph.
However, this leads to separate designs for “â”, “î”, and so on. Some fonts distributed by
Apple use component glyphs and some do not.

For more information about this table, see the TrueType Font Format Specification.
4-84 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The Font Naming Table 4

The font naming table, with a tag name of 'name', is shown in Figure 4-21. This table
contains multilingual strings associated with the outline font resource. These strings can
represent copyright notices, font names, style names, and so on, and each string is stored
in a separate record with some information about what kind of string it is. You may want
to provide this information in your application for the user, or you may want to use it to
check one version of a font against another.

Figure 4-21 The naming table

The header component of the font naming table consists of the following elements:

■ Format selector. The format selector (set to 0). This is an unsigned integer.

■ Number of names. The number of name records that follow. This is an
unsigned integer.

■ String area offset. The offset from the start of the table to the start of string storage, in
bytes. This is an unsigned integer.

Bytes

2

2

2

2

2

2

2

2

2

variable

Format selector

Number of names

String area offset

Platform ID

Platform-specific ID

Language ID

Name ID

Length

Offset

Storage area

First name

record

Header

component
Font Manager Reference 4-85

C H A P T E R 4

Font Manager
Each name record contains information about the platform and language of the strings
stored in the naming table.

■ Platform ID. The platform identifier.

■ Platform-specific ID. The platform-specific encoding identifier.

■ Language ID. The language identifier.

■ Name ID. The name identifier.

■ Length. The length of the string, in bytes.

■ Offset. The offset from the start of storage area, in bytes.

The storage area at the end of the naming table contains the actual string data.

There is no length limit for the strings contained in a name record, but font designers
should not include empty strings (of byte length 0). The Font Manager sorts the entries
in the naming table first by platform identifier, next by platform-specific identifier, next
by language identifier, and last by name identifier.

To keep the size of this table small, a font designer may make a limited set of name
records in a small set of languages, because the font can be localized and the existing
strings translated or new strings added. Other parts of the outline font resource that
need these strings can refer to them by their index number, and applications that need a
particular string can look it up by its platform identifier, language identifier, and font
name identifier. Platform IDs are shown in Table 4-2, language identifiers are shown in
Table 4-4, and font name identifiers are shown in Table 4-5.

TrueType outline fonts are available on other platforms besides the Macintosh computer,
which is why the font designer must specify the platform. There are only four predefined
platform identifiers, listed in Table 4-2, and they use values 0 through 3.

Table 4-2 Platform identifiers

ID Platform Specific encoding

0 Unicode Reserved (set to 0)

1 Macintosh The Script Manager code

2 ISO ISO encoding

3 Microsoft Microsoft encoding

240–255 User-defined Reserved for all nonregistered platforms
4-86 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
When the platform used is the Macintosh computer, the platform-specific identifier
names the specific script code for this name record. The script codes defined for the
Macintosh system software are listed in the chapter “Script Manager” in this book.

The platform-specific identifier encodings for the ISO platform are listed in Table 4-3.

The value of the language identifier specifies the language in which a particular
string is written. The language identifiers available on the Macintosh platform are
listed in Table 4-4.

Table 4-3 ISO platform-specific identifiers

Code ISO encoding scheme

0 7-bit ASCII

1 ISO 10646

2 ISO 8859-1

Table 4-4 ISO language codes

Code Language Code Language

0 English 12 Arabic

1 French 13 Finnish

2 German 14 Greek

3 Italian 15 Icelandic

4 Dutch 16 Maltese

5 Swedish 17 Turkish

6 Spanish 18 Yugoslavian

7 Danish 19 Chinese

8 Portuguese 20 Urdu

9 Norwegian 21 Hindi

10 Hebrew 22 Thai

11 Japanese
Font Manager Reference 4-87

C H A P T E R 4

Font Manager
The font name identifier values, listed in Table 4-5, contain the strings with information
about the font.

The full font name for a font family, given in string 4 of Table 4-5, is most often the same
as the family name, given in string 1. The default style for a family or the only font in a
family should have “Regular” in the font style string. (Font designers use the term
“Regular” to denote the plain style for a font, so as to reflect typographic terminology
more accurately.) One exception, based on historical convention, is when the full name of
a font includes the word “Roman” (e.g. Times Roman). In all other cases, the full name
should be made up of the family name and the style name, as in Bookman Bold.

The unique font identification consists of the designer’s name, followed by a space
serving as a separator, followed by the full name of the font. For example, though there
might be many Symbol fonts, the name “Apple Computer Symbol” is unique. The use of
unique names allows applications to determine if the current system software has the
fonts used in the original document.

Table 4-5 Font name identifiers

Code Meaning Description

0 Copyright notice The copyright notice of the font—for example,
“Copyright Apple Computer, Inc. 1992”

1 Font family name The font family name, such as “New York”

2 Font style The style of the font, such as “Bold”

3 Font
identification

A unique identification string for the font—for example,
“Apple Computer New York Bold version 1.0”

4 Full font name The font family name combined with the font style
name—for example, “New York Bold”

5 Version string The version of the font, or when it was created—for
example, “August 10, 1991, 1.08d21”

6 PostScript name
of the font

A name of this font that the PostScript printer driver can
recognize—for example, “Times-Bold”

7 Trademark The trademark notice of the designer

8 Designer Corporate name of the designer
4-88 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The PostScript Table 4

The PostScript table, with a tag name of 'post', contains information needed to use an
outline font on a PostScript printer. It contains the PostScript names for all of the glyphs
in the font. It also contains memory information needed by the PostScript driver for
memory management. The PostScript table consists of a header component and an
optional format component, which is used only for two of the possible four PostScript
format types.

The header component of the PostScript table contains the memory requirements.
PostScript drivers can make better use of the Memory Manager if the virtual memory
requirements of an outline font that can be downloaded to the printer are known
beforehand. If the font designer does not know the virtual memory requirements, the
values for the memory use requirements of this font are set to zero.

The memory use of a downloaded outline font varies depending on whether it is defined
as a TrueType or Adobe™ Type 1 font on the printer. You can compute the minimum
memory required for a font as follows:

1. Send the PostScript VMStatus call to the printer and store the result.

2. Download the font to the printer.

3. Send the VMStatus call again.

4. Subtract the first result from the second to calculate the amount of memory that the
font requires.

The maximum memory required for a font is computed by adding the maximum
run-time memory use to the minimum memory value. The maximum run-time memory
use depends on the maximum band size of any bitmap that the outline font scaler might
have to create from an outline description.

The Preprogram Table 4

The preprogram table, with a tag name of 'prep', is an optional table that stores the
control value program. This is a set of outline font instructions that the Font Manager
executes before it creates any glyph and again whenever the user changes the point size,
the angle at which the font is being displayed, or the font itself. This table consists of an
ordered list of instruction opcodes, each of which is one byte long. Control values for the
instructions in the preprogram are found in the 'cvt ' table, which is described in
“The Control-Value Table” on page 4-77.
Font Manager Reference 4-89

C H A P T E R 4

Font Manager
The Font Family ('FOND') Resource 4
A font family contains references to the fonts (which can be bitmapped font
['NFNT'], outline font ['sfnt'], or 'FONT' resources) that make up the family
and information that describes the family as a whole, such as a global width table
for each available style.

The font family ('FOND') resource contains general information about the font family,
the font association table, and a collection of optional tables: the family glyph-width
table, the style-mapping table, the kerning table, the offset table, and the bounding-box
table. Several data structures and routines use the font family resource. For example, the
global width table can use the font family information to find the recommended glyph
widths and the LaserWriter printer driver can use tables that contain information about
kerning pairs and mapping of styles to printer fonts.

The font family resource consists of a header component, which contains general
information about the font family, and a font family tables component, which consists of
the font association table and some number (possibly zero) of the optional tables that
provide measurement and naming information about the font family. The header
component of this resource is represented by the FamRec data type, the declaration of
which is shown in the section “The Font Family Record” on page 4-47. The structure of
this resource is shown in Figure 4-22.
4-90 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
Figure 4-22 The font family ('FOND') resource

Bytes

Font family flags

Font family ID

Font family first character

Font family last character

Font family maximum ascent

Font family maximum descent

Font family maximum leading

Font family maximum glyph width

Offset to family glyph-width table

Offset to family kerning table

Offset to style-mapping table

Style properties

International information

Version

Font association table

Offset table

Bounding-box table

Family glyph-width table

Style-mapping table

Kerning table

2

2

2

2

2

2

2

2

4

4

4

18

4

2

variable

variable

variable

variable

variable

variable

Font family

header

component

Font family

tables

component
Font Manager Reference 4-91

C H A P T E R 4

Font Manager
The header component of the font family resource consists of a number of elements that
describe characteristics of the family. Each of the elements in this component is
represented by a field in the FamRec data type.

■ Font family flags. An integer value, the bits of which specify general characteristics of
the font family. This value is represented by the ffFlags field in the FamRec data
type. The bits in the ffFlags field have the following meanings:

■ Font family ID. An integer value that specifies the 'FOND' resource ID number
for this font family. This value is represented by the ffFamID field in the FamRec
data type.

■ Font family first character. An integer value that specifies the ASCII character code of
the first glyph in the font family. This value is represented by the ffFirstChar field
in the FamRec data type.

■ Font family last character. An integer value that specifies the ASCII character code of
the last glyph in the font family. This value is represented by the ffLastChar field in
the FamRec data type.

■ Font family maximum ascent. The maximum ascent measurement for a one-point font
of the font family. This value is in a 16-bit fixed-point format with an integer part in
the high-order 4 bits and a fractional part in the low-order 12 bits. This value is
represented by the ffAscent field in the FamRec data type.

■ Font family maximum descent. The maximum descent measurement for a one-point
font of the font family. This value is in a 16-bit fixed-point format with an integer part
in the high-order 4 bits and a fractional part in the low-order 12 bits. This value is
represented by the ffDescent field in the FamRec data type.

Bit Meaning

0 This bit is reserved by Apple and should be cleared to 0.

1 This bit is set to 1 if the resource contains a glyph-width table.

2–11 These bits are reserved by Apple and should be cleared to 0.

12 This bit is set to 1 if the font family ignores the value of the FractEnable
global variable when deciding whether to use fixed-point values for stylistic
variations; the value of bit 13 is then the deciding factor. The value of the
FractEnable global variable is set by the SetFractEnable procedure.

13 This bit is set to 1 if the font family should use integer extra width for
stylistic variations. If not set, the font family should compute the fixed-point
extra width from the family style-mapping table, but only if the
FractEnable global variable has a value of TRUE.

14 This bit is set to 1 if the family fractional-width table is not used, and is
cleared to 0 if the table is used.

15 This bit is set to 1 if the font family describes fixed-width fonts, and is cleared
to 0 if the font describes proportional fonts.
4-92 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
■ Font family maximum leading. The maximum leading for a 1-point font of the font
family. This value is in a 16-bit fixed-point format with an integer part in the
high-order 4 bits and a fractional part in the low-order 12 bits. This value is
represented by the ffLeading field in the FamRec data type.

■ Font family maximum glyph width. The maximum glyph width of any glyph in a
one-point font of the font family. This value is in a 16-bit fixed-point format with an
integer part in the high-order 4 bits and a fractional part in the low-order 12 bits. This
value is represented by the ffWidMax field in the FamRec data type.

■ Offset to family glyph-width table. The offset to the family glyph-width table from the
beginning of the font family resource to the beginning of the table, in bytes. The
family glyph-width table is described in the section “The Family Glyph-Width Table,”
beginning on page 4-98. This value is represented by the ffTabOff field in the
FamRec data type.

■ Offset to family kerning table. The offset to the beginning of the kerning table from
the beginning of the 'FOND' resource, in bytes. The kerning table is described in the
section “The Font Family Kerning Table,” beginning on page 4-106. This value is
represented by the ffKernOff field in the FamRec data type.

■ Offset to family style-mapping table. The offset to the style-mapping table from
the beginning of the font family resource to the beginning of the table, in bytes. The
style-mapping table is described in the section “The Style-Mapping Table,” beginning
on page 4-99. This value is represented by the ffStyleOff field in the FamRec
data type.

■ Style properties. An array of 9 integers, each indicating the extra width, in pixels, that
would be added to the glyphs of a 1-point font in this font family after a stylistic
variation has been applied. This value is represented by the ffProperty field in the
FamRec data type, which is an array with nine values. The Font Manager multiplies
these values by the requested point size to get the correct width. Each value is in a
16-bit fixed-point format with an integer part in the high-order 4 bits and a fractional
part in the low-order 12 bits. If the font with a given stylistic variation already exists
as an intrinsic font, the Font Manager ignores the value in the ffProperty field for
that style. The values in this array are used as follows:

Property
index

Meaning

1 Extra width for plain text. Should be set to 0.

2 Extra width for bold text.

3 Extra width for italic text.

4 Extra width for underline text.

5 Extra width for outline text.

6 Extra width for shadow text.

7 Extra width for condensed text.

8 Extra width for extended text.

9 Not used. Should be set to 0.
Font Manager Reference 4-93

C H A P T E R 4

Font Manager
■ International information. An array of 2 integers reserved for internal use by script
management software. This value is represented by the ffIntl field in the FamRec
data type.

■ Version. An integer value that specifies the version number of the font family
resource, which indicates whether certain tables are available. This value is
represented by the ffVersion field in the FamRec data type. Because this field has
been used inconsistently in the system software, it is better to analyze the data in the
resource itself instead of relying on the version number. The possible values are
as follows:

The font family tables component of the font family resource contains a number of
tables. The font association table must be included in the resource, but the other tables
are all optional. You can determine whether or not the glyph-width, kerning, or
style-mapping tables are present by examining the offset value for each. Each offset
value is a number of bytes from the beginning of the resource to the table; an offset of 0
means that the table is not present. For example, if the value of the ffWTabOff field is
greater than 0, the glyph-width table is present in the resource data.

Additional tables, including the bounding-box table, can be added to the font family
resource by a font designer. Whenever any table, including the glyph-width, kerning,
and style-mapping tables, is included in the resource data, an offset table is included.
The offset table contains a long integer offset value for each table that follows it.

The Font Style Code 4

A number of tables in the font family resource contain information that pertains only to a
certain style. Actually, a style can be a combination of styles. The style code data type,
which is used to represent a style in the tables in this resource, uses a single bit for each
of the seven Macintosh character styles. You can set any of these bits to 1 in the style
code element of a table to specify the unique style of the font to which that table applies.
Although each table that contains a font style code allocates 2 bytes for the value, only
the low-order byte of the value is used to specify the style code; the high-order byte is
used internally by the Font Manager. The values of the bits in a style code element are
shown in Figure 4-23.

Value Meaning

$0000 Created by the Macintosh system software. The font family resource will not
have the glyph-width tables and the fields will contain 0.

$0001 Original format as designed by the font developer. This font family record
probably has the width tables and most of the fields are filled.

$0002 This record may contain the offset and bounding-box tables.

$0003 This record definitely contains the offset and bounding-box tables.
4-94 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
Figure 4-23 Style codes

The Font Association Table 4

The font association table of the font family resource maps a point size and style into
a specific font that is part of the family. This table is represented by the fontAssoc field
of the font family resource. This table, which is shown in Figure 4-24, matches a given
font size and style combination with the resource ID of a'FONT', bitmapped, or
outline resource.

Figure 4-24 The font association table

The font association table consists of an integer count and a variable number of font
association entries. The table is represented by the FontAssoc data type, which is
shown on page 4-47.

■ Number of entries. An integer value that specifies the number of font association
records in this table minus 1. This value is represented by the numAssoc field in the
FontAssoc data type.

7 6 5 4 3 2 1 0

Bold
Italic
Underline
Outline
Shadow

Condense

Extend

(Reserved)

Bytes

2

2

2

2

Number of entries–1

Font size

Font style

Font ID

First font

association

entry
Font Manager Reference 4-95

C H A P T E R 4

Font Manager
Each font association entry is represented by the AsscEntry data type, which is shown
on page 4-48. The Font Manager looks first for outline font resources, then bitmapped
font resources, then'FONT' resources. Entries are sorted according to point size, with the
smallest sizes coming first in the table. The font size value for outline font resources is 0,
so they are always listed first. Plain fonts are sorted before styled fonts. The elements of
each entry are:

■ Font size. This integer value specifies the size of the font in points. This value is
represented by the fontSize field of the AsscEntry data type.

■ Font style. This integer value specifies the style code of the entry, as shown in Figure
4-23 on page 4-95. This value is represented by the fontStyle field of the
AsscEntry data type.

■ Font ID. This integer value specifies the resource ID of the related 'sfnt', 'NFNT',
or 'FONT' resource. This value is represented by the fontID field of the AsscEntry
data type.

Note
Bits 8 and 9 of the fontStyle field of the font association table entry
specify the font depth. They need to contain the same values as bits 2
and 3 of the fontType field of the font resource that this entry
describes. ◆

The Offset Table 4

The offset table is an optional table that is included in the font family resource whenever
any of the other optional tables are included. This table, which is shown in Figure 4-25,
allows the font designer to add more tables to the font family resource.

Figure 4-25 The offset table

Bytes

2

4

Number of entries–1

Offset of tableFirst offset
4-96 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The offset table consists of an integer count and a variable number of table offset values,
each of which is 4 bytes long. There is no data type defined for this table.

■ Number of entries. An integer value that specifies the number of offset values in this
table minus 1.

■ Offset of table. A long integer value that specifies the number of bytes from the start of
the offset table to the start of the table.

The Bounding-Box Table 4

The bounding-box table, shown in Figure 4-26, contains the bounding-box
measurements for a 1-point font. The bounding boxes used in this table are similar to
the font rectangle, since each describes the smallest rectangle that encloses the shape of
each glyph in a given font. There are separate bounding-box entries in the table
for different styles.

Figure 4-26 The bounding-box table

The bounding-box table consists of an integer count and a variable number of
bounding-box entries, each of which is 10 bytes long. There is no data type defined
for this table.

■ Number of entries. An integer value that specifies the number of bounding-box
entries in this table minus 1.

Bytes

2

2

2

2

2

2

Number of entries–1

Bounding-box style

Bounding-box left

Bounding-box bottom

Bounding-box right

Bounding-box top

First

bounding box
Font Manager Reference 4-97

C H A P T E R 4

Font Manager
Each bounding-box entry consists of the following elements. There is no data type
defined for these entries, each of which is 10 bytes long.

■ Bounding-box style. An integer value that specifies the style code for this
bounding-box entry. Style codes are shown in Figure 4-23 on page 4-95.

■ Bounding-box left. The coordinate value of the left edge of the bounding box, in 16-bit
fixed-point format, with an integer part in the high-order 4 bits and a fractional part in
the low-order 12 bits.

■ Bounding-box bottom. The coordinate value of the bottom edge of the bounding box,
in 16-bit fixed-point format, with an integer part in the high-order 4 bits and a
fractional part in the low-order 12 bits.

■ Bounding-box right. The coordinate value of the right edge of the bounding box, in
16-bit fixed-point format, with an integer part in the high-order 4 bits and a fractional
part in the low-order 12 bits.

■ Bounding-box top. The coordinate value of the top edge of the bounding box, in 16-bit
fixed-point format, with an integer part in the high-order 4 bits and a fractional part in
the low-order 12 bits.

The Family Glyph-Width Table 4

The font family glyph-width table is used to specify glyph widths for the font family on
a per-style basis. This table, which is shown in Figure 4-27, can contain a number of
glyph-width subtables, with one subtable for each style in the family.

Figure 4-27 The font family glyph-width table

Bytes

2

2

variable

Number of entries–1

Style code

Style widths
First

subtable
4-98 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The family glyph-width table consists of an integer count and a variable number of
glyph-width subtables. The table is represented by the WidTable data type, which is
shown on page 4-48.

■ Number of entries. An integer value that specifies the number of bounding-box
entries in this table minus 1. This value is represented by the numWidths field in the
WidTable data type.

Each glyph-width subtable in the table is represented by the WidEntry data type, which
is shown on page 4-48. Each subtable consists of the following elements.

■ Style code. An integer value that specifies the style code for this bounding-box entry.
Style codes are shown in Figure 4-23 on page 4-95. This value is represented by the
widStyle field in the WidEntry data type.

■ Style widths. A variable length array of integer values, with one entry in the array for
each glyph in the font. Each width is in 16-bit fixed-point format, with the integer part
in the high-order 4 bits and the fractional part in the low-order 12 bits.

The Style-Mapping Table 4

The printer driver uses font classes to differentiate among the different methods
of implementing font styles. The style-mapping table provides a flexible way to
assign font classes and to specify character-set encodings. The table contains the font
class, information about the character-encoding scheme that the font designer used,
and a mechanism for obtaining the name of the appropriate printer font. The
style-mapping table is primarily used by drivers for high-resolution printers such as
the LaserWriter.

The font name suffix subtable and the glyph-encoding subtable that are part of the
style-mapping table immediately follow it in the resource data. The font name suffix
subtable contains the base font name and the suffixes that can be added to the font
family’s name to produce a real PostScript name (one that is recognized by the PostScript
LaserWriter printer driver). The style-mapping table uses the suffix table to build a font
name for a PostScript printer. The glyph-encoding table allows character codes to
be mapped to PostScript glyph names. Figure 4-28 shows the structure of the
style-mapping table.
Font Manager Reference 4-99

C H A P T E R 4

Font Manager
Figure 4-28 The style-mapping table

The header component of the style-mapping table contains a list of indexes into the font
name suffix subtable, which is described below. The style-mapping table is represented
by the StyleTable data type, which is shown on page 4-49. The elements of this table
are as follows.

■ Font class. An integer value that specifies a collection of flags that alert the printer
driver to what type of PostScript font this font family is. This value is represented by
the fontClass field of the StyleTable data type. For more information about how
these flags are used, see the LaserWriter Reference book.

Bytes

2

4

4

1

1

1

2

256

variable

2

variable

Font class

Offset

Reserved

Index to suffix for style code 0

Index to suffix for style code 1

Index to suffix for style code 47

String count

Base font name

Strings

String count

Strings

Header

component

Font name

suffix

subtable

Glyph-name

encoding

subtable
4-100 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The default font class definition is 0, which has settings that indicate the printer driver
should derive the bold, italic, condense, and extend styles from the plain font.
Intrinsic fonts are assigned classes (bits 2 through 8) that prevent these derivations
from occurring. The meanings of the 16 bits of the fontClass word are as follows:

■ Offset. A long integer value that specifies the offset from the start of this table to the
glyph-encoding subtable component. This value is represented by the offset field of
the StyleTable data type.

■ Reserved. A long integer element reserved for use by Apple Computer, Inc.

■ Index to font name suffix subtable. This is an array of 48 integer index values, each of
which is a location in the naming table. The value of the first element is an index into
the naming table for the string name for style code 0; the value of the forty-eighth
element is an index into the naming table for the string name for style code 47. This
array is represented by the indexes field of the StyleTable data type.

Bit Meaning

0 This bit is set to 1 if the font name needs coordinating.

1 This bit is set to 1 if the Macintosh vector reencoding scheme is required.
Some glyphs in the Apple character set, such as the Apple glyph, do not
occur in the standard Adobe character set. This glyph must be mapped in
from a font that has it, such as the Symbol font, to a font that does not, like
Helvetica.

2 This bit is set to 1 if the font family creates the outline style by changing
PaintType, a PostScript variable, to 2.

3 This bit is set to 1 if the font family disallows simulating the outline style by
smearing the glyph and whiting out the middle.

4 This bit is set to 1 if the font family does not allow simulation of the bold
style by smearing the glyphs.

5 This bit is set to 1 if the font family simulates the bold style by increasing
point size.

6 This bit is set to 1 if the font family disallows simulating the italic style.

7 This bit is set to 1 if the font family disallows automatic simulation of the
condense style.

8 This bit is set to 1 if the font family disallows automatic simulation of the
extend style.

9 This bit is set to 1 if the font family requires reencoding other than
Macintosh vector encoding, in which case the glyph-encoding table is
present.

10 This bit is set to 1 if the font family should have no additional intercharacter
spacing other than the space character.

11–15 Reserved. Should be set to 0.
Font Manager Reference 4-101

C H A P T E R 4

Font Manager
The Font Name Suffix Subtable 4

The font name suffix subtable is part of the style-mapping table. This subtable contains
the base font name and the suffixes that can be added to the font family’s name to
produce a real PostScript name (that is, one that is recognized by the PostScript printer
driver). This subtable is represented by the NameTable data type, which is described on
page 4-49. It consists of the following elements:

■ String count. An integer value that specifies the number of strings in the array of
suffixes. This value is represented by the stringCount field of the NameTable
data type.

■ Base font name. The font family name in a 256 byte long Pascal string. This value is
represented by the baseFontName field of the NameTable data type.

■ Strings. A variable length array of Pascal strings, each of which contains the suffixes
or numbers specifying which suffixes to put together to produce the real PostScript
name. This array is represented by the strings field of the NameTable data type.
This section describes the format of these strings and provides an example of using
this subtable.

Each of the strings in the string list contains a sequence of one-byte values, the first of
which specifies how many other bytes follow, and each of the following contains an
index value. To form the complete name of a font, the base name is concatenated with
each of the strings whose index is in the string.

For an example of how this table works, consider the PostScript name of the bold-italic
version of the font ExampleFont. Here are the strings of the font name suffix subtable
for this font:

Index Contents

1 'ExampleFont'

2 $02 $09 $0A

3 $02 $09 $0B

4 $03 $09 $0A $0B

5 $02 $09 $0C

6 $04 $09 $0C $09 $0A

7 $04 $09 $0C $09 $0B

8 $05 $09 $0C $09 $0A $0B

9 -

10 'Bold'

11 'Oblique'

12 'Narrow'
4-102 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
QuickDraw has assigned the bold-italic style the number $03; since the base font name is
the first entry in this array, you need to access the entry at i+1, where i is the style value.
So, for the bold-italic style, you look at the fourth string. The first byte in this string is
$03, which indicates that three string indexes follow.

■ The first index is $09, which produces the string '-'.

■ The second index is $0A, which produces the string 'Bold'.

■ The third index is $0B, which produces the string 'Oblique'.

By concatenating them together with the base font name, you produce the font name
string “ExampleFont-BoldOblique”. If the LaserWriter printer driver cannot find the font
on the printer, it looks for the font: in version 7.1 and later of system software, the driver
looks in the “Fonts” folder; in earlier versions of system software, it first looks in the
folder where the driver code is located, then in the System Folder. If the font is there, the
driver sends it to the printer. If it is not, the driver sends a QuickDraw bitmap that has
already been scaled to the correct size.

Listing 4-4 provides a function for using the style table to build a full PostScript
font name.

Listing 4-4 Using the style-mapping table to build a PostScript font name

TYPE

IntegerPtr = ^Integer;

FamRecPtr = ^FamRec;

FamRecHdl = ^FamRecPtr;

StyleTablePtr = ^StyleTable;

FUNCTION MyCompressStyle (aStyle: Style): Integer;

{A “Set of StyleItem” is mapped into [0..47],}

{assuming that condense and extend are mutually exclusive}

VAR

styleCode: Integer;

BEGIN

styleCode := 0;

IF bold IN aStyle THEN

styleCode := styleCode + 1;

IF italic IN aStyle THEN

styleCode := styleCode + 2;

IF outline IN aStyle THEN

styleCode := styleCode + 4;

IF shadow IN aStyle THEN

styleCode := styleCode + 8;
Font Manager Reference 4-103

C H A P T E R 4

Font Manager
IF condense IN aStyle THEN

styleCode := styleCode + 16

ELSE IF extend IN aStyle THEN

styleCode := styleCode + 32;

MyCompressStyle := styleCode;

END;

FUNCTION MyNthStyleName (index: Integer; q: Ptr): Str255;

VAR

s: Str255;

BEGIN

WHILE index > 1 DO

BEGIN

q := Ptr(ord(q) + q^ + 1);

{ assumes q^ = stringlength < 128 ...}

index := index - 1;

END;

BlockMove(q, @s[0], q^ + 1);

{ assumes q^ = stringlength < 127 ...}

MyNthStyleName := s;

END;

FUNCTION MyPSFontName(fh: FamRecHdl; aStyle: Style): Str255;

VAR

stp: StyleTablePtr;

q: Ptr; { pointer to Style-name table. }

{ This is not a Pascal structure. }

PSName, suffixIndices: Str255;

i, nbOfStrings, offset, whichIndex: Integer;

BEGIN

PSName := '';

offset := fh^^.ffStylOff;

IF offset > 0 THEN
4-104 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
BEGIN

stp := StyleTablePtr(ord(fh^) + offset);

q := Ptr(ord(stp) + SizeOf(StyleTable));

{ style-name table follows style-mappingTable}

nbOfStrings := IntegerPtr(q)^;

{ for range checking below }

q := Ptr(ord(q) + 2);

{ now pointing to basename of font }

BlockMove(q, @PSName, q^ + 1);

{ basename of font; assumes length < 128 }

whichIndex := stp^.indexes[MyCompressStyle(aStyle)];

IF (whichIndex > 1) AND (whichIndex <= nbOfStrings) THEN

BEGIN

suffixIndices := MyNthStyleName(whichIndex, q);

FOR i := 1 TO ord(suffixIndices[0]) DO

PSName := concat(PSName,

MyNthStyleName(ord(suffixIndices[i]), q));

END

ELSE { corrupted FOND };

END

ELSE { no style mapping table in FOND };

MyBuildPSFontName := PSName;

END;

The Glyph-Name Encoding Subtable 4

The glyph-name encoding subtable of the style-mapping table allows the font family
designer to map 8-bit character codes to PostScript glyph names. This subtable is
required when the font family character set is not the Standard Roman character set or
the standard Adobe character set. Each entry in this table is a Pascal string, the first byte
of which is the character code that is being mapped, and the remaining bytes of which
specify the PostScript glyph name.

There is no data type defined to represent the glyph-encoding subtable. The elements of
this subtable are as follows:

■ String count. An integer value that specifies the number of entries in the
encoding subtable.

■ Strings. A variable length array of Pascal strings. The first byte of each string is an
eight-bit character code, and the remaining bytes are the name of a PostScript glyph.
This section beginning on page 4-105, provides an example of using this table.
Font Manager Reference 4-105

C H A P T E R 4

Font Manager
The following example demonstrates the use of an encoding table in a font resource:

The effect of this table is to assign the PostScript character named diamond to the
character code $A8 and to assign the PostScript character named heart to the character
code $A9. If either of these character codes has a character assigned to it in the font, that
character is replaced by the PostScript character named in the table.

For more information about the font name suffix subtable and the glyph-name encoding
table, please see the LaserWriter Reference.

The Font Family Kerning Table 4

The font family kerning table consists of a group of kerning subtable entries. Each
subtable contains the measurements of a hypothetical 1-point font of this family with a
different stylistic variation. The Font Manager multiplies these measurements by the
requested font size. The structure of the font family kerning table is shown in Figure 4-29.

Figure 4-29 The font family kerning table

Byte sequence Use

$0002 The number of entries in this encoding table.

$A8 The character code of the first character that is being remapped.

'diamond' The name of the PostScript character to be used for character
code $A8.

$A9 The character code of the second (and last) character that is being
remapped.

'heart' The name of the PostScript character to be used for character
code $A9.

Bytes

2

2

2

Variable

Number of entries–1

Kern style

Entry length

Kerning pairs
First

entry
4-106 Font Manager Reference

C H A P T E R 4

Font Manager

4
F

ont M
anager
The font family kerning table is represented by the KernTable data type, which is
shown on page 4-49. It consists of a count, followed by a variable number of kerning
subtable entries.

■ Number of entries. This is an integer value that specifies the number of kerning
subtable entries in this table minus 1. This value is represented by the numKerns field
of the KernTable data type.

Each kerning subtable entry is represented by the KernEntry data type, which is
described on page 4-50. Each subtable pertains to a specific style code and contains a
variable number of kerning pair entries. The style code values are shown in Figure 4-23
on page 4-95. The elements of each subtable entry are as follows:

■ Kern style. This is an integer value that specifies the style code to which the kerning
information in the subtable pertains. This value is represented by the kernStyle
field of the KernEntry data type.

■ Entry length. This is an integer value that specifies the number of bytes in this kerning
subtable. This value is represented by the kernLength field of the KernEntry
data type.

Each kerning pair entry specifies a kerning distance in pixels for a pair of glyphs. Each
glyph is specified by its character code. The structure of the kerning pair entry is shown
in Figure 4-30.

Figure 4-30 A kerning pair entry

Each kerning pair entry is represented by the KernPair data type, which is shown on
page 4-50. The elements of each entry are as follows:

■ First character code. The one-byte character code of the first glyph of the kerning pair.
This value is represented by the kernFirst field of the KernPair data type.

■ Second character code. The one-byte character code of the second glyph of the kerning
pair. This value is represented by the kernSecond field of the KernPair data type.

■ Kerning distance. The kerning distance, in pixels, for the two glyphs at a point size of
1. This is a 16-bit fixed point value, with the integer part in the high-order 4 bits, and
the fractional part in the low-order 12 bits. The Font Manager measures the distance in
pixels and then multiplies it by the requested point size. This value is represented by
the kernWidth field of the KernPair data type.

Bytes

1

1

2

First character code

Second character code

Kerning distance
Font Manager Reference 4-107

C H A P T E R 4

Font Manager
Summary of the Font Manager 4

Pascal Summary 4

Constants 4

CONST

systemFont = 0;

applFont = 1;

newYork = 2;

geneva = 3;

monaco = 4;

venice = 5;

london = 6;

athens = 7;

sanFran = 8;

toronto = 9;

cairo = 11;

losAngeles = 12;

times = 20;

helvetica = 21;

courier = 22;

symbol = 23;

mobile = 24;

Data Types 4

TYPE FMInput =

PACKED RECORD

family: Integer; {font family ID}

size: Integer; {requested point size}

face: Style; {requested font style}

needBits: Boolean; {if bitmaps need to be constructed}

device: Integer; {device driver ID}

numer: Point; {scaling factor numerators}

denom: Point; {scaling factor denominators}

END;
4-108 Summary of the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
TYPE FMOutput =

PACKED RECORD

errNum: Integer; {reserved for internal use}

fontHandle: Handle; {handle to font}

bold: Byte; {for drawing of bold style}

italic: Byte; {for drawing of italic style}

ulOffset: Byte; {for drawing of underline style}

ulShadow: Byte; {for drawing of underline shadow style}

ulThick: Byte; {for drawing of underline thickness}

shadow: Byte; {for drawing of shadow style}

extra: SignedByte; {# of pixels added for styles}

ascent: Byte; {ascent measurement of font}

descent: Byte; {descent measurement of font}

widMax: Byte; {maximum width of glyphs in font}

leading: SignedByte; {leading value for font}

fOutCurStyle: Byte; {actual output font style}

numer: Point; {scaling factor numerators}

denom: Point; {scaling factor denominators}

END;

Type WidthTable =

PACKED RECORD

tabData: ARRAY [1..256] OF Fixed;

{character widths}

tabFont: Handle; {font record used to build table}

sExtra: LongInt; {extra line spacing}

style: LongInt; {extra line spacing due to style}

fID: Integer; {font family ID}

fSize: Integer; {font size request}

face: Integer; {style (face) request}

device: Integer; {device requested}

inNumer: Point; {scale factors requested}

inDenom: Point; {scale factors requested}

aFID: Integer; {actual font family ID for table}

fHand: Handle; {family record used to build up table}

usedFam: Boolean; {used fixed-point family widths}

aFace: Byte; {actual face produced}

vOutput: Integer; {vertical scale output value}

hOutput: Integer; {horizontal scale output value}

vFactor: Integer; {vertical scale output value}

hFactor: Integer; {horizontal scale output value}

aSize: Integer; {size of actual font used}

tabSize: Integer; {total size of table}

END;
Summary of the Font Manager 4-109

C H A P T E R 4

Font Manager
TYPE FontRec =

RECORD

fontType: Integer; {font type}

firstChar: Integer; {character code of first glyph}

lastChar: Integer; {character code of last glyph}

widMax: Integer; {maximum glyph width}

kernMax: Integer; {negative of maximum glyph kern}

nDescent: Integer; {negative of descent}

fRectWidth: Integer; {width of font rectangle}

fRectHeight: Integer; {height of font rectangle}

owTLoc: Integer; {location of width/offset table}

ascent: Integer; {ascent}

descent: Integer; {descent}

leading: Integer; {leading}

rowWords: Integer; {row width of bit image / 2 }

END;

TYPE FamRec =

RECORD

ffFlags: Integer; {flags for family}

ffFamID: Integer; {family ID number}

ffFirstChar: Integer; {ASCII code of 1st character}

ffLastChar: Integer; {ASCII code of last character}

ffAscent: Integer; {maximum ascent for 1 pt font}

ffDescent: Integer; {maximum descent for 1 pt font}

ffLeading: Integer; {maximum leading for 1 pt font}

ffWidMax: Integer; {maximum widMax for 1 pt font}

ffWTabOff: LongInt; {offset to width table}

ffKernOff: LongInt; {offset to kerning table}

ffStylOff: LongInt; {offset to style-mapping table}

ffProperty: ARRAY [1..9] OF Integer;

{style property info}

ffIntl: ARRAY [1..2] OF Integer;

{for international use}

ffVersion: Integer; {version number}

END;

TYPE FontAssoc =

RECORD

numAssoc: Integer; {number of entries - 1}

END;
4-110 Summary of the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
TYPE AsscEntry =

RECORD

fontSize: Integer; {point size of font}

fontStyle: Integer; {style of font}

fontID: Integer; {font resource ID}

END;

TYPE WidTable =

RECORD

numWidths: Integer; {number of entries - 1}

END;

TYPE WidEntry =

RECORD

widStyle: Integer; {style that entry applies to}

END;

TYPE StyleTable =

RECORD

fontClass: Integer; {the font class of this table}

offset: LongInt; {offset to glyph-encoding subtable}

reserved: LongInt; {reserved}

indexes: PACKED ARRAY [0..47] OF SignedByte;

{indexes into the font suffix name }

{ table that follows this table}

END;

TYPE NameTable =

RECORD

stringCount: Integer; {number of entries}

baseFontName: Str255; {font family name}

END;

TYPE KernTable =

RECORD

numKerns: Integer; {number of subtable entries}

END;

TYPE KernEntry =

RECORD

kernStyle: Integer; {style the entry applies to}

kernLength: Integer; {length of this entry}

END;
Summary of the Font Manager 4-111

C H A P T E R 4

Font Manager
TYPE KernPair =

RECORD

kernFirst: Char; {Code of 1st character of kerned pair}

kernSecond: Char; {Code of 2nd character of kerned pair}

kernWidth: Integer; {kerning value in 1pt fixed format}

END;

Type FMetricRec =

RECORD

ascent: Fixed; {baseline to top}

descent: Fixed; {baseline to bottom}

leading: Fixed; {leading between lines}

widMax: Fixed; {maximum glyph width}

wTabHandle: Handle; {handle to global width table}

END;

Routines 4

Initializing the Font Manager

PROCEDURE InitFonts;

Getting Font Information

PROCEDURE GetFontName (familyID: Integer;VAR theName: Str255);

PROCEDURE GetFNum (theName: Str255;VAR familyID: Integer);

FUNCTION RealFont (fontNum: Integer;size: Integer): Boolean;

Using the Current, System, and Application Fonts

FUNCTION GetDefFontSize: Integer;

FUNCTION GetSysFont: Integer;

FUNCTION GetAppFont: Integer;

Getting the Characteristics of a Font

PROCEDURE FontMetrics (theMetrics: FMetricRec);

FUNCTION OutlineMetrics (byteCount: Integer; textPtr: UNIV Ptr;
numer: Point; denom: Point; VAR yMax: Integer;
VAR yMin: Integer; awArray: FixedPtr;
lsbArray: FixedPtr; boundsArray: RectPtr):
OSErr;
4-112 Summary of the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
Enabling Fractional Glyph Widths

PROCEDURE SetFractEnable (fractEnable: Boolean);

Disabling Font Scaling

PROCEDURE SetFScaleDisable (fscaleDisable: Boolean);

Favoring Outline Fonts Over Bitmapped Fonts

PROCEDURE SetOutlinePreferred
(outlinePreferred: Boolean);

FUNCTION GetOutlinePreferred: Boolean;

FUNCTION IsOutline (numer,denom: Point) : Boolean;

Scaling Outline Fonts

PROCEDURE SetPreserveGlyph (preserveGlyph: Boolean);

FUNCTION GetPreserveGlyph: Boolean;

Accessing Information About a Font

FUNCTION FMSwapFont (inRec: FMInput): FMOutPtr;

Handling Fonts in Memory

PROCEDURE SetFontLock (lockFlag: Boolean);

FUNCTION FlushFonts: OSErr;

C Summary 4

Constants 4

enum {

systemFont = 0,

applFont = 1,

newYork = 2,

geneva = 3,

monaco = 4,

venice = 5,

london = 6,

athens = 7,

sanFran = 8,

toronto = 9,
Summary of the Font Manager 4-113

C H A P T E R 4

Font Manager
cairo = 11,

losAngeles = 12,

times = 20,

helvetica = 21,

courier = 22,

symbol = 23,

mobile = 24,

};

Data Types 4

struct FMInput {

short family; /*font family ID*/

short size; /*requested point size*/

Style face; /*requested font style*/

Boolean needBits; /*if bitmaps need to be constructed*/

short device; /*device driver ID*/

Point numer; /*scaling factor numerators*/

Point denom; /*scaling factor denominators*/

};

typedef struct FMInput FMInput;

struct FMOutput {

short errNum; /*reserved for internal use*/

Handle fontHandle; /*handle to font*/

unsigned char bold; /*for drawing of bold style*/

unsigned char italic; /*for drawing of italic style*/

unsigned char ulOffset; /*for drawing of underline style*/

unsigned char ulShadow; /*for drawing of underline shadow style*/

unsigned char ulThick; /*for drawing of underline thickness*/

unsigned char shadow; /*for drawing of shadow style*/

char extra; /*# of pixels added for styles*/

unsigned char ascent; /*ascent measurement of font*/

unsigned char descent; /*descent measurement of font*/

unsigned char widMax; /*maximum width of glyphs in font*/

char leading; /*leading value for font*/

char fOutCurStyle; /*actual output font style*/

Point numer; /*scaling factor numerators*/

Point denom; /*scaling factor denominators*/

};

typedef struct FMOutput FMOutput;
4-114 Summary of the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
struct WidthTable {

Fixed tabData[256];

/*character widths*/

Handle tabFont; /*font record used to build table*/

long sExtra; /*extra line spacing*/

long style; /*extra line spacing due to style*/

short fID; /*font family ID*/

short fSize; /*font size request*/

short face; /*style (face) request*/

short device; /*device requested*/

Point inNumer; /*scale factors requested*/

Point inDenom; /*scale factors requested*/

short aFID; /*actual font family ID for table*/

Handle fHand; /*family record used to build up table*/

Boolean usedFam; /*used fixed-point family widths*/

unsigned char aFace; /*actual face produced*/

short vOutput; /*vertical scale output value*/

short hOutput; /*horizontal scale output value*/

short vFactor; /*vertical scale output value*/

short hFactor; /*horizontal scale output value*/

short aSize; /*size of actual font used*/

short tabSize; /*total size of table*/

};

typedef struct WidthTable WidthTable;

struct FontRec {

short fontType; /*font type*/

short firstChar; /*character code of first glyph*/

short lastChar; /*character code of last glyph*/

short widMax; /*maximum glyph width*/

short kernMax; /*negative of maximum glyph kern*/

short nDescent; /*negative of descent*/

short fRectWidth; /*width of font rectangle*/

short fRectHeight; /*height of font rectangle*/

short owTLoc; /*location of width/offset table*/

short ascent; /*ascent*/

short descent; /*descent*/

short leading; /*leading*/

short rowWords; /*row width of bit image / 2 */

};

typedef struct FontRec FontRec;
Summary of the Font Manager 4-115

C H A P T E R 4

Font Manager
struct FamRec {

short ffFlags; /*flags for family*/

short ffFamID; /*family ID number*/

short ffFirstChar; /*ASCII code of 1st character*/

short ffLastChar; /*ASCII code of last character*/

short ffAscent; /*maximum ascent for 1 pt font*/

short ffDescent; /*maximum descent for 1 pt font*/

short ffLeading; /*maximum leading for 1 pt font*/

short ffWidMax; /*maximum widMax for 1 pt font*/

long ffWTabOff; /*offset to width table*/

long ffKernOff; /*offset to kerning table*/

long ffStylOff; /*offset to style-mapping table*/

short ffProperty[9]; /*style property info*/

short ffIntl[2]; /*for international use*/

short ffVersion; /*version number*/

};

typedef struct FamRec FamRec;

struct FontAssoc {

short numAssoc; /*number of entries - 1*/

};

typedef struct FontAssoc FontAssoc;

struct AsscEntry {

short fontSize; /*point size of font*/

short fontStyle; /*style of font*/

short fontID; /*font resource ID*/

};

typedef struct AsscEntry AsscEntry;

struct WidTable {

short numWidths; /*number of entries - 1*/

};

typedef struct WidTable WidTable;

struct WidEntry {

short widStyle; /*style that entry applies to*/

};

typedef struct WidEntry WidEntry;
4-116 Summary of the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
struct StyleTable {

short fontClass; /*the font class of this table*/

long offset; /*offset to glyph-encoding subtable*/

long reserved; /*reserved*/

char indexes[47]; /*indexes into the font suffix name table*/

};

typedef struct StyleTable StyleTable;

struct NameTable {

short stringCount; /*number of entries*/

Str255 baseFontName; /*font family name*/

};

typedef struct NameTable NameTable;

struct KernTable{

short numKerns; /*number of subtable entries*/

};

typedef struct KernTable KernTable;

struct KernEntry {

short kernLength; /* length of this entry*/

short kernStyle; /* style this entry applies to*/

}

typedef struct KernEntry KernEntry;

struct KernPair {

char kernFirst; /*Code of 1st character of kerned pair*/

char kernSecond; /*Code of 2nd character of kerned pair*/

short kernWidth; /*kerning value in 1pt fixed format*/

};

typedef struct KernPair KernPair;

struct FMetricRec {

Fixed ascent; /*baseline to top*/

Fixed descent; /*baseline to bottom*/

Fixed leading; /*leading between lines*/

Fixed widMax; /*maximum glyph width*/

Handle wTabHandle; /*handle to global width table*/

};

typedef struct FMetricRec FMetricRec;
Summary of the Font Manager 4-117

C H A P T E R 4

Font Manager
Routines 4

Initializing the Font Manager

pascal void InitFonts (void);

Getting Font Information

pascal void GetFontName (short familyID, Str255 theName);

pascal void GetFNum (ConstStr255Param name, short *familyID);

pascal Boolean RealFont (short fontNum, short size);

Using the Current, System, and Application Fonts

pascal short GetDefFontSize (void);

pascal short GetSysFont (void);

pascal short GetAppFont (void);

Getting the Characteristics of a Font

pascal void FontMetrics (const FMetricRec *theMetrics);

pascal OSErr OutlineMetrics (short byteCount, const void *textPtr,
Point numer, Point denom, short *yMax,
short *yMin, FixedPtr awArray,
FixedPtr lsbArray, RectPtr boundsArray);

Enabling Fractional Glyph Widths

pascal void SetFractEnable (Boolean fractEnable);

Disabling Font Scaling

pascal void SetFScaleDisable (Boolean fscaleDisable);

Favoring Outline Fonts Over Bitmapped Fonts

pascal void SetOutlinePreferred
(Boolean outlinePreferred);

pascal Boolean GetOutlinePreferred
(void);

pascal Boolean IsOutline (Point numer, Point denom);
4-118 Summary of the Font Manager

C H A P T E R 4

Font Manager

4
F

ont M
anager
Scaling Outline Fonts

pascal void SetPreserveGlyph
(Boolean preserveGlyph);

pascal Boolean GetPreserveGlyph
(void);

Accessing Information About a Font

pascal FMOutPtr FMSwapFont (const FMInput *inRec);

Handling Fonts in Memory

pascal void SetFontLock (Boolean lockFlag);

pascal OSErr FlushFonts (void);

Assembly-Language Summary 4

Trap Macros 4

Trap Macros with Trap Words

Trap macro name Trap word

_FMSwapFont $A901

_FontMetrics $A835

_GetFNum $A900

_GetFontName $A8FF

_InitFonts $A8FE

_RealFont $A902

_SetFontLock $A903

_SetFScaleDisable $A834
Summary of the Font Manager 4-119

C H A P T E R 4

Font Manager
Trap Macros Requiring Routine Selectors

_FontDispatch

Global Variables 4

Selector Routine

$7000 IsOutline

$7001 SetOutlinePreferred

$7008 OutlineMetrics

$7009 GetOutlinePreferred

$700A SetPreserveGlyph

$700B GetPreserveGlyph

$700C FlushFonts

ApFontID Font ID of application font.
CurFMInput The current QuickDraw FMInput record for FMSwapFont.
FDevDisable Disables device-defined extra spacing for styles.
FMDefaultSize The default point size.
FMgrOutRecc The current FMOutput record from FMSwapFont.
FONDID The resource ID of the last font family resource used.
FractEnable If nonzero, fractional widths are enabled.
FScaleDisable If nonzero, scaling is disabled.
FScaleHFact The current horizontal scale factor.
FScaleVFact The current vertical scale factor.
IntlSpec International software installed if the value of this is greater than zero.
LastFOND Handle to last family record used.
LastSPExtra The most recent value of extra spacing for styles.
ROMFont0 Handle to font record for system font.
SynListHandle Handle to synthetic font list.
SysFontFam If nonzero, the font ID to use for the system font.
SysFontSiz If nonzero, the size of the system font.
UsedFWidths A flag determining whether fractional widths were used for the most recent

font request.
WidthListHand Handle to a list of handles to recently used width tables (referred to in some

places as jFontInfo).
WidthPtr Pointer to global width table.
WidthTabHandle Handle to global width table.
4-120 Summary of the Font Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	Font Manager
	About Fonts
	Characters, Character Codes, and Glyphs
	Kinds of Fonts
	Identifying Fonts
	Font Measurements

	About Font Resources
	Font Resource Types
	A Brief History of Font Resource Use
	Font Family IDs
	Restrictions on the Use of 'FONT' Resources
	Font Resource Tables

	About the Font Manager
	How QuickDraw Requests a Font
	How the Font Manager Responds to a Font Request
	How the Font Manager Scales Fonts
	The Scaling Process for a Bitmapped Font
	The Scaling Process for an Outline Font

	How the Font Manager Calculates Glyph Widths
	Synthetic Fonts
	How the Font Manager Renders Outline Fonts

	Using the Font Manager
	Adding Font Sizes and Names to the Menu
	Storing a Font Name in a Document
	Getting Font Measurement Information
	Favoring Outline or Bitmapped Fonts
	Preserving the Shapes of Glyphs
	Using Width Tables
	Getting the System or Application Font ID
	Using Fractional Glyph Widths and Font Scaling

	Font Manager Reference
	Data Structures
	The Font Input Record
	The Font Output Record
	The Global Width Table
	The Font Record
	The Font Family Record
	The Font Association Table Record
	The Family Glyph-Width Table Record
	The Style-Mapping Table Record
	The Font Family Kerning Table Record

	Routines
	Initializing the Font Manager
	Getting Font Information
	Using the Current, System, and Application Fonts
	Getting the Characteristics of a Font
	Enabling Fractional Glyph Widths
	Disabling Font Scaling
	Favoring Outline Fonts Over Bitmapped Fonts
	Scaling Outline Fonts
	Accessing Information About a Font
	Handling Fonts in Memory

	The Bitmapped Font ('NFNT') Resource
	The Font Type Element
	The Offset to the Width/Offset Table

	The Outline Font ('sfnt') Resource
	The Font Directory
	The Character-Code Mapping Table
	The Control-Value Table
	The Font Program Table
	The Glyph Data Table
	The Horizontal Device Metrics Table
	The Font Header Table
	The Horizontal Header Table
	The Horizontal Metrics Table
	The Kerning Table
	The Location Table
	The Maximum Profile Table
	The Font Naming Table
	The PostScript Table
	The Preprogram Table

	The Font Family ('FOND') Resource
	The Font Style Code
	The Font Association Table
	The Offset Table
	The Bounding-Box Table
	The Family Glyph-Width Table
	The Style-Mapping Table
	The Font Family Kerning Table

	Summary of the Font Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Trap Macros
	Global Variables

	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

