

C H A P T E R 8

8

D
ictionary M

anager

Dictionary Manager 8

This chapter describes how you can use the Dictionary Manager to create and work with
dictionaries for input methods or other text services. The Dictionary Manager supplies a
uniform and public dictionary format that lets you perform searching, insertion,
and deletion.

Read this chapter if you are developing or enhancing an input method or other text
service component that uses dictionaries.

To use this chapter, you should be familiar with the Macintosh script management
system, the Text Services Manager, and parts of the File Manager. The script
management system is described in the chapter “Introduction to Text on the Macintosh”
in this book. The Text Services Manager is described in the chapter “Text Services
Manager” in this book. The organization of the Dictionary Manager is based on B*-trees,
used by the File Manager and the Finder. For more on the B*-trees, see the File Manager
chapter of Inside Macintosh: Files.

This chapter presents a brief introduction to dictionaries and then discusses how you can
make, access, locate records in, and modify them.

About Dictionaries for Input Methods 8

Input methods for 2-byte script systems use dictionaries, data files with information
essential to the text conversions they perform. An input method uses its dictionary to
convert the raw text entered by the user. For a discussion of raw text, conversion, and
input methods, see the chapter “Text Services Manager” in this book.

Input methods commonly rely upon two or more dictionaries to perform conversion
most efficiently. The main dictionary lists all standard conversion options for any valid
syllabic or phonetic input. A main dictionary may have thousands to tens of thousands
of entries, and is usually fixed in content. The user dictionary, also called an editable
dictionary, is a complementary file in which users can add specialized or custom
information that does not exist in the main dictionary. Because the main dictionaries of
many input methods have only about 80 percent of the needed conversion options, a
user dictionary is extremely valuable to users who customize the input process to
improve its precision.

Users can also set dictionary learning. This allows the input method to incorporate
frequency information as the user works, so that the frequency of combinations in a
particular grammatical context is taken into account in doing conversions. This makes
a user dictionary even more valuable to the individual that has worked with it for
a long time.

In principle, the dictionaries for different input methods of a given writing system
should be very similar. For instance, most Japanese dictionaries contain information
relevant to the conversion of Hiragana to Kanji. Korean dictionaries consist of data
necessary for the conversion of Hangul to Hanja. Chinese dictionaries have entries
relevant to the conversion of radical to Hanzi, Zhuyinfuhao to Hanzi, or Pinyin to Hanzi.
About Dictionaries for Input Methods 8-3

C H A P T E R 8

Dictionary Manager

In practice, however, many currently available Chinese, Japanese, and Korean input
methods use their own dictionary formats. Each input method has independently
implemented operations to insert, delete, and search for the entries in its own
dictionaries.

Input methods that use their own dictionary formats can understand only the
dictionaries they create. This may be desirable for main dictionaries, because the features
of a main dictionary can distinguish the quality of one input method from another;
input method developers may be hesitant to share such dictionaries with other vendors.
But for user dictionaries, incompatible formats create serious difficulties for
users—particularly when a user dictionary contains many entries.

Consider the following situation. A user purchases an input method and uses it for
perhaps a year, making numerous entries in the user dictionary. Then a new and better
input method is introduced, but the new input method cannot understand the
customized user dictionary. Because there is no general dictionary format, the user is
forced to choose between two undesirable alternatives: creating an entirely new user
dictionary by manually keying in thousands of previous entries, or continuing to use the
old input method, forgoing the benefits of the new one.

This chapter describes a dictionary format that allows user dictionaries to be carried over
from one input method to another, to avoid the difficulty just described. And although
dictionaries are primarily of use to input methods, and are discussed in that context here,
other text services such as thesauri or spelling checkers can also benefit from using
dictionaries with this format.

About the Dictionary Manager 8

The Dictionary Manager supplies a uniform and public dictionary format and a
set of operations that allows you to manipulate data in a dictionary file. This
standard dictionary format helps to make the insertion, deletion, and searching
operations in a dictionary available for all input methods.

This section describes the format and content of the data in a dictionary file, discusses
the concept of garbage data and how the Dictonary Manager handles it, and
presents some of the limitations you should be aware of before planning to use the
Dictionary Manager.
8-4 About the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8

D
ictionary M

anager

Dictionary file types and Finder routing

Dictionaries belong in the Extensions folder within the user’s System
Folder. If your dictionary has a file type of 'dict', 'dic0', 'dic1', or
'dic2', the Finder automatically routes it to the Extensions folder if the
user drops it on the System Folder. ◆

The Structure of a Dictionary 8
A dictionary is a collection of dictionary records. Each dictionary record consists of a
key and some associated data referenced by that key. A key is a Pascal search string with
a maximum length of 129 bytes (including the length byte). The data associated with a
key has a maximum length of 4096 bytes.

The key for a dictionary record is stored separately from its data. The key, an offset to the
data, and the length of the data make up the record’s index entry. The index entry is
stored as a B*-tree structure in the data fork of the dictionary file. The data is stored in
the resource fork of the file; the Dictionary Manager accesses the data with Resource
Manager partial resource routines. When a dictionary lookup is needed, the Dictionary
Manager uses the key to find the location and size of the data in the resource fork. Then,
it uses a partial resource reading to read the data into memory. (Routines for reading
partial resources are described in the Resource Manager chapter of Inside Macintosh: More
Macintosh Toolbox.) Figure 8-1 shows the general format of a dictionary record.

Note
Always use Dictionary Manager functions to gain access to records in
the resource fork rather than examining them directly with Resource
Manager routines. ◆

Figure 8-1 General format of a dictionary record

Each key-data pair is unique in a dictionary. No two keys in a single dictionary
are identical.

Data (in resource fork)

Less than
or equal to
4096 bytes

Index entry (in data fork)

Key

Offset

Size
About the Dictionary Manager 8-5

C H A P T E R 8

Dictionary Manager

Figure 8-2 shows the format of the data associated with a dictionary key. The first byte,
which specifies the total number of entries in the data, is followed by a series of entries.
Each entry has a maximum length of 256 bytes.

Figure 8-2 Format of data associated with a key

A dictionary entry in the data associated with a key contains raw data plus optional
attributes. Raw data consists of any information related to the key entry. In a general
dictionary it might be an explanation of the key; in a given East Asian dictionary it might
be all the Chinese characters with the pronunciation of the key. A data attribute contains
some information about the raw data—for example, grammatical or context-sensitive
details, plus an attribute type. The attribute type is an integer constant in the range –128
to 127. The currently defined attribute types are listed on page 8-27.

Note
Apple reserves all negative attribute types. Positive attribute types are
available for the use of developers of applications and text service
components. ◆

Figure 8-3 shows the format of an entry. If data attributes are present, the first two bytes
in each data attribute are the attribute size and the attribute type.

Total number of entries

Entry 1

Entry n

1

Bytes

Less than
or equal to
4096 bytes

Less than
or equal to
256 bytes
8-6 About the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8

D
ictionary M

anager

Figure 8-3 Format of an entry in the data associated with a key

Depending on the script system, the key, raw data, and attributes may differ.

■ In a record in an English dictionary, a key is any word; raw data is one or more
definitions of the word; and a data attribute is the type of speech of the key—for
example—verb, noun, adverb, adjective, or a combination of these.

■ In a record in a Japanese dictionary, a key is a symbol of the phonetic subscript
Hiragana; the associated raw data are the Kanji (ideographic characters); and the data
attributes include the parts of speech or input method–specific attributes such as
homonyms or groupings (clauses) of Kanji.

■ In a record in a Chinese phonetic dictionary, a key is one of the phonetic symbols of
Bopomofo; raw data is one or more Chinese words with the same pronunciation as
the key; and there may be no associated data attributes.

■ In a record in a Korean dictionary, a key may be a syllable or word in the Hangul
subscript; associated raw data may be one or more Chinese words with the
pronunciation of the key; and there may be no associated data attributes.

Length of entry
Length of raw data

Raw data

Attribute 1

Attribute n

Length of attribute
Attribute type

Optional data

Pascal
string

1

1

Bytes

Less than
or equal to
256 bytes

(Optional)

1

1

Bytes
About the Dictionary Manager 8-7

C H A P T E R 8

Dictionary Manager

Garbage Data 8
In an editable dictionary, information is continually being added, deleted, or altered.
Because it is too time-consuming to regenerate the entire dictionary each time a change is
made, unused information called garbage data builds up over time. Garbage data is
created whenever the size of the information associated with a key increases or
decreases, or if the information is deleted. The data is no longer used by the dictionary.

Consider the simple dictionary file in Figure 8-4. It has only two dictionary records; each
record has two entries. There is no garbage data in either record.

Figure 8-4 A simple dictionary with no garbage data

With the addition of one entry to the first record, the Dictionary Manager allocates a new
block at the end of the dictionary’s resource fork to hold all the entries in the first record,
and creates a new index entry that points to the new block. The data the old index entry
points to is no longer accessible and becomes garbage data. See Figure 8-5.

Key 1

Key 2
Entry 1 of key 1
Entry 2 of key 1

Entry 1 of key 2
Entry 2 of key 2
8-8 About the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8

D
ictionary M

anager

Figure 8-5 Creating garbage data in a dictionary

As the records in a dictionary file are modified, the size of the garbage data continues to
increase. The Dictionary Manager keeps track of the amount of garbage data in a
dictionary; to obtain the current size of garbage data in a dictionary, you can use the
GetDictionaryInformation function (see page 8-24).

At some point, you may want to get rid of the garbage data permanently. The
CompactDictionary function (see page 8-33) instructs the Dictionary Manager to
create a new copy of the dictionary file, containing only valid entries. Once the new
dictionary is constructed, the Dictionary Manager deletes the old one. (If the new
dictionary fails to build properly, the original dictionary is preserved intact.) Note that
CompactDictionary does not actually compress any data; it simply removes unusable
information.

Key 2

Key 1

Entry 1 of key 1
Entry 2 of key 1
Entry 3 of key 1

Entry 1 of key 1
Entry 2 of key 1

Entry 1 of key 2
Entry 2 of key 2
About the Dictionary Manager 8-9

C H A P T E R 8

Dictionary Manager

Figure 8-6 illustrates the structure of the simple dictionary built in Figure 8-4 and Figure
8-5 after the compaction process. Note that the order of the records in the resource fork
may be different from what it was before compaction.

Figure 8-6 Deleting garbage data from a dictionary

Note
The Dictionary Manager creates new garbage data only if the size of the
associated data is enlarged or reduced or if the associated data is deleted
altogether. If you simply rearrange the order of the entries within a
single record, without changing the size of the associated data, the
Dictionary Manager does not create any garbage data. This feature is
especially useful for input methods that support dictionary learning, in
which the entries require constant rearrangement according to their
frequency of use. ◆

Dictionary Manager Limitations 8
Consider these limitations before using the Dictionary Manager:

■ The Dictionary Manager does not perform data compression. Your input method can
compress part of the information before submitting it to the Dictionary Manager—but
such compression would make your dictionary nontransferable and thus defeat a
major purpose of using the Dictionary Manager.

■ The Dictionary Manager utilizes partial resource reading and writing to manipulate
the actual data in a dictionary. Hence, each dictionary may not exceed 16 MB, a
Resource Manager limitation.

Key 2

Key 1

Entry 1 of key 1
Entry 2 of key 1
Entry 3 of key 1

Entry 1 of key 2
Entry 2 of key 2
8-10 About the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8

D
ictionary M

anager

■ The user cannot edit an active dictionary (one currently being used by an input
method). This also is a Resource Manager limitation.

■ If you are developing a sophisticated input method, you may decide not to convert
your main dictionaries into the Dictionary Manager format, because you may not
want to publicize the keys and associated data in your main dictionaries.

■ It may not even be practical to convert your main dictionaries. For example, several
input methods contain gigantic—and significantly compressed—main dictionaries. In
such cases, the conversion and decompression of dictionaries into Dictionary
Manager format might greatly increase the size of your dictionary.

In summary, the Dictionary Manager is best for constructing user dictionaries of
moderate size. Nevertheless, it is possible and in some cases it may be practical to use
the Dictionary Manager for a main dictionary also.

Using the Dictionary Manager 8

This section tells how to use the Dictionary Manager to create and manipulate
dictionaries. Using Gestalt Manager, Dictionary Manager, and File Manager calls, you can

■ determine whether the Dictionary Manager is present and what attributes it has

■ make a new dictionary (create a file and initialize the dictionary)

■ gain access to a dictionary (open it, close it , and get information about it)

■ locate records in a dictionary (by key or by index)

■ modify the contents of a dictionary (insert, replace, or delete information)

■ compact a dictionary

Testing for the Presence of the Dictionary Manager 8
Use Gestalt with the gestaltDictionaryMgrAttr environment selector to obtain a
result in the response parameter that identifies the attributes of the Dictionary Manager.
A result of gestaltDictionaryMgrPresent (= 0) means that the Dictionary
Manager is present.

For details on the Gestalt function, see the Gestalt Manager chapter in Inside
Macintosh: Operating System Utilities.

Making a Dictionary 8
You make a new dictionary by first creating a file and then initializing it as a Dictionary
Manager dictionary.
Using the Dictionary Manager 8-11

C H A P T E R 8

Dictionary Manager

Creating the File 8

To create a dictionary file, you first use a File Manager function such as FSpCreate
or HCreate to create a file. Listing 8-1 is a sample routine that creates a file for a
user dictionary.

Listing 8-1 Creating a dictionary file

FUNCTION CreateUserDictionary (VAR dictionaryFSSpec: FSSpec;

creator, fileType: OSType;

script: ScriptCode): OSErr;

VAR

err: OSErr;

fileReply: StandardFileReply;

BEGIN

err := noErr;

{get dictionary name and filespec}

StandardPutFile('Create empty dictionary as...',

'UserDictionary', fileReply);

{delete existing dictionary if user OKs it}

IF fileReply.sfGood THEN BEGIN

dictionaryFSSpec := fileReply.sfFile;

IF fileReply.sfReplacing THEN

err := FSpDelete(dictionaryFSSpec);

{create the empty dictionary file}

IF err = noErr THEN BEGIN

err := FSpCreate(dictionaryFSSpec, creator,

fileType, script);

IF err <> noErr THEN

DebugErrStr(err, 'FSpCreate');{handle error here}

END

ELSE

DebugErrStr(err, 'FSpDelete'); {handle error here}

END

ELSE

err := fnfErr; {assign error}

CreateUserDictionary := err;

END; {CreateUserDictionary}
8-12 Using the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8

D
ictionary M

anager

Constructing the Dictionary 8

To make the internal structure of your newly created dictionary file, you use the
InitializeDictionary function. You provide a file system specification pointer to
the file you just created, you specify what maximum size the dictionary keys can have,
and you can specify what search criteria—such as case-sensitivity—the dictionary
will support.

The following code is a statement that initializes a dictionary file. It uses an
application-defined constant (kMaximumKeyLength) to specify key length, an
application-defined global (gDictionaryScriptID) to specify the script system for the
dictionary, and the kIsCaseSensitive constant to specify that searches are to be
case-sensitive.

err := InitializeDictionary(dictionaryFile, kMaximumKeyLength,

 $1000 + kIsCaseSensitive,

 gDictionaryScriptID);

Accessing a Dictionary 8
Before you can use a dictionary you must first open it. Once it is open, you can get
information about it and you can use it. When you are finished with the dictionary, you
must close it.

Opening and Closing the Dictionary 8

To open and use a dictionary, you must create an access path to the dictionary file using
the OpenDictionary function. You provide a pointer to the file system specification
record that defines the file, and you specify the read and write permission for the
access path.

The OpenDictionary function returns a long integer, called a dictionary reference
number, that specifies the open dictionary. You use that same dictionary reference number
whenever you use the dictionary, and finally when you close the dictionary with the
CloseDictionary function.

Listing 8-2 gives an example of how to create and close this access path. It consists of
portions of the CASE statement from a sample application’s menu-dispatching routine.

Listing 8-2 Opening and closing a dictionary file

{if user selects “Open dictionary” menu item:}

iOpenDictionary:

IF gDictionaryReference = 0 THEN BEGIN

{only open my own dictionary file types}

fileTypes[0] := kMyDictionaryFileType;
Using the Dictionary Manager 8-13

C H A P T E R 8

Dictionary Manager
StandardGetFile(NIL, 1, fileTypes, fileReply);

IF fileReply.sfGood THEN BEGIN

gDictionaryFile := fileReply.sfFile;

{open file with read-write permission}

err := OpenDictionary(@gDictionaryFile,

fsRdWrPerm,

gDictionaryReference);

END;

END;

{if user selects “Close dictionary” menu item:}

iCloseDictionary:

IF gDictionaryReference <> 0 THEN BEGIN

err := CloseDictionary(gDictionaryReference);

gDictionaryReference := 0;

END;

Obtaining Information About the Dictionary 8

You can use the GetDictionaryInformation function to obtain the following
information about a dictionary file:

■ its file system specification record

■ the number of records it contains

■ the current size in bytes of its unused (garbage) data

■ the script code of the script system it belongs to

■ its maximum key length

■ its search criteria

To identify the desired dictionary file, you use the dictionary reference number obtained
when you open a dictionary file with the OpenDictionary function.

The GetDictionaryInformation function returns its information in a dictionary
information record. The dictionary information record is defined by the
DictionaryInformation data type as follows:

TYPE DictionaryInformation =

RECORD

dictionaryFSSpec: FSSpec; {file system spec}

numberOfRecords: LongInt; {total no. of records}

currentGarbageSize: LongInt; {size of unusable data}

script: ScriptCode; {script system}

maximumKeyLength: Integer; {maximum length of keys}

keyAttributes: UnsignedByte; {key search criteria}

END;
8-14 Using the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
See page 8-25 for a complete description of these fields. Listing 8-3 shows a call to
GetDictionaryInformation to obtain the number of records in a dictionary.

Listing 8-3 Obtaining information about a dictionary

FUNCTION GetNumberOfRecordsInDictionary(dictionaryReference:

LONGINT): INTEGER;

VAR

err: OSErr;

dictionaryInfo: DictionaryInformation;

numRecords: Integer;

BEGIN

numRecords := -1; {return result in case of error}

IF dictionaryReference <> 0 THEN BEGIN

{get the dictionary information record}

err := GetDictionaryInformation(gDictionaryReference,

dictionaryInfo);

IF err <> noErr THEN

numRecords := dictionaryInfo.numberOfRecords

ELSE

DebugErrStr(err, 'GetDictionaryInformation'); {error}

END;

GetNumberOfRecordsInDictionary := numRecords;

END; {GetNumberOfRecordsInDictionary}

Locating Records in a Dictionary 8
This section tells you how to use a dictionary—that is, how to extract records from it.
You can obtain records from a dictionary in two general ways: by key (search string) and
by index (position in the file).

Locating Records by Key 8

You can use the FindRecordInDictionary function to search for dictionary records
that match specified keys. Matching keys is perhaps the most standard dictionary search
method: the user types in a key, and you search the dictionary for the data associated
with that key.

You can provide a requested attributes table to narrow the search to only certain types of
entries within the record that matches the search key. Figure 8-7 shows its format. You
can request

■ only the entries with the specified attributes

■ the raw data of all the entries in the record without any attributes

■ everything in the record
Using the Dictionary Manager 8-15

C H A P T E R 8

Dictionary Manager
Figure 8-7 The requested attributes table

For example, you can use the requested attributes table to select only the verbs or nouns
in the dictionary that match a key. The currently defined attribute types and their
constants are listed in Table 8-2 on page 8-27.

Here is an example of how to use FindRecordInDictionary. Suppose the following
entries are all the entries that match the key “hunch” in a dictionary record:

Now suppose you call FindRecordInDictionary and pass a pointer to a requested
attributes table that specifies two types: kNoun (–1) and kMyType1 (127).
FindRecordInDictionary returns the data shown in Table 8-1.

Raw data Attribute type Value Optional attribute data

'guess' kNoun –1

kVerb –2

'push' kVerb –2

kMyType1 127 MyType1Data

'bend' kMyType2 126 MyType2Data

Table 8-1 Sample data returned by FindRecordInDictionary

Offset Value Explanation

00 2 Number of entries found

(first entry starts here)

01 8 Length of entry

02 5 Length of raw data

03 'guess' The raw data

08 1 Length of first attribute

09 –1 Attribute type (= kNoun)

(second entry starts here)

10 18 Length of entry

Number of attribute types
Attribute type 1 (signed byte)

Attribute type n (signed byte)

Bytes
1
1

1

8-16 Using the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
Locating Records by Index 8

You can use the FindRecordByIndexInDictionary function to retrieve record data
within a dictionary file by index rather than by matching key strings. In this way you can
examine a specific record or sequence of records, to look for the information you need.

As with FindRecordInDictionary, you can provide a requested attributes table to
narrow the search to certain types of entries. If you want to get all records with entries of
a particular attribute type, you can call FindRecordByIndexInDictionary
repeatedly. In Listing 8-4, the routine loops through the entire dictionary, displaying the
key and the raw data of the first entry of each record in turn. (The application routine
GetIndexedDataStringFromRecord converts the raw data from each record into
a string for display.)

Listing 8-4 Displaying all records in a dictionary by index

PROCEDURE ShowAllEntries (dictionaryReference: LONGINT);

VAR

err: OSErr;

dictionaryInfo: DictionaryInformation;

index: Integer;

keyString, descriptionStr: Str255;

entriesHandle: Handle;

txtDialog: DialogPtr;

finalTick: LongInt;

BEGIN

IF dictionaryReference <> 0 THEN BEGIN

{first find out how many records there are}

err := GetDictionaryInformation(gDictionaryReference,

dictionaryInfo);

IF err = noErr THEN BEGIN

entriesHandle := NewHandle(0);

IF entriesHandle <> NIL THEN BEGIN

descriptionStr := 'Displaying names in dictionary';

11 4 Length of raw data

12 'push' The raw data

16 12 Length of first attribute

17 127 Attribute type (= kMyType1)

18 'MyType1Data' Optional data for first attribute

Table 8-1 Sample data returned by FindRecordInDictionary (continued)

Offset Value Explanation
Using the Dictionary Manager 8-17

C H A P T E R 8

Dictionary Manager
txtDialog := ShowTextDialog(@descriptionStr[1],

LENGTH(descriptionStr));

Delay(60, finalTick);

FOR index := 1 TO dictionaryInfo.numberOfRecords

DO BEGIN

{return raw data for all entries of each record}

err := FindRecordByIndexInDictionary

(dictionaryReference,

index - 1, NIL,

keyString, entriesHandle);

{we only care about the first description string }

GetIndexedDataStringFromRecord(entriesHandle, 1,

descriptionStr);

{format as "key: description"}

keyString := CONCAT(keyString, ': ');

keyString := CONCAT(keyString, descriptionStr);

SetTextDialog(txtDialog, @keyString[1],

LENGTH(keyString));

Delay(60, finalTick);

END;

CloseTextDialog(txtDialog);

DisposeHandle(entriesHandle);

END;

END;

END;

END; {ShowAllEntries}

Modifying a Dictionary 8
This section tells you how to use the Dictionary Manager routines to add, replace, or
delete dictionary records.

You can use the InsertRecordToDictionary function to add or replace a record in a
specified dictionary. Because there cannot be two separate records with the same key
value in a dictionary, adding a new record may nullify an existing one. To avoid such a
problem, you can specify the insertion mode, which notifies the Dictionary Manager
how you want the new record treated. The insertion mode determines whether to put
the record into the dictionary

■ only if it does not replace an existing record with the same key

■ only if it does replace an existing record with the same key

■ regardless of whether it adds a record or replaces another record
8-18 Using the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
You can effectively insert and replace individual entries in records, in that you can obtain
a record from a dictionary (with FindRecordInDictionary or
FindRecordByIndexInDictionary), modify parts of the record, and then put the
record back into the dictionary with InsertRecordToDictionary.

In Listing 8-5, the routine prompts the user for a key word and data for a new dictionary
record. It then constructs the new record—in proper dictionary format—by calling the
application routine NewDictionaryEntry. Finally, it calls
InsertRecordToDictionary, providing a dictionary reference number to the desired
dictionary file, a Pascal string representing the key, a handle to the new record, and a
specification of how to insert the record into the dictionary.

Listing 8-5 Inserting a record into a dictionary

PROCEDURE AddNewRecord (dictionaryReference: LongInt);

VAR

keyStr, descriptionStr: Str255;

descriptionHandle: Handle;

err: OSErr;

BEGIN

IF dictionaryReference <> 0 THEN BEGIN

keyStr := Ask('Enter key:', '<key word>');

IF keyStr <> '' THEN BEGIN

descriptionStr := Ask(CONCAT(CONCAT

('Enter description for "',

keyStr), '"'), '<record data>');

IF descriptionStr <> '' THEN BEGIN

descriptionHandle := NewDictionaryEntry

(descriptionStr, 128, '');

IF descriptionHandle <> NIL THEN BEGIN

err := InsertRecordToDictionary

(dictionaryReference,

keyStr, descriptionHandle,

kInsertOrReplace);

IF err <> noErr THEN

DebugErrStr(err, 'InsertRecordToDictionary');

DisposeHandle(descriptionHandle);

END;

END;

END;

END;

END; {AddNewRecord}
Using the Dictionary Manager 8-19

C H A P T E R 8

Dictionary Manager
To remove a record from a dictionary, call the DeleteRecordFromDictionary
function. When you call DeleteRecordFromDictionary you specifiy the key of the
record to be deleted and the dictionary reference number of the dictionary file that
contains the record.

Remember that deleting records from a dictionary, or replacing them with shorter
records, does not make the dictionary file any smaller. It simply creates garbage data.

Compacting a Dictionary 8
You can use the CompactDictionary function to reduce the size of the dictionary by
removing garbage data from the dictionary file.

IMPORTANT

Before compacting a dictionary, be aware that the operation may require
considerable time to complete. You should notify the user of this. Avoid
the compaction operation unless it is absolutely necessary or is
mandated by the user. ▲

Dictionary Manager Reference 8

This section describes the routines and related data structures and constants that are
specific to the Dictionary Manager.

Data Structures 8
The DictionaryInformation data type, which defines the dictionary information
record, is described with the GetDictionaryInformation function on page 8-24.

Routines 8
This section shows the functions for making, accessing, using, and
modifying dictionaries.

Making a Dictionary 8

To make a dictionary file, first create a file with a File Manager function such as
FSpCreate or HCreate, and then call the InitializeDictionary function
described in this section.
8-20 Dictionary Manager Reference

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
InitializeDictionary 8

The InitializeDictionary function constructs, for the specified file, the internal
B*-tree structure that makes it a dictionary file.

FUNCTION InitializeDictionary (theFSSpecPtr: FSSpecPtr;

 maximumKeyLength: Integer;

 keyAttributes: Byte;

 script: ScriptCode): OSErr;

theFSSpecPtr
A pointer to a file system specification record. This record contains the
filename, directory, and volume associated with this dictionary file.

maximumKeyLength
The maximum length of the keys in the dictionary, including the length
byte. The length must be less than or equal to 129.

keyAttributes
The search criteria for the keys in the dictionary.

script The number that specifies the script system this dictionary supports.

DESCRIPTION

InitializeDictionary does not open the dictionary file after the Dictionary
Manager initializes it. To open and use a dictionary file, use the OpenDictionary
function (see page 8-22).

You can set the maximum key length of a dictionary only once; you cannot change
it after the dictionary has been created. To maximize efficiency, keep the length to
a minimum.

The keyAttributes parameter allows you to specify search criteria. For example, in
one script system, it might be desirable to design the search to disregard case and be
sensitive to diacritical marks, whereas in another script system these preferences might
be reversed in keeping with the character encoding. Two predefined constants are
available for the key attributes: the kIsCaseSensitive constant indicates that search
procedures are to be case sensitive, and the kIsNotDiacriticalSensitive constant
specifies that the search procedures are to ignore diacritical marks. To specify a
combination of the different attributes, you add the constants together.

SPECIAL CONSIDERATIONS

InitializeDictionary may move memory; your application should not call this
function at interrupt time.

Constant Value Explanation

kIsCaseSensitive 16 Search is case-sensitive

kIsNotDiacriticalSensitive 32 Search is not diacritical-sensitive
Dictionary Manager Reference 8-21

C H A P T E R 8

Dictionary Manager
RESULT CODES

In addition to the standard File Manager, Memory Manager, and Resource Manager
error codes, InitializeDictionary may return any of the following result codes.

SEE ALSO

Constants for all defined script codes are listed in the chapter “Script Manager” in
this book.

File system specification records and File Manager error codes are described in Inside
Macintosh: Files. Memory Manager error codes are described in Inside Macintosh: Memory.
Resource Manager error codes are described in Inside Macintosh: More Macintosh Toolbox.

Accessing a Dictionary 8

Once you have created and initialized a dictionary file, you can use the
OpenDictionary and CloseDictionary functions to open and close the dictionary.
Once the dictionary is open, you can get information about it with the
GetDictionaryInformation function.

OpenDictionary 8

The OpenDictionary function creates an access path to the specified dictionary file.

FUNCTION OpenDictionary (theFSSpecPtr: FSSpecPtr;

 accessPermission: SignedByte;

 VAR dictionaryReference: LongInt)

 : OSErr;

theFSSpecPtr
A pointer to the file system specification record for the file to open. This
record contains the filename, directory, and volume associated with this
dictionary file.

accessPermission
The read and write permission for the access path. This permission must
follow the File Manager access permission conventions.

dictionaryReference
A number that specifies a particular open dictionary.

noErr 0 No error
btNoSpace –413 Insufficient disk space to store dictionary information
keyLenErr –416 Maximum key length too great or equal to zero
keyAttrErr –417 No such key attribute
8-22 Dictionary Manager Reference

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
DESCRIPTION

The OpenDictionary function returns, in the dictionaryReference parameter, a
dictionary reference number—an identifying value that you use to specify the dictionary
in subsequent calls to the Dictionary Manager.

The data structures accessed through the dictionaryReference parameter are
allocated in the current heap. If the same dictionary is to be shared across applications,
make sure the current zone is the system zone, so the data structures will be allocated in
the system heap.

The following constants define the allowed values for the accessPermission
parameter:

If the requested permission is not granted, OpenDictionary returns a result code that
specifies the type of error.

SPECIAL CONSIDERATIONS

OpenDictionary may move memory; your application should not call this function at
interrupt time.

RESULT CODES

In addition to the standard File Manager, Memory Manager, and Resource Manager
errors, OpenDictionary may return any of the following result codes.

SEE ALSO

File system specification records, File Manager access permissions, and File Manager
error codes are described in Inside Macintosh: Files. Memory Manager error codes are
described in Inside Macintosh: Memory. Resource Manager error codes are described in
Inside Macintosh: More Macintosh Toolbox.

For sample code that uses the OpenDictionary function, see Listing 8-2 on page 8-13.

Constant Value Explanation

fsRdPerm 1 Request read permission only

fsWrPerm 2 Request write permission only

fsRdWrPerm 3 Request exclusive read/write permission

noErr 0 No error
notBTree –410 File is not a dictionary
Dictionary Manager Reference 8-23

C H A P T E R 8

Dictionary Manager
CloseDictionary 8

The CloseDictionary function closes the specified open dictionary.

FUNCTION CloseDictionary (dictionaryReference: LongInt)

: OSErr;

dictionaryReference
A number that specifies a particular open dictionary.

RESULT CODES

In addition to the standard File Manager and Resource Manager errors,
CloseDictionary may return any of the following result codes.

SEE ALSO

File Manager error codes are described in Inside Macintosh: Files. Resource Manager error
codes are described in Inside Macintosh: More Macintosh Toolbox.

For sample code that uses the CloseDictionary function, see Listing 8-2 on page 8-13.

GetDictionaryInformation 8

The GetDictionaryInformation function returns, in a dictionary information
record, information about the specified dictionary.

FUNCTION GetDictionaryInformation

(dictionaryReference: LongInt;

 VAR theDictionaryInformation:

 DictionaryInformation): OSErr;

dictionaryReference
A number that specifies a particular open dictionary.

theDictionaryInformation
Upon completion of the call, contains a filled-out dictionary information
record that describes the dictionary.

DESCRIPTION

The GetDictionaryInformation function returns data about a dictionary in a
dictionary information record in the dictionaryInformation parameter. The
DictionaryInformation data type defines this record as follows:

noErr 0 No error
notBTree –410 File is not a dictionary
8-24 Dictionary Manager Reference

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
TYPE DictionaryInformation =

RECORD

dictionaryFSSpec: FSSpec;

numberOfRecords: LongInt;

currentGarbageSize: LongInt;

script: ScriptCode;

maximumKeyLength: Integer;

keyAttributes: UnsignedByte;

END;

Field descriptions

dictionaryFSSpec
The file system specification record for this particular dictionary.

numberOfRecords
The number of records in the dictionary.

currentGarbageSize
The current size of unusable (garbage) information in the
dictionary. For a discussion of garbage in a dictionary, see “Garbage
Data” on page 8-8.

script The number that specifies the script system this dictionary supports.
maximumKeyLength

The maximum length of any key in the dictionary.
keyAttributes A value that specifies the criteria for key searching. For a

description of the key attribute constants, see the description of the
InitializeDictionary function on page 8-21.

SPECIAL CONSIDERATIONS

GetDictionaryInformation may move memory; your application should not call
this function at interrupt time.

RESULT CODES

In addition to the standard File Manager and Resource Manager errors,
GetDictionaryInformation may return any of the following result codes.

SEE ALSO

Constants for all defined script codes are listed in the chapter “Script Manager” in
this book.

File Manager error codes are described in Inside Macintosh: Files. Resource Manager error
codes are described in Inside Macintosh: More Macintosh Toolbox.

noErr 0 No error
notBTree –410 File is not a dictionary
Dictionary Manager Reference 8-25

C H A P T E R 8

Dictionary Manager
For sample code that uses the GetDictionaryInformation function, see Listing 8-3
on page 8-15.

Locating Records in a Dictionary 8

The following section describes the Dictionary Manager functions that let you

■ locate a record within a dictionary by its key

■ locate a record within a dictionary by its index

You can constrain both key and index searches to include only entries with certain
attributes.

FindRecordInDictionary 8

The FindRecordInDictionary function searches a dictionary for a record that
matches the specified key, and returns entries with the specified attributes.

FUNCTION FindRecordInDictionary

(dictionaryReference: LongInt;

 key: Str255;

 requestedAttributeTablePointer: Ptr;

 recordDataHandle: Handle): OSErr;

dictionaryReference
A number that specifies a particular open dictionary.

key A Pascal string that denotes the key to be matched.

requestedAttributeTablePointer
A pointer to a table with attributes that you can request. This parameter
provides a way for you to narrow the search to specified types of entries
in the record. For instance, you could use the requested attributes table to
specify only the verbs in the record that matches the key.

recordDataHandle
On entry, any valid handle. Upon completion, a handle to the
requested data.

DESCRIPTION

The FindRecordInDictionary function returns, in the recordDataHandle
parameter, a handle to the record data: a collection of entries matching the key
and the requested attributes. FindRecordInDictionary returns the data in
standard Dictionary Manager data format—as shown in Figure 8-2 on page 8-6 and
Figure 8-3 on page 8-7.
8-26 Dictionary Manager Reference

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
The Dictionary Manager uses the Memory Manager procedure SetHandleSize to set
the size of the recordDataHandle parameter correctly. If the Dictionary Manager
cannot change the size of the handle to accommodate the returned matched data, it
returns a Memory Manager error.

To limit the search to specific types of attributes, you construct a requested attributes
table and pass a pointer to that table to FindRecordInDictionary. The requested
attributes table consists of a byte which specifies the number of attributes, followed by a
list of attribute types, as shown in Figure 8-7 on page 8-16.

■ If the requestedAttributeTablePointer parameter is Ptr(-1),
FindRecordInDictionary returns everything in the matching record (that is, both
raw data and attributes for all entries in the record).

■ If the requestedAttributeTablePointer parameter is NIL,
FindRecordInDictionary returns the raw data of all the entries in the matching
record, without any attached attributes.

■ If the requestedAttributeTablePointer parameter is a valid pointer,
FindRecordInDictionary returns only those entries in the matching record whose
attributes match those in the requested attributes table. In this case, if a record in the
dictionary has a key that matches the search key but no entries in the record possess
the requested attributes, the returned recordDataHandle parameter references a
data buffer one byte in length that contains a value of 0.

 Table 8-2 lists constants for the currently defined attribute types.

SPECIAL CONSIDERATIONS

FindRecordInDictionary may move memory; your application should not call this
function at interrupt time.

RESULT CODES

In addition to the standard File Manager, Memory Manager, and Resource Manager
errors, FindRecordInDictionary can return any of the following result codes.

Table 8-2 Defined attribute types for dictionary entries

Constant Value Explanation

kNoun –1 Noun

kVerb –2 Verb

kAdjective –3 Adjective

kAdverb –4 Adverb

noErr 0 No error
notBTree –410 File is not a dictionary
btRecNotFnd –415 Record cannot be found
btKeyLenErr –416 Key length too great or equal to zero
Dictionary Manager Reference 8-27

C H A P T E R 8

Dictionary Manager
SEE ALSO

File Manager error codes are described in Inside Macintosh: Files. Memory Manager error
codes are described in Inside Macintosh: Memory. Resource Manager error codes are
described in Inside Macintosh: More Macintosh Toolbox.

FindRecordByIndexInDictionary 8

The FindRecordByIndexInDictionary function locates a record in a dictionary by
index, and returns entries with the specified attributes.

FUNCTION FindRecordByIndexInDictionary

(dictionaryReference: LongInt;

 recordIndex: LongInt;

 requestedAttributeTablePointer: Ptr;

 VAR recordKey: Str255;

 recordDataHandle: Handle): OSErr;

dictionaryReference
A number that specifies a particular open dictionary.

recordIndex
The index for the record to be searched; its position in the dictionary. The
index range for FindRecordByIndexInDictionary is from 0 to one
less than the maximum number of records in a dictionary. To obtain the
maximum index range of a dictionary, you can use the
GetDictionaryInformation function (see page 8-24).

requestedAttributeTablePointer
A pointer to a table with attributes that you can request. This parameter
provides a way for you to narrow the search to specified types of entries
in the record. For instance, you could use the requested attributes table to
specify only the verbs in the record at that index.

recordKey Upon succcessful completion, contains the key of the indexed record.

recordDataHandle
A handle that contains a collection of entries in the indexed record that
match the requested attributes.

DESCRIPTION

The FindRecordByIndexInDictionary function returns, in the
recordDataHandle parameter, a handle to the record data: a collection of entries from
the specified record matching the requested attributes.
FindRecordByIndexInDictionary returns the data in standard Dictionary Manager
data format—as shown in Figure 8-2 on page 8-6 and Figure 8-3 on page 8-7.
8-28 Dictionary Manager Reference

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
The Dictionary Manager uses the Memory Manager procedure SetHandleSize to set
the size of the recordDataHandle parameter correctly. If the Dictionary Manager
cannot change the size of the handle to accommodate the returned matched data, it
returns a Memory Manager error.

To limit the search to specific types of attributes, you construct a requested attributes
table and pass a pointer to that table to FindRecordByIndexInDictionary. The
requested attributes table and a list of defined attribute types are described with the
FindRecordInDictionary function, on page 8-26.

■ If the requestedAttributeTablePointer parameter is Ptr(-1),
FindRecordByIndexInDictionary returns everything in the matching record
(that is, both raw data and attributes for all entries in the record).

■ If the requestedAttributeTablePointer parameter is NIL,
FindRecordByIndexInDictionary returns the raw data of all the entries in the
matching record, without any attached attributes.

■ If the requestedAttributeTablePointer parameter is a valid pointer,
FindRecordByIndexInDictionary returns only those entries in the matching
record whose attributes match those in the requested attributes table. In this case, if a
record in the dictionary has a key that matches the search key but no entries in the
record possess the requested attributes, the returned recordDataHandle parameter
references a data buffer 1 byte in length that contains a value of 0.

SPECIAL CONSIDERATIONS

FindRecordByIndexInDictionary may move memory; your application should not
call this function at interrupt time.

RESULT CODES

In addition to the standard File Manager, Memory Manager, and Resource Manager
errors, FindRecordByIndexInDictionary may return any of the following
result codes.

SEE ALSO

File Manager error codes are described in Inside Macintosh: Files. Memory Manager error
codes are described in Inside Macintosh: Memory. Resource Manager error codes are
described in Inside Macintosh: More Macintosh Toolbox.

For sample code that uses the FindRecordByIndexInDictionary function, see
Listing 8-4 on page 8-17.

noErr 0 No error
notBTree –410 File is not a dictionary
btRecNotFnd –415 Record cannot be found
Dictionary Manager Reference 8-29

C H A P T E R 8

Dictionary Manager
Modifying a Dictionary 8

The routines described in this section allow you to modify the contents of a dictionary by
adding, replacing, or deleting records.

InsertRecordToDictionary 8

The InsertRecordToDictionary function inserts a dictionary record into the
specified dictionary file.

 FUNCTION InsertRecordToDictionary

(dictionaryReference: LongInt;

 key: Str255;

 recordDataHandle: Handle;

 whichMode: InsertMode): OSErr;

dictionaryReference
A number that specifies a particular open dictionary.

key A Pascal string that denotes the key of the record to be inserted.

recordDataHandle
A handle containing the data for the new record.

whichMode A value that determines whether the inserted record is to replace a record
in the dictionary whose key matches the key parameter.

DESCRIPTION

The InsertRecordToDictionary function places the specified record into the
specified dictionary. The recordDataHandle parameter must be a handle to data
formatted like the data of a dictionary record, as shown in Figure 8-2 on page 8-6. Each
entry in the data must be formatted as shown in Figure 8-3 on page 8-7. If the data size
referenced by the recordDataHandle parameter exceeds the maximum of 4096 bytes,
InsertRecordToDictionary returns a recordDataTooBigErr result code.
8-30 Dictionary Manager Reference

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
The whichMode parameter controls the insertion mode, the manner in which the
insertion can take place. There are three possibilities, for which the Dictionary Manager
defines three constants:

If InsertRecordToDictionary returns one of the errors listed in “Result Codes,” the
specified record was not inserted or replaced.

SPECIAL CONSIDERATIONS

InsertRecordToDictionary may move memory; your application should not call
this function at interrupt time.

RESULT CODES

In addition to the standard File Manager, Memory Manager, and Resource Manager
errors, InsertRecordToDictionary can return one of the following result codes.

SEE ALSO

File Manager error codes are described in Inside Macintosh: Files. Memory Manager error
codes are described in Inside Macintosh: Memory. Resource Manager error codes are
described in Inside Macintosh: More Macintosh Toolbox.

For sample code that uses the InsertRecordToDictionary function, see Listing 8-5
on page 8-19.

Constant Value Description

kInsert 0 Insert the record only if no existing record has a
matching key. If a record with a matching key
already exists in the dictionary, this function returns
the result code btDupRecErr.

kReplace 1 Insert the record only if it replaces an existing record
with a matching key. If no existing record in the
dictionary has a matching key, this function returns
the result code btRecNotFnd.

kInsertOrReplace 2 Insert the new record either way. Add it if no existing
record in the dictionary has a matching key; replace
the existing record if there is a match.

noErr 0 No error
notBTree –410 File is not a dictionary
btNoSpace –413 Insufficient disk space to store dictionary
btDupRecErr –414 Record already exists
btRecNotFnd –415 Record cannot be found
btKeyLenErr –416 Key length too great or equal to zero
unknownInsertModeErr –20000 No such insertion mode
recordDataTooBigErr –20001 Entry data bigger than buffer size
Dictionary Manager Reference 8-31

C H A P T E R 8

Dictionary Manager
DeleteRecordFromDictionary 8

The DeleteRecordFromDictionary function removes a record from the specified
dictionary file.

FUNCTION DeleteRecordFromDictionary

(dictionaryReference: LongInt;

key: Str255): OSErr;

dictionaryReference
A number that specifies a particular open dictionary.

key A Pascal string that denotes the key of the record to be deleted.

DESCRIPTION

If DeleteRecordFromDictionary returns any of the errors listed in “Result Codes,”
it did not remove any records from the specified dictionary.

SPECIAL CONSIDERATIONS

DeleteRecordFromDictionary may move memory; your application should not call
this function at interrupt time.

RESULT CODES

In addition to the standard File Manager, Memory Manager, and Resource Manager
errors, DeleteRecordFromDictionary may return any of the following result codes.

SEE ALSO

File Manager error codes are described in Inside Macintosh: Files. Memory Manager error
codes are described in Inside Macintosh: Memory. Resource Manager error codes are
described in Inside Macintosh: More Macintosh Toolbox.

noErr 0 No error
notBTree –410 File is not a dictionary
btRecNotFnd –415 Record cannot be found
btKeyLenErr –416 Key length too great or equal to zero
8-32 Dictionary Manager Reference

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
Compacting a Dictionary 8

The routine described in this section allows you to compact a dictionary file.

CompactDictionary 8

The CompactDictionary function compacts the specified dictionary file by removing
all garbage data from it.

FUNCTION CompactDictionary (dictionaryReference:LongInt)

 : OSErr;

dictionaryReference
A number that specifies a particular open dictionary.

DESCRIPTION

The CompactDictionary function removes garbage data by creating a new copy of the
dictionary file that contains only valid entries. Once the new dictionary is constructed,
the Dictionary Manager deletes the old one.

If there is insufficient disk space to build the new dictonary, CompactDictionary
returns the btNoSpace error message, and the original dictionary is preserved intact.

Note that CompactDictionary makes a dictionary file smaller by removing unusable
information. It does not actually compress any data.

SPECIAL CONSIDERATIONS

CompactDictionary may move memory; your application should not call this
function at interrupt time.

RESULT CODES

In addition to the standard File Manager, Memory Manager, and Resource Manager
errors, CompactDictionary may return any of the following result codes.

SEE ALSO

File Manager error codes are described in Inside Macintosh: Files. Memory Manager error
codes are described in Inside Macintosh: Memory. Resource Manager error codes are
described in Inside Macintosh: More Macintosh Toolbox.

noErr 0 No error
notBTree –410 File not a dictionary
btNoSpace –413 Insufficient disk space to store dictionary information
Dictionary Manager Reference 8-33

C H A P T E R 8

Dictionary Manager
Summary of the Dictionary Manager 8

Pascal Summary 8

Constants 8

CONST {Data Insertion Modes}

kInsert = 0; {only insert input entry if nothing in }

{ dictionary matches key}

kReplace = 1; {only replace entries that match key with }

{ input entry}

kInsertOrReplace = 2; {insert entry if nothing in the dictionary }

{ matches key; if already matched }

{ entries exist, replace them with the }

{ input entry}

CONST {Key Attribute Constants}

kIsCaseSensitive = 16; {diacritical mark is case sensitive}

kIsNotDiacriticalSensitive = 32; {diacritical mark not case sensitive}

CONST {Registered Attribute Types}

kNoun = -1; {noun}

kVerb = -2; {verb}

kAdjective = -3; {adjective}

kAdverb = -4; {adverb}

Data Types 8

TYPE

InsertMode = Integer;

AttributeType = Integer:
8-34 Summary of the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
DictionaryInformation =

RECORD

dictionaryFSSpec: FSSpec; {file system specification }

{ record for this dictionary}

numberOfRecords: LongInt; {number of records in }

{ this dictionary}

currentGarbageSize: LongInt; {current size of garbage }

{ (unusable) data in dictionary}

script: ScriptCode; {script system supported by }

{ this dictionary}

maximumKeyLength: Integer; {maximum length of any key }

{ in this dictionary}

keyAttributes: UnsignedByte; { key search criteria}

END;

Routines 8

Making a Dictionary

FUNCTION InitializeDictionary
(theFSSpecPtr: FSSpecPtr;
maximumKeyLength: Integer;
keyAttributes: Byte;
script: ScriptCode): OSErr;

Accessing a Dictionary

FUNCTION OpenDictionary (theFSSpecPtr: FSSpecPtr;
accessPermission: SignedByte;
VAR dictionaryReference: LongInt):
OSErr;

FUNCTION CloseDictionary (dictionaryReference: LongInt):
OSErr;

FUNCTION GetDictionaryInformation
(dictionaryReference: LongInt;
VAR theDictionaryInformation:
DictionaryInformation): OSErr;

Locating Records in a Dictionary

FUNCTION FindRecordInDictionary
(dictionaryReference: LongInt;
key: Str255;
requestedAttributeTablePointer: Ptr;
recordDataHandle: Handle): OSErr;
Summary of the Dictionary Manager 8-35

C H A P T E R 8

Dictionary Manager
FUNCTION FindRecordByIndexInDictionary
(dictionaryReference: LongInt;
recordIndex: LongInt;
requestedAttributeTablePointer: Ptr;
VAR recordKey: Str255;
recordDataHandle: Handle): OSErr;

Modifying a Dictionary

FUNCTION InsertRecordToDictionary
(dictionaryReference:LongInt;
key: Str255;
recordDataHandle: Handle;
whichMode: InsertMode): OSErr;

FUNCTION DeleteRecordFromDictionary
(dictionaryReference: LongInt;
key: Str255): OSErr;

Compacting a Dictionary

FUNCTION CompactDictionary (dictionaryReference:LongInt)
OSErr;

C Summary 8

Constants 8

/* Dictionary data insertion modes. */

enum {

 kInsert = 0, /* Only insert the input entry if there is nothing

in the dictionary that matches the key. */

 kReplace = 1, /* Only replace the entries which match the key

with the input entry. */

 kInsertOrReplace = 2 /* Insert the entry if there is nothing in the

dictionary which matches the key. If there are

already matched entries, replace the existing

matched entries with the input entry. */

};

/* Key attribute constants. */

#define kIsCaseSensitive 0x10 /* case-sensitive = 16 */

#define kIsNotDiacriticalSensitive 0x20 /* non-diac-sensitive = 32 */
8-36 Summary of the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
/* Registered attribute type constants.*/

enum {

 kNoun = -1,

 kVerb = -2,

 kAdjective = -3,

 kAdverb = -4

};

Data Types 8

typedef short InsertMode;

typedef short AttributeType;

/* Dictionary information record.*/

struct DictionaryInformation{

FSSpec dictionaryFSSpec;

long numberOfRecords;

long currentGarbageSize;

ScriptCode script;

short maximumKeyLength;

unsigned char keyAttributes;

};

typedef struct DictionaryInformation DictionaryInformation;

Routines 8

Making a Dictionary

pascal OSErr InitializeDictionary
(FSSpecPtr theFsspecPtr,
short maximumKeyLength,
unsigned char keyAttributes,
ScriptCode script)

Accessing a Dictionary

pascal OSErr OpenDictionary (FSSpecPtr theFsspecPtr,
char accessPermission,
long *dictionaryReference)

pascal OSErr CloseDictionary
(long dictionaryReference)
Summary of the Dictionary Manager 8-37

C H A P T E R 8

Dictionary Manager
pascal OSErr GetDictionaryInformation
(long dictionaryReference,
DictionaryInformation
*theDictionaryInformation)

Locating Records in a Dictionary

pascal OSErr FindRecordInDictionary
(long dictionaryReference, ConstStr255Param key,
Ptr requestedAttributeTablePointer,
Handle recordDataHandle)

pascal OSErr FindRecordByIndexInDictionary
(long dictionaryReference,
long recordIndex,
Ptr requestedAttributeTablePointer,
Str255 recordKey, Handle recordDataHandle)

Modifying a Dictionary

pascal OSErr InsertRecordToDictionary
(long dictionaryReference,
ConstStr255Param key, Handle recordDataHandle,
InsertMode whichMode)

pascal OSErr DeleteRecordFromDictionary
(long dictionaryReference, ConstStr255Param key)

Compacting a Dictionary

pascal OSErr CompactDictionary
(long dictionaryReference)
8-38 Summary of the Dictionary Manager

C H A P T E R 8

Dictionary Manager

8
D

ictionary M
anager
Assembly-Language Summary 8

Trap Macros 8

Trap Macro Names

Result Codes 8

Pascal name Trap macro name

InitializeDictionary _InitializeDictionary

OpenDictionary _OpenDictionary

CloseDictionary _CloseDictionary

InsertRecordToDictionary _InsertRecordToDictionary

DeleteRecordFromDictionary _DeleteRecordFromDictionary

FindRecordInDictionary _FindRecordInDictionary

FindRecordByIndexInDictionary _FindRecordByIndexInDictionary

GetDictionaryInformation _GetDictionaryInformation

CompactDictionary _CompactDictionary

notBTree –410 File not a dictionary
btNoSpace –413 Insufficient disk space to store dictionary information
btDupRecErr –414 Record already exists
btRecNotFnd –415 Record cannot be found
btKeyLenErr –416 Key length too great or equal to zero
btKeyAttrErr –417 Dictionary Manager doesn’t understand an attribute
unknownInsertModeErr –20000 No such insertion mode
recordDataTooBigErr –20001 Entry data bigger than buffer size
invalidIndexErr –20002 Invalid index
Summary of the Dictionary Manager 8-39

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	Dictionary Manager
	About Dictionaries for Input Methods
	About the Dictionary Manager
	The Structure of a Dictionary
	Garbage Data
	Dictionary Manager Limitations

	Using the Dictionary Manager
	Testing for the Presence of the Dictionary Manager...
	Making a Dictionary
	Creating the File
	Constructing the Dictionary

	Accessing a Dictionary
	Opening and Closing the Dictionary
	Obtaining Information About the Dictionary

	Locating Records in a Dictionary
	Locating Records by Key
	Locating Records by Index

	Modifying a Dictionary
	Compacting a Dictionary

	Dictionary Manager Reference
	Data Structures
	Routines
	Making a Dictionary
	Accessing a Dictionary
	Locating Records in a Dictionary
	Modifying a Dictionary
	Compacting a Dictionary

	Summary of the Dictionary Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

