

C H A P T E R 7

7

Text S
ervices M

anager

Text Services Manager 7

This chapter describes how text-processing applications can communicate flexibly and
efficiently with utilities that provide services to those applications. Applications that
need input methods, spell-checking, hyphenation, and so forth can use the Text Services
Manager to search for, obtain information about, and communicate with those utilities.
Utilities can use the Text Services Manager to request actions and information from
applications, and to send data to them.

Read this chapter if you are developing or enhancing an application to use text services.
In particular, if you want your application to support text input in a 2-byte script system,
you should use the Text Services Manager. Your application will then work with multiple
script systems and many input methods.

Read this chapter if you are writing or adapting a utility that provides a text service such
as text input. Utilities that work with the Text Services Manager are called text service
components. If your utility is a text service component, it will be able to communicate
with a wide range of applications.

Before reading this chapter, read the chapter “Introduction to Text on the Macintosh” in
this book. To use this chapter, you should also be familiar with the Apple Event Manager
and the Component Manager. For details on the Apple Event Manager, see Inside
Macintosh: Interapplication Communication. For more on the Component Manager, see
Inside Macintosh: More Macintosh Toolbox.

This chapter refers to routines, constants, and data structures from QuickDraw, the Event
Manager, the Window Manager, the Menu Manager, and the Process Manager. For
details on QuickDraw, see Inside Macintosh: Imaging. For more on the Event Manager,
Window Manager, and Menu Manager, see Inside Macintosh: Macintosh Toolbox Essentials.
For information on the Process Manager, see Inside Macintosh: Processes.

This chapter first provides a brief introduction to text services in general, input methods
in particular, and the Text Services Manager itself. If you are writing an application, it
then discusses how you can

■ use the Text Services Manager routines for client applications, to send information to
text service components

■ implement the text-service Apple event handlers in your client application, to receive
information from text service components

■ communicate directly with the Component Manager and text service components, if
your application’s special needs require you to bypass the Text Services Manager

If you are writing a text service component, this chapter discusses how you can

■ implement the text service component routines, so that the Text Services Manager and
client applications can request the text services you provide

■ use the Text Services Manager routines for text service components, to send
information to client applications and the Text Services Manager
7-5

C H A P T E R 7

Text Services Manager

About Text Services 7

The Text Services Manager is the part of Macintosh system software that maintains
communication between applications that need text services and utility programs that
provide them. The Text Services Manager exists so that these two types of programs can
work together without needing to know anything about each others’ internal structures
or identities.

A text service is a specific text-handling task such as spell-checking, hyphenation, and
handling input of complex text. A text service component is a utility program that uses
the Text Services Manager to provide a text service to an application. Text service
components are registered components with the Component Manager, as described in
the Component Manager chapter of Inside Macintosh: More Macintosh Toolbox.

A client application is a text-processing program that uses the Text Services Manager to
request a service from a text service component. To accomplish this, a client application
needs to make the Text Services Manager aware of its existence and needs to make
specific Text Services Manager calls during execution.

In principle, text services can include many different types of tasks. However, only one
type of text service is currently defined: text input. This chapter describes how to work
with any type of text service component, and how to create any type of text service
component, but it emphasizes input methods. It also points out the ways in which input
methods are handled differently from other types of text service components.

About Input Methods 7

An input method is a facility that automatically converts phonetic or syllabic characters
into ideographic or other complex representations. It permits use of a standard keyboard
to generate the thousands to tens of thousands of different characters needed by
some languages. Text input in Japanese, Chinese, and Korean usually requires an
input method.

For example, text input in the Japanese script system requires software for transcribing
Romaji (phonetic Japanese using Roman characters) or Hiragana (syllabic Japanese) into
ideographic Kanji (Chinese characters). Each Kanji character may correspond to more
than one possible Hiragana sequence, and vice versa. The input method must
grammatically parse sentences or clauses of Hiragana text (which has no word
separations) and select the best combination of Kanji and Hiragana characters to
represent that text.

Chinese text input is similar to Japanese, in that a conversion from Pinyin (Roman) or
Zhuyinfuhao (phonetic) to ideographic Hanzi (Chinese characters) is required. Korean
text input requires conversion from Jamo (phonetic) to non-ideographic Hangul
(complex clusters of Jamo).
7-6 About Text Services

C H A P T E R 7

Text Services Manager

7

Text S
ervices M

anager

Bottomline input allows the user to type text into a special floating input window—
usually displayed in the lower portion of the screen—where conversion is to take place.
The floating input window typically appears whenever the user starts typing characters.
See Figure 7-1.

Figure 7-1 Bottomline input with a floating input window

Inline input is an input method in which conversion of characters takes place at the
current line position in the application where the text is intended to appear. This allows
the user to type text directly into the application window and requires no separate input
window. Inline input is the principal example of the kind of text service supported by
the Text Services Manager. See Figure 7-2.

Figure 7-2 Inline input
About Input Methods 7-7

C H A P T E R 7

Text Services Manager

With either bottomline input or inline input, the user can usually type Roman characters
or characters of another subscript. Figure 7-3 shows an example of a floating palette,
with which the user can select whether text entry is to be in 1-byte or 2-byte Romaji,
Katakana, or Hiragana. The user presses a key such as the Space bar to initiate
conversion from the input characters to the final characters.

The input method is often extended so that characters may be converted in extremely
precise ways. For example, in the Japanese script system, when Hiragana text is
converted to Kanji, the user has the option of changing any individual phrase:
lengthening it, shortening it, or selecting different possible interpretations. Figure 7-3
shows a scrolling list of additional conversion options displayed next to the converted
text in a floating input window. Only after the user is satisfied with the conversion and
presses the Return key is the text actually sent to the application.

Figure 7-3 Displaying conversion options for bottomline input

Input methods commonly rely upon one or more dictionaries to perform conversion. The
main dictionary lists all standard conversion options for any valid syllabic or phonetic
input. Besides using the main dictionary, users can add specialized dictionaries, such as
legal or medical dictionaries, to extend the range of the input method. See the chapter
“Dictionary Manager” in this book for more information.
7-8 About Input Methods

C H A P T E R 7

Text Services Manager

7

Text S
ervices M

anager

About the Text Services Manager 7

The Text Services Manager links text service components to client applications that use
text services. When a client application requests a service from the Text Services
Manager, the Text Services Manager routes the request to a text service component
associated with that application. The text service component processes the request and
may send text or other information back to the Text Services Manager, which passes it on
to the client application through an Apple event.

An application that explicitly uses the Text Services Manager is called a TSM-aware
application. An application that does not make calls to the Text Services Manager is
called non-TSM-aware. A non-TSM-aware application can still make indirect use of some
services of the Text Services Manager; see “Floating Input Windows” on page 7-13.

The Text Services Environment 7
The text services environment is a structure for the efficient flow of information between
client applications and text service components. It allows client applications to obtain
text services without having to know anything about the specific text service
components performing them. Likewise, it allows text service components to perform
their services without having to know anything about the specific client applications
making the requests.

The text services environment consists of a client application, a text service component,
the Apple Event Manager, the Component Manager, and the Text Services Manager. For
a client application to work within the text services environment, it must

■ call the routines of the Text Services Manager application interface described under
“Text Services Manager Routines for Client Applications” on page 7-48. By using
these application-level routines, a client application becomes TSM-aware and
communicates with other parts of the environment.

■ implement handlers for the Apple events described under “Apple Event Handlers
Supplied by Client Applications” on page 7-65. A client application receives text and
other information from a text service component through Apple events.

For a text service component to work within the text services environment, it must

■ register as a component with the Component Manager

■ call the routines of the Text Services Manager component interface described under
“Text Services Manager Routines for Components” on page 7-77

■ implement the component-level text service component routines described under
“Text Service Component Routines” on page 7-84
About the Text Services Manager 7-9

C H A P T E R 7

Text Services Manager

Figure 7-4 shows some of the flow of information in the text services environment when
a TSM-aware application uses a text service component. Application-level calls that an
application makes to the Text Services Manager application interface are converted to
component-level calls that are passed to an individual text service component. The text
service component in turn makes calls to the Text Services Manager component
interface; those calls are converted to Apple events that are passed on to the application.

The Text Services Manager controls the overall process by keeping track of which text
service components are available to a given application and which application is to
receive data from a given text service component. The Text Services Manager
communicates with text service components through the Component Manager;
applications that have special needs can likewise communicate directly with individual
text service components by calling the text service component routines.

Figure 7-4 How a TSM-aware client application uses the Text Services Manager

IMPORTANT

The event-handling structure of the Text Services Manager requires that
the low-memory global variable SEvtEnb be nonzero. If your
application sets SEvtEnb to 0 to force the Event Manager function
SystemEvent to always return a value of FALSE, text service
components do not function correctly. See Inside Macintosh: Macintosh
Toolbox Essentials for more information on the SystemEvent function
and the SEvtEnb global variable. ▲

Other calls

TSM-

aware

application

Flow of text input

Text

Services

ManagerInput

Apple

event

Key-down

event

Text service

component

Key-down

event
7-10 About the Text Services Manager

C H A P T E R 7

Text Services Manager

7

Text S
ervices M

anager

The Text Services Manager and Input Methods 7
Although the Text Services Manager can work with any type of text service component,
it provides several features specific to input methods for 2-byte script systems. The Text
Services Manager synchronizes the current input method with the current keyboard
script. For example, if the user changes from a Japanese to a Chinese font, the application
changes the keyboard script to Chinese and the Text Services Manager then switches the
current input method from Japanese to Chinese as well. Unlike with other text services,
the Text Services Manager opens and closes input methods, and takes care of their menu
handling.

Inline Input 7

A principal feature of the Text Services Manager is its support for inline input. Figure 7-4
shows how information flows through the Text Services Manager when a TSM-aware
application uses it for inline input. The application passes key-down events to the
text service component; the text service component sends text and messages back to
the application with Apple events. Events, messages, and requests for service
between the application and the text service component all pass through the Text
Services Manager.

For inline input, the Text Services Manager offers routines that let client applications and
text service components communicate about what happens in the active input area—the
portion of the screen in which the user enters text and where the text service component
displays converted text. The client application and the text service component share
control over the active input area.

The active input area is almost like a small window with invisible borders inside of the
application’s document window. It replaces the insertion point in the document, but it
can be any width; it can even occupy more than one entire line of text. Text within the
active input area can have its own font and size, different from that of body text. Text
within the active input area can even scroll out of sight if there is more text than can fit in
the space allotted for it in the active input area.

The application is responsible for determining the location and size of the active input
area, and for drawing and highlighting all text within it. The text service component
is responsible for accepting user input (as key-down events), for converting input text
to final text, and for telling the application what characters to draw—and what
characters to accept as confirmed—at every step of the way. The text service component
can also instruct the application to scroll certain parts of the active input area into
view, if necessary.
About the Text Services Manager 7-11

C H A P T E R 7

Text Services Manager

The text service component processes the user input, called raw text, as it is entered. The
text service component first has the application draw the text on the screen as entered.
Then it converts the raw text, translating it from phonetic or syllabic to ideographic or
complex syllabic characters. Finally, it confirms the converted text upon user approval of
the conversion. By convention in some script systems, a text service component converts
text when the user presses the Space bar after entering a sequence of characters, and
confirms the converted text when the user presses Return to accept the conversion.
See Figure 7-5. (In Korean, conversion happens continuously and automatically, and
confirmation happens by convention when the user presses either Return or the
Space bar.)

Figure 7-5 Entering, converting, and confirming text in an active input area

The text service component continually removes the confirmed input from the active
input area and sends it to the application for storage in its text buffer. The text service
component uses Apple events for this purpose, and for notifying the application of every
character (raw, converted, or confirmed) that needs to be drawn or highlighted within
the active input area.

In a number of situations, a client application may need to initiate the confirmation of
input in progress. For example, if a user switches input methods, makes a menu
selection, or selects text outside the active input area, the user has implicitly requested
confirmation of the existing text. The client application needs to inform the text service
component so it can confirm all text, whether raw or converted, in the active input area.
The client application can make that request through a call to the Text Services Manager.

1. User enters raw text (gray underline) into
 active input area.

3. User presses Return; converted text is
 confirmed (no underline). Active input
 area closes.

2. User presses Space bar; raw text is
 converted (black underline) but remains
 in active input area.

4. New active input area opens when user
 enters more raw text.
7-12 About the Text Services Manager

C H A P T E R 7

Text Services Manager

7

Text S
ervices M

anager

Floating Input Windows 7

The Text Services Manager also provides a service to facilitate the use of an input
window for text entry and conversion when inline input is not supported by the
application or not desired by the user. This floating input window is a standard
bottomline input window: it usually appears in the lower portion of the screen, although
the user can drag it to any location. Once the user’s text has been converted correctly
in the window, it is sent to the application.

The Text Services Manager’s floating input window is mainly for use with applications
that are not TSM-aware. See Figure 7-4. The input window uses the floating window
service, a part of the Text Services Manager. It works this way:

1. The Process Manager intercepts key-down events and passes them to the
Text Services Manager.

2. The Text Services Manager passes them to the appropriate input method
for processing.

3. The input method then passes the processed text back to the Text Services Manager.
The floating window service displays the text in a floating input window.

4. When the user is finished with the text, the floating window service passes the
processed text back to the client application through standard key-down events
(not Apple events).

Figure 7-6 How a non-TSM-aware application uses the Text Services Manager

In this way the Text Services Manager can provide an input method text service
component for applications that have no knowledge of the text services environment.

TSM-aware applications should normally use inline input. However, the Text Services
Manager does allow TSM-aware applications to use a floating input window. Users may
prefer bottomline input if the size of the text displayed in the document makes reading
the characters difficult.

Other calls

Non-TSM-

aware

application

Flow of text input

Text Services

ManagerInput

Text service

component

Key-down

event

Key-down

event

Floating window

service
About the Text Services Manager 7-13

C H A P T E R 7

Text Services Manager

Floating Utility Windows 7

Floating windows are useful for more than just text entry. Input methods can use the
Text Services Manager floating window service to create utility windows—floating
windows that display palettes or present lists of choices to the user. For example, most
Japanese input methods let a user set the input mode to either 2-byte Hiragana, 1-byte
Hiragana, 2-byte Romaji, or 1-byte Romaji. In the past, users selected these modes from
controls inside the input method’s input window. Now, since the system provides a
standard floating input window for non-TSM-aware applications as well as for
TSM-aware applications that request it, input methods should offer mode selection in a
separate floating palette. Figure 7-3 on page 7-8 shows an example of a floating palette
window used with bottomline input; Figure 7-9 on page 7-33 shows the same palette
used with inline input.

Figure 7-7 illustrates the window-layer organization provided by the Text Services
Manager. A floating window, whether an input window or a utility window, is always in
front of all application windows but behind any help balloons.

Figure 7-7 Floating window service layer

About Text Service Components 7

Text service components are components as defined and used by the Component
Manager. They have a specific structure, interface, and manner of execution. For more
information on components, see the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox. This section briefly describes the component description record,
a data structure associated with a text service component.

Application layers

Input window

Floating palette

Help layer

Help
balloon

Floating window layer
7-14 About Text Service Components

C H A P T E R 7

Text Services Manager

7

Text S
ervices M

anager

The component description record, maintained by the Component Manager for each
registered component, identifies the characteristics of the component, including the
nature of services provided by the component and the manufacturer of the component. It
is filled out by the text service component at initialization.

The ComponentDescription data type defines the format of the component
description record:

TYPE ComponentDescription =

RECORD

componentType: OSType; {command set ID}

componentSubType: OSType; {specifies flavor}

componentManufacturer:

OSType; {vendor ID}

componentFlags: OSType; {control flags}

componentFlagsMask: OSType; {mask for control flags}

END;

Field descriptions

componentType For text service components, this field contains the interface type.
The interface type specifies the set of Apple events and component
commands associated with the text service component. Currently,
all text service components have the same interface type,
kTextService, whose associated 4-character tag is 'tsvc'. To
obtain a list of all available text service components, a client
application can specify the value kTextServices in the
componentType field when calling the Component Manager
routine GetServiceList.

componentSubType
For text service components, this field contains the text service
component type. The text service component type specifies the
function and optionally a set of additional routines and data
structures associated with that particular kind of text service
component. Currently, only one text service component type is
defined, 'inpm', specifying an inline input method.

componentManufacturer
The identification number of the manufacturer of this particular text
service component.
About Text Service Components 7-15

C H A P T E R 7

Text Services Manager

componentFlags Four bytes that contain component-specific information. See
Figure 7-8:
Bits 0–7 contain the language code (as unsigned 8 bits).
Bits 8–14 contain the script code (as unsigned 7 bits).
Bit 15 indicates whether the text service component takes active
events. When bit 15 = 1, the text service component is interactive
and accepts user events. When bit 15 = 0, the text service
component is not interactive—that is, it only supplies batch services.
Apple has reserved bits 16–23, so text services must set them to 0.
The Component Manager defines bits 24–31.

Figure 7-8 The format of the componentFlags field of the component description record

componentFlagsMask
Four bytes that contain values used to affect the componentFlags
field. This field should be 0 in the component description record for
any text service component.

For example, an input method for the Japanese script system might assign the following
values to the componentType, componentSubType, and componentFlags fields of
component description record.

cd: ComponentDescription;

cd.componentType := kTextService; {'tsvc'}

cd.componentSubType := kInputMethodService; {'inpm'}

cd.componentFlags := $0000810B; {Japanese script & language }

{ --takes user events}

31 24 23 16 15 14 8 7 0

Language code
Script code
Takes active key events
Reserved: must be set to 0
Flags defined by the Component Manager
7-16 About Text Service Components

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Using the Text Services Manager (for Client Applications) 7

This section describes how your client application can use the Text Services Manager
application interface to communicate with text service components, how it can use
Apple event handlers to receive information from text service components, and how it
can communicate directly with text service components—bypassing the Text Services
Manager altogether—for special purposes.

Testing for the Availability of the Text Services Manager 7
Use the Gestalt environmental selector gestaltTSMgrVersion to determine
whether the Text Services Manager is available. The Gestalt function returns a 32-bit
value indicating which version of the Text Services Manager is installed.

For more information on the Gestalt function, see the Gestalt Manager chapter in
Inside Macintosh: Operating System Utilities.

Calling the Text Services Manager 7
The application interface to the Text Services Manager consists of application-level calls
that your client application uses to send information to text service components by way
of the Text Services Manager. They are documented in detail under “Text Services
Manager Routines for Client Applications” on page 7-48. The Text Services Manager
maps many of those calls to equivalent component-level calls to text service components.
Those text service component routines are described under “Text Service Component
Routines” on page 7-84.

This section describes how your client application can use the application interface to the
Text Services Manager to

■ prepare for communication with the Text Services Manager

■ create an internal record called a TSM document

■ make text services other than text input available to the user

■ activate and deactivate a TSM document

■ give text service components a chance to handle events, respond to menu selections,
and set the shape of the cursor

■ explicitly confirm text within the active input area

■ terminate communication with the Text Services Manager
Using the Text Services Manager (for Client Applications) 7-17

C H A P T E R 7

Text Services Manager
Initializing as a TSM-Aware Application 7

If your client application plans to use any of the Text Services Manager
application-interface routines, it must call InitTSMAwareApplication at startup,
immediately after calling the rest of the Toolbox initialization routines. See Listing 7-1.

Listing 7-1 Initializing as a TSM-aware application

FUNCTION Initialize: OSErr;

VAR

myErr: OSErr;

BEGIN

InitGraf(@thePort);

InitFonts;

InitWindows;

InitMenus;

TEInit;

InitDialogs(NIL);

InitCursor;

IF (InitTSMAwareApplication = noErr) THEN

Initialize := DoNew; {application routine that }

{ creates window & TSM document}

END;

The Text Services Manager records the fact that your client application is TSM-aware,
and allocates any private data storage as necessary.

Creating a TSM Document 7

Your client application needs to create an internal record called a TSM document
(defined by the TSMDocument data type) before it can use any services provided
through the Text Services Manager. A TSM document is a private data structure that is
associated with each of your application’s documents that use a text service. You cannot
access the TSM document record directly. You call the NewTSMDocument function to
instruct the Text Services Manager to create the TSM document. The Text Services
Manager returns a TSM document ID, an identifier that you supply in subsequent calls
to the Text Services Manager.

Typically, you create a TSM document for each window that your application uses. Use
the supportedInterfaceTypes array to indicate which text service interfaces you
support. Currently only one interface is defined—'tsvc', the component type for text
services components. Pass any data you like in the refcon parameter to the call. The
Text Services Manager returns the refcon value in the keyAETSMDocumentRefcon
parameter of any Apple event sent to your application. You can then use the refcon
value to determine which TSM document and window the Apple event belongs to.
7-18 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Listing 7-2 shows the sample application’s DoNew function, which is called from the
initialization routine presented in Listing 7-1. The call to NewTSMDocument specifies
that the application supports one interface type (kTextService). NewTSMDocument
opens the default input method for the current keyboard script, assigns it to this
document, and returns the TSM document ID in the idocID parameter. The routine
makes use of a modified window record (type MyWindowRecord) that is a standard
window record with an additional field for holding the TSM document ID.

Listing 7-2 Creating a new TSM document and associating it with a window

FUNCTION DoNew: OSErr;

VAR

wRecordPtr: myWindowPtr;

window: WindowPtr;

supportedTypes: InterfaceTypeList;

myErr: OSErr;

BEGIN

supportedTypes[0] := kTextService;

{allocate storage for window record}

wRecordPtr := myWindowPtr(NewPtr(sizeof(myWindowRecord)));

IF wRecordPtr <> NIL THEN

BEGIN

IF gColorQDAvailable THEN

window := GetNewCWindow(kWINDResID, Ptr(wRecordPtr),

WindowPtr(-1))

ELSE

window := GetNewWindow(kWINDResID, Ptr(wRecordPtr),

WindowPtr(-1));

IF window = NIL THEN {couldn't get window}

BEGIN

DisposePtr(Ptr(wRecordPtr)); {clean up}

DoNew := kWindowFailed;

Exit(DoNew);

END;

myErr := NewTSMDocument(1, supportedTypes,

wRecordPtr^.idocID,

LongInt(wRecordPtr));

END;

{do other window intialization, like creating scroll bars}

DoNew := myErr;

END;
Using the Text Services Manager (for Client Applications) 7-19

C H A P T E R 7

Text Services Manager
Making Text Services Available to the User 7

Text services that are input methods are always displayed in the keyboard menu. System
software takes care of that; your application does not need to list input methods.
However, your application may wish to provide a menu or scrolling list to display other
types of available text services. (Note that, currently, no text services other than input
methods are available. This capability is provided for future extensibility.)

To obtain a list of the available text services on the user’s system, call the
GetServiceList function. You pass it an array of interface types (to indicate the types
of services you want returned in the list) and a pointer to a data structure (to hold the
list). The function returns the number of available components, and a name and
component identifier for each one.

Because text service components can be registered or unregistered at any time, your
client application should periodically call either GetServiceList or the Component
Manager function GetComponentListModSeed to see if the list of registered text
service components may have changed.

IMPORTANT

If your client application displays a list or menu of text
service components, do not show input methods. They are already
displayed in the Keyboard menu. To show them in two places would
be confusing to users. ▲

The Text Services Manager automatically opens input methods; your client application
does not have to open them. You do have to explicitly open all other types of text
services, however. If the user chooses a text service from a menu or list that you have
displayed, you need to open that text service.

You call the OpenTextService function to associate the text service component with
the current TSM document. OpenTextService then returns a valid component
instance to indicate that the text service component has been opened and initialized.

Whenever a user wishes to close a text service component that you have opened, call the
CloseTextService function.

Activating and Deactivating a TSM Document 7

To notify the Text Services Manager that a window in your client application associated
with a TSM document has been activated, and that you are ready to use a text service
component, use the ActivateTSMDocument function.

Listing 7-3 shows how to handle activating and deactivating a TSM document. You
specify the document using the ID assigned to it when it was created (with the
NewTSMDocument function). This routine, like the previous samples, assumes that
the application has an extended window record with a field, idocID, that contains the
TSM document ID.
7-20 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Listing 7-3 Activating and deactivating a TSM document

PROCEDURE DoActivate(window: WindowPtr; becomingActive: Boolean);

VAR

myErr: OSErr;

BEGIN

IF becomingActive THEN

myErr := ActivateTSMDocument(MyWindowPtr(window)^.idocID)

ELSE

myErr := DeactivateTSMDocument(MyWindowPtr(window)^.idocID);

END;

When the Text Services Manager receives an ActivateTSMDocument call, it deactivates
the currently active TSM document (if it hasn’t already been explicitly deactivated) and
stores the new document as the currently active TSM document. If the specified text
service component for the document has a menu, the Text Services Manager inserts the
menu into the menu bar as an application or system menu.

When a window in your client application associated with a TSM document has been
deactivated, you should call the DeactivateTSMDocument function. The Text Services
Manager in turn calls the text service component function DeactivateTextService
for any text service components associated with the TSM document being deactivated.

Input-method text services are handled in a special way: the identity of the input method
of the deactivated document is retained by the Text Services Manager, and compared
with the input method used by the next activated document. If the newly active
document uses the same input method, the Text Services Manager will simply activate
the new instance of the same input method. If the documents use different input
methods, the previous input method is then closed, and any windows belonging to it are
closed and menus are removed. The new input method is then activated. Not closing an
input method until it is actually unneeded avoids extra removal and immediate
redisplay of input method palettes and menus.

Passing Events, Menu Selections, and Cursor Setting 7

Whenever your client application receives an event from the Event Manager function
WaitNextEvent, you need to give each text service component an opportunity to
handle that event, if appropriate. Use the TSMEvent function to let the Text Services
Manager dispatch the events to the correct text service component. You provide a pointer
to the event record containing the event. The Text Services Manager passes the event in
turn to each component associated with the currently active TSM document, starting
with input methods. If the event is handled by a component, TSMEvent returns TRUE
and the event is changed to a null event. If the event is not handled, TSMEvent returns
FALSE and you are responsible for handling the event.

Listing 7-4 is a partial example of an event handler in which the application passes
events to the Text Services Manager for routing to text service components. If no text
service component handles an event, the application handles it. The global variable
Using the Text Services Manager (for Client Applications) 7-21

C H A P T E R 7

Text Services Manager
gUsingTSM is TRUE if the Text Services Manager is present and the application is
making use of it.

Listing 7-4 Passing events to a text service component

PROCEDURE MyDoEvent(event: eventRecord);

VAR

handledByTS: Boolean;

gotEvent: Boolean;

BEGIN

WHILE TRUE DO

BEGIN

IF gHasWaitNextEvent THEN

BEGIN

gotEvent := WaitNextEvent(everyEvent, event,

kSleep, NIL);

handledByTS := FALSE;

IF (gUsingTSM AND gotEvent) THEN

handledByTS := TSMEvent(event);

END;

IF gotEvent AND (NOT handledByTS) THEN

{process event in normal way}

;

END;

END;

Whenever a user chooses a menu item, it may be from a text service component’s menu;
your application must therefore give the text service component a chance to respond.
(This situation occurs only with text service components that are not input methods.)
To do this, use the TSMMenuSelect function with the result from the Menu Manager
function MenuSelect in the menuResult parameter. If TSMMenuSelect returns TRUE,
then the text service component has handled the menu selection, so your client
application does not need to do so. However, your application is still responsible for
removing the highlighting from the menu title after the selection has been handled.

Your client application is generally responsible for setting the cursor to an appropriate
shape. However, the text service component may have its own cursor requirements
when the cursor is within the boundaries of its windows or palettes. To allow a text
service component to set the cursor, use the SetTSMCursor function. Call it whenever
you would normally set the cursor yourself. If SetTSMCursor returns TRUE, the cursor
is either on a text service component window or on the active input area and a text
service component has set the cursor. In this case, you should not set the cursor.
7-22 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Confirming Active Text Within a TSM Document 7

Normally, an input method text service component ejects finished input from the active
input area continually as it processes user events, sending the confirmed text to your
application with the Update Active Input Area Apple event.

Circumstances may arise in which you need to confirm input in progress before the text
service component ejects it (that is, before the user presses Return). If, for example, the
user clicks the mouse in text outside the active input area, that constitutes an implicit
user acceptance of the text in the active input area. You should explicitly terminate any
active input and save the text that is in the active input area by calling the
FixTSMDocument function. The text service component sends the confirmed text to
your application and empties the active input area.

Listing 7-5 shows what happens when the user clicks the go-away box of the active
document window after entering some text in the active input area. The global variable
gIDocID represents the ID of the active TSM document.

Listing 7-5 Confirming text in an active input area

PROCEDURE DoMouseDown (event: EventRecord);

VAR

part: Integer;

theWindow: WindowPtr;

myErr: OSErr;

BEGIN

part := FindWindow(event.where, theWindow);

CASE part OF

inContent:

DoContentClick(theWindow, event);

inDrag:

DragWindow(theWindow, event.where,

theWindow^.portRect);

inGoAway:

IF TrackGoAway(theWindow, event.where) THEN

BEGIN

myErr := FixTSMDocument(gIDocID); {confirm text}

DoActivate(theWindow, FALSE); {deactivate window}

HideWindow(theWindow); {put it away}

gVisible := FALSE;

END;

END;

END;
Using the Text Services Manager (for Client Applications) 7-23

C H A P T E R 7

Text Services Manager
Deleting a TSM Document 7

When your client application closes a document window and no longer needs its
associated TSM document, it needs to call the DeleteTSMDocument function to inform
the Text Services Manager that the TSM document should be deleted.

The Text Services Manager closes the text service components for the specified TSM
document by calling the Component Manager CloseComponent function for each open
text service component. It then disposes of the internal TSM document record for the
specified TSM document.

Closing Down as a TSM-Aware Application 7

To let the Text Services Manager perform needed housekeeping chores when your
application has closed, your client application needs to call
CloseTSMAwareApplication just before quitting, as shown in Listing 7-6.

Listing 7-6 Closing a TSM-aware application

FUNCTION DoQuitApplication: OSErr;

VAR

myErr: OSErr;

BEGIN

{app-specific clean up}

myErr := CloseTSMAwareApplication; {ignore the error}

ExitToShell;

END;

Requesting a Floating Input Window for Text Entry 7

Your client application may need to provide for users who prefer to enter text using a
floating input window instead of entering text directly in the line of a document. For
example, when the text font size is too small for reading ideographic characters, too big
for convenient entry directly into the document window, or is being greeked, users may
prefer a floating input window.

Your client application calls the UseInputWindow function with the useInputWindow
parameter set to TRUE to display a floating input window for the TSM document you
specify in the idocID parameter to the call. To display floating input windows for all
documents associated with your application, you set the idocID parameter to NIL and
the useInputWindow parameter to TRUE. To return to inline input, call
UseInputWindow with the useInputWindow parameter set to FALSE.
7-24 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Associating Input Methods With Scripts and Languages 7

If you use the application-interface routines, the Text Services Manager automatically
associates a default input method with your TSM document every time the current script
and language change. Although it is unlikely that it would ever need to, your client
application can use Text Services Manager routines to control that automatic association.

The Operating System uses the GetDefaultInputMethod and
SetDefaultInputMethod functions to associate an input method with a given script
and language. When the user uses the Keyboard menu, Keyboard control panel, or other
device for controlling input method preferences, these functions establish permanent
associations (they last across restarts).

The Text Services Manager maintains a current text service language that it uses to
synchronize input methods to the current script system and language. The Operating
System calls the SetTextServiceLanguage function when the user switches the
keyboard script, and the floating window service calls the GetTextServiceLanguage
function to determine the text service language.

These routines make use of the script-language record, described under “Identifying the
Supported Scripts and Languages” on page 7-42.

If your client application uses the Text Services Manager application-interface
routines, the Text Services Manager automatically synchronizes the input method to the
current text service language and there is no need to make the calls described here.
If your client application bypasses the Text Services Manager and uses the text
service component routines, the Text Services Manager does not provide automatic input
method synchronization and you may have to make some of these calls yourself.
See “Direct Access to Text Service Components” on page 7-36 for more information
on the Component Manager and on how to communicate directly with text
service components.

Handling Text Service Apple Events 7
Text service components send information to your client application through Apple
events. To communicate with an input method text service component, you need to
implement Apple event handlers that

■ receive raw, converted, or confirmed text from the input method, update the active
input area, and highlight text appropriately

■ convert screen location (in global coordinates) to text offset (in the active input area or
in the application’s text buffer), so that the input method can, for example, adjust the
caret position or cursor display to reflect the text beneath the cursor

■ convert text offset to screen location, so that the input method can, for example, place
a list of conversion options next to a particular section of raw text

■ respond to the input method’s request to show or hide a floating input window
Using the Text Services Manager (for Client Applications) 7-25

C H A P T E R 7

Text Services Manager
Each Apple event contains two required parameters:

■ The keyAETSMDocumentRefcon parameter is filled in by the Text Services Manager.
It tells the application which TSM document is affected by the Apple event.

■ The keyAEServerInstance parameter is filled in by the text service component,
and identifies the component that is sending the Apple event.

Other parameters are specific to each Apple event, and are described under “Apple
Event Handlers Supplied by Client Applications” on page 7-65.

For general rules for writing Apple event handlers, see the discussion of the Apple Event
Manager in Inside Macintosh: Interapplication Communication.

Receiving Text and Updating the Active Input Area 7

The text service component uses the Update Active Input Area Apple event to request
that your client application create and update an active input area, including drawing
text in the active input area, and accepting confirmed text. For details on active input
areas, see “Inline Input” on page 7-11. This Apple event also asks the client application to
update a range of text in the active input area and highlight appropriately.

Because your application is responsible for all drawing in the active input area, it
receives an Update Active Input Area Apple event whenever the user enters raw text (for
example, Romaji for Japanese input), whenever that raw text is converted to an
intermediate form (for example, Hiragana), whenever the text is converted (for example,
to Kanji), and whenever the converted text is confirmed. The input method also uses this
Apple event to instruct your application in how to highlight the various types of text
(raw, converted, and so on) within the active input area.

The input method uses the Update Active Input Area Apple event to send additional
information to your application, such as current caret position, a range of text that
should be scrolled into view if it is not visible, and boundaries of clauses
(language-specific groupings of text) that may exist in the active input area.

Listing 7-7 shows a sample handler for the Update Active Input Area Apple event.
The handler first receives the input parameters, including the text and the ranges of
text to highlight and update. The handler then puts any confirmed text into the
application’s text buffer.

Listing 7-7 A sample handler for the Update Active Input Area Apple event

FUNCTION MyHandleUpdateActive(theAppleEvent: AppleEvent;

reply: AppleEvent;

handlerRefCon: LongInt): OSErr;

VAR

theHiliteDesc: AEDesc;

theUpdateDesc: AEDesc;

theTextDesc: AEDesc;

myErr: OSErr;
7-26 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
returnedType: DescType;

script: ScriptLanguageRecord;

fixLength: LongInt;

refcon: LongInt;

textSize: LongInt;

actualSize: LongInt;

thePinRange: TextRange;

BEGIN

{Get the required parameter keyAETSMDocumentRefcon}

myErr := AEGetParamPtr(theAppleEvent, keyAETSMDocumentRefcon,

typeLongInteger, returnedType, @refcon,

sizeof(refcon), actualSize);

IF myErr = noErr THEN

BEGIN

{Get the required parameter keyAETheData}

theTextDesc.dataHandle := NIL;

myErr := AEGetParamDesc(theAppleEvent, keyAETheData,

typeChar, theTextDesc);

END;

IF myErr <> noErr THEN

BEGIN

MyHandleUpdateActive := myErr;

Exit(MyHandleUpdateActive);

END;

{Get the required parameter keyAEScriptTag}

myErr := AEGetParamPtr(theAppleEvent, keyAEScriptTag,

typeIntlWritingCode, returnedType,

@script, sizeof(script), actualSize);

IF myErr = noErr THEN

{Get the required parameter keyAEFixLength}

myErr := AEGetParamPtr(theAppleEvent, keyAEFixLength,

typeLongInteger, returnedType,

@fixLength, sizeof(fixlength),

actualSize);

IF myErr = noErr THEN

BEGIN

{Get the optional parameter keyAEHiliteRange}

theHiliteDesc.dataHandle := NIL;

myErr := AEGetParamDesc(theAppleEvent, keyAEHiliteRange,

typeTextRangeArray, theHiliteDesc);

END;
Using the Text Services Manager (for Client Applications) 7-27

C H A P T E R 7

Text Services Manager
IF myErr <> noErr THEN

BEGIN

MyHandleUpdateActive := myErr;

myErr := AEDisposeDesc(theTextDesc); {ignore the error}

Exit(MyHandleUpdateActive);

END;

{Get the optional parameter keyAEUpdateRange}

theUpdateDesc.dataHandle := NIL;

myErr := AEGetParamDesc(theAppleEvent, keyAEUpdateRange,

typeTextRangeArray, theUpdateDesc);

IF myErr <> noErr THEN

BEGIN

MyHandleUpdateActive := myErr;

myErr := AEDisposeDesc(theTextDesc); {ignore the error}

myErr := AEDisposeDesc(theHiliteDesc);

Exit(MyHandleUpdateActive);

END;

{Get the optional parameter keyAEPinRange}

myErr := AEGetParamPtr(theAppleEvent, keyAEPinRange,

typeTextRange, returnedType,

@thePinRange, sizeof(thePinRange),

actualSize);

MyHandleUpdateActive := myErr;

IF myErr = noErr THEN

BEGIN

textSize := GetHandleSize(theTextDesc.dataHandle);

MyHandleUpdateActive := MemError;

IF MemError = noErr THEN

BEGIN

{if the value of keyAEFixLength is -1, the text }

{ contained in the keyAETheData parameter should }

{ completely replace the active input area in }

{ the application window}

IF fixLength = -1 THEN fixLength := textSize;

{the application procedure SetNewText handles }

{ updating and confirming the text in the active }

{ input area, highlighting, and scrolling the }

{ specified offsets into view}
7-28 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
SetNewText(refcon, script, theTextDesc.dataHandle,

textSize, fixLength,

TextRangeArrayHandle(theUpdateDesc.dataHandle),

TextRangeArrayHandle(theHiliteDesc.dataHandle));

END;

END;

myErr := AEDisposeDesc(theTextDesc); {ignore the errors}

myErr := AEDisposeDesc(theHiliteDesc);

myErr := AEDisposeDesc(theUpdateDesc);

END;

Converting Screen Position to Text Offset 7

An input method text service component uses the Position To Offset Apple event when it
needs to know the byte offset in a text buffer (usually the buffer corresponding to the
active input area) corresponding to a given screen position. An input method typically
sends the Position To Offset Apple event to your application in response to a
mouse-down event. If the event location is in the application window (including the
active input area), the input method may want to know which character the event
corresponds to, in order to locate the caret or define highlighting.

An input method may also send Position To Offset in response to SetTSMCursor, so
that it can modify the appearance of the cursor depending on the type of text the cursor
passes over.

Your application’s handler returns a byte offset and a value indicating whether the
screen position is within the active input area. If it is, the offset is measured from the
start of the active input area (the leading edge of the first character on the first line). If it
is not, the offset is measured from the beginning of the application’s body text. The
definition of body text and the significance of measurements within it are specific to your
application; here it means any application text outside of the active input area.

To help the input method more specifically define individual characters, your
application can optionally return an indication as to whether the position corresponds to
the leading edge or the trailing edge of the glyph corresponding to the character at the
indicated offset.

The Position To Offset Apple event is similar in function to the QuickDraw
PixelToChar function, and returns similar results. Your handler may use
PixelToChar to get the information it returns to the text service component, or it may
use a TextEdit call, as shown in the following code sample.

Listing 7-8 shows a sample handler for the Position To Offset Apple event. The handler
first receives the input parameters, then uses the TextEdit function TEGetOffset to
convert a screen location to text offset. The TEGetOffset function is described in the
chapter “TextEdit” in this book.
Using the Text Services Manager (for Client Applications) 7-29

C H A P T E R 7

Text Services Manager
Listing 7-8 A sample handler for the Position To Offset Apple event

FUNCTION MyHandlePos2Offset(theAppleEvent: AppleEvent;

reply: AppleEvent;

handlerRefCon: LongInt): OSErr;

VAR

myErr: OSErr;

returnedType: DescType;

refcon: LongInt;

currentPoint: Point;

clickWindow: WindowPtr;

where, part: Integer;

oldPort: GrafPtr;

offset: LongInt;

te: TEHandle;

actualSize: LongInt;

bodyRect: Rect;

dragging: Boolean;

isMatch: Boolean;

BEGIN

{Get the required parameter TSMDocumentRefcon}

myErr := AEGetParamPtr (theAppleEvent, keyAETSMDocumentRefcon,

typeLongInteger, returnedType, @refcon,

sizeof(refcon), actualSize);

IF myErr = noErr THEN

{Get the required parameter keyAECurrentPoint}

myErr := AEGetParamPtr (theAppleEvent, keyAECurrentPoint,

typeQDPoint, returnedType,

@currentPoint,

sizeof(currentPoint), actualSize);

IF myErr <> noErr THEN

BEGIN

MyHandlePos2Offset := myErr;

Exit(MyHandlePos2Offset);

END;

where := kTSMOutsideOfBody;

part := FindWindow(currentPoint, clickWindow);

{the application function IsWindowForTheAE returns TRUE}

{if the refcon is associated with the window}

isMatch := IsWindowForTheAE(refcon, clickWindow);
7-30 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
IF ((clickWindow = FrontWindow) AND

isMatch AND (part = inContent)) THEN

BEGIN

GetPort(oldPort);

SetPort(clickWindow);

{convert currentPoint into the local }

{ coordinates of the current grafport}

GlobalToLocal(currentPoint);

{the application function GetTheBodyRect returns the}

{body rect of the window}

bodyRect := GetTheBodyRect(clickWindow);

IF PtInRect(currentPoint, bodyRect) THEN

BEGIN

where := kTSMInsideOfBody;

{the application function FindTheTEHandle returns the }

{ window’s TEHandle. Then the TextEdit function }

{ TEGetOffset returns the offset corresponding to the point}

te := FindTheTEHandle (clickWindow);

offset := TEGetOffset(currentPoint, te);

{The application function IsInsideInputArea returns }

{ TRUE if offset is within the active input area. }

{ It is application's responsibility to remember }

{ the range of the input area.}

IF IsInsideInputArea(offset, clickWindow) THEN

where := kTSMInsideOfActiveInputArea;

END;

{get the optional parameter: keyAEDragging}

dragging := FALSE;

myErr := AEGetParamPtr (theAppleEvent, keyAEDragging,

typeBoolean, returnedType,

@dragging, sizeof(dragging),

actualSize);

END;

IF myErr <> noErr THEN
Using the Text Services Manager (for Client Applications) 7-31

C H A P T E R 7

Text Services Manager
BEGIN

MyHandlePos2Offset := myErr;

Exit(MyHandlePos2Offset);

END;

{if the parameter keyAEdragging is TRUE and the mouse}

{ position is outside the body text, the application }

{ can scroll the text within the active input area, }

{ rather than returning kTSMOutsideOfBody. The application }

{ procedure HandleScroll is handling the scrolling.}

IF (dragging = TRUE) AND (where = kTSMOutsideOfBody) THEN

BEGIN

HandleScroll(te, offset);

where := kTSMInsideOfActiveInputArea;

END;

SetPort(oldPort);

{Construct the return parameter keyAEOffset}

myErr := AEPutParamPtr(reply, keyAEOffset, typeLongInteger,

@offset, sizeof(offset));

IF myErr = noErr THEN

{Construct the return parameter keyAERegionClass}

MyHandlePos2Offset := AEPutParamPtr(reply, keyAERegionClass,

typeShortInteger,

@where, sizeof(where))

ELSE MyHandlePos2Offset := myErr;

END;

Converting Text Offset to Screen Position 7

An input method text service component uses the Offset To Position Apple event when it
needs to know the screen position corresponding to a given byte offset in the text buffer
for the active input area. An input method typically sends the Offset To Position Apple
event to your application when it needs to draw something in a specific spatial
relationship with a given character in the active input area. For example, it may need to
draw a floating window containing suggested conversion options beside a particular
range of raw or converted text. See Figure 7-9.

The text service component supplies a byte offset, measured from the character at the
start of the active input area. The application returns a point designating the global
coordinates of the caret position corresponding to that offset. Your application may
optionally return information about the font, size, and other measurements of the text in
the active input area, so that the text service component can more precisely locate the
elements it is to draw.
7-32 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Figure 7-9 Drawing a window with conversion options next to the active input area

The Offset To Position Apple event is similar in function to the QuickDraw
CharToPixel function, and it returns similar results. Your handler may use
CharToPixel to get the information it returns to the text service component, or it may
use a TextEdit call, as shown in the following code sample.

Listing 7-9 shows a sample handler for the Offset To Position Apple event. The handler
first receives the input parameters, then uses the TextEdit function TEGetPoint to
convert a text offset to a screen location. The TEGetPoint function is described in the
chapter “TextEdit” in this book.

Listing 7-9 A sample handler for the Offset To Position Apple event

FUNCTION MyHandleOffset2Pos(theAppleEvent: AppleEvent;

reply: AppleEvent;

handlerRefCon: LongInt): OSErr;

VAR

myErr: OSErr;

rtErr: OSErr;

returnedType: DescType;

offSet: LongInt;

refcon: LongInt;

actualSize: LongInt;

theWindow: WindowPtr;

te: TEHandle;

oldPort: GrafPtr;

thePoint: Point;

theFixed: Fixed;

BEGIN
Using the Text Services Manager (for Client Applications) 7-33

C H A P T E R 7

Text Services Manager
{Get the required parameter keyAEOffset}

myErr := AEGetParamPtr(theAppleEvent, keyAEOffset,

typeLongInteger, returnedType, @offSet,

sizeof(offSet), actualSize);

IF myErr = noErr THEN

{Get the required parameter TSMDocumentRefcon}

myErr := AEGetParamPtr(theAppleEvent,

keyAETSMDocumentRefcon,

typeLongInteger, returnedType,

@refcon, sizeof(refcon),

actualSize);

IF myErr <> noErr THEN

BEGIN

MyHandleOffset2Pos := myErr;

Exit(MyHandleOffset2Pos);

END;

{the application function GetWindowFromRefcon returns the }

{ window which is associated with the refcon}

rtErr := noErr; {initialize rtErr}

theWindow := GetWindowFromRefcon(refcon);

IF theWindow = NIL THEN

rtErr := errOffsetInvalid

ELSE

BEGIN

{the application function FindTheTEHandle returns the }

{ TEHandle for the window}

te := FindTheTEHandle(theWindow);

{the TextEdit function TEGetPoint returns the point }

{ corresponding to the given offset}

thePoint := TEGetPoint(offSet, te);

IF (offSet > te^^.teLength) OR (offSet < 0) THEN

rtErr := errOffsetInvalid

ELSE IF(PtInRect(thePoint,theWindow^.portRect) = FALSE) THEN

rtErr := errOffsetIsOutsideOfView

ELSE

BEGIN

GetPort(oldPort);

SetPort(theWindow);
7-34 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
{Convert thePoint into global coordinates}

LocalToGlobal(thePoint);

SetPort(oldPort);

END;

{construct the return parameter keyAEPoint}

myErr := AEPutParamPtr(reply, keyAEPoint, typeQDPoint,

@thePoint, sizeof(thePoint));

IF myErr = noErr THEN

{construct the optional return parameter keyAETextFont}

myErr := AEPutParamPtr(reply, keyAETextFont,

typeLongInteger, @te^^.txFont,

sizeof(longInt));

IF myErr = noErr THEN

BEGIN

{construct optional return parameter keyAETextPointSize}

theFixed := BSL(Fixed(te^^.txSize), 16);

myErr := AEPutParamPtr(reply, keyAETextPointSize,

typeFixed, @theFixed,

sizeof(theFixed));

END;

IF myErr = noErr THEN

{construct optional return parameter keyAETextLineHeight}

myErr := AEPutParamPtr(reply, keyAETextLineHeight,

typeShortInteger, @te^^.lineHeight,

sizeof(Integer));

IF myErr = noErr THEN

{construct optional return parameter keyAETextLineAscent}

myErr := AEPutParamPtr(reply, keyAETextLineAscent,

typeShortInteger, @te^^.fontAscent,

sizeof(Integer));

IF myErr = noErr THEN

BEGIN

{construct the optional return parameter keyAEAngle-- }

{90 = horizontal direction, 180 = vertical direction}

theFixed := Fixed(90);

myErr := AEPutParamPtr(reply, keyAETextPointSize,

typeFixed, @theFixed,

sizeof(Fixed));

END;

IF myErr <> noErr THEN

BEGIN
Using the Text Services Manager (for Client Applications) 7-35

C H A P T E R 7

Text Services Manager
MyHandleOffset2Pos := myErr;

Exit(MyHandleOffset2Pos);

END;

END;

{Construct the return parameter keyErrorNumber}

MyHandleOffset2Pos := AEPutParamPtr(reply, keyErrorNumber,

typeShortInteger, @rtErr,

sizeof(rtErr));

END;

Showing or Hiding the Input Window 7

Input methods that work with a floating input window often offer options to the user for
either (1) continually displaying the input window, (2) displaying it only as text is being
typed in and hiding it immediately after the user confirms it, or (3) leaving the window
up for a specified amount of time after confirmation. The Show/Hide Input Window
Apple event requests that your client application make the bottomline floating input
window either visible or not visible. An input method text service component sends this
Apple event whenever it needs to know or change the current state of the window.

This Apple event is for use only by applications that display their own input windows. If
your application does not itself control the display of a floating input window, you can
ignore this Apple event. If your application uses the Text Services Manager floating
window service for bottomline input (by calling UseInputWindow), you do not receive
this Apple event because it is handled by the Text Sevices Manager.

Direct Access to Text Service Components 7
Your client application can bypass the Text Services Manager and communicate with text
service components directly. Many of the text service component routines correspond in
function to the Text Services Manager application-interface routines. It is therefore
possible for a client application to use the text service component routines if it needs to
exert finer control over its interaction with text service components or if it requires
specific kinds of text services or server-specific knowledge. It is not recommended in
most cases, because the Text Services Manager is not available to help with dispatching
and housekeeping chores.

Calling the Component Manager 7

If your client application does not use the Text Services Manager, it has to communicate
with the Component Manager directly to identify and initialize individual text service
components. You can use Component Manager calls to find components, set a default
component, get information about components, and open components. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for more information.
7-36 Using the Text Services Manager (for Client Applications)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Calling Text Service Components 7

If your client application calls text service components directly, it uses the text service
component routines, a component-level interface described under “Text Service
Component Routines” on page 7-84.

After opening a text service component with the OpenComponent or
OpenDefaultComponent function, your client application calls
InitiateTextService function to instruct the text service component to commence
its operations.

To inform a text service component that its associated document window is becoming
active or inactive, call the ActivateTextService or DeactivateTextService
function.

You are responsible for adding the text service component menu to your application’s
menu bar. Furthermore, you are responsible for either disabling the menu or removing
it from your menu bar when the text service component becomes inactive. Call the
GetTextServiceMenu function to obtain menus from each open text service
component.

To pass events to text service components, call the TextServiceEvent function. You
are also responsible for allowing the text service components to control the cursor. Use
the SetTextServiceCursor function to give the text service component a chance to
set the cursor.

When a user makes a selection from the menu for a text service component, call the
TextServiceMenuSelect function.You should call TextServiceMenuSelect right
after the Menu Manager routines MenuSelect or MenuKey.

Before closing the component, call the TerminateTextService function to tell the text
service component to finish its operations. You should remove the text service
component’s menu from the menu bar when the text service component is deactivated.

Using the Text Services Manager (for Text Service Components)7

This chapter does not describe how to write a text service component. It describes only
the interface between text service components and the Text Services Manager. Each text
service component has several functions; it must be able to

■ perform the tasks for which it was created

■ communicate with the Component Manager

■ receive calls from the Text Services Manager (or client applications), through the
Component Manager

■ send calls to the Text Services Manager

How components perform their specific text-handling tasks is beyond the scope of Inside
Macintosh. How components communicate with the Component Manager is described
in the chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox.
Using the Text Services Manager (for Text Service Components) 7-37

C H A P T E R 7

Text Services Manager
How text service components communicate with the Text Services Manager is described
in this section.

The text service component routines are the component-level calls that the Text
Services Manager makes to text service components through the Component Manager.
See “Text Service Component Routines” on page 7-84 for detailed descriptions of the
calls. If you are writing a text service component, it must implement the text service
component routines.

Text service components also make calls to the Text Services Manager, to send Apple
events to client applications and to request the use of a floating window when needed.
See “Text Services Manager Routines for Components” on page 7-77 for detailed
descriptions of those component-interface calls.

For a brief discussion of some of the data types associated with text service components,
see “About Text Service Components” beginning on page 7-14.

Providing Menus and Icons 7
If you are writing a text service component, you can have it display its own menu,
provide an icon for the title of that menu, and provide icons for the Keyboard menu.

Providing a Text Service Component Menu 7

Although most user selections and configurations are best made with floating palettes, a
text service component may put one menu into the menu bar. For input-method text
service components, the menu cannot be hierarchical. Input-method menus appear on
the right (system) side of the menu bar, between the Help menu and the Keyboard
menu. Menus for non-input-method text service components appear on the left
(application) side of the menu bar. See Figure 7-10 on page 7-40.

To create the menu, follow the standard procedures as described in the Menu Manager
chapter of Inside Macintosh: Macintosh Toolbox Essentials. The Text Services Manager
installs the menu in the menu bar whenever your component is opened or activated. The
application (through the Text Services Manager) passes the menu commands to you for
handling when appropriate.

All instances of an input-method text service component must share one menu handle.
Therefore, make sure to allocate the handle in the System heap. You can store the menu
handle in your component’s refcon field. See the discussion of the Component
Manager SetComponentRefcon routine in Inside Macintosh: More Macintosh Toolbox.

IMPORTANT

An input-method text service component should never dispose
of its menu handle in response to a TerminateTextService
call (see page 7-86). Any other kind of text service component
should always dispose of its menu handle in response to a
TerminateTextService call. ▲
7-38 Using the Text Services Manager (for Text Service Components)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Using an icon for the menu title

If you wish to have an icon instead of text as the title of your text service
component menu, first create a small-icon suite (such as 'kcs#',
'kcs4', and 'kcs8') to represent your menu title. Then, in your menu
resource, make the menu title a 5-byte Pascal string (6 bytes total size),
with this format:

When the menu is created, the menu bar definition procedure knows
from the values of the first 2 bytes that the final 4 bytes are a handle to
an icon suite, and the procedure will put the icon in the menu bar. For
more on creating icon suites and drawing icons, see the Finder Interface
chapter of Inside Macintosh: Macintosh Toolbox Essentials. See also
Macintosh Human Interface Guidelines for design suggestions for color
icon families. ◆

Remember these limitations when considering an input-method menu: an input method
can put up only one menu, the menu cannot be hierarchical, and the menu can be
removed from the menu bar if there is insufficient room for it (on a small screen). It may
be more appropriate to use palettes.

Providing Input Method Icons for the Keyboard Menu 7

Any text service component that provides an input method must supply the following
keyboard icon resources to display an icon for the input method in the Keyboard menu:
'kcs#', 'kcs4', and 'kcs8'. The resource ID number of the keyboard icon resources
must equal the script code of the script system that the input method supports. If your
input method supports more than one script system, you can have more than one icon
suite, each with the appropriate resource IDs.

Byte Value

0 $05 (length byte for menu string)

1 $01 (invalid character code)

2–5 Handle to icon suite
Using the Text Services Manager (for Text Service Components) 7-39

C H A P T E R 7

Text Services Manager
Figure 7-10 shows a Keyboard menu displaying a Japanese input method and a Korean
input method, as well as keyboard layouts from several other script systems. The
Japanese input method is active; its icon is checked in the menu and appears highlighted
on the menu bar.

Figure 7-10 Input method icons in the Keyboard menu and menu bar

The pencil icon between the Keyboard menu and the Help menu in Figure 7-10 is the
title for the menu belonging to the active input method.

For more information on keyboard icon suites, see the appendix “Keyboard Resources”
in this book. For information on script codes, see the chapter “Script Manager” in
this book.

Responding to Calls 7
When a client application makes certain calls to the Text Services Manager application
interface, the Text Services Manager in turn calls your text service component. Your text
service component responds to these calls by initiating or closing a text service,
manipulating text service windows, responding to events or menu commands, and
confirming text input.
7-40 Using the Text Services Manager (for Text Service Components)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Initiating a Text Service 7

When your text service component receives the InitiateTextService call, it can
commence its operations to provide its text service. That may include opening windows
or palettes, initializing data structures, communicating with the user or application, or
otherwise getting started with its tasks.

The Text Services Manager may call InitiateTextService on its own or in response
to receiving the application-interface call OpenTextService.

Activating Text Service Component Windows 7

If a window associated with a TSM document associated with your text service is being
activated, your text service component receives the ActivateTextService call. You
should show floating windows associated with your component instance and prepare to
receive and handle events.

If the window is being deactivated, your text service component receives the
DeactivateTextService call. You should perform any necessary cleanup or other
tasks associated with deactivating your current component instance. If your text service
component is not an input method, you should also hide all floating windows associated
with the document being deactivated. If your text service component is an input method
and if the newly activated document does not use your text services, you will receive the
HidePaletteWindows call. At that point you should hide all floating windows
associated with the component instance being deactivated.

The Text Services Manager calls ActivateTextService and
DeactivateTextService in response to receiving the application-interface calls
ActivateTSMDocument and DeactivateTSMDocument, respectively.

Responding to Events and Updating the Cursor and Menu 7

The Text Services Manager (or a client application) is responsible for adding your
text service component’s menu to the menu bar. When your text service component
receives a GetTextServiceMenu call, it needs to return a menu handle. The section
“Providing Menus and Icons” on page 7-38 gives instructions for creating text service
menus and icons.

When your text service component receives the call TextServiceEvent,
TextServiceMenuSelect, or SetTextServiceCursor, it should handle the event,
menu command, or cursor-drawing if appropriate. For example, when the user enters
text, you receive and handle the key-down events; you in turn inform the application
what characters to draw in the active input area. When the user makes a menu selection,
you are given an opportunity to check whether it is from your menu and then to act on
it. You are regularly given the opportunity to redraw the cursor, in case it may be over an
area under your control (such as a palette window or the active input area).
Using the Text Services Manager (for Text Service Components) 7-41

C H A P T E R 7

Text Services Manager
The Text Services Manager may call GetTextServiceMenu on its own or in response to
receiving the application-interface call OpenTextService. The Text Services Manager
calls TextServiceEvent, TextServiceMenuSelect, and SetTextServiceCursor
in response to receiving the application-interface calls TSMEvent, TSMMenuSelect, and
SetTSMCursor, respectively.

Confirming Active Text Input 7

A client application may need your input method text service component to terminate
input immediately and confirm any text currently in the active input area. When your
text service component receives the call FixTextService, it should confirm all text in
the active input area, just as if the user had pressed Return. It should send the confirmed
text to the client application through the Update Active Input Area Apple event.

The Text Services Manager calls FixTextService in response to receiving the
application-interface call FixTSMDocument.

Closing a Text Service 7

When your text service is no longer needed, the Text Services Manager calls your text
service component’s TerminateTextService function before calling the Component
Manager to close the component. Your text service component should use this time to
confirm any active input in progress and then dispose of memory as needed.

The Text Services Manager may call TerminateTextService on its own or in
response to receiving the application-interface call CloseTextService.

Identifying the Supported Scripts and Languages 7

The Operating System, the Text Services Manager, or a client application may need to
determine which scripts and languages your text service component supports. When
you receive the GetScriptLanguageSupport call, you return that information in a
script-language support record.

The GetScriptLanguageSupport function and several Text Services Manager
application-interface routines use the script-language record—and the script-language
support record—to pass information about the scripts and languages associated with
text service components.

The script-language record provides a script code and language code for the script
system and the language associated with a given text service component. The
script-language record is defined by the ScriptLanguageRecord data type as follows:

TYPE ScriptLanguageRecord =

RECORD

fScript: ScriptCode;

fLanguage: LangCode;

END;
7-42 Using the Text Services Manager (for Text Service Components)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Field descriptions

fScript The number that identifies a script system supported by the text
service component

fLanguage The number that identifies a language associated with the script
supported by the text service component

For a list of constants for all defined script and language codes, see the chapter “Script
Manager” in this book.

The script-language support record consists of an array of script-language records. It is
defined by the ScriptLanguageSupport data type as follows:

TYPE ScriptLanguageSupport =

RECORD

fScriptLanguageCount: Integer;

fScriptLanguageArray: ARRAY[0..0] of ScriptLanguageRecord;

END;

Field descriptions

fScriptLanguageCount
The number of script-language records in this script-language
support record.

fScriptLanguageArray
A variable-length array of script-language records.

The Text Services Manager can call GetScriptLanguageSupport on its own or in
response to receiving the application-interface call GetTextServiceLanguage.

Listing 7-10 gives an example of the response to the GetScriptLanguageSupport call
by a Chinese input method.

Listing 7-10 Determining the script and language for a text service component

TYPE

scriptHandlePtr= ^ScriptLanguageSupportHandle;

VAR

scriptHdlPtr:scriptHandlePtr;

{The following is part of the case statement that dispatches }

{ text service component routines. It is the component’s }

{ response to receiving a GetScriptLanguageSupport call}

kCMGetScriptLangSupport:

BEGIN

scriptHdlPtr := (scriptHandlePtr) @(cmParams^.params[0]);

IF scriptHdlPtr^ = NIL THEN
Using the Text Services Manager (for Text Service Components) 7-43

C H A P T E R 7

Text Services Manager
scriptHdlPtr^ := (ScriptLanguageSupportHandle)NewHandle

(sizeof(ScriptLanguageSupport));

IF scriptHdlPtr^ <> NIL THEN

WITH scriptHdlPtr^^^ DO BEGIN

fScriptLanguageCount := 1;

fScriptLanguageArray[0].fScript:= smTradChinese;

fScriptLanguageArray[0].fLanguage:=

langTradChinese;

result := noErr;

END;

ELSE

result := memFullErr;

END;

Making Calls 7
Your text service component needs to make two kinds of calls to the Text Services
Manager: calls that cause the sending of an Apple event to a client application, and calls
that request a floating window from the Text Services Manager.

Sending Apple Events to Client Applications 7

Apple events allow text service components to send information to and request specific
services of client applications. It is the responsibility of the client application to install
Apple event handlers for these Apple events. Using these events, the text service
component controls the text services environment by requesting a variety of services
from the client application.

Your text service component can send Apple events to request that a client application
perform the following actions:

■ create or update text in an active input area

■ help you track cursor movements by converting global coordinates to the byte offset
of characters in the active input area

■ help you position items on the screen by converting the byte offset of characters in the
active input area to global coordinates

■ show or hide a floating input window

Note
Your text service component must always use the kCurrentProcess
constant as the target address when it creates an Apple event to send to
the Text Services Manager. ◆
7-44 Using the Text Services Manager (for Text Service Components)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
To send Apple events to a client application, your text service component calls the Text
Services Manager SendAEFromTSMComponent function. The Text Services Manager
then completes the Apple event and sends it to the application. For general information
on constructing and sending Apple events, see the discussion of the Apple Event
Manager in Inside Macintosh: Interapplication Communication.

Listing 7-11 shows an example of a text service component preparing and sending an
Update Active Input Area Apple event. The component creates the Apple event and
constructs the required parameters, including the text to be sent to the application. It also
constructs the optional parameters that specify highlighting and update ranges in the
text. It then calls SendAEFromTSMComponent to send the Apple event. In this listing,
globalHandle is a handle to a data structure in which the text service component
maintains all information about the text in the active input area.

Listing 7-11 Constructing and sending an Update Active Input Area Apple event

FUNCTION MyCreateUpdateInlineAreaAE(globalHandle: TglobalHandle)

: OSErr;

VAR

psnRecord: ProcessSerialNumber;

myErr: OSErr;

addrDescriptor: AEAddressDesc;

theAEvent: AppleEvent;

theReply: AppleEvent;

slRecord: ScriptLanguageRecord;

theRangeTableSize: LongInt;

theTextData: Handle;

theUpdateRangeTable: TextRangeArray;

theHiliteRangeTable: TextRangeArray;

BEGIN

{Apple event must go to the current process }

psnRecord.highLongOfPSN := 0;

psnRecord.lowLongOfPSN := kCurrentProcess;

myErr := AECreateDesc(typeProcessSerialNumber, @psnRecord,

sizeof(psnRecord), addrDescriptor);

IF myErr <> noErr THEN

BEGIN

MyCreateUpdateInlineAreaAE := myErr;

Exit(MyCreateUpdateInlineAreaAE);

END;
Using the Text Services Manager (for Text Service Components) 7-45

C H A P T E R 7

Text Services Manager
{create the Apple event record}

myErr := AECreateAppleEvent(kTextServiceClass,

kUpdateActiveInputArea,

addrDescriptor,

kAutoGenerateReturnID,

kAnyTransactionID, theAEvent);

IF myErr <> noErr THEN

BEGIN

MyCreateUpdateInlineAreaAE := myErr;

myErr := AEDisposeDesc(addrDescriptor); {ignore the error}

Exit(MyCreateUpdateInlineAreaAE);

END;

{construct the required parameter keyAEServerInstance-- }

{ globalHandle^^.fSelf = global containing component instance}

myErr := AEPutParamPtr(theAEvent, keyAEServerInstance,

typeComponentInstance,

@globalHandle^^.fSelf,

sizeof(ComponentInstance));

IF myErr = noErr THEN

BEGIN

{construct required parameter keyAEScriptTag }

{ --Korean in this case}

slRecord.fScript := smKorean;

slRecord.fLanguage := langKorean;

myErr := AEPutParamPtr(theAEvent, keyAEScriptTag,

typeIntlWritingCode,

@slRecord, sizeof(slRecord));

END;

IF myErr = noErr THEN

BEGIN

{construct required parameter keyAETheData. globalHandle }

{ is a handle to component's data structure describing }

{ all text in the active inline area}

theTextData := globalHandle^^.fTextData;

HLock(theTextData);

myErr := AEPutParamPtr(theAEvent, keyAETheData, typeChar,

theTextData^,

globalHandle^^.fTextDataLength);

HUnlock(theTextData);

END;
7-46 Using the Text Services Manager (for Text Service Components)

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
IF myErr = noErr THEN

{construct the required parameter keyAEFixLength}

myErr := AEPutParamPtr(theAEvent, keyAEFixLength,

typeInteger,

@globalHandle^^.fFixedLength,

sizeof(LongInt));

IF myErr = noErr THEN

BEGIN

{construct the optional parameter UpdateRangeTable}

theUpdateRangeTable := globalHandle^^.fUpdateRangeTable;

theRangeTableSize := sizeof(TextRangeArray)

+ theUpdateRangeTable.fNumOfRanges

* sizeof(TextRange);

myErr := AEPutParamPtr(theAEvent, keyAEFixLength,

typeInteger,

@theUpdateRangeTable,

theRangeTableSize);

END;

IF myErr = noErr THEN

BEGIN

{construct the optional parameter HiliteRangeTable}

theHiliteRangeTable := globalHandle^^.fHiliteRangeTable;

theRangeTableSize := sizeof(TextRangeArray)

+ theHiliteRangeTable.fNumOfRanges

* sizeof(TextRange);

myErr := AEPutParamPtr(theAEvent, keyAEFixLength,

typeInteger,

@theHiliteRangeTable,

theRangeTableSize)

END;

IF myErr <> noErr THEN

BEGIN

MyCreateUpdateInlineAreaAE := myErr;

myErr := AEDisposeDesc(theAEvent); {ignore the errors}

myErr := AEDisposeDesc(addrDescriptor);

Exit(MyCreateUpdateInlineAreaAE);

END;

{send the Apple event}

myErr := SendAEFromTSMComponent(theAEvent, theReply,

kAEWaitReply + kAENeverInteract,

kAENormalPriority, 120, NIL, NIL);

MyCreateUpdateInlineAreaAE := myErr;
Using the Text Services Manager (for Text Service Components) 7-47

C H A P T E R 7

Text Services Manager
myErr := AEDisposeDesc(theAEvent); {ignore the errors}

myErr := AEDisposeDesc(addrDescriptor);

myErr := AEDisposeDesc(theReply);

END;

Opening Floating Utility Windows 7

To open a floating utility window in front of the current client application, you use the
NewServiceWindow function. If the call is successful, NewServiceWindow allocates a
floating window in the floating window service layer, and returns a pointer to the
window. See “Floating Input Windows” on page 7-13 and “Floating Utility Windows” on
page 7-14 for a discussion of the Text Services Manager floating window service and the
floating window service layer.

Your text service component can open multiple floating windows. When your
component receives an event, you must determine if the event belongs to one of your
text service floating windows. To get a pointer to the frontmost window in the floating
window service layer, call the GetFrontServiceWindow function. To find out which
part of your floating window an event occurred in, call the FindServiceWindow
function. Your text service component can close the floating window you originally
allocated by using the CloseServiceWindow function.

Text Services Manager Reference 7

This section describes four categories of routines and handlers, and their related
constants and data structures:

■ Text Services Manager routines called by client applications (the application interface
to the Text Services Manager)

■ application-supplied handlers for Apple events initiated by text service components

■ Text Services Manager routines called by text service components (the component
interface to the Text Services Manager)

■ text service component routines, called by the Text Services Manager and possibly by
client applications

Text Services Manager Routines for Client Applications 7
The Text Services Manager provides an application interface that allows client
applications to use text service components independently of any specific knowledge of
those components. Your client application makes these application-level calls to the Text
Services Manager, which in turn calls the text service component using the
component-level routines described in the section “Text Service Component Routines”
on page 7-84.
7-48 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
The routines in the application interface let you

■ initialize and close your TSM-aware application

■ use TSM documents

■ pass events, menu items, and cursor control to text service components

■ confirm active input in TSM documents that use input methods

■ provide text services to the user

■ request a floating input window instead of inline input

■ associate scripts and languages with text service components

Initializing and Closing as a TSM-Aware Application 7

If your client application uses any of the application-level Text Services Manager
routines, call the InitTSMAwareApplication function immediately after you have
called the other Toolbox initialization routines.

The Text Services Manager needs to perform some housekeeping when your client
application is closed. To expedite this process, call the CloseTSMAwareApplication
function when you quit.

InitTSMAwareApplication 7

The InitTSMAwareApplication function informs the Text Services Manager that
your application is TSM-aware.

FUNCTION InitTSMAwareApplication: OSErr;

DESCRIPTION

The Text Services Manager notes that your application is TSM-aware by allocating the
necessary data in its internal data structures.

RESULT CODES

SEE ALSO

For sample code that uses the InitTSMAwareApplication function, see Listing 7-1 on
page 7-18.

noErr No error
memFullErr Insufficient memory to initialize
tsmAlreadyRegisteredErr Application is already TSM-initialized
tsmNotAnAppErr The caller is not an application
Text Services Manager Reference 7-49

C H A P T E R 7

Text Services Manager
CloseTSMAwareApplication 7

The CloseTSMAwareApplication function informs the Text Services Manager that
you have closed your application.

FUNCTION CloseTSMAwareApplication: OSErr;

DESCRIPTION

The Text Services Manager performs necessary housekeeping when your
application closes.

Before you call the CloseTSMAwareApplication function, be sure that your
application disposes of all open TSM documents by calling the DeleteTSMDocument
function (see page 7-53).

RESULT CODES

SEE ALSO

For sample code that uses the CloseTSMAwareApplication function, see Listing 7-6
on page 7-24.

Creating and Activating TSM Documents 7

This section describes the functions that let you create, activate, deactivate, and dispose
of a TSM document (for details on the contents of a TSM document, see the section
“Creating a TSM Document” on page 7-18).

NewTSMDocument 7

The NewTSMDocument function creates a TSM document and returns a handle to the
document’s ID.

FUNCTION NewTSMDocument (numOfInterface: Integer;

 VAR supportedInterfaceTypes:

 InterfaceTypeList;

 VAR idocID: TSMDocumentID;

 refCon: LongInt): OSErr;

noErr No error
tsmNeverRegisteredErr Application was never TSM-initialized
7-50 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
numOfInterface
The number of supported text service interface types. Currently, this
number must be 1.

supportedInterfaceTypes
A list of supported interface types. This list helps the Text Services
Manager to locate the text services that have the correct interface type.
Currently, the Text Services Manager has defined one interface type:
kTextService (= 'tsvc'). The data type InterfaceTypeList is a
simple array of 4-character (OSType) tags.

idocID Upon successful completion of the call, contains the document
identification number of the TSM document created.

refCon A reference constant to store in the TSM document record. It may have
any value you wish.

DESCRIPTION

Each time your client application calls the NewTSMDocument function, the Text Services
Manager creates an internal record called a TSM document and returns its ID.

If the call is successful, NewTSMDocument opens the default input method text service
component of the current keyboard script and assigns it to this document. If
NewTSMDocument returns tsmScriptHasNoIMErr, it has still created a valid TSM
document, but has not associated an input method with it.

If NewTSMDocument fails to create a new TSM document, it returns an error and sets
idocID to NIL.

RESULT CODES

SEE ALSO

For sample code that uses the NewTSMDocument function, see Listing 7-2 on page 7-19.

ActivateTSMDocument 7

The ActivateTSMDocument function instructs the Text Services Manager to mark the
TSM document associated with a newly active window as active.

FUNCTION ActivateTSMDocument (idocID: TSMDocumentID): OSErr;

noErr No error
memFullErr Insufficient memory to open document
tsmUnsupportedTypeErr Supported type was not 'tsvc'
tsmNeverRegisteredErr Application is not TSM-aware
tsmScriptHasNoIMErr Current script does not use input methods
tsmCantOpenComponentErr Cannot open default input of current script
Text Services Manager Reference 7-51

C H A P T E R 7

Text Services Manager
idocID A TSM document identification number created by a prior call to the
NewTSMDocument function (see page 7-50).

DESCRIPTION

When a window that has an associated TSM document becomes active, your client
application must call the ActivateTSMDocument function to inform the Text Services
Manager that the document is activated and is ready to use text service components.

ActivateTSMDocument calls the equivalent text service component routine
ActivateTextService (see page 7-85) for all open text service components associated
with the TSM document.

If a text service component has a menu, the Text Services Manager inserts the menu into
the menu bar.

RESULT CODES

SEE ALSO

For sample code that uses the ActivateTSMDocument function, see Listing 7-3 on
page 7-21.

DeactivateTSMDocument 7

The DeactivateTSMDocument function instructs the Text Services Manager to mark
the TSM document as inactive.

FUNCTION DeactivateTSMDocument (idocID: TSMDocumentID): OSErr;

idocID A TSM document identification number created by a prior call to the
NewTSMDocument function (see page 7-50).

DESCRIPTION

The DeactivateTSMDocument function lets you inform the Text Services Manager that
a TSM document in your client application is no longer active and must temporarily stop
using text service components.

The Text Services Manager calls the equivalent text service component function
DeactivateTextService (see page 7-85) for any text service component associated
with the TSM document being deactivated.

noErr No error
tsmInvalidDocIDErr Document is not a valid TSM document
7-52 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
IMPORTANT

Once your application is initialized as a TSM-aware application, at least
one TSM document must always be active when your application is
active. If a situation arises in which you are a TSM-aware application but
all of your TSM documents are inactive, any text service component that
has a menu or palette windows will be unable to communicate with the
user. The best policy is to always create a TSM document, even if only a
dummy document, immediately after initializing as a TSM-aware
application. ▲

RESULT CODES

SEE ALSO

For sample code that uses the DeactivateTSMDocument function, see Listing 7-3 on
page 7-21.

DeleteTSMDocument 7

The DeleteTSMDocument function closes all opened text service components for the
TSM document.

FUNCTION DeleteTSMDocument (idocID: TSMDocumentID): OSErr;

idocID A TSM document identification number created by a prior call to the
NewTSMDocument function (see page 7-50).

DESCRIPTION

When your application disposes of a TSM document, it must call the
DeleteTSMDocument function to inform the Text Services Manager that the document
is no longer using text service components. DeleteTSMDocument invokes the
Component Manager CloseComponent function for each open text service component
associated with this document. It also disposes of the internal data structure for the
TSM document.

RESULT CODES

noErr No error
tsmInvalidDocIDErr Document is not a valid TSM document

noErr No error
tsmInvalidDocIDErr Document is not a valid TSM document
tsmNeverRegisteredErr Application is not TSM-aware
Text Services Manager Reference 7-53

C H A P T E R 7

Text Services Manager
Passing Events to Text Service Components 7

This section describes a function that lets you instruct the Text Services Manager to pass
certain events to the appropriate text service component.

TSMEvent 7

The TSMEvent function passes all events obtained from the WaitNextEvent function,
including null events, to the Text Services Manager.

FUNCTION TSMEvent (VAR event: EventRecord): Boolean;

event The event record for the event that has been obtained from
WaitNextEvent.

DESCRIPTION

Your client application regularly obtains events such as key-down events from the
Toolbox Event Manager function WaitNextEvent. Some of these events may need to be
handled by text service components. The TSMEvent function lets you pass those events
to the Text Services Manager. The Text Services Manager dispatches the passed events to
the appropriate text service components by calling the TextServiceEvent function for
each component (see page 7-87).

If TSMEvent returns FALSE, you need to process the event as you normally do. If
TSMEvent returns TRUE, the event has been handled by a text service component and is
now a null event. You should process the null event as you normally do.

Note
The way the Text Services Manager uses and dispatches Apple events
creates the potential for a reentrance situation that your client
application should know about and be prepared to handle. When your
application calls TSMEvent, the Text Services Manager uses the Apple
Event Manager function AESend to pass data to your application
through an Apple event. Your Apple event handler is thus invoked
before the TSMEvent trap has returned. ◆

SEE ALSO

The WaitNextEvent function is described in the Event Manager chapter of
Inside Macintosh: Macintosh Toolbox Essentials.

For sample code that uses the TSMEvent function, see Listing 7-4 on page 7-22.
7-54 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Passing Menu Selections and Cursor Setting 7

This section describes two functions, TSMMenuSelect and SetTSMCursor, that let you
instruct the Text Services Manager to pass menu commands and cursor control to the
appropriate text service component.

TSMMenuSelect 7

The TSMMenuSelect function gives the specified text service component a chance to
reply to a menu selection.

FUNCTION TSMMenuSelect (menuResult: LongInt): Boolean;

menuResult
The result from the Menu Manager MenuSelect function.

DESCRIPTION

When the user chooses a menu item, the item may belong to a text service component’s
menu. To provide an opportunity for the text service component to reply to its menu
selections, your application should call TSMMenuSelect with the result from the Menu
Manager MenuSelect function.

TSMMenuSelect returns FALSE if a text service component did not handle the menu
selection. In this case, your client application should process the menu selection
normally. TSMMenuSelect returns TRUE when a text service component handled the
menu selection. In this case, you should take no action.

After TSMMenuSelect returns, your application should—as usual—call the Menu
Manager function HiliteMenu with the menuID parameter set to 0 to remove the
highlighting from the menu title.

SEE ALSO

The Menu Manager is described in Inside Macintosh: Macintosh Toolbox Essentials.

SetTSMCursor 7

The SetTSMCursor function provides an opportunity for the text service component to
set the shape of the cursor. If the text service component does not respond, your
application may set the cursor.

FUNCTION SetTSMCursor (mousePos: Point): Boolean;
Text Services Manager Reference 7-55

C H A P T E R 7

Text Services Manager
mousePos A QuickDraw point indicating the position (in global coordinates) of the
cursor in your application.

DESCRIPTION

Your client application is responsible for setting the cursor to an appropriate shape as it
passes over your various user interface elements. It is also necessary to provide an
opportunity for a text service component to set the cursor over its own user interface
elements. The SetTSMCursor function allows the text service component to control the
shape of the cursor if appropriate.

Call SetTSMCursor whenever you would normally call the QuickDraw SetCursor
procedure. When SetTSMCursor returns TRUE, the cursor is positioned in a text service
component window or in the active input area and it has been set by a text service
component. Your client application should not set the cursor in this case. When
SetTSMCursor returns FALSE, the cursor has not been set, and your client application
may set it.

SetTSMCursor calls the equivalent text service component function
SetTextServiceCursor (page 7-88) for each open text service component to
provide an opportunity for each one to set shape of the cursor. If a text service
component actually changes the shape of the cursor, the Text Services Manager does not
call SetTextServiceCursor for the rest of the text service components and returns
TRUE. If none of the text service components sets the cursor, then SetTSMCursor
returns FALSE.

SEE ALSO

The SetCursor procedure is described in the QuickDraw chapters of
Inside Macintosh: Imaging.

Confirming Active Input in a TSM Document 7

This section describes the FixTSMDocument function, which allows you to explicitly
confirm text in the active input area.

FixTSMDocument 7

The FixTSMDocument function informs the Text Services Manager that input in the
active input area of a specified TSM document has been interrupted, and that the text
service component must confirm the text and terminate user input.

FUNCTION FixTSMDocument (idocID: TSMDocumentID): OSErr;

idocID The identification number of a TSM document created by a prior call to
the NewTSMDocument function (see page 7-50).
7-56 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
DESCRIPTION

Typically, an inline input text service component removes confirmed input from the
active input area each time the user presses the Return key, and passes the confirmed
text to your application through an Apple event.

In certain situations, however, your client application may need to inform the text
service component that there has been an interruption in user input for a specific TSM
document. In this case you call the FixTSMDocument function to give the input method
text service component the opportunity to confirm any input in progress.

For instance, if the user clicks in the close box of the window in which active input is
taking place, call FixTSMDocument before you close the window. The text service
component will pass you the current contents (both converted and unconverted) of the
active input area as confirmed text.

For simple activating and deactivating of your application’s window, it is not necessary
to confirm the text in the active inline area. The input method saves the text and restores
it when your window is reactivated.

RESULT CODES

SEE ALSO

For sample code that uses the FixTSMDocument function, see Listing 7-5 on page 7-23.

Making Text Services Available to the User 7

This section describes functions that let you provide ways for the user to choose, open,
and close text service components that are not input methods.

Your client application is responsible for providing a way—usually a menu—for the user
to choose from among all available text service components. To get a list of available text
service components to display in a menu, call the GetServiceList function. Be sure to
filter out input methods, because the Keyboard menu already displays them.

When the user chooses a text service component that is not an input method, call the
OpenTextService function to add the text service component to the TSM document.
The OpenTextService and CloseTextService functions let you inform the Text
Services Manager that a user of your client application has chosen to open or close a text
service component. The Text Services Manager then opens or closes the component and
associates it with a TSM document or ends the association as appropriate.

noErr No error
tsmInvalidDocIDErr The document is not a valid TSM document
tsmDocNotActiveErr The TSM document is not active
tsmTSNotOpenErr The default input method is not open
Text Services Manager Reference 7-57

C H A P T E R 7

Text Services Manager
GetServiceList 7

The GetServiceList function obtains a complete list of text service components of a
given kind available to the user of your client application.

FUNCTION GetServiceList (numOfInterfaceTypes: Integer;

 supportedInterfaceTypes:

 InterfaceTypeList;

 VAR serviceInfo: TextServiceListHandle;

 VAR seedValue: LongInt): OSErr;

numOfInterfaceTypes
The number of interface types supported by your client application.

supportedInterfaceTypes
A list of the interface types supported by your client application. The data
type InterfaceTypeList is a simple list of 4-character (OSType) tags.

serviceInfo
A handle to the text service component list data structure. If the handle is
NIL, the Text Services Manager allocates the handle; otherwise, it
assumes the handle is a valid text service component list handle, as
defined by the TextServiceListHandle data type.

seedValue A value that indicates whether the list of text service components
returned by GetServiceList may have been modified. This value is
returned in this parameter after the Text Services Manager calls the
Component Manager GetComponentListModSeed function.

DESCRIPTION

When your client application calls GetServiceList, the Text Services Manager locates
all the text service components that support the specified interface and text service
component types and creates a text service component list, defined by the
TextServiceList data type, that contains an entry for each of the text service
components.

It is possible to register text service components or withdraw them from registration at
any time. Once it has compiled a list of text services, the Text Services Manager invokes
the GetComponentListModSeed function and returns the value in the modseed
parameter. You can save that value and, the next time you need to draw or regenerate
the list of services, call the Component Manager GetComponentListModSeed
function. If the seed value differs from the one you received from your last call to
GetServiceList, you need to call GetServiceList once more to update the
information. Alternatively, you can simply call GetServiceList each time you need to
update the list, although that may be less efficient.
7-58 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
GetServiceList uses the text service component information record, defined by the
TextServiceInfo data type, and the text service component list record, defined by the
TextServiceList data type.

TYPE TextServiceInfo =

RECORD

fComponent: Component;

fItemName: Str255;

END;

TextServicesInfoPtr = ^TextServiceInfo;

Field descriptions

fComponent A component identifier for this text service component. You can use
the component identifier in Text Services Manager functions that
open or obtain information about a text service component.

itemName A Pascal string with the name of a text service component. (The
script system to use for displaying the string is specified in the
componentFlags field of the component description record. See
page 7-15.)

TYPE TextServiceList =

RECORD

fTextServiceCount: Integer;

fServices: ARRAY[0..0] of TextServiceInfo;

END;

TextServiceListPtr = ^TextServiceList;

TextServiceListHandle = ^TextServiceListPtr;

Field descriptions

fTextServiceCount
An integer that provides the number of text service components in
the text service component list.

fServices A variable-length array of text service component information
records.

RESULT CODES

noErr No error
memFullErr Insufficient memory
tsmUnsupportedTypeErr Supported type was not 'tsvc'
Text Services Manager Reference 7-59

C H A P T E R 7

Text Services Manager
OpenTextService 7

The OpenTextService function instructs the Text Services Manager to open a text
service component that a user has chosen and to associate it with a TSM document.

FUNCTION OpenTextService (idocID: TSMDocumentID;

 aComponent: Component;

 VAR aComponentInstance:

 ComponentInstance): OSErr;

idocID The identification number of a TSM document created by a prior call to
the NewTSMDocument function (see page 7-50).

aComponent
A component identifier for this text service component.

aComponentInstance
Upon completion of the call, contains a component instance. This value
identifies your application’s connection to a text service component. You
must supply this value whenever you call the text service functions
provided by the component directly.

DESCRIPTION

You can obtain the component identifier to pass in aComponent by comparing the menu
item name selected by the user with the component item names in the
TextServiceList record obtained by calling GetServiceList.

The Text Services Manager opens the requested component by calling the Component
Manager OpenComponent function.

If the specified text service component is already open, the Text Services Manager does
not open it again and the tsmComponentAlreadyOpenErr error message is returned
as a result code. Whether or not the text service is open, the Text Services Manager calls
the functions InitiateTextService (see page 7-84) and ActivateTextService
(see page 7-85) for the given text service and returns a valid component instance. Upon
completion of the OpenTextService call, the selected text service component is
initialized and active.

Note
This function is for opening text service components other
than input methods. Your application does not need to open or close
input methods. ◆

RESULT CODES

noErr No error
tsmInvalidDocIDErr The document is not a valid TSM document
tsmComponentAlreadyOpenErr Component is already open for this document
tsmCantOpenComponentErr Component doesn’t exist or won’t open
7-60 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
CloseTextService 7

The CloseTextService function deactivates the active TSM document’s association
with the specified text service and closes the service component.

FUNCTION CloseTextService (idocID: TSMDocumentID;

aComponentInstance: ComponentInstance):

OSErr;

idocID The identification number of a TSM document created by a prior call to
the NewTSMDocument function (see page 7-50).

aComponentInstance
The component instance created by a prior call to OpenTextService.

DESCRIPTION

When a user wants to close an opened text service component, your client application
should call CloseTextService.

If the text service component displays a menu, the Text Services Manager removes the
menu from the menu bar.

Note
This function is for closing text service components other than input
methods. Your application does not need to open or close
input methods. ◆

RESULT CODES

Requesting a Floating Input Window 7

In certain situations, bottomline input with a floating input window is preferable to
inline input for text input users. The Text Services Manager provides two ways to control
how the floating input window is used: with a single specified TSM document or with
all documents of a given application.

noErr No error
tsmInvalidDocIDErr The document is not a valid TSM document
tsmNoOpenTSErr The component for this document is not open
Text Services Manager Reference 7-61

C H A P T E R 7

Text Services Manager
UseInputWindow 7

The UseInputWindow function associates a floating input window with a particular
TSM document or with all TSM documents of an application.

FUNCTION UseInputWindow (idocID: TSMDocumentID;

 useWindow: Boolean): OSErr;

idocID The TSM document ID of the particular TSM document to be associated
with the floating input window. If NIL, this call affects all your
application’s TSM documents.

useWindow A Boolean value that indicates whether to use the floating input window.
Set it to TRUE if you want to use a floating window; set it to FALSE if you
do not want to use a floating window.

DESCRIPTION

The Text Services Manager provides a floating input window for your application’s use
if you call UseInputWindow with a value of TRUE in the useWindow parameter. To
specify inline input instead, call UseInputWindow with a value of FALSE in the
useWindow parameter.

The default value for useWindow is FALSE; if you do not call UseInputWindow, the
Text Services Manager assumes that your application wants to use inline input. If your
application wants to save the user’s choice, it can put the last-used value for useWindow
in a preferences file before quitting.

If you pass a valid TSM document ID for the idocID parameter, the useWindow
parameter affects only that TSM document. If you pass NIL for the idocID parameter,
the useWindow parameter affects all your application’s TSM documents, including
documents you create after making this call.

RESULT CODES

Associating Scripts and Languages With Components 7

The utility routines described in this section allow you to

■ assign a particular text service component as the default component to be associated
with a given script system and language

■ determine which text service component is the default component associated with a
given script system and language

noErr No error
tsmInvalidDocIDErr The document is not a valid TSM document
tsmNeverRegisteredErr Application is not TSM-aware
7-62 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
■ determine the script system and language combination for the currently active text
service component

■ assign a script system and language combination to the currently active text service
component

In addition to these routines, you can use the text service component function
GetScriptLanguageSupport (described on page 7-90) to determine which additional
scripts and languages a text service component supports.

These routines make use of the script-language record, described under “Identifying the
Supported Scripts and Languages” on page 7-42.

SetDefaultInputMethod 7

The operating system uses the SetDefaultInputMethod function to assign a default
(input method) text service component to a given script and language.

FUNCTION SetDefaultInputMethod (ts: Component;

VAR slRecord: ScriptLanguageRecord):

OSErr;

ts The component identifier of the input method text service component to
be associated with the script and language combination given in the
slRecord parameter.

slRecord A script-language record that describes the script and language
combination to be associated with the input method text service
component specified in the ts parameter.

DESCRIPTION

The operating system uses SetDefaultInputMethod to associate an input method
text service component with a given script and language. The operating system calls this
function when the user expresses input method preferences through the Keyboard
menu, Keyboard control panel, or other device. The associations made with this function
are permanent; that is, they persist after restart.

If the script code and language code specified in the script-language record are
incompatible, SetDefaultInputMethod returns the error paramErr.

RESULT CODES

noErr No error
paramErr The script does not match the language
tsmScriptHasNoIMErr Current script does not use input methods
tsmCantOpenComponentErr Cannot open default input of current script
Text Services Manager Reference 7-63

C H A P T E R 7

Text Services Manager
GetDefaultInputMethod 7

The GetDefaultInputMethod function returns the default (input method) text service
component for a given script and language.

FUNCTION GetDefaultInputMethod (VAR ts: Component;

VAR slRecord: ScriptLanguageRecord):

OSErr;

ts The component identifier of the input method text service component
that is associated with the script and language combination given in the
slRecord parameter.

slRecord A script-language record that describes the script and language
combination that is associated with the input method text service
specified in the ts parameter.

DESCRIPTION

The operating system uses GetDefaultInputMethod to find out which input method
to activate when the user selects a new keyboard script from the Keyboard menu or by
Command-key combination, or when an application calls KeyScript to change
keyboard scripts.

In versions of Japanese system software starting with KanjiTalk 7.0, if the default input
method is an old (pre-KanjiTalk 7.0) non-TSM-aware method,
GetDefaultInputMethod returns the error tsmInputMethodIsOldErr. In that case
the ts parameter contains the script code of the old input method in its high-order
word, and the reference ID of the old input method in its low-order word.

RESULT CODES

SetTextServiceLanguage 7

The SetTextServiceLanguage function changes the current input script
and language.

FUNCTION SetTextServiceLanguage (VAR slRecord:

ScriptLanguageRecord): OSErr;

slRecord A script-language record for the current text service component.

noErr No error
paramErr The script does not match the language
tsmScriptHasNoIMErr The script does not use input methods
tsmInputMethodIsOldErr The default input method is old-style
7-64 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
DESCRIPTION

The operating system calls this Text Services Manager function when the user switches
the keyboard script, so that the Text Services Manager can synchronize the input method
with the current keyboard script.

RESULT CODES

GetTextServiceLanguage 7

The GetTextServiceLanguage function returns the language supported by the
default (current) input method text service component for the current keyboard script.

FUNCTION GetTextServiceLanguage (VAR slRecord:

ScriptLanguageRecord): OSErr;

slRecord A script-language record that, upon completion of the call, describes the
language supported by the current text service component.

RESULT CODES

Apple Event Handlers Supplied by Client Applications 7
This section describes the Apple events for which client applications must install
handlers. Text service components request action from and send information to client
applications through these Apple events.

Your application uses these Apple events to receive text from text service components, to
show or hide input windows, and to convert screen positions to text offsets—and vice
versa—for text service components. The conversion operations are used to track mouse
events and determine screen locations of text in the active input area.

The Apple events described in this section are all organized under the
kTextServiceClass constant with a value of 'tsvc'.

noErr No error
paramErr The script does not match the language
tsmCantOpenComponentErr Cannot open default input of the script

noErr No error
Text Services Manager Reference 7-65

C H A P T E R 7

Text Services Manager
 lists the Apple event ID constants for the Apple events described in this section.

Table 7-2 shows the Apple event keyword constants used in the Apple events described
in this section.

Table 7-1 Apple event ID constants

Constant Value Explanation

kUpdateActiveInputArea 'updt' Update Active Input Area

kPos2Offset 'p2st' Position To Offset

kOffset2Pos 'st2p' Offset To Position

kShowHideInputWindow 'shiw' Show/Hide Input Window

Table 7-2 Apple event keyword constants

Constant Value Meaning

keyAETSMDocumentRefcon 'refc' TSM document reference constant

keyAEServerInstance 'srvi' Component instance

keyAETheData 'kdat' Text from active input area

keyAEScriptTag 'sclg' Script-language record

keyAEFixLength 'fixl' Length of confirmed text

keyAEHiliteRange 'hrng' Highlight range in text

keyAEUpdateRange 'udng' Update range in text

keyAEClauseOffsets 'clau' Clause offsets array

keyAECurrentPoint 'cpos' Current point

keyAEDragging 'bool' Dragging flag

keyAEOffset 'ofst' Byte offset in text

keyAERegionClass 'rgnc' Region class

keyAEPoint 'gpos' Calculated point

optional keyword for Update Active Input Area

keyAEPinRange 'pnrg' Range for scrolling

optional keywords for Offset To Position

keyAETextFont 'ktxf' Text font

keyAETextPointSize 'ktps' Text size

keyAETextLineHeight 'ktlh' Text line height

keyAETextLineAscent 'ktas' Font ascent
7-66 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Table 7-3 lists the Apple event descriptor types discussed in this section.

Table 7-4 lists the Apple event descriptor type constants for region class discussed in
this section.

For the values of standard Apple event constants used in the following section not listed
in these tables, see the Apple Event Registry: Standard Suites.

keyAEAngle 'kang' Text angle

optional keyword for Position To Offset

keyAELeadingEdge 'klef' Leading-edge Boolean

Table 7-3 Apple event descriptor types

Constant Value Meaning

typeComponentInstance 'cmpi' Server instance

typeTextRangeArray 'tray' Text range array

typeOffsetArray 'ofay' Offset array

typeIntlWritingCode 'intl' Script-language record

typeQDPoint 'QDpt' QuickDraw point

typeAEText 'tTXT' Apple event text

typeText 'TEXT' Plain text

typeTextRange 'txrn' A text range record

typeTSMDocumentRefcon 'refc' TSM document reference constant

typeFixed 'fixd' Fixed 16.16 format

Table 7-4 Apple event descriptor type constants for the Apple event region class

Constant Value

kTSMOutsideOfBody 1

kTSMInsideOfBody 2

kTSMInsideOfActiveInputArea 3

Table 7-2 Apple event keyword constants (continued)

Constant Value Meaning
Text Services Manager Reference 7-67

C H A P T E R 7

Text Services Manager
Creating and Updating an Active Input Area 7

The text service component uses the Update Active Input Area Apple event to request
that your client application create and update an active input area, and accept confirmed
text. For details on active input areas, see “Inline Input” on page 7-11.

Update Active Input Area—Creating and Updating an Active Input Area

Event class kTextServiceClass

Event ID kUpdateActiveInputArea

Requested action Update a range of text. Specify any necessary highlighting with
offsets in the optional keyAEHiliteRange parameter.

Required parameters

Keyword: keyAETSMDocumentRefcon

Descriptor type: typeLongInteger

Data: A TSM document specifier (reference constant) supplied by the
application in a prior call to the NewTSMDocument function (see
page 7-50). This value is associated with the TSM document
whose active input area is to be updated.

Keyword: keyAEServerInstance

Descriptor type: typeComponentInstance

Data: A component instance value created by a prior call to the
Component Manager OpenComponent function. This value
identifies the text service component.

Keyword: keyAETheData

Descriptor type: typeChar

Data: Text data that has been processed in some way by a text service
component.

Keyword: keyAEScriptTag

Descriptor type: typeIntlWritingCode

Data: The script code and language code associated with the text
returned in the keyAETheData parameter. The information is
passed in a script-language record, as defined on page 7-42.
7-68 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Figure 7-11 Updating text in an active input area

Required parameters

Keyword: keyAEFixLength

Descriptor type: typeLongInteger

Data: The length of the confirmed text in the active inline area.

If the value of keyAEFixLength is –1, the text contained in the
keyAETheData parameter is to completely replace the current
selection in the application window. In this case, there is to be no
active input area, the text is all considered to be confirmed, and is
to be made part of the body text of the client application.

If the value is 0, an active input area is in process, but there is no
completely confirmed text being sent.

If the value is greater than 0, the text specified in the
keyAETheData parameter up to the indicated offset is
confirmed data and should be consumed by the application. The
Text Services Manager considers any text beyond the offset
specified by the keyAEFixLength parameter to be inside the
active input area with the starting point of the active input area at
that offset. This is illustrated in Figure 7-11.

Update Active Input Area—Creating and Updating an Active Input Area (continued)

Τηε ωινε δαρκ σεα

The wine dark sea

Τηε ωine dark sea

keyAEFixLength = -1 (no conversion needed)

keyAEFixLength = 0 (no confirmed text)

keyAEFixLength = 5 (first 5 characters are confirmed)
Text Services Manager Reference 7-69

C H A P T E R 7

Text Services Manager
Update Active Input Area—Creating and Updating an Active Input Area (continued)

Optional parameters

Keyword: keyAEHiliteRange

Descriptor type: typeTextRangeArray

Data: An array that specifies the ranges of text to be highlighted in
the active input area. It also specifies caret position. There are
5 types of highlighting:

Constant Applies to

kCaretPosition The caret position only

kRawText All of the unconverted text

kSelectedRawText Part of the unconverted text

kConvertedText All of the converted text

kSelectedConvertedText Part of the converted text

For instance, the input method may have the application highlight
all raw text with a gray underline; but if it needs to further highlight
a selection within that raw text, it may specify a different underline
for the selected raw text. The text range array is an array of
text-range records, each of which has this form:

TYPE TextRange =
 RECORD
 fStart: LongInt;
 fEnd: LongInt;
 fHiliteStyle: Integer;
 END;

For the text-range record whose highlight style is
kCaretPosition, both fStart and fEnd are the same and denote
the position of the caret.

Negative values for a text range mean that the specified range only
adds to, rather than replaces, any current highlighting for the
specified type of text.
7-70 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Optional parameters

Keyword: keyAEUpdateRange

Descriptor type: typeTextRangeArray

Data: An array of text-range records that indicates the update range of the
active input area (in many circumstances, not all of the active input
area needs updating). Update Active Input Area always uses the
text-range records in the text range array in pairs. The first record (0)
specifies a range of old text (text in the inline buffer) to be updated;
the second record (1) specifies the range of text in keyAETheData
that is to replace that old text. In general, the record n (n >= 0, n is an
even number) specifies the range of old text to be updated and the
record n + 1 specifies the range of new text to replace the
corresponding old text. (The fHiliteStyle field is ignored.)

Keyword: keyAEPinRange

Descriptor type: typeTextRange

Data: A text range record that specifies a start offset and and an end offset
that should be scrolled into view if the text specified by these offsets
is not already in view. (The fHiliteStyle field is ignored.)

Keyword: keyAEClauseOffsets

Descriptor type: typeOffsetArray

Data: An offset array (defined by the OffsetArray data type) that
specifies offsets of word or clause boundaries of the new text.
Offsets are from the start of the active input area. Applications can
use this information for word selection or other purposes.

TYPE OffsetArray =
 RECORD
 fNumOfOffsets: Integer;
 fOffset: ARRAY[0..0] of LongInt;
 END;

The numOfOffsets field contains an integer that specifies the
number of offsets in the offset array. The fOffset field is an array
of long integers with the number of entries specified in the
numOfOffsets field.

Return parameter

Keyword: keyErrorNumber

Descriptor type: typeShortInteger

Data: Any errors that the application needs to return to the text service
component. The application must pass Memory Manager, TextEdit,
or other errors that it receives through to the component; otherwise,
it should pass 0 (noErr).

Update Active Input Area—Creating and Updating an Active Input Area (continued)
Text Services Manager Reference 7-71

C H A P T E R 7

Text Services Manager
The text range array data structure used in the keyAEHiliteRange
and keyAEUpadateRange parameters described above is defined by the
TextRangeArray data type:

TYPE TextRangeArray =

RECORD

fNumOfRanges: Integer;

fRange: ARRAY[0..0] of TextRange;

END;

The fNumOfRanges field contains an integer that indicates how many text ranges this
array holds. The fRange field contains a series of text-range records. (If the array
consists of more than one text-range record, the size of the array must be calculated as
fNumOfRanges * SizeOf(fRange).)

For sample code that handles the Update Active Input Area Apple event, see Listing 7-7
on page 7-26.

Converting Global Coordinates to Text Offsets 7

The Position To Offset Apple event requests a client application to convert specified
global coordinates to byte offsets in text. The text service component uses this Apple
event for mouse tracking, in order to draw the caret, highlight text, or adjust the cursor
appearance.

Position To Offset—Converting Global Coordinates to Text Offset

Event class kTextServiceClass

Event ID kPos2Offset

Requested action Convert global coordinates specified in the keyAECurrentPoint
parameter to a byte offset. If the click is within the limits of the
active input area, the offset is relative to the start of the active input
area. Otherwise, the offset is relative to the start of the application’s
body text. The client application specifies the classification of the
location of the offset in the keyAERegionClass return parameter.

Required parameters

Keyword: keyAETSMDocumentRefcon

Descriptor type: typeLongInteger

Data: A TSM document specifier (reference constant) supplied by the
application in a prior call to the NewTSMDocument function
(see page 7-50). This value is associated with the TSM document
affected by this event.
7-72 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Required parameters

Keyword: keyAEServerInstance

Descriptor type: typeComponentInstance

Data: A component instance value created by a prior call to the
Component Manager OpenComponent function. This value
identifies the text service component.

Keyword: keyAECurrentPoint

Descriptor type: typePoint

Data: A point that contains the global coordinates that describe the
current mouse position.

Optional parameter

Keyword: keyAEdragging

Descriptor type: typeBoolean

Data: A Boolean value that indicates whether the input method is
currently tracking the mouse—that is, whether the user is dragging
the current selection. If it is TRUE, the application should pin the
cursor to the limits of the active input area (to avoid highlighting
beyond the limits of the active input area).

Return
parameters

Keyword: keyAEOffset

Descriptor type: typeLongInteger

Data: A byte offset that specifies the character corresponding to the
current mouse position (keyAECurrentPoint). If the click is
within the limits of the active input area, the offset is relative to the
start of the active input area. Otherwise, the offset is relative to the
start of the application’s body text.

Keyword: keyAERegionClass

Descriptor type: typeShortInteger

Data: The classification of the position specified in the keyAEOffset
parameter. Three constants define the classification:

Constant
Valu

e

kTSMOutsideOfBody 1

kTSMInsideOfBody 2

kTSMInsideOfActiveInputArea 3

A value of kTSMOutsideOfBody means that the offset is
outside the application’s body text. A value of
kTSMInsideOfBody means that the offset is inside the body text.
kTSMInsideOfActiveInputArea means that the offset is inside
the active input area.

continued

Position To Offset—Converting Global Coordinates to Text Offset (continued)
Text Services Manager Reference 7-73

C H A P T E R 7

Text Services Manager
For sample code that handles the Position To Offset Apple event, see Listing 7-8 on
page 7-30.

Converting Text Offsets to Global Coordinates 7

The Offset To Position Apple event requests that a client application convert byte offsets
in text to global coordinates. The text service component uses this Apple event to
determine where in the active input area to draw an element (such as the caret or a
palette of conversion choices) that relates to a particular character.

Return
parameters

Keyword: keyErrorNumber

Descriptor type: typeShortInteger

Data: Any errors that the application needs to return to the text service
component. The application must pass Memory Manager, TextEdit,
or other errors that it receives through to the component;
otherwise, it should pass 0 (noErr).

Optional return parameter

Keyword: keyAELeadingEdge

Descriptor type: typeBoolean

Data: A Boolean value that is equivalent to the leadingEdge parameter
of the QuickDraw PixelToChar function. It is TRUE if the
specified point corresponds to the leading edge of the character
whose offset is returned; it is FALSE if the specified point
corresponds to the trailing edge of the character.

Offset To Position—Converting Text Offsets to Global Coordinates

Event class kTextServiceClass

Event ID kOffset2Pos

Requested action Convert a specified byte offset into global coordinates. The offset
value passed to the client application is relative to the start of the
active input area. If there is no active input area, the offset is relative
to the start of the current text body.

Required parameters

Keyword: keyAETSMDocumentRefcon

Descriptor type: typeLongInteger

Data: A TSM document specifier (reference constant) supplied by the
application in a prior call to the NewTSMDocument function (see
page 7-50). This value is associated with the TSM document
affected by this event.

Position To Offset—Converting Global Coordinates to Text Offset (continued)
7-74 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Required parameters

Keyword: keyAEServerInstance

Descriptor type: typeComponentInstance

Data: A component instance value returned by a prior call to the
Component Manager OpenComponent function. This value
identifies the text service component.

Keyword: keyAEOffset

Descriptor type: typeLongInteger

Data: The text offset to be converted into a global point. Offset is in terms
of bytes from the start of the active input area.

Return parameters

Keyword: keyAEPoint

Descriptor type: typePoint

Data: A point that contains the global coordinates obtained by converting
the byte offset passed in the keyAEOffset parameter.

Keyword: keyErrorNumber

Descriptor type: typeShortInteger

Data: errOffsetInvalid indicates that there is no text at the offset.
errOffsetIsOutsideOfView indicates that the text offset is out
of view.

The application must pass Memory Manager, TextEdit, or other
errors that it receives through to the component; otherwise, it
should pass 0 (noErr).

Optional return parameters

Keyword: keyAETextFont

Descriptor type: typeLongInteger

Data: The font of the text in the active input area. The application can
send this information to the input method to help the input method
position the active input area.

Keyword: keyAETextPointSize

Descriptor type: typeFixed

Data: The size of the text in the active input area. The application can
send this information to the input method to help the input method
position the active input area.

Keyword: keyAETextLineHeight

Descriptor type: typeShortInteger

Data: The line height of the text in the active input area. The application
can send this information to the input method to help the input
method position the active input area.

continued

Offset To Position—Converting Text Offsets to Global Coordinates (continued)
Text Services Manager Reference 7-75

C H A P T E R 7

Text Services Manager
For sample code that handles the Offset To Position Apple event, see Listing 7-9 on
page 7-33.

Showing or Hiding the Floating Input Window 7

Input methods that supply floating input windows for bottomline input may need to
show or hide the input window at various times. The Show/Hide Input Window Apple
event requests the client application to make the floating input window either visible or
not visible, so that an input method can offer any of the above options.

Note
If your application is not displaying its own floating input window, you
can ignore this Apple event. ◆

Optional return parameters

Keyword: keyAETextLineAscent

Descriptor type: typeShortInteger

Data: The ascent height of the text in the active input area. The
application can send this information to the input method to help
the input method position the active input area.

Keyword: keyAEAngle

Descriptor type: typeFixed

Data: The orientation of the text in the active input area. The value 90
specifies a horizontal line direction and 180 specifies a vertical line
direction. The application can send this information to the input
method to help the input method position the active input area.

Show/Hide Input Window—Showing or Hiding the Floating Input Window

Event class kTextServiceClass

Event ID kShowHideInputWindow

Requested action Make the bottomline floating input window either visible or not
visible, depending on the value of the
keyAEShowHideInputWindow parameter.

Required parameters

Keyword: keyAETSMDocumentRefcon

Descriptor type: typeLongInteger

Data: A TSM document specifier (reference constant) supplied by the
application in a prior call to the NewTSMDocument function (see
page 7-50). This value is associated with the TSM document for the
window being shown or hidden.

Keyword: keyAEServerInstance

Descriptor type: typeComponentInstance

Offset To Position—Converting Text Offsets to Global Coordinates (continued)
7-76 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Text Services Manager Routines for Components 7
This section describes the Text Services Manager component interface—the routines and
related data structures that are for the use of text service components. These functions let
your text service component

■ send Apple events to a client application to request specific information about the
active input area in a TSM document

■ put up a floating window for various purposes

Sending Apple Events to a Client Application 7

This section describes the SendAEFromTSMComponent function, with which your text
service component sends Apple events to a client application.

SendAEFromTSMComponent 7

The SendAEFromTSMComponent function sends Apple events from a text service
component to a client application.

FUNCTION SendAEFromTSMComponent (VAR theAppleEvent: AppleEvent;

VAR reply: AppleEvent;

sendMode: AESendMode;

Data: A component instance value returned by a prior call to the
Component Manager OpenComponent function. This value
identifies the text service component.

Optional parameter

Keyword: keyAEShowHideInputWindow

Descriptor type: typeBoolean

Data: If TRUE, the bottomline input window should be shown; if FALSE, it
should be hidden. This parameter is not needed if the input method
is simply inquiring about the state of the input window.

Return parameter

Keyword: keyAEShowHideInputWindow

Descriptor type: typeBoolean

Data: The current state of the input window: TRUE if the window is
shown; FALSE if it is hidden. If the optional parameter
keyAEShowHideInputWindow is included, this return parameter
should show the state of the window before it was set to the state
requested in the optional parameter.

Show/Hide Input Window—Showing or Hiding the Floating Input Window (continued)
Text Services Manager Reference 7-77

C H A P T E R 7

Text Services Manager
sendPriority: AESendPriority;

timeOutInTicks: LongInt;

idleProc: IdleProcPtr;

filterProc: EventFilterProcPtr):

OSErr;

theAppleEvent
The Apple event to be sent.

reply The reply Apple event returned by SendAEFromTSMComponent.

sendMode The value that lets you specify one of the following modes specified by
corresponding constants: the reply mode for the Apple event, the
interaction level, the application switch mode, the reconnection mode,
and the return receipt mode. To obtain the value for this parameter, add
the appropriate constants. Comprehensive details about these constants
are provided in the description of the Apple Event Manager AESend
function in Inside Macintosh: Interapplication Communication.

sendPriority
The value that specifies whether to put the Apple event at the back of the
event queue (set with the kAENormalPriority flag) or at the front of
the queue (kAEHighPriority flag).

timeOutInTicks
The length of time (in ticks) that the client application is willing to wait
for the reply or return receipt from the server application before it times
out. If the value of this parameter is kNoTimeOut, the Apple event never
times out.

idleProc A pointer to a function for any tasks (such as displaying a globe, a
wristwatch, or a spinning beach ball cursor) that the application performs
while waiting for a reply or a return receipt.

filterProc
A pointer to a routine that accepts certain incoming Apple events that are
received while the handler waits for a reply or a return receipt and filters
out the rest.

DESCRIPTION

The SendAEFromTSMComponent function is essentially a wrapper routine for the Apple
Event Manager function AESend. See the description of AESend for additional necessary
information, including constants for the sendMode parameter and result codes.

SendAEFromTSMComponent identifies your text service component from the
keyAEServerInstance parameter in the Apple event specified in the
theAppleEvent parameter. If a reference constant (refcon) in a TSM document that
corresponds to this parameter is found in the internal data structures of the Text Services
Manager, SendAEFromTSMComponent adds the reference constant as the
keyAETSMDocumentRefcon parameter to the given Apple event before sending it to
the application.
7-78 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
If the client application is not TSM-aware, SendAEFromTSMComponent routes the
Apple events to the floating input window to allow bottomline input.

IMPORTANT

If your text service component changes the environment in any way—
such as by modifying the A5 world or changing the current zone—while
constructing an Apple event, it must restore the previous settings before
sending the Apple event. ▲

Note
Your text service component should always use the kCurrentProcess
constant as the target address when it creates an Apple event to send to
the Text Services Manager. ◆

SEE ALSO

The AESend function is described with the Apple Event Manager in Inside Macintosh:
Interapplication Communication.

The kCurrentProcess constant is described in Inside Macintosh: Processes.

For sample code showing how a text service component calls the
SendAEFromTSMComponent function, see Listing 7-11 on page 7-45.

Opening Floating Utility Windows 7

In conjunction with the Process Manager, the Text Services Manager maintains the
floating window service, whose windows occupy a special layer called the floating
window service layer. See Figure 7-7 on page 7-14.

The Text Services Manager uses the floating window service to provide a standard
floating input window when needed. Text service components can use the service to
create, close, and find floating windows used for various other user-interface purposes.
You can manipulate the service windows with these calls:

■ The NewServiceWindow function lets you open a floating window in front of the
current application.

■ The CloseServiceWindow function lets you close a previously allocated floating
window.

■ The GetFrontServiceWindow function helps you find out which is the frontmost
window in the floating window service layer.

■ The FindServiceWindow function helps you find out which part of a text service
component’s floating window a mouse-down event has occurred in.

Client applications

These calls may be made by client applications also. See the following
description of NewServiceWindow for special instructions for client
applications. ◆
Text Services Manager Reference 7-79

C H A P T E R 7

Text Services Manager
NewServiceWindow 7

The NewServiceWindow function opens a floating utility window in the floating
window service layer, in front of the current application. The text service component
may use the window for interaction with the user or other purposes.

FUNCTION NewServiceWindow (wStorage: Ptr; boundsRect: Rect;

title: Str255; visible: Boolean;

theProc: Integer; behind: WindowPtr;

goAwayFlag: Boolean;

ts: ComponentInstance;

VAR window: WindowPtr): OSErr;

wStorage A pointer to the location in memory of the window record. Do not
allocate the window record on the stack. Always be sure to allocate the
window in the heap, or else pass NIL for this parameter.

boundsRect
A rectangle given in global coordinates that determines the size and
location of the new floating window. This rectangle becomes the
portRect field of the graphics port record (defined by the QuickDraw
GrafPort data type) for this window.

title A Pascal string that contains the title of the window.

visible A Boolean value to determine whether the window is to be drawn. If
TRUE, NewServiceWindow draws the window. First it calls the window
definition procedure defined in the theProc parameter to draw the
window frame. Then it generates an update event for the entire window
contents.

theProc The window definition procedure for the floating window.

behind A window pointer (defined by the Window Manager WindowPtr data
type) that determines the plane of the floating window.
NewServiceWindow inserts the new window behind the window
pointed to by this parameter. To put the new window behind all other
windows, use behind = NIL. To place it in front of all other windows,
use behind = POINTER(-1).

goAwayFlag
A Boolean value that determines whether the go-away region should be
drawn in the window. If this parameter is TRUE and the window is
frontmost (as specified by the behind parameter), NewServiceWindow
draws a go-away region in the frame.

ts A component instance returned by a prior call to the Component
Manager OpenComponent function. This value is stored in the refcon
field of the window record; text service components should not change
the value of the window’s refcon field.
7-80 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Client applications

If you are a client application making this call, pass the Process Manager
constant kCurrentProcess in this parameter so that events in the new
window will be forwarded to you. After you have created the window,
you can use its refcon field for private storage as usual. ◆

window A pointer to the newly allocated floating window.

DESCRIPTION

This function calls the Window Manager NewWindow function. If a floating window is
successfully allocated, NewServiceWindow returns a pointer to that window as the
function result. Otherwise, it returns NIL.

A text service component can open multiple windows in this layer. When a text service
component receives an event, it determines whether the event belongs to one of its text
service component windows by calling FindServiceWindow.

If you are an application that uses NewServiceWindow to open a floating window, be
sure to hide the floating window when you are switched out; that is, when another
application’s windows become active.

Balloon Help

If you are writing a text service component and want the service
window to have custom Balloon Help, place an 'hwin' resource (with
references to 'hcrt' and 'STR#' resources) in your component
resource fork, with a name equal to the window title. The Text Services
Manager will then open the resources automatically when needed. If
you are writing a client application, you need not follow anything other
than normal procedures to have Balloon Help. ◆

RESULT CODES

SEE ALSO

Window definition procedures and the NewWindow function are described in the
Window Manager chapter of Inside Macintosh: Macintosh Toolbox Essentials.

Balloon Help is described in the Help Manager chapter of Inside Macintosh: More
Macintosh Toolbox.

noErr No error
memFullErr Insufficient memory to open the window
Text Services Manager Reference 7-81

C H A P T E R 7

Text Services Manager
CloseServiceWindow 7

The CloseServiceWindow function closes a previously allocated floating
input window.

FUNCTION CloseServiceWindow (window: WindowPtr): OSErr;

window A pointer to the service window to close. This function calls the Window
Manager CloseWindow procedure.

DESCRIPTION

If the window pointer is NIL or if it points to a non-floating window,
CloseServiceWindow returns paramErr.

RESULT CODES

SEE ALSO

The CloseWindow procedure is described in the Window Manager chapter of Inside
Macintosh: Macintosh Toolbox Essentials.

GetFrontServiceWindow 7

The GetFrontServiceWindow function determines which is the frontmost window in
the floating window service layer.

FUNCTION GetFrontServiceWindow (VAR window: WindowPtr): OSErr;

window A pointer to the frontmost window in the service layer.

DESCRIPTION

This function calls the Window Manager FrontWindow function. The
GetFrontServiceWindow function returns a pointer to the frontmost window in the
service layer. If there is no window in the service layer, it returns NIL.

SEE ALSO

The FrontWindow function is described in the Window Manager chapter of Inside
Macintosh: Macintosh Toolbox Essentials.

noErr No error
paramErr Parameter error
7-82 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
FindServiceWindow 7

The FindServiceWindow function determines which part of a text service
component’s floating window a mouse-down event has occurred in.

FUNCTION FindServiceWindow (thePoint: Point;

 VAR theWindow: WindowPtr): Integer;

thePoint The point where the mouse button was pressed (in global coordinates, as
stored in the where field of the Event Manager event record).

theWindow A pointer to a Window Manager window pointer (defined by the
WindowPtr data type) that identifies the floating window in which the
mouse-down event occurred. If the mouse-down event did not occur in a
text service component floating window, this parameter is set to NIL.

DESCRIPTION

The FindServiceWindow function is similar to the Window Manager FindWindow
function, except that FindServiceWindow searches the floating window service
layer only.

FindServiceWindow calls the Window Manager FindWindow function. It returns one
of the following predefined constants to identify the location of the mouse-down event.

It the mouse position is not over a floating window, FindServiceWindow returns
inDesk (0) as its function result, and sets the return parameter theWindow to NIL.

SEE ALSO

The FindWindow function is described in the Window Manager chapter of
Inside Macintosh: Macintosh Toolbox Essentials.

Event records are described in the Event Manager chapter of Inside Macintosh: Macintosh
Toolbox Essentials.

The Process Manager is described in Inside Macintosh: Processes.

Constant Value Explanation

inDesk 0 None of the following

inMenuBar 1 In menu bar

inSysWindow 2 In system window

inContent 3 In content region (except grow, if active)

inDrag 4 In drag region

inGrow 5 In grow region (active window only)

inGoAway 6 In go-away region (active window only)

inZoomIn 7 In zoom-in region

inZoomOut 8 In zoom-out region
Text Services Manager Reference 7-83

C H A P T E R 7

Text Services Manager
Text Service Component Routines 7
This section describes the component-level routines and related data structures and
constants through which the Text Services Manager communicates with text service
components. The Text Services Manager uses the Component Manager to dispatch the
text service component routines to specific text service components.

Client applications also may make the calls described in this section, but the
Text Services Manager does not play a role in the connection between the client
application making the call and the text service component receiving it. If you are
an application making these calls, you need to know the component instance of the
component whose routine you are calling.

If you are writing a text service component, it must implement routines for the calls
described in this section. With these routines, your component

■ provides a text service

■ accepts events and updates its cursor and menu (if any)

■ confirms active input when requested (if it is an input method)

■ identifies the scripts and languages it supports

Providing a Text Service 7

This section describes the functions a text service component supports to initiate,
activate, deactivate, and terminate a text service. The Text Services Manager makes these
calls to components either on its own or in response to application-interface calls it
receives from client applications.

InitiateTextService 7

The InitiateTextService function instructs a specified text service component to do
whatever it needs to set up its operations and commence its performance.

FUNCTION InitiateTextService (ts: ComponentInstance):

ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.

DESCRIPTION

The Text Services Manager can call InitiateTextService to any component that it
has already opened with the Component Manager OpenComponent or
OpenDefaultComponent functions. Text service components should be prepared to
handle InitiateTextService calls at any time.
7-84 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Any text service component can receive multiple InitiateTextService calls. The
Text Services Manager calls InitiateTextService each time the user adds a text
service to a TSM document, even if the text service component has already been opened.
This provides an opportunity for the component to restart or to display user interface
elements that the user may have closed.

This function should return a ComponentResult value of zero if there is no error, and
an error code if there is one.

ActivateTextService 7

The ActivateTextService function notifies a text service component that its
associated document window is becoming active. This allows the text service component
to display any associated floating windows.

FUNCTION ActivateTextService (ts: ComponentInstance):

ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.

DESCRIPTION

The appropriate response to ActivateTextService is for the text service component
to restore its active state, including displaying all floating windows if they have been
hidden. If it is an input method, it should specify the redisplay of any unconfirmed text
currently in the active input area.

DeactivateTextService 7

The DeactivateTextService function lets a text service component know that its
associated document window is becoming inactive. This allows time for the text service
component to prepare for deactivation.

FUNCTION DeactivateTextService (ts: ComponentInstance):

 ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.
Text Services Manager Reference 7-85

C H A P T E R 7

Text Services Manager
DESCRIPTION

When it receives a DeactivateTextService call, the text service component is
responsible for saving whatever state information it needs to save, so that it can restore
the proper information when it becomes active again. A component other than an input
method should also hide all its floating windows and menus. However, an input-method
component should not hide its windows in response to this call. If the subsequent
document being activated is using the same component’s service, it would be irritating
to the user to hide and then immediately redisplay the same windows. An input-method
component should hide its windows only in response to a HidePaletteWindows call.

An input method should not confirm any unconfirmed text in the active input area, but
should save it until reactivated.

HidePaletteWindows 7

The HidePaletteWindows function instructs an input method to hide its floating
windows because another input method is becoming active.

FUNCTION HidePaletteWindows (ts: ComponentInstance):

 ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.

DESCRIPTION

The HidePaletteWindows function is not called every time a component’s document
becomes inactive; it is called by the Text Services Manager only if the new document that
is becoming active does not use the same text service component as the document last
deactivated. When it receives a HidePaletteWindows call, the text service component
should hide all its floating and nonfloating windows. Its menus, if any, will be removed
from the menu bar by the Text Services Manager.

If the text service component has no palettes, it should return a ComponentResult
value of noErr.

TerminateTextService 7

The TerminateTextService function terminates the operations of a text service in
preparation for closing the text service component.

FUNCTION TerminateTextService (ts: ComponentInstance):

 ComponentResult;
7-86 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
ts A component instance created by a prior call to the Component Manager
OpenComponent function.

DESCRIPTION

The Text Services Manager calls TerminateTextService before closing the
component instance. A text service component must use this opportunity to confirm any
inline input in progress.

If the text service component needs to remain open, it should return an OSErr value in
the component result return value. This could happen, for example, if the user chooses
Cancel in response to a text service component dialog box.

If this call is made to the last open instance of a text service component, the component
should hide any open palette windows. If it is an input method, the component should
not dispose of its menu handle if it has a menu.

Responding to Events and Updating the Cursor and Menu 7

To pass events to text service components, the Text Services Manager calls the
TextServiceEvent function. To allow components to handle menu commands, it calls
TextServiceMenuSelect. To allow components to set the shape of the cursor, it calls
SetTextServiceCursor. To allow components to add their menus to the menu bar, it
calls GetTextServiceMenu.

TextServiceEvent 7

The TextServiceEvent function routes an event to a specified text service component.

FUNCTION TextServiceEvent (ts: ComponentInstance;

numOfEvents: Integer;

VAR event: EventRecord):

ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.

numOfEvents
The number of events being passed.

event The Event Manager event record (defined by the EventRecord data
type) for the event being passed.
Text Services Manager Reference 7-87

C H A P T E R 7

Text Services Manager
DESCRIPTION

If the text service component handles the event, it should return a nonzero value for
componentResult and it should change the event to a null event. If it does not handle
the event, it should return 0.

TextServiceMenuSelect 7

The TextServiceMenuSelect function lets a text service component handle
commands from its menus.

FUNCTION TextServiceMenuSelect (ts: ComponentInstance;

 serviceMenu: MenuHandle;

 item: Integer): ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.

serviceMenu
A Menu Manager menu handle (defined by the MenuHandle data type)
to a specific text service component menu.

item The text service component menu item that the user has selected.

DESCRIPTION

When the user makes a menu selection, the client application calls TSMMenuSelect; the
Text Services Manager in turn calls TextServiceMenuSelect to all active
components. The text service component receiving this call should return 0 for
componentResult if it did not handle the menu selection, and 1 if it did.

After the text service component performs the chosen task, it is not responsible for
removing the highlighting from the menu title.

SetTextServiceCursor 7

The SetTextServiceCursor function lets the text service component control the
shape of the cursor.

FUNCTION SetTextServiceCursor (ts: ComponentInstance;

 mousePos: Point): ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.
7-88 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
mousePos A location (specified as a QuickDraw point) that specifies the global
coordinates for the vertical and horizontal position of the mouse.

DESCRIPTION

The text service component must return a nonzero value for ComponentResult if it has
set the cursor, and 0 if it has not.

GetTextServiceMenu 7

The GetTextServiceMenu function returns a handle to a menu belonging to a text
service component.

FUNCTION GetTextServiceMenu (ts: ComponentInstance;

 VAR serviceMenu: MenuHandle):

 ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.

serviceMenu
A menu handle (defined by the Menu Manager MenuHandle data type)
for the text service component that is to be updated.

DESCRIPTION

The Text Services Manager calls GetTextServiceMenu to a text service component
when the component is opened or activated, so that it can put the component’s menu on
the menu bar.

The menu handle passed in serviceMenu may be preallocated or it may be NIL. If
the menu handle is NIL, the text service component should allocate a new menu and
return it.

Note
All instances of an input-method component must share a single menu
handle, allocated in the system heap. ◆

If the text service component does not have a menu, it should return a
ComponentResult value of TSMHasNoMenuErr.

Confirming Active Input in a TSM Document 7

To stop active input in a text service component, the Text Services Manager calls the
FixTextService function described in this section.
Text Services Manager Reference 7-89

C H A P T E R 7

Text Services Manager
FixTextService 7

The FixTextService function explicitly terminates any input that is in progress in a
specified text service component.

FUNCTION FixTextService (ts: ComponentInstance): ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.

DESCRIPTION

This function is equivalent to the user explicitly confirming text, but the request comes
instead from the application or from the Text Services Manager. The text service
component must stop accepting further input and confirm the current input, as
appropriate.

Identifying the Supported Scripts and Languages 7

The Text Services Manager or a client application may call the
GetScriptLanguageSupport function to find out all the scripts and languages
supported by your text service component.

GetScriptLanguageSupport 7

The GetScriptLanguageSupport function determines which languages and scripts a
specified text service component supports, including its primary language and script.

FUNCTION GetScriptLanguageSupport (ts: ComponentInstance;

 VAR scriptHandle:

 ScriptLanguageSupportHandle):

 ComponentResult;

ts A component instance created by a prior call to the Component Manager
OpenComponent function.

scriptHandle
A handle to a script-language support record. The handle must be either
NIL or a valid handle. If it is NIL, the text service component allocates a
new handle. If it is already a valid handle, the text service component
resizes it as necessary.
7-90 Text Services Manager Reference

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
DESCRIPTION

The GetScriptLanguageSupport function lets a caller find out all scripts and
languages that your text service component supports. GetScriptLanguageSupport
should return a list of scripts and languages in the scriptHandle return parameter.
The ComponentResult return value should contain 0 if the list is correct, or an error
value if an error occurred.

The component should list all its supported scripts and languages, starting with the
primary script and language as specified in the componentFlags field of its component
description record. See page 7-15.

The result is returned in a handle to a script-language support record. See “Identifying
the Supported Scripts and Languages” on page 7-42 for a description of the
script-language support record.

SEE ALSO

For sample code that shows a text service component responding to the
GetScriptLanguageSupport function, see Listing 7-10 on page 7-43.
Text Services Manager Reference 7-91

C H A P T E R 7

Text Services Manager
Summary of the Text Services Manager 7

Pascal Summary 7

Constants 7

CONST

kTSMVersion = 1; {Version of Text Services Manager}

kTextService = 'tsvc'; {Component type for component description}

kInputMethodService = 'inpm'; {Component subtype for component desc.}

bTakeActiveEvent = 15; {Bit set if component takes activate events}

bScriptMask = $00007F00; {Bits 8 - 14}

bLanguageMask = $000000FF; {Bits 0 - 7}

bScriptLanguageMask = ScriptMask + bLanguageMask; {Bits 0 - 14}

{Hilite styles}

kCaretPosition = 1; {specify caret position}

kRawText = 2; {specify range of raw text}

kSelectedRawText = 3; {specify range of selected raw text}

kConvertedText = 4; {specify range of converted text}

kSelectedConvertedText = 5; {specify range of selected converted text}

{Apple Event constants}

kTextServiceClass = kTextService; {Event class}

kUpdateActiveInputArea = 'updt'; {Update active inline area}

kPos2Offset = 'p2st'; {Convert global coordinates to }

{ character position}

kOffset2Pos = 'st2p'; {Convert character position to }

{ global coordinate}

kShowHideInputWindow = 'shiw'; {show or hide the input window}

{Event keywords}

keyAETSMDocumentRefcon = 'refc'; {TSM document refcon}

keyAEServerInstance = 'srvi'; {Server instance}

keyAETheData = 'kdat'; {typeText}
7-92 Summary of the Text Services Manager

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
keyAEScriptTag = 'sclg'; {Script tag}

keyAEFixLength = 'fixl';

keyAEHiliteRange = 'hrng'; {Hilite range array}

keyAEUpdateRange = 'udng'; {Update range array}

keyAEClauseOffsets = 'clau'; {Clause offsets array}

keyAECurrentPoint = 'cpos'; {Current point}

keyAEDragging = 'bool'; {Dragging flag}

keyAEOffset = 'ofst'; {Offset}

keyAERegionClass = 'rgnc'; {Region class}

keyAEPoint = 'gpos'; {Current point}

keyAEBufferSize = 'buff'; {Buffer size to get the text}

keyAERequestedType = 'rtyp'; {Requested text type}

keyAEMoveView = 'mvvw'; {Move view flag}

keyAELength = 'leng'; {Length}

keyAENextBody = 'nxbd'; {Next or previous body}

{optional keywords for Offset2Pos}

keyAETextFont = 'ktxf';

keyAETextPointSize = 'ktps';

keyAETextLineHeight = 'ktlh';

keyAETextLineAscent = 'ktas';

keyAEAngle = 'kang';

{optional keyword for Pos2Offset}

keyAELeftSide = 'klef'; {type Boolean}

{optional keyword for kShowHideInputWindow}

keyAEShowHideInputWindow = 'shiw'; {type Boolean}

{keyword for PinRange}

keyAEPinRange = 'pnrg';

{Desc type ...}

typeComponentInstance = 'cmpi'; {component instance}

typeTextRange = 'txrn'; {text range}

typeTextRangeArray = 'tray'; {text range array}

typeOffsetArray = 'ofay'; {offset array}

typeIntlWritingCode = 'intl'; {script code}

typeQDPoint = 'QDpt'; {QuickDraw point}

typeAEText = 'tTXT'; {Apple event text}

typeText = 'TEXT'; {plain text}

{Apple event descriptor type constants}

kTSMOutsideOfBody = 1;

kTSMInsideOfBody = 2;
Summary of the Text Services Manager 7-93

C H A P T E R 7

Text Services Manager
kTSMInsideOfActiveInputArea = 3;

kNextBody = 1;

kPreviousBody = 2;

{Apple event error constants}

errOffsetInvalid = -1800;

errOffsetIsOutsideOfView = -1801;

errTopOfDocument = -1810;

errTopOfBody = -1811;

errEndOfDocument = -1812;

errEndOfBody = -1813;

Data Types 7

TYPE TextRange =

RECORD

fStart: LongInt;

fEnd: LongInt;

fHiliteStyle: Integer;

END;

TextRangePtr = ^TextRange;

TextRangeHandle = ^TextRangePtr;

TextRangeArray =

RECORD

fNumOfRanges: Integer;

fRange: ARRAY [0..0] of TextRange;

END;

TextRangeArrayPtr = ^TextRangeArray;

TextRangeArrayHandle = ^TextRangeArrayPtr;

OffsetArray =

RECORD

fNumOfOffsets: Integer;

fOffset: ARRAY [0..0] of LongInt;

END;

OffsetArrayPtr = ^OffsetArray;

OffsetArrayHandle = ^OffsetArrayPtr;

TextServiceInfo =

RECORD

fComponent: Component;
7-94 Summary of the Text Services Manager

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
fItemName: Str255;

END;

TextServicesInfoPtr = ^TextServiceInfo;

TextServiceList =

RECORD

fTextServiceCount: Integer;

fServices: ARRAY [0..0] of TextServiceInfo;

END;

TextServiceListPtr = ^TextServiceList;

TextServiceListHandle = ^TextServiceListPtr;

ScriptLanguageRecord =

RECORD

fScript: ScriptCode;

fLanguage: LangCode;

END;

ScriptLanguageSupport =

RECORD

fScriptLanguageCount: Integer;

fScriptLanguageArray: ARRAY [0..0] of ScriptLanguageRecord;

END;

ScriptLanguageSupportPtr = ^ScriptLanguageSupport;

ScriptLanguageSupportHandle = ^ScriptLanguageSupportPtr;

InterfaceTypeList = ARRAY [0..0] of OSType;

TSMDocumentID = Ptr;

Text Services Manager Routines for Client Applications 7

Initializing and Closing as a TSM-Aware Application

FUNCTION InitTSMAwareApplication: OSErr;

FUNCTION CloseTSMAwareApplication: OSErr;

Creating and Activating TSM Documents

FUNCTION NewTSMDocument (numOfInterface: Integer;
VAR supportedInterfaceTypes: InterfaceTypeList;
VAR idocID: TSMDocumentID;
refCon: LongInt): OSErr;

FUNCTION ActivateTSMDocument
(idocID: TSMDocumentID): OSErr;
Summary of the Text Services Manager 7-95

C H A P T E R 7

Text Services Manager
FUNCTION DeactivateTSMDocument
(idocID: TSMDocumentID): OSErr;

FUNCTION DeleteTSMDocument (idocID: TSMDocumentID): OSErr;

Passing Events to Text Service Components

FUNCTION TSMEvent (VAR event: EventRecord): Boolean;

Passing Menu Selections and Cursor Setting

FUNCTION TSMMenuSelect (menuResult: LongInt): Boolean;

FUNCTION SetTSMCursor (mousePos: Point): Boolean;

Confirming Active Input in a TSM Document

FUNCTION FixTSMDocument (idocID: TSMDocumentID): OSErr;

Making Text Services Available to the User

FUNCTION GetServiceList (numOfInterfaceTypes: Integer;
supportedInterfaceTypes: InterfaceTypeList;
VAR serviceInfo: TextServiceListHandle;
VAR seedValue: LongInt): OSErr;

FUNCTION OpenTextService (idocID: TSMDocumentID; aComponent: Component;
VAR aComponentInstance: ComponentInstance):
OSErr;

FUNCTION CloseTextService (idocID: TSMDocumentID; aComponentInstance:
ComponentInstance): OSErr;

Requesting a Floating Input Window

FUNCTION UseInputWindow (idocID: TSMDocumentID; useWindow: Boolean):
OSErr;

Associating Scripts and Languages With Components

FUNCTION SetDefaultInputMethod
(ts: Component;
VAR slRecord: ScriptLanguageRecord): OSErr;

FUNCTION GetDefaultInputMethod
(VAR ts: Component;
VAR slRecord: ScriptLanguageRecord): OSErr;

FUNCTION SetTextServiceLanguage
(VAR slRecord: ScriptLanguageRecord): OSErr;

FUNCTION GetTextServiceLanguage
(VAR slRecord: ScriptLanguageRecord): OSErr;
7-96 Summary of the Text Services Manager

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Text Services Manager Routines for Components 7

Sending Apple Events to a Client Application

FUNCTION SendAEFromTSMComponent
(VAR theAppleEvent: AppleEvent;
VAR reply: AppleEvent; sendMode: AESendMode;
sendPriority: AESendPriority;
timeOutInTicks: LongInt;
idleProc: IdleProcPtr;
filterProc: EventFilterProcPtr): OSErr;

Opening Floating Utility Windows

FUNCTION NewServiceWindow (wStorage: Ptr; boundsRect: Rect;
title: Str255; visible: Boolean;
theProc: Integer; behind: WindowPtr;
goAwayFlag: Boolean; ts: ComponentInstance;
VAR window: WindowPtr): OSErr;

FUNCTION CloseServiceWindow (window: WindowPtr): OSErr;

FUNCTION GetFrontServiceWindow
(VAR window: WindowPtr): OSErr;

FUNCTION FindServiceWindow (thePoint: Point; VAR theWindow: WindowPtr):
Integer;

Text Service Component Routines 7

Providing a Text Service

FUNCTION InitiateTextService
(ts: ComponentInstance): ComponentResult;

FUNCTION ActivateTextService
(ts: ComponentInstance): ComponentResult;

FUNCTION DeactivateTextService
(ts: ComponentInstance): ComponentResult;

FUNCTION HidePaletteWindows (ts: ComponentInstance): ComponentResult;

FUNCTION TerminateTextService
(ts: ComponentInstance): ComponentResult;

Responding to Events and Updating the Cursor and Menu

FUNCTION TextServiceEvent (ts: ComponentInstance; numOfEvents: Integer;
VAR event: EventRecord): ComponentResult;
Summary of the Text Services Manager 7-97

C H A P T E R 7

Text Services Manager
FUNCTION TextServiceMenuSelect
(ts: ComponentInstance; serviceMenu:
MenuHandle; item: Integer): ComponentResult;

FUNCTION SetTextServiceCursor
(ts: ComponentInstance; mousePos: Point):
ComponentResult;

FUNCTION GetTextServiceMenu (ts: ComponentInstance;
VAR serviceMenu: MenuHandle): ComponentResult;

Confirming Active Input in a TSM Document

FUNCTION FixTextService (ts: ComponentInstance): ComponentResult;

Identifying the Supported Scripts and Languages

FUNCTION GetScriptLanguageSupport
(ts: ComponentInstance; VAR scriptHandle:
ScriptLanguageSupportHandle): ComponentResult;

C Summary 7

Constants 7

#define kTSMVersion 1 /* Version of the

Text Services Manager */

#define kTextService 'tsvc' /* component type for

the component description */

#define kInputMethodService 'inpm' /* component subtype for

the component description */

#define bTakeActiveEvent 15 /* bit set if the component

 takes active event */

#define bScriptMask 0x00007F00 /* bit 8 - 14 */

#define bLanguageMask 0x000000FF /* bit 0 - 7 */

#define bScriptLanguageMask bScriptMask+bLanguageMask /* bit 0 - 14 */

/* Hilite styles ... */

typedef enum {

kCaretPosition = 1, /* specify caret position */

kRawText = 2, /* specify range of raw text */

kSelectedRawText = 3, /* specify range of selected raw text */

kConvertedText = 4, /* specify range of converted text */
7-98 Summary of the Text Services Manager

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
kSelectedConvertedText = 5 /* specify range of selected

converted text */

} HiliteStyleType;

/* Apple Event constants ... */

/* Event class ... */

#define kTextServiceClass kTextService

/* event ID ... */

#define kUpdateActiveInputArea 'updt' /* update active Inline area */

#define kPos2Offset 'p2st' /* converting global coordinates

to char position */

#define kOffset2Pos 'st2p' /* converting char position

to global coordinates */

#define kShowHideInputWindow 'shiw' /* show or hide bottomline

input window */

/* Event keywords ... */

#define keyTSMDocumentRefcon 'refc' /* TSM document refcon */

#define keyAEServerInstance 'srvi' /* component instance */

#define keyAETheData 'kdat' /* typeText */

#define keyAEScriptTag 'sclg' /* script tag */

#define keyAEFixLength 'fixl' /* fix len ?? */

#define keyAEHiliteRange 'hrng' /* hilite range array */

#define keyAEUpdateRange 'udng' /* update range array */

#define keyAEClauseOffsets 'clau' /* Clause Offsets array */

#define keyAECurrentPoint 'cpos' /* current point */

#define keyAEDragging 'bool' /* dragging flag */

#define keyAEOffset 'ofst' /* offset */

#define keyAERegionClass 'rgnc' /* region class */

#define keyAEPoint 'gpos' /* current point */

#define keyAEBufferSize 'buff' /* buffer size to get text */

#define keyAERequestedType 'rtyp' /* requested text type */

#define keyAEMoveView 'mvvw' /* move view flag */

#define keyAELength 'leng' /* length */

#define keyAENextBody 'nxbd' /* next or previous body */

/* optional keyword for UpdateActiveInputArea */

#define keyAEPinRange 'pnrg'

/* optional keywords for Offset2Pos */

#define keyAETextFont 'ktxf'

#define keyAETextPointSize 'ktps'
Summary of the Text Services Manager 7-99

C H A P T E R 7

Text Services Manager
#define keyAETextLineHeight 'ktlh'

#define keyAETextLineAscent 'ktas'

#define keyAEAngle 'kang'

/* optional keywords for Pos2Offset */

#define keyAELeadingEdge 'klef'

/* Apple event descriptor type ... */

#define typeComponentInstance 'cmpi' /* server instance */

#define typeTextRange 'txrn' /* text range record */

#define typeTextRangeArray 'tray' /* text range array */

#define typeOffsetArray 'ofay' /* offset array */

#define typeIntlWritingCode 'intl' /* script code */

#define typeQDPoint 'QDpt' /* QuickDraw Point */

#define typeAEText 'tTXT' /* Apple Event text */

#define typeText 'TEXT' /* Plain text */

#define typeFixed 'fixd' /* Fixed number 16.16 */

/* Apple event descriptor type constants */

typedef enum {

kTSMOutsideOfBody = 1,

kTSMInsideOfBody = 2,

kTSMInsideOfActiveInputArea = 3

} AERegionClassType;

typedef enum {

kNextBody = 1,

kPreviousBody = 2

} AENextBodyType;

/* Apple Event error definitions */

typedef enum {

errOffsetInvalid = -1800,

errOffsetIsOutsideOfView = -1801,

errTopOfDocument = -1810,

errTopOfBody = -1811,

errEndOfDocument = -1812,

errEndOfBody = -1813

} AppleEventErrorType;
7-100 Summary of the Text Services Manager

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Data Types 7

struct TextRange { /* typeTextRange 'txrn' */

long fStart;

long fEnd;

short fHiliteStyle;

};

typedef struct TextRange TextRange;

typedef TextRange *TextRangePtr;

typedef TextRangePtr *TextRangeHandle;

struct TextRangeArray { /* typeTextRangeArray 'txra' */

short fNumOfRanges; /* specify the size of the fRange array */

TextRange fRange[1]; /* when fNumOfRanges > 1, the size of this

array has to be calculated */

};

typedef struct TextRangeArray TextRangeArray;

typedef TextRangeArray *TextRangeArrayPtr;

typedef TextRangeArrayPtr *TextRangeArrayHandle;

struct OffsetArray { /* typeOffsetArray'offa' */

short fNumOfOffsets; /* specify the size of the fOffset array */

long fOffset[1]; /* when fNumOfOffsets > 1, the size of

this array has to be calculated */

};

typedef struct OffsetArray OffsetArray;

typedef OffsetArray *OffsetArrayPtr;

typedef OffsetArrayPtr *OffsetArrayHandle;

/* extract Script/Language code from Component flag ... */

#define mGetScriptCode(cdRec) ((ScriptCode) (cdRec.componentFlags &

bScriptMask) >> 8)

#define mGetLanguageCode(cdRec) ((LangCode) cdRec.componentFlags &

bLanguageMask)

typedef void *TSMDocumentID;

/* text service component information list */

struct TextServiceInfo {

Component fComponent;

Str255 fItemName;

};

typedef struct TextServiceInfo TextServiceInfo;

typedef TextServiceInfo *TextServiceInfoPtr;
Summary of the Text Services Manager 7-101

C H A P T E R 7

Text Services Manager
/*text service component list*/

struct TextServiceList {

short fTextServiceCount; /* number of entries in the

'fServices' array */

TextServiceInfo fServices[1]; /* Note: array of 'TextServiceInfo'

records follows */

};

typedef struct TextServiceList TextServiceList;

typedef TextServiceList *TextServiceListPtr;

typedef TextServiceListPtr *TextServiceListHandle;

/*script and language record*/

struct ScriptLanguageRecord {

ScriptCode fScript;

LangCode fLanguage;

};

typedef struct ScriptLanguageRecord ScriptLanguageRecord;

/*script and language support record*/

struct ScriptLanguageSupport {

 short fScriptLanguageCount; /* number of entries in the

'fScriptLanguageArray'

array */

 ScriptLanguageRecord fScriptLanguageArray[1]; /* Note: array of

'ScriptLanguageRecord'

records follows */

};

typedef struct ScriptLanguageSupport ScriptLanguageSupport;

typedef ScriptLanguageSupport *ScriptLanguageSupportPtr;

typedef ScriptLanguageSupportPtr *ScriptLanguageSupportHandle;

Text Services Manager Routines for Client Applications 7

Initializing and Closing as a TSM-Aware Application

pascal OSErr InitTSMAwareApplication ();

pascal OSErr CloseTSMAwareApplication ();

Creating and Activating TSM Documents

pascal OSErr NewTSMDocument (short numOfInterface,
OSType supportedInterfaceTypes[],
TSMDocumentID *idocID, long refCon);
7-102 Summary of the Text Services Manager

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
pascal OSErr ActivateTSMDocument
(TSMDocumentID idocID);

pascal OSErr DeactivateTSMDocument
(TSMDocumentID idocID);

pascal OSErr DeleteTSMDocument
(TSMDocumentID idocID);

Passing Events to Text Service Components

pascal Boolean TSMEvent (EventRecord *event);

Passing Menu Selections and Cursor Setting

pascal Boolean TSMMenuSelect (long menuResult);

pascal Boolean SetTSMCursor (Point mousePos);

Confirming Active Input in a TSM Document

pascal OSErr FixTSMDocument (TSMDocumentID idocID);

Making Text Services Available to the User

pascal OSErr GetServiceList (short numOfInterfaceTypes,
OSType supportedInterfaceTypes[],
TextServiceListHandle *serviceInfo,
long *seedValue);

pascal OSErr OpenTextService
(TSMDocumentID idocID, Component aComponent,
 ComponentInstance *aComponentInstance);

pascal OSErr CloseTextService
(TSMDocumentID idocID,
ComponentInstance aComponentInstance)

Requesting a Floating Input Window

pascal OSErr UseInputWindow (TSMDocumentID idocID, Boolean useWindow);

Associating Scripts and Languages With Components

pascal OSErr SetDefaultInputMethod
(Component ts,
ScriptLanguageRecord *slRecordPtr);

pascal OSErr GetDefaultInputMethod
(Component *ts,
ScriptLanguageRecord *slRecordPtr);
Summary of the Text Services Manager 7-103

C H A P T E R 7

Text Services Manager
pascal OSErr SetTextServiceLanguage
(ScriptLanguageRecord *slRecordPtr);

pascal OSErr GetTextServiceLanguage
(ScriptLanguageRecord *slRecordPtr);

Text Services Manager Routines for Components 7

Sending Apple Events to a Client Application

pascal OSErr SendAEFromTSMComponent
(AppleEvent *theAppleEvent,
AppleEvent *reply, AESendMode sendMode,
AESendPriority sendPriority,
long timeOutInTicks, IdleProcPtr idleProc,
EventFilterProcPtr filterProc);

Opening Floating Utility Windows
pascal OSErr NewServiceWindow

(void *wStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short theProc, WindowPtr behind,
Boolean goAwayFlag, ComponentInstance ts,
WindowPtr *window);

pascal OSErr CloseServiceWindow
(WindowPtr window);

pascal OSErr GetFrontServiceWindow
(WindowPtr *window);

pascal short FindServiceWindow
(Point thePoint, WindowPtr *theWindow);

Text Service Component Routines 7

Providing a Text Service

pascal ComponentResult InitiateTextService
(ComponentInstance ts);

pascal ComponentResult ActivateTextService
(ComponentInstance ts);

pascal ComponentResult DeactivateTextService
(ComponentInstance ts);
7-104 Summary of the Text Services Manager

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
pascal ComponentResult HidePaletteWindows
(ComponentInstance ts);

pascal ComponentResult TerminateTextService
(ComponentInstance ts);

Responding to Events and Updating the Cursor and Menu

pascal ComponentResult TextServiceEvent
(ComponentInstance ts,
short numOfEvents, EventRecord *event)

pascal ComponentResult TextServiceMenuSelect
(ComponentInstance ts,
MenuHandle serviceMenu, short item);

pascal ComponentResult SetTextServiceCursor
(ComponentInstance ts, Point mousePos);

pascal ComponentResult GetTextServiceMenu
(ComponentInstance ts, MenuHandle *serviceMenu);

Confirming Active Input in a TSM Document

pascal ComponentResult FixTextService
(ComponentInstance ts);

Identifying the Supported Scripts and Languages

pascal ComponentResult GetScriptLanguageSupport
(ComponentInstance ts,
ScriptLanguageSupportHandle *scriptHdl);

Assembly-Language Summary 7

Trap Macros 7

Trap Macro Names for Text Services Manager Routines

Pascal name Trap macro name

NewTSMDocument _NewTSMDocument

DeleteTSMDocument _DeleteTSMDocument

ActivateTSMDocument _ActivateTSMDocument

DeactivateTSMDocument _DeactivateTSMDocument

TSMEvent _TSMEvent

TSMMenuSelect _TSMMenuSelect
Summary of the Text Services Manager 7-105

C H A P T E R 7

Text Services Manager
Trap Macro Names for Text Service Component Routines

SetTSMCursor _SetTSMCursor

FixTSMDocument _FixTSMDocument

GetServiceList _GetServiceList

OpenTextService _OpenTextService

CloseTextService _CloseTextService

SendAEFromTSMComponent _SendAEFromTSMComponent

SetDefaultInputMethod _SetDefaultInputMethod

GetDefaultInputMethod _GetDefaultInputMethod

SetTextServiceLanguage _SetTextServiceLanguage

GetTextServiceLanguage _GetTextServiceLanguage

UseInputWindow _UseInputWindow

NewServiceWindow _NewServiceWindow

CloseServiceWindow _CloseServiceWindow

GetFrontServiceWindow _GetFrontServiceWindow

InitTSMAwareApplication _InitTSMAwareApplication

CloseTSMAwareApplication _CloseTSMAwareApplication

FindServiceWindow _FindServiceWindow

Pascal name Trap macro name

GetScriptLanguageSupport _GetScriptLanguageSupport

InitiateTextService _InitiateTextService

TerminateTextService _TerminateTextService

ActivateTextService _ActivateTextService

DeactivateTextService _DeactivateTextService

TextServiceEvent _TextServiceEvent

GetTextServiceMenu _GetTextServiceMenu

TextServiceMenuSelect _TextServiceMenuSelect

FixTextService _FixTextService

SetTextServiceCursor _SetTextServiceCursor

HidePaletteWindows _HidePaletteWindows

Pascal name Trap macro name
7-106 Summary of the Text Services Manager

C H A P T E R 7

Text Services Manager

7
Text S

ervices M
anager
Result Codes 7
tsmComponentNoErr 0 Component result: no error
tsmUnsupScriptLanguageErr –2500 Specified script and language are not supported
tsmInputMethodNotFoundErr –2501 Specified input method cannot be found
tsmNotAnAppErr –2502 The caller was not an application
tsmAlreadyRegisteredErr –2503 The caller is already TSM-initialized
tsmNeverRegisteredErr –2504 The caller is not TSM-aware
tsmInvalidDocIDErr –2505 Invalid TSM document ID
tsmTSMDocBusyErr –2506 Document is still active
tsmDocNotActiveErr –2507 Document is not active
tsmNoOpenTSErr –2508 There is no open text service component
tsmCantOpenComponentErr –2509 Can’t open the component
tsmTextServiceNotFoundErr –2510 No text service component found
tsmDocumentOpenErr –2511 There are open documents
tsmUseInputWindowErr –2512 An input window is being used
tsmTSHasNoMenuErr –2513 The text service component has no menu
tsmTSNotOpenErr –2514 Text service component is not open
tsmComponentAlreadyOpenErr –2515 Text service component already open for document
tsmInputMethodIsOldErr –2516 The default input method is old-style
tsmScriptHasNoIMErr –2517 Script has no (or old) input method
tsmUnsupportedTypeErr –2518 Unsupported interface type
tsmUnknownErr –2519 Any other error
Summary of the Text Services Manager 7-107

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	Text Services Manager
	About Text Services
	About Input Methods
	About the Text Services Manager
	The Text Services Environment
	The Text Services Manager and Input Methods
	Inline Input
	Floating Input Windows
	Floating Utility Windows

	About Text Service Components
	Using the Text Services Manager (for Client Applic...
	Testing for the Availability of the Text Services ...
	Calling the Text Services Manager
	Initializing as a TSM-Aware Application
	Creating a TSM Document
	Making Text Services Available to the User
	Activating and Deactivating a TSM Document
	Passing Events, Menu Selections, and Cursor Settin...
	Confirming Active Text Within a TSM Document
	Deleting a TSM Document
	Closing Down as a TSM-Aware Application
	Requesting a Floating Input Window for Text Entry
	Associating Input Methods With Scripts and Languag...

	Handling Text Service Apple Events
	Receiving Text and Updating the Active Input Area
	Converting Screen Position to Text Offset
	Converting Text Offset to Screen Position
	Showing or Hiding the Input Window

	Direct Access to Text Service Components
	Calling the Component Manager
	Calling Text Service Components

	Using the Text Services Manager (for Text Service ...
	Providing Menus and Icons
	Providing a Text Service Component Menu
	Providing Input Method Icons for the Keyboard Menu...

	Responding to Calls
	Initiating a Text Service
	Activating Text Service Component Windows
	Responding to Events and Updating the Cursor and M...
	Confirming Active Text Input
	Closing a Text Service
	Identifying the Supported Scripts and Languages

	Making Calls
	Sending Apple Events to Client Applications
	Opening Floating Utility Windows

	Text Services Manager Reference
	Text Services Manager Routines for Client Applicat...
	Initializing and Closing as a TSM-Aware Applicatio...
	Creating and Activating TSM Documents
	Passing Events to Text Service Components
	Passing Menu Selections and Cursor Setting
	Confirming Active Input in a TSM Document
	Making Text Services Available to the User
	Requesting a Floating Input Window
	Associating Scripts and Languages With Components

	Apple Event Handlers Supplied by Client Applicatio...
	Creating and Updating an Active Input Area
	Converting Global Coordinates to Text Offsets
	Converting Text Offsets to Global Coordinates
	Showing or Hiding the Floating Input Window

	Text Services Manager Routines for Components
	Sending Apple Events to a Client Application
	Opening Floating Utility Windows

	Text Service Component Routines
	Providing a Text Service
	Responding to Events and Updating the Cursor and M...
	Confirming Active Input in a TSM Document
	Identifying the Supported Scripts and Languages

	Summary of the Text Services Manager
	Pascal Summary
	Constants
	Data Types
	Text Services Manager Routines for Client Applicat...
	Text Services Manager Routines for Components
	Text Service Component Routines

	C Summary
	Constants
	Data Types
	Text Services Manager Routines for Client Applicat...
	Text Services Manager Routines for Components
	Text Service Component Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

