CHAPTER 6

Script Manager

This chapter describes the Script Manager, a core component of the Macintosh script
management system. The Script Manager oversees script systems and gives you access
to their features.

Read this chapter if you are writing a multiscript text-handling application and need
access to the general settings and script-specific information provided by the Script
Manager. Read this chapter also if you are writing a specialized application that parses
source code or converts text among subscripts. Read this chapter also if you wish to
modify the features or functions of an individual script system.

Before reading this chapter, you should be familiar with the Macintosh script
management system, as described in the chapter “Introduction to Text on the Macintosh”
in this book. Useful related information is found in the appendixes “International
Resources,” “Keyboard Resources,” and “Built-in Script Support.”

This chapter—and this book—do not catalog the features of individual script systems.
More detailed information on the world’s writing systems and the Macintosh script
systems developed to support them can be found in Guide to Macintosh Software
Localization.

The chapter gives a brief introduction to the Script Manager, and then shows how you
can use the Script Manager to

= control default settings for text handling
= obtain information about a script system
= convert text through tokenization or transliteration

= modify a script system by replacing its resources or—in some cases—its routines

About the Script Manager

The Script Manager is at the center of the Macintosh script management system. It makes
script systems available. It coordinates the interaction between many parts of Macintosh
system software and those available script systems.

The Script Manager also provides several services directly to your application. Through
them you can get information about the current text environment, modify that
environment, and perform a variety of text-handling tasks.

The Script Manager has evolved through several versions. It started with sole
responsibility for all international-compatibility and multilanguage text issues, but as
more power and features have been added, many of its specific functions have been
moved to the other parts of system software.

About the Script Manager 6-3

Jabeue 1duos n

CHAPTER 6

Script Manager

The Script Manager and the Script Management System

The Script Manager manages script systems. It monitors their initialization and
maintains variables and data structures that affect their functioning. It makes sure that
all initialized script systems are complete in terms of having the required international
resources and fonts. It gives applications as well as other parts of system software their
principal access to script systems’ features.

The Script Manager works closely with the other managers that make up the Macintosh
script management system, in particular the Text Utilities and QuickDraw. The Text
Utilities include many script-aware routines that manipulate text, and QuickDraw
provides script-aware measuring and drawing routines for text. When your program or
a system routine makes a script-aware Text Utilities or QuickDraw call, it commonly
results in an internal call to the Script Manager, to access a global setting or the data of a
script system.

TextEdit also relies on the Script Manager, both directly and through the Text Utilities
and QuickDraw, to make sure that it handles text correctly in any script system. The Font
Manager, the Text Services Manager, and the Dictionary Manager use information
maintained and provided by the Script Manager.

Other components of Macintosh system software also interact with the Script Manager.
The Finder uses the Script Manager to correctly input, display, and sort file and folder
names across all localized versions of system software. The Menu Manager, the

Event Manager, the Process Manager, the Operating System Utilities, and the
Component Manager all work with the Script Manager, directly or indirectly, to obtain
the information necessary to properly handle multiscript text.

The Script Manager and Applications

The Script Manager is your application’s principal interface—either direct or indirect—
with any of the script systems that may be available on the user’s computer. For many
text-related tasks, the Script Manager’s role is transparent; when you make a
script-aware Text Utilities or QuickDraw call while processing text, that routine may get
the information it needs through the Script Manager. For example, when you call the
QuickDraw procedure Dr awText to draw a line of text, Dr awText in turn calls the
Script Manager to determine which script system your text belongs to before drawing it.

In other situations you may need to call the Script Manager explicitly, to properly
interpret the text you are processing. Those situations are the principal subject of
this chapter.

The Script Manager provides services that fall into four general categories: controlling
settings, obtaining information, modifying text, and modifying script systems. Any
text-handling application that you write, unless it relies solely on TextEdit, will need to
use some of those services. Almost any text application, for example, needs to call the

About the Script Manager

CHAPTER 6

Script Manager

Get Scri pt Manager Var i abl e function. Other calls are for specialized programs only.
The | nt | Tokeni ze function, for example, is only for specialized programs that parse
highly structured text such as source code, mathematical expressions, or formatted
numbers.

These are the services provided by the Script Manager in each of the four categories:

» Controlling settings. The routines in this category are of general interest and are used
by most text applications. With these routines you can

O

check and set the system direction, a global variable that controls the default
alignment of text and can affect the order in which blocks of mixed-directional
text are drawn.

check and set Script Manager variables, private variables used by the Script
Manager to keep track of information that is general to the text environment.
check and set script variables, private variables used by script systems to keep
track of their own configurations.

make keyboard settings that affect text input, so that users can enter text in any
script system and you can display it properly.

» Obtaining information. Many of the routines in this category are of general interest
and are used by most text applications. With these routines you can

O

determine script codes from font information. Most applications need this
information.

analyze characters for size (in bytes) and type. Applications that work with 2-byte
script systems need size information, and many applications need character-type
information.

directly access a script system’s international resources. Most applications need this

information only to pass it to other routines. Some applications also use it to
inspect or modify individual tables or other data within a resource.

= Converting text. The routines in this category are used by specialized applications
only. (Text-modification routines of general interest to applications are described in
the chapter “Text Utilities” in this book.) With these routines you can

O

tokenize text: convert source text from any script system into

script-independent tokens.

transliterate text: phonetically convert text from one subscript to another within a
script system.

= Modifying script systems. The routines in this category are used for specialized
purposes, such as providing regional variants to existing script systems or assigning
script-specific features to individual documents or applications. With these
routines you can

O

replace or modify the default international resources of a script system.

o replace individual text-handling routines in certain script systems.

About the Script Manager 6-5

Jabeue 1duos n

CHAPTER 6

Script Manager

Evolution of the Script Manager

The Script Manager is only one of several system software managers that make up the
Macintosh script management system, but its position is central.That central position
stems from the fact that, in previous versions, the Script Manager alone (including the
International Utilities) was responsible for all international text processing.

The first version of the Script Manager was released with Macintosh System 4.1.

Table 6-1 shows the routines and some of the features of Script Manager 1.0, and

the additional routines and features that have marked each successive version of the
Script Manager (and International Utilities). Some of the added routines rendered earlier
ones obsolete, whereas others brought new capabilities.

Table 6-1 Evolution of the Script Manager

Version New routines, other additions and enhancements

1.0 Char 2Pi xel , Char Byt e, Char Type, Dr awJust, Fi ndWor d,
Font 2Scri pt, Font Scri pt, Get AppFont, Get Def Font Si ze,
Get Envi r ons, Get MBar Hei ght , Get Scri pt, Get SysFont,
CGet SysJust, HiliteText,Intl Script, KeyScri pt, Measuredust,
Pi xel 2Char, Set Envi rons, Set Scri pt, Set SysJust,
Transl it erat e introduced. New international resources defined.

2.0 Fi ndScri pt Run, For mat 2St r, For mat St r 2X, For mat X2St r,
Cet For mat Or der, | ni t Dat eCache, I nt| Tokeni ze, | ULDat eSt ri ng,
| ULTi meStri ng, LongDat e2Secs, LongSecs2Dat e, Lw Stri ng,
Lwr Text, Par seTabl e, Porti onText, ReadLocat i on, St r 2For mat,
String2Date, String2Ti ne, Styl edLi neBr eak, Toggl eDat e,
Val i dDat e, Vi si bl eLengt h, Wit elLocati on added.

217/ Enhanced ' i t1 2" resource. Full support for Standard Roman character
221 set. New token types defined.
7.0 | UCl ear Cache, | UGet I t | Tabl e, | ULangOr der, | UScri pt Or der,

I USt ri ngOrder, | UText Or der, Lower Text, NChar 2Pi xel ,

NDr awdust , NFi ndWor d, NMeasur eJust, NPi xel 2Char,
NPortionText, Stri pText, Stri pUpper Text, TruncStri ng,
TruncText, Upper Text added. Support for scaled justified text layout.
Implicit script codes, new selectors. New keyboard resources, enhanced
U.S." KCHR resource.

7.1 Char act er Byt eType, Char act er Type, Fi | | Par seTabl e,
Get QDPat chAddr ess, Get ScriptUtilityAddress,
Set QDPat chAddr ess, Set ScriptUtilityAddress,
TransliterateText added to Script Manager; several existing
routines renamed. Many additional new and renamed routines moved
to other managers such as Text Utilities and QuickDraw. WorldScript
extensions created.

“In hexadecimal, 2.17 is $211, and 2.21 is $215. See Table 6-2 on page 6-9.

About the Script Manager

CHAPTER 6

Script Manager

The most extensive changes, in terms of how the Script Manager is documented, have
been the most recent. Many of the routines described throughout Inside Macintosh: Text
are previous Script Manager routines that have been relocated and possibly enhanced or
renamed. They were moved to be documented alongside routines of similar purpose in
other managers. Many of the early Script Manager routines listed in Table 6-1 are
obsolete and are no longer documented at all. See the appendix “Renamed and
Relocated Text Routines” in this book for information on the current status and location
of any previous Script Manager or International Utilities routines not found in

this chapter.

Using the Script Manager

This section explains how you can use the Script Manager in performing four types of
text-related tasks. Script Manager routines can help you with

» accessing and controlling the configuration of the text-handling environment, by

m}

O

m}

O

O

determining the version of the Script Manager and the number of active
script systems

checking and setting the system direction
checking and modifying Script Manager variables
checking and modifying script variables

making keyboard settings that affect text input

= oObtaining script-related information to help you process text, by

O

m}

O

O

determining script codes from font information

using character-type information for searching and analyzing text
directly accessing a script system’s international resources

using specific tables within a script system’s international resources

= converting text for specialized purposes, by

O

O

converting source text from any script system into script-independent tokens
transliterating text from one subscript to another within a script system

= modifying the features of a script system, by

O

m}

replacing or modifying the default international resources of a script system
replacing individual text-handling routines in 1-byte complex script systems

Using the Script Manager 6-7

Jabeue 1duos n

6-8

CHAPTER 6

Script Manager

Testing for the Script Manager and Script Systems

This section describes how to use the Gest al t function to test for the current version of
the Script Manager and the number of active script systems. For details on the Gest al t
function, see the Gestalt Manager chapter of Inside Macintosh: Operating System Utilities.

The Operating System initializes the Script Manager at startup. The Script Manager then
initializes the Roman script system. Next the Script Manager initializes any other
installed 1-byte simple script system whose snsf Aut ol ni t bit (see page 6-69) is set.
The Script Manager then allows the script extensions WorldScript I and WorldScript II (if
present) to initialize all installed 1-byte complex and 2-byte script systems.

When initializing a script system, the Script Manager or script extension first checks to
make sure that there is enough memory for the script system, and then checks that an
international bundle resource is present in the System file and that at least one font in the
proper ID range for that script system is present in the System file or in the Fonts folder.
If these resources are present, the script system is considered to be enabled (available for
use by the Script Manager and applications). If the required resources are not available,
the script system remains disabled.

Note

The Script Manager is fully loaded and all script systems are enabled
before any files of type ' | NI T' in the Extensions folder are launched.
Thus, all Script Manager routines can be called from system
extensions. O

Use Gest al t with the gest al t Scri pt Myr Ver si on selector to obtain a result in the
response parameter that identifies the version number of the Script Manager. This is the
same value returned by a call to the Get Scr i pt Manager Vari abl e function with the
selector constant smVer si on. Table 6-1 on page 6-6 lists some of the routines and
features available with the principal versions of the Script Manager.

Table 6-2 gives more detail on the version numbers returned by Gest al t or by

Cet Scri pt Manager Var i abl e with the selector snVer si on, for all versions of system
software and all versions of the Script Manager. It also shows the Roman script system
versions returned by the Get Scri pt Var i abl e function with the selector

snBScri pt Ver si on.

Using the Script Manager

CHAPTER 6

Script Manager

Table 6-2 Version numbers for the Script Manager and Roman script system
System software Script Manager Script Manager Roman
version (newer ROMs) (older ROMs) script system
6.0.3 and earlier N.A. <= $20F <= $101
6.0.4 Roman $215 $211 $101

6.0.4 non-Roman $216 $212 $101

6.0.5 all $217 (=2.23) $213 $101
Above this line, minor version numbers are binary; below, they are BCD:

6.0.7 all’ $231 (=2.3.1) $230 $101
J-6.0.7.1 $231 $230 $101
(]apanese)*

6.0.8 all $231 $230 $101

6.1 (non-Roman) $241 $240 $101

7.0 $700 $700 $700

7.0.1 Roman $700 $700 $700

7.0.1 non-Rman $701 $701 $701

7.1 $710 $710 $710

* On Macintosh Plus, Macintosh SE, Macintosh II, Macintosh IIx, Macintosh Ilcx,
Macintosh SE /30, Macintosh Classic. Other CPUs have newer ROMs.

t Gestal t actually returns $606 as the system version for non-Roman versions of
system 6.0.7.

¥ Gestal t actually returns $609 as the system version for system J-6.0.7.1.

Note

In versions of system software earlier than 6.0.7, the major and minor
version numbers are each treated as if they were binary. Thus a result of
$217 from Cest al t means a Script Manager version of 2.23 (in
decimal). Starting with system 6.0.7, version numbers are returned as
binary-coded decimal numbers, so a result of $710 means a Script
Manager version of 7.10 (or 7.1.0). O

Use the Gest al t selector gest al t Scri pt Count to obtain a result in the response
parameter that gives the number of active script systems. This is the same value returned
by a call to the Get Scri pt Manager Var i abl e function with the snEnabl ed selector.

Obtaining the number of active script systems is most useful for testing whether

more than a single script system is present. If the result is 1, only the Roman script
system is present and text-handling is simplest. If the result is greater than 1, at

least one non-Roman script system is present, and your application needs to be able to
handle its text.

Using the Script Manager 6-9

Jabeue 1duos n

6-10

CHAPTER 6

Script Manager

Controlling Settings

The first principal use for the Script Manager is in controlling the settings that determine
the current characteristics of the text-handling environment. The Script Manager gives
you access to many variables, fields, flags, and files that affect how script systems
function and how text is manipulated and displayed. The routines described in this
section are of general interest and are used by most text applications. You can use these
Script Manager routines to

= set the system direction
= access Script Manager variables
= access script variables

» determine the keyboard script, keyboard layout, and input method

Checking and Setting the System Direction

The system direction is a global setting that is commonly used to define the primary line
direction for text display. The system direction is specified by the value of the global
variable SysDi r ect i on. The value of SysDi r ect i on is 0 for a left-to-right primary
line direction and -1 for a right-to-left primary line direction.

System direction always controls the alignment (right or left) of interface elements such
as menu items and dialog box items that are drawn by the system. It can also affect caret
placement and the order in which blocks of text are drawn or highlighted in bidirectional
script runs and in multiscript lines.

QuickDraw, TextEdit, and other parts of system software that use TextEdit set the system
direction before drawing text. Although applications can format and draw text
independently of the current value of system direction, applications that follow
suggested procedures for text layout typically set the system direction before laying out
and drawing any text. See, for example, the description of the Get For mat Or der
function in the chapter “QuickDraw Text” in this book.

The default value for SysDi r ect i on usually corresponds to the primary line direction
of the system script; it is initialized from the system’s international configuration
("itlc")resource at startup. The user can change the system direction from the Text
control panel if a bidirectional script system is present.

If your application uses Set SysDi r ect i on to change the system direction in order to
correctly order script runs in a line of text while drawing, be sure to first call

Get SysDi recti on to save the original value. Then call Set SysDi r ect i on again at
the appropriate time—such as when your application becomes inactive—to restore
SysDi recti on to its original value.

Using the Script Manager

CHAPTER 6

Script Manager

Checking and Setting Script Manager Variables

The Get Scri pt Manager Var i abl e and Set Scri pt Manager Var i abl e functions let
you check and set the values of the Script Manager variables, general environmental
settings that the Script Manager maintains for all script systems.

These functions give you access to a large variety of general script-related information,
including whether one or more bidirectional script systems is present, whether one or

more 2-byte script systems is present, and what the states of the font force and

international resources selection flags are.

You specify the variable you want to access with a selector, an integer constant that
controls the function of a multipurpose routine. You pass a selector as a parameter to
Get Scri pt Manager Var i abl e or Set Scri pt Manager Vari abl e. (The variables
themselves are private and you cannot access them directly.) Table 6-3 lists the selector
constants and the Script Manager variables they affect. See “Selectors for Script Manager

Variables” beginning on page 6-61 for complete explanations of the selectors

and variables.

Table 6-3

Script Manager variables accessed through
Get Scri pt Manager Var i abl e/ Set Scri pt Manager Vari abl e

Selector constant
sn\Ver si on

smvunged
snEnabl ed
snBi di r ect
snfont For ce
sm nt | Force
snfor ced
snDef aul t
snPrint
snBysScri pt
smliast Scri pt
snKeyScri pt
snBysRef
snKeyCache
snKey Swap
snizenFl ags

Using the Script Manager

Explanation
Script Manager version number

Modification count

Script count (0 if Script Manager not enabled)
Bidirectional script present flag

Font force flag

International resources selection flag
Script-forced result flag

Script-defaulted result flag

Print action vector

System script code

Previous keyboard script

Current keyboard script

System Folder volume reference number
(obsolete, not used)

Handle to keyboard-swap (' KSWP') resource
Script Manager general flags

continued

6-11

Jabeue 1duos n

CHAPTER 6

Script Manager

Table 6-3 Script Manager variables accessed through
Get Scri pt Manager Vari abl e/ Set Scri pt Manager Vari abl e (continued)

Selector constant Explanation

snOverri de Script override flags (reserved)

snChar Porti on Intercharacter /interword spacing proportion
snmDoubl eByt e 2-byte script present flag

snmKCHRCache Pointer to current keyboard-layout (' KCHR) data
snmRegi onCode Region code for system script

snmKeyDi sabl eSt at e Current disable state for keyboards

The following code fragment shows how to use the Get Scri pt Manager Vari abl e
function to get the Script Manager version number. This is the same value as that
returned by the Cest al t function using the gest al t Scri pt Myr Ver si on selector.

VAR

sel ector Val ue: Longl nt;
BEG N

sel ectorVal ue : = Cet Scri pt Manager Vari abl e(snVer si on) ;
END;

The Set Scri pt Manager Var i abl e function allows you to change many text-related
settings, including

= the font force flag
= the international resources selection flag
» the current keyboard script

» the Script Manager general flags, which include control of the display of the keyboard
icon and the dual caret in TextEdit

s the proportion of intercharacter versus interword spacing, when laying out lines of
justified text (in non-Roman script systems)

Listing 6-1 shows how to use the Set Scri pt Manager Var i abl e function to specify the
display of a dual caret in mixed-directional text. You do this by setting the appropriate
bit of the Script Manager general flags field after retrieving it with the

Get Scri pt Manager Var i abl e function.

6-12 Using the Script Manager

CHAPTER 6

Script Manager

Listing 6-1 Specifying a dual caret with Set Scr i pt Manager Vari abl e

FUNCTI ON MySet Dual Caret: OSErr;

VAR
myErr: OSErr;
sel ect or Val ue: Longlnt;
fl agVal ue: Longl nt;
BEG N

flagVval ue : = BitShift($0001, snfDual Caret);
sel ectorVal ue : = Get Scri pt Manager Var i abl e(sntzenFl ags) ;
sel ectorValue := BitO (sel ectorVal ue, flagVval ue);
myErr := Set Scri pt Manager Vari abl e(smGenFl ags, sel ectorVal ue);
MySet Dual Caret := nyErr;
END;

You can also use Set Scri pt Manager Var i abl e to change the settings of the font force
flag and the international resources selection flag, two flags that affect which script
systems are used for text display and date/time /number formatting, respectively. See
“Determining Script Codes From Font Information” beginning on page 6-21.

If you are using Set Scri pt Manager Var i abl e to change the value of a variable for a
specific task, first call Get Scri pt Manager Vari abl e to retrieve the variable’s original
value, and save that value. Then call Set Scri pt Manager Var i abl e and perform your
task. Finally, restore the original value of the Script Manager variable with another call to
Set Scri pt Manager Var i abl e as soon as possible, so that other applications or
software components that use the Script Manager will find the values they expect.

Checking and Setting Script Variables

The Get Scri pt Vari abl e and Set Scri pt Vari abl e functions let you retrieve and set
script variables, local variables maintained for each script system by the Script Manager.

These functions give you access to a large variety of script-specific information,
including the primary line direction for the script system, the default alignment for text
in the script system, the script system'’s preferred system font and size, and its preferred
application font and size.

Using the Script Manager 6-13

Jabeue 1duos n

6-14

CHAPTER 6

Script Manager

You specify the script system whose variables you want to access with an explicit script
code, or with an implicit script code specifying the system script or the font script. You
specify the variable you want to access with a selector constant passed as a parameter to
Get Scri pt Vari abl e or Set Scri pt Vari abl e. Table 6-3 lists the selector constants
and the script variables they affect. See “Selectors for Script Variables” beginning on
page 6-65 for complete explanations of the selectors and variables.

Table 6-4 Script variables accessed through
Get Scri pt Vari abl e/ Set Scri pt Vari abl e

Selector constant
snBScri pt Versi on

sniScri pt Munged
sniScri pt Enabl ed
sniScri pt Ri ght
sniScri pt Just
sniScri pt Redr aw
sniScri pt SysFond
sniScri pt AppFond
sniScri pt Nunber
sniScri pt Dat e
sniScri pt Sort
sniScri pt Fl ags
sniScri pt Token
sniScri pt Encodi ng
sniScri pt Lang
sniScri pt NunmDat e
sniScri pt Keys
sniScriptlcon
sniScri pt Print
sniScri pt Trap

sniScri pt Creat or
snScriptFile

Using the Script Manager

Explanation

Script-system version number
Modification count

Script-enabled flag

Right-to-left line direction flag

Default alignment (left or right)

Amount of line to redraw when changing a character
Preferred system font

Preferred application font

Numeric-format (' i t1 0') resource ID
Long-date-format (" i t | 1') resource ID
String-manipulation (' i t | 2') resource ID
Script flags

Tokens (" i t 1 4') resource ID
Encoding/rendering (" i t | 5') resource ID
Language code for script

Current numeral code and calendar code
Keyboard-layout (' KCHR') resource ID
Keyboard icon family ID

Print action routine for script

Pointer to script record dispatch routine entry point
(for internal use)

Creator name for script file

Filename for script file

CHAPTER 6

Script Manager

Table 6-4 Script variables accessed through
Get Scri pt Vari abl e/ Set Scri pt Vari abl e (continued)

Selector constant Explanation

snScr i pt Nane Name of script system

sniScri pt MonoFondSi ze Preferred font and size for fixed-width font
snicri pt Pref FondSi ze (unused)

snSeri pt Smal | FondSi ze Preferred font family and size for small text
snScri pt SysFondSi ze Preferred system font family and size
snScr i pt AppFondSi ze Preferred application font family and size
snSer i pt Hel pFondSi ze Preferred Balloon Help font family and size
snScri pt Val i dStyl es Valid text styles for script

snicri ptAliasStyle Text styles to use for aliases

You can use the Get Scri pt Var i abl e function to get, for example, the default
application font family (' FOND') ID and size. In the following code fragment, the
application uses the constant snByst enfScri pt to specify that it is the system script
whose font ID is needed. The ID is returned in the high-order word and the size is
returned in the low-order word. The application then sets the appropriate graphics port
fields to those values.

VAR
myAppFont : Longl nt;
BEG N
myAppFont : = Get Scri ptVari abl e(snSyst entcri pt,
sniScri pt AppFondSi ze) ;
Text Font (H Wor d(nyAppFont)) ;
Text Si ze(LoWwor d(myAppFont)) ;
END;

Listing 6-2 shows how to represent font names correctly using the proper script for that
font. First you call the Font Manager Get FNumprocedure to get the font family ID using
the font name. You call the Font ToScr i pt function using that font family ID to get the
value of the associated script code. You then call Get Scri pt Var i abl e with the

snicr i pt SysFond selector to determine the font family ID for the preferred system
font for the specified script. Finally, you call the QuickDraw Text Font procedure with
that font family ID to set the font ID of the current graphics port to the preferred system
font of the specified script.

Using the Script Manager 6-15

Jabeue 1duos n

CHAPTER 6

Script Manager

Note

The Menu Manager AddRes Menu procedure automatically represents
font names in their associated script for' FOND' resources. If you need
to display font names elsewhere than in the Font menu (for instance,
using the List Manager), be sure to use a technique such as that shown
in Listing 6-2. O

Listing 6-2 Representing font names correctly in the script for that font

PROCEDURE My Set Text Font (f ont Name: Str 255);
VAR

scri ptFont: Longlnt;

scriptNum Integer;

t heNum I nt eger;

BEG N
{fromfont nane, get font |D}
Get FNum(f ont Nanme, theNun); {use font ID to get script code, }
{ then get preferred systemfont |D}

scriptNum : = FontToScri pt (theNum;
scriptFont := GetScriptVariable(scriptNum snScriptSysFond);

{now set the current grafPort's }
Text Font (scri pt Font) ; { font IDto that font}
END;

The Set Scri pt Var i abl e function allows you to change many script-specific
settings, including the default configuration settings for the script system, which
are initialized from a script system’s international bundle (' i t | b") resource. You
call Set Scri pt Var i abl e with the appropriate script constant and selector to
indicate the setting you want changed. Listing 6-3 shows how to use the

Set Scri pt Var i abl e function to set the size of the Balloon Help font to the size
passed in the parameter t heSi ze:

Listing 6-3 Setting the size of the Balloon Help font

6-16

PROCEDURE MySet Hel pFont Si ze(t heSi ze: Longlnt);

VAR
myErr: OSErr;
myHel pFont : Longl nt ;
BEG N

theSi ze := BitAnd(theSize, $0000FFFF);

Using the Script Manager

CHAPTER 6

Script Manager

{keep | ow word onl vy}
myHel pFont : = GetScriptVari abl e(snByst enscri pt,
sniScri pt Hel pFondSi ze) ;
Bi t And(nyHel pFont, $FFFF0000);
{keep high word only}
nyErr := SetScriptVari abl e(snSyst enfscri pt,
sniScri pt Hel pFondSi ze,
Bi t O (myHel pFont, t heSi ze));
| F nyErr <> noErr THEN DoError (nyErr);
END;

nmyHel pFont

If you are using Set Scri pt Var i abl e to change the value of a variable for a specific
task, first call Get Scri pt Vari abl e to retrieve the variable’s original value, and save it.
Then call Set Scri pt Var i abl e and perform your task. Finally, restore the original
value of the script variable with another call to Set Scri pt Var i abl e as soon as
possible, so that other applications or software components using that script system will
find the values they expect.

Making Keyboard Settings

The Script Manager KeyScri pt procedure lets you control the script system, keyboard
layout, and input method used for text input. It also lets you make other settings
related to text input.

You use the KeyScri pt procedure to change the keyboard script, the script system that
controls text input. You also use it to switch among different keyboard layouts, resources
that define the character sets and key positions for text input in a script system. You can
also use it to switch among input methods, software facilities that allow text input in
2-byte script systems. If your application supports multiple languages, use KeyScr i pt
to change the keyboard script when the user changes the current font. For example, if the
user selects Geezah as the current font or clicks the cursor within a run of text that uses
the Geezah font, your application needs to set the keyboard script to Arabic. To do this,
use the Font ToScr i pt function to find the script for the font, then use KeyScri pt to
set the keyboard.

In addition, your application can check the keyboard script (using the

Cet Scri pt Manager Var i abl e function) in its main event loop; if the keyboard script
has changed, you can set the current font to the last-used font, application font, or
system font of the new keyboard script (determined by a call to the

Cet Scri pt Vari abl e function). This action saves the user from having to set the font
manually after changing the keyboard script.

The system software performs the equivalent of calling KeyScr i pt in response to the
user selecting a keyboard layout or input method from the Keyboard menu. It also does
the same when the user types Command-Option-Space bar (to select the next keyboard
layout or input method within the same script system), or Command-Space bar (to
select the next script system in the Keyboard menu).

Using the Script Manager 6-17

Jabeue 1duos n

6-18

CHAPTER 6

Script Manager

When you call KeyScri pt, you pass it a code parameter that can explicitly specify a
keyboard script by script code, or can implicitly specify a keyboard script, keyboard
layout, input method, or other setting. Values for code equal to or greater than zero are
interpreted as normal script codes. Several negative codes specify switching among
keyboard scripts, keyboard layout, or input methods. Others toggle line direction or
input method and are available only with certain script systems. Still others disable or
enable keyboard layouts or keyboard scripts. Table 6-5 lists the valid constants for the

code parameter.

Table 6-5 Constants for the code parameter in the KeyScri pt procedure

Constant Value Expanation

(any script code) 0...64 Switch to specified script

snKeyNext Scri pt -1 Switch to next script in Keyboard menu

snKeySysScri pt -2 Switch to the system script

smKeySwapScr i pt -3 Switch to previously used script

snKeyNext Kybd —4 Switch to next keyboard layout or input
method in Keyboard menu (within
current script)

snKey SwapKybd -5 (not implemented)

snKeyDi sabl eKybds -6 Disable keyboard layouts not in system
script or Roman script

smKeyEnabl eKybds -7 Enable keyboard layouts for all
enabled scripts

snmKeyToggl el nl i ne -8 Toggle inline input for current script
(available if 2-byte script present)

snKeyToggl eDi rection -9 Toggle default line direction (available if
bidirectional script present)

snmKeyNext | nput Met hod -10 (not implemented)

snKeySwapl nput Met hod -11 (not implemented)

snKeyDi sabl eKybdSwi t ch -12 Disable switching out of current
keyboard layout

snKeySet Di r Lef t Ri ght -15 Set primary line direction to left-to-right
(available if bidirectional script present)

snmKeySet Di r Ri ght Left -16 Set primary line direction to right-to-left
(available if bidirectional script present)

snKeyRoman -17 Set keyboard script to Roman (available

Using the Script Manager

only if multiple scripts present)

CHAPTER 6

Script Manager

The snKeyDi sabl eKybds selector is available for your use, although it is primarily
used by the Finder or other parts of the system under special circumstances. For
example, when the user enters the name of a file in a Standard-File dialog box, text input
must be restricted to scripts that display correctly in the Finder and in dialog boxes,
menus, and alert boxes. In that situation the system software calls KeyScri pt with the
snmKeyDi sabl eKybds selector to disable keyboard input temporarily in any script
system except Roman or the system script. Keyboards in other script systems then
appear disabled in the Keyboard menu. When the user completes the filename entry, the
system calls KeyScri pt again with a selector of smKeyEnabl eKybds to reenable
keyboard input in all enabled script systems.

The snKeyDi sabl eKybdSwi t ch selector is also available for your use, although it is
primarily used by the Finder. When keyboard layouts and script systems are being
moved into or out of the System file by the user, changing the current keyboard or
keyboard script may corrupt files or cause other unpredictable results. To prevent all
keyboard switching and to disable all the Keyboard menu items, the Finder calls
KeyScri pt with the selector snKeyDi sabl eKybdSwi t ch. When the move has been
completed, the Finder again calls KeyScr i pt with a selector of snKeyEnabl eKybds to
reenable keyboard switching.

If you call KeyScri pt with code = snmKeyRoman on a system in which only the

Roman script system is enabled, nothing happens. However, if you call KeyScri pt with
code =0 (to select the Roman script system), it forces an update that selects the current
default Roman keyboard layout.

IMPORTANT

Although it is possible to change the keyboard script without changing
the keyboard layout—by calling the Set Scri pt Manager Vari abl e
function with the snKeyScr i pt selector—it violates the user interface
paradigm and creates problems for other script management routines. a

Synchronizing the Font Script and Keyboard Script

To keep the user from accidentally entering meaningless characters, you must always
keep the keyboard script synchronized with the font script, so that the glyphs displayed
on the screen match the characters entered at the keyboard. You can synchronize the
scripts in two ways: by setting the keyboard script when the font script changes, and by
setting the font script when the keyboard script changes.

Setting the Keyboard Script From the Font Script

Set the keyboard script from the font script when the user selects a new font or when the
user clicks in or selects text.

s If the user selects a new font from the Font menu, call Text Font to set the current
font to that font. Then set the keyboard script to the script system of that font.

» If the user clicks in or selects a text area, set the current font to be the font, size, and
style of the text where the click occurred. Then set the keyboard script to the script
system of that font.

Using the Script Manager 6-19

Jabeue 1duos n

CHAPTER 6

Script Manager

Listing 6-4 is an example of code to use for setting the keyboard script from the font
script. Once you have obtained the script code value from the font family ID using the
Font ToScri pt function (see “Determining Script Codes From Font Information”
beginning on page 6-21), you call the Get Scri pt Manager Var i abl e function with
the snKeyScr i pt selector to determine the keyboard script. If the font script and

the keyboard script are not the same, call the KeyScri pt procedure to change the
keyboard script.

Listing 6-4 Setting the keyboard script from the font script

6-20

PROCEDURE My Set Keyboar dFr onfont (myFont : | nt eger);
VAR
t heFont Scri pt: | nteger;

BEG N
{get script code fromfont ID.}

t heFont Scri pt := Font ToScri pt (nyFont);
{conpare with keyboard script, }
{ change if necessary}
| F (Get Scri pt Manager Vari abl e(snKeyScript) <>
t heFont Scri pt) THEN
KeyScri pt (t heFont Scri pt);
END;

Setting the Font Script From the Keyboard Script

Each time the user types a character other than a control character, your application
should check that the font script is still the same as the keyboard script. The user may
have, for example, switched keyboard scripts since entering the last character. If the font
script does not match the keyboard script, change the current font to correspond to the
new keyboard script before displaying the character. Follow these guidelines:

» If possible, set the current font to the previous font that was used for that script
(that is, the last font for that script preceding the current point in the document or
text buffer).

s Otherwise, set the font to one of the preferred fonts for that script system. The
preferred fonts are the preferred application font, the preferred system font, the
preferred monospaced font, and the preferred small font. (The ID numbers of these
fonts can be obtained through the Get Scri pt Var i abl e function.)

Listing 6-5 is an example of setting the font (and therefore the font script) from the
keyboard script. It calls Get Scri pt Manager Var i abl e with the snKeyScr i pt selector
to determine the current keyboard script. It then calls Font ToScr i pt to determine
whether the keyboard script differs from the font script. If it does, the routine calls

Get Scri pt Var i abl e with the snScri pt AppFond selector to determine the
application font for the script. Then it sets the current font based on that result.

Using the Script Manager

CHAPTER 6

Script Manager

Listing 6-5 Setting the font (script) from the keyboard script

PROCEDURE My Set Font Fr onKeyboar d(VAR nyFont: | nteger);
VAR
scriptNum Longlnt;

BEG N
scriptNum : = Get Script Manager Vari abl e(snmKeyScri pt);
I F (Font ToScri pt (nyFont) <> scriptNum THEN
nyFont := CGetScriptVariabl e(scriptNum snfcriptAppFond);
Text Font (nyFont)
END;

You can also use this code if your application does not have an interface that lets users
change fonts but still needs to provide for different script systems.

Obtaining Information

The second principal use for the Script Manager is in obtaining script-specific
information. Many of the routines described in this section are of general interest and are
used by most text applications. You can use these Script Manager routines to

= determine script codes for the current script system or any other available script
system, based on font information

= analyze characters in your text for size (in bytes) or other properties

= directly access the contents of a script system’s international resources, to pass that
information to other text-handling calls or to inspect or modify the information

Most text-processing applications need script-code information and character-type
information, and may need to pass specific tables from international resources to some
script-aware text routines. If you format currencies, you need access to the
numeric-format resource. If you use special symbols or if you format numbers, you
need access to the untoken table and perhaps the number parts table of the tokens
resource. If your needs are more specialized, you can obtain the contents of other tables
and other resources.

Determining Script Codes From Font Information

The script management system asssociates a script system with a sequence of text by
examining the font of that text. Your application may also need the same information—to
test for the presence of a particular script system, to load its resources, to pass its code as
a parameter to a script-aware routine, or to execute script-specific conditional code. You
may need to determine what script system is currently active for displaying text, what
script system is being used to sort and format text, or what script system would be used
if text of a particular font were to be displayed or formatted. The Script Manager
provides three routines for that purpose: Font Scri pt, Font ToScri pt, and

Intl Script.

Using the Script Manager 6-21

Jabeue 1duos n

6-22

CHAPTER 6

Script Manager

The Font Scri pt function tells you which script system the font of the current graphics
port belongs to. The Font ToScr i pt function tells you which (available) script system a
font of any ID number belongs to. The | nt | Scri pt function tells you which script
system is used by the Text Utilities to determine the number, date, time, currency, and
sorting formats.

The Font ToScri pt function returns a script code for a specified font family ID, but the
Font Scri pt and I nt| Scri pt functions return the code for the current script, the
presently active script system for text manipulation. Many script-aware routines in
QuickDraw, Text Utilities, the Script Manager, and other parts of the Macintosh script
management system need not take an explicit script code or international resource
handle as a parameter; in that case they use the current script as the script system under
which they are to function.

The current script for text display is normally the font script. The current script for date
and time formatting and string sorting is by default the system script. However, the
settings of two flags—the font force flag and the international resources selection flag—
can affect which script system is considered current at any one moment. Furthermore, if
the mapping from font to script results in a request for a script system that is not
available, the result defaults to the system script.

The next subsection lists the steps taken by Font Scri pt, Font ToScri pt, and
IntlScript todetermine the script codes they return, and the following subsections
discuss the font force flag and the international resources selection flag in more detail.

How a Script Code Is Determined

The Font Scri pt, Font ToScri pt, and I nt 1 Scri pt functions all use a font family ID
to determine the script code they return. The formula they use is presented in the
discussion of resource ID numbers and script codes in the appendix “International
Resources” in this book. Fonts with IDs below 16384 ($4000) are all Roman; starting with
16384 each non-Roman script system has a range of 512 ($200) font IDs available.

Nevertheless, you should always call the functions instead of hardcoding any formula,

because it may change in the future. Furthermore, the function results are influenced by
the states of the font force flag and the international resources selection flag, and by the
availability of the determined script. Figure 6-1 shows the method the functions follow:

1. The three functions initialize two result flags, the script-forced result flag and the
script-defaulted result flag, to FALSE. These flags are Script Manager variables,
accessed through the Get Scri pt Manager Var i abl e function selectors snFor ced
and snDef aul t .

2. The three functions map the two special font designations 0 and 1, meaning the
system and application fonts, to their true font family ID numbers.

3. Font Scri pt and I nt1 Scri pt calculate the script code from the font family ID of
the current font of the active port; Font ToScr i pt calculates the script code from the
supplied font family ID. If the ID is in the range $4000 to $BFFF, it is a non-Roman
font; otherwise, it is Roman.

Using the Script Manager

CHAPTER 6

Script Manager

4. Once the initial determination of the script code has been made, the three functions

diverge:

o If the font is Roman, Font Scri pt and Font ToScr i pt examine the font force flag,
which can be accessed through the Get Scri pt Manager Var i abl e function
selector snFont For ce. If the flag is TRUE, the two functions substitute the system
script for the font script, and set the script-forced result flag to TRUE. If the font is
non-Roman, Font Scri pt and Font ToScri pt ignore the state of the font

force flag.

o Regardless of the font type (Roman or non-Roman), | nt | Scri pt examines the
international resources selection flag, which can be accessed through the
Cet Scri pt Manager Var i abl e function selector sm nt | For ce. If the flag is
TRUE and the font script does not equal the system script, | nt | Scri pt substitutes
the system script for the font script and sets the script-forced result flag to TRUE.

Figure 6-1

Determining script code from font family 1D

Font Scri pt Font ToScri pt

Il Il

Map special fonts 0 and 1 to
their true font IDs

Il

Get font's
script code

il

Roman font? No

@Yes

Yes _~Font force flag

= TRUE?

Script enabled?

No

No

Script-forced = TRUE
Script-defaulted = FALSE

Script-forced = FALSE
Script-defaulted = FALSE

Script-forced = FALSE
Script-defaulted = TRUE

A\

System script Font script System script

IntlScript

I

Map special fonts 0 and 1 to
their true font IDs

Il

Get font's
script code

g

International
resources selection
flag = TRUE?

Yes

Script enabled?

Font script = >J€S

system script?

Yes

Script-forced = FALSE
Script-defaulted = TRUE

No

Script-forced = TRUE
Script-defaulted = FALSE

Script-forced = FALSE
Script-defaulted = FALSE

A%

System script Font script System script

Using the Script Manager

6-23

Jabeue 1duos n

6-24

CHAPTER 6

Script Manager

5. A final check is made to be sure that the resulting script is installed and enabled. If it
is not, the three functions substitute the system script for the script code previously
determined, set the script-forced result flag to FALSE, and set the script-defaulted
result flag to TRUE.

6. The functions return the resulting script code in their function results.

Call Font Scri pt when you want to know which script system will be used for text
layout and display. The script code returned by Font Scri pt tells you which script
system controls the functioning of such calls as Char ToPi xel , Char act er Type,

Fi ndWor dBr eaks, Dr awText , and Drawdust i f i ed. Typically, Font Scri pt returns
the script code for the font script; in most situations the font force flag is FALSE,

because applications usually expect to format and draw text according to the rules of the
font script.

Call Font ToScr i pt when you want to know whether the script system for text of a
particular font is available, or when you wish to manipulate text of a certain script
system without setting the current font to that font’s ID.

Note

Because a user can set the value of the font force flag from the Text
control panel, the result returned from the Font ToScri pt or

Font Scri pt function for a font whose ID number is in the Roman
range can vary from call to call. O

Calll ntl Scri pt when you want to know which script system will be used for
formatting dates and numbers, and for sorting strings. The script code returned by

I ntlScript tells you which script system controls the functioning of such calls as

Dat eStri ng, LongTi meStri ng, and Conpar eText , when no explicit script code or
resource handle is supplied to those calls. In many localized versions of sysem software,
I ntl Script by default returns the script code for the system script, because the
international resources selection flag is by default TRUE. The Finder and other parts of
system software usually expect to present dates, times, and lists of files according to the
rules of the system script.

Because the two flags are independent of each other, two different meanings for current
script can exist simultaneously. For example, your application might be sorting a set of
strings by one script’s rules, but displaying them by another’s. If that is not appropriate,
set the flags as needed before formatting or drawing. See the following discussion.

Using the Font Force Flag

You access and control the font force flag through the Get Scri pt Manager Vari abl e
and Set Scri pt Manager Var i abl e functions, with the selector snf ont For ce. This

flag directly affects the results of the Font Scri pt and Font ToScri pt functions, and
indirectly affects the operation of script-aware text measuring and drawing routines.

At startup, the Script Manager sets the font force flag to the value specified in the system
script’s international configuration (' i t| ¢') resource. Typically, that value is FALSE.

Using the Script Manager

CHAPTER 6

Script Manager

When the font force flag is set to TRUE and the system script is non-Roman, the script
management system interprets font family ID numbers in the range of the Roman script
system ($0002 to $3FFF) as belonging to the system script instead. Character codes
representing non-Roman characters in the system script are drawn using the system font
instead of in the specified Roman font. This feature exists to allow users to enter and
read non-Roman text in those few applications that have hardcoded font numbers.

For example, an application may hardcode Geneva as its font; it may force the t xFont
field of its graphics ports to always have a value of 3. (Note that this is a violation of
good programming practice.) If the application is running on a system with Hebrew as
the system script, it would normally be impossible to write properly in Hebrew because
the hardcoded font ID would require the font script to be Roman. However, if the font
force flag is set to TRUE, the script management system notes that the current font has an
ID number in the Roman range and draws glyphs from the Hebrew system font for any
character codes that represent valid Hebrew characters.

Thus to enter or read non-Roman text in these applications, the user can set the font force
flag to TRUE from the Text control panel. Setting the font force flag is only partially
effective, because it cannot give users full control over fonts. The user cannot choose, for
example, which font belonging to the system script is to be substituted for Roman.

The font force flag has no effect on non-Roman fonts and has no effect if the system
script is Roman. It affects only Roman fonts when the system script is non-Roman.

You can determine the status of font forcing by inspecting the script-forced result flag
and the script-defaulted result flag immediately after calling Font Scri pt or
Font ToScr i pt ; see Figure 6-1.

Although the font force flag exists primarily to accommodate restrictions in certain
existing applications, it is a user-changeable setting that your application should be
aware of and accommodate. For example:

» If you are writing any application in which the user has control over fonts, you should
always set the font force flag to FALSE. There is no need to force fonts if the user can
choose them.

» If the user sets the font force flag to TRUE, you will get the system script when you call
Font Scri pt or Font ToScri pt for fonts in the Roman range, even if your
application allows mixed text. To preserve Roman text, you can change the setting of
the font force flag before calling Font Scri pt or Font ToScr i pt, or before calling
any other script-aware text routine. If you do that, be sure to save the previous value
and restore it when your application exits or becomes inactive.

Using the International Resources Selection Flag

You access and control the international resources selection flag through the

Get Scri pt Manager Vari abl e and Set Scri pt Manager Var i abl e functions, with
the selector sml nt | For ce. This flag directly affects the results of the | nt | Scri pt
function, and indirectly affects the operation of the Get | nt | Resour ce function and the
script-aware Text Ultilities sorting and formatting routines.

Using the Script Manager 6-25

Jabeue 1duos n

6-26

CHAPTER 6

Script Manager

At startup, the Script Manager sets the international resources selection flag to the value
specified in the system script’s international configuration (' i t | ¢') resource. Typically,
that value is TRUE.

The international resources selection flag affects the results of the Get | nt | Resour ce
function (see page 6-90). Get | nt | Resour ce returns a handle to certain international
resources, and the state of the international resources selection flag controls whether it is
the system script or the font script whose international resources are loaded. When the
flag is set to TRUE, Get | nt | Resour ce fetches the resources for the system script. When
the flag is set to FALSE, Get | nt | Resour ce uses the current font in the active port to
determine the script system whose resources will be fetched.

You can use the international resources selection flag to make sure that date formats,
sorting, and so forth reflect the appropriate script in your application. Whenever you
change the setting of the international resources selection flag, be sure to save the
previous value and restore it when your application exits or becomes inactive.

Analyzing Characters

The Script Manager provides routines that let you analyze the size and type of
individual characters. For example, with script systems that use 2-byte characters,

you may need to determine what part of a character a single byte represents. In either
1-byte or 2-byte script systems, you may need to know whether a particular character is
a letter or a punctuation mark, whether or not it is uppercase, or whether it is part of a
subscript (Roman within Cyrillic, Hiragana within Japanese, and so on).

Searching Text With Mixed Character Sizes

When searching for a single 1-byte character in text that may contain 2-byte characters,
your application must not mistake part of a 2-byte character for the character you are
seeking. The Char act er Byt eType and Fi | | Par seTabl e functions tell you whether a
given character is 1-byte or whether it is the first or second byte of a 2-byte character.

These functions use the fact that, in a 2-byte script system, only a restricted set of values
within the high-ASCII range are used as the first bytes of 2-byte characters, and those
values are never used for 1-byte characters in that script system. All other byte values
represent single-byte characters, control characters, or the second bytes of 2-byte
characters. The ranges reserved for initial bytes of 2-byte characters vary from script
system to script system, but every font has a table that gives that information, and

Char act er Byt eType and Fi | | Par seTabl e use those tables to perform their
calculations. For an illustration of this concept, see the discussion of character encoding
in the chapter “Introduction to Text on the Macintosh” in this book.

Listing 6-6 shows a search procedure that accounts for 2-byte characters. This routine
uses the Text Utilities Munger function to find a match to a key string. Because Munger
might find a match beginning at the second byte of a 2-byte character, the routine checks
for this case (using the Char act er Byt eType function) and continues searching if

it occurs.

Using the Script Manager

CHAPTER 6

Script Manager

The sample assumes two application global variables: gMai nText Handl e, which is a
handle to the application’s text buffer, and gNewLocat i on, a long-integer offset into the
buffer at which to start searching. The parameters keyPt r and keySi ze specify the
string to be matched in the text buffer; scri pt Numis an explicit script code. On return,
the routine updates gNewLocat i on to point to the location at which the search string
was found, or sets it to —1 if no match was found.

Listing 6-6 Handling 2-byte characters in a search procedure

PROCEDURE MySearch (keyPtr: Ptr; keySize: Longlnt; scriptNum
I nt eger);
VAR
byt eType: Integer;
BEG N
HLock(gMai nText Handl e) ; {Char act er Byt eType can nove nenory}
REPEAT BEG N
gNewLocati on : = Miunger (gMai nText Handl e, gNewLocat i on,
keyPtr, keySize, N L, 0);
{if we matched second byte of }
{ 2-byte char in text, continue}
| F (gNewLocation >= 0) AND (scriptNum > 0) THEN
byt eType : = CharacterByt eType(gMai nText Handl e”,
gNewLocation, scriptNum
ELSE
byt eType : = snfi ngl eByt e;
END UNTIL byteType <> snlast Byt e;
HUnl ock(gMai nText Handl e) ;
I F (gNewLocati on >= 0) AND {range-check, update gl obal}
(gNewLocation + keySize > Cet Handl eSi ze(gMai nText Handl e))
THEN
gNewLocation := -1;
END;

The Fi | | Par seTabl e function is similar to Char act er Byt eType, in that it helps you
find 2-byte characters. However, you don’t send Fi | | Par seTabl e the character code to
be analyzed. Instead, Fi | | Par seTabl e fills in an entire 256-byte table of information
for you, showing every byte value that is the first byte of a 2-byte character for the
current font. You can use the table filled out by Fi | | Par seTabl e to find 2-byte
characters in a large body of text much more rapidly than you could by calling

Char act er Byt eType for each byte value in the text.

Using the Script Manager 6-27

Jabeue 1duos n

CHAPTER 6

Script Manager

Getting Character-Type Information

You may want to know more about a byte than whether it is part of a 2-byte character. If
you are simply searching for sequences of Roman text in a buffer, or if you wish to
divide a run of Japanese into Kanji, Katakana, Hiragana, and Romaji components, you
can use the Fi ndScr i pt Run function described in the chapter “Text Utilities” in this
book. But if you have other reasons to isolate specific types of characters, you can use
Char act er Type.

The Char act er Type function is similar to Char act er Byt eType, in that it tells you
what kind of character occurs at a given offset in a text buffer. But the kind of
information it returns is different. Char act er Type tells you what the character’s line
direction is, whether it's uppercase, whether it belongs to a subscript within its script,
whether it’s a 2-byte character, and what the character’s specific type and class are—
letter or punctuation, low-ASCII or high-ASCII Roman letter, Katakana or Hiragana,
Jamo or Hangul, and so on.

When you call the Char act er Type function, you pass it a byte offset; it returns a
value that is an integer bit field giving information about the character at that offset. See
Figure 6-2. The paragraphs following the figure describe the fields.

Figure 6-2 Fields in the Char act er Type return value

6-28

15 14 13 12 11 8 7 4 3 0
‘ ‘ class type

|
Sizeu
Case

Direction

Orientation

Bits 0-3 of the Char act er Type function result describe the character type of the
character in question.

= The Roman script system recognizes three basic character types, defined by the
following constants:

Character type Hex. value Explanation

snChar Punct $0000 Punctuation (anything but a letter)

smChar Asci i $0001 ASCII letter (not a number or symbol,
character code <= $7F)

snChar Ext Asci i $0007 High-ASCII Roman letter (not a number or

symbol, character code >= $80)

Using the Script Manager

CHAPTER 6

Script Manager

= Additional character-type constants are provided for Japanese Katakana and
Hiragana; the ideographic subscripts such as Hanzi, Kanji, and Hanja; 2-byte Cyrillic
and Greek in 2-byte systems; bidirectional script systems such as Arabic and Hebrew;
and Korean Hangul and Jamo subscripts:

Character type Hex. value Explanation

snChar Kat akana $0002 Japanese Katakana

snChar Hi r agana $0003 Japanese Hiragana

snChar | deogr aphi c $0004 Hanzi, Kanji, Hanja

snChar TwoByt eG eek $0005 2-byte Greek in 2-byte scripts

snChar TwoByt eRussi an $0006

2-byte Cyrillic in 2-byte scripts

smChar Bi di r ect $0008 Arabic, Hebrew

snChar Cont ext ual LR $0009 Thai, Indic, etc.

smChar NonCont ext ual LR $000A Cyrillic, Greek, etc.

snChar Hangul $000C Korean Hangul

snChar Jano $000D Korean Jamo

snChar Boponof o $000E Chinese Bopomofo (Zhuyinfuhao)

Bits 8-11 of the Char act er Type function result describe the character class of the
character in question. Character classes can be considered as subtypes of character types;
a given character type can have several classes that belong to it.

» If the character type is smChar Punct, the following character classes are defined that
include punctuation for both 1-byte and 2-byte script systems:

Character class
smPunct Nor nal

smPunct Nunber
snmPunct Symnbol
snPunct Bl ank
smPunct Repeat
smPunct Gr aphi c

Hex. value
$0000
$0100
$0200
$0300
$0400
$0500

Explanation

Normal punctuation (such as !, . ;?)

Number character (such as 0-9)
Nonpunctuation symbol (such as # $ &)
Blank character (such as ASCII $00, $0D, $20)
Repeat marker in 2-byte script

Line graphics in 2-byte script

= In the Korean script system, if the character type is snChar Jano, the following
character classes are defined. They determine whether a given byte contains a simple
or complex consonant or a simple or complex vowel:

Character class
smJanpJaeum
smlanoBogJaeum
smJanoMbeum
smJanbBogMbeum

Using the Script Manager

Hex. value
$0000

$0100
$0200
$0300

Explanation

Simple consonant character
Complex consonant character
Simple vowel character

Complex vowel character

6-29

Jabeue 1duos n

6-30

CHAPTER 6

Script Manager

The Jamo and Hangul subscripts of Korean are discussed briefly along with input
methods in the chapter “Introduction to Text on the Macintosh” in this book.

In the Japanese script system, if the character type is snChar Kat akana or
snChar H r agana, the following character classes are defined:

Character class Hex. value Explanation
$0000 (none of the following defined classes)
snmKanaSnal | $0001 Small Kana character
snKanaHar dOK $0002 Can have dakuten
snKanaSof t OK $0003 Can have dakuten or han-dakuten

A small Kana character is a special form of Kana used to modify the pronunciation of
a previous (full-sized) Kana character. Dakuten and han-dakuten are pronunciation
marks that soften consonant sounds in Kana.

In 2-byte script systems, if the character type is snChar | deogr aphi ¢, the following
character classes are defined:

Character class Hex. value Explanation

sm deogr aphi cLevel 1 $0000 Level 1 characters
s deogr aphi cLevel 2 $0100 Level 2 characters
sm deogr aphi cUser $0200 User characters

The characters specified by the sm deogr aphi cLevel 1 constant are part of the
level 1 Han character set specified by Japanese, Chinese, and Korean government
standards. Approximately 90 percent of normal text consists of characters from the
level 1 set.

The characters specified by the sm deogr aphi cLevel 2 constant are part of the
level 2 Han character set, which includes obscure characters. The level 1 and level 2
character sets combined contain 98 percent of the character set used in the Kanji
subscript.

The characters specified by sm deogr aphi cUser represent custom characters
created by the user.

Bits 1215 of the Char act er Type function result are the character modifiers of the
character in question. One bit describes each modifier.

= Bit 12 specifies the orientation of the character: whether it is intended for horizontal or

vertical writing.

Character orientation Hex. value Explanation

snChar Hor i zont al $0000 Character form is for horizontal writing, or
for both horizontal and vertical

snChar Verti cal $1000 Character form is for vertical writing only

Using the Script Manager

CHAPTER 6

Script Manager

» Bit 13 specifies the direction of the character: whether its line direction is left-to-right or
right-to-left.

Character direction Hex. value Explanation
snmChar Lef t $0000 Character with left-to-right line direction
snChar Ri ght $2000 Character with right-to-left line direction

= Bit 14 specifies the case of the character: whether it is lowercase or uppercase.

Character case Hex. value Explanation
snChar Lower $0000 Lowercase character
snChar Upper $4000 Uppercase character

= Bit 15 specifies the size of the character: whether it is 1 or 2 bytes long.

Character size Hex. value Explanation
snChar 1byt e $0000 1-byte character
snChar 2byt e $8000 2-byte character

You can describe individual characters with combinations of these constants. For
example, if the byte being examined by Char act er Type is a 1-byte English uppercase
“A”, then the value of the result could be expressed as smChar 1Byt e + snChar Upper +
smChar Left +snChar ASCl | . Char act er Type indicates blank characters by a type
snChar Punct and a class snChar Bl ank.

Some values are meaningful only in certain subscripts or script systems. The value
snChar Upper is meaningless in a subscript that has no uppercase characters, for
example; the value sm deogr aphi cLevel is meaningless in 1-byte script systems.

You can use Char act er Type for a variety of purposes—to validate input in numeric
fields, to filter non-phonetic characters in an input method, or to search for punctuation,
uppercase letters, and symbols. If you are breaking lines of text and are not using the
Text Utilities St y| edLi neBr eak function, you can use Char act er Type to locate and
skip whitespace characters at the ends of lines; see the description of text drawing in the
chapter “QuickDraw Text” in this book.

The Char act er Type function is described further on page 6-85.

Directly Accessing International Resources

This section shows how you can directly access the international resources of a script
system. Such direct access can help you be more efficient in creating bilingual
applications, formatting numbers in different scripts, accessing character information,
and using tokens. Several script-aware Text Utilities calls can take a handle to an
international resource as an input parameter; you can use the calls in this section to
obtain those handles.

Using the Script Manager 6-31

Jabeue 1duos n

6-32

CHAPTER 6

Script Manager

Your application can examine the international resources that determine numeric
formats, date formats, string sorting, conversion to tokens, and character encoding or
rendering by making the calls described here. You can also retrieve individual tables
from some of the resources.

This access also helps you to provide your own versions or regional variations of certain
international resources. See “Replacing a Script System’s Default International
Resources” beginning on page 6-48 for more information.

Note

Although you can access the international resources independently
through the Resource Manager function Get Resour ce and related
calls, you can be sure to get the preferred resource of the current script
system by using the calls described here. O

The calls you make to access the international resources are

Cl ear I nt| Resour ceCache, Get | nt| Resour ce, and Get | nt | Resour ceTabl e.
With them, you have access to the contents of a script system’s numeric-format
("itl0") long-date-format (" i t|1"), string-manipulation (' i t12'), tokens (i tl4"),
and encoding/rendering (' i t| 5') resources.

To access one of these resources for the current script, follow these steps:

1. Make sure the current script is the script system containing the international resource
you want to access. See “Determining Script Codes From Font Information” on
page 6-21. You may need to verify the settings of the font script, the system script, and
the international resources selection flag. See “Using the International Resources
Selection Flag” on page 6-25.

2. If you need access to any version of the current script’s string-manipulation or tokens
resources other than its default version, call Cl ear | nt | Resour ceCache first. See
“Replacing a Script System’s Default International Resources” on page 6-48.

3. Call Get | nt | Resour ce, specifying the type of resource you need.
Cet | nt | Resour ce returns a handle to the resource.

For an example of using Get | nt | Resour ce to extract information from an
international resource, see the next section, “Using Currency, Number, and Date
Formats.”

To access a specific table within a string-manipulation or tokens resource, follow
these steps:

1. If you don't already have it, determine the script code of the script system containing
the international resource you want to access. See “Determining Script Codes From
Font Information” on page 6-21.

2. If you need access to any other than the script’s default version of that resource, call
Cl ear | nt | Resour ceCache first. See “Replacing a Script System’s Default
International Resources” on page 6-48.

Using the Script Manager

CHAPTER 6

Script Manager

3. Call Get | nt | Resour ceTabl e to get the specified table within the specified resource
belonging to the specified script system. Depending on the resource, you can get its
number-parts, untoken, word-selection, line-break, or whitespace table.

For more information about these tables, see the following sections: “Using Number
Parts,” “Retrieving Text From Tokens,” “Using Word-Break Tables,” and “Using
Whitespace Information.”

IMPORTANT

Any time you replace the default international resources for a script
system, whether or not you subsequently call Get | nt | Resour ce or
Get I nt | Resour ceTabl e, you need to call

d ear | nt| Resour ceCache, to make sure that the replacements are
used by all script-aware calls. See “Replacing a Script System’s Default
International Resources” beginning on page 6-48. a

Using Currency, Number, and Date Formats

In general, you should use the Text Utilities routines for date, time, and number
formatting. See the chapter “Text Utilities” in this book. If, however, you need to directly
access fields in the numeric-format (' i t | 0') and long-date-format (" i t | 1') resources
to find the characters, separators, strings, and orders for formatting numbers, dates, and
times, you can do so with Get | nt | Resour ce.

Listing 6-7 shows how to determine the decimal, thousands, and list separators for
number formatting in the current script. To access the numeric-format resource, the
routine specifies a resource selector of 0 (for ' i t1 0') in the parameter t hel D of the
Get | nt | Resour ce function. It then extracts the values it wants from the deci mal Pt,
t housSep, and | i st Sep fields.

Listing 6-7 Determining the number separators for the current script

PROCEDURE MyCGet Nunber Separ at ors (VAR nyDeci mal : Char ;
VAR nyThousands: Char;
VAR nyLi st Sep: Char) ;

VAR
nmyHandl e: I nt| OHNdI ;
{nmake sure the desired script is set }
{ before calling this routine}
BEG N
nyHandl e : = Intl OHndl (GetlIntl Resource(0));{Get "itl 0" resource}
myDeci mal : = nyHandl e . decimal Pt; {for exanple, 1.234}
nmyThousands : = nyHandl e**.t housSep; {for exanple, 1,234,567}
nyLi st Sep : = nyHandl e**. | i st Sep; {for exanple, 1;2;3}
END;

Using the Script Manager 6-33

Jabeue 1duos n

CHAPTER 6

Script Manager

IMPORTANT

Do not assume that the components of dates and times are always
ordered in a left-to-right direction when displayed. If you are drawing
individual time components, be careful not to simply draw them from
left to right in all cases. For instance, the AM/PM characters in an
English time string are on the right, whereas in an Arabic time string the
equivalent characters may be on the left or right, depending on the
primary line direction—even though in both cases these characters are at
the end of the time string in memory. a

Using Number Parts

You can access information on how separators and other parts of formatted numbers are
represented in a particular script system by examining the number parts table in the
script’s tokens (' i t | 4') resource. Unlike the numeric-format resource, the number parts
table supports 2-byte characters; it also contains more information, especially for
complicated number formats such as scientific notation.

Your most common reason for obtaining the number parts table may be to pass it as a
parameter to the Text Utilities functions St r i ngToFor mat Rec, For mat RecToSt ri ng,
St ri ngToExt ended, and Ext endedToSt ri ng. But you can also examine its contents.
Listing 6-8 shows how to call the Get | nt | Resour ceTabl e procedure, with a table
selector of smNunber Par t sTabl e, to obtain the number parts table associated with a
given script. The routine obtains the character associated with the number part specified
by t hePart and saves it as a wide character, which is a character of either 1 or 2 bytes.
(See the discussion of the tokens resource in the appendix “International Resources” for
a definition of the W deChar data type.) To specify the system script, the parameter

t heScri pt would have the value snByst enScr i pt . The parameter t hePart can
have such values as t okDecPoi nt and t okThousands. For a complete list of
number-parts constants, see the description of the tokens resource in the appendix
“International Resources” in this book.

Listing 6-8 Getting number parts from a script system’s number parts table

6-34

PROCEDURE MyMapNunPart ToW deChar (t heScri pt: Scri pt Code;
thePart: Integer;
VAR t heWChar: W deChar);
VAR
itl Handl e: Handl e;
nunpartsOf fset: Longint;
nunpart sLengt h: Longlnt;
nunpartsPtr: NunberPartsPtr;

Using the Script Manager

CHAPTER 6

Script Manager

BEG N
Cet I ntl ResourceTabl e(theScri pt, smNunber Part sTabl e,
itl Handl e, nunpartsCOffset,
nunpart sLengt h) ;

IF itlHandle = NIL THEN {handl e errors, }
theWchar.b := 0 { return null WdeChar}
ELSE BEG N {make nunpartsPtr point to }
{ begi nning of nunber parts table}

nunpartsPtr := NunberPartsPtr(Longlnt(itl Handl e®) +
nunpartsOf f set) ;
| F thePart > tokMaxSynbols THEN {invalid nunber part-- }
{ handle error, }

theWchar.b := 0 { return null WdeChar}
ELSE BEA N
t heWChar := nunpartsPtr”. data[thePart];
END;
END;
END;

Retrieving Text From Tokens

Tokens are abstract entities that stand for classes of text items such as alphanumeric
strings, various symbols, and quoted literals. The Script Manager | nt | Tokeni ze
function converts programming-language text into script-independent tokens useful to
compilers or interpreters. See “Tokenization” on page 6-38. The untoken table in a script
system’s tokens (' i t | 4') resource has the opposite purpose; it helps you convert
script-independent tokens into the text of a given script system.

The untoken table lists the characters associated with each fixed (invariant) token
defined by that script. (An invariant token is one that, like t okenCol on, represents a
unique symbol. Other types of tokens, like t okenAl pha, represent an arbitrary
sequence of characters.) If you need to find out, for example, how a given script system
represents the “less than or equal to” symbol (is it the 1-byte character “<”, a 2-byte
encoding of the character “<”, the 2-byte, 2-character sequence “<=", or something else
altogether?), you can look up the values of t okenLessEqual 1 and t okenLessEqual 2
in that script’s untoken table.

The untoken table is most useful for obtaining script-specific forms for individual
common symbols, such as the ellipsis or center dot. If you truncate strings with the
ellipsis character (...) or use the center dot () such as AppleShare does for echoing
passwords, don’t hardcode their character codes; they may not be valid in some script
systems. Instead, specify t okenEl | i psi s ort okenCent er Dot , and use the untoken
table of the current script system to obtain the proper text for those tokens.

Using the Script Manager 6-35

Jabeue 1duos n

CHAPTER 6

Script Manager

Note

If a script system has no defined character or string that corresponds to a
particular token, the untoken table contains either a null string or the
string “??” for that token. O

You access the untoken table by calling the Get | nt | Resour ceTabl e procedure with a
table selector of smNunber Par t sTabl e. Listing 6-9 provides an example of how to
access the untoken table in the tokens resource. This code sample extracts the canonical
string associated with a token. It sets the parameter t heSt r i ng to the string that
corresponds to the token t heToken. (Usually, this string is 4 bytes or less.) To specify
the system script, the parameter t heScr i pt would have the value snSyst enfScri pt.
The parameter t heToken can have such values as t okenNoBr eakSpace,

t okenEl | i psi s, and t okenCent er Dot . For a complete list of defined constants for
tokens, see “Token Codes” beginning on page 6-58.

Listing 6-9 Getting a token string from the untoken table

6-36

PROCEDURE MyMapTokenToString(theScript: ScriptCode; theToken:
Integer; VAR theString: Str255);

VAR
i tl Handl e: Handl e;
unt okenCOf f set : Longl nt ;
unt okenLengt h: Longl nt;
unt okenPtr: Unt okenTabl ePtr;

unt okenStringPtr: StringPtr;
BEG N
Get I nt| Resour ceTabl e(theScri pt, snnTokenTabl e, itl Handl e,

unt okenOf f set, unt okenLengt h);

IF itlHandle = NIL THEN {handl e errors, return null string}

theString := "'
ELSE BEA N {nmake untokenPtr point to the }
{ beginning of the untoken tabl e}
unt okenPtr : = UntokenTabl ePtr(Longl nt (itl Handl e®) +

unt okenCOf f set) ;
| F theToken > untokenPtr”.| ast Token THEN {this token is }
{ not in table-- }
theString := "' { return null string}
ELSE BEA N {index[theToken] is the offset }
{ of the desired string fromthe }
{ beginning of the untoken tabl e}
untokenStringPtr := StringPtr(Longlnt(untokenPtr) +

Using the Script Manager

CHAPTER 6

Script Manager

unt okenPt r*. i ndex[t heToken]);
theString := untokenStringPtr”;
END;
END;
END;

Even though using the untoken table is conceptually the converse of calling the

I nt | Tokeni ze function, their purposes are different. | nt | Tokeni ze is used as a first
step toward compiling or interpreting programming-language source text, and its results
are rarely returned or reconverted to source text. The untoken table is most commonly
used to supply localized text for individual common tokens.

Using Word-Break Tables

If you use the Text Utilities Fi ndWor dBr eaks procedure to determine the boundaries of
a word, you normally do not need to pass it an explicit pointer to a word-break table.
However, if you want to use a custom word-break table you can pass Fi ndWor dBr eaks
a pointer to that table. Word-break tables are in a script system’s string-manipulation
("itl2")resource; you can gain access to them by calling the

Cet | nt | Resour ceTabl e procedure with a table selector of sm\r dSel ect Tabl e or
smAor dW apTabl e.

There are two possible table selectors because a script system may have different word
breaks for word selection than it does for line breaking. If you are using

Fi ndWor dBr eaks to select an individual word, use sm\r dSel ect Tabl e when you
call Get | nt | Resour ceTabl e to obtain the word-break table. If you are using

Fi ndWor dBr eaks to find line breaks, use sm\or dW apTabl e when you call

CGet I nt| Resour ceTabl e.

Using Whitespace Information

Most applications that need whitespace information, such as when eliminating extra
spaces in text or searching for non-space characters, can get it by calling the

Char act er Type function. However, if your application needs a listing of all valid
whitespace characters in a script system, you can call Get | nt | Resour ceTabl e with a
table selector of smWhi t eSpacelLi st. Get | nt| Resour ceTabl e returns the
whitespace table from the script system'’s tokens resource.

Converting Text

The third principal use for the Script Manager is in converting text from one form to
another, for two specific purposes: tokenization and transliteration. The routines
described in this section are used by specialized applications only. You can use these
Script Manager routines to

Using the Script Manager 6-37

Jabeue 1duos n

6-38

CHAPTER 6

Script Manager

s lexically convert text of the current script system into a series of
language-independent tokens (tokenization)

= phonetically convert text of one subscript into text of another subscript within the
same script system (transliteration)

Most text-processing applications have no need to perform either of these tasks.
However, if your program needs to evaluate programming statements or logical or
mathematical expressions in a script-independent fashion, you may want to use the
Script Manager’s tokenization facility. If your program performs phonetic conversion,
for text input or for any other purpose, you may want to use the Script Manager’s
transliteration facility.

Tokenization

Programs that parse structured text expressions (such as compilers, assemblers, and
scripting-language interpreters) usually assign sequences of characters to categories
called tokens. Tokens are abstract entities that stand for names, operators, and quoted
literals without making assumptions that depend on a particular writing system.

The Script Manager provides support for this conversion, called tokenization. Each
script system’s international tokens resource (type ' i t | 4') contains tables of token
information used by the Script Manager’s | nt | Tokeni ze function to identify the
elements in an arbitrary string of text and convert them to tokens. The token stream
created by | nt | Tokeni ze can be used as input to a compiler or interpreter, or to an
expression evaluator such as might be used by a spreadsheet or database program.

The | nt | Tokeni ze function allows your application to create a common set of tokens
from text in any script system. For example, a whitespace character might have different
character-code representations in different script systems. The | nt | Tokeni ze function
can assign the token t okenWhi t e to any whitespace character, thus removing
dependence on any character-encoding scheme.

When you call | nt | Tokeni ze, you pass it the source text to interpret. | nt | Tokeni ze
parses the text and returns a list of the tokens that make up the text. Among the token
types that it recognizes are whitespace characters; newline or return characters;
sequences of alphabetic, numeric, and decimal characters; the end of a stream of
characters; unknown characters; alternate digits and decimals; and many fixed token
symbols, such as open parentheses, plus and minus signs, commas, and periods. See
page 6-58 for a complete list of recognized tokens and their defined constants.

I nt | Tokeni ze can return not only a list of the token types found in your text but also a
normalized copy of the text of each of the tokens, so that the content of your source text
is preserved along with the tokens generated from it.

Figure 6-3 illustrates the process that occurs when | nt | Tokeni ze converts text into a
sequence of tokens. It shows that very different text from two separate script systems can
result in the same set of tokens.

Using the Script Manager

CHAPTER 6

Script Manager

Figure 6-3 The action of | nt | Tokeni ze

Macro Text

mE==fF=12N) 3/ FI t ot al 3=sun(A3: B9) ;{yearly totals}

Tokens Tokens
("itlh4") ("ith4")
resource resource

U > I nt| Tokeni ze < U

U

Tokens
(internal representation)
t okenAl pha
t okenEqual
t okenAl pha
t okenLef t Par en
t okenAl pha
t okenCol on
t okenAl pha
t okenRi ght Par en
t okenSeni col on
t okenLef t Conment
t okenLi teral
t okenRi ght Corment

Because it uses the tokens resource belonging to the script system of the text being
analyzed, | nt | Tokeni ze works on only one script run at a time. However, one way to
process multiscript text is to make successive calls to | nt | Tokeni ze and append the
results of each to the token list, thus building a single token stream from multiple calls.

Note

The | nt | Tokeni ze function does not provide complete lexical
analysis; it returns a simple, sequential list of tokens. If necessary, your
application can then process the output of | nt | Tokeni ze at a more
sophisticated lexical or syntactic level. O

The rest of this section introduces the data structures used by | nt | Tokeni ze, discusses
specific features and how it handles specific types of text, and gives an example.

Using the Script Manager 6-39

Jabeue 1duos n

CHAPTER 6

Script Manager

Data Structures

When you call | nt | Tokeni ze, you supply it with a pointer to a token block record,
a data structure that you have allocated. The token block record has a pointer to your
source text and pointers to two other buffers you have allocated—one to hold the list
of token records that | nt | Tokeni ze generates and the other to hold the string
representations of those tokens, if you choose to have strings generated. See Figure 6-4.

I nt1 Tokeni ze fills in the token list and the string list, updates information in the token
block record, and returns the information to you.

6-40

Figure 6-4 I nt| Tokeni ze data structures (simplified)
3 N
I nt| Tokeni ze
T
Token block
Source text
<:I ptr to source text
N
ptr to token list || S Token list
TokenRec 1
U TokenRec 2
i TokenRec 3
ptr to token strings | > Token strings
string 1
string 2
string 3
[]Pointers
[] Information flow

Using the Script Manager

CHAPTER 6

Script Manager

Delimiters for Literals and Comments

Your application may specify up to two pairs of delimiters each for quoted literals
and for comments. Quoted literal delimiters consist of a single symbol, and comment
delimiters may be either one or two symbols (including the newline character for
notations whose comments automatically terminate at the end of a line). Each
delimiter is represented by a token, as is the entire literal between the opening and
closing delimiters—except when the literal contains an escape character; see “Escape
Character” (next).

Limited support exists for nested comments. Comments may be nested if so specified
by the doNest flag, with one restriction that must be strictly observed to prevent

I nt| Tokeni ze from malfunctioning: nesting is legal only if both the left and

right delimiters for the comment token are composed of two symbols each. If your
application specifies two different sets of comment delimiters, then the doNest flag
always applies to both.

IMPORTANT

When using nested comments specified by the doNest flag,
test thoroughly to ensure that the requirements of

I nt| Tokeni ze are met. a

Escape Character

The characters that compose literals within quotations and comments are normally
defined to have no syntactic significance; however, the escape character within a quoted
literal signals that the following character should not be treated as the closing delimiter.
Outside of the limits of a quoted literal, the escape character has no significance and is
not recognized as an escape character.

For example, if the backslash “\” (token type =t okenBackSl| ash) is defined as the
escape character, the | nt | Tokeni ze function would consider it to be an escape
character in the following string, and would not consider the second quotation mark to
be a closing delimiter:

"This is a quote \" within a quoted literal"”

In the following string, however, | nt | Tokeni ze would not consider the backslash to be
an escape character, and therefore would consider the first quotation mark to be an
opening delimiter:

This is a backslash \" preceding a quoted literal"

Using the Script Manager 6-41

Jabeue 1duos n

6-42

CHAPTER 6

Script Manager

Alphanumeric Tokens

The | nt | Tokeni ze function allows you to specify that numeric characters do not have
to be considered numbers when mixed with alphabetic characters. If a flag is set,
alphabetic sequences may include digits, as long as first character is alphabetic. In that
case the sequence H ghway61 would be converted to a single alphabetic token, instead
of the alphabetic token Hi ghway followed by the number 61.

Alternate Numerals

Some script systems have not only Western digits (that is, the standard ASCII digits, the
numerals 0 through 9), but also their own numeral codes. | nt | Tokeni ze recognizes
these alternate numerals and constructs tokens from them, such ast okenAl t Numand

t okenAl t Real .

String Generation

To preserve the content of your source text as well as the tokens generated from it, your
application may instruct | nt | Tokeni ze to generate null-terminated,
even-byte-boundaried Pascal strings corresponding to each token. | nt | Tokeni ze
constructs the strings according to these rules:

» If the token is anything but alphabetic or numeric, | nt | Tokeni ze copies the text of
the token verbatim into the Pascal string.

s If the token represents non-Roman alphanumeric characters, | nt | Tokeni ze copies
the characters verbatim into the Pascal string.

s If the token represents Roman alphabetic characters, | nt | Tokeni ze normalizes
them to standard ASCII characters (such as by changing 2-byte Roman to 1-byte
Roman) and writes them into the Pascal string.

» If the token represents numeric characters—even if the script system uses an alternate
set of digits—I nt | Tokeni ze normalizes them into standard ASCII numerical digits,
with a period as the decimal separator, and creates a string from the result. This
allows users of other script systems to transparently use their own numerals or
Roman characters for numbers or keywords.

The tokens resource includes a string-copy routine that performs the necessary string
normalization.

Appending Results

You can make a series of calls to | nt | Tokeni ze and append the results of each call to
the results of previous calls. You can instruct | nt | Tokeni ze to use the output values
for certain parameters from each call as input values to the next call. At the end of your
sequence of calls you will have—in order—all the tokens and strings generated from the
calls to I nt | Tokeni ze.

Using the Script Manager

CHAPTER 6

Script Manager

Appending results is the only way to use | nt | Tokeni ze to parse a body of text that has
been written in two or more different script systems. Because | nt | Tokeni ze can
operate only on a single script run at a time, you must first divide your text into script
runs and pass each script’s character stream separately to | nt | Tokeni ze.

Example

Here is an example of how the | nt | Tokeni ze function breaks text into segments that
that can be processed in a way that is meaningful in a particular script system. The
source text is identical to that shown in Figure 6-3 on page 6-39. Assume that you send
this programming-language statement to | nt | Tokeni ze:

total 3=sum(A3: B9) ; {yearly total s}

I nt| Tokeni ze might convert that into the following sequence of tokens and
token strings:

Token Token string
t okenAl pha "total 3

t okenEqual =

t okenAl pha "suni

t okenLeft Paren (!

t okenAl pha " A3’

t okenCol on o

t okenAl pha ' B9

t okenRi ght Par en)

t okenSemi col on Y

t okenLef t Conment {

t okenLi t er al "yearly totals'
t okenRi ght Conmrent "}

This token sequence could then be processed meaningfully by an expression evaluator. If
the statement had been created under a different script system, in which comment
delimiters, semicolons, or equality were represented with different character codes, the
resulting token sequence would still be the same and could be evaluated identically—
although the strings generated from the tokens would be different.

The I nt | Tokeni ze function is described further on page 6-92.

Transliteration

The Script Manager provides support for transliteration, the automatic conversion of
text from one form to another within a single script system. In the Roman script system,
transliteration simply means case conversion. In Japanese, Chinese, and Korean script
systems, it means the phonetic conversion of characters from one subscript to another.

Using the Script Manager 6-43

Jabeue 1duos n

6-44

CHAPTER 6

Script Manager

The Transl i t er at eText function performs the conversions. Tables that control
transliteration for a 1-byte script system are in its international string-manipulation
("itl2")resource; the tables for a 2-byte script system are in the script’s transliteration
(" trsl")resource. This illustrates the difference in the meaning of transliteration for the
two types of script systems: case conversion information is in the string-manipulation
resource, whereas information needed for phonetic conversion is in the transliteration
resource. The transliteration resource is available to all script systems, although currently
no 1-byte script systems make use of it.

Transliteration here does not mean translation; the Macintosh script management system
cannot translate text from one language to another. Nor does it include context-sensitive
conversion from one subscript to another; that can be accomplished with an input
method. See, for example, the discussions of input methods in the chapters “Introduction
to Text on the Macintosh” and “Text Services Manager” in this book. Transliteration can,
however, be an initial step for those more complex conversions:

= Within the Japanese script system, you can transliterate from Hiragana to Romaji
(Roman) and from Romaji to Katakana, and vice versa. You cannot transliterate from
Hiragana to Kanji (Chinese characters). However, transliteration from Romaji to
Katakana or Hiragana could be an initial step for an input method that would
complete the context-sensitive conversion to Kanji.

= Within the (traditional) Chinese script system, you can transliterate from the
Bopomofo or Zhuyinfuhao (phonetic) subscript to Roman, and vice versa. You cannot
transliterate from Zhuyinfuhao to Hanzi (Chinese characters). However,
transliteration from Zhuyinfuhao to Pinyin could be an initial step for an input
method that would complete the context-sensitive conversion to Hanzi.

= Within the Korean script system, you can transliterate from Roman to Jamo, from
Jamo to Hangul, from Hangul to Jamo, and from Jamo to Roman. It is therefore
possible to transliterate from Hangul to Roman and from Roman to Hangul by a
two-step process. It is not possible to transliterate from Hangul into Hanja (Chinese
characters). Transliteration from Jamo to Hangul is used by the input method
supplied with the Korean script system; that transliteration is sufficient when Hanja
characters are not used. To include Hanja characters requires additional
context-sensitive processing by the input method.

The Script Manager defines two basic types of transliteration you can perform:
conversion to Roman characters, and conversion to a native subscript within the same
non-Roman script system. Within those categories there are subtypes. For instance, in
Roman text, case conversion can be either to uppercase or to lowercase; in Japanese text,
native conversion can be to Romaji, Hiragana, or Katakana.

You can specify which types of text can undergo conversion. For example, in Japanese
text you can, if you want to, limit transliteration to Hiragana characters only. Or you can
restrict it to case conversion of Roman characters only.

Using the Script Manager

CHAPTER 6

Script Manager

Not all combinations of transliteration are possible, of course. Case conversion cannot
take place in scripts or subscripts that do not have case; transliteration from one
subscript to another cannot take place in scripts that do not have subscripts.

Transliteration is not perfect. Typically, it gives a unique result within a 2-byte script,
although it may not always be the most phonetic or natural result. Transliterations may
be incorrect in ambiguous situations; by analogy, in certain transliterations from English
“th” could refer to the sound in the, the sound in thick, or the sounds in boathouse.

Figure 6-5 shows some of the possible effects of transliteration. Each string on the right
side of the figure is the transliterated result of its equivalent string on the left.

» Roman characters can be transposed from uppercase to lowercase and vice versa—
even if they are embedded in text that also contains Kanji.

= One-byte Roman characters can be converted to 2-byte Roman characters. (The glyphs
for 2-byte Roman characters are typically larger and spaced farther apart, for better
appearance when interspersed with ideographic glyphs.)

= Katakana can be converted to Hiragana.

= Hiragana can be converted to 1-byte Roman characters.

Figure 6-5 The effects of transliteration
to uppercase TO UPPERCASE
TO LOWERCASE to lowercase
Mixed {5 MIXED #:+
romaji’ romaiji

N WZIZA
WZIiFA nihonn

* 1-byte Romaji converted to 2-byte Romaji

When you call Tr ansl i t er at eText, you specify a source mask, a target format, and a
target modifier. The source mask specifies which subscript or subscripts represented in
the source text should be converted to the target format. The target modifier provides
additional formatting instructions. For example, in Japanese text that contains Roman,
Hiragana, Katakana, and Kanji characters, you could use the source mask to limit
transliteration to Hiragana characters only. You could then use the target format to
specify conversion to Roman, and you could use the target modifier to further specify
that the converted text become uppercase.

Using the Script Manager 6-45

Jabeue 1duos n

6-46

CHAPTER 6

Script Manager

For all script systems, there are three currently defined values for source mask, with the
following assigned constants:

Source mask constant Value Explanation

smVASKASCI i 1 Convert from Roman text

smvaskNat i ve 2 Convert from text native to current script
smvaskAl | -1 Convert from all text

To specify that you want to convert only Roman characters, use smvaskAsci i . To
convert only native characters, use smivskNat i ve. Use the smVaskAl | constant to
specify that you want to transliterate all text. “Roman text” is defined as any Roman
characters in the character set of a given script system. In most cases, this means the
low-ASCII Roman characters, but—depending on the script system—it may also include
certain characters in the high-ASCII range whose codes are not used for the script
system’s native character set, and it may include 2-byte Roman characters in 2-byte
script systems. The definition of “native text” is also script-dependent.

The 2-byte script systems recognize the following additional values for source mask:

Source mask constant Hex. value Explanation

All 2-byte scripts:

snmvaskAsci i 1 $04 Convert from 1-byte Roman text
smvaskAsci i 2 $08 Convert from 2-byte Roman text
Japanese:

smvaskKanal $10 Convert from 1-byte Katakana text
smvaskKana?2 $20 Convert from 2-byte Katakana text
smvaskGana2 $80 Convert from 2-byte Hiragana text
Korean:

smvaskHangul 2 $100 Convert from 2-byte Hangul text
smvaskJann?2 $200 Convert from 2-byte Jamo text
Chinese:

smvaskBoponof 02 $400 Convert from 2-byte Zhuyinfuhao text

The low-order byte of the t ar get parameter is the format; it determines what form the
text should be transliterated to. For all script systems, there are two currently supported
values for target format, with the following assigned constants:

Target format constant Hex. value Explanation

smlransAscCi i $00 Convert to Roman

snilransNat i ve $01 Convert to a subscript native to current script
snilr ansCase $FE Convert case for all text (obsolete)

snr ansSyst em $FF Convert to system script (obsolete)

Using the Script Manager

CHAPTER 6

Script Manager

The 2-byte script systems recognize the following additional values for target format:

Target format constant Value Explanation

All 2-byte scripts:

smlransASCI | 1 2 Convert to 1-byte Roman text
smlransASCI | 2 3 Convert to 2-byte Roman text
Japanese:

smlr ansKanal 4 Convert to 1-byte Katakana text
smlr ansKana2 5 Convert to 2-byte Katakana text
snilr ansGana2 7 Convert to 2-byte Hiragana text
Korean:

snilr ansHangul 2 8 Convert to 2-byte Hangul text
snilransJano?2 9 Convert to 2-byte Jamo text
Chinese:

smTr ansBoponof 02 10 Convert to 2-byte Zhuyinfuhao text

The high-order byte of the t ar get parameter is the target modifier; it provides
additional formatting instructions. All script systems recognize these values for target
modifier, with the following assigned constants:

Target modifier constant Hex. value Explanation
snir ansLower $4000 Target becomes lowercase
smlr ansUpper $8000 Target becomes uppercase

For example, for Tr ansl i t er at eText to convert all the characters in a block of text to
1-byte Roman uppercase, the value of sr cMask is smvVaskAl | and the target value is
snTransAsci i 1+smflr ansUpper. To convert only those characters that are already
(1-byte or 2-byte) Roman, the value of sr cMask is smVaskAsci i 1+snmVaskAsci i 2.

The Transl i t er at eText function is described further on page 6-98.

Note

For uppercasing or lowercasing Roman text in general, use

Upper caseText or Lower caseText . Because the performance of
TransliterateText is slower, you may rarely want to use its
case-changing capabilities in Roman text. O

Using the Script Manager 6-47

Jabeue 1duos n

6-48

CHAPTER 6

Script Manager

Modifying Script Systems

The fourth principal use for the Script Manager is in modifying the contents of script
systems themselves. The routines described in this section are for specialized purposes,
such as providing regional variants to existing script systems or assigning script-specific
features to individual documents or applications. You can use these Script Manager
routines to

= replace one or more of a script system’s international resources (this replacement
occurs within the context of your application only)

= replace one or more of an individual script system’s routines (for 1-byte complex
scripts only)

Most text-processing applications need not perform either of these replacements.
However, if your program has special needs or if you are implementing a specific
regional variation of a script system with unusual text-handling features, you can use
these Script Manager calls.

Replacing a Script System’s Default International Resources

In certain situations, you may want to replace the script-system-supplied international
resources with some of your own. For example, your application might create
documents containing currency amounts and get the currency format from the
numeric-format resource. You may then want the unit of currency to remain the same,
even if the document is displayed on a Macintosh with system software localized for
another region.

You can store your own versions of some of the international resources in your
application’s or document’s resource file, to override those in the System file. In this case,
documents that your application creates could have their own copy of the
numeric-format resource that was used to create them.

To replace the numeric-format (" i t1 0") or long-date-format (' i t | 1') resource, follow
these two steps:

1. When your application starts up or when your document is opened, call
the Get Scri pt Var i abl e function for your target script system to get the ID
number of the current default version of the resource you are replacing. Save that
ID number for later.

2. Call the Set Scri pt Var i abl e function to set the script’s default ID number to the ID
of the resource that you are supplying.

If your replacement resource is attached to your application or document, it will
override the script system’s default version. When a call for a resource is made,

the Resource Manager searches first in the resource fork of the open document, then
in the resource fork of the active application, and then in the System file. This search
sequence is described in the chapter “Resource Manager” in Inside Macintosh: More
Macintosh Toolbox.

Using the Script Manager

CHAPTER 6

Script Manager

To substitute the string-manipulation (' i t1 2") or tokens (' i t | 4') resources, you must
take an additional step. If you want to replace the default resource currently used by a
script system, you must first clear your application’s international resources cache. The
cache is part of an application’s context as handled by the Process Manager; it is
initialized when the application is launched, and is switched in and out with the
application. It contains the resource ID numbers of the default string-manipulation and
tokens resources for all installed script systems. Once the cache is set up, access to
string-manipulation and tokens resources is exclusively through the ID numbers in

the cache.

Therefore, to replace a string-manipulation or tokens resource, it is not enough to attach
the resource to your document and call the Set Scri pt Var i abl e function; this alone
does not affect any cached ID numbers. In addition, add this third step:

3. After calling Set Scri pt Vari abl e as described in step 2, call
Cl ear | nt | Resour ceCache. That will cause the cache to be reloaded with the
current default resource ID numbers, including your override of the previous default,
as each resource is called.

In this case, when a call for a resource is made, the Script Manager looks first in the cache
for the resource ID to use. If the cache has been cleared, the Script Manager gets the ID
from the script variables (and updates the cache with the new ID). The Script Manager
then calls the Resource Manager, requesting a resource with that ID. The Resource
Manager searches for the resource as described previously, taking it from your document
or application.

Because the system maintains a separate international resources cache for each
application’s context, your application can provide its own string-manipulation and
tokens resources without affecting the use of those resources by other applications or by
the system. When the Process Manager switches in another application, that
application’s international resources cache has the defaults needed by that application.

No matter which international resource you have replaced, there is one final step to take:

4. When your application exits or is switched out, be sure to call Set Scri pt Vari abl e
once again to reset the script system’s default ID number to what it was before you
replaced it.

IMPORTANT

If the international resources selection flag is TRUE when a call to access
your supplied resources is made, the ID numbers of your supplied
resources must be within the system script range; if it is FALSE, the IDs
must be in the range of the current script. Otherwise, your resources will
not be found. See the appendix “International Resources” for a list of
script codes and their resource ID ranges. a

Using the Script Manager 6-49

Jabeue 1duos n

6-50

CHAPTER 6

Script Manager

Replacing a Script System’s Default Routines

Applications do not normally need to modify a script system’s text-handling routines.
For 1-byte complex script systems and for 2-byte script systems, most script-specific
behavior is built into tables in the script’s international resources. Text-handling code is
in Macintosh system software: in ROM, in the System file, or in one of two system
extensions—WorldScript I and WorldScript II. WorldScript I and WorldScript II handle
text for 1-byte complex and 2-byte script systems, respectively. They are described in the
appendix “Built-in Script Support” in this book. For most needs the table-driven
behavior is adequate, and you can access many of the tables through the Script Manager
calls described in the previous section.

Even so, for 1-byte complex script systems, the Script Manager offers you the ability to
modify or enhance the routines contained in WorldScript L. If you need specific
script-based behavior that is not currently supported, you can replace one or more script
utilities (low-level text-handling routines that employ the _Scri pt Ui | trap) or
QuickDraw patches for your target script system. You can create a patch and install it
with a System extension file (type ' | NI T') that is executed at system startup.

IMPORTANT

Because this capability affects WorldScript I only, it is available only for
1-byte complex script systems. a

In every script system that uses WorldScript I, the dispatch-table element for every script
utility and QuickDraw patch consists of two pointers: one to the WorldScript I
implementation of the routine and one to the original (built-in Roman) routine. In

all cases, the WorldScript I routine executes first. In some cases, WorldScript I calls

the original routine after its own; in other cases, the pointer to the original routine is NI L
and the WorldScript I routine is all that executes. See Figure 6-6. This design allows

you to place a patched routine so that it executes before, in place of, or after the
WorldScript I routine.

Using the Script Manager

CHAPTER 6

Script Manager

Figure 6-6 Dispatch table entry for script utilities and QuickDraw patches

Address of script's Address of
patch to st dText |original st dText N

{ {

WorldScript | Original code

> béécal Script StdText (): N bé;scal StdText ():

The script-based dispatch table design gives you a simple, flexible way to replace
individual routines without having to patch out all of _Scri pt Uti| or any of the
QuickDraw low-level routines in their entirety. Furthermore, in a multiscript
environment each patch applies only to its own script system. You can, for example,
patch st dText for the Thai script system only, leaving it unchanged for all other
script systems.

To replace only the WorldScript I implementation of a routine, replace its pointer in the
dispatch table; to keep the WorldScript I routine while replacing or patching the original
routine, replace the original-routine pointer in the dispatch table. The four Script
Manager routines that allow you to make those patches are
GetScriptUtilityAddress,SetScriptUtilityAddress,

Get Scri pt QDPat chAddr ess, and Set Scri pt QDPat chAddr ess. Either pointer in
the dispatch table may be NI L, meaning that WorldScript I either (1) doesn’t patch the
original routine or (2) doesn’t call the original routine.

For additional information on how to use these four Script Manager routines to
customize a script’s behavior, see the appendix “Built-in Script Support.”

Using the Script Manager 6-51

Jabeue 1duos n

CHAPTER 6

Script Manager

Script Manager Reference

Constants

This section describes the constants, data structures, and routines that are specific to the
Script Manager.

The Script Manager defines a large number of constants. This section lists and describes
the constants with which you can specify

= script codes, language codes, and region codes
= token codes
= selectors for Script Manager variables

= selectors for script variables

There are many other constants defined for other purposes that are listed with the
routines that use them. In addition, all constants are listed in the section “Summary of
the Script Manager” beginning on page 6-107.

Script Codes

You can specify script systems with implicit and explicit script code constants in the
SCri pt parameter of the Get Scri pt Vari abl e and Set Scri pt Var i abl e functions.
The implicit script codes snByst enScri pt and smCur r ent Scri pt are special
negative values for the system script and the font script, respectively.

Script constant Value Explanation
snmByst enSer i pt -1 System script
snmCurrent Scri pt -2 Font script
snmRoman 0 Roman
smlapanese 1 Japanese

smlr adChi nese 2 Traditional Chinese
snKor ean 3 Korean

smAr abi ¢ 4 Arabic

snHebr ew 5 Hebrew

snr eek 6 Greek
snyrillic 7 Cyrillic
snRSynbol 8 Right-to-left symbols
snmDevanagar i 9 Devanagari

6-52 Script Manager Reference

CHAPTER 6

Script Manager

Script constant Value Explanation (continued)
snGur mukhi 10 Gurmukhi

snuj ar at i 11 Gujarati

snxiya 12 Oriya

snBengal i 13 Bengali

smrami | 14 Tamil

snilel ugu 15 Telugu

snKannada 16 Kannada/Kanarese

smval ayal am 17 Malayalam

snBi nhal ese 18 Sinhalese

snmBur nese 19 Burmese

snkKhmer 20 Khmer

snirhai 21 Thai

smLaoti an 22 Laotian

snGeor gi an 23 Georgian

SMAr meni an 24 Armenian

snBi npChi nese 25 Simplified Chinese

sniri bet an 26 Tibetan

smvbngol i an 27 Mongolian

snCeez 28 Geez /Ethiopic

snEt hi opi c 28 =snieez

snEast Eur Roman 29 Extended Roman for Slavic and Baltic languages
snVi et nanese 30 Extended Roman for Vietnamese
smExt Ar abi c 31 Extended Arabic for Sindhi
smninterp 32 Uninterpreted symbols
Note

The script code represented by the constant srni nt er p is available for
representation of special symbols, such as items in a tool palette, that
must not be considered as part of any actual script system. For
manipulating and drawing such symbols, the sni nt er p constant
should be treated as if it indicated the Roman script system rather than
the system script; that is, the default behavior of uninterpreted symbols
should be Roman. O

Note

The script code represented by the constant SmRSybol is available as
an alternative to smni nt er p, for representation of special symbols that
have a right-to-left line direction. Note, however, that the script
management system provides no direct support for representation of
text with this script code. O

Script Manager Reference 6-53

Jabeue 1duos n

CHAPTER 6

Script Manager

Language Codes

6-54

Language codes have the following defined values. Note that each language is
associated with a script code.

Language
constant

I angEngl i sh

| angFr ench

| angGer man
 angltalian

| angDut ch

| angSwedi sh

I angSpani sh

| angbDani sh

| angPor t uguese
I angNor wegi an
| angHebr ew

| angJapanese
| angAr abi ¢

I angFi nni sh

| angGr eek

I angl cel andi c
| anghal t ese

| angTur ki sh

| angCroati an
| angTr adChi nese
I angUr du

| angHi nd

| angTha

| angKor ean

[angLi t huani an
I angPol i sh

| angHungari an
| angEst oni an
| angLettish

| angLat vi an

| angSaam sk

| angLappi sh

| angFaer oese

Script Manager Reference

Value

O 00 NI O O & W NN ~»,r O

W N NN DN DN DN DN DN DNDDNDDNDNDN R R R R) s,) s =
O O WOV W 0 N O O = W N P O VO 0N O O = WO NN —m O

Language

English

French

German

Italian

Dutch

Swedish
Spanish

Danish
Portuguese
Norwegian
Hebrew
Japanese

Arabic

Finnish

Greek

Icelandic
Maltese

Turkish
Croatian
Chinese (traditional chars.)
Urdu

Hindi

Thai

Korean
Lithuanian
Polish
Hungarian
Estonian

Lettish

=l anglLettish
(language of Lapps/Sami)
=1 angSaam sk

Faeroese

(Script code)

(snRonan)

(snRoman)
(snRonan)
(snRonan)

(snRoman)
(snRonan)
(snRonan)

(snRoman)
(snRonan)
(snRonan)
(snHebr ew)
(smlapanese)
(smAr abi c)

(snRoman)

(sntzr eek)
(snRonan)

(snRoman)
(snRonan)
(snRonan)

(smlr adChi nese)
(smAr abi c)
(snDevanagari)
(snThai)

(snKor ean)
(snmEast Eur Roman)
(snEast Eur Roman)
(snEast Eur Ronan)
(snmEast Eur Roman)
(snEast Eur Roman)

(snRonan)

(snRonan)

CHAPTER 6

Script Manager

Language
constant

| angFars

I angPer si an

| angRussi an

| angSi npChi nese
I angFl emi sh

I anglrish

| angAl bani an

| angRomani an

| angCzech

| angSl ovak

I angSl oveni an

| angYi ddi sh

| angSer bi an

| angMacedoni an
| angBul gari an

I angUkr ai ni an

| angByel or ussi an
| angUzbek

| angKazakh

| angAzer bai j an
| angAzer bai j anAr
| angAr nmeni an

| angGeor gi an

| angMbl dovan

| angMbl davi an

I angKi r ghi z

| angTaj i ki

| angTur knen

| angMbngol i an

| angMongol i anCyr
| angPasht o

I angKur di sh

| angKashmi ri

| angSi ndh

[angTi bet an

Script Manager Reference

Value

31
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
53
54
55
56
57
58
59
60
61
62
63

Language

Farsi
=1 angFar si

Russian

Chinese (simplified chars.)

Flemish
Irish
Albanian
Romanian
Czech
Slovak
Slovenian
Yiddish
Serbian
Macedonian
Bulgarian
Ukrainian
Byelorussian
Uzbek
Kazakh
Azerbaijani
Azerbaijani
Armenian
Georgian
Moldovan

= | angMbl dovan

Kirghiz
Tajiki
Turkmen
Mongolian
Mongolian
Pashto
Kurdish
Kashmiri
Sindhi
Tibetan

(Script code)
(continued)

(smAr abi c)

(smCyrillic)
(snBi npChi nese)
(snRonan)

(smRonan)
(snRonan)
(snmEast Eur Roman)
(snmEast Eur Rorman)
(snEast Eur Ronan)
(snmEast Eur Roman)

(snmHebr ew)

(snCyrillic)
(smCyrillic)
(smCyrillic)
(snCyrillic)
(smCyrillic)
(smCyrillic)
(snCyrillic)
(smCyrillic)
(smAr abi c)

(smAr neni an)
(snteorgi an)
(smCyrillic)
(snCyrillic)
(smCyrillic)
(smCyrillic)
(snCyrillic)
(smvbngol i an)
(smCyrillic)
(smAr abi c)

(smAr abi c)

(smAr abi c)

(snExt Ar abi ¢)
('snili bet an)

continued

6-55

Jabeue 1duos n

6-56

CHAPTER 6

Script Manager

Language
constant

| angNepal

| angSanskri t

| angMar at hi

| angBengal

| angAssanese

| angCuj ar at i

| angPunj ab

[angOriya

| angMal ayal am
| angKannada

[angTanmi |

| angTel ugu

| angSi nhal ese
I angBur nese

| angKhrmer

| angLao

| angVi et nanese
| angl ndonesi an
| angTagal og

| angal ayRoman
| angMal ayAr abi c
| angAnhari c

I angTi gri nya

| angGal | a

| angOr ono

| angSomal i

| angSwahi |

| angRuanda

| angRund

| angChewa

| angMal agasy

| angEsper ant o
| ang\Weél sh

| angBasque

I angCat al an

| angLatin

Script Manager Reference

Value

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
87
88
89
90
91
92
93
94
128
129
130
131

Language

Nepali
Sanskrit
Marathi
Bengali
Assamese
Gujarati
Punjabi
Oriya
Malayalam
Kannada
Tamil
Telugu
Sinhalese
Burmese
Khmer

Lao
Vietnamese
Indonesian
Tagalog
Malay
Malay
Ambharic
Tigrinya
Galla

= langGl | a

Somali
Swahili
Ruanda
Rundi
Chewa
Malagasy
Esperanto
Welsh
Basque
Catalan

Latin

(Script code)
(continued)

(snDevanagari)
(snDevanagari)
(smDevanagari)
(snBengal i)
(smBengal i)
(smGuj arati)
('sntaur mukhi)
(snxiya)
(smval ayal am
(snKannada)
(smrani |)
(snrel ugu)
(snti nhal ese)
(snBur mese)
(snmKhner)
(snlLaoti an)
(snVi et nanese)
(smRonan)
(snRonan)
(snRonan)
(smAr abi c)
(snEt hi opi ¢)
('smEt hi opi ¢)
('smEt hi opi ¢)

(snRonan)
(smRonan)
(snRonan)
(snRonan)
(smRonan)
(snRonan)
(mod. smRoman)
(smRonan)
(snRonan)
(snRonan)
(smRonan)

CHAPTER 6

Script Manager

Language
constant

| angQuechua

| angGuar an

| angAymnar a

| angTat ar

[angUi ghur

| angDzongkha

| angJavaneseRom
| angSundaneseRom

Region Codes

Value

132
133
134
135
136
137
138
139

Language (Script code)
(continued)
Quechua (smRonan)
Guarani (smRomman)
Aymara (smRonan)
Tatar (snCyrillic)
Uighur (smAr abi c)
Bhutanese ('snili bet an)
Javanese (snRonan)
Sundanese (smRomman)

Region codes have the following defined values. Each region is associated with a
particular language code and script code (not shown). Note that the existence of a
defined region code does not necessarily imply the existence of a version of Macintosh
system software localized for that region.

Region constant
ver US

ver France
verBritain

ver Ger many
verltaly

ver Net her | ands
ver Fr Bel gi urmLux
ver Sweden

ver Denmar k

ver Por t ugal
ver Fr Canada
ver | srael

ver Japan
verAustralia
ver Arabi a

ver Arabi c
ver Fi nl and
ver Fr Swi ss
ver G Sw ss

Script Manager Reference

Value

O N3 O UG = W N~ O

e e e
O 00 NI O O U b= W = O

Explanation
United States

France

Great Britain

Germany

Italy

Netherlands

French for Belgium and Luxembourg
Sweden

Denmark

Portugal

French Canada

Israel

Japan

Australia

the Arabic world

= ver Arabi a
Finland

French for Switzerland

German for Switzerland

continued

6-57

Jabeue 1duos n

CHAPTER 6

Script Manager

Region constant Value Explanation (continued)

ver Gr eece 20 Greece

ver | cel and 21 Iceland

verMal ta 22 Malta

ver Cypr us 23 Cyprus

ver Tur key 24 Turkey

ver YugoCroati an 25 Croatian system for Yugoslavia

ver | ndi aH ndi 33 Hindi system for India

ver Paki st an 34 Pakistan

ver Li t huani a 41 Lithuania

ver Pol and 42 Poland

ver Hungary 43 Hungary

ver Est oni a 44 Estonia

verlLatvia 45 Latvia

ver Lapl and 46 Lapland

ver Faer oel sl 47 Faeroe Islands

verlran 48 Iran

ver Russi a 49 Russia

verlrel and 50 Ireland

ver Kor ea 51 Korea

ver Chi na 52 People’s Republic of China

ver Tai wan 53 Taiwan

ver Thai | and 54 Thailand

m nCount ry The lowest defined region code
(for range-checking); currently = ver US

maxCount ry The highest defined region code
(for range-checking); currently = ver Thai | and

Token Codes

The following constants define the types of tokens recognized by the | nt | Tokeni ze
function and specified in the field t heToken of the token record (type TokenRec):

Constant Value Explanation

del i mPad -2 Delimiter pad (special code)
t okenEnpt y -1 Empty flag

t okenUnknown 0 Has no existing token type
t okenWi te 1 Whitespace character
tokenLeftLit 2 Opening literal marker

6-58 Script Manager Reference

CHAPTER 6

Script Manager

Constant

tokenRi ghtLit

t okenAl pha

t okenNuneri c

t okenNewLi ne

t okenLef t Comrent
t okenRi ght Comment
t okenLi t er al

t okenEscape

t okenAl t Num

t okenReal Num

t okenAl t Real

t okenReservel

t okenReserve2

t okenLeft Paren

t okenLef t Bracket
t okenRi ght Br acket
t okenLeft Curly

t okenRi ght Curly
t okenLef t Encl ose
t okenRi ght Encl ose
t okenPl us

t okenM nus

t okenAst eri sk

t okenDi vi de

t okenSl ash

t okenBackSl ash

t okenLess

t okenG eat

t okenEqual

t okenLessEqual 2
t okenLessEqual 1
t okenGr eat Equal 2
t okenG eat Equal 1
t oken2Equal

t okenCol onEqual

Script Manager Reference

Value

O o 3 O U = W

10
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
27
29
30
31
32
33
34
35
36
37
38
39

Explanation (continued)
Closing literal marker

Alphabetic

Numeric

New line

Opening comment marker
Closing comment marker
Literal

Escape character

Alternate number (such as at $B0-$B9)

Real number

Alternate real number

(reserved 1)

(reserved 2)

Opening parenthesis

Opening square bracket

Closing square bracket

Opening curly bracket

Closing curly bracket

Opening European double quote
Closing European double quote
Plus

Minus

Times/multiply

Divide

Slash

Backslash

Less than

Greater than

Equal

Less than or equal to (2 symbols)
Less than or equal to (1 symbol)
Greater than or equal to (2 symbols)
Greater than or equal to (1 symbol)
Double equal

Colon equal

continued

6-59

Jabeue 1duos n

6-60

CHAPTER 6

Script Manager

Constant

t okenNot Equal

t okenLessG eat

t okenExcl anmEqual

t okenExcl am

t okenTi | de

t okenConma

t okenPeri od

t okenLeft 2Quot e

t okenRi ght 2Quot e
t okenLeft 1Quot e

t okenRi ght 1Quot e
t oken2Quot e

t okenlQuot e

t okenSeni col on

t okenPer cent

t okenCar et

t okenUnder | i ne

t okenAnper sand

t okenAt Si gn

t okenBar

t okenQuesti on

t okenPi

t okenRoot

t okenSi gma

t okenl nt egr al

t okenM cro

t okenCapPi
tokenlnfinity

t okenCol on

t okenHash

t okenDol | ar

t okenNoBr eakSpace
t okenFracti on

t okenl nt| Currency
t okenLeft Si ngQui | | enet
t okenRi ght Si ngCGui | | enet

Script Manager Reference

Value
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Explanation (continued)
Not equal

Less/ greater (not equal in Pascal)

Exclamation equal (not equal in C)

Exclamation point
Centered tilde
Comma

Period

Opening double quote
Closing double quote
Opening single quote
Closing single quote
Double quote

Single quote
Semicolon

Percent

Caret

Underline
Ampersand

At sign

Vertical bar

Question mark

Pi

Square root

Capital sigma

Integral

Micro

Capital pi

Infinity

Colon

Pound sign (U.S. weight)
Dollar sign
Nonbreaking space
Fraction

International currency
Opening single guillemet

Closing single guillemet

CHAPTER 6

Script Manager

Constant Value Explanation (continued)
t okenPer Thousand 76 Per thousands
tokenEl | i psis 77 Ellipsis character

t okenCent er Dot 78 Center dot

Selectors for Script Manager Variables

This section lists and describes the selector constants for accessing the Script Manager
variables through calls to the Get Scri pt Manager Var i abl e and

Set Scri pt Manager Var i abl e functions. In every case the variable parameter passed
to or from the function is a long integer (4 bytes); the column “Size of variable” indicates
how many of the 4 bytes are necessary to hold the input or return value for that variable.
If fewer than 4 bytes are needed, the low byte or low word contains the information.

Descriptions of all the variables accessed by these constants follow the list.

Selector constant Value Size of
variable (bytes)
snVer si on 0 2
smvunged 2 2
snEnabl ed 4 1
snBi di rect 6 1
snfFont For ce 8 1
sm nt | Force 10 1
snfor ced 12 1
snDef aul t 14 1
snPrint 16 4
snBysScri pt 18 2
smLast Scri pt 20 2
snKeyScri pt 22 2
snBysRef 24 2
snmKeyCache 26 4
snKey Swap 28 4
snizenFl ags 30 4
snOverri de 32 4
snChar Por ti on 34 2
snDoubl eByt e 36 1
snKCHRCache 38 4
snRegi onCode 40 2
snKeyDi sabl eSt at e 42 1

Script Manager Reference 6-61

Jabeue 1duos n

6-62

CHAPTER 6

Script Manager

Selector constant
smVer si on

snmvunged

smEnabl ed

snBi di r ect

snfont For ce

sm nt| Force

Variable description

The Script Manager version number. This variable has the same
format as the version number obtained from calling the Gest al t
function with the Gestalt selector gest al t Scri pt Myr Ver si on.
The high-order byte contains the major version number, and the
low-order byte contains the minor version number.

The modification count for Script Manager variables. At startup,
snmVunged is initialized to 0, and it is incremented when the
KeyScri pt procedure changes the current keyboard script and
updates the variables accessed via smKeyScri pt and

snlast Scri pt. The smvunged selector is also incremented when
the Set Scri pt Manager Var i abl e function is used to change a
Script Manager variable. You can check this variable at any time to
see whether any of your own data structures that may depend on
Script Manager variables need to be updated.

The script count; the number of currently enabled script systems. At
startup time, the Script Manager initializes the script count to 0,
then increments it for each installed and enabled script system
(including Roman). You can use snEnabl ed to determine whether
more than one script system is installed—that is, whether your
application needs to handle non-Roman text.

IMPORTANT

Never call Set Scri pt Manager Var i abl e with the snEnabl ed
selector. It could result in inconsistency with other script

system values. a

The bidirectional flag, which indicates when at least one
bidirectional script system is enabled. This flag is set to TRUE ($FF)
if the Arabic or Hebrew script system is enabled.

The font force flag. At startup, the Script Manager sets its value
from the system script’s international configuration (" i tlc')
resource. The flag returns 0 for FALSE and $FF for TRUE. If the
system script is non-Roman, the font force flag controls whether a
font with ID in the Roman script range is interpreted as belonging
to the Roman script or to the system script. See “Using the Font
Force Flag” on page 6-24.

IMPORTANT

When you call Set Scri pt Manager Var i abl e with the

snfont For ce selector, be sure to pass only the value 0 or $FF or a
later call to Get Scri pt Manager Var i abl e may return an
unrecognized value. a

The international resources selection flag. At startup, the Script
Manager sets its value from the system script’s international
configuration (' i t1 ¢') resource. The flag returns 0 for FALSE and
$FF for TRUE. This flag controls whether international resources of
the font script or the system script are used for string manipulation.
See “Using the International Resources Selection Flag” on page 6-25.

Script Manager Reference

CHAPTER 6

Script Manager

snfor ced

snmDef aul t

snPri nt

snBysScri pt

smliast Scri pt

snKeyScri pt

snBysRef

IMPORTANT

When you call Set Scri pt Manager Var i abl e with the

sm nt | For ce selector, be sure to pass only the value 0 or $FF, or a
later call to Get Scri pt Manager Var i abl e may return an
unrecognized value. a

The script-forced result flag. If the current script has been forced to
the system script, this flag is set to TRUE. Use the snFor ced
selector to obtain reports of the actions of the Font Scri pt,

Font ToScri pt,and I ntl Scri pt functions. This variable is for
information only; never set its value with

Set Scri pt Manager Vari abl e.

The script-defaulted result flag. If the script system corresponding
to a specified font is not available, this flag is set to TRUE. Use this
selector to obtain reports of the actions of the Font Scri pt,

Font ToScri pt,and | ntl Scri pt functions. This variable is for
information only; never set its value with

Set Scri pt Manager Vari abl e.

The print action routine vector, set up by the Script Manager at
startup. See Inside Macintosh: Devices for information on the print
action routine.

The system script code. At startup, the Script Manager initializes
this variable from the system script’s international configuration
("itlc")resource. This variable is for information only; never set
its value with Set Scri pt Manager Var i abl e. Constants for all
defined script codes are listed on page 6-52.

The previously used keyboard script. When you change keyboard
scripts with the KeyScr i pt procedure, the Script Manager moves
the old value of snKeyScr i pt into snmLast Scri pt.KeyScri pt
can also swap the current keyboard script with the previous
keyboard script, in which case the contents of smLast Scri pt and
snmKeyScri pt are swapped. Constants for all defined script codes
are listed on page 6-52. Never set the value of this variable with
Set Scri pt Manager Vari abl e.

The current keyboard script. The KeyScr i pt procedure tests and
updates this variable. When you change keyboard scripts with the
KeyScri pt procedure, the Script Manager moves the old value of
snKeyScri pt into smLast Scri pt. KeyScri pt can also swap the
current keyboard script with the previous keyboard script, in which
case the contents of sLast Scri pt and snKeyScri pt are
swapped. The Script Manager also uses this variable to get the
proper keyboard icon and to retrieve the proper keyboard-layout

(" KCHR') resource. Constants for all defined script codes are listed
on page 6-52. Never set the value of this variable directly with

Set Scri pt Manager Var i abl e; call KeyScri pt to change
keyboard scripts.

The System Folder volume reference number. Its value is initialized
from the system global variable Boot Dr i ve at startup.

Script Manager Reference 6-63

Jabeue 1duos n

6-64

CHAPTER 6

Script Manager

snKeyCache

snKey Swap

snzenFl ags

snmOverri de

snChar Porti on

snDoubl eByt e

snmKCHRCache

snmRegi onCode

An obsolete variable. This variable at one time held a pointer to the
keyboard cache. The value it provided was not correct and should
not be used.

A handle to the keyboard-swap (' KSWP') resource. The Script
Manager initializes the handle at startup. The keyboard-swap
resource controls the key combinations with which the user can
invoke various actions with the KeyScr i pt procedure, such as
switching among script systems. This resource is described in the
appendix “Keyboard Resources” in this book.

The general flags used by the Script Manager. The Script Manager
general flags is a long word value; its high-order byte is set from the
flags byte in the system script’s international configuration
("itlc")resource. The following constants are available to
designate bits in the variable accessed through snGenFl ags:

Constant Value Explanation
snf NaneTagEnab 29 (reserved for internal use)
snf Dual Car et 30 Use dual caret for

mixed-directional text.

snf Showl con 31 Show keyboard menu even if only
one keyboard layout or one script
(Roman) is available. (This bit is
checked only at system startup.)

The script override flags. At present, these flags are not set or used
by the Script Manager. They are, however, reserved for future use.

A value used by script systems to allocate intercharacter and
interword spacing when justifying text. It denotes the weight
allocated to intercharacter space versus interword space. The value
of this variable is initialized to 10 percent by the Script Manager,
although it currently has no effect on text of the Roman script
system. The variable is in 4.12 fixed-point format, which is a 16-bit
signed number with 4 bits of integer and 12 bits of fraction. (In that
format, 10 percent has the hexadecimal value $0199.)

The 2-byte flag, a Boolean value that is TRUE if at least one 2-byte
script system is enabled.

A pointer to the cache that stores a copy of the current
keyboard-layout (" KCHR') resource. The keyboard-layout resource
is described in the appendix “Keyboard Resources” in this book.

The region code for this localized version of system software,
obtained from the system script’s international configuration
("itlc')resource. This variable identifies the localized version of
the system script. Constants for all defined region codes are listed
starting on page 6-57.

snKeyDi sabl eSt at e

The current disable state for keyboards. The Script Manager
disables some keyboard scripts or keyboard switching when text
input must be restricted to certain script systems or when script
systems are being moved into or out of the System file.

Script Manager Reference

CHAPTER 6

Script Manager

See “Making Keyboard Settings” beginning on page 6-17. These are
the possible values for the variable accessed through
snKeyDi sabl eSt at e:

Value Explanation
0 All keyboards are enabled, switching is enabled

1 Keyboard switching is disabled

$FF Keyboards for all non-Roman secondary scripts are
disabled

The script management system maintains the keyboard disable
state separately for each application. Never set the value of
this variable directly with Set Scri pt Manager Vari abl e;
call KeyScri pt to change the keyboard disable state for

your application.

Selectors for Script Variables

This section lists and describes the selector constants for accessing script variables
through calls to the Get Scri pt Vari abl e and Set Scri pt Vari abl e functions. In
every case the variable parameter passed to or from the function is a long integer (4
bytes); the column “Size of variable” indicates how many of the 4 bytes are necessary to
hold the input or return value for that variable. If fewer than 4 bytes are needed, the low
byte or low word contains the information.

In many cases the value of a script variable is taken from the script system’s
international bundle (" i t | b') resource. See the appendix “International Resources” for
a description of the international bundle resource.

Descriptions of all the variables accessed by these constants follow the list.

Selector constant Value Size of variable
(bytes)
sniScri pt Ver si on 0 2
snicri pt Munged 2 2
snBScri pt Enabl ed 4 1
sniScri pt Ri ght 6 1
snicri pt Just 8 1
sniScri pt Redr aw 10 1
sniScri pt SysFond 12 2
snicri pt AppFond 14 2
sniScri pt Nunber 16 2
sniScri pt Dat e 18 2
sncri pt Sort 20 2
sniScri pt Fl ags 22 2

continued

Script Manager Reference 6-65

Jabeue 1duos n

6-66

CHAPTER 6

Script Manager

Selector constant

Value Size of variable
(bytes) (continued)

sniScri pt Token 24 2
sncri pt Encodi ng 26 2
snBcri pt Lang 28 2
sniScri pt NunmDat e 30 2
snBScri pt Keys 32 2
snicri ptlcon 34 2
sncri pt Pri nt 36 4
sniScri pt Trap 38 4
snicri pt Creat or 40 4
snScriptFile 42 4
sniScri pt Nare 44 4
sniScri pt MonoFondSi ze 78 4
sniScri pt Pref FondSi ze 80 4
sniScri pt Snal | FondSi ze 82 4
sniScri pt SysFondSi ze 84 4
sniScri pt AppFondSi ze 86 4
snicri pt Hel pFondSi ze 88 4
snicri ptVal i dStyl es 90 1
snScriptAliasStyle 92 1

Selector constant
snicri pt Ver si on

sniScri pt Munged

snicri pt Enabl ed

Variable description

The script system’s version number. When the Script Manager loads
the script system, the script system puts its current version number
into this variable. The high-order byte contains the major version
number, and the low-order byte contains the minor version number.

The modification count for this script system’s script variables. The
Script Manager increments the variable accessed by the

snBcr i pt Munged selector each time the Set Scri pt Vari abl e
function is called for this script system. You can check this variable
at any time to see whether any of your own data structures that
depend on this script system’s script variables need to be updated.

The script-enabled flag, a Boolean value that indicates whether the
script has been enabled. It is set to $FF when enabled and to 0 when
not enabled. Note that this variable is not equivalent to the Script
Manager variable accessed by the snEnabl ed selector, which is a
count of the total number of enabled script systems.

Script Manager Reference

CHAPTER 6

Script Manager

sniScri pt Ri ght

snicri pt Just

sniScri pt Redr aw

snicri pt SysFond

sniScri pt AppFond

The right-to-left flag, a Boolean value that indicates whether the
primary line direction for text in this script is right-to-left or
left-to-right. It is set to $FF for right-to-left text (used in Arabic and
Hebrew script systems) and to 0 for left-to-right (used in Roman
and other script systems).

The script alignment flag, a byte that specifies the default alignment
for text in this script system. It is set to $FF for right alignment
(common for Arabic and Hebrew), and it is set to 0 for left
alignment (common for Roman and other script systems). This flag
usually has the same value as the snScr i pt Ri ght flag.

The script-redraw flag, a byte that provides redrawing
recommendations for text of this script system. It describes how
much of a line should be redrawn when a user adds, inserts, or
deletes text. It is set to 0 when only a character should be redrawn
(used by the Roman script system), to 1 when an entire word
should be redrawn (used by the Japanese script system), and to -1
when the entire line should be redrawn (used by the Arabic and
Hebrew script systems). The following constants are available for
the script-redraw flag:

Constant Value Explanation

smRedr awChar 0 Redraw character only
smRedr awwor d 1 Redraw entire word
snRedr awLi ne -1 Redraw entire line

The preferred system font, the font family ID of the system font
preferred for this script. In the Roman script system, this variable
specifies Chicago font, whose font family ID is 0 if Roman is the
system script. The preferred system font in the Japanese script
system is 16384, the font family ID for Osaka.

This variable holds similar information to the variable accessed
through the snScr i pt SysFondSi ze selector. However, changing
the value of this variable has no effect on the value accessed
through snScr i pt SysFondSi ze.

Note

Remember that in all localized versions of system software the
special value of 0 is remapped to the system font ID. Thus, if

an application running under Japanese system software specifies
a font family ID of 0 in a routine or in the t xFont field of the
current graphics port, Osaka will be used. However, the variable
accessed by sncri pt SysFond will still show the true ID for
Osaka (16384). O

The preferred application font; the font family ID of the application
font preferred for this script. In the Roman script system, the value
of this variable is the font family ID for Geneva.

Script Manager Reference 6-67

Jabeue 1duos n

CHAPTER 6

Script Manager

This variable holds similar information to the variable accessed
through the snScr i pt AppFondSi ze selector. However, changing
the value of this variable has no effect on the value accessed
through snScr i pt AppFondSi ze.

Note

Remember that in all localized versions of system software the
special value of 1 is remapped to the application font ID. For
example, if an application running under Arabic system software
specifies a font family ID of 1 in a routine, Nadeem will be used.
However, the variable accessed by snScr i pt SysFond will still
show the true ID for Nadeem (17926). O

snBeri pt Nunber The resource ID of the script’s numeric-format (' i t1 0") resource.
The numeric-format resource includes formatting information for
the correct display of numbers, times, and short dates. The value of
this variable is initialized from the script system’s international
bundle resource. See the appendix “International Resources” for a
description of the numeric-format resource.

snicri pt Dat e The resource ID of the script’s long-date-format (' i t | 1') resource.
The long-date-format resource includes formatting information for
the correct display of long dates (dates that include month or day
names). The value of this variable is initialized from the script
system’s international bundle resource. See the appendix
“International Resources” for a description of the long-date-format
resource.

smScri pt Sort The resource ID of the script’s string-manipulation (" i t | 2")
resource. The string-manipulation resource contains routines for
sorting and tables for word selection, line breaks, character types,
and case conversion of text. The value of this variable is initialized
from the script system’s international bundle resource. See the
appendix “International Resources” for a description of the
string-manipulation resource.

snicri pt Fl ags The script flags word, which contains bit flags specifying attributes
of the script. The value of this variable is initialized from the script
system’s international bundle resource. The following constants are
available for examining attributes in the script flags word. Bits
above 8 are nonstatic, meaning that they may change during
program execution. (Note that the constant values represent bit
numbers in the flags word, not masks.)

Constant Value Explanation

smeflntel | CP 0 Can support intelligent cut
and paste (uses spaces as
word delimiters)

snsf Si ngByt e 1 Has only 1-byte characters

snsf Nat Case 2 Has both uppercase and
lowercase native characters

snsf Cont ext 3 Is contextual

6-68 Script Manager Reference

CHAPTER 6

Script Manager

sniScri pt Token

Constant
snsf NoFor ceFont

snmsfBODigits

snmsf Aut ol ni t

smsf Uni vEXt

snsf SynchUnst yl edTE

snsf For s

snsf Li gat ures

snsf Rever se

Value

13

14

15

Explanation (continued)

Does not support font
forcing (ignores the font
force flag)

Has alternate digits at
$B0—$B9; Arabic and
Hebrew, for example, have
their native numeric forms
at this location in their
character sets

Is intialized by the Script
Manager; 1-byte simple
script systems can set this
bit to avoid having to
initialize themselves

Uses the WorldScript I
extension

Synchronizes keyboard
with font for monostyled
TextEdit

Use contextual forms if this
bit is set; do not use them if
it is cleared

Use contextual ligatures if
this bit is set; do not use
them if it is cleared

Reverse right-to-left text to
draw it in (left-to-right)
display order if this bit is
set; do not reorder text if
this bit is cleared

The smsf | nt el | CP flag is set if this script system uses spaces as
word delimiters. In such a script system it is possible to implement
intelligent cut and paste, in which extra spaces are removed when a
word is cut from text, and any needed spaces are added when a
word is pasted into text. Macintosh Human Interface Guidelines
recommends that you implement intelligent cut and paste in script

systems that support it.

If you use the Char ToPi xel function to determine text widths,
such as for line breaking, you need to clear the snsf Rever se bit
first. For more information, see the chapter “QuickDraw Text” in

this book.

The resource ID of the script’s tokens (' i t | 4") resource. The
tokens resource contains information for tokenizing and number
formatting. The value of this variable is initialized from the script
system’s international bundle resource. See the appendix
“International Resources” in this book for a description of the

tokens resource.

Script Manager Reference

6-69

Jabeue 1duos n

6-70

CHAPTER 6

Script Manager

sniScri pt Encodi ng

snicri pt Lang

sniScri pt NunmDat e

The resource ID of the script’s (optional) encoding/rendering
("it15")resource. For 1-byte scripts, the encoding/rendering
resource specifies text-rendering behavior; for 2-byte scripts, it
specifies character-encoding information. The value of this variable
is taken from the script system’s international bundle resource. See
the appendix “International Resources” for a description of the
encoding/rendering resource.

The language code for this version of the script. A language is a
specialized variation of a specific script system. Constants for

all defined language codes are listed on page 6-54. The value of this
variable is initialized from the script system’s international bundle
resource.

The numeral code and calendar code for the script. The numeral
code specifies the kind of numerals the script uses, and is in the
high-order byte of the word; the calendar code specifies the type of
calendar it uses and is in the low-order byte of the word. The value
of this variable is initialized from the script system’s international
bundle resource. It may be changed during execution when the
user selects, for example, a new calendar from a script system’s
control panel.

The following numeral-code constants are available for specifying
numerals. Note that they are bit numbers, not masks:

Constant Value Explanation

i nt Western 0 Western numerals

i nt Arabi c 1 Native Arabic numerals
i nt Roman 2 Roman numerals

i nt Japanese 3 Japanese numerals

i nt Eur opean 4 European numerals

nt Qut put Mask $8000 Output mask

The following calendar-code constants are available for specifying
calendars. Note that they are bit numbers, not masks:

Constant Value Explanation

cal Gregori an 0 Gregorian calendar
cal Arabi cCi vi | 1 Arabic civil calendar
cal Ar abi cLunar 2 Arabic lunar calendar
cal Japanese 3 Japanese calendar
cal Jew sh 4 Jewish calendar
cal Coptic 5 Coptic calendar

6

cal Persi an Persian calendar

Script Manager Reference

CHAPTER 6

Script Manager

sniScri pt Keys

snicriptlcon

sniScri pt Print

sniScri pt Tr ap

sniScri pt Cr eat or

snScriptFile

sniScri pt Nane

The resource ID of the script’s current keyboard-layout (' KCHR)
resource. The keyboard-layout resource is used to map virtual key
codes into the correct character codes for the script; it is described in
the appendix “Keyboard Resources” in this book. The value of this
variable is initialized from the script system’s international bundle
resource. It is updated when the user selects a new keyboard layout,
or when the application calls the KeyScr i pt procedure. You can
force a particular keyboard layout to be used with your application
by setting the value of this variable and then calling KeyScri pt .

The resource ID of the script’s keyboard icon family (resource types
"kes#',' kes4', and ' kcs8'). The keyboard icon family consists
of the keyboard icons displayed in the keyboard menu; it is
described in the appendix “Keyboard Resources” in this book. The
value of this variable is initialized from the script system’s
international bundle resource. Note that, unlike snfScr i pt Keys,
the value of this variable is not automatically updated when the
keyboard layout changes. (System software assumes that the icon
family has an identical ID to the keyboard-layout resource, and
usually ignores this variable.)

The print action routine vector, set up by the script system (or by
the Script Manager if the ssf Aut ol ni t bit is set) when the script
is initialized. See Inside Macintosh: Devices for information on the
print action routine.

A pointer to the script’s script-record dispatch routine (for internal
use only).

The 4-character creator type for the script system’s file, that is, the
file containing the script system. For the Roman script system, it is
' ZSYS' , for WorldScript Iitis ' uni v', and for World Script Il it is
" doub’ .

A pointer to the Pascal string that contains the name of the script
system’s file, that is, the file containing the script system. For the
Roman script system, the string is' Syst ent .

A pointer to a Pascal string that contains the script system’s name.
For the Roman script system and 1-byte simple script systems, the
string is ' Roman' . For 1-byte complex script systems, this name is
taken from the encoding/rendering (' i t1 5") resource. For 2-byte
script systems, it is taken from the WorldScript II extension and is

"WorldScript 11",

snicri pt MonoFondSi ze

The default font family ID and size (in points) for monospaced text.
The ID is stored in the high-order word, and the size is stored in the
low-order word. The value of this variable is taken from the script
system’s international bundle resource. Note that not all script
systems have a monospaced font.

Script Manager Reference 6-71

Jabeue 1duos n

6-72

CHAPTER 6

Script Manager

sniScri pt Pref FondSi ze

Currently not used.

snicri pt Smal | FondSi ze

The default font family ID and size (in points) for small text,
generally the smallest font and size combination that is legible on
screen. The ID is stored in the high-order word, and the size is
stored in the low-order word. Sizes are important; for example, a
9-point font may be too small in Chinese. The value of this variable
is taken from the script system’s international bundle resource.

sniScri pt SysFondSi ze

The default font family ID and size (in points) for this script
system’s preferred system font. The ID is stored in the high-order
word, and the size is stored in the low-order word. The value of this
variable is taken from the script system’s international bundle
resource.

This variable holds similar information to the variable accessed
through the snScr i pt SysFond selector. If you neeed font family
ID only and don’t want size information, it is simpler to use

smScer i pt SysFond. Note, however, that changing the value of this
variable has no effect on the value accessed through
snf5cri pt SysFond.

sniScri pt AppFondSi ze

The default font family ID and size (in points) for this script
system’s preferred application font. The ID is stored in the
high-order word, and the size is stored in the low-order word. The
value of this variable is taken from the script system’s international
bundle resource.

This variable holds similar information to the variable accessed
through the snScr i pt AppFond selector. If you neeed font family
ID only and don’t want size information, it is simpler to use

snBcri pt AppFond. Note, however, that changing the value of this
variable has no effect on the value accessed through
snf5cri pt AppFond.

sniScri pt Hel pFondSi ze

The default font family ID and size (in points) for Balloon Help. The
ID is stored in the high-order word, and the size is stored in the
low-order word. Sizes are important; for example, a 9-point font
may be too small in Chinese. The value of this variable is taken
from the script system’s international bundle resource.

sniScri pt Val i dStyl es

The set of all valid styles for the script. For example, the Extended
style is not valid in the Arabic script. When the

Get Scri pt Vari abl e function is called with the

snBeri pt Val i dStyl es selector, the low-order byte of the
returned value is a style code that includes all of the valid styles for

Script Manager Reference

CHAPTER 6

Script Manager

the script (that is, the bit corresponding to each QuickDraw style is
set if that style is valid for the specified script). See Figure 6-7.

The value of this variable is taken from the script system’s
international bundle resource.

Figure 6-7 Style code format

76 543 210

LIT T T
[Bod

Italic
Underline
Outline
Shadow
Condense
Extend
(reserved)

snScriptAliasStyle
The style to use for indicating aliases. When the
Get Scri pt Vari abl e function is called with
snScri pt Al i asStyl e, the low-order byte of the returned value is
the style code (see Figure 6-7) that should be used in that script for
indicating alias names (for example, in the Roman script system,
alias names are indicated in italics). The value of this variable is
taken from the script system’s international bundle resource.

Note

Some script systems, such as Arabic and Hebrew, have private
script-system selectors that are unique to those scripts. Those private
selectors are negative, whereas selectors that extend across script
systems are positive. O

Data Structures

This section presents the following types and data structures used by the Script
Manager: the token block record and the token record. Other data type definitions are in
the section “Summary of the Script Manager” beginning on page 6-107.

The Script Manager also makes use of many of the types and data structures defined in
the appendix “International Resources” in this book.

Script Manager Reference 6-73

Jabeue 1duos n

CHAPTER 6

Script Manager

Token Block Record

The token block record, of data type TokenBl ock, is a parameter block used to pass
information to the | nt | Tokeni ze function and to retrieve results from it.

TYPE

TokenBl ock =

RECORD
sour ce: Ptr;
sour ceLengt h: Longl nt;
t okenLi st : Ptr;
t okenLengt h: Longl nt ;
t okenCount : Longl nt ;
stringlList: Ptr;
stringLength: Longlnt;
stringCount: Longl nt ;
doStri ng: Bool ean
doAppend: Bool ean
doAl phanuneri c: Bool ean
doNest : Bool ean
| eft Deli ms: ARRAY [0.
rightDelins: ARRAY [0.
| ef t Corment : ARRAY [0.
ri ght Comrent: ARRAY [O.
escapeCode: TokenType;
deci mal Code: TokenType;
i t| Resource: Handl e;
reserved: ARRAY [0.

END;

TokenBl ockPtr = ~TokenBl ock

1]

1]

. 3]

3]

7]

{pointer to source text to be tokenized}
{length of source text in bytes}
{pointer to array of token records}
{maxi mum si ze of TokenLi st}

{nunmber of tokens currently in TokenLi st}
{pointer to list of token strings}
{length available for string list}
{current length of string list}

{nmake strings & put into StringList?}
{append to--not replace--TokenLi st ?}
{identifiers may include nunerics?}

{do conments nest ?}

OF TokenType;

{opening delimters for literal s}

OF TokenType;

{closing delimters for literal s}

OF TokenType;

{opening delimters for coments}

OF TokenType;

{closing delimters for coments}

{escape synbol code}

{deci mal synbol code}

{"itl4" resource of script for this text}

CF Longl nt;

{must be zero!}

The fields in the token block record are described under the routine description for
I nt| Tokeni ze, beginning on page 6-92.

Token Record

The token record (data type TokenRec) holds the results of the conversion of a sequence
of characters to a token by the | nt | Tokeni ze function. When it analyzes text,
I nt| Tokeni ze generates a token list, which is a sequence of token records.

6-74 Script Manager Reference

CHAPTER 6

Script Manager
TYPE
TokenRec =
RECORD
t heToken: TokenType; {nuneric code for token}
posi tion: Ptr; {pointer to source text from}
{ which token was gener at ed}
| engt h: Longl nt; {length of source text from}
{ which token was gener at ed}
stringPosition: StringPtr; {pointer to Pascal string }
{ generated fromtoken}
END;

TokenRecPtr = ~TokenRec

The fields in the token record are described under the routine description for
I nt| Tokeni ze, on page 6-95.

Routines

The Script Manager routines documented in this section allow you to
» control the system direction

= access Script Manager variables

= access script variables

» control the keyboard and keyboard script

= determine script codes

» obtain character-type information

= directly access a script system’s international resources

= tokenize text

» transliterate text

» replace the default routines for a 1-byte complex script system

Throughout these routine descriptions, unless otherwise noted, the Script Manager
expects that

» there is a buffer containing text characters only; font and style information are stored
separately

» the storage order of the characters—the order in which character codes are stored in
memory—is their logical order, the order in which they would most naturally be
entered from the keyboard

» all offsets within text buffers are zero-based and specified in bytes, not characters

= avalid graphics port exists, and the font of the port is set correctly; all text-related
fields in the graphics port record reflect the characteristics of the text being
manipulated

Script Manager Reference 6-75

Jabeue 1duos n

CHAPTER 6

Script Manager

Assembly-language note

You can invoke each of the Script Manager routines that uses the
_ScriptUtil trap with a macro that has the same name as the routine,
preceded by an underscore. See “Summary of the Script Manager” at
the end of this chapter for a list of the routines that use the
_ScriptUil trap. O

Checking and Setting the System Direction

The Get SysDi r ect i on routine returns the value of SysDi r ect i on, the global

variable that represents the system direction. A value of 0 for SysDi r ect i on means

that the primary line direction is left-to-right; a value of -1 means that the primary line
direction is right-to-left. The value of SysDi r ect i on is initialized from the system’s
international configuration resource, and may be controlled by the user. Your application
can use the Set SysDi rect i on procedure to change SysDi r ect i on while drawing,
but should restore it when appropriate (such as when your application becomes inactive).

GetSysDirection

The Get SysDi r ect i on function returns the current value of SysDi r ect i on, the
global variable that determines the system direction (primary line direction).

FUNCTI ON Get SysDirection: |nteger;

DESCRIPTION
There are two possible return values from Get SysDi r ecti on:
0 = left-to-right line direction
-1 = $FFFF = right-to-left line direction
SetSysDirection
The Set SysDi r ect i on procedure sets the value of SysDi r ect i on, the global variable
that determines the system direction (primary line direction).
PROCEDURE Set SysDirection (newDirection: Integer);
newDi rection
The desired value for SysDi r ecti on.
6-76 Script Manager Reference

DESCRIPTION

CHAPTER 6

Script Manager

There are two valid input values for newDi r ect i on:
0 = left-to-right line direction
-1 = $FFFF = right-to-left line direction

Checking and Setting Script Manager Variables

The Script Manager maintains a set of variables that control general settings of the text
environment, including the identity of the system script and the keyboard script, and the
settings of the font force flag and the international resources selection flag.

You may want access to the Script Manager variables in order to understand the current
environment or to modify it. The Get Scri pt Manager Var i abl e function retrieves the
values of the Script Manager variables, and the Set Scri pt Manager Var i abl e function
sets their values. (The variables themselves are private and you cannot access them
directly.) When you call either routine, you use a selector to describe the variable that
interests you. The integer constants for all defined Get Scri pt Manager Vari abl e/

Set Scri pt Manager Var i abl e selectors are described beginning on page 6-61.

GetScriptManagerVariable

DESCRIPTION

The Get Scri pt Manager Var i abl e function retrieves the value of the specified Script
Manager variable.

FUNCTI ON Cet Scri pt Manager Vari abl e (sel ector: Integer): Longlnt;

sel ect or A value that specifies a particular Script Manager variable.

Although Get Scri pt Manager Var i abl e always returns a long integer, the actual
value may be a long integer, standard integer, or signed byte. If the value is not a long
integer, it is stored in the low-order word or byte of the long integer returned by

Get Scri pt Manager Var i abl e; the remaining bytes are set to 0.

The Get Scr i pt Manager Var i abl e function returns 0 if the selector is invalid.

Note

For some valid selectors, 0 may also be a valid return value. For
example, when you call Get Scri pt Manager Var i abl e with a selector
value of smRegi onCode on a version of Macintosh system software that
has been localized for the United States, it returns 0. O

To specify the Script Manager variable whose value you need, use one of the selector
constants listed on page 6-61.

Script Manager Reference 6-77

Jabeue 1duos n

CHAPTER 6

Script Manager

SetScriptManagerVariable

The Set Scri pt Manager Var i abl e function sets the specified Script Manager variable
to the value of the input parameter.

FUNCTI ON Set Scri pt Manager Vari abl e (sel ector: |nteger;
param Longlnt): OSErr;

sel ect or A value that specifies a particular Script Manager variable.

par am The new value for the specified Script Manager variable.

DESCRIPTION

The actual values to be assigned may be long integers, standard integers, or signed
bytes. If the value is other than a long integer, you must store it in the low-order word or
byte of the par amparameter and set the unused bytes to 0.

The Set Scri pt Manager Var i abl e function returns the value snBadVer b if the
selector is not valid. Otherwise, it returns 0 (NOEr r).

To specify the Script Manager variable whose value you wish to change, use one of the
selector constants listed on page 6-61.

RESULT CODES

noErr 0 No error
smBadVer b -1 Invalid selector passed to the routine

Checking and Setting Script Variables

Each enabled script system maintains a set of variables that control the current settings
of that script system, including the ID numbers of its international resources, its
preferred fonts and font sizes, and its primary line direction.

You may want access to the script variables in order to conform to the script’s current
settings or to modify them. The Get Scri pt Var i abl e function retrieves the values of
the script variables, and the Set Scri pt Var i abl e function sets their values. (The
variables themselves are private and you cannot access them directly.) When you call
either routine, you use a selector to describe the variable that interests you. The integer
constants for all defined Get Scri pt Vari abl e/Set Scri pt Vari abl e selectors are
described on page 6-65.

6-78 Script Manager Reference

CHAPTER 6

Script Manager

GetScriptVariable

DESCRIPTION

The Get Scri pt Var i abl e function retrieves the value of the specified script variable
from the specified script system.

FUNCTI ON Get Scri pt Vari abl e (script: ScriptCode;
sel ector: Integer): Longlnt;

script A value that specifies the script system whose variable you are accessing.

sel ect or A value that specifies a particular script variable.

Although Get Scri pt Var i abl e always returns a long integer, the actual value may be
a long integer, standard integer, or signed byte. If the value is not a long integer, it is
stored in the low-order word or byte of the long integer returned by

Cet Scri pt Var i abl e; the remaining bytes are set to 0.

Valid selector values are defined by each script system. Get Scr i pt Var i abl e returns 0
if the selector value is invalid or if the specified script system is not installed.

Note

For some valid selectors, 0 may also be a valid return value.

For example, calling Get Scr i pt Var i abl e with a selector of
snBcri pt Lang on a version of Macintosh system software that has
been localized for the United States returns 0. O

To specify the script variable whose value you need, use one of the selector
constants listed on page 6-65. To specify the script system, use one of the
script-code constants listed on page 6-52.

SetScriptVariable

The Set Scri pt Var i abl e function sets the specified script variable for the specifed
script system to the value of the input parameter.

FUNCTI ON Set Scri pt Vari abl e (script: ScriptCode; selector: |nteger;
param Longlnt): OSErr;

script A value that specifies the script system whose variable you are setting.
sel ector A value that specifies a particular script variable.
par am The new value for the specified script variable.

Script Manager Reference 6-79

Jabeue 1duos n

DESCRIPTION

RESULT CODES

CHAPTER 6

Script Manager

The actual values to be assigned may be long integers, standard integers, or signed
bytes. If the value is not a long integer, you must store it in the low-order word or byte of
the par amparameter and set the unused bytes to 0.

The Set Scri pt Vari abl e function returns the value snBadVer b if the selector is not
valid, and snBadScri pt if the script is invalid. Otherwise, it returns 0 (NOErr).

To specify the script variable whose value you wish to change, use one of the
selector constants listed on page 6-65. To specify the script system, use one of
the script-code constants listed on page 6-52.

noErr 0 No error
smBadVer b -1 Invalid selector passed to the routine
snmBadScri pt -2 Invalid script code passed to the routine

Making Keyboard Settings

KeyScript

The Script Manager provides the KeyScr i pt procedure to let you specify the current
keyboard script (the script system used for keyboard input), keyboard layout (the
mapping of keys to characters), or input method (a facility for entering 2-byte
characters), and to make various settings related to text input.

For the purposes of KeyScr i pt, keyboard layout means a keyboard-layout (' KCHR')
resource, plus optionally a key-remap (' i t | k') resource. To change keyboard layouts
means to change the current keyboard-layout resource.

DESCRIPTION

6-80

The KeyScri pt procedure uses the supplied value to change the keyboard script, to
change the keyboard layout or input method within the current keyboard script, or to
make a setting related to text input. If the Keyboard menu is displayed, KeyScri pt also
updates the Keyboard menu.

PROCEDURE KeyScri pt (code: |nteger);

code If 0 or positive, directly specifies a script system (that is, it is read as a
script code). Negative values have special meanings.

The Keyscri pt procedure makes the change based on the selector with which it is
called. If more than one script system is enabled or if the snf Showi con bit flag is set in
the Script Manager variable accessed by the Get Scri pt Manager Var i abl e selector

Script Manager Reference

CHAPTER 6

Script Manager

snenFl ags, Keyscri pt also updates the Keyboard menu by changing the icon
displayed on the menu bar and placing a check beside the appropriate keyboard
menu item.

The code parameter is a selector that can explicitly specify a keyboard script by script
code. Script code constants are listed on page 6-52. If the selector specifies a script, then
the current default keyboard layout (" KCHR' resource) for that script, as specified in the
script’s international bundle resource, becomes the current keyboard layout.

The selector can also implicitly specify a keyboard script (for example, the next script), a
keyboard layout (for example, the previously used keyboard layout in the current
script), or an input method (for example, inline input versus window-based input). It can
also specify settings that enable or disable keyboard layouts and keyboard scripts, and
toggle among input options or line direction. The valid constants for the code parameter
are listed in Table 6-5 on page 6-18.

If you call KeyScr i pt and explicitly specify a script system that is not available,
KeyScri pt does nothing. The current keyboard script remains unchanged.

SPECIAL CONSIDERATIONS

SEE ALSO

KeyScri pt operates only on those keyboard-layout and key-remap resources that are
present in the System file.

Your application’s keyboard-menu setting is not maintained by the Process Manager; if
the state of the keyboard menu is changed while you are switched out, the Process
Manager does not restore your setting when you are switched back in. However, the
Process Manager does maintain the keyboard disable state (Script Manager variable
snKeyDi sabl eSt at e) for your application. See “Selectors for Script Manager
Variables” beginning on page 6-61 for a description of the snKeyDi sabl eSt at e
variable.

KeyScri pt may move memory; your application should not call this procedure at
interrupt time.

The Process Manager is described in Inside Macintosh: Processes.

Determining Script Codes From Font Information

The Font Scri pt, Font ToScri pt, and I ntl Scri pt functions give you ways to
determine a script code from font information. This information is subject to two control
flags—the font force flag and the international resources selection flag. You can test and
set these flags with the Get Scri pt Manager Vari abl e and

Set Scri pt Manager Var i abl e selectors snFont For ce and smi nt | For ce. For more
information on the font force flag, see “Using the Font Force Flag” on page 6-24. For
more information on the international resources selection flag, see “Using the
International Resources Selection Flag” on page 6-25.

Script Manager Reference 6-81

Jabeue 1duos n

FontScript

CHAPTER 6

Script Manager

The routines start by initializing two result flags, the script-forced result flag and
the script-defaulted result flag, to FALSE. These flags are Script Manager variables,
accessed through the Get Scri pt Manager Var i abl e function selectors snfor ced
and snDef aul t .

DESCRIPTION

The Font Scri pt function returns the script code for the current script. The current
script is usually the font script.

FUNCTI ON Font Scri pt: | nteger;

The Font Scri pt function returns a script code. All recognized script codes and their
defined constants are listed on page 6-52. Font Scri pt returns only explicit script codes
(=0).

If the font of the active graphics port is Roman and the font force flag is TRUE, the script
code returned is that of the system script and the script-forced result flag is set to TRUE.

If the font of the active graphics port is non-Roman, the state of the font force flag is
ignored.

If the script system corresponding to the font of the active graphics port is not installed
and enabled, the script code returned is that of the system script and the script-defaulted
result flag is set to TRUE.

SPECIAL CONSIDERATIONS

Font Scri pt may move memory; your application should not call this function at
interrupt time.

FontToScript

6-82

The Font ToScri pt function translates a font family ID number into its corresponding
script code, if that script system is currently enabled.

FUNCTI ON Font ToScri pt (font Nunber: Integer): |nteger;

f ont Nunber
A font family ID number.

Script Manager Reference

CHAPTER 6

Script Manager

DESCRIPTION

The Font ToScr i pt function returns a script code. All recognized script codes and their
defined constants are listed on page 6-52. Font ToScr i pt returns only explicit script
codes (= 0).

If f ont Nurber is in the Roman range and the font force flag is TRUE, the script code
returned is that of the system script and the script-forced result flag is set to TRUE.

If f ont Nunber is in the non-Roman range, the state of the font force flag is ignored.

If the script system corresponding to f ont Nunber is not enabled, the script code
returned is that of the system script and the script-defaulted result flag is set to TRUE.

SPECIAL CONSIDERATIONS
Font ToScri pt may move memory; your application should not call this function at
interrupt time.

IntlScript

The I nt| Scri pt function identifies the script system used by the Text Utilities
date-formatting, time-formatting, and string-sorting routines. It also identifies the script
system whose resources are returned by the Script Manager function

Get I nt | Resour ce. It is either the font script—the script system corresponding to the
current font of the active graphics port—or the system script.

FUNCTI ON I ntl Script: |nteger;

DESCRIPTION

The I nt| Scri pt function returns a script code. All recognized script codes and their
defined constants are listed on page 6-52. 1 nt | Scri pt returns only explicit script
codes (= 0).

If the international resources selection flag is TRUE, the script code returned is that of the
system script.

If the identified script system is not enabled, the script code returned is that of the
system script and the script-defaulted result flag is set to TRUE.

SPECIAL CONSIDERATIONS
Intl Script may move memory; your application should not call this function at
interrupt time.

Script Manager Reference 6-83

Jabeue 1duos n

CHAPTER 6

Script Manager

Analyzing Characters

This section describes the functions Char act er Byt eType, Char act er Type, and
Fi | | Par seTabl e, which give you information about a character or group of characters,
specified by character code:

= The Char act er Byt eType function identifies a byte in a text buffer as a 1-byte
character or as the first or second byte of a 2-byte character.

= The Char act er Type function returns specific information about the character at a
particular byte offset.

= TheFi | | Par seTabl e function fills a 256-byte table that indicates, for each possible
byte value, whether it is the first byte of a 2-byte character.

The script system associated with the character you wish to examine must be enabled in
order for any of these three routines to provide useful information. For example, if only
the Roman script system is available and you attempt to identify a byte in a run of 2-byte
characters, the Char act er Byt eType function returns 0, indicating that the byte is a
1-byte character.

1-byte script systems

For 1-byte script systems, the character-type tables reside in the
string-manipulation (' i t | 2') resource and reflect region-specific or
language-specific differences in uppercase conventions. The

Char act er Type function gets the tables from the string-manipulation
resource using the Get | nt | Resour ce function. O

2-byte script systems

For 2-byte script systems, the character-type tables reside in the
encoding/rendering (' i t| 5') resource, not the string-manipulation
resource. Whenever you call Char act er Byt eType, Char act er Type,
or Fi | | Par seTabl e, the necessary character-set encoding information
is taken from the encoding/rendering resource. You cannot use the

Get I nt | Resour ce function to access 2-byte character-type

tables directly. O

CharacterByteType

6-84

The Char act er Byt eType function identifies a byte in a text buffer as a 1-byte character
or as the first or second byte of a 2-byte character.

FUNCTI ON CharacterByteType (textBuf: Ptr; textOffset: Integer;
script: ScriptCode): Integer;

t ext Buf A pointer to a text buffer containing the byte to be identified.

text O f set
The offset to the byte to be identified. Offset is measured in bytes; the first
byte has an offset of 0.

Script Manager Reference

DESCRIPTION

CHAPTER 6

Script Manager

scri pt A value that specifies the script system of the text in the buffer. Constants
for all defined script codes are listed on page 6-52. To specify the font
script, pass smCur r ent Scri pt in this parameter.

Char act er Byt eType returns one of three identifications: a 1-byte character, the first
byte of a 2-byte character, or the second byte of a 2-byte character. The first byte of a
2-byte character—the one at the lower offset in memory—is the high-order byte; the
second byte of a 2-byte character—the one at the higher offset—is the low-order byte.
This is the same order in which text is processed and numbers are represented.

From byte value alone, it is not possible to distinguish the second byte of a 2-byte
character from a 1-byte character. See the discussion of character encoding in the chapter
“Introduction to Text on the Macintosh” in this book. Char act er Byt eType
differentiates the second byte of a 2-byte character from a 1-byte character by assuming
that the byte at offset 0 is the first byte of a character. With that assumption, it then
sequentially identifies the size and starting position of each character in the buffer up to
textOffset.

SPECIAL CONSIDERATIONS

If you specify smCur r ent Scri pt for the scri pt parameter, the value returned by
Char act er Byt eType can be affected by the state of the font force flag. It is unaffected
by the state of the international resources selection flag.

RESULT CODES
snFirstByte -1 First byte of a 2-byte character
snBi ngl eByt e 0 1-byte character
snLast Byt e 1 Second byte of 2-byte character
CharacterType

The Char act er Type function returns a variety of information about the character
represented by a given byte, including its type, class, orientation, direction, case, and size
(in bytes).

FUNCTI ON Character Type (textBuf: Ptr; textOfset: Integer;
script: ScriptCode): Integer;

t ext Buf A pointer to a text buffer containing the character to be examined.

text O f set
The offset to the location of the character to be examined. (It can be an
offset to either the first or the second byte of a 2-byte character.) Offset is
in bytes; the first byte of the first character has an offset of 0.

Script Manager Reference 6-85

Jabeue 1duos n

DESCRIPTION

6-86

CHAPTER 6

Script Manager

script A value that specifies the script system the byte belongs to. Constants for
all defined script codes are listed on page 6-52. To specify the font script,
pass smCur rent Scri pt in this parameter.

The Char act er Type return value is an integer bit field that provides information about
the requested character. The field has the following format:

lraa:;ge Name Explanation

0-3 Type Character types

4-7 (reserved)

8-11 Class Character classes (= subtypes)
12 Orientation Horizontal or vertical

13 Direction Left or right

14 Case Uppercase or lowercase

15 Size 1-byte or 2-byte

" In 2-byte script systems, bit 13 indicates whether or not the character is part of the main

character set (not a user-defined character).
The Script Manager defines the recognized character types, character classes, and
character modifiers (bits 12—-15), with constants to describe them. All of the constants are
listed and described in the section “Getting Character-Type Information” beginning on
page 6-28.

The Script Manager also defines a set of masks with which you can isolate each of the
fields in the Char act er Type return value. If you perform an AND operation with the
Char act er Type result and the mask for a particular field, you select only the bits in
that field. Once you've done that, you can test the result, using the constants that
represent the possible results.

The Char act er Type field masks are the following;:

Mask Hex. value Explanation

sncTypeMask $000F Character-type mask

sncReserved $00F0 (reserved)

sncCl assMask $0F00 Character-class mask

sntOri ent ati onMask $1000 Character orientation (2-byte scripts)

sntRi ght Mask $2000 Writing direction (bidirectional scripts)
Main character set or subset (2-byte scripts)

sncUpper Mask $4000 Uppercase or lowercase

sntDoubl eMask $8000 Size (1 or 2 bytes)

The character type of the character in question is the result of performing an AND
operation with snt TypeMask and the Char act er Type result. Constants for the
defined character types are listed on page 6-28.

Script Manager Reference

CHAPTER 6

Script Manager

The character class of the character in question is the result of performing an AND
operation with sntCl assMask and the Char act er Type result. Character classes can
be considered as subtypes of character types. Constants for the defined character classes
are listed on page 6-29.

The orientation of the character in question is the result of performing an AND operation
with sncOri ent at i onMask and the Char act er Type result. The orientation value can
be either snmChar Hor i zont al or snChar Verti cal .

The direction of the character in question is the result of performing an AND operation
with sntRi ght Mask and the Char act er Type result. The direction value can be either
snChar Lef t (left-to-right) or snChar Ri ght (right-to-left).

The case of the character in question is the result of performing an AND operation with
st Upper Mask and the Char act er Type result. The case value can be either
snmChar Lower or snChar Upper.

The size of the character in question is the result of performing an AND operation
with sncDoubl eMask and the Char act er Type result. The size value can be either
sntChar 1byt e or snChar 2byt e.

Note

Char act er Type calls Char act er Byt eType to determine whether the
byte att ext Of f set is a 1-byte character or the first byte or second byte
of a 2-byte character. The larger the text buffer, the longer

Char act er Byt eType takes to execute. To be most efficient, place the
pointer t ext Buf at the beginning of the character of interest before
calling Char act er Type. (If you want to be compatible with older
versions of Char act er Type, also sett ext Of f set to 1, rather than 0,
for 2-byte characters.) O

SPECIAL CONSIDERATIONS

Char act er Type may move memory; your application should not call this function
at interrupt time.

If you specify snCur r ent Scri pt for the scri pt parameter, Char act er Type
always assumes that the text in the buffer belongs to the font script. It is unaffected
by the state of the font force flag or the international resources selection flag.

For 1-byte script systems, the character-type tables are in the string-manipulation
("itl2")resource. For 2-byte script systems, they are in the
encoding/rendering (" i t| 5') resource. If the appropriate resource does not
include these tables, Char act er Type exits without doing anything.

Some Roman fonts (for example, Symbol) substitute other characters for the

standard characters in the Standard Roman character set. Since the Roman script system
Char act er Type function assumes the Standard Roman character set, it may return
inappropriate results for nonstandard characters.

In versions of system software earlier than 7.0, the t ext Of f set parameter to the
Char act er Type function must point to the second byte of a 2-byte character.

Script Manager Reference 6-87

Jabeue 1duos n

RESULT CODES

CHAPTER 6

Script Manager

The complete set of Char act er Type return values is found in the section
“Getting Character-Type Information” beginning on page 6-28.

FillParseTable

DESCRIPTION

6-88

The Fi | | Par seTabl e function helps your application to quickly process a buffer of
mixed 1-byte and 2-byte characters. It returns a 256-byte table that distinguishes the
character codes of all possible 1-byte characters from the first (high-order) byte values of
all possible 2-byte characters in the specified script system.

FUNCTI ON Fi |l | ParseTabl e (VAR tabl e: Char Byt eTabl e;
script: ScriptCode): Bool ean;

tabl e A 256-byte table to be filled in by Fi | | Par seTabl e.

scri pt A value that specifies the script system the parse table belongs to.
Constants for all defined script codes are listed on page 6-52. To specify
the font script, pass smCur r ent Scri pt in this parameter.

Before calling Fi | | Par seTabl e, allocate space for a 256-byte table to pass to the
function in the t abl e parameter.

The information returned by Fi | | Par seTabl e is a packed array defined by the
Char Byt eTabl e data type as follows:

Char Byt eTabl e = PACKED ARRAY[0. .255] OF Si gnedByte;

In every script system, 2-byte characters have distinctive high-order (first) bytes that
allow them to be distinguished from 1-byte characters. Fi | | Par seTabl e fills a 256-byte
table, conceptually equivalent to a 1-byte character-set table, with values that indicate,
byte-for-byte, whether the character-code value represented by that byte index is the first
byte of a 2-byte character. An entry in the Char Byt eTabl e is 0 for a 1-byte character
and 1 for the first byte of a 2-byte character.

If your application is processing mixed characters, it can use the table to identify the
locations of the 2-byte characters as it makes a single pass through the text, rather than
having to call Char act er Byt eType or Char act er Type for each byte of the text buffer
in turn. Char act er Byt eType and Char act er Type start anew at the beginning of the
text buffer each time they are called, tracking character positions up to the offset of the
byte to be analyzed.

Script Manager Reference

CHAPTER 6

Script Manager

SPECIAL CONSIDERATIONS

Fi | | Par seTabl e may move memory; your application should not call this function at
interrupt time.

The table defined by Char Byt eTabl e is not dynamic; it does not get updated when the
current font changes. You need to call it separately for each script run in your text.

The return value from Fi | | Par seTabl e is always TRUE.

If you specify snCur r ent Scri pt for the scri pt parameter, the value returned by
Fi | | Par seTabl e can be affected by the state of the font force flag. It is unaffected by
the international resources selection flag.

Directly Accessing International Resources

You can access the International resources (resource types' i t10","itl 1", "itl2",
"itl4',and"itl5") withthe Get | nt| Resour ce function. You can access specific
tables within an international resource with the Get | nt | Resour ceTabl e procedure. If
your application providesitsown'itl 2" or'itl 4" resources, it should call the

d ear | nt| Resour ceCache procedure before accessing those resources.

ClearIntlResourceCache

DESCRIPTION

The O ear | nt | Resour ceCache procedure clears the application’s international
resources cache, which contains the resource ID numbers of the string-manipulation
("itl2")andtokens ("itl4")resources for the current script.

PROCEDURE d ear | nt| Resour ceCache;

At application launch, the script management system sets up an international resources
cache for the application. The cache contains the resource ID numbers of the
string-manipulation and tokens resources for all enabled scripts.

If you provide your own string manipulation or tokens resource to replace the default
for a particular script, call O ear | nt | Resour ceCache at launch to ensure that your
supplied resource is used instead of the script system’s" i t12' or'itl 4" resource.

The current default ID numbers for a script system’s ' i t1 2" and"'itl| 4" resources are
stored in its script variables. You can read and modify these values with the

Get Scri pt Vari abl e and Set Scri pt Vari abl e functions using the selectors
snBcri pt Sort (forthe'itl2' resource) and sniScri pt Token (forthe'itl 4'
resource). Before calling C ear | nt | Resour ceCache, you should set the script’s
default ID number to the ID of the resource that you are supplying.

Script Manager Reference 6-89

Jabeue 1duos n

CHAPTER 6

Script Manager

If the international resources selection flag is TRUE, the ID numbers of your supplied
resources must be in the system script range. Otherwise, the IDs must be in the range of
the current script.

IMPORTANT

If you use the Set Scri pt Var i abl e function to change the
valueof the'itl12' or'itl4' resourceID and then call

d ear | nt| Resour ceCache to flush the cache, be sure to
restore the original resource ID before your application quits. a

SPECIAL CONSIDERATIONS

d ear | nt| Resour ceCache may move memory; your application should not call this
procedure at interrupt time.

GetIntlResource

DESCRIPTION

The Get | nt | Resour ce function returns a handle to one of the following international
resources: numeric-format (' i t1 0"), long-date-format (' i t| 1'), string-manipulation
("itl2") tokens ("itl4"), orencoding/rendering (" i t15").Get | ntl Resource
selects the resource of the requested type for the current script.

FUNCTI ON GetIntl Resource (thelD: Integer) :Handle;

t hel D Contains an integer (0, 1, 2, 4, or 5 respectively for the' i t10","itl 1",
"itl2',"itl4",and"itl 5" resources) to identify the type of the
desired international resource.

The Get | nt | Resour ce function returns a handle to the correct resource of the
requested type. The resource returned is that of the current script, which is either the
font script or the system script. See “Determining Script Codes From Font Information”
on page 6-21.

If Get | nt | Resour ce cannot return the requested resource, it returns a NI L handle and
sets the global variable r esEr r to the appropriate error code.

SPECIAL CONSIDERATIONS

6-90

Cet | nt | Resour ce may move memory; your application should not call this function
at interrupt time.

Script Manager Reference

CHAPTER 6

Script Manager

SEE ALSO
See the Resource Manager chapter in Inside Macintosh: More Macintosh Toolbox for
information onr esErr and how to get its value.
GetIntlResourceTable
The Get | nt | Resour ceTabl e procedure gives you access to a specific word-selection,
line-break, number-parts, untoken, or whitespace table from the appropriate
international resource.
PROCEDURE Get I nt| ResourceTabl e (script: ScriptCode;
t abl eCode: I nteger;
VAR itl Handl e: Handl e;
VAR of fset: Longlnt;
VAR | engt h: Longlnt);
script A script code, the value that specifies a particular script system. Constants
for all defined script codes are listed on page 6-52.
t abl eCode A number that specifies which table is requested.
i t] Handl e Upon completion of the call, contains a handle to the string-manipulation
("itl2")ortokens ("itl4")resource containing the table specified in
the t abl eCode parameter.
of f set Upon completion of the call, contains the offset (in bytes) to the specified
table from the beginning of the resource.
l ength Upon completion of the call, contains the size of the table (in bytes).
DESCRIPTION

When you provide a script code in the scri pt parameter, and a table code in the

t abl eCode parameter, Get | nt | Resour ceTabl e returns a handle to the
string-manipulation resource or tokens resource containing that table, the offset of the
specified table from the beginning of the resource, and the length of the table.

If the script system whose table is requested is not available, Get | nt | Resour ceTabl e
returns a NI L handle.

Constants for all defined script codes are listed on page 6-52.

Script Manager Reference 6-91

Jabeue 1duos n

CHAPTER 6

Script Manager

These are the defined constants for t abl eCode:

Constant Value Explanation

smAor dSel ect Tabl e 0 Word-break table
sm\or dW apTabl e 1 Line-break table
smNurber Par t sTabl e 2 Number-parts table
smUnTokenTabl e 3 Untoken table
smhi t eSpaceli st 4 Whitespace table

If you wish to manipulate the contents of the table you have requested, use the size
returned in the | engt h parameter to allocate a buffer, and perform a block move of the
table’s contents into that buffer.

SPECIAL CONSIDERATIONS

Get | nt | Resour ceTabl e may move memory; your application should not call this
procedure at interrupt time.

SEE ALSO
Block moves are described in the Memory Manager chapter of Inside Macintosh:
Memory,.

Tokenization
The Script Manager provides a way to take programming-language text in an arbitrary
script system and break it into tokens: language-independent symbols that can be used
as input to a parser. The | nt | Tokeni ze function uses information in a script system’s
tokens (' i t1 4") resource to convert text to tokens that stand for names, symbols,
comments, and quoted literals.

IntlTokenize

The | nt | Tokeni ze function allows your application to convert text into a sequence of
language-independent tokens. It returns a list of tokens that correspond to the text that
you pass it.

FUNCTI ON | nt| Tokeni ze (tokenParam TokenBl ockPtr): TokenResults;
t okenPar am
A pointer to a token block record. The record specifies the text to be

converted to tokens, the destination of the token list, a handle to the
tokens (" i t14') resource, and a set of options.

6-92 Script Manager Reference

CHAPTER 6

Script Manager

The token block record is a parameter block and a data structure of type TokenBl ock,
described on page 6-74. You specify input values and receive return values in as
shown here:

Parameter block

—

source

sour ceLengt h
t okenLi st

t okenLengt h

t okenCount

stringLi st

stringlLength

st ri ngCount

doString

doAppend

Script Manager Reference

Ptr

Longl nt

Ptr

Longl nt

Longl nt

Longl nt

Longl nt

Bool ean

Bool ean

A pointer to the beginning of the
source text (not a Pascal string) to

be converted.

The number of bytes in the source text.
A pointer to a buffer you have
allocated, into which the

I nt| Tokeni ze function places the list
of token records it generates.

The maximum size of token list (in
number of tokens, not bytes) that will
fit into the buffer pointed to by the
tokenlLi st field.

On input: If doAppend = TRUE, must
contain the correct number of tokens
currently in the token list. (Ignored if
doAppend = FALSE.)

On output: The number of tokens
currently in the token list.

If doSt ri ng = TRUE, must contain a
pointer to a buffer into which

I nt 1 Tokeni ze can place a list of
strings it generates. (Ignored if

doSt ri ng = FALSE.)

If doSt ri ng = TRUE, must contain the
size in bytes of the string list buffer
pointed to by the st ri ngLi st field.
(Ignored if doSt ri ng = FALSE.)

On input: If doSt ri ng = TRUE and
doAppend = TRUE, must contain the
correct current size in bytes of the
string list. (Ignored if doStri ng =
FALSE or doAppend = FALSE.)

On output: The current size in bytes of
the string list. (Indeterminate if
doStri ng =FALSE.)

If TRUE, instructs | nt | Tokeni ze to
create a Pascal string representing the
contents of each token it generates.

If FALSE, | nt| Tokeni ze generates

a token list without an associated
string list.

If TRUE, instructs | nt | Tokeni ze to
append tokens and strings it generates
to the current token list and string list.
If FALSE, | nt| Tokeni ze writes over
any previous contents of the buffer
pointed to by t okenLi st and
stringList.

6-93

Jabeue 1duos n

DESCRIPTION

6-94

CHAPTER 6

Script Manager

= doAl phanurmeri c Bool ean

- doNest Bool ean

- | ef t Del i s Del i mType

- rightDelins Del i mType

- | ef t Corment Conment Type

- ri ght Conment Conmment Type

- escapeCode TokenType

- deci mal Code TokenType

- i t] Resource Handl e

N reserved ARRAY
[0..7] OF
Longl nt

If TRUE, instructs | nt | Tokeni ze to
interpret numeric characters as
alphabetic when mixed with
alphabetic characters. If FALSE, all
numeric characters are interpreted as
numbers.

If TRUE, instructs | nt | Tokeni ze to
allow nested comments (to any depth
of nesting). If FALSE, comment
delimiters may not be nested within
other comment delimiters.

An array of two integers, each of
which contains the token code of the
symbol that may be used as an
opening delimiter for a quoted literal.
If only one opening delimiter is
needed, the other must be specified to
be del i mPad.

An array of two integers, each of
which contains the token code of the
symbol that may be used as the
matching closing delimiter for the
corresponding opening delimiter in the
| ef t Del i ns field.

An array of two pairs of integers, each
pair of which contains codes for the
two token types that may be used as
opening delimiters for comments.

An array of two pairs of integers, each
pair of which contains codes for the
two token types that may be used as
closing delimiters for comments.

A single integer that contains the token
code for the symbol that may be an
escape character within a quoted literal.
A single integer that contains the token
type of the symbol to be used for a
decimal point.

Ahandle to the tokens ("i t| 4')
resource of the script system under
which the source text was created.
Must be set to 0.

The I nt | Tokeni ze function returns a list of tokens that correspond to the input
text. The token list is an array of token records (type TokenRec). Each token record
describes the token generated, specifies the part of the source text it came from, and
optionally provides a character string that is a normalized version of the text that

generated the token.

Script Manager Reference

CHAPTER 6

Script Manager

I nt| Tokeni ze also returns a result code that specifies the type of error that
occurred, if any.

Before calling the | nt | Tokeni ze function, allocate memory for and set up the
following data structures:

= A token block record (data type TokenBl ock). The token block record is a parameter
block that holds both input and output parameters for the | nt | Tokeni ze function.

= A token list to hold the results of the tokenizing operation. To set up the token list,
estimate how many tokens will be generated from your text, multiply that by the size
of a token record, and allocate a memory block of that size in bytes. An upper limit to
the possible number of tokens is the number of characters in the source text.

s Astring list, if you want the | nt | Tokeni ze function to generate character strings for
all the tokens. To set up the string list, multiply the estimated number of tokens by the
expected average size of a string, and allocate a memory block of that size in bytes. An
upper limit is twice the number of tokens plus the number of bytes in the source text.

I nt | Tokeni ze creates tokens based on information in the tokens (' i t | 4') resource

of the script system under which the source text was created. You must load the tokens
resource and place its handle in the token block record before calling the | nt | Tokeni ze
function.

The token block record contains both input and output values. At input, you must
provide values for the fields that specify the source text location, the token list location,
the size of the token list, the tokens (' i t | 4') resource to use, and several options that
affect the operation. You must set reserved locations to 0 before calling | nt | Tokeni ze.

On output, the token block record specifies how many tokens have been generated and
the size of the string list (if you have selected the option to generate strings).

The results of the tokenizing operation are contained in the token list, an array of token
records. A token record (data type TokenRec) consists of a token code, a pointer to a
location in the source text, the length of a character sequence in the source text, and an
optional pointer to a Pascal string:

TYPE
TokenRec =
RECORD
t heToken: TokenType; {nuneric code for token}
posi tion: Ptr; {pointer to source text from}
{ which token was gener at ed}
| engt h: Longl nt; {length of source text from}
{ which token was gener at ed}
stringPosition: StringPtr; {pointer to Pascal string }
{ generated fromtoken}
END;

TokenRecPtr = ~TokenRec;

Script Manager Reference 6-95

Jabeue 1duos n

6-96

CHAPTER 6

Script Manager

Field descriptions

t heToken The token code that specifies the type of token (such as whitespace,
opening parenthesis, alphabetic or numeric sequence) described by
this token record. Constants for all defined token codes are listed on
page 6-58.

posi tion A pointer to the first character in the source text that caused this
particular token to be generated.

I ength The length in bytes of the source text that caused this particular
token to be generated.

stringPosition IfdoString=TRUE a pointer to a null-terminated Pascal
string, padded if necessary so that its total number of bytes
(length byte + text + null byte + padding) is even. If
doSt ri ng = FALSE, this field is NI L.

Note

The value in the length byte of the null-terminated Pascal string
does not include either the terminating zero byte or the possible
additional padding byte. There may be as many as two additional
bytes beyond the specified length. O

Pascal strings are generated if the doSt r i ng parameter in the token block record is set
to TRUE. The string is a normalized version of the source text that generated the token;
alternate digits are replaced with ASCII numerals, the decimal point is always an ASCII
period, and 2-byte Roman letters are replaced with low-ASCII equivalents.

To make a series of calls to | nt | Tokeni ze and append the results of each call to the
results of previous calls, set doAppend to FALSE and initialize t okenCount and
stringCount to 0 before making the first call to | nt | Tokeni ze. (You can ignore
stringCount if youset doSt ri ng to FALSE.) Upon completion of the call,

t okenCount and st ri ngCount will contain the number of tokens and the length in
bytes of the string list, respectively, generated by the call. On subsequent calls, set
doAppend to TRUE, reset the sour ce and sour ceLengt h parameters (and any other
parameters as appropriate) for the new source text, but maintain the output values for
t okenCount and st ri ngCount from each call as input values to the next call. At the
end of your sequence of calls, the token list and string list will contain, in order, all the
tokens and strings generated from the calls to | nt | Tokeni ze.

If you are making tokens from text that was created under more than one script system,
you must load the proper tokens resource and place its handle in the token block record
separately for each script run in the text, appending the results each time.

Delimiters for quoted literals are passed to | nt | Tokeni ze in a two-integer array:
TYPE Del i mType = ARRAY[O0..1] OF TokenType;

The individual delimiters, as specified in the | ef t Del i ms and ri ght Del i s
parameters, are paired by position. The first (in storage order) opening delimiter in
| ef t Del i s is paired with the first closing delimiter in ri ght Del i ms.

Script Manager Reference

CHAPTER 6

Script Manager

Comment delimiters may be 1 or 2 tokens each and there may be two sets of opening
and closing pairs. They are passed to | nt | Tokeni ze in a comment Type array:

TYPE Conment Type = ARRAY[0..3] OF TokenType;

If only one token is needed for a delimiter, the second token must be specified to be

del i mPad. If only one delimiter of an opening-closing pair is needed, then both of the
tokens allocated for the other symbol must be del i nPad. The first token of a two-token
sequence is at the higher position in the | ef t Corment or ri ght Conmrent array. For
example, if the two opening (in this case, left) delimiters were “(*” and “{”, they would
be specified as follows:

[ef t Cooment [0] := tokenAsteri sk; (*asterisk*)
| eft Cooment [1] := tokenLeftParen; (*l eft parenthesis*)
| eft Cooment[2] := delinPad ; (*not hi ng*)

| ef t Corment [3]

t okenLeft Curly; (*curly brace*)

When | nt | Tokeni ze encounters an escape character within a quoted literal, it places
the portion of the literal before the escape character into a single token (of type

t okenLi t er al), places the escape character into another token (t okenEscape), places
the character following the escape character into another token (whatever token type it
corresponds to), and places the portion of the literal following the escape sequence into
another token (t okenLi t er al). Outside of a quoted literal, the escape character has no
special significance.

I nt1 Tokeni ze considers the character specified in the deci mal Code parameter to be a
decimal character only when it is flanked by numeric or alternate numeric characters, or
when it follows them.

SPECIAL CONSIDERATIONS

I nt1 Tokeni ze may move memory; your application should not call this function at
interrupt time.

Because each call to | nt | Tokeni ze must be for a single script run, there can be no
change of script within a comment or quoted literal.

Comments and quoted literals must be complete within a single call to | nt | Tokeni ze
in order to avoid syntax errors.

I nt| Tokeni ze always uses the tokens resource whose handle you pass it in the token
block record. Therefore, it is not directly affected by the state of the font force flag or the
international resources selection flag. However, if you use the Get | nt | Resour ce
function to get a handle to the tokens resource to pass to | nt | Tokeni ze, remember that
Cet | nt | Resour ce is affected by the state of the international resources selection flag.
See “Determining Script Codes From Font Information” beginning on page 6-21.

Script Manager Reference 6-97

Jabeue 1duos n

CHAPTER 6

Script Manager

RESULT CODES
t okenOK 0 Valid token
t okenOverfl ow 1 Number of tokens exceeded maximum specified in

t okenLi st field of token block record
stringQOverflow 2 Size of string list larger than maximum specified in
stringLi st field of token block record

badDel i m 3 Invalid delimiter
badEndi ng 4 (currently unused)
crash 5 Unknown error

SEE ALSO
See the appendix “International Resources” in this book for a description of the tokens
("itl4")resource.

Transliteration
Transliteration is the conversion of text from one form or subscript to another within a
single script system. In the Roman script system, transliteration means case conversion.
In 2-byte script systems, it is the automatic conversion of characters from one subscript
to another. One common use for transliteration is as an initial stage of text conversion
for an input method.

TransliterateText

The Transl i t er at eText function converts characters from one subscript to the closest
possible approximation in a different subscript within the same 2-byte script system.
TransliterateText also performs uppercasing and lowercasing, with consideration
for regional variants, in the Roman script system and on Roman text within 2-byte

script systems.

FUNCTI ON TransliterateText (srcHandle: Handl e;
dst Handl e: Handl e;
target: Integer; srcMask: Longlnt;
script: ScriptCode): OSErr;

srcHandl e A handle to the source text to be transliterated.

dst Handl e A handle to a buffer that, upon completion of the call, contains the
transliterated text.

t ar get A value that specifies what kind of text the source text is to be
transliterated into. The low byte of the target is the format to convert
to. The high byte contains modifiers, whose meanings depend on the
script code.

6-98 Script Manager Reference

DESCRIPTION

CHAPTER 6

Script Manager

srcMask Abit array that specifies which parts of the source text are to be
transliterated. A bit is set for each script system or subscript that should
be converted.

scri pt A value that specifies the script system of the text to be transliterated.

Constants for all defined script codes are listed on page 6-52. To specify
the font script, pass smCur r ent Scri pt in this parameter.

The types of conversions Tr ansl i t er at eText performs are described in the section
“Transliteration” beginning on page 6-43.

The Transl i t er at eText function converts all of the text that you pass it in the
srcHandl e parameter. It determines the length of the source text (in bytes) from the
handle size.

Before calling Tr ansl i t er at eText, allocate a handle (of any size) to pass in the

dst Handl e parameter. The length of the transliterated text may be different (as when
converting between 1-byte and 2-byte characters), and Tr ansl i t er at eText sets the
size of the destination handle as required. It is your responsibility to dispose of the
destination handle when you no longer need it.

The sr cMask parameter is the source mask; it specifies which subscript(s) represented in
the source text should be converted to the target format. In all script systems, the

sr cMask parameter may have the following values: smivaskAsci i , smvaskNat i ve,
and srmvaskAl |, as described on page 6-46. In 2-byte script systems, additional values
are recognized, as described on page 6-46.

The low-order byte of the t ar get parameter is the target format; it determines what
form the the text should be transliterated to. In all script systems, there are two currently
supported values for target format: sniTr ansAsci i and sniTr ansNat i ve, as described
on page 6-46. In 2-byte script systems, additional values are recognized, as described

on page 6-47.

The high-order byte of the t ar get parameter is the target modifier; it provides
additional formatting instructions. In all script systems, there are two values for target
modifer: smr ansLower and snilr ansUpper, as described on page 6-47.

Note

Because the low-ASCII character set (character codes $20-$7F) is present
in all script systems, you could theoretically use the
TransliterateText function to convert characters from one script
system into another completely different script system. You could
transliterate from a native subscript into ASCII under one script system,
and then transliterate from that ASCII into a native subscript under a
different script system. Such a procedure is not recommended, however,
because of the imperfect nature of phonetic translation. Furthermore,
many script systems do not support transliteration from native
subscripts to ASCIIL. O

Script Manager Reference 6-99

Jabeue 1duos n

CHAPTER 6

Script Manager

SPECIAL CONSIDERATIONS

Transliterat eText may move memory; your application should not call this
function at interrupt time.

If you pass smCur r ent Scri pt in the scri pt parameter, the conversion performed by
TransliterateText canbe affected by the state of the font force flag. It is unaffected
by the international resources selection flag.

Transliteration of a block of text does not work across script-run boundaries. Because the
TransliterateText function requires transliteration tables that are in a script
system’s international resources, you need to call it anew for each script run in your text.

Currently, the Roman version of Tr ansl i t er at eText checks the source mask only to
ensure that at least one of the bits corresponding to the smvaskAsci i and
smvaskNat i ve constants is set.

The Arabic and Hebrew versions of Tr ansl i t er at eText perform case conversion
only. They allow the target values snilr ansAsci i and smilr ansNat i ve only;
otherwise, they behave like the Roman version.

The Transl i t er at eText tables for 1-byte script systems reside in the

script’s string-manipulation (' i t | 2') resource, so they can reflect region-specific

or language-specific differences in uppercase conventions. If the string-manipulation
resource does not include these tables, Tr ansl i t er at eText exits without

doing anything.

The Transl i t er at eText tables for 2-byte script systems reside in the script’s
transliteration (' t r sl ') resource. If the' t r sl ' resource does not include these tables,
TransliterateText exits without doing anything.

The Japanese, Traditional Chinese, and Simplified Chinese versions of
TransliterateText have two modes of operation:

» Ifeither smvlaskAsci i or smvaskNat i ve is specified in the source mask, and if the
target is snTr ansAsci i , and if either of the target modifiers is specified,
TransliterateText performs the specified case conversion on both 1-byte and
2-byte Roman letters.

= Otherwise, Transl it er at eText performs conversions according to the target
format values defined on page 6-47. Any combination of source masks and target
format is permitted.

RESULT CODES

In addition to Memory Manager errors, Tr ansl i t er at eText can return the
following results:

noErr 0 No error
-1 Illegal source or target, or ' i t| 2" could not be loaded

6-100 Script Manager Reference

CHAPTER 6

Script Manager

Replacing a Script System’s Default Routines

The four Script Manager routines described in this section allow you to access or replace
the text-manipulation and text-display routines in WorldScript I, the system extension
for 1-byte complex script systems. The function Get Scri pt Uti | i t yAddr ess and the
procedure Set Scri pt Uti | ityAddr ess work with the script utilities routines. The
function Get Scr i pt QDPat chAddr ess and the procedure

Set Scri pt QDPat chAddr ess work with patches of the QuickDraw routines St dText,
St dTxMeas, and Measur eText , and the Font Manager routine Font Met ri cs.

For more information on how to use these calls, see the appendix “Built-in Script
Support” in this book.

For Get ScriptUtilityAddress and Set Scri ptUtilityAddress, these are the
valid values for the sel ect or parameter:

Script utility Selector value
Get Scri pt Vari abl e $000C

Set Scri pt Vari abl e $000E
Char act er Byt eType $0010

Char act er Type $0012
TransliterateText $0018
Fi ndWor dBr eaks $001A
HiliteText $001C
Fi || ParseTabl e $0022
Fi ndScri pt Run $0026
Vi si bl eLengt h $0028
Pi xel ToChar $002E
Char ToPi xel $0030
DrawJustified $0032
Measur ej ustifi ed $0034
Por ti onLi ne $0036

For Get Scri pt QDPat chAddr ess and Set Scri pt QDPat chAddr ess, these are the
valid values for the t r apNumparameter:

QuickDraw patch trapNumvalue
_StdText $A882
_ St dTxMeas $A8ED

_Measur eText $A837
_Font Metrics $A835

Script Manager Reference 6-101

Jabeue 1duos n

CHAPTER 6

Script Manager

GetScriptUtilityAddress

DESCRIPTION

SEE ALSO

6-102

The Get Scri pt Uti | it yAddr ess function returns a pointer to the specified 1-byte
script utility—or the original Roman utility—for the given script system.

FUNCTI ON Get ScriptUtilityAddress (selector: Integer;
bef ore: Bool ean;
script: ScriptCode): Ptr;

sel ector A value that specifies the name of the utility routine whose address
is needed.

before A Boolean that specifies which of two routines is needed. If TRUE, the
address returned is that of the WorldScript I implementation of the utility.
If FALSE, the address returned is that of the original routine (usually the
built-in Roman version).

scri pt The numeric code that specifies the script system whose dispatch table
contains the pointers to the utility routines. Constants for all defined
script codes are listed on page 6-52.

The Get Script UtilityAddress function examines the specified script’s dispatch
table and returns a pointer to the desired routine.

Because each element in the dispatch table consists of a pair of addresses, one for the
WorldScript I implementation of the utility, and another for the original (Roman) version
of the utility, you can get the address of either routine. Either routine can then be
replaced, using the Get Scri pt UtilityAddress call.

This function can return NI L for the pointer if, for example, either the WorldScript I
implementation or the original Roman routine is not used by the script system.

Valid values for the sel ect or parameter are listed on page 6-101.

If the specified script system is not enabled, Get Scri pt Uti | i t yAddr ess returns a
NI L pointer.

WorldScript I is described in the appendix “Built-in Script Support” in this book.

Script Manager Reference

CHAPTER 6

Script Manager

SetScriptUtilityAddress

DESCRIPTION

SEE ALSO

The Set Scri pt Uti | it yAddr ess procedure replaces the specified 1-byte script
utility—or the original Roman utility—for the given script.

PROCEDURE Set ScriptUtilityAddress (selector: |nteger;
bef ore: Bool ean;
routi neAddr: Ptr;
script: ScriptCode);

sel ector A value that specifies the name of the utility routine to be replaced.

bef ore A Boolean that specifies which of two routines is to be replaced. If TRUE,
the WorldScript I implementation of the utility is replaced. If FALSE, the
original routine (usually the built-in Roman version) is replaced.

routi neAddr
A pointer to the routine that is to replace the script utility.

scri pt The numeric code that specifies the script system whose dispatch table

contains the pointers to the utility routines. Constants for all defined
script codes are listed on page 6-52.

The Set Scri pt Uti | ityAddress procedure replaces the pointer to the desired routine
in the specified script’s dispatch table.

Several of the WorldScript I utilities call the original Roman routine after they execute.
Each element in the dispatch table consists of a pair of addresses: one for the
WorldScript I implementation of the utility, and another for the original (Roman) version
of the utility. With Set Scri pt Uti | i t yAddr ess you can replace either routine. Thus
you can insert your patch code either before (or in place of) the WorldScript I version of
the utility, or before (or in place of) the original Roman routine.

IMPORTANT

When you patch a script system’s script utility, you alter that script’s
behavior for as long as it remains enabled. Therefore, be sure to restore
the pointer to its original state whenever your application quits or is
switched out by the Process Manager. a

Valid values for the sel ect or parameter are listed on page 6-101.

WorldScript I is described in the appendix “Built-in Script Support” in this book.

Script Manager Reference 6-103

Jabeue 1duos n

CHAPTER 6

Script Manager

GetScriptQDPatchAddress

DESCRIPTION

6-104

The Get Scri pt QDPat chAddr ess function returns a pointer to the specified
WorldScript I QuickDraw patch—or the built-in QuickDraw call—for the given
script system.

FUNCTI ON Get Scri pt QDPat chAddress (trapNum I nteger;
bef ore: Bool ean;
forPrinting: Bool ean;
script: ScriptCode): Ptr;

trapNum A value that specifies the name of the QuickDraw routine whose
address is needed.
bef ore A Boolean that specifies which of two routines is needed. If TRUE, the

address returned is that of the WorldScript I patch to the QuickDraw
routine. If FALSE, the address returned is that of the original routine
(usually the built-in QuickDraw routine).

forPrinting
A Boolean that specifies whether the desired routine is for printing. If
TRUE, the address returned is that of a QuickDraw patch that is
specifically for printing; if FALSE, the address returned is that of a
QuickDraw patch that is not specifically for printing.

script The numeric code that specifies the script system whose dispatch table
contains the pointers to the QuickDraw routines. Constants for all defined
script codes are listed on page 6-52.

The Get Scri pt QDPat chAddr ess function examines the specified script’s dispatch
table and returns a pointer to the desired routine.

Because each element in the dispatch table consists of a pair of addresses, one for the
WorldScript I patch to the QuickDraw routine, and another for the original QuickDraw
version of the routine, you can get the address of either routine. Either routine can then
be replaced, using the Set Scri pt QDPat chAddr ess call.

Some printers perform their own text layout on text that is passed to them. Therefore,
each QuickDraw patch has two entry points: one for screen display and printing, and
one for printing only. By specifying either TRUE or FALSE in the f or Pri nti ng
parameter, the pointer you obtain is to either the “for printing only” or the “not for
printing only” entry point. For example, some script systems might use the “for printing
only” entry point to perform extra-fine justification of text on a PostScript printer.

Valid values for the t r apNumparameter are listed on page 6-101.

If the specified script system is not enabled, Get Scr i pt QDPat chAddr ess returns
a NI L pointer.

Script Manager Reference

SEE ALSO

CHAPTER 6

Script Manager

WorldScript Iis described in the appendix “Built-in Script Support” in this book.

In order to handle contextual formatting appropriately for each script system, printer
drivers should call the Script Manager’s print action routine, described in
Inside Macintosh: Devices.

SetScriptQDPatchAddress

DESCRIPTION

The Set Scri pt QDPat chAddr ess procedure replaces the WorldScript I specified
QuickDraw patch—or the built-in QuickDraw call—for the given script.

PROCEDURE Set Scri pt @QDPat chAddr ess (trapNum | nteger;
bef ore: Bool ean;
forPrinting: Bool ean;
routi neAddr: Ptr;
script: ScriptCode);

trapNum A value that specifies the name of the QuickDraw routine that is to
be replaced.

bef ore A Boolean that specifies which of two routines is to be replaced. If
TRUE, the WorldScript I patch of the QuickDraw routine is replaced.
If FALSE, the original routine (usually the built-in QuickDraw routine)
is replaced.

forPrinting
A Boolean that specifies whether the replacement routine is for printing.
If TRUE, the new QuickDraw patch is specifically for printing; if FALSE,
the new QuickDraw patch is not specifically for printing.

routineAddr
A pointer to the routine that is to replace the existing QuickDraw routine.

scri pt The numeric code that specifies the script system whose dispatch table
contains the pointers to the QuickDraw routines. Constants for all defined
script codes are listed on page 6-52.

The Set Scr i pt QDPat chAddr ess procedure replaces the pointer to the desired routine
in the specified script’s dispatch table.

Script Manager Reference 6-105

Jabeue 1duos n

SEE ALSO

6-106

CHAPTER 6

Script Manager

All of the WorldScript I patches call the original QuickDraw routine after they execute.
Each element in the dispatch table consists of a pair of addresses: one for the WorldScript
I patch, and another for the original (built-in QuickDraw) version of the routine. With
Set QDPat chAddr ess you can replace either routine. Thus you can insert your patch
code either before (or in place of) the WorldScript I QuickDraw patch, or before (or in
place of) the original QuickDraw routine.

Some printers perform their own text layout on text that is passed to them. Therefore,
each QuickDraw patch has two entry points: one for screen display and one for printing
only. By specifying either TRUE or FALSE in the f or Pri nti ng parameter, you specify
whether you are passing the “for printing only” or the “not for printing only” entry
point. For example, some script systems might use the “for printing only” entry point to
perform extra-fine justification of text on a PostScript printer.

IMPORTANT

When you patch a script system’s QuickDraw call, you alter that script’s
behavior for as long as it remains enabled. Therefore, be sure to restore
the pointer to its original state whenever your application quits or is
switched out by the Process Manager. a

Valid values for the t r apNumparameter are listed on page 6-101.

WorldScript I is described in the appendix “Built-in Script Support” in this book.

In order to handle contextual formatting appropriately for each script system, printer
drivers should call the Script Manager’s print action routine, described in
Inside Macintosh: Devices.

Script Manager Reference

CHAPTER 6

Script Manager

Summary of the Script Manager

Pascal Summary

Constants

{Script system constants}

{Inplicit script codes}
snBystenBcript = -1;
snCurrent Scri pt = -2;
smAl | Scripts = -3;
{Explicit script codes}
snmRoman = O;

smlapanese = 1;
smlradChi nese = 2;

snKorean = 3;
smArabic = 4,
snHebrew = 5;
s eek = 6;
snyrillic = 7;

snRSynbol = 8;
snDevanagari = 9;
sm@ur nukhi = 10;

snauj arati = 11;
snxriya = 12;
snBengal i = 13;
smram | = 14;

snifel ugu = 15;
snKannada = 16;
snmval ayal am = 17;
snBi nhal ese = 18;
smBur mese = 19;
snkhner = 20;
snrhai = 21;
smLaotian = 22;

{desi gnates system script.}
{desi gnates font script.}

{desi gnates any scri pt}

{ Roman}

{Japanese}

{Tradi tional Chinese}
{ Kor ean}

{ Ar abi c}

{ Hebr ew}

{ G eek}

{Cyrillic}
{Right-left synbol}
{Devanagari }

{ Qur nukhi }
{GQujarati}

{Oiya}

{Bengal i}

{Tami |}

{Tel ugu}

{ Kannada/ Kanar ese}
{ Mal ayal ant

{Si nhal ese}

{ Bur nmese}

{ Khner/ Canbodi an}
{Thai }

{Laoti an}

Summary of the Script Manager

6-107

Jabeue 1duos n

CHAPTER 6

Script Manager

sneor gi an 23;
sMAr neni an = 24;
snSi npChi nese = 25;
snili betan = 26;
smivbngol i an = 27;
snmeez = 28;
snEt hi opi c = 28;
snEast Eur Roman = 29;
snvi et namese = 30;
snExt Arabic = 31;
snninterp = 32;

{Language Codes}
I angEngl i sh = 0;
| angFrench = 1
| angGerman = 2

3;

langltalian =
| angbut ch = 4;
| angSwedi sh = 5;
| angSpani sh = 6;

| angbDani sh = 7;

| angPor t uguese = 8;
| angNor wegi an = 9;
| angHebrew = 10;

| angJapanese = 11;
| angArabic = 12;

| angFi nni sh = 13;

| angGreek = 14;

I angl cel andi ¢ = 15;
| anghal t ese = 16;

I angTur ki sh 17;

| angCroatian = 18;
| angTr adChi nese = 19;
| angUrdu = 20;

| angHi ndi = 21;

| angThai = 22;

| angKor ean = 23;

I angLi t huani an = 24;
| angPol i sh = 25;

| angHungari an = 26;
| angEst oni an = 27;
| anglLettish = 28;

6-108

{ Geor gi an}

{ Ar meni an}
{Simplified Chinese}
{Ti bet an}

{Mongol i an}

{ Geez/ Et hi opi c}
{Synonym for snteez}

{Synonym f or

sntl avi c}

{ Vi et namese}
{ext ended Arabi c}
{uni nterpreted synbol s,

Lt T et W e W e W e N e e N e T et T e W e R e R N e T e T e N et Tt B e B e T e R N I e I e N e N e B Y

snRoman scri pt
snmRonman scri pt
snmRoman scri pt
snRoman scri pt
snmRonman scri pt
snmRoman scri pt
snRoman scri pt
snmRonman scri pt
snmRoman scri pt
snRoman scri pt
snHebrew script }
smJapanese script }
smArabi c script }
snmRonman script }

snix eek script }

ext ended Roman scri pt
ext ended Roman scri pt
ext ended Roman scri pt

e e e e e e o e

Serbo-Croatian in extended Roman script }
Chinese in traditiona

smAr abi c script }
snDevanagari script }
snThai script }

snKor ean script }
snEast Eur Ronan scri pt
snEast Eur Roman scri pt
snEast Eur Ronan scri pt
snEast Eur Ronan scri pt
snEast Eur Roman scri pt

Summary of the Script Manager

e.g. palette synbol s}

}
}
}

e e e

characters }

| anglLat vi an
| angSaam sk
I angLappi sh
| angFaer oes
| angFarsi =
I angPer si an
| angRussi an
| angSi mpCh
I angFl emi sh
langlrish =
| angAl bani a
I angRomani a
| angCzech =
| angSl ovak
| angSl oven
| angYi ddi sh
| angSer bi an
| angiacedon
| angBul gar i
| angUKkr ai ni
I angByel oru
| angUzbek =
| angKazakh
| angAzer ba
| angAzer ba

| angAr meni an
| angGeor gi an
| angMbl dovan

| angMol davi
I angKi r ghi z
| angTaj i ki

| angTur kmren
I angMbngol

| angMbngol

| angPasht o
I angKur di sh
| angKashni r
| angSi ndh

[angTi bet an
| angNepal

| angSanskr i
[angMar at hi

CHAPTER 6

Script Manager

28;
29;
= 29;
e = 30;
31;
31;
32;
nese = 33;
= 34,
35;
n = 36;
n = 37;
38;
= 39;
an = 40;
= 41;
= 42;
ian = 43;
an = 44,
an = 45;
ssian = 46;
47,
= 48;
jani = 49;
j anAr = 50;
51;
52;
53;
an = 53;
= 54,
= 55;
= 56;
an = 57;
anCyr = 58;
= 59;
= 60;
i = 61;
= 62;
= 63;
= 64,
t = 65;
= 66;

Summary of the Script Manager

Lot N et W et W e W e W e W e e e i e B et B et W e W e W e e e T e W e e i e B et B e W e T e R e T e B et W e W e e N e)

Synonym for |angLettish }

ext ended Roman scri pt

Synonym for | angSaam sk }

snRoman script }
smAr abi c script }
Synonym f or | angFar si

snCyrillic script }

Chinese in sinplified characters }

snRoman script }
snRoman script }
snmRoman script }
snEast Eur Roman scri pt
snEast Eur Ronan scri pt
snEast Eur Roman scri pt
snEast Eur Roman scri pt
snHebrew script }

Serbo-Croatian in snmCyrillic script }

snCyrillic script }
snCyrillic script }
snCyrillic script }
snCyrillic script }
snCyrillic script }
smCyrillic script }

Azerbaijani in snCyrillic script }
Azerbaijani in smArabic script

smAr neni an script }
snGeor gi an script }
snCyrillic script }

Synonym for | angMol dovan }

snCyrillic script }
snCyrillic script }
smCyrillic script }

Mongol i an in smivbngol i an script }
Mongolian in snCyrillic script }

smArabi c script }
smArabi c script }
smArabi c script }
snExt Arabi ¢ script }
snili betan script }
snDevanagari script }
smDevanagari script }
snDevanagari script }

}

}

— e e

(lran) }

6-109

Jabeue 1duos n

CHAPTER 6

Script Manager

| angBengal i = 67;

| angAssanese = 68

| angGuj arati = 69;

| angPunj abi = 70;
langOriya = 71;

| angMal ayal am = 72;
| angKannada = 73;

| angTam | = 74;

| angTel ugu = 75;

| angSi nhal ese = 76;
| angBur nese = 77;

I angKhmer = 78;

| angLao = 79;

| angVi et namese = 80;
I angl ndonesi an = 81;
| angTagal og = 82;

| angMal ayRonan = 83;
| anghal ayAr abi ¢ = 84;
| angAnmharic = 85;

| angTi gri nya = 86;
langGal |l a = 87;

| angOronp = 87;

| angSomal i = 88;
 angSwahi I'i = 89;

| angRuanda = 90;

| angRundi = 91

| angChewa = 92;

| angMal agasy = 93;

| angEsperanto = 94;
| ang\Wel sh = 128;

| angBasque = 129;

| angCat al an = 130;

| angLatin = 131;

| angQuechua = 132;

| angGuarani = 133;

| angAymara = 134;

| angTatar = 135;

| angU ghur = 136;

| angDzongkha = 137,

| angJavaneseRom = 138;
| angSundaneseRom = 139;

6-110 Summary of the Script Manager

Lt B e W e T e R R e T e T e T e I e T e T e T e T e T e I N e I e B e R e I T e B e T e R e N e e T et T R e N e e Nt Tt N et B e W e W e e

snBengal i script }
smBengal i script }

snuj arati script }

snaur mukhi script }
smOriya script }
smval ayal am scri pt }
snKannada script }

smlfam | script }

snifel ugu script }

snBSi nhal ese script }

snmBur nese script }

snkKhmer script }

snmLaotian script }
snVi et nanese script }
snRoman script }

snRoman script }

Mal ay in snmRoman script }
Malay in smArabic script }
snEt hi opic script }
snEt hi opi ¢ script }
snEt hi opi ¢ script }
synonym for |angGalla }
snmRoman script }

snmRoman scri pt
snRoman scri pt
smRoman scri pt
snmRoman scri pt
snRoman scri pt
ext ended Roman script }
snmRoman scri pt
snRoman scri pt
smRoman scri pt
snmRoman scri pt
snRoman scri pt
smRoman scri pt
snRoman script }

snCyrillic script }

smArabi c script }

(l'ang of Bhutan) snili betan script }
Javanese in snmRoman script }
Sundanese in snRoman script }

e e e

—— e e o e

CHAPTER 6

Script Manager

{ Region codes }
verUS = 0;
ver France = 1;
verBritain = 2;
verGermany = 3
verltaly = 4;
ver Net herl ands = 5;
ver Fr Bel gi umLux = 6;
ver Sweden = 7;

ver Spain = 8;

ver Denmark = 9;

ver Portugal = 10;
ver Fr Canada = 11;

ver Norway = 12;
verlsrael = 13;
verJapan = 14;
verAustralia = 15;
ver Arabia = 16;

ver Arabic = 16;
verFinland = 17;

ver FrSwi ss = 18;
ver G Sw ss = 19;
ver G eece = 20;
verlcel and = 21;
verMalta = 22;

ver Cyprus 23;

ver Tur key 24;

ver YugoCroati an = 25;
verl ndi aH ndi = 33;
ver Paki stan = 34;
verLi thuania = 41;
ver Pol and = 42;

ver Hungary = 43;

ver Estoni a = 44;
verLatvia = 45;

ver Lapl and = 46;

ver Faer oel sl = 47,
verlran = 48;

ver Russia = 49;
verlreland = 50;

{French for

Summary of the Script Manager

Bel gi um & Luxenbour g}

{synonym for ver Arabi a}

{Swi ss French}
{Swi ss Gernman}

{Croatian systent
{H ndi system for India}

{Engl i sh-1anguage version for Irel and}

6-111

Jabeue 1duos n

CHAPTER 6

Script Manager
ver Korea = 51;
ver Chi na = 52;

ver Tai wan = 53;

ver Thai | and = 54;

m nCountry = verUS;
maxCountry = ver Thai | and;

{ Cal endar codes}
cal Gegorian = 0;
cal ArabicGvil = 1;
cal Arabi cLunar = 2;
cal Japanese = 3;
cal Jewi sh = 4;

cal Coptic = 5;

cal Persian = 6;

{Nurer al codes}
i nt\Western = O;
nt Arabic = 1,
nt Roman = 2;

nt Japanese
nt Eur opean =
nt Qut put Mask

3;
4;
= $8000;

{ CharacterByteType byte types }
sntSi ngl eByte = O;

snFirstByte = -1;

smLast Byte = 1;

snM ddl eByte = 2;

{CharacterType field masks}

snmcTypeMask = $000F;

sntReserved = $00F0;

sncCl assMask = $0F00;

sntcOrientati onMask = $1000; {2-byte script glyph orientation}
sntRi ght Mask = $2000;

sncUpper Mask = $4000;

sncDoubl eMask = $8000;

{Basi c CharacterType character types}
snChar Punct = $0000;

snChar Ascii = $0001;
snChar Euro = $0007;
smChar Ext Ascii = $0007; {nore correct synonym for snChar Eur o}

6-112 Summary of the Script Manager

CHAPTER 6

Script Manager

{Addi ti onal CharacterType character types for script systens}

snChar Kat akana = $0002; {Japanese Kat akana}

snChar H ragana = $0003; {Japanese Hiragana}

sntChar | deogr aphi ¢ = $0004; {Hanzi, Kanji, Hanja}

snChar TwoByt eGr eek = $0005; {2-byte Greek in Far East systens}

smChar TwoByt eRussi an = $0006; {2-byte Cyrillic in Far East systens}
smChar Bi di rect = $0008; { Ar abi c/ Hebr ew}

sntChar Cont ext ual LR = $0009; {contextual left-right: Thai, Indic scripts}
smChar NonCont ext ual LR = $000A; {noncontextual left-right: Cyrillic, G eek}
snChar Hangul = $000C, { Korean Hangul }

smChar Janp = $000D; { Kor ean Jano}

smChar Boponof o = $000E; { Chi nese Boponof o (zZhuyi nfuhao)}

{Char act er Type cl asses for punctuation (snCharPunct)}

smPunct Nor mal = $0000;
smPunct Nunmber = $0100;
snmPunct Synbol = $0200;

snPunct Bl ank = $0300;

{Addi ti onal CharacterType classes for punctuation in two-byte systens}
smPunct Repeat = $0400; {repeat marker}
snPunct Graphi ¢ = $0500; {l'i ne graphics}

{Char act er Type Kat akana and Hiragana cl asses for 2-byte systens}
smKanaSmal | = $0100; {smal| Kana character}
snKanaHar dOK = $0200; {can have dakut en}

snmKanaSof t OK = $0300; {can have dakut en or han-dakuten}

{Char acter Type ideographic classes for 2-byte systens}

sm deogr aphi cLevel 1 = $0000; {level 1 char}
sm deogr aphi cLevel 2 = $0100; {level 2 char}
sm deogr aphi cUser = $0200; {user char}

{Char act er Type Janp cl asses for Korean systens}

smlanmbJaeum = $0000; {si npl e consonant char}
smlanoBogJaeum = $0100; {conmpl ex consonant char}
smJanbMbeum = $0200; {sinmple vowel char}
smJanpBogMbeum = $0300; {compl ex vowel char}

{Character Type gl yph orientation for 2-byte systens}
snChar Hori zontal = $0000; {hori zontal character form or for both}
snChar Vertical = $1000; {vertical character fornt

Summary of the Script Manager 6-113

Jabeue 1duos n

CHAPTER 6

Script Manager

{Char act er Type directions}
smChar Left = $0000;
snChar Ri ght = $2000

{Char act er Type case nodifers}

snChar Lower = $0000;
sntChar Upper = $4000;

{Char act er Type character size nodifiers (1 or

snChar 1byte = $0000;
smChar 2byt e = $8000;

{TransliterateText target

smlransAscii = 0;
smiransNati ve = 1;
snilransCase = $FE

smlransSystem = $FF

{TransliterateText target
smlransAsciil 2;

smlransAsci i 2 3;

smlir ansKanal
smlr ansKana2
smlir ansGana2
snransHangul 2 =
smlransJanon2 9;
smir ansBoponof 02

4
5;
7

8;

2_

10;

{TransliterateText target
snilr ansLower = $4000;
snilr ansUpper = $8000;

{TransliterateText
snTr ansRul eBaseFor mat
smlr ansHangul For nat

= 1;

{TransliterateText propert

smiransPreDoubl eByting = 1;

snilr ansPr eLower Casi ng 2;

{TransliterateText source
smvaskAl | = $FFFFFFFF;

6-114

resource fornat

mul tiple bytes)}

types for
{convert
{convert
{convert
{convert

Ronman}

to ASC |}

to font script}
case for all text}
to system script}

types for 2-byte scripts}
{1- byte Ronan}
{2-byte Roman}
{1-byte Japanese Kat akana}
{2-byte Japanese Kat akana}
{2-byte Japanese Hiragana (no 1l-byte Hiragana)}
{2-byte Korean Hangul }
{2- byt e Korean Jano}
{2-byte Chi nese Boponofo (Zhuyi nfuhao)}

nodi fi ers}
{target
{target

becones | ower case}
becomes uppercase}

nunber s}
{rul e-based trsl resource formt }
{tabl e- based Hangul trsl resource fornat}

y flags}

{convert all text to 2-byte }

{ before transliteration}
{convert all text to | owercase }
{ before transliteration}

mask - general}

{convert all text}

Summary of the Script Manager

CHAPTER 6

Script Manager

{TransliterateText source masks}
smvaskAscii = $00000001; {2"smlransAsci i}
smvaskNati ve = $00000002; {2"snilr ansNat i ve}

{TransliterateText source masks for 2-byte scripts}

smvaskAscii 1 = $00000004; {2"smTr ansAsci i 1}
smvaskAscii 2 = $00000008; {2"snilr ansAsci i 2}
smvaskKanal = $00000010; {2"snTr ansKanal}
smvaskKana2 = $00000020; {2”snilr ansKana2}
smvaskGana2 = $00000080; {2~snilr ansGana?}
smvaskHangul 2 = $00000100; {2~smlr ansHangul 2}
smvaskJanp2 = $00000200; {2"smTr ansJanp2}
smvaskBoponof 02 = $00000400; {2”snilr ansBoponof 02}

{Result values from CGet Scri pt Manager Vari abl e, Set Scri pt Manager Vari abl e, }
{ GetScriptVariable, and Set Scri ptVari abl e}

smNot I nstal l ed = O; {routine not available in specified script}
snBadVerb = -1; {bad sel ector passed to a routine}
snBadScript = -2; {bad script code passed to a routine}

{Val ues for script redraw fl ag}

snRedr awChar = 0; {redraw character only}

snRedrawrd = 1; {redraw entire word (2-byte systens)}

snRedr awLi ne -1; {redraw entire line (bidirectional systens)}

{Get Scri pt Manager Vari abl e and Set Scri pt Manager Vari abl e sel ect or s}

smversion = 0; {Script Manager version nunber}
smvunged = 2; {d obal s change count}
snEnabl ed = {Count of enabled scripts, incl Roman}

snBi direct = 6; {At |east one bidirectional script}
snfFont Force = 8; {Force font flag}
smntl Force = 10; {Intl resources selection flag}

snfForced = 12; {Script was forced to system script}
snDefault = 14; {Script was defaulted to Ronan script}
snPrint = 16; {Printer action routine}

snBysScript = 18; {System script}

snmLast Scri pt = 20; {Last keyboard script}

snmKeyScri pt = 22; {Keyboard script}

snBysRef = 24; {System fol der refNun}

snKeyCache = 26; {obsol et e}

snKeySwap = 28; { Swappi ng tabl e handl e}

snenFl ags = 30; {General flags |ong}

snverride = 32; {Script override flags}

Summary of the Script Manager 6-115

Jabeue 1duos n

CHAPTER 6

Script Manager

snChar Portion = 34;
smDoubl eByte = 36;
snKCHRCache = 38;

snRegi onCode = 40;

snKeyDi sabl eState = 42;

{Ch vs SpExtra proportion}
{Flag for double-byte script installed}
{Returns pointer to KCHR cache}
{Returns current regi on code (ver Xxx)}
{Returns current keyboard di sabl e state}

{ GetScriptVariable and Set ScriptVariable selectors.}

sniScri pt Version = 0;
sniScri pt Munged = 2;
sniScri pt Enabl ed = 4;
sniScri pt Ri ght = 6;
sniScri pt Just = 8;
sniScri pt Redraw = 10;
sniScri pt SysFond = 12;
sniScri pt AppFond = 14;
sniScri pt Bundl e = 16;
sniScri pt Nunber = 16;
snScriptDate = 18;
snBScri pt Sort = 20;
sniScri pt Fl ags = 22;
sniScri pt Token = 24;
snicri pt Encodi ng = 26;
sniScri pt Lang = 28;
sniScri pt NunDate = 30;
sniScri pt Keys = 32;
sniScriptlcon = 34;
snScriptPrint = 36;
snScriptTrap = 38;
sniScri pt Creat or = 40;
snScriptFile = 42;
snicri pt Name 44;
sniScri pt MonoFondSi ze
sniScri pt Pref FondSi ze

snicri pt Smal | FondSi ze = 82;

sniScri pt SysFondSi ze
sniScri pt AppFondSi ze
snicri pt Hel pFondSi ze =
snScriptValidStyles =

=8
=8

78;
80;

6

90;

snScriptAliasStyle = 92;

{ Negative selectors for

snKeyNext Scri pt = -1;
snKeySysScript = -2;
snmKeySwapScri pt = -3;

6-116

{Script software version}
{Script entry changed count}
{Script enabled flag}
{Right to left flag}
{Justification flag}

{Word redraw fl ag}
{Preferred systemfont}
{Preferred Application font}

{Begi nning of itlb verbs}

{Script itlO id}

{Script itll id}

{Script itl2 id}

{flags word}

{Script itl4 id}

{id of optional itl5, if present}
{Current |anguage for script}
{Script Nunber/Date fornats.}

{Script KCHR id}

{I1D # of SICN or kcs#/ kcs4/ kecs8 fam |y}
{Script printer action routine}

{Trap entry pointer}

{Script file creator}

{Script file nane}

{Script nane}

{default nonospace FOND (hi) & size (l0)}
{preferred FOND (hi) & size (l0)}
{default small FOND (hi) & size (lo)}
{default system FOND (hi) & size (l0)}
{default app FOND (hi) & size (l0)}
{default Help Mgr FOND (hi) & size (10)}
{mask of valid styles for script}
{style (set) to use for aliases}

KeyScri pt }

{ Switch to next available script }
{ Switch to the systemscript }
{ Switch to previously-used script }

Summary of the Script Manager

CHAPTER 6

Script Manager

snKeyNext Kybd -4; { Switch to next keyboard in current keyscript }
snmKeySwapKybd = -5; { Switch to previous keyboard in current keyscript }
snKeyDi sabl eKybds = -6; { Disable keyboards not in system or Roman script }
snKeyEnabl eKybds = -7; { Re-enabl e keyboards for all enabled scripts }
snmKeyTogglelnline = -8; { Toggle inline input for current keyscript }

snKeyToggl eDi rection = -9; {Toggl e default line direction (TESysJust)}
snKeyNext | nput Met hod = - 10; {Switch to next input nethod in current script}
snKey Swapl nput Met hod = - 11; {Switch to prev. input nethod in curr. script}

snKeyDi sabl eKybdSwi tch = -12; {Disable switching fromcurrent keyboard}
snKeySet Di r Left Ri ght -15; {Set default line dir. left-right,align left}
snmKeySet Di r Ri ght Left - 16; {Set default line dir. right-left,align right}
snKeyRoman = -17; { Set keyscript to Roman. Does nothing if Roman-only}

{ Bits in the sntcriptFlags word
(bits above 8 are non-static) }

snefintel | CP = O; {Script has intelligent cut & paste}
snsf Si ngByte = 1; {Script has only single bytes}

snsf Nat Case = 2; {Native chars have upper & |ower case}
snsf Cont ext = 3; {Script is contextual}

snsf NoFor ceFont = 4; {Script will not force characters}
snsfBODi gits = 5; {Script has alternate digits at BO-B9}
snef Autolnit = 6; {Auto initialize the script}
snsf Uni vEXt = 7; {Script is handled by WorldScript 1}
snsf SynchUnst yl edTE = 8; {Synchroni ze keyboard and chartype in unstyled TE}
snef Fornms = 13; {Uses contextual fornms for letters}
snef Ligatures = 14; {Uses contextual I|igatures}

snsf Reverse = 15; {Reverses native text, right-left}

{ Bits in the snGenFl ags | ong.}
{First (high-order) byte is set fromitlc flags byte. }

snf Showl con = 31; {Show icon even if only one script}
snf Dual Caret = 30; {Use dual caret for mxed direction text}
snf NanmeTagEnab = 29; {Reserved for internal use}

{ Script Manager font equates. }
snfFondStart = $4000; {start from 16K}
snFondEnd = $C000; {past end of range at 48K}

{ M scellaneous font equates. }
smJpr Hal f Char Set = $80; {first char code in top half of std char set}

{ Character Set Extensions }

di aeresi sUprY = $D9;
fraction = $DA;

Summary of the Script Manager 6-117

Jabeue 1duos n

CHAPTER 6

Script Manager

intl Currency = $DB;

| eftSingQuillemet = $DC;
ri ght Si ngQui l I emet = $DD;
fiLigature = $DE;
flLigature = $DF;

dbl Dagger = $EO;

cent eredDot = $EI1;
baseSi ngQuote = $E2;
baseDbl Quote = $E3;

per Thousand = $E4;

ci rcunfl exUpr A = $E5;

ci rcunfl exUpr E = $ES6;
acut eUpr A = $E7;

di aeresi sUprE = $E8;
graveUpr E = $E9;
acuteUprl = $EA

ci rcunfl exUprl = $EB;

di aeresisUprl = $EC

graveUpr | $ED;

acut eUpr O = $EE;

ci rcunfl exUpr O = $EF;
appl eLogo = $FO;
gravelpr O = $F1;
acuteUprU = $F2;

ci rcunfl exUpruU = $F3;
gravelUprU = $F4;

dotl essLwr| = $F5;
circunflex = $F6;
tilde = $F7;

macron = $F8;
brevevark = $F9;

over Dot = $FA;

ri ngvark = $FB;
cedilla = $FC;

doubl eAcute = $FD;
ogonek = $FE;

hachek = $FF;

{ TokenType val ues }
tokenlntl = 4;

t okenEnpty = -1;
t okenUnknown = 0;
tokenWhite = 1;

{the itl resource nunber of the tokenizer}
{used internally as an enpty flag}

{chars that do not
{whi t espace}

6-118 Summary of the Script Manager

mat ch a defined token type}

CHAPTER 6

Script Manager

tokenLeftLit = 2;
tokenRightLit = 3;

t okenAl pha = 4;

t okenNuneric = 5;

t okenNewLi ne = 6;

t okenLeft Comment = 7;
t okenRi ght Conment = 8;
tokenLiteral = 9;

t okenEscape = 10;

t okenAl t Num = 11;

t okenReal Num = 12;

t okenAl t Real = 13;

t okenReservel = 14;

t okenReserve2 = 15;

t okenLeft Paren = 16;
t okenRi ght Paren = 17;

t okenLef t Bracket = 18;
t okenRi ght Bracket = 19;
t okenLeft Curly = 20;
tokenRightCurly = 21

t okenLeft Encl ose = 22;
t okenRi ght Encl ose = 23
t okenPl us = 24;

t okenM nus = 25;

t okenAst eri sk = 26;

t okenDi vi de = 27;

t okenPl usM nus = 28;

t okenSl ash = 29;

t okenBackSl ash = 30;

t okenLess = 31;

t okenGreat = 32;

t okenEqual = 33

t okenLessEqual 2 34;
t okenLessEqual 1 35;
t okenGr eat Equal 2 = 36;
t okenG eat Equal 1 = 37;
t oken2Equal = 38;

t okenCol onEqual = 39;
t okenNot Equal = 40

t okenLessGreat = 41;

t okenExcl anEqual = 42;
t okenExcl am = 43;

{literal begin}

{literal end}

{al phabeti c}

{nuneri c}

{new line}

{open coment}

{cl ose conment}

{literal}

{character escape (e.g. '\'" in "\n", "\t")}
{al ternate nunber (e.g. $BO-B9 in Arabic, Hebrew)}
{real nunber}

{alternate real nunber}

{reserved}

{reserved}

{open parent hesi s}

{cl ose parenthesi s}

{open square bracket}
{cl ose square bracket}
{open curly bracket}
{close curly bracket}
{open guillemet}
{close guillenet}

{times/multiply}

{plus or mnus synbol}

{l ess than symbol }
{greater than synbol}

{less than or equal, 2 characters (e.g. <=)}
{less than or equal, 1 character}

{greater than or equal, 2 characters (e.g. >=)}
{greater than or equal, 1 character}

{doubl e equal (e.g. ==)}

{col on equal }

{not equal, 1 character}

{l ess/greater, Pascal not equal (e.g. <>)}
{excl amation equal, C not equal (e.g. !'=)}
{excl amati on point}

Summary of the Script Manager 6-119

Jabeue 1duos n

CHAPTER 6

Script Manager
t okenTi | de = 44;
t okenComma = 45;

t okenPeri od = 46;
t okenLeft 2Quote = 47,
t okenRi ght 2Quote = 48

{open

{centered tilde}

doubl e quot e}

{cl ose doubl e quote}

t okenLeft 1Quote = 49; {open single quote}
t okenRi ght 1Quot e = 50; {cl ose single quote}
t oken2Quote = 51; {doubl e quot e}

t okenlQuote = 52; {singl e quote}

t okenSeni col on = 53;

t okenPer cent = 54;

t okenCaret = 55;

t okenUnder | i ne = 56;

t okenAnper sand = 57;

t okenAt Si gn = 58

t okenBar = 59; {vertical bar}

t okenQuesti on = 60;

t okenPi = 61; {l ower-case pi}

t okenRoot = 62; {square root synbol}
t okenSi gnma = 63; {capital signa}
tokenl ntegral = 64; {integral sign}

t okenM cro = 65;

t okenCapPi = 66; {capital pi}
tokenlnfinity = 67;

t okenCol on = 68

t okenHash = 69; {e.qg. #}

t okenDol | ar = 70;

t okenNoBr eakSpace = 71; {non- br eaki ng space}
t okenFraction = 72;

tokenl ntl Currency = 73;

t okenLeft Si ngQui | | enet =
t okenRi ght Si ngGui | | enet =

74,
75;

t okenPer Thousand = 76;
tokenEl lipsis = 77;

t okenCent er Dot = 78;
tokenNi | = 127;
delinPad = -2;

{ Table selectors for Getlntl ResourceTabl e }

smAor dSel ect Tabl e = 0; { get
smhordwW apTable = 1; { get
smNunber Part sTabl e = 2; { get
smnTokenTabl e = 3; { get
smihi t eSpacelLi st = 4; { get

6-120 Summary of the Script Manager

word break table from'itl2' }
line break table from'itl2' }
nunber parts table from'itl4'
unToken table from'itl4' }

whi t espace table from'itl4' }

}

CHAPTER 6

Script Manager

Data Types

TYPE TokenResults =

(t okenCX, t okenQver fl ow, stri ngOverfl ow, badDel i m
badEndi ng, crash);

Char Byt eTabl e = PACKED ARRAY[0..255] OF Si gnedByte;

TokenType I nt eger

Del i niType ARRAY[0. . 1] OF TokenType;

Conment Type = ARRAY[0..3] OF TokenType;

TokenRec =
RECORD
t heToken: TokenType;
posi tion: Ptr; {pointer into original source}
| engt h: Longl nt ; {length of text in original source}

stringPosition: StringPtr; {Pascal/C string copy of identifier}
END;
TokenRecPtr = "~TokenRec;

TokenBl ock =

RECORD
source: Ptr; {pointer to stream of characters}
sour celLengt h: Longlnt; {length of source streant
t okenLi st : Ptr; {pointer to array of tokens}
t okenLengt h: Longl nt; {maxi mum | ength of TokenLi st}
t okenCount : Longl nt; {nunber tokens generated by tokenizer}
stringlList: Ptr; {pointer to stream of identifiers}
stringlLengt h: Longlint; {length of string list}
stringCount: Longl nt; {nunber of bytes currently used}
doStri ng: Bool ean; {nake strings & put into StringList}
doAppend: Bool ean; {append to TokenLi st rather than replace}
doAl phanuneri c: Bool ean; {identifiers may include nuneric}
doNest : Bool ean; {do comments nest ?}
| eft Del i ns: Del i mType;
rightDelims: Del i mType;
| ef t Corment : Conment Type;
ri ght Comrent : Conment Type;
escapeCode: TokenType; { escape synbol code}
deci mal Code: TokenType;

Summary of the Script Manager 6-121

Jabeue 1duos n

CHAPTER 6

Script Manager
i t| Resource: Handl e; {handle to current script itl4 resource}
reserved: ARRAY [0..7] OF Longlnt; {must be zero!}

END;
TokenBl ockPtr = ~TokenBl ock;

Routines

Checking and Setting the System Direction

FUNCTI ON CGet SysDirection: |Integer;
PROCEDURE Set SysDi recti on (newbDi rection: Integer);

Checking and Setting Script Manager Variables

FUNCTI ON Cet Scri pt Manager Vari abl e
(selector: Integer): Longlnt;

FUNCTI ON Set Scri pt Manager Vari abl e
(selector: Integer; param Longlint): OSErr;

Checking and Setting Script Variables

FUNCTI ON Get Scri ptVariable (script: ScriptCode;
selector: Integer): Longlnt;

FUNCTI ON Set ScriptVariable (script: ScriptCode; selector: Integer;
param Longlnt): OSErr;

Making Keyboard Settings
PROCEDURE KeyScr i pt (code: Integer);

Determining Script Codes From Font Information

FUNCTI ON Font Scri pt: | nteger;

FUNCTI ON Font ToScr i pt (font Nunber: Integer): Integer;
FUNCTION I ntl Script: Integer;

Analyzing Characters

FUNCTI ON CharacterByteType (textBuf: Ptr;textOfset: Integer;
script: ScriptCode): |nteger;

FUNCTI ON Char act er Type (textBuf: Ptr; textOffset: |nteger;
script: ScriptCode): |nteger;
FUNCTI ON Fi |l | ParseTabl e (VAR tabl e: CharByteTabl ¢;

script: ScriptCode): Bool ean;

6-122 Summary of the Script Manager

CHAPTER 6

Script Manager

Directly Accessing International Resources

PROCEDURE Cl ear | nt | Resour ceCache;
FUNCTI ON CGet I ntl Resource (thel D: Integer): Handl e;

PROCEDURE Get I nt| Resour ceTabl e
(script: ScriptCode;tabl eCode: I|nteger; VAR
i tl Handl e: Handl e; VAR offset: Longlnt; VAR
| ength: Longlnt);

Tokenization

FUNCTI ON | nt| Tokeni ze (tokenParam TokenBl ockPtr): TokenResults;

Transliteration

FUNCTI ON TransliterateText (srcHandle: Handl e; dstHandl e: Handl e;
target: Integer; srcMask: Longlnt;
script: ScriptCode): OSErr;

Replacing a Script System’s Default Routines

FUNCTI ON Get ScriptUtilityAddress
(selector: Integer; before: Bool ean;
script: ScriptCode): Ptr;
PROCEDURE Set Scri pt UtilityAddress
(selector: Integer; before: Bool ean;
routi neAddr: Ptr; script: ScriptCode);

FUNCTI ON CGet Scri pt QDPat chAddr ess
(trapNum I nteger;
bef ore: Bool ean; forPrinting: Bool ean;
script: ScriptCode): Ptr;
PROCEDURE Set Scri pt QDPat chAddr ess
(trapNum | nteger; before: Bool ean;
forPrinting: Bool ean; routineAddr: Ptr;
script: ScriptCode);

Summary of the Script Manager 6-123

Jabeue 1duos n

CHAPTER 6

Script Manager

C Summary

Constants

Please see page 6-107 for a listing of constants defined in Pascal by the Script Manager.
The constants as defined in C are identical to them.

Data Types

t ypedef unsi gned char TokenResults;
t ypedef char Char Byt eTabl e[256] ;

t ypedef short TokenType;

t ypedef TokenType Del i niType[2];

t ypedef TokenType Conment Type[4] ;

struct TokenRec {
TokenType theToken

Ptr position; /*pointer into original source*/

| ong | engt h; /*length of text in original source*/

StringPtr stringPosition; /*Pascal / C string copy of identifier*/
1

typedef struct TokenRec TokenRec;
t ypedef TokenRec *TokenRecPtr

struct TokenBl ock {

Ptr source; /*pointer to stream of characters*/

| ong sourcelLengt h; /*l ength of source streant/

Ptr tokenList; /*pointer to array of tokens*/

| ong t okenLengt h; /*maxi mum | engt h of TokenLi st */

| ong t okenCount; /*nunber tokens generated by tokenizer*/
Ptr stringlist; /[*pointer to stream of identifiers*/

| ong stringLength; /*length of string list*/

| ong stringCount; /*nunmber of bytes currently used*/

Bool ean doStri ng; /*make strings & put into StringList*/
Bool ean doAppend,; /*append to TokenLi st rather than replace*/
Bool ean doAl phanureri c; /*identifiers may include numeric*/

Bool ean doNest ; /*do coments nest ?*/

6-124 Summary of the Script Manager

CHAPTER 6

Script Manager

TokenType | eftDelins[2];
TokenType rightDelins[2];
TokenType | eft Comment [4] ;
TokenType ri ght Conment [4];

TokenType escapeCode; / *escape synbol code*/
TokenType deci nal Code;
Handl e itl Resource; /*handle to itl4 resource of current script*/
| ong reserved| 8]; /*must be zero!*/
1

t ypedef struct TokenBl ock TokenBl ock;
typedef TokenBl ock *TokenBl ockPtr;

Routines

Checking and Setting the System Direction

#def i ne Get SysDirection() (* (short*) OxOBAC);
pascal void SetSysDirection (short newbDirection);

Checking and Setting Script Manager Variables

pascal |ong Get Scri pt Manager Vari abl e
(short selector);

pascal OSErr Set Scri pt Manager Vari abl e
(short selector, long paran;

Checking and Setting Script Variables

pascal |ong GetScriptVariable
(ScriptCode script, short selector);

pascal OSErr Set Scri ptVari abl e
(Scri pt Code script, short selector, |ong param;

Making Keyboard Settings
pascal void KeyScri pt (short code);

Determining Script Codes From Font Information

pascal short Font Scri pt (void);
pascal short Font ToScri pt (short fontNunber);
pascal short Intl Script (voi d);

Summary of the Script Manager 6-125

Jabeue 1duos n

CHAPTER 6

Script Manager

Analyzing Characters

pascal short CharacterByteType
(Ptr textBuf, short textOfset,
Scri pt Code script);

pascal short CharacterType (Ptr textBuf, short textOfset,
Scri pt Code script);

pascal Bool ean Fill ParseTabl e
(Char Byt eTabl e tabl e, ScriptCode script);

Directly Accessing International Resources

pascal void O earlntl ResourceCache
(void);
pascal Handl e Getlntl Resource
(short thelD);
pascal void Getlntl ResourceTabl e
(ScriptCode script, short tabl eCode,
Handl e *itl Handl e, | ong *offset, long *l ength);

Tokenization

pascal TokenResults Intl Tokenize
(TokenBl ockPtr tokenParam ;

Transliteration

pascal OSErr TransliterateText
(Handl e srcHandl e, Handl e dst Handl e,
short target, long srcMask, ScriptCode script);

Replacing a Script System’s Default Routines

pascal Ptr GetScriptUilityAddress
(short sel ector, Bool ean before,
Scri pt Code script);
pascal void SetScriptUtilityAddress
(short sel ector, Bool ean before,
Ptr routineAddr, ScriptCode script);
pascal Ptr Get Scri pt QDPat chAddr ess
(short trapNum Bool ean before,
Bool ean forPrinting, ScriptCode script);
pascal void SetScript @Pat chAddress
(short trapNum Bool ean before,
Bool ean forPrinting, Ptr routineAddr,
Scri pt Code script);

6-126 Summary of the Script Manager

CHAPTER 6

Script Manager

Assembly-Language Summary

Trap Macros

Trap Macro Names

Pascal name

Font Scri pt

IntlScript

KeyScri pt

Font ToScr i pt

Get Scri pt Manager Vari abl e
Set Scri pt Manager Vari abl e
Get Scri pt Vari abl e

Set Scri pt Vari abl e

Char act er Byt eType

Char act er Type
TransliterateText

Fil |l ParseTabl e
GetScriptUtilityAddress
SetScriptUtilityAddress
Get Scri pt QDPat chAddr ess
Set Scri pt QDPat chAddr ess
I ntl Tokeni ze

Get I nt| Resour ce

Cl ear | nt| ResourceCache
Get I nt| Resour ceTabl e

Global Variables

Trap macro name

_Font Scri pt

_Intl Script

_KeyScri pt

_Font ToScri pt

_Get Scri pt Manager Vari abl e
_Set Scri pt Manager Vari abl e
_Get ScriptVvariable

_Set ScriptVariabl e

_Char act er Byt eType
_CharacterType
_TransliterateText

_Fill ParseTabl e
_GetScriptUtilityAddress
_SetScriptUtilityAddress
_Get Scri pt QDPat chAddr ess
_Set Scri pt QDPat chAddr ess
_Intl Tokeni ze

_CGetlIntl Resource

_CO earlntl ResourceCache
_GetIntl ResourceTabl e

SysDirection System direction; the primary line direction and alignment for text
Boot Dri ve The drive number of the startup volume

Summary of the Script Manager 6-127

Jabeue 1duos n

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	Script Manager
	About the Script Manager
	The Script Manager and the Script Management Syste...
	The Script Manager and Applications
	Evolution of the Script Manager

	Using the Script Manager
	Testing for the Script Manager and Script Systems
	Controlling Settings
	Checking and Setting the System Direction
	Checking and Setting Script Manager Variables
	Checking and Setting Script Variables
	Making Keyboard Settings
	Synchronizing the Font Script and Keyboard Script

	Obtaining Information
	Determining Script Codes From Font Information
	Analyzing Characters
	Directly Accessing International Resources
	Using Currency, Number, and Date Formats
	Using Number Parts
	Retrieving Text From Tokens
	Using Word-Break Tables
	Using Whitespace Information

	Converting Text
	Tokenization
	Transliteration

	Modifying Script Systems
	Replacing a Script System’s Default International ...
	Replacing a Script System’s Default Routines

	Script Manager Reference
	Constants
	Script Codes
	Language Codes
	Region Codes
	Token Codes
	Selectors for Script Manager Variables
	Selectors for Script Variables

	Data Structures
	Token Block Record
	Token Record

	Routines
	Checking and Setting the System Direction
	Checking and Setting Script Manager Variables
	Checking and Setting Script Variables
	Making Keyboard Settings
	Determining Script Codes From Font Information
	Analyzing Characters
	Directly Accessing International Resources
	Tokenization
	Transliteration
	Replacing a Script System’s Default Routines

	Summary of the Script Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Trap Macros
	Global Variables

	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

