

A P P E N D I X A

A

B
uilt-in S

cript S
upport

Built-in Script Support A

This appendix describes support for script-specific behavior that is built into Macintosh
system software. The code and data described here can work with the resources of many
script systems to give the script systems their unique behaviors.

For historical reasons, much of the behavior of the Roman script system is built into
Macintosh system software code resources and ROM. The rest of its behavior is
expressed in international and keyboard resources that are installed in every version of
Macintosh system software. This appendix summarizes that behavior, which represents
the default set of Macintosh text-handling features.

WorldScript I is a script extension, consisting of code that implements table-driven
measuring and drawing behavior for all 1-byte complex script systems. Using tables in
each script system’s international resources, WorldScript I properly performs caret
placement, hit-testing, justification, text layout, and drawing for all supported scripts.
This appendix describes how WorldScript I works and how you can replace some of its
individual routines.

WorldScript II is another script extension that implements table-driven measuring and
drawing behavior for all 2-byte script systems. Like WorldScript I, WorldScript II uses
tables in each script system’s international resources to perform text manipulation
properly for all supported scripts. This appendix describes how WorldScript II works;
note, however, that you cannot replace any of its routines.

Read this appendix for information on Roman character encoding, U.S. Roman
keyboard-layout resource features, and the default Roman sorting routines. Read this
appendix also if you wish to understand how the WorldScript extensions work, and
especially if you intend to replace or modify any of the WorldScript I routines.

Before reading this appendix, read the chapter “Introduction to Text on the Macintosh”
in this book. If you intend to modify WorldScript I, read also the discussion on replacing
a script system’s default routines in the chapter “Script Manager” in this book.
Additional information on sorting behavior can be found in the description of the
string-manipulation resource in the appendix “International Resources” in this book.
Additional information on the keyboard-layout resource can be found in the appendix
“Keyboard Resources” in this book.
A-3

A P P E N D I X A

Built-in Script Support

The Roman Script System A

The Roman script system is available on all localized versions of Macintosh system
software throughout the world. It is not entirely uniform; in different localized systems,
the Roman script may have different features. Nevertheless, its character set and its
sorting and formatting rules provide baselines that non-Roman script systems adopt,
modify, or replace as their needs align with or diverge from Roman conventions.

The Standard Roman character set is implemented by the U.S. keyboard-layout
('KCHR') resource—included with every Macintosh system—and by the
keyboard-layout resources of other localized versions of the Roman script system (such
as French or Spanish).

The standard U.S. Roman sorting routines are the basis for sorting strings composed of
characters from the Standard Roman character set. The routines can be modified with
code in a script system’s string-manipulation resource; many non-U.S. Roman script
systems and many non-Roman script systems override the standard U.S. routines.

The Standard Roman Character Set A
The Standard Roman character set is an extended version of the Macintosh character
set, documented in Volume I of the original Inside Macintosh. The Macintosh character set
is itself an extended version of the ASCII character set. The conventional ASCII
character set, also called low ASCII, defines control codes, symbols, numbers, and letters,
assigning them character codes from $00 through $7F. The Macintosh character set adds
codes from $80 through $D8, representing accented characters and additional symbols.
Current Macintosh file-system sorting, as well as the sorting order used by several Text
Utilities routines such as RelString, is based on the Macintosh character set.
A-4 The Roman Script System

A P P E N D I X A

Built-in Script Support

A

B
uilt-in S

cript S
upport

The Standard Roman character set adds more accented forms, symbols, and diacritical
marks, assigning them character codes from $D9 through $FF. It thus consists of all the
character codes from $00–$FF, and it includes uppercase versions of all of the lowercase
accented forms, a number of symbols, and other forms. See Figure A-1.

The Standard Roman character set is the closest to a universal character encoding that
exists in the Roman script system. The Standard Roman characters are available in most
Roman outline fonts, but not all are available in the Apple bitmapped versions of
Chicago, Geneva, New York, and Monaco.

Figure A-1 The Standard Roman character set

0x

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

xA

xB

xC

xD

xE

xF

1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

..

~

`

..

~

`

..

†

°

¢

£

§

•

¶

ß

®

©

™

´

¨

Æ

Ø

±

¥

µ

ª

º

æ

ø

¿

¡

¬

ƒ

~

…

A

A

O

Œ

œ

~

nbsp

`

~

~

-

—

“

”

‘

’

÷

y

Ÿ

/

¤

‡

˙

‚

„

‰

Â

Ê

Á

Ë

È

Í

Î

Ï

Ì

Ó

Ô

Ò

Ú

Û

Ù

ı

ˆ

˜

¯

˘

·

°

ˆ

`

≠

<

>

∂

π

∑

∏

Ω

◊

″

∨ ∨

∨∨ ..

∨

∨

∇

√

nul dle

soh

stx

etx

eot

enq nak

ack syn

bel etb

bs can

ht em

lf sub

vt esc

ff fs

cr gs

so rs

si us

sp P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

del

`

~

..

..

`

`

..

~

`

`

Â

A

Å

Ç

E

N

O

U

a

a

a

a

a

å

ç

e

e

Â

`

Âe

e

i

i

i

n

o

o

o

o

o

u

u

u

u

`

`

Âl

..

Âu

DC1

DC2

DC3

DC4
The Roman Script System A-5

A P P E N D I X A

Built-in Script Support

Nonprinting Characters A

Table A-1 lists the nonprinting characters in the Standard Roman character set. The
Unicode 1.0 name and the Macintosh character code (in hexadecimal and decimal) are
provided also. (Unicode is an ISO standard for 16-bit universal worldwide
character encoding.)

Table A-1 Nonprinting characters in the Standard Roman character set

Unicode name Hexadecimal Decimal

NULL $00 0

START OF HEADING $01 1

START OF TEXT $02 2

END OF TEXT $03 3

END OF TRANSMISSION $04 4

ENQUIRY $05 5

ACKNOWLEDGE $06 6

BELL $07 7

BACKSPACE $08 8

HORIZONTAL TABULATION $09 9

LINE FEED $0A 10

VERTICAL TABULATION $0B 11

FORM FEED $0C 12

CARRIAGE RETURN $0D 13

SHIFT OUT $0E 14

SHIFT IN $0F 15

DATA LINK ESCAPE $10 16

DEVICE CONTROL ONE $11 17

DEVICE CONTROL TWO $12 18

DEVICE CONTROL THREE $13 19

DEVICE CONTROL FOUR $14 20

NEGATIVE ACKNOWLEDGE $15 21
A-6 The Roman Script System

A P P E N D I X A

Built-in Script Support

A

B
uilt-in S

cript S
upport

Using Roman Character Codes as Delimiters A

Your application may need to use a character code or range of codes to represent
noncharacter data (such as field delimiters). Character codes below $20 are never
affected by the script system. Some of these character codes can be used safely for special
purposes. Note, however, that most characters in this range are already assigned special
meanings by parts of Macintosh system software, such as TextEdit, or by programming
languages like C. Table A-2 lists the low-ASCII characters to avoid in your application.

SYNCHRONOUS IDLE $16 22

END OF TRANSMISSION BLOCK $17 23

CANCEL $18 24

END OF MEDIUM $19 25

SUBSTITUTE $1A 26

ESCAPE $1B 27

FILE SEPARATOR $1C 28

GROUP SEPARATOR $1D 29

RECORD SEPARATOR $1E 30

UNIT SEPARATOR $1F 31

DELETE $7F 127

Table A-2 Low-ASCII characters to avoid as delimiters

Character Hexadecimal representation

Null $00

Home $01

Enter $03

End $04

Help $05

Backspace $08

Tab $09

continued

Table A-1 Nonprinting characters in the Standard Roman character set (continued)

Unicode name Hexadecimal Decimal
The Roman Script System A-7

A P P E N D I X A

Built-in Script Support

For certain writing systems, font layouts (tables that map glyph codes to glyphs) may
use some of these character codes internally, for ligatures or other contextual forms. Also,
as noted in Table A-2, system fonts use codes $11 through $14 for printing special
symbols such as the Apple logo. Thus in unusual situations font changes may have an
impact on the glyph representation of stored character codes with values less than $20,
even though a user cannot generate those codes directly.

Printing Characters A

Table A-3 shows the printing characters that exist in the Standard Roman character set.
Macintosh applications can assume that glyphs for these characters exist in every Roman
font. (However, see also the discussion of Roman fonts on page A-18.) The Unicode 1.0
and PostScript names and Macintosh character code (in hexadecimal and decimal) are
provided along with a glyph example for printable characters. Modified versions of the
Standard Roman character set exist for Croatian, Romanian, Turkish, and Icelandic/
Faroese, with different character assignments for the same codes. See Table A-4 through
Table A-7.

* System fonts use these codes for the printing characters PROPELLER, LOZENGE , RADICAL,
and APPLE LOGO, respectively.

Page up $0B

Page down $0C

Carriage return $0D

F1 through F15 $10

System characters $11, $12, $13, $14*

Clear $1B

Arrow keys $1C, $1D, $1E, $1F

Table A-2 Low-ASCII characters to avoid as delimiters (continued)

Character Hexadecimal representation
A-8 The Roman Script System

A P P E N D I X A

Built-in Script Support

A

B
uilt-in S

cript S
upport

Table A-3 Printing characters in the Standard Roman character set

Glyph Unicode name PostScript name Hexadecimal Decimal

SPACE space $20 32

! EXCLAMATION MARK exclam $21 33

" QUOTATION MARK quotedbl $22 34

NUMBER SIGN numbersign $23 35

$ DOLLAR SIGN dollar $24 36

% PERCENT SIGN percent $25 37

& AMPERSAND ampersand $26 38

' APOSTROPHE-QUOTE quotesingle $27 39

(OPENING PARENTHESIS parenleft $28 40

) CLOSING PARENTHESIS parenright $29 41

* ASTERISK asterisk $2A 42

+ PLUS SIGN plus $2B 43

, COMMA comma $2C 44

- HYPHEN-MINUS hyphen $2D 45

. PERIOD period $2E 46

/ SLASH slash $2F 47

0 DIGIT ZERO zero $30 48

1 DIGIT ONE one $31 49

2 DIGIT TWO two $32 50

3 DIGIT THREE three $33 51

4 DIGIT FOUR four $34 52

5 DIGIT FIVE five $35 53

6 DIGIT SIX six $36 54

7 DIGIT SEVEN seven $37 55

8 DIGIT EIGHT eight $38 56

9 DIGIT NINE nine $39 57

: COLON colon $3A 58

; SEMICOLON semicolon $3B 59

< LESS-THAN SIGN less $3C 60

= EQUALS SIGN equal $3D 61

continued
The Roman Script System A-9

A P P E N D I X A

Built-in Script Support

> GREATER-THAN SIGN greater $3E 62

? QUESTION MARK question $3F 63

@ COMMERCIAL AT at $40 64

A LATIN CAPITAL LETTER A A $41 65

B LATIN CAPITAL LETTER B B $42 66

C LATIN CAPITAL LETTER C C $43 67

D LATIN CAPITAL LETTER D D $44 68

E LATIN CAPITAL LETTER E E $45 69

F LATIN CAPITAL LETTER F F $46 70

G LATIN CAPITAL LETTER G G $47 71

H LATIN CAPITAL LETTER H H $48 72

I LATIN CAPITAL LETTER I I $49 73

J LATIN CAPITAL LETTER J J $4A 74

K LATIN CAPITAL LETTER K K $4B 75

L LATIN CAPITAL LETTER L L $4C 76

M LATIN CAPITAL LETTER M M $4D 77

N LATIN CAPITAL LETTER N N $4E 78

O LATIN CAPITAL LETTER O O $4F 79

P LATIN CAPITAL LETTER P P $50 80

Q LATIN CAPITAL LETTER Q Q $51 81

R LATIN CAPITAL LETTER R R $52 82

S LATIN CAPITAL LETTER S S $53 83

T LATIN CAPITAL LETTER T T $54 84

U LATIN CAPITAL LETTER U U $55 85

V LATIN CAPITAL LETTER V V $56 86

W LATIN CAPITAL LETTER W W $57 87

X LATIN CAPITAL LETTER X X $58 88

Y LATIN CAPITAL LETTER Y Y $59 89

Z LATIN CAPITAL LETTER Z Z $5A 90

[OPENING SQUARE BRACKET bracketleft $5B 91

\ BACK SLASH backslash $5C 92

Table A-3 Printing characters in the Standard Roman character set (continued)

Glyph Unicode name PostScript name Hexadecimal Decimal
A-10 The Roman Script System

A P P E N D I X A

Built-in Script Support

A

B
uilt-in S

cript S
upport

] CLOSING SQUARE BRACKET bracketright $5D 93

^ SPACING CIRCUMFLEX asciicircum $5E 94

_ SPACING UNDERSCORE underscore $5F 95

` SPACING GRAVE grave $60 96

a LATIN SMALL LETTER A a $61 97

b LATIN SMALL LETTER B b $62 98

c LATIN SMALL LETTER C c $63 99

d LATIN SMALL LETTER D d $64 100

e LATIN SMALL LETTER E e $65 101

f LATIN SMALL LETTER F f $66 102

g LATIN SMALL LETTER G g $67 103

h LATIN SMALL LETTER H h $68 104

i LATIN SMALL LETTER I i $69 105

j LATIN SMALL LETTER J j $6A 106

k LATIN SMALL LETTER K k $6B 107

l LATIN SMALL LETTER L l $6C 108

m LATIN SMALL LETTER M m $6D 109

n LATIN SMALL LETTER N n $6E 110

o LATIN SMALL LETTER O o $6F 111

p LATIN SMALL LETTER P p $70 112

q LATIN SMALL LETTER Q q $71 113

r LATIN SMALL LETTER R r $72 114

s LATIN SMALL LETTER S s $73 115

t LATIN SMALL LETTER T t $74 116

u LATIN SMALL LETTER U u $75 117

v LATIN SMALL LETTER V v $76 118

w LATIN SMALL LETTER W w $77 119

x LATIN SMALL LETTER X x $78 120

y LATIN SMALL LETTER Y y $79 121

z LATIN SMALL LETTER Z z $7A 122

continued

Table A-3 Printing characters in the Standard Roman character set (continued)

Glyph Unicode name PostScript name Hexadecimal Decimal
The Roman Script System A-11

A P P E N D I X A

Built-in Script Support

{ OPENING CURLY BRACKET braceleft $7B 123

| VERTICAL BAR bar $7C 124

} CLOSING CURLY BRACKET braceright $7D 125

~ TILDE asciitilde $7E 126

DELETE (nonprinting) $7F 127

Ä LATIN CAPITAL LETTER A DIAERESIS Adieresis $80 128

Å LATIN CAPITAL LETTER A RING Aring $81 129

Ç LATIN CAPITAL LETTER C CEDILLA Ccedilla $82 130

É LATIN CAPITAL LETTER E ACUTE Eacute $83 131

Ñ LATIN CAPITAL LETTER N TILDE Ntilde $84 132

Ö LATIN CAPITAL LETTER O DIAERESIS Odieresis $85 133

Ü LATIN CAPITAL LETTER U DIAERESIS Udieresis $86 134

á LATIN SMALL LETTER A ACUTE aacute $87 135

à LATIN SMALL LETTER A GRAVE agrave $88 136

â LATIN SMALL LETTER A CIRCUMFLEX acircumflex $89 137

ä LATIN SMALL LETTER A DIAERESIS adieresis $8A 138

ã LATIN SMALL LETTER A TILDE atilde $8B 139

å LATIN SMALL LETTER A RING aring $8C 140

ç LATIN SMALL LETTER C CEDILLA ccedilla $8D 141

é LATIN SMALL LETTER E ACUTE eacute $8E 142

è LATIN SMALL LETTER E GRAVE egrave $8F 143

ê LATIN SMALL LETTER E CIRCUMFLEX ecircumflex $90 144

ë LATIN SMALL LETTER E DIAERESIS edieresis $91 145

í LATIN SMALL LETTER I ACUTE iacute $92 146

ì LATIN SMALL LETTER I GRAVE igrave $93 147

î LATIN SMALL LETTER I CIRCUMFLEX icircumflex $94 148

ï LATIN SMALL LETTER I DIAERESIS idiaresis $95 149

ñ LATIN SMALL LETTER N TILDE ntilde $96 150

ó LATIN SMALL LETTER O ACUTE oacute $97 151

ò LATIN SMALL LETTER O GRAVE ograve $98 152

Table A-3 Printing characters in the Standard Roman character set (continued)

Glyph Unicode name PostScript name Hexadecimal Decimal
A-12 The Roman Script System

A P P E N D I X A

Built-in Script Support

A

B
uilt-in S

cript S
upport

ô LATIN SMALL LETTER O CIRCUMFLEX ocircumflex $99 153

ö LATIN SMALL LETTER O DIAERESIS odieresis $9A 154

õ LATIN SMALL LETTER O TILDE otilde $9B 155

ú LATIN SMALL LETTER U ACUTE uacute $9C 156

ù LATIN SMALL LETTER U GRAVE ugrave $9D 157

û LATIN SMALL LETTER U CIRCUMFLEX ucircumflex $9E 158

ü LATIN SMALL LETTER U DIAERESIS udieresis $9F 159

† DAGGER dagger $A0 160

° DEGREE SIGN degree $A1 161

¢ CENT SIGN cent $A2 162

£ POUND SIGN sterling $A3 163

§ SECTION SIGN section $A4 164

• BULLET bullet $A5 165

¶ PARAGRAPH SIGN paragraph $A6 166

ß LATIN SMALL LETTER SHARP S germandbls $A7 167

® REGISTERED TRADEMARK SIGN registered $A8 168

© COPYRIGHT SIGN copyright $A9 169

™ TRADEMARK trademark $AA 170

´ SPACING ACUTE acute $AB 171

¨ SPACING DIAERESIS dieresis $AC 172

≠ NOT EQUAL TO notequal $AD 173

Æ LATIN CAPITAL LETTER AE AE $AE 174

Ø LATIN CAPITAL LETTER O SLASH Oslash $AF 175

∞ INFINITY infinity $B0 176

± PLUS-OR-MINUS SIGN plusminus $B1 177

≤ LESS THAN OR EQUAL TO lessequal $B2 178

≥ GREATER THAN OR EQUAL TO greaterequal $B3 179

¥ YEN SIGN yen $B4 180

µ MICRO SIGN mu $B5 181

∂ PARTIAL DIFFERENTIAL partialdiff $B6 182

continued

Table A-3 Printing characters in the Standard Roman character set (continued)

Glyph Unicode name PostScript name Hexadecimal Decimal
The Roman Script System A-13

A P P E N D I X A

Built-in Script Support

∑ N-ARY SUMMATION summation $B7 183

∏ N-ARY PRODUCT product $B8 184

π GREEK SMALL LETTER PI pi $B9 185

∫ INTEGRAL integral $BA 186

ª FEMININE ORDINAL INDICATOR ordfeminine $BB 187

º MASCULINE ORDINAL INDICATOR ordmasculine $BC 188

Ω OHM Omega $BD 189

æ LATIN SMALL LETTER AE ae $BE 190

ø LATIN SMALL LETTER O SLASH oslash $BF 191

¿ INVERTED QUESTION MARK questiondown $C0 192

¡ INVERTED EXCLAMATION MARK exclamdown $C1 193

¬ NOT SIGN logicalnot $C2 194

√ SQUARE ROOT radical $C3 195

ƒ LATIN SMALL LETTER SCRIPT F florin $C4 196

≈ ALMOST EQUAL TO approxequal $C5 197

∆ INCREMENT Delta $C6 198

« LEFT POINTING GUILLEMET guillemotleft $C7 199

» RIGHT POINTING GUILLEMET guillemotright $C8 200

… HORIZONTAL ELLIPSIS ellipsis $C9 201

NON-BREAKING SPACE $CA 202

À LATIN CAPITAL LETTER A GRAVE Agrave $CB 203

Ã LATIN CAPITAL LETTER A TILDE Atilde $CC 204

Õ LATIN CAPITAL LETTER O TILDE Otilde $CD 205

Œ LATIN CAPITAL LETTER O E OE $CE 206

œ LATIN SMALL LETTER O E oe $CF 207

– EN DASH endash $D0 208

— EM DASH emdash $D1 209

“ DOUBLE TURNED COMMA QUOTATION
MARK

quotedblleft $D2 210

” DOUBLE COMMA QUOTATION MARK quotedblright $D3 211

‘ SINGLE TURNED COMMA QUOTATION
MARK

quoteleft $D4 212

Table A-3 Printing characters in the Standard Roman character set (continued)

Glyph Unicode name PostScript name Hexadecimal Decimal
A-14 The Roman Script System

A P P E N D I X A

Built-in Script Support

A

B
uilt-in S

cript S
upport

’ SINGLE COMMA QUOTATION MARK quoteright $D5 213

÷ DIVISION SIGN divide $D6 214

◊ LOZENGE lozenge $D7 215

ÿ LATIN SMALL LETTER Y DIAERESIS ydieresis $D8 216

Ÿ LATIN CAPITAL LETTER Y DIAERESIS Ydieresis $D9 217

⁄ FRACTION SLASH fraction $DA 218

¤ CURRENCY SIGN currency $DB 219

‹ LEFT POINTING SINGLE GUILLEMET guilsingleleft $DC 220

› RIGHT POINTING SINGLE GUILLEMET guilsingleright $DD 221

fi (no Unicode designation) fi $DE 222

fl (no Unicode designation) fl $DF 223

‡ DOUBLE DAGGER daggerdbl $E0 224

· MIDDLE DOT periodcentered $E1 225

‚ LOW SINGLE COMMA QUOTATION MARK quotesinglbase $E2 226

„ LOW DOUBLE COMMA QUOTATION
MARK

quotedblbase $E3 227

‰ PER MILLE SIGN perthousand $E4 228

Â LATIN CAPITAL LETTER A CIRCUMFLEX Acircumflex $E5 229

Ê LATIN CAPITAL LETTER E CIRCUMFLEX Ecircumflex $E6 230

Á LATIN CAPITAL LETTER A ACUTE Aacute $E7 231

Ë LATIN CAPITAL LETTER E DIAERESIS Edieresis $E8 232

È LATIN CAPITAL LETTER E GRAVE Egrave $E9 233

Í LATIN CAPITAL LETTER I ACUTE Iacute $EA 234

Î LATIN CAPITAL LETTER I CIRCUMFLEX Icircumflex $EB 235

Ï LATIN CAPITAL LETTER I DIAERESIS Idieresis $EC 236

Ì LATIN CAPITAL LETTER I GRAVE Igrave $ED 237

Ó LATIN CAPITAL LETTER O ACUTE Oacute $EE 238

Ô LATIN CAPITAL LETTER O CIRCUMFLEX Ocircumflex $EF 239

ð APPLE LOGO Apple $F0 240

Ò LATIN CAPITAL LETTER O GRAVE Ograve $F1 241

Ú LATIN CAPITAL LETTER U ACUTE Uacute $F2 242

Û LATIN CAPITAL LETTER U CIRCUMFLEX Ucircumflex $F3 243

continued

Table A-3 Printing characters in the Standard Roman character set (continued)

Glyph Unicode name PostScript name Hexadecimal Decimal
The Roman Script System A-15

A P P E N D I X A

Built-in Script Support

Variations in the Character Set A

Two types of variations from the Standard Roman character set can occur. First, several
languages and regional variations of Roman reassign parts of the character set; second,
many specialized Roman fonts completely override the character set to provide other
types of symbols.

Table A-4 shows the glyph assignments in the Croatian version of the Roman character
set that diverge from the Standard Roman character set, their Unicode and PostScript
names, and their Macintosh character codes in hexadecimal and decimal. For example,
the code (hexadecimal $A9) that is assigned to the copyright sign in the Standard Roman
character set is replaced by the Scaron (that is, the Roman capital letter “S” with a hacek).
The copyright sign appears later at position $D9, which is assigned to the Latin capital
letter “Y” diaeresis in the Standard Roman character set.

Ù LATIN CAPITAL LETTER U GRAVE Ugrave $F4 244

ı LATIN SMALL LETTER DOTLESS I dotlessi $F5 245

ˆ MODIFIER LETTER CIRCUMFLEX circumflex $F6 246

˜ SPACING TILDE tilde $F7 247

¯ SPACING MACRON macron $F8 248

˘ SPACING BREVE breve $F9 249

˙ SPACING DOT ABOVE dotaccent $FA 250

˚ SPACING RING ABOVE ring $FB 251

¸ SPACING CEDILLA cedilla $FC 252

˝ SPACING DOUBLE ACUTE hungarumlaut $FD 253

˛ SPACING OGONEK ogonek $FE 254

ˇ MODIFIER LETTER HACEK caron $FF 255

Table A-4 Croatian variations from the Standard Roman character set

Glyph Unicode name PostScript name Hexadecimal Decimal

S LATIN CAPITAL LETTER S HACEK Scaron $A9 169

Z LATIN CAPITAL LETTER Z HACEK Zcaron $AE 174

∆ INCREMENT Delta $B4 180

s LATIN SMALL LETTER S HACEK scaron $B9 185

z LATIN SMALL LETTER Z HACEK zcaron $BE 190

Table A-3 Printing characters in the Standard Roman character set (continued)

Glyph Unicode name PostScript name Hexadecimal Decimal
A-16 The Roman Script System

A P P E N D I X A

Built-in Script Support

A

B
uilt-in S

cript S
upport

Table A-5 shows the glyph assignments in the Romanian version of the Roman character
set that diverge from the Standard Roman character set, their Unicode and PostScript
names, and their Macintosh character codes in hexadecimal and decimal.

B LATIN CAPITAL LETTER C ACUTE Cacute $C6 198

C LATIN CAPITAL LETTER C HACEK Ccaron $C8 200

D LATIN CAPITAL LETTER D BAR Dmacron $D0 208

ð APPLE LOGO apple $D8 216

© COPYRIGHT SIGN copyright $D9 217

Æ LATIN CAPITAL LETTER A E AE $DE 222

» RIGHT POINTING GUILLEMET guillemotright $DF 223

– EN DASH endash $E0 224

b LATIN SMALL LETTER C ACUTE cacute $E6 230

c LATIN SMALL LETTER C HACEK ccaron $E8 232

e LATIN SMALL LETTER D BAR dmacron $F0 240

π GREEK SMALL LETTER PI pi $F9 249

Ë LATIN CAPITAL LETTER E DIAERESIS Edieresis $FA 250

Ê LATIN CAPITAL LETTER E CIRCUMFLEX Ecircumflex $FD 253

æ LATIN SMALL LETTER A E ae $FE 254

Table A-5 Romanian variations from the Standard Roman character set

Glyph Unicode name PostScript name Hexadecimal Decimal

A LATIN CAPITAL LETTER A BREVE Abreve $AE 174

R LATIN CAPITAL LETTER S CEDILLA
(COMMA VARIANT)

Scedilla $AF 175

a LATIN SMALL LETTER A BREVE abreve $BE 190

r LATIN SMALL LETTER S CEDILLA
 (COMMA VARIANT)

scedilla $BF 191

T LATIN CAPITAL LETTER T CEDILLA
(COMMA VARIANT)

Tcedilla $DE 222

t LATIN SMALL LETTER T CEDILLA
(COMMA VARIANT)

tcedilla $DF 223

Table A-4 Croatian variations from the Standard Roman character set (continued)

Glyph Unicode name PostScript name Hexadecimal Decimal
The Roman Script System A-17

A P P E N D I X A

Built-in Script Support

Table A-6 shows the glyph assignments in the Turkish version of the Roman character set
that diverge from the Standard Roman character set, their Unicode and PostScript
names, and their Macintosh character codes in hexadecimal and decimal.

Table A-7 shows the glyph assignments in the Icelandic and Faroese versions of the
Roman character set that diverge from the Standard Roman character set, their Unicode
and PostScript names, and their Macintosh character codes in hexadecimal and decimal.

In addition to regional variations in the character set, the Roman script system in
particular contains many fonts with unique glyphs. Since the character encoding is
limited to 256 values, specialized fonts such as Symbol and ITC Zapf Dingbats override
the Standard Roman character encoding. For example, in the Standard Roman character
set $70 corresponds to lowercase “p”, but it is the numeric symbol for pi (π) in the
Symbol font, an outlined square (❐) in Zapf Dingbats, and the musical symbol
pianissimo for play quietly in the Sonata font. Hence, there is no guarantee that a Roman
character code will always represent the same character in every font.

Table A-6 Turkish variations from the Standard Roman character set

Glyph Unicode name PostScript name Hexadecimal Decimal

G LATIN CAPITAL LETTER G BREVE Gbreve $DA 218

g LATIN SMALL LETTER G BREVE gbreve $DB 219

I LATIN CAPITAL LETTER I DOT Idot $DC 220

ı LATIN SMALL LETTER DOTLESS I dotlessi $DD 221

Q LATIN CAPITAL LETTER S CEDILLA Scedilla $DE 222

q LATIN SMALL LETTER S CEDILLA scedilla $DF 223

Table A-7 Icelandic and Faroese variations from the Standard Roman character set

Glyph Unicode name PostScript name Hexadecimal Decimal

Y LATIN CAPITAL LETTER Y
ACUTE

Yacute $A0 160

D LATIN CAPITAL LETTER ETH Eth $DC 220

d LATIN SMALL LETTER ETH eth $DD 221

P LATIN CAPITAL LETTER THORN Thorn $DE 222

p LATIN SMALL LETTER THORN thorn $DF 223

y LATIN SMALL LETTER Y ACUTE yacute $E0 224
A-18 The Roman Script System

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport

The U.S. Keyboard-Layout ('KCHR') Resource A
The U.S. system software keyboard-layout resource (resource type 'KCHR', ID = 0) is
included with every Macintosh system. It implements the Standard Roman character set
shown in Figure A-1 on page A-5. The structure of the keyboard-layout resource is
documented in the appendix “Keyboard Resources” in this book. This section describes
in general how the U.S. 'KCHR' resource handles key combinations and dead keys.

The U.S. system software’s keyboard-layout resource makes it possible to enter accented
forms in the Standard Roman character set with dead keys, designated keys or
modifier-plus-key combinations that produce no immediate effect when pressed but
instead affect the character or characters produced by the next keys typed, called
completer keys. Users can enter all the accented forms in the Standard Roman character
set with dead keys. For example, pressing Option-E on the U.S. keyboard produces
nothing (no event is posted), but subsequently typing “e” produces “é”.

Note
Other keyboard layouts may produce accented characters in other ways.
On the French keyboard ('KCHR' resource ID = 1), for example,
pressing Option-E directly produces “é”. ◆

The U.S. keyboard-layout resource provides the following key-combination features for
consistency:

■ Because the Shift key is ignored if the Command key is pressed, the Caps Lock key is
also ignored if the Command key is pressed.

■ Handling of the Option-Shift and Option–Caps Lock key combinations is based on the
following principles:
n If either the Option or the Option-Shift key combination produces a letter, then the

Option–Caps Lock key combination produces the same character as the Option, not
the Option-Shift, key combination.

n If the Option key combination is a dead key for a particular accent, then the
Option-Shift key combination produces the accent directly.

A no-match character (also called a default completion character) is the character that is
produced when the keystroke following a dead key is either a space or a key for a
character that cannot take the accent corresponding to the dead key. In system software
versions 7.0 and later, default completion characters are “real” accent characters instead
of low-ASCII approximations.
The Roman Script System A-19

A P P E N D I X A

Built-in Script Support
Standard Sorting Routines A
The standard Macintosh sorting routines are contained in the Pack 6 resource, a system
code resource (type = 'PACK', ID = 6) initialized at startup. As they process each
character or sorting unit, the standard routines first call equivalent routines in the
current script system’s string-manipulation ('itl2') resource. Those routines, called
sorting hooks, are described with the string-manipulation resource in the appendix
“International Resources” in this book.

The U.S. string-manipulation ('itl2') resource contains only empty sorting hooks.
Other localized versions of the Roman script system—and non-Roman script systems—
provide their own string-manipulation resources that may have nonempty routines to
modify or replace any of the standard routines, on a character-by-character basis.

Table A-8 describes the sorting behavior implemented by the standard Macintosh sorting
routines. All characters of the Standard Roman character set are sorted. Primary sorting
is shown in vertical order; secondary sorting is horizontal. This is the default sorting
behavior used by the Text Utilities, and is appropriate for U.S. and similar localized
versions of the Roman script system. All Text Utilities sorting routines (other than
RelString and EqualString) use the sorting behavior specified in the
string-manipulation resource, which may or may not be identical to the standard
behavior. (RelString and EqualString use an invariant sorting behavior that is
described in the chapter “Text Utilities” in this book.)

Table A-8 Standard sorting order (for Standard Roman character set)

Primar
y Secondary

$00 NUL

…

$1F US

$20 space ($20) non-breaking space ($CA)

$21 !

$22 " « ($C7) » ($C8) “ ($D2) ” ($D3)

$23 #

$24 $

$25 %

$26 &
A-20 The Roman Script System

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
$27 ' ‘ ($D4) ’ ($D5)

$28 (

…

$40 @

$41 A Á À Â Ä Ã Å a á à â ä ã å

$42 B b

$43 C Ç c ç

$44 D d

$45 E É È Ê Ë e é è ê ë

…

$49 I Í Ì Î Ï i ı í ì î ï

…

$4E N Ñ n ñ

$4F O Ó Ò Ô Ö Õ Ø o ó ò ô ö õ ø

…

$55 U Ú Ù Û Ü u ú ù û ü

…

$59 Y y ÿ Ÿ

$5A Z z

$5B [

…

$60 `

$7B {

…

$7F DEL

$A0 †

…

Table A-8 Standard sorting order (for Standard Roman character set) (continued)

Primar
y Secondary
The Roman Script System A-21

A P P E N D I X A

Built-in Script Support
Low-ASCII characters (other than letters) not listed in Table A-8 have primary sorting
only and are sorted according to numeric code. Low-ASCII letters not listed in Table A-8
have a primary sorting order that is alphabetical and a secondary sorting order of
uppercase followed by lowercase (like “B b”). All characters with codes above $A0 that
are not listed in Table A-8 are sorted after $A0 according to numeric character code
(except for ligatures; see note on sorting of ligatures).

Note the following details and anomalies in the standard Macintosh sorting order:

■ The symbols ª ($BB) and º ($BC) are explicitly treated as symbols, not as letters, and
their primary sorting positions are not respectively the same as A and O.

■ The en-dash ($D0) and em-dash ($D1) do not have the same primary sorting position
as hyphen-minus ($2D).

■ The double low quotation mark „ ($E3) does not have the same primary sorting
position as quotation " ($22).

■ The single low quotation mark ‚ ($E2), and the left and right single guillemet ‹ › ($DC,
$DD) do not have the same primary sorting position as apostrophe ' ($27).

■ The secondary sorting position for dotless-lower-i ı ($F5) is indeterminate. It sorts at
exactly the same place (primary and secondary order) as regular lower i ($69).

■ The character Ÿ does not sort between Y and y.

Sorting of ligatures

For a ligature, the primary sorting position is equivalent to the separate
characters that make up the ligature. The secondary sorting position is
just following the equivalent separate characters. Ligatures are sorted by
the following first and second characters:

Ligature First
character

Second
character

Æ A E

æ a e

fi f i

fl f l

Œ O E

œ o e

ß s s
A-22 The Roman Script System

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
Diacritical Stripping and Case Conversion A
The Text Utilities routines LowercaseText, UppercaseText, StripDiacritics,
and UppercaseStripDiacritics use information in a script system’s
string-manipulation ('itl2') resource to perform their tasks. A Roman
string-manipulation resource is included with every Macintosh system; the U.S. version
of the Roman string-manipulation resource converts case and strips diacritical marks
according to the following rules:

■ The unaccented letters A–Z and a–z are converted to unaccented a–z and A–Z,
respectively, by case conversion. They are unaffected by stripping.

■ Accented versions (Å, ê, Ñ) are converted to equivalent unaccented versions (A, e, N)
by stripping.

■ Accented versions (Å, ê, Ñ) are converted to identically accented case-changed
versions (å, Ê, ñ) by case conversion.

■ Ligatures are unaffected by stripping, but are converted as appropriate by case
conversion. Only the ligatures ß, fi, and fl, which have no uppercase versions, are
unaffected by case conversion as well as by stripping.

U.S. International Resources and Keyboard Resources A
When Macintosh system software is localized for a non-U.S. market, its system script
may be Roman or non-Roman. In either case, it contains replacements for or
modifications to the U.S. international resources and keyboard resources. Any U.S.
Roman resource that is not replaced is included with the localized system.

Table A-9 shows which international resources are included in the U.S. system software,
and how localized versions of the system software (and secondary scripts) add resources
or replace them in the System file. Note that all non-Roman script systems and most
localized versions of system software include localized versions of the 'itl0', 'itl1',
'itl2', and 'itl4' resources. (Not all non-U.S. Roman script systems add a non-U.S.
'itl4'.) Some non-Roman systems may also use optional 'itl5' or 'trsl' resources.

Table A-9 International resources in U.S. system software

Resource type U.S. system software
including Roman
script system

Localized versions
of system software or
other script systems

'itlc' Roman 'itlc' May replace 'itlc'

'itlm' Default 'itlm' May replace 'itlm'

'itlb' Roman 'itlb' May add non-Roman 'itlb'

continued
The Roman Script System A-23

A P P E N D I X A

Built-in Script Support
Table A-10 lists the keyboard resources that are included in the U.S. system software and
shows how localized versions of the system software (and auxiliary scripts) add
resources or replace them in the System file. Note that all localized versions of system
software and all non-Roman script systems include at least one keyboard-layout
resource and keyboard icon family; some provide a key-remap resource; and none need
provide a key-map resource or key-caps resource.

For more information on these resources, see the appendixes “International Resources”
and “Keyboard Resources” in this book.

* ID number equal to corresponding 'KCHR' ID number

'itl0' U.S. 'itl0' Adds non-U.S. 'itl0'

'itl1' U.S. 'itl1' Adds non-U.S. 'itl1'

'itl2' U.S. 'itl2' Adds non-U.S. 'itl2'

'itl4' U.S. 'itl4' May add non-U.S. 'itl4'

'itl5' (none) May add non-Roman 'itl5'

'trsl' (none) May add non-Roman 'trsl'

Table A-10 Keyboard resources in U.S. system software

Resource type U.S. system software
including Roman
script system

Localized versions
of system software or
other script systems

'itlk' (none) May add an 'itlk'*

'KCHR' U.S. 'KCHR' Adds non-U.S. 'KCHR'

'KSWP' Standard 'KSWP' May replace 'KSWP'

'KMAP' All necessary 'KMAP's (none)

'kcs#' U.S. 'kcs#' Adds non-U.S. 'kcs#'*

'kcs4' U.S. 'kcs4' Adds non-U.S. 'kcs4'*

'kcs8' U.S. 'kcs8' Adds non-U.S. 'kcs8'*

'KCAP' All necessary 'KCAP's (none)

Table A-9 International resources in U.S. system software (continued)

Resource type U.S. system software
including Roman
script system

Localized versions
of system software or
other script systems
A-24 The Roman Script System

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
WorldScript I A

WorldScript I is a system extension, available with system software version 7.1 and later,
that can support all types of 1-byte complex script systems. It contains code that
implements many script-aware text-manipulation routines, eliminating the need for each
script to maintain its own code extensions.

WorldScript I is a single file located in the Extensions folder within the System Folder on
the user’s Macintosh computer. It installs and initializes all compatible script systems
present in the System Folder, and provides each with a set of standard routines. Script
systems compatible with WorldScript I are called universal scripts, because they make use
of the universally applicable WorldScript I routines.

About WorldScript I A
Script systems developed prior to system software version 7.1 contain their own code to
handle language-specific text processing. Each script system also has its own
initialization and configuration code, installing itself at startup and adding its own
modifications to the system. This process can result in a layering of patches to the same
traps, inconsistent behavior, and inefficient use of memory.

WorldScript I redefines what a script system consists of by combining the executable
code for many routines for all 1-byte script systems. It includes initialization and
formatting routines that support all contextual forms required by all 1-byte scripts;
script-specific behavior is encoded in resource-based tables. This approach reduces
memory requirements for multiscript systems and avoids layering of patches.

WorldScript I routes script-aware calls through each universal script’s own dispatch table;
the dispatch table initially points back to the script utility routines in WorldScript I. This
indirection allows your application to add to or replace existing routines on a
script-by-script basis. Script Manager calls allow you to modify or add to any script’s
utility routine or patch. You can even replace an individual script system’s routine
completely if you need features significantly different from those provided by
WorldScript I. Script utilities and dispatch tables are described in the next section and
under “Flexible Dispatching Method” beginning on page A-28.

Shared Script Utilities and QuickDraw Patches A

The script utilities are the low-level routines through which an individual script system
implements script-aware Text Utilities, QuickDraw, and Script Manager routines. When
an application makes a script-aware call, the script management system converts it to a
script utility call and passes it on to the appropriate script system. Previous to system
software version 7.1, individual script systems provided their own script utilities. With
WorldScript I, a single set of script utilities can work with all 1-byte complex scripts.
WorldScript I A-25

A P P E N D I X A

Built-in Script Support
Two Script Manager routines, GetScriptUtilityAddress and
SetScriptUtilityAddress, allow you to access and override a script’s
utility routines.

Table A-11 lists the script utilities implemented by WorldScript I, along with the chapters
in this book that describe their corresponding high-level routines.

* The Script Manager handles these routines directly if the necessary tables are in the script’s
'itl2' resource. Otherwise, they are passed to WorldScript I.

† The Script Manager handles these routines directly if the standard selectors documented in this
book are used. The routines are passed to WorldScript I if private selectors are used.

Table A-11 Script utilities supported by WorldScript I

Script utility Chapter in this book

CharacterByteType Script Manager

CharacterType Script Manager

CharToPixel QuickDraw Text

DrawJustified QuickDraw Text

FillParseTable Script Manager

FindScriptRun* Text Utilities

FindWordBreaks* Text Utilities

GetScriptQDPatchAddress Script Manager

GetScriptUtilityAddress Script Manager

GetScriptVariable† Script Manager

HiliteText QuickDraw Text

MeasureJustified QuickDraw Text

PixelToChar QuickDraw Text

PortionLine QuickDraw Text

SetScriptQDPatchAddress Script Manager

SetScriptUtilityAddress Script Manager

SetScriptVariable Script Manager

TransliterateText Script Manager

VisibleLength QuickDraw Text

NOTE WorldScript I supports the following script utilities for backward compatibility. They call
newer versions of themselves to handle their tasks. They are: Pixel2Char (calls PixelToChar),
Char2Pixel (calls CharToPixel), DrawJust (calls DrawJustified), MeasureJust (calls
MeasureJustified), PortionText (calls PortionLine), CharByte (calls
CharacterByteType), CharType (calls CharacterType), ParseTable (calls
FillParseTable), Transliterate (calls TransliterateText).
A-26 WorldScript I

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
WorldScript I also patches four standard QuickDraw text-handling routines: StdText,
StdTxMeas, MeasureText, and FontMetrics. (FontMetrics is a Font Manager
routine, but for simplicity all four routines and patches are referred to in this appendix as
QuickDraw routines and patches.) The purpose of the QuickDraw patches is to lay out
text according to context and line direction. The original QuickDraw routine is called
after the text is laid out properly. The QuickDraw dispatch table has special entries to
support developer patching of routines for printing as well as for display.

Two Script Manager routines, GetScriptQDPatchAddress and
SetScriptQDPatchAddress, allow you to access and override a script’s
QuickDraw patches.

Table A-12 lists the QuickDraw patches implemented by WorldScript I, along with the
chapters in this book that describe the original routines.

Table-Based Script Behavior A

The shared script utilities determine script-specific characteristics from the tables in each
script system’s international resources.

WorldScript I uses tables in a script system’s string-manipulation ('itl2') resource for
analyzing character types, finding word breaks, and performing case conversion. This
use of tables predates the existence of WorldScript I, but WorldScript I extends the use of
tables to all routines for 1-byte complex script systems. New tables that are required are
put in the script’s encoding/rendering ('itl5') resource, using a tagged-table index for
storage and retrieval. For example, the contextual formatting routines (described in the
next section) uses tables in the encoding/rendering resource.

The international resources are described in the appendix “International Resources” in
this book.

Contextual Formatting Routines A

WorldScript I uses a set of table-driven routines to format text according to each script’s
requirements and attributes. The WorldScript I script utilities and QuickDraw patches
that perform text formatting and layout rely on these table-driven routines. Each script
has several tables in its encoding/rendering ('itl5') resource to specify the display
characteristics of its text.

Table A-12 QuickDraw patches supported by WorldScript I

QuickDraw patch Chapter in this book

FontMetrics Font Manager

MeasureText QuickDraw Text

StdText QuickDraw Text

StdTxMeas QuickDraw Text
WorldScript I A-27

A P P E N D I X A

Built-in Script Support
Flexible Dispatching Method A

Each enabled script system has a script record, a private data structure that holds
information and addresses pertinent to that script. When an application makes a
script-aware call, the script management system determines the current script and
consults that script’s script record for the address of the script’s dispatch routine (which
is actually part of WorldScript I). It passes the call to the dispatch routine, which uses the
script’s dispatch table to execute the proper script utility. Every script system has its
own pointer to the dispatch routine and its own dispatch table, separate from other
scripts. When the application makes a script-aware QuickDraw call, WorldScript I uses
the script’s QuickDraw dispatch table to execute the proper QuickDraw patch.

At run time, the application call has been converted to a lower-level script utility call or
QuickDraw call. Each script utility call includes a script utility selector, a number that the
dispatch routine uses to select the proper routine from the dispatch table.

Initialization Sequence A
The startup code for enabling all available 1-byte complex script systems and script
utility routines is in WorldScript I. WorldScript I is located in the Extensions folder; its
file type is 'scri' and its creator is 'univ'.

At startup, WorldScript I does the following:

1. It checks for a valid machine configuration. WorldScript I works on Macintosh Plus
models and later; it requires Script Manager version 2.0 or later and system software
version 7.1 or later.

2. WorldScript I gets the number of valid 1-byte script bundles in the System file. A valid
script bundle consists of a set of international resources ('itlb' and 'itl5'
required, 'itl0', 'itl1', 'itl2', and 'itl4' optional) and at least one font in
the script system’s ID range. The smsfSingByte bit in the international bundle
('itlb') resource must also be set to indicate that the script is 1-byte.
If no 1-byte script bundles are present, WorldScript I does not load any of its script
utilities or QuickDraw patches. It exits without signaling an error.

3. If one or more valid script bundles are present, WorldScript I does the following for
each script:
1. It checks for enough memory to load the script.
2. It checks the smsfUnivExt bit in the script’s international bundle resource. If the

flag is set, the script system is a universal script system, and WorldScript I
proceeds. If the flag is clear, WorldScript I goes on to the next script.

3. It creates a script record and initializes the record with the script’s values.
4. If this is the first universal 1-byte script allocated, WorldScript I loads its script

utilities and QuickDraw patches into the system heap.
A-28 WorldScript I

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
5. WorldScript I allocates the script’s dispatch table and sets the table’s elements to
point to the WorldScript I script utilities and QuickDraw patches or to the original
Roman script utilities and QuickDraw calls, as appropriate for the script.

6. WorldScript I makes default settings for the script system based on information
from the configuration table in the script’s encoding/rendering ('itl5') resource.
It then looks in the Preferences folder for a script preferences file. If one is found,
and if the file contains a configuration resource (type 'CNFG') for this script
system, WorldScript I uses that resource to reinitialize the script record’s fields.
If no preferences file is available, WorldScript I keeps the default settings loaded
from the encoding/rendering resource.

7. WorldScript I initializes Script Manager data structures that point to this
script record.

Any initialization errors that occur are reported to the user via the Notification Manager.

How Calls Are Dispatched A
In every script system that is compatible with WorldScript I, the dispatch-table element
for every script utility and QuickDraw patch consists of two pointers: one to the
WorldScript I implementation of the routine and one to the original routine. In all cases,
the WorldScript I routine executes first. In some cases, WorldScript I calls the original
routine after its own; in other cases, the pointer to the original routine is NIL and the
WorldScript I routine is all that executes. See Figure A-2. This design allows you to place
a patched routine so that it executes either before, in place of, or after the WorldScript I
routine and allows you to either call the original routine or not call it.

Figure A-2 Dispatch table entry for script utilities and QuickDraw patches

...

...

...

pascal StdText():

...

...

...

Original code

Address of script’s

patch to stdText

Address of

original stdText

...

...

...

pascal ScriptStdText():

...

...

...

WorldScript I
WorldScript I A-29

A P P E N D I X A

Built-in Script Support
Every script-aware call to system software that executes as a script utility goes through
the _ScriptUtil trap ($A8B5). The script management system handles some of those
calls, such as GetSMVariable, itself; other calls, such as DrawJustified, it passes to a
script system through the script system’s script record. Those calls are listed in Table
A-11 on page A-26. The script system uses its script utility dispatch table to call the right
script utility. See Figure A-3.

When it receives a script utility call, a script’s dispatch routine does the following:

1. It checks to see if the call (as defined by the script utility selector) is within the range
of routines handled by the script.

2. It gets the address of the script utility from the script’s dispatch table, using the script
utility selector.

3. It replaces the selector on the stack with the address of its own script record.

4. It jumps into the WorldScript I routine obtained in step 2. As the routine executes, it
obtains script-specific characteristics from the script record passed to it in step 3.

5. The WorldScript I routine gets the address of the original (Roman) routine from the
dispatch table and, if it is not NIL, jumps to that routine upon completion.

Figure A-3 How calls are dispatched to the 1-byte script utilities

txFont

Script-aware

call Script
management

system Gets script
from current

font

thePort
_ScriptUtil

Gets address of
script’s dispatch routine

Script record

Jumps WorldScript I
dispatch
routine Gets address of

WorldScript I
script utility

Script utility
dispatch table

Jumps to
WorldScript I
script utility

WorldScript I
routine

1-byte extension

routine. 1-byte extension routine.

1-byte extension routine.

1-byte

extension routine. Gets address of
Roman script utilityJumps to

Roman
script utility

Original
(Roman)
routine

Original (Roman)

routine. Original (Roman) routine.

Original (Roman) routine.

Original

(Roman) routine.

Returns
Address fetching

Flow of control
A-30 WorldScript I

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
A patched low-level QuickDraw call follows a similar path, except that it goes through a
QuickDraw trap that has been patched to execute code in WorldScript I instead of
passing through the script management system. After determining which script should
handle this call (by examining the current font), WorldScript I uses the script’s
QuickDraw dispatch table to jump to the proper routine. See Figure A-4.

Figure A-4 How calls are dispatched to the 1-byte QuickDraw patches

Saving User Preferences A
The Operating System and some individual script systems use control panels to let
users change text-related system settings, such as line direction, associated font,
kashida preferences, and caret style. Script systems may store these settings in a
script preferences file in the Extensions folder. This file contains resources of type
'CNFG', whose resource ID numbers are equal to the script codes of the script systems
they represent.

txFont

WorldScript I

Gets script

from current

font

thePort

Gets address of script’s

QuickDraw dispatch table

Script record

Gets address of WorldScript I

QuickDraw patch

QuickDraw

dispatch table

WorldScript I

routine

1-byte extension

routine. 1-byte extension routine.

1-byte extension routine.

1-byte

extension routine. Gets address of

built-in QuickDraw routineJumps to built-in

QuickDraw routine

Original

QuickDraw

routine

Original QuickDraw

routine. Original QuickDraw routine.

Original QuickDraw routine.

Original

QuickDraw routine.

Returns

Jumps to

WorldScript I

QuickDraw patch

Low-level

QuickDraw call
_StdText, etc.

Dispatch

routine
WorldScript I A-31

A P P E N D I X A

Built-in Script Support
As noted under “Initialization Sequence” on page A-28, when installing a script system
WorldScript I looks for a script preferences file in the Preferences folder. For each script
system it initializes, WorldScript I loads the 'CNFG' resource for that script from the
script preferences file and uses it to reconfigure the script.

Note
The 'CNFG' resource in the script preferences file has exactly the same
format as the script configuration table in the encoding/rendering
resource. However, it may not have exactly the same elements. The
types of configuration settings specified in the 'itl5' resource may be
different from those settable by the user through a control panel. ◆

See the discussion of the encoding/rendering resource in the appendix “International
Resources” in this book for a description of the script configuration table.

Replacing a Script Utility or QuickDraw Patch A
Developers of 1-byte complex script systems should be able to specify most of their
script system’s behavior in tables in the script system’s encoding/rendering ('itl5')
resource. In cases where the WorldScript I routines are insufficient to handle the script’s
specific needs, the developers may create patches and install them as described here. The
patches may be installed by an extensions file that is executed at system startup.

Application developers who need specific script-based behavior for their programs
should not alter the tables in a 1-byte script’s encoding/rendering ('itl5') resource.
However, they can replace one or more 1-byte script utilities or QuickDraw patches for
their target script system, as described here.

IMPORTANT

When you patch a script system’s script utility or QuickDraw call, you
alter that script’s behavior for as long as it remains enabled. Therefore,
be sure to restore the patches to their original state whenever your
application quits or is switched out by the Process Manager. ▲

The script-based dispatch table design gives you a simple, flexible way to replace
individual routines without having to patch out all of the _ScriptUtil trap or any of
the QuickDraw low-level routines in their entirety. Furthermore, in a multiscript
environment each patch of this type applies only to its own script system. A developer
might, for example, patch StdText for the Thai script system only, leaving all the other
scripts unchanged.
A-32 WorldScript I

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
In addition, you can choose the point at which your patched routine executes: either
before (which also means in place of if your routine does not call the WorldScript I routine
at all) or after the WorldScript I routine executes. For example, the WorldScript I version
of StdText works by first performing contextual analysis and reordering of characters
on the supplied text, and then calling the original version of StdText. Suppose you
want to keep the WorldScript I contextual analysis and reordering of characters, but you
want to do some additional processing before calling the original StdText. To do that,
just patch out the WorldScript I routine’s call to the original StdText, instead of
patching out the entire WorldScript I routine. Then do your own processing and call
StdText yourself.

Because you can patch at two points, and because you can perform your own processing
either before or after a patch, your flexibility is great. To replace only the WorldScript I
routine, replace its pointer in the dispatch table; to keep the WorldScript I routine while
replacing or patching the original routine, replace the original-routine pointer in the
dispatch table. The four Script Manager routines that allow you to make those patches
are GetScriptUtilityAddress, SetScriptUtilityAddress,
GetScriptQDPatchAddress, and SetScriptQDPatchAddress. Either pointer in
the dispatch table may be NIL, meaning that WorldScript I either doesn’t patch the
original routine or doesn’t call the original routine.

Patching Script Utilities A

In terms of how to patch them, the script utilities can be divided into different groups,
depending on whether or not WorldScript I performs contextual formatting and whether
or not it subsequently calls the original Roman version of the utility. See Table A-13. For
utilities that perform contextual formatting, keep in mind that if you replace them you
will have to handle formatting yourself. For utilities that subsequently call their original
Roman version, you can replace either the WorldScript I version of the call or the Roman
version or both, depending on what your needs are.

Table A-13 Classification of 1-byte script utilities by function

No formatting,
do not call original
Roman routine

No formatting,
do call original
Roman routine

May do formatting,
do not call original
Roman routine

CharacterByteType CharacterType HiliteText

GetScriptVariable TransliterateText VisibleLength

SetScriptVariable FindWordBreaks PixelToChar

FillParseTable FindScriptRun CharToPixel

PortionLine DrawJustified

MeasureJustified
WorldScript I A-33

A P P E N D I X A

Built-in Script Support
Note that those script utilities that do not call their equivalent Roman routine
nevertheless call QuickDraw StdText or StdTxMeas if the grafProcs field in the
graphics port has been changed. Thus, if you have changed (patched) either of those
QuickDraw routines, your patch will still be called. Conversely, if the grafProcs field
is NIL, The WorldScript I script utilities do not necessarily call StdText or StdTxMeas.

If you are replacing a script utility, remember that its interface is similar to that of its
equivalent high-level call as described in Inside Macintosh. The utility takes the same
parameters in the same order, except that it gets one additional last parameter on the
stack: a pointer to the script record. For example, if you are replacing VisibleLength,
whose high-level interface is

FUNCTION VisibleLength (textPtr: Ptr;

textLen: LongInt): LongInt;

your patch to the equivalent script utility should expect to receive parameters as if the
high-level interface were

FUNCTION VisibleLength (textPtr: Ptr;

textLen: LongInt;

scriptRecord: Ptr): LongInt;

Also, if your replacement calls the original routine, don’t forget to pass the extra
parameter to it.

Patching QuickDraw Routines A

WorldScript I patches the low-level QuickDraw text-handling routines StdText and
StdTxMeas, the high-level QuickDraw routine MeasureText, and the Font Manager
routine FontMetrics.

The QuickDraw patches lay out lines of text according to the context and line-direction
rules for a script system. In each case (except for MeasureText) the patch calls the
original QuickDraw routine after performing the contextual formatting. The contextual
formatting routines are called only for contextual scripts.
A-34 WorldScript I

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
Table A-14 lists the patches and what they do. For those patches that perform contextual
formatting, if you replace them you will have to handle formatting for line layout
yourself. For all of them, you can replace either the WorldScript I patch or the standard
QuickDraw call or both, depending on your needs.

Issues in Designing a Script Utility or QuickDraw Patch A

Keep the following points in mind if you plan to replace one or more script utilities or
QuickDraw patches in WorldScript I:

■ In script systems compatible with WorldScript I, text handling typically involves
WorldScript I contextual analysis followed by a call to the original Roman version of
the routine. You need to know whether it is the WorldScript I functionality or the
original functionality that you want your routine to replace, and you need to be sure
that your routine is called only at the correct points in the process. More detailed
information on text layout is found in the chapter “QuickDraw Text” in this book.

■ Script utilities process text in individual style runs, whose boundaries are defined by
the application. If your application supports styled text, each script utility will need to
handle only individual style runs. But if your application supports unstyled text only,
there may be mixed Roman and non-Roman characters in a single font. Before
performing text layout, your script utility will have to separate the Roman characters
into their own style runs, and assign them to an associated font, if your script system
uses associated fonts.

■ If you provide your own script utility, you need to be sure that text is not formatted
more than once. Because script utilities might be called reentrantly during printing,
you may want to save the port for each contextual analysis. Check this port against
the current port for each possible contextual analysis request, so you can prevent the
text from being formatted twice.

■ Printing adds another level of complexity to the WorldScript I QuickDraw
patches and your ability to patch out those patches. The QuickDraw dispatch
table has special entries to support developer patching of routines in printing as well
as for display. See the descriptions of the routines GetScriptQDPatchAddress
and SetScriptQDPatchAddress in the chapter “Script Manager” in this book
for more information. See also Macintosh Technical Note #174 for additional
information on printing.

Table A-14 Classification of 1-byte QuickDraw patches by function

Call Function

FontMetrics Returns font measurements

MeasureText Calls MeasureJustified (with slop = 0)

StdText Does formatting, then calls original routine

StdTxMeas Does formatting, then calls original routine
WorldScript I A-35

A P P E N D I X A

Built-in Script Support
WorldScript II A

WorldScript II is a system extension, available with system software versions 7.1 and
later, that can support 2-byte script systems: Chinese (traditional and simplified
characters), Japanese, and Korean. It contains code that implements script-aware
text-manipulation routines, eliminating the need for each script to maintain its own code
extensions. WorldScript II supports the input, display, and printing of the thousands of
characters needed by the 2-byte script systems.

WorldScript II is a single file located in the Extensions folder within the System Folder on
the user’s Macintosh. It installs all compatible 2-byte script systems that are present in
the System Folder and provides each with a set of standard routines.

Note
Unlike WorldScript I, WorldScript II does not support the Script
Manager routines (such as SetScriptUtilityAddress) that allow
replacement of script utilities or QuickDraw calls. ◆

About WorldScript II A
The 2-byte script systems developed prior to system software version 7.1 contain their
own code to handle language-specific text processing. Each also has its own initialization
and configuration code, installing itself at startup and adding its own modifications to
the system. Each script system patches three different areas of system software:
QuickDraw, the Event Manager, and the script management system. This can result in a
layering of patches to the same traps, inconsistent behavior, and inefficient use of
memory.

WorldScript II, working with the Text Services Manager and other parts of system
software, eliminates code duplication and provides for the special text-input needs of the
2-byte systems:

■ Enhancements to QuickDraw and the Font Manager now support the display of the
thousands of Chinese, Korean, and Japanese characters. To handle a character set that
is larger than the 256-character ASCII range, the Font Manager and other parts of
system software contain the code necessary to retrieve and render the characters.

■ The Text Services Manager, using enhancements to the Event Manager, provides
broad support for input methods. Input methods that employ the Text Services
Manager intercept every key-down event, map the event to a character code, and pass
the result to the application.

■ WorldScript II provides language-specific capabilities for script-aware text-handling
routines called script utilities. For instance, WorldScript II provides routines that tell
whether a byte in a string is a 1-byte or 2-byte character.

WorldScript II redefines what a 2-byte script system consists of. WorldScript II combines
the executable code for many routines for all 2-byte script systems. Script-specific
A-36 WorldScript II

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
behavior is encoded in resource-based tables. This reduces memory requirements for
multiscript systems and avoids layering of patches.

Shared Script Utilities A

WorldScript II contains the code for all script utilities. Script-specific behavior is
determined by tables in each script’s international resources. In a multiscript
environment, WorldScript II loads only one copy of its code into memory. Furthermore,
the user needs only the WorldScript II file in the Extensions folder, rather than one
extension file per script system. This eases memory requirements and saves disk space.

Table A-11 lists the script utilities implemented by WorldScript II, along with the
chapters in this book that describe their corresponding high-level routines.

* The Script Manager handles these routines directly if the necessary tables are in the script’s 'itl2'
resource. Otherwise, they are passed to WorldScript II.

Table A-15 Script utilities supported by WorldScript II

Script utility Chapter in this book

CharacterByteType Script Manager

CharacterType Script Manager

CharToPixel QuickDraw Text

DrawJustified QuickDraw Text

FillParseTable Script Manager

FindScriptRun* Text Utilities

FindWordBreaks* Text Utilities

GetScriptVariable
†

Script Manager

HiliteText QuickDraw Text

MeasureJustified QuickDraw Text

PixelToChar QuickDraw Text

PortionLine QuickDraw Text

SetScriptVariable
†

Script Manager

TransliterateText Script Manager

VisibleLength QuickDraw Text

NOTE WorldScript II supports the following script utilities for backward compatibility. They
call newer versions of themselves to handle their tasks. They are: Pixel2Char (calls
PixelToChar), Char2Pixel (calls CharToPixel), DrawJust (calls DrawJustified),
MeasureJust (calls MeasureJustified), PortionText (calls PortionLine), CharByte
(calls CharacterByteType), CharType (calls CharacterType), ParseTable (calls
FillParseTable), Transliterate (calls TransliterateText).
WorldScript II A-37

A P P E N D I X A

Built-in Script Support

Table-Based Script Behavior A

Script-specific text behavior is controlled by tables in each script system’s international
resources. The encoding/rendering resource (type 'itl5') contains character encoding
information, and the transliteration resource (type 'trsl') contains information for
character conversion among subscripts of a 2-byte script.

For example, the byte-type table in a script’s encoding/rendering resource typically
contains information about the type of a specific byte in the range of $00–$FF—whether
it can be the high-order byte of a 2-byte character, the low-order byte of a 2-byte
character, or a 1-byte character. The character-type table in the same resource gives more
detailed information about a character in a particular coding scheme.

Currently, there are two transliteration formats used by WorldScript II and supported by
tables in a script’s transliteration resource. One of them is used to transliterate Jamo to
Hangul (and Hangul to Jamo) in the Korean system. The other is a more general
rule-based transliteration. You cannot customize the Jamo-to-Hangul transliteration. You
can customize the rule-based transliteration by supplying the proper tables in a
transliteration resource.

The encoding/rendering resource and the transliteration resource are described in the
appendix “International Resources” in this book.

Initialization Sequence A
The startup code for enabling all available 2-byte script systems and script utility
routines is in WorldScript II. WorldScript II is located in the Extensions folder; its file
type is 'scri' and its creator is 'doub'.

At system startup, all extension files in the Extensions folder are executed; script files are
executed before all other extensions.

At startup, WorldScript II does the following:

1. It gets the total number of international bundle ('itlb') resources from the
System Folder.

2. For each bundle resource that belongs to a 2-byte script, WorldScript II
n creates a script record and copies the byte-type table from the script’s encoding/

rendering ('itl5') resource into the script record
n gets handles to all transliteration resources for that script and adds them to the

script record
n initializes the script’s script record, a private data structure that holds information

and addresses pertinent to that script

† The Script Manager handles these routines directly if the standard selectors documented in this
book are used. The routines are passed to WorldScript II if private selectors are used.
A-38 WorldScript II

A P P E N D I X A

Built-in Script Support

A
B

uilt-in S
cript S

upport
How Calls Are Dispatched A
WorldScript II does not implement all of the script utilities because some of them (such
as GetScriptManagerVariable) are handled by the script management system itself.
The script utilities that the script management system does not handle are listed in Table
A-11 on page A-26. For those, the script management system passes execution to the
WorldScript II dispatch routine, which in turn uses the script system’s dispatch table to
call the appropriate utility routine in WorldScript II.

When the WorldScript II dispatch routine calls a script utility, it replaces the selector of a
normal script utility call with the address of the script record of the font script. It then
calls the script utility. For instance:

1. In assembly language, when you call CharacterByteType, you typically call it
through a macro in the following way:

subq.w #2, sp ; room for result.
move.l textPtr,-(sp) ; push text pointer.
clr.w -(sp) ; push text offset.
CharacterByteType ; find out whether it is 1-byte or
 ; 2-byte character.
tst.w (sp)+ ; is it 1-byte?

2. The CharacterByteType macro expands into

move.l $82060010,-(sp) ; push the selector.
ScriptUtil ; call Script Manager trap.

3. For this example, the stack looks like the following when the trap has been called:

4. If the Script Manager does not handle the call, it passes the call to the current script’s
dispatch routine. The dispatch routine figures out by the value of the routine selector
whether the call is in the range of calls it handles. If it is not, the dispatch routine
strips the stack and returns without doing anything.

5. If the call is in the valid range, the dispatch routine performs these tasks:
1. It gets the address of the WorldScript II version of the script utility from the script’s

dispatch table.
2. It gets the address of the script record and replaces the selector on the stack with

the address of the script record.
3. It jumps into the routine.

return address (long) <-- top of stack

routine selector (long)

text offset (word)

text pointer (long)

result (word)
WorldScript II A-39

A P P E N D I X A

Built-in Script Support
6. So the stack becomes

The script’s dispatch routine passes the script record to the WorldScript II script utilities
so that they can use the script-specific information (such as the byte-type tables) in the
script’s international resources.

return address (long) <-- top of stack

address of script record (long)

text offset (word)

text pointer (long)

result (word)
A-40 WorldScript II

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	Appendix A, Built-in Script Support
	The Roman Script System
	The Standard Roman Character Set
	Nonprinting Characters
	Printing Characters
	Variations in the Character Set

	The U.S. Keyboard-Layout ('KCHR') Resource
	Standard Sorting Routines
	Diacritical Stripping and Case Conversion
	U.S. International Resources and Keyboard Resource...

	WorldScript I
	About WorldScript I
	Shared Script Utilities and QuickDraw Patches
	Table-Based Script Behavior
	Contextual Formatting Routines
	Flexible Dispatching Method

	Initialization Sequence
	How Calls Are Dispatched
	Saving User Preferences
	Replacing a Script Utility or QuickDraw Patch
	Patching Script Utilities
	Patching QuickDraw Routines
	Issues in Designing a Script Utility or QuickDraw ...

	WorldScript II
	About WorldScript II
	Shared Script Utilities
	Table-Based Script Behavior

	Initialization Sequence
	How Calls Are Dispatched

	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

