

C H A P T E R 6

6

S
cript M

anager

Script Manager 6

This chapter describes the Script Manager, a core component of the Macintosh script
management system. The Script Manager oversees script systems and gives you access
to their features.

Read this chapter if you are writing a multiscript text-handling application and need
access to the general settings and script-specific information provided by the Script
Manager. Read this chapter also if you are writing a specialized application that parses
source code or converts text among subscripts. Read this chapter also if you wish to
modify the features or functions of an individual script system.

Before reading this chapter, you should be familiar with the Macintosh script
management system, as described in the chapter “Introduction to Text on the Macintosh”
in this book. Useful related information is found in the appendixes “International
Resources,” “Keyboard Resources,” and “Built-in Script Support.”

This chapter—and this book—do not catalog the features of individual script systems.
More detailed information on the world’s writing systems and the Macintosh script
systems developed to support them can be found in Guide to Macintosh Software
Localization.

The chapter gives a brief introduction to the Script Manager, and then shows how you
can use the Script Manager to

■ control default settings for text handling

■ obtain information about a script system

■ convert text through tokenization or transliteration

■ modify a script system by replacing its resources or—in some cases—its routines

About the Script Manager 6

The Script Manager is at the center of the Macintosh script management system. It makes
script systems available. It coordinates the interaction between many parts of Macintosh
system software and those available script systems.

The Script Manager also provides several services directly to your application. Through
them you can get information about the current text environment, modify that
environment, and perform a variety of text-handling tasks.

The Script Manager has evolved through several versions. It started with sole
responsibility for all international-compatibility and multilanguage text issues, but as
more power and features have been added, many of its specific functions have been
moved to the other parts of system software.
About the Script Manager 6-3

C H A P T E R 6

Script Manager

The Script Manager and the Script Management System 6
The Script Manager manages script systems. It monitors their initialization and
maintains variables and data structures that affect their functioning. It makes sure that
all initialized script systems are complete in terms of having the required international
resources and fonts. It gives applications as well as other parts of system software their
principal access to script systems’ features.

The Script Manager works closely with the other managers that make up the Macintosh
script management system, in particular the Text Utilities and QuickDraw. The Text
Utilities include many script-aware routines that manipulate text, and QuickDraw
provides script-aware measuring and drawing routines for text. When your program or
a system routine makes a script-aware Text Utilities or QuickDraw call, it commonly
results in an internal call to the Script Manager, to access a global setting or the data of a
script system.

TextEdit also relies on the Script Manager, both directly and through the Text Utilities
and QuickDraw, to make sure that it handles text correctly in any script system. The Font
Manager, the Text Services Manager, and the Dictionary Manager use information
maintained and provided by the Script Manager.

Other components of Macintosh system software also interact with the Script Manager.
The Finder uses the Script Manager to correctly input, display, and sort file and folder
names across all localized versions of system software. The Menu Manager, the
Event Manager, the Process Manager, the Operating System Utilities, and the
Component Manager all work with the Script Manager, directly or indirectly, to obtain
the information necessary to properly handle multiscript text.

The Script Manager and Applications 6
The Script Manager is your application’s principal interface—either direct or indirect—
with any of the script systems that may be available on the user’s computer. For many
text-related tasks, the Script Manager’s role is transparent; when you make a
script-aware Text Utilities or QuickDraw call while processing text, that routine may get
the information it needs through the Script Manager. For example, when you call the
QuickDraw procedure DrawText to draw a line of text, DrawText in turn calls the
Script Manager to determine which script system your text belongs to before drawing it.

In other situations you may need to call the Script Manager explicitly, to properly
interpret the text you are processing. Those situations are the principal subject of
this chapter.

The Script Manager provides services that fall into four general categories: controlling
settings, obtaining information, modifying text, and modifying script systems. Any
text-handling application that you write, unless it relies solely on TextEdit, will need to
use some of those services. Almost any text application, for example, needs to call the
6-4 About the Script Manager

C H A P T E R 6

Script Manager

6

S
cript M

anager

GetScriptManagerVariable function. Other calls are for specialized programs only.
The IntlTokenize function, for example, is only for specialized programs that parse
highly structured text such as source code, mathematical expressions, or formatted
numbers.

These are the services provided by the Script Manager in each of the four categories:

■ Controlling settings. The routines in this category are of general interest and are used
by most text applications. With these routines you can
n check and set the system direction, a global variable that controls the default

alignment of text and can affect the order in which blocks of mixed-directional
text are drawn.

n check and set Script Manager variables, private variables used by the Script
Manager to keep track of information that is general to the text environment.

n check and set script variables, private variables used by script systems to keep
track of their own configurations.

n make keyboard settings that affect text input, so that users can enter text in any
script system and you can display it properly.

■ Obtaining information. Many of the routines in this category are of general interest
and are used by most text applications. With these routines you can
n determine script codes from font information. Most applications need this

information.
n analyze characters for size (in bytes) and type. Applications that work with 2-byte

script systems need size information, and many applications need character-type
information.

n directly access a script system’s international resources. Most applications need this
information only to pass it to other routines. Some applications also use it to
inspect or modify individual tables or other data within a resource.

■ Converting text. The routines in this category are used by specialized applications
only. (Text-modification routines of general interest to applications are described in
the chapter “Text Utilities” in this book.) With these routines you can
n tokenize text: convert source text from any script system into

script-independent tokens.
n transliterate text: phonetically convert text from one subscript to another within a

script system.

■ Modifying script systems. The routines in this category are used for specialized
purposes, such as providing regional variants to existing script systems or assigning
script-specific features to individual documents or applications. With these
routines you can
n replace or modify the default international resources of a script system.
n replace individual text-handling routines in certain script systems.
About the Script Manager 6-5

C H A P T E R 6

Script Manager

Evolution of the Script Manager 6
The Script Manager is only one of several system software managers that make up the
Macintosh script management system, but its position is central.That central position
stems from the fact that, in previous versions, the Script Manager alone (including the
International Utilities) was responsible for all international text processing.

The first version of the Script Manager was released with Macintosh System 4.1.
Table 6-1 shows the routines and some of the features of Script Manager 1.0, and
the additional routines and features that have marked each successive version of the
Script Manager (and International Utilities). Some of the added routines rendered earlier
ones obsolete, whereas others brought new capabilities.

* In hexadecimal, 2.17 is $211, and 2.21 is $215. See Table 6-2 on page 6-9.

Table 6-1 Evolution of the Script Manager

Version New routines, other additions and enhancements

1.0 Char2Pixel, CharByte, CharType, DrawJust, FindWord,
Font2Script, FontScript, GetAppFont, GetDefFontSize,
GetEnvirons, GetMBarHeight, GetScript, GetSysFont,
GetSysJust, HiliteText, IntlScript, KeyScript, MeasureJust,
Pixel2Char, SetEnvirons, SetScript, SetSysJust,
Transliterate introduced. New international resources defined.

2.0 FindScriptRun, Format2Str, FormatStr2X, FormatX2Str,
GetFormatOrder, InitDateCache, IntlTokenize, IULDateString,
IULTimeString, LongDate2Secs, LongSecs2Date, LwrString,
LwrText, ParseTable, PortionText, ReadLocation, Str2Format,
String2Date, String2Time, StyledLineBreak, ToggleDate,
ValidDate, VisibleLength, WriteLocation added.

2.17/
2.21*

Enhanced 'itl2' resource. Full support for Standard Roman character
set. New token types defined.

7.0 IUClearCache, IUGetItlTable, IULangOrder, IUScriptOrder,
IUStringOrder, IUTextOrder, LowerText, NChar2Pixel,
NDrawJust, NFindWord, NMeasureJust, NPixel2Char,
NPortionText, StripText, StripUpperText, TruncString,
TruncText, UpperText added. Support for scaled justified text layout.
Implicit script codes, new selectors. New keyboard resources, enhanced
U.S. 'KCHR' resource.

7.1 CharacterByteType, CharacterType, FillParseTable,
GetQDPatchAddress, GetScriptUtilityAddress,
SetQDPatchAddress, SetScriptUtilityAddress,
TransliterateText added to Script Manager; several existing
routines renamed. Many additional new and renamed routines moved
to other managers such as Text Utilities and QuickDraw. WorldScript
extensions created.
6-6 About the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager

The most extensive changes, in terms of how the Script Manager is documented, have
been the most recent. Many of the routines described throughout Inside Macintosh: Text
are previous Script Manager routines that have been relocated and possibly enhanced or
renamed. They were moved to be documented alongside routines of similar purpose in
other managers. Many of the early Script Manager routines listed in Table 6-1 are
obsolete and are no longer documented at all. See the appendix “Renamed and
Relocated Text Routines” in this book for information on the current status and location
of any previous Script Manager or International Utilities routines not found in
this chapter.

Using the Script Manager 6

This section explains how you can use the Script Manager in performing four types of
text-related tasks. Script Manager routines can help you with

■ accessing and controlling the configuration of the text-handling environment, by
n determining the version of the Script Manager and the number of active

script systems
n checking and setting the system direction
n checking and modifying Script Manager variables
n checking and modifying script variables
n making keyboard settings that affect text input

■ obtaining script-related information to help you process text, by
n determining script codes from font information
n using character-type information for searching and analyzing text
n directly accessing a script system’s international resources
n using specific tables within a script system’s international resources

■ converting text for specialized purposes, by
n converting source text from any script system into script-independent tokens
n transliterating text from one subscript to another within a script system

■ modifying the features of a script system, by
n replacing or modifying the default international resources of a script system
n replacing individual text-handling routines in 1-byte complex script systems
Using the Script Manager 6-7

C H A P T E R 6

Script Manager
Testing for the Script Manager and Script Systems 6
This section describes how to use the Gestalt function to test for the current version of
the Script Manager and the number of active script systems. For details on the Gestalt
function, see the Gestalt Manager chapter of Inside Macintosh: Operating System Utilities.

The Operating System initializes the Script Manager at startup. The Script Manager then
initializes the Roman script system. Next the Script Manager initializes any other
installed 1-byte simple script system whose smsfAutoInit bit (see page 6-69) is set.
The Script Manager then allows the script extensions WorldScript I and WorldScript II (if
present) to initialize all installed 1-byte complex and 2-byte script systems.

When initializing a script system, the Script Manager or script extension first checks to
make sure that there is enough memory for the script system, and then checks that an
international bundle resource is present in the System file and that at least one font in the
proper ID range for that script system is present in the System file or in the Fonts folder.
If these resources are present, the script system is considered to be enabled (available for
use by the Script Manager and applications). If the required resources are not available,
the script system remains disabled.

Note
The Script Manager is fully loaded and all script systems are enabled
before any files of type 'INIT' in the Extensions folder are launched.
Thus, all Script Manager routines can be called from system
extensions. ◆

Use Gestalt with the gestaltScriptMgrVersion selector to obtain a result in the
response parameter that identifies the version number of the Script Manager. This is the
same value returned by a call to the GetScriptManagerVariable function with the
selector constant smVersion. Table 6-1 on page 6-6 lists some of the routines and
features available with the principal versions of the Script Manager.

Table 6-2 gives more detail on the version numbers returned by Gestalt or by
GetScriptManagerVariable with the selector smVersion, for all versions of system
software and all versions of the Script Manager. It also shows the Roman script system
versions returned by the GetScriptVariable function with the selector
smScriptVersion.
6-8 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Note
In versions of system software earlier than 6.0.7, the major and minor
version numbers are each treated as if they were binary. Thus a result of
$217 from Gestalt means a Script Manager version of 2.23 (in
decimal). Starting with system 6.0.7, version numbers are returned as
binary-coded decimal numbers, so a result of $710 means a Script
Manager version of 7.10 (or 7.1.0). ◆

Use the Gestalt selector gestaltScriptCount to obtain a result in the response
parameter that gives the number of active script systems. This is the same value returned
by a call to the GetScriptManagerVariable function with the smEnabled selector.

Obtaining the number of active script systems is most useful for testing whether
more than a single script system is present. If the result is 1, only the Roman script
system is present and text-handling is simplest. If the result is greater than 1, at
least one non-Roman script system is present, and your application needs to be able to
handle its text.

* On Macintosh Plus, Macintosh SE, Macintosh II, Macintosh IIx, Macintosh IIcx,
Macintosh SE/30, Macintosh Classic. Other CPUs have newer ROMs.

† Gestalt actually returns $606 as the system version for non-Roman versions of
system 6.0.7.

‡ Gestalt actually returns $609 as the system version for system J-6.0.7.1.

Table 6-2 Version numbers for the Script Manager and Roman script system

System software
version

Script Manager
(newer ROMs)

Script Manager
(older ROMs)*

Roman
script system

6.0.3 and earlier N.A. <= $20F <= $101

6.0.4 Roman $215 $211 $101

6.0.4 non-Roman $216 $212 $101

6.0.5 all $217 (= 2.23) $213 $101

Above this line, minor version numbers are binary; below, they are BCD:

6.0.7 all† $231 (= 2.3.1) $230 $101

J-6.0.7.1
(Japanese)‡

$231 $230 $101

6.0.8 all $231 $230 $101

6.1 (non-Roman) $241 $240 $101

7.0 $700 $700 $700

7.0.1 Roman $700 $700 $700

7.0.1 non-Rman $701 $701 $701

7.1 $710 $710 $710
Using the Script Manager 6-9

C H A P T E R 6

Script Manager
Controlling Settings 6
The first principal use for the Script Manager is in controlling the settings that determine
the current characteristics of the text-handling environment. The Script Manager gives
you access to many variables, fields, flags, and files that affect how script systems
function and how text is manipulated and displayed. The routines described in this
section are of general interest and are used by most text applications. You can use these
Script Manager routines to

■ set the system direction

■ access Script Manager variables

■ access script variables

■ determine the keyboard script, keyboard layout, and input method

Checking and Setting the System Direction 6

The system direction is a global setting that is commonly used to define the primary line
direction for text display. The system direction is specified by the value of the global
variable SysDirection. The value of SysDirection is 0 for a left-to-right primary
line direction and –1 for a right-to-left primary line direction.

System direction always controls the alignment (right or left) of interface elements such
as menu items and dialog box items that are drawn by the system. It can also affect caret
placement and the order in which blocks of text are drawn or highlighted in bidirectional
script runs and in multiscript lines.

QuickDraw, TextEdit, and other parts of system software that use TextEdit set the system
direction before drawing text. Although applications can format and draw text
independently of the current value of system direction, applications that follow
suggested procedures for text layout typically set the system direction before laying out
and drawing any text. See, for example, the description of the GetFormatOrder
function in the chapter “QuickDraw Text” in this book.

The default value for SysDirection usually corresponds to the primary line direction
of the system script; it is initialized from the system’s international configuration
('itlc') resource at startup. The user can change the system direction from the Text
control panel if a bidirectional script system is present.

If your application uses SetSysDirection to change the system direction in order to
correctly order script runs in a line of text while drawing, be sure to first call
GetSysDirection to save the original value. Then call SetSysDirection again at
the appropriate time—such as when your application becomes inactive—to restore
SysDirection to its original value.
6-10 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Checking and Setting Script Manager Variables 6

The GetScriptManagerVariable and SetScriptManagerVariable functions let
you check and set the values of the Script Manager variables, general environmental
settings that the Script Manager maintains for all script systems.

These functions give you access to a large variety of general script-related information,
including whether one or more bidirectional script systems is present, whether one or
more 2-byte script systems is present, and what the states of the font force and
international resources selection flags are.

You specify the variable you want to access with a selector, an integer constant that
controls the function of a multipurpose routine. You pass a selector as a parameter to
GetScriptManagerVariable or SetScriptManagerVariable. (The variables
themselves are private and you cannot access them directly.) Table 6-3 lists the selector
constants and the Script Manager variables they affect. See “Selectors for Script Manager
Variables” beginning on page 6-61 for complete explanations of the selectors
and variables.

Table 6-3 Script Manager variables accessed through
GetScriptManagerVariable/SetScriptManagerVariable

Selector constant Explanation

smVersion Script Manager version number

smMunged Modification count

smEnabled Script count (0 if Script Manager not enabled)

smBidirect Bidirectional script present flag

smFontForce Font force flag

smIntlForce International resources selection flag

smForced Script-forced result flag

smDefault Script-defaulted result flag

smPrint Print action vector

smSysScript System script code

smLastScript Previous keyboard script

smKeyScript Current keyboard script

smSysRef System Folder volume reference number

smKeyCache (obsolete, not used)

smKeySwap Handle to keyboard-swap ('KSWP') resource

smGenFlags Script Manager general flags

continued
Using the Script Manager 6-11

C H A P T E R 6

Script Manager
The following code fragment shows how to use the GetScriptManagerVariable
function to get the Script Manager version number. This is the same value as that
returned by the Gestalt function using the gestaltScriptMgrVersion selector.

VAR

selectorValue: LongInt;

BEGIN

selectorValue := GetScriptManagerVariable(smVersion);

END;

The SetScriptManagerVariable function allows you to change many text-related
settings, including

■ the font force flag

■ the international resources selection flag

■ the current keyboard script

■ the Script Manager general flags, which include control of the display of the keyboard
icon and the dual caret in TextEdit

■ the proportion of intercharacter versus interword spacing, when laying out lines of
justified text (in non-Roman script systems)

Listing 6-1 shows how to use the SetScriptManagerVariable function to specify the
display of a dual caret in mixed-directional text. You do this by setting the appropriate
bit of the Script Manager general flags field after retrieving it with the
GetScriptManagerVariable function.

smOverride Script override flags (reserved)

smCharPortion Intercharacter/interword spacing proportion

smDoubleByte 2-byte script present flag

smKCHRCache Pointer to current keyboard-layout ('KCHR') data

smRegionCode Region code for system script

smKeyDisableState Current disable state for keyboards

Table 6-3 Script Manager variables accessed through
GetScriptManagerVariable/SetScriptManagerVariable (continued)

Selector constant Explanation
6-12 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Listing 6-1 Specifying a dual caret with SetScriptManagerVariable

FUNCTION MySetDualCaret: OSErr;

VAR

myErr: OSErr;

selectorValue: LongInt;

flagValue: LongInt;

BEGIN

flagValue := BitShift($0001,smfDualCaret);

selectorValue := GetScriptManagerVariable(smGenFlags);

selectorValue := BitOr(selectorValue, flagValue);

myErr := SetScriptManagerVariable(smGenFlags, selectorValue);

MySetDualCaret := myErr;

END;

You can also use SetScriptManagerVariable to change the settings of the font force
flag and the international resources selection flag, two flags that affect which script
systems are used for text display and date/time/number formatting, respectively. See
“Determining Script Codes From Font Information” beginning on page 6-21.

If you are using SetScriptManagerVariable to change the value of a variable for a
specific task, first call GetScriptManagerVariable to retrieve the variable’s original
value, and save that value. Then call SetScriptManagerVariable and perform your
task. Finally, restore the original value of the Script Manager variable with another call to
SetScriptManagerVariable as soon as possible, so that other applications or
software components that use the Script Manager will find the values they expect.

Checking and Setting Script Variables 6

The GetScriptVariable and SetScriptVariable functions let you retrieve and set
script variables, local variables maintained for each script system by the Script Manager.

These functions give you access to a large variety of script-specific information,
including the primary line direction for the script system, the default alignment for text
in the script system, the script system’s preferred system font and size, and its preferred
application font and size.
Using the Script Manager 6-13

C H A P T E R 6

Script Manager
You specify the script system whose variables you want to access with an explicit script
code, or with an implicit script code specifying the system script or the font script. You
specify the variable you want to access with a selector constant passed as a parameter to
GetScriptVariable or SetScriptVariable. Table 6-3 lists the selector constants
and the script variables they affect. See “Selectors for Script Variables” beginning on
page 6-65 for complete explanations of the selectors and variables.

Table 6-4 Script variables accessed through
GetScriptVariable/SetScriptVariable

Selector constant Explanation

smScriptVersion Script-system version number

smScriptMunged Modification count

smScriptEnabled Script-enabled flag

smScriptRight Right-to-left line direction flag

smScriptJust Default alignment (left or right)

smScriptRedraw Amount of line to redraw when changing a character

smScriptSysFond Preferred system font

smScriptAppFond Preferred application font

smScriptNumber Numeric-format ('itl0') resource ID

smScriptDate Long-date-format ('itl1') resource ID

smScriptSort String-manipulation ('itl2') resource ID

smScriptFlags Script flags

smScriptToken Tokens ('itl4') resource ID

smScriptEncoding Encoding/rendering ('itl5') resource ID

smScriptLang Language code for script

smScriptNumDate Current numeral code and calendar code

smScriptKeys Keyboard-layout ('KCHR') resource ID

smScriptIcon Keyboard icon family ID

smScriptPrint Print action routine for script

smScriptTrap Pointer to script record dispatch routine entry point
(for internal use)

smScriptCreator Creator name for script file

smScriptFile Filename for script file
6-14 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
You can use the GetScriptVariable function to get, for example, the default
application font family ('FOND') ID and size. In the following code fragment, the
application uses the constant smSystemScript to specify that it is the system script
whose font ID is needed. The ID is returned in the high-order word and the size is
returned in the low-order word. The application then sets the appropriate graphics port
fields to those values.

VAR

myAppFont: LongInt;

BEGIN

myAppFont := GetScriptVariable(smSystemScript,

smScriptAppFondSize);

TextFont(HiWord(myAppFont));

TextSize(LoWord(myAppFont));

END;

Listing 6-2 shows how to represent font names correctly using the proper script for that
font. First you call the Font Manager GetFNum procedure to get the font family ID using
the font name. You call the FontToScript function using that font family ID to get the
value of the associated script code. You then call GetScriptVariable with the
smScriptSysFond selector to determine the font family ID for the preferred system
font for the specified script. Finally, you call the QuickDraw TextFont procedure with
that font family ID to set the font ID of the current graphics port to the preferred system
font of the specified script.

smScriptName Name of script system

smScriptMonoFondSize Preferred font and size for fixed-width font

smScriptPrefFondSize (unused)

smScriptSmallFondSize Preferred font family and size for small text

smScriptSysFondSize Preferred system font family and size

smScriptAppFondSize Preferred application font family and size

smScriptHelpFondSize Preferred Balloon Help font family and size

smScriptValidStyles Valid text styles for script

smScriptAliasStyle Text styles to use for aliases

Table 6-4 Script variables accessed through
GetScriptVariable/SetScriptVariable (continued)

Selector constant Explanation
Using the Script Manager 6-15

C H A P T E R 6

Script Manager
Note
The Menu Manager AddResMenu procedure automatically represents
font names in their associated script for 'FOND' resources. If you need
to display font names elsewhere than in the Font menu (for instance,
using the List Manager), be sure to use a technique such as that shown
in Listing 6-2. ◆

Listing 6-2 Representing font names correctly in the script for that font

PROCEDURE MySetTextFont(fontName: Str255);

VAR

scriptFont: LongInt;

scriptNum: Integer;

theNum: Integer;

BEGIN

{from font name, get font ID}

GetFNum(fontName, theNum); {use font ID to get script code, }

{ then get preferred system font ID}

scriptNum := FontToScript(theNum);

scriptFont := GetScriptVariable(scriptNum, smScriptSysFond);

{now set the current grafPort's }

TextFont(scriptFont); { font ID to that font}

END;

The SetScriptVariable function allows you to change many script-specific
settings, including the default configuration settings for the script system, which
are initialized from a script system’s international bundle ('itlb') resource. You
call SetScriptVariable with the appropriate script constant and selector to
indicate the setting you want changed. Listing 6-3 shows how to use the
SetScriptVariable function to set the size of the Balloon Help font to the size
passed in the parameter theSize:

Listing 6-3 Setting the size of the Balloon Help font

PROCEDURE MySetHelpFontSize(theSize: LongInt);

VAR

myErr: OSErr;

myHelpFont: LongInt;

BEGIN

theSize := BitAnd(theSize, $0000FFFF);
6-16 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
{keep low word only}

myHelpFont := GetScriptVariable(smSystemScript,

smScriptHelpFondSize);

myHelpFont := BitAnd(myHelpFont, $FFFF0000);

{keep high word only}

myErr := SetScriptVariable(smSystemScript,

smScriptHelpFondSize,

BitOr(myHelpFont,theSize));

IF myErr <> noErr THEN DoError(myErr);

END;

If you are using SetScriptVariable to change the value of a variable for a specific
task, first call GetScriptVariable to retrieve the variable’s original value, and save it.
Then call SetScriptVariable and perform your task. Finally, restore the original
value of the script variable with another call to SetScriptVariable as soon as
possible, so that other applications or software components using that script system will
find the values they expect.

Making Keyboard Settings 6

The Script Manager KeyScript procedure lets you control the script system, keyboard
layout, and input method used for text input. It also lets you make other settings
related to text input.

You use the KeyScript procedure to change the keyboard script, the script system that
controls text input. You also use it to switch among different keyboard layouts, resources
that define the character sets and key positions for text input in a script system. You can
also use it to switch among input methods, software facilities that allow text input in
2-byte script systems. If your application supports multiple languages, use KeyScript
to change the keyboard script when the user changes the current font. For example, if the
user selects Geezah as the current font or clicks the cursor within a run of text that uses
the Geezah font, your application needs to set the keyboard script to Arabic. To do this,
use the FontToScript function to find the script for the font, then use KeyScript to
set the keyboard.

In addition, your application can check the keyboard script (using the
GetScriptManagerVariable function) in its main event loop; if the keyboard script
has changed, you can set the current font to the last-used font, application font, or
system font of the new keyboard script (determined by a call to the
GetScriptVariable function). This action saves the user from having to set the font
manually after changing the keyboard script.

The system software performs the equivalent of calling KeyScript in response to the
user selecting a keyboard layout or input method from the Keyboard menu. It also does
the same when the user types Command–Option–Space bar (to select the next keyboard
layout or input method within the same script system), or Command–Space bar (to
select the next script system in the Keyboard menu).
Using the Script Manager 6-17

C H A P T E R 6

Script Manager
When you call KeyScript, you pass it a code parameter that can explicitly specify a
keyboard script by script code, or can implicitly specify a keyboard script, keyboard
layout, input method, or other setting. Values for code equal to or greater than zero are
interpreted as normal script codes. Several negative codes specify switching among
keyboard scripts, keyboard layout, or input methods. Others toggle line direction or
input method and are available only with certain script systems. Still others disable or
enable keyboard layouts or keyboard scripts. Table 6-5 lists the valid constants for the
code parameter.

Table 6-5 Constants for the code parameter in the KeyScript procedure

Constant Value Expanation

(any script code) 0…64 Switch to specified script

smKeyNextScript –1 Switch to next script in Keyboard menu

smKeySysScript –2 Switch to the system script

smKeySwapScript –3 Switch to previously used script

smKeyNextKybd –4 Switch to next keyboard layout or input
method in Keyboard menu (within
current script)

smKeySwapKybd –5 (not implemented)

smKeyDisableKybds –6 Disable keyboard layouts not in system
script or Roman script

smKeyEnableKybds –7 Enable keyboard layouts for all
enabled scripts

smKeyToggleInline –8 Toggle inline input for current script
(available if 2-byte script present)

smKeyToggleDirection –9 Toggle default line direction (available if
bidirectional script present)

smKeyNextInputMethod –10 (not implemented)

smKeySwapInputMethod –11 (not implemented)

smKeyDisableKybdSwitch –12 Disable switching out of current
keyboard layout

smKeySetDirLeftRight –15 Set primary line direction to left-to-right
(available if bidirectional script present)

smKeySetDirRightLeft –16 Set primary line direction to right-to-left
(available if bidirectional script present)

smKeyRoman –17 Set keyboard script to Roman (available
only if multiple scripts present)
6-18 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
The smKeyDisableKybds selector is available for your use, although it is primarily
used by the Finder or other parts of the system under special circumstances. For
example, when the user enters the name of a file in a Standard-File dialog box, text input
must be restricted to scripts that display correctly in the Finder and in dialog boxes,
menus, and alert boxes. In that situation the system software calls KeyScript with the
smKeyDisableKybds selector to disable keyboard input temporarily in any script
system except Roman or the system script. Keyboards in other script systems then
appear disabled in the Keyboard menu. When the user completes the filename entry, the
system calls KeyScript again with a selector of smKeyEnableKybds to reenable
keyboard input in all enabled script systems.

The smKeyDisableKybdSwitch selector is also available for your use, although it is
primarily used by the Finder. When keyboard layouts and script systems are being
moved into or out of the System file by the user, changing the current keyboard or
keyboard script may corrupt files or cause other unpredictable results. To prevent all
keyboard switching and to disable all the Keyboard menu items, the Finder calls
KeyScript with the selector smKeyDisableKybdSwitch. When the move has been
completed, the Finder again calls KeyScript with a selector of smKeyEnableKybds to
reenable keyboard switching.

If you call KeyScript with code = smKeyRoman on a system in which only the
Roman script system is enabled, nothing happens. However, if you call KeyScript with
code = 0 (to select the Roman script system), it forces an update that selects the current
default Roman keyboard layout.

IMPORTANT

Although it is possible to change the keyboard script without changing
the keyboard layout—by calling the SetScriptManagerVariable
function with the smKeyScript selector—it violates the user interface
paradigm and creates problems for other script management routines. ▲

Synchronizing the Font Script and Keyboard Script 6

To keep the user from accidentally entering meaningless characters, you must always
keep the keyboard script synchronized with the font script, so that the glyphs displayed
on the screen match the characters entered at the keyboard. You can synchronize the
scripts in two ways: by setting the keyboard script when the font script changes, and by
setting the font script when the keyboard script changes.

Setting the Keyboard Script From the Font Script 6

Set the keyboard script from the font script when the user selects a new font or when the
user clicks in or selects text.

■ If the user selects a new font from the Font menu, call TextFont to set the current
font to that font. Then set the keyboard script to the script system of that font.

■ If the user clicks in or selects a text area, set the current font to be the font, size, and
style of the text where the click occurred. Then set the keyboard script to the script
system of that font.
Using the Script Manager 6-19

C H A P T E R 6

Script Manager
Listing 6-4 is an example of code to use for setting the keyboard script from the font
script. Once you have obtained the script code value from the font family ID using the
FontToScript function (see “Determining Script Codes From Font Information”
beginning on page 6-21), you call the GetScriptManagerVariable function with
the smKeyScript selector to determine the keyboard script. If the font script and
the keyboard script are not the same, call the KeyScript procedure to change the
keyboard script.

Listing 6-4 Setting the keyboard script from the font script

PROCEDURE MySetKeyboardFromFont(myFont: Integer);

VAR

theFontScript: Integer;

BEGIN

{get script code from font ID.}

theFontScript := FontToScript(myFont);

{compare with keyboard script, }

{ change if necessary}

IF (GetScriptManagerVariable(smKeyScript) <>

theFontScript) THEN

KeyScript(theFontScript);

END;

Setting the Font Script From the Keyboard Script 6

Each time the user types a character other than a control character, your application
should check that the font script is still the same as the keyboard script. The user may
have, for example, switched keyboard scripts since entering the last character. If the font
script does not match the keyboard script, change the current font to correspond to the
new keyboard script before displaying the character. Follow these guidelines:

■ If possible, set the current font to the previous font that was used for that script
(that is, the last font for that script preceding the current point in the document or
text buffer).

■ Otherwise, set the font to one of the preferred fonts for that script system. The
preferred fonts are the preferred application font, the preferred system font, the
preferred monospaced font, and the preferred small font. (The ID numbers of these
fonts can be obtained through the GetScriptVariable function.)

Listing 6-5 is an example of setting the font (and therefore the font script) from the
keyboard script. It calls GetScriptManagerVariable with the smKeyScript selector
to determine the current keyboard script. It then calls FontToScript to determine
whether the keyboard script differs from the font script. If it does, the routine calls
GetScriptVariable with the smScriptAppFond selector to determine the
application font for the script. Then it sets the current font based on that result.
6-20 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Listing 6-5 Setting the font (script) from the keyboard script

PROCEDURE MySetFontFromKeyboard(VAR myFont: Integer);

VAR

scriptNum: LongInt;

BEGIN

scriptNum := GetScriptManagerVariable(smKeyScript);

IF (FontToScript(myFont) <> scriptNum) THEN

myFont := GetScriptVariable(scriptNum, smScriptAppFond);

TextFont(myFont)

END;

You can also use this code if your application does not have an interface that lets users
change fonts but still needs to provide for different script systems.

Obtaining Information 6
The second principal use for the Script Manager is in obtaining script-specific
information. Many of the routines described in this section are of general interest and are
used by most text applications. You can use these Script Manager routines to

■ determine script codes for the current script system or any other available script
system, based on font information

■ analyze characters in your text for size (in bytes) or other properties

■ directly access the contents of a script system’s international resources, to pass that
information to other text-handling calls or to inspect or modify the information

Most text-processing applications need script-code information and character-type
information, and may need to pass specific tables from international resources to some
script-aware text routines. If you format currencies, you need access to the
numeric-format resource. If you use special symbols or if you format numbers, you
need access to the untoken table and perhaps the number parts table of the tokens
resource. If your needs are more specialized, you can obtain the contents of other tables
and other resources.

Determining Script Codes From Font Information 6

The script management system asssociates a script system with a sequence of text by
examining the font of that text. Your application may also need the same information—to
test for the presence of a particular script system, to load its resources, to pass its code as
a parameter to a script-aware routine, or to execute script-specific conditional code. You
may need to determine what script system is currently active for displaying text, what
script system is being used to sort and format text, or what script system would be used
if text of a particular font were to be displayed or formatted. The Script Manager
provides three routines for that purpose: FontScript, FontToScript, and
IntlScript.
Using the Script Manager 6-21

C H A P T E R 6

Script Manager
The FontScript function tells you which script system the font of the current graphics
port belongs to. The FontToScript function tells you which (available) script system a
font of any ID number belongs to. The IntlScript function tells you which script
system is used by the Text Utilities to determine the number, date, time, currency, and
sorting formats.

The FontToScript function returns a script code for a specified font family ID, but the
FontScript and IntlScript functions return the code for the current script, the
presently active script system for text manipulation. Many script-aware routines in
QuickDraw, Text Utilities, the Script Manager, and other parts of the Macintosh script
management system need not take an explicit script code or international resource
handle as a parameter; in that case they use the current script as the script system under
which they are to function.

The current script for text display is normally the font script. The current script for date
and time formatting and string sorting is by default the system script. However, the
settings of two flags—the font force flag and the international resources selection flag—
can affect which script system is considered current at any one moment. Furthermore, if
the mapping from font to script results in a request for a script system that is not
available, the result defaults to the system script.

The next subsection lists the steps taken by FontScript, FontToScript, and
IntlScript to determine the script codes they return, and the following subsections
discuss the font force flag and the international resources selection flag in more detail.

How a Script Code Is Determined 6

The FontScript, FontToScript, and IntlScript functions all use a font family ID
to determine the script code they return. The formula they use is presented in the
discussion of resource ID numbers and script codes in the appendix “International
Resources” in this book. Fonts with IDs below 16384 ($4000) are all Roman; starting with
16384 each non-Roman script system has a range of 512 ($200) font IDs available.

Nevertheless, you should always call the functions instead of hardcoding any formula,
because it may change in the future. Furthermore, the function results are influenced by
the states of the font force flag and the international resources selection flag, and by the
availability of the determined script. Figure 6-1 shows the method the functions follow:

1. The three functions initialize two result flags, the script-forced result flag and the
script-defaulted result flag, to FALSE. These flags are Script Manager variables,
accessed through the GetScriptManagerVariable function selectors smForced
and smDefault.

2. The three functions map the two special font designations 0 and 1, meaning the
system and application fonts, to their true font family ID numbers.

3. FontScript and IntlScript calculate the script code from the font family ID of
the current font of the active port; FontToScript calculates the script code from the
supplied font family ID. If the ID is in the range $4000 to $BFFF, it is a non-Roman
font; otherwise, it is Roman.
6-22 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager

4. Once the initial determination of the script code has been made, the three functions
diverge:
n If the font is Roman, FontScript and FontToScript examine the font force flag,

which can be accessed through the GetScriptManagerVariable function
selector smFontForce. If the flag is TRUE, the two functions substitute the system
script for the font script, and set the script-forced result flag to TRUE. If the font is
non-Roman, FontScript and FontToScript ignore the state of the font
force flag.

n Regardless of the font type (Roman or non-Roman), IntlScript examines the
international resources selection flag, which can be accessed through the
GetScriptManagerVariable function selector smIntlForce. If the flag is
TRUE and the font script does not equal the system script, IntlScript substitutes
the system script for the font script and sets the script-forced result flag to TRUE.

Figure 6-1 Determining script code from font family ID

IntlScript

Map special fonts 0 and 1 to
their true font IDs

Yes

Get font’s
script code

No

International
resources selection

flag = TRUE?

No

Yes

No

Script-forced = FALSE

Script-defaulted = TRUE

System script

FontScript

Map special fonts 0 and 1 to
their true font IDs

Yes

Get font’s
script code

No

Roman font?

Font force flag
= TRUE?

No

Yes

Script-forced = TRUE

Script-defaulted = FALSE

Font script System script

Script-forced = FALSE

Script-defaulted = TRUE

Script enabled?

Script-forced = FALSE

Script-defaulted = FALSE

FontToScript

Yes

System script

No

Font script System script

Script-forced = TRUE

Script-defaulted = FALSE

Font script =
system script?

Script-forced = FALSE

Script-defaulted = FALSE

Script enabled?

Yes
Using the Script Manager 6-23

C H A P T E R 6

Script Manager
5. A final check is made to be sure that the resulting script is installed and enabled. If it
is not, the three functions substitute the system script for the script code previously
determined, set the script-forced result flag to FALSE, and set the script-defaulted
result flag to TRUE.

6. The functions return the resulting script code in their function results.

Call FontScript when you want to know which script system will be used for text
layout and display. The script code returned by FontScript tells you which script
system controls the functioning of such calls as CharToPixel, CharacterType,
FindWordBreaks, DrawText, and DrawJustified. Typically, FontScript returns
the script code for the font script; in most situations the font force flag is FALSE,
because applications usually expect to format and draw text according to the rules of the
font script.

Call FontToScript when you want to know whether the script system for text of a
particular font is available, or when you wish to manipulate text of a certain script
system without setting the current font to that font’s ID.

Note
Because a user can set the value of the font force flag from the Text
control panel, the result returned from the FontToScript or
FontScript function for a font whose ID number is in the Roman
range can vary from call to call. ◆

Call IntlScript when you want to know which script system will be used for
formatting dates and numbers, and for sorting strings. The script code returned by
IntlScript tells you which script system controls the functioning of such calls as
DateString, LongTimeString, and CompareText, when no explicit script code or
resource handle is supplied to those calls. In many localized versions of sysem software,
IntlScript by default returns the script code for the system script, because the
international resources selection flag is by default TRUE. The Finder and other parts of
system software usually expect to present dates, times, and lists of files according to the
rules of the system script.

Because the two flags are independent of each other, two different meanings for current
script can exist simultaneously. For example, your application might be sorting a set of
strings by one script’s rules, but displaying them by another’s. If that is not appropriate,
set the flags as needed before formatting or drawing. See the following discussion.

Using the Font Force Flag 6

You access and control the font force flag through the GetScriptManagerVariable
and SetScriptManagerVariable functions, with the selector smfontForce. This
flag directly affects the results of the FontScript and FontToScript functions, and
indirectly affects the operation of script-aware text measuring and drawing routines.

At startup, the Script Manager sets the font force flag to the value specified in the system
script’s international configuration ('itlc') resource. Typically, that value is FALSE.
6-24 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
When the font force flag is set to TRUE and the system script is non-Roman, the script
management system interprets font family ID numbers in the range of the Roman script
system ($0002 to $3FFF) as belonging to the system script instead. Character codes
representing non-Roman characters in the system script are drawn using the system font
instead of in the specified Roman font. This feature exists to allow users to enter and
read non-Roman text in those few applications that have hardcoded font numbers.

For example, an application may hardcode Geneva as its font; it may force the txFont
field of its graphics ports to always have a value of 3. (Note that this is a violation of
good programming practice.) If the application is running on a system with Hebrew as
the system script, it would normally be impossible to write properly in Hebrew because
the hardcoded font ID would require the font script to be Roman. However, if the font
force flag is set to TRUE, the script management system notes that the current font has an
ID number in the Roman range and draws glyphs from the Hebrew system font for any
character codes that represent valid Hebrew characters.

Thus to enter or read non-Roman text in these applications, the user can set the font force
flag to TRUE from the Text control panel. Setting the font force flag is only partially
effective, because it cannot give users full control over fonts. The user cannot choose, for
example, which font belonging to the system script is to be substituted for Roman.

The font force flag has no effect on non-Roman fonts and has no effect if the system
script is Roman. It affects only Roman fonts when the system script is non-Roman.

You can determine the status of font forcing by inspecting the script-forced result flag
and the script-defaulted result flag immediately after calling FontScript or
FontToScript; see Figure 6-1.

Although the font force flag exists primarily to accommodate restrictions in certain
existing applications, it is a user-changeable setting that your application should be
aware of and accommodate. For example:

■ If you are writing any application in which the user has control over fonts, you should
always set the font force flag to FALSE. There is no need to force fonts if the user can
choose them.

■ If the user sets the font force flag to TRUE, you will get the system script when you call
FontScript or FontToScript for fonts in the Roman range, even if your
application allows mixed text. To preserve Roman text, you can change the setting of
the font force flag before calling FontScript or FontToScript, or before calling
any other script-aware text routine. If you do that, be sure to save the previous value
and restore it when your application exits or becomes inactive.

Using the International Resources Selection Flag 6

You access and control the international resources selection flag through the
GetScriptManagerVariable and SetScriptManagerVariable functions, with
the selector smIntlForce. This flag directly affects the results of the IntlScript
function, and indirectly affects the operation of the GetIntlResource function and the
script-aware Text Utilities sorting and formatting routines.
Using the Script Manager 6-25

C H A P T E R 6

Script Manager
At startup, the Script Manager sets the international resources selection flag to the value
specified in the system script’s international configuration ('itlc') resource. Typically,
that value is TRUE.

The international resources selection flag affects the results of the GetIntlResource
function (see page 6-90). GetIntlResource returns a handle to certain international
resources, and the state of the international resources selection flag controls whether it is
the system script or the font script whose international resources are loaded. When the
flag is set to TRUE, GetIntlResource fetches the resources for the system script. When
the flag is set to FALSE, GetIntlResource uses the current font in the active port to
determine the script system whose resources will be fetched.

You can use the international resources selection flag to make sure that date formats,
sorting, and so forth reflect the appropriate script in your application. Whenever you
change the setting of the international resources selection flag, be sure to save the
previous value and restore it when your application exits or becomes inactive.

Analyzing Characters 6

The Script Manager provides routines that let you analyze the size and type of
individual characters. For example, with script systems that use 2-byte characters,
you may need to determine what part of a character a single byte represents. In either
1-byte or 2-byte script systems, you may need to know whether a particular character is
a letter or a punctuation mark, whether or not it is uppercase, or whether it is part of a
subscript (Roman within Cyrillic, Hiragana within Japanese, and so on).

Searching Text With Mixed Character Sizes 6

When searching for a single 1-byte character in text that may contain 2-byte characters,
your application must not mistake part of a 2-byte character for the character you are
seeking. The CharacterByteType and FillParseTable functions tell you whether a
given character is 1-byte or whether it is the first or second byte of a 2-byte character.

These functions use the fact that, in a 2-byte script system, only a restricted set of values
within the high-ASCII range are used as the first bytes of 2-byte characters, and those
values are never used for 1-byte characters in that script system. All other byte values
represent single-byte characters, control characters, or the second bytes of 2-byte
characters. The ranges reserved for initial bytes of 2-byte characters vary from script
system to script system, but every font has a table that gives that information, and
CharacterByteType and FillParseTable use those tables to perform their
calculations. For an illustration of this concept, see the discussion of character encoding
in the chapter “Introduction to Text on the Macintosh” in this book.

Listing 6-6 shows a search procedure that accounts for 2-byte characters. This routine
uses the Text Utilities Munger function to find a match to a key string. Because Munger
might find a match beginning at the second byte of a 2-byte character, the routine checks
for this case (using the CharacterByteType function) and continues searching if
it occurs.
6-26 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
The sample assumes two application global variables: gMainTextHandle, which is a
handle to the application’s text buffer, and gNewLocation, a long-integer offset into the
buffer at which to start searching. The parameters keyPtr and keySize specify the
string to be matched in the text buffer; scriptNum is an explicit script code. On return,
the routine updates gNewLocation to point to the location at which the search string
was found, or sets it to –1 if no match was found.

Listing 6-6 Handling 2-byte characters in a search procedure

PROCEDURE MySearch (keyPtr: Ptr; keySize: LongInt; scriptNum:

Integer);

VAR

byteType: Integer;

BEGIN

HLock(gMainTextHandle); {CharacterByteType can move memory}

REPEAT BEGIN

gNewLocation := Munger(gMainTextHandle, gNewLocation,

keyPtr, keySize, NIL, 0);

{if we matched second byte of }

{ 2-byte char in text, continue}

IF (gNewLocation >= 0) AND (scriptNum > 0) THEN

byteType := CharacterByteType(gMainTextHandle^,

gNewLocation, scriptNum)

ELSE

byteType := smSingleByte;

END UNTIL byteType <> smLastByte;

HUnlock(gMainTextHandle);

IF (gNewLocation >= 0) AND {range-check, update global}

 (gNewLocation + keySize > GetHandleSize(gMainTextHandle))

THEN

gNewLocation := -1;

END;

The FillParseTable function is similar to CharacterByteType, in that it helps you
find 2-byte characters. However, you don’t send FillParseTable the character code to
be analyzed. Instead, FillParseTable fills in an entire 256-byte table of information
for you, showing every byte value that is the first byte of a 2-byte character for the
current font. You can use the table filled out by FillParseTable to find 2-byte
characters in a large body of text much more rapidly than you could by calling
CharacterByteType for each byte value in the text.
Using the Script Manager 6-27

C H A P T E R 6

Script Manager
Getting Character-Type Information 6

You may want to know more about a byte than whether it is part of a 2-byte character. If
you are simply searching for sequences of Roman text in a buffer, or if you wish to
divide a run of Japanese into Kanji, Katakana, Hiragana, and Romaji components, you
can use the FindScriptRun function described in the chapter “Text Utilities” in this
book. But if you have other reasons to isolate specific types of characters, you can use
CharacterType.

The CharacterType function is similar to CharacterByteType, in that it tells you
what kind of character occurs at a given offset in a text buffer. But the kind of
information it returns is different. CharacterType tells you what the character’s line
direction is, whether it’s uppercase, whether it belongs to a subscript within its script,
whether it’s a 2-byte character, and what the character’s specific type and class are—
letter or punctuation, low-ASCII or high-ASCII Roman letter, Katakana or Hiragana,
Jamo or Hangul, and so on.

When you call the CharacterType function, you pass it a byte offset; it returns a
value that is an integer bit field giving information about the character at that offset. See
Figure 6-2. The paragraphs following the figure describe the fields.

Figure 6-2 Fields in the CharacterType return value

Bits 0–3 of the CharacterType function result describe the character type of the
character in question.

■ The Roman script system recognizes three basic character types, defined by the
following constants:

Character type Hex. value Explanation

smCharPunct $0000 Punctuation (anything but a letter)

smCharAscii $0001 ASCII letter (not a number or symbol,
character code <= $7F)

smCharExtAscii $0007 High-ASCII Roman letter (not a number or
symbol, character code >= $80)

15 14 13 12 11 8 7 4 3 0

Size

Case

Direction

class type

Orientation
6-28 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
■ Additional character-type constants are provided for Japanese Katakana and
Hiragana; the ideographic subscripts such as Hanzi, Kanji, and Hanja; 2-byte Cyrillic
and Greek in 2-byte systems; bidirectional script systems such as Arabic and Hebrew;
and Korean Hangul and Jamo subscripts:

Bits 8–11 of the CharacterType function result describe the character class of the
character in question. Character classes can be considered as subtypes of character types;
a given character type can have several classes that belong to it.

■ If the character type is smCharPunct, the following character classes are defined that
include punctuation for both 1-byte and 2-byte script systems:

■ In the Korean script system, if the character type is smCharJamo, the following
character classes are defined. They determine whether a given byte contains a simple
or complex consonant or a simple or complex vowel:

Character type Hex. value Explanation

smCharKatakana $0002 Japanese Katakana

smCharHiragana $0003 Japanese Hiragana

smCharIdeographic $0004 Hanzi, Kanji, Hanja

smCharTwoByteGreek $0005 2-byte Greek in 2-byte scripts

smCharTwoByteRussian $0006 2-byte Cyrillic in 2-byte scripts

smCharBidirect $0008 Arabic, Hebrew

smCharContextualLR $0009 Thai, Indic, etc.

smCharNonContextualLR $000A Cyrillic, Greek, etc.

smCharHangul $000C Korean Hangul

smCharJamo $000D Korean Jamo

smCharBopomofo $000E Chinese Bopomofo (Zhuyinfuhao)

Character class Hex. value Explanation

smPunctNormal $0000 Normal punctuation (such as ! , . ;?)

smPunctNumber $0100 Number character (such as 0–9)

smPunctSymbol $0200 Nonpunctuation symbol (such as # $ &)

smPunctBlank $0300 Blank character (such as ASCII $00, $0D, $20)

smPunctRepeat $0400 Repeat marker in 2-byte script

smPunctGraphic $0500 Line graphics in 2-byte script

Character class Hex. value Explanation

smJamoJaeum $0000 Simple consonant character

smJamoBogJaeum $0100 Complex consonant character

smJamoMoeum $0200 Simple vowel character

smJamoBogMoeum $0300 Complex vowel character
Using the Script Manager 6-29

C H A P T E R 6

Script Manager
The Jamo and Hangul subscripts of Korean are discussed briefly along with input
methods in the chapter “Introduction to Text on the Macintosh” in this book.

■ In the Japanese script system, if the character type is smCharKatakana or
smCharHiragana, the following character classes are defined:

A small Kana character is a special form of Kana used to modify the pronunciation of
a previous (full-sized) Kana character. Dakuten and han-dakuten are pronunciation
marks that soften consonant sounds in Kana.

■ In 2-byte script systems, if the character type is smCharIdeographic, the following
character classes are defined:

The characters specified by the smIdeographicLevel1 constant are part of the
level 1 Han character set specified by Japanese, Chinese, and Korean government
standards. Approximately 90 percent of normal text consists of characters from the
level 1 set.
The characters specified by the smIdeographicLevel2 constant are part of the
level 2 Han character set, which includes obscure characters. The level 1 and level 2
character sets combined contain 98 percent of the character set used in the Kanji
subscript.
The characters specified by smIdeographicUser represent custom characters
created by the user.

Bits 12–15 of the CharacterType function result are the character modifiers of the
character in question. One bit describes each modifier.

■ Bit 12 specifies the orientation of the character: whether it is intended for horizontal or
vertical writing.

Character class Hex. value Explanation

$0000 (none of the following defined classes)

smKanaSmall $0001 Small Kana character

smKanaHardOK $0002 Can have dakuten

smKanaSoftOK $0003 Can have dakuten or han-dakuten

Character class Hex. value Explanation

smIdeographicLevel1 $0000 Level 1 characters

smIdeographicLevel2 $0100 Level 2 characters

smIdeographicUser $0200 User characters

Character orientation Hex. value Explanation

smCharHorizontal $0000 Character form is for horizontal writing, or
for both horizontal and vertical

smCharVertical $1000 Character form is for vertical writing only
6-30 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
■ Bit 13 specifies the direction of the character: whether its line direction is left-to-right or
right-to-left.

■ Bit 14 specifies the case of the character: whether it is lowercase or uppercase.

■ Bit 15 specifies the size of the character: whether it is 1 or 2 bytes long.

You can describe individual characters with combinations of these constants. For
example, if the byte being examined by CharacterType is a 1-byte English uppercase
“A”, then the value of the result could be expressed as smChar1Byte + smCharUpper +
smCharLeft + smCharASCII. CharacterType indicates blank characters by a type
smCharPunct and a class smCharBlank.

Some values are meaningful only in certain subscripts or script systems. The value
smCharUpper is meaningless in a subscript that has no uppercase characters, for
example; the value smIdeographicLevel is meaningless in 1-byte script systems.

You can use CharacterType for a variety of purposes—to validate input in numeric
fields, to filter non-phonetic characters in an input method, or to search for punctuation,
uppercase letters, and symbols. If you are breaking lines of text and are not using the
Text Utilities StyledLineBreak function, you can use CharacterType to locate and
skip whitespace characters at the ends of lines; see the description of text drawing in the
chapter “QuickDraw Text” in this book.

The CharacterType function is described further on page 6-85.

Directly Accessing International Resources 6

This section shows how you can directly access the international resources of a script
system. Such direct access can help you be more efficient in creating bilingual
applications, formatting numbers in different scripts, accessing character information,
and using tokens. Several script-aware Text Utilities calls can take a handle to an
international resource as an input parameter; you can use the calls in this section to
obtain those handles.

Character direction Hex. value Explanation

smCharLeft $0000 Character with left-to-right line direction

smCharRight $2000 Character with right-to-left line direction

Character case Hex. value Explanation

smCharLower $0000 Lowercase character

smCharUpper $4000 Uppercase character

Character size Hex. value Explanation

smChar1byte $0000 1-byte character

smChar2byte $8000 2-byte character
Using the Script Manager 6-31

C H A P T E R 6

Script Manager
Your application can examine the international resources that determine numeric
formats, date formats, string sorting, conversion to tokens, and character encoding or
rendering by making the calls described here. You can also retrieve individual tables
from some of the resources.

This access also helps you to provide your own versions or regional variations of certain
international resources. See “Replacing a Script System’s Default International
Resources” beginning on page 6-48 for more information.

Note
Although you can access the international resources independently
through the Resource Manager function GetResource and related
calls, you can be sure to get the preferred resource of the current script
system by using the calls described here. ◆

The calls you make to access the international resources are
ClearIntlResourceCache, GetIntlResource, and GetIntlResourceTable.
With them, you have access to the contents of a script system’s numeric-format
('itl0'), long-date-format ('itl1'), string-manipulation ('itl2'), tokens ('itl4'),
and encoding/rendering ('itl5') resources.

To access one of these resources for the current script, follow these steps:

1. Make sure the current script is the script system containing the international resource
you want to access. See “Determining Script Codes From Font Information” on
page 6-21. You may need to verify the settings of the font script, the system script, and
the international resources selection flag. See “Using the International Resources
Selection Flag” on page 6-25.

2. If you need access to any version of the current script’s string-manipulation or tokens
resources other than its default version, call ClearIntlResourceCache first. See
“Replacing a Script System’s Default International Resources” on page 6-48.

3. Call GetIntlResource, specifying the type of resource you need.
GetIntlResource returns a handle to the resource.

For an example of using GetIntlResource to extract information from an
international resource, see the next section, “Using Currency, Number, and Date
Formats.”

To access a specific table within a string-manipulation or tokens resource, follow
these steps:

1. If you don’t already have it, determine the script code of the script system containing
the international resource you want to access. See “Determining Script Codes From
Font Information” on page 6-21.

2. If you need access to any other than the script’s default version of that resource, call
ClearIntlResourceCache first. See “Replacing a Script System’s Default
International Resources” on page 6-48.
6-32 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
3. Call GetIntlResourceTable to get the specified table within the specified resource
belonging to the specified script system. Depending on the resource, you can get its
number-parts, untoken, word-selection, line-break, or whitespace table.

For more information about these tables, see the following sections: “Using Number
Parts,” “Retrieving Text From Tokens,” “Using Word-Break Tables,” and “Using
Whitespace Information.”

IMPORTANT

Any time you replace the default international resources for a script
system, whether or not you subsequently call GetIntlResource or
GetIntlResourceTable, you need to call
ClearIntlResourceCache, to make sure that the replacements are
used by all script-aware calls. See “Replacing a Script System’s Default
International Resources” beginning on page 6-48. ▲

Using Currency, Number, and Date Formats 6

In general, you should use the Text Utilities routines for date, time, and number
formatting. See the chapter “Text Utilities” in this book. If, however, you need to directly
access fields in the numeric-format ('itl0') and long-date-format ('itl1') resources
to find the characters, separators, strings, and orders for formatting numbers, dates, and
times, you can do so with GetIntlResource.

Listing 6-7 shows how to determine the decimal, thousands, and list separators for
number formatting in the current script. To access the numeric-format resource, the
routine specifies a resource selector of 0 (for 'itl0') in the parameter theID of the
GetIntlResource function. It then extracts the values it wants from the decimalPt,
thousSep, and listSep fields.

Listing 6-7 Determining the number separators for the current script

PROCEDURE MyGetNumberSeparators (VAR myDecimal:Char;

VAR myThousands:Char;

VAR myListSep:Char);

VAR

myHandle: Intl0Hndl;

{make sure the desired script is set }

{ before calling this routine}

BEGIN

myHandle := Intl0Hndl(GetIntlResource(0));{Get 'itl0' resource}

myDecimal := myHandle^^.decimalPt; {for example, 1.234}

myThousands := myHandle^^.thousSep; {for example, 1,234,567}

myListSep := myHandle^^.listSep; {for example, 1;2;3}

END;
Using the Script Manager 6-33

C H A P T E R 6

Script Manager
IMPORTANT

Do not assume that the components of dates and times are always
ordered in a left-to-right direction when displayed. If you are drawing
individual time components, be careful not to simply draw them from
left to right in all cases. For instance, the AM/PM characters in an
English time string are on the right, whereas in an Arabic time string the
equivalent characters may be on the left or right, depending on the
primary line direction—even though in both cases these characters are at
the end of the time string in memory. ▲

Using Number Parts 6

You can access information on how separators and other parts of formatted numbers are
represented in a particular script system by examining the number parts table in the
script’s tokens ('itl4') resource. Unlike the numeric-format resource, the number parts
table supports 2-byte characters; it also contains more information, especially for
complicated number formats such as scientific notation.

Your most common reason for obtaining the number parts table may be to pass it as a
parameter to the Text Utilities functions StringToFormatRec, FormatRecToString,
StringToExtended, and ExtendedToString. But you can also examine its contents.
Listing 6-8 shows how to call the GetIntlResourceTable procedure, with a table
selector of smNumberPartsTable, to obtain the number parts table associated with a
given script. The routine obtains the character associated with the number part specified
by thePart and saves it as a wide character, which is a character of either 1 or 2 bytes.
(See the discussion of the tokens resource in the appendix “International Resources” for
a definition of the WideChar data type.) To specify the system script, the parameter
theScript would have the value smSystemScript. The parameter thePart can
have such values as tokDecPoint and tokThousands. For a complete list of
number-parts constants, see the description of the tokens resource in the appendix
“International Resources” in this book.

Listing 6-8 Getting number parts from a script system’s number parts table

PROCEDURE MyMapNumPartToWideChar(theScript: ScriptCode;

thePart: Integer;

VAR theWChar: WideChar);

VAR

itlHandle: Handle;

numpartsOffset: Longint;

numpartsLength: LongInt;

numpartsPtr: NumberPartsPtr;
6-34 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
BEGIN

GetIntlResourceTable(theScript, smNumberPartsTable,

itlHandle, numpartsOffset,

numpartsLength);

IF itlHandle = NIL THEN {handle errors, }

theWChar.b := 0 { return null WideChar}

ELSE BEGIN {make numpartsPtr point to }

{ beginning of number parts table}

numpartsPtr := NumberPartsPtr(LongInt(itlHandle^) +

numpartsOffset);

IF thePart > tokMaxSymbols THEN {invalid number part-- }

{ handle error, }

theWChar.b := 0 { return null WideChar}

ELSE BEGIN

theWChar := numpartsPtr^.data[thePart];

END;

END;

END;

Retrieving Text From Tokens 6

Tokens are abstract entities that stand for classes of text items such as alphanumeric
strings, various symbols, and quoted literals. The Script Manager IntlTokenize
function converts programming-language text into script-independent tokens useful to
compilers or interpreters. See “Tokenization” on page 6-38. The untoken table in a script
system’s tokens ('itl4') resource has the opposite purpose; it helps you convert
script-independent tokens into the text of a given script system.

The untoken table lists the characters associated with each fixed (invariant) token
defined by that script. (An invariant token is one that, like tokenColon, represents a
unique symbol. Other types of tokens, like tokenAlpha, represent an arbitrary
sequence of characters.) If you need to find out, for example, how a given script system
represents the “less than or equal to” symbol (is it the 1-byte character “≤”, a 2-byte
encoding of the character “≤”, the 2-byte, 2-character sequence “<=”, or something else
altogether?), you can look up the values of tokenLessEqual1 and tokenLessEqual2
in that script’s untoken table.

The untoken table is most useful for obtaining script-specific forms for individual
common symbols, such as the ellipsis or center dot. If you truncate strings with the
ellipsis character (…) or use the center dot (•) such as AppleShare does for echoing
passwords, don’t hardcode their character codes; they may not be valid in some script
systems. Instead, specify tokenEllipsis or tokenCenterDot, and use the untoken
table of the current script system to obtain the proper text for those tokens.
Using the Script Manager 6-35

C H A P T E R 6

Script Manager
Note
If a script system has no defined character or string that corresponds to a
particular token, the untoken table contains either a null string or the
string “??” for that token. ◆

You access the untoken table by calling the GetIntlResourceTable procedure with a
table selector of smNumberPartsTable. Listing 6-9 provides an example of how to
access the untoken table in the tokens resource. This code sample extracts the canonical
string associated with a token. It sets the parameter theString to the string that
corresponds to the token theToken. (Usually, this string is 4 bytes or less.) To specify
the system script, the parameter theScript would have the value smSystemScript.
The parameter theToken can have such values as tokenNoBreakSpace,
tokenEllipsis, and tokenCenterDot. For a complete list of defined constants for
tokens, see “Token Codes” beginning on page 6-58.

Listing 6-9 Getting a token string from the untoken table

PROCEDURE MyMapTokenToString(theScript: ScriptCode; theToken:

Integer; VAR theString: Str255);

VAR

itlHandle: Handle;

untokenOffset: LongInt;

untokenLength: LongInt;

untokenPtr: UntokenTablePtr;

untokenStringPtr: StringPtr;

BEGIN

GetIntlResourceTable(theScript, smUnTokenTable, itlHandle,

untokenOffset, untokenLength);

IF itlHandle = NIL THEN {handle errors, return null string}

theString := ''

ELSE BEGIN {make untokenPtr point to the }

{ beginning of the untoken table}

untokenPtr := UntokenTablePtr(LongInt(itlHandle^) +

untokenOffset);

IF theToken > untokenPtr^.lastToken THEN {this token is }

{ not in table-- }

theString := '' { return null string}

ELSE BEGIN {index[theToken] is the offset }

{ of the desired string from the }

{ beginning of the untoken table}

untokenStringPtr := StringPtr(LongInt(untokenPtr) +
6-36 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
untokenPtr^.index[theToken]);

theString := untokenStringPtr^;

END;

END;

END;

Even though using the untoken table is conceptually the converse of calling the
IntlTokenize function, their purposes are different. IntlTokenize is used as a first
step toward compiling or interpreting programming-language source text, and its results
are rarely returned or reconverted to source text. The untoken table is most commonly
used to supply localized text for individual common tokens.

Using Word-Break Tables 6

If you use the Text Utilities FindWordBreaks procedure to determine the boundaries of
a word, you normally do not need to pass it an explicit pointer to a word-break table.
However, if you want to use a custom word-break table you can pass FindWordBreaks
a pointer to that table. Word-break tables are in a script system’s string-manipulation
('itl2') resource; you can gain access to them by calling the
GetIntlResourceTable procedure with a table selector of smWordSelectTable or
smWordWrapTable.

There are two possible table selectors because a script system may have different word
breaks for word selection than it does for line breaking. If you are using
FindWordBreaks to select an individual word, use smWordSelectTable when you
call GetIntlResourceTable to obtain the word-break table. If you are using
FindWordBreaks to find line breaks, use smWordWrapTable when you call
GetIntlResourceTable.

Using Whitespace Information 6

Most applications that need whitespace information, such as when eliminating extra
spaces in text or searching for non-space characters, can get it by calling the
CharacterType function. However, if your application needs a listing of all valid
whitespace characters in a script system, you can call GetIntlResourceTable with a
table selector of smWhiteSpaceList. GetIntlResourceTable returns the
whitespace table from the script system’s tokens resource.

Converting Text 6
The third principal use for the Script Manager is in converting text from one form to
another, for two specific purposes: tokenization and transliteration. The routines
described in this section are used by specialized applications only. You can use these
Script Manager routines to
Using the Script Manager 6-37

C H A P T E R 6

Script Manager
■ lexically convert text of the current script system into a series of
language-independent tokens (tokenization)

■ phonetically convert text of one subscript into text of another subscript within the
same script system (transliteration)

Most text-processing applications have no need to perform either of these tasks.
However, if your program needs to evaluate programming statements or logical or
mathematical expressions in a script-independent fashion, you may want to use the
Script Manager’s tokenization facility. If your program performs phonetic conversion,
for text input or for any other purpose, you may want to use the Script Manager’s
transliteration facility.

Tokenization 6

Programs that parse structured text expressions (such as compilers, assemblers, and
scripting-language interpreters) usually assign sequences of characters to categories
called tokens. Tokens are abstract entities that stand for names, operators, and quoted
literals without making assumptions that depend on a particular writing system.

The Script Manager provides support for this conversion, called tokenization. Each
script system’s international tokens resource (type 'itl4') contains tables of token
information used by the Script Manager’s IntlTokenize function to identify the
elements in an arbitrary string of text and convert them to tokens. The token stream
created by IntlTokenize can be used as input to a compiler or interpreter, or to an
expression evaluator such as might be used by a spreadsheet or database program.

The IntlTokenize function allows your application to create a common set of tokens
from text in any script system. For example, a whitespace character might have different
character-code representations in different script systems. The IntlTokenize function
can assign the token tokenWhite to any whitespace character, thus removing
dependence on any character-encoding scheme.

When you call IntlTokenize, you pass it the source text to interpret. IntlTokenize
parses the text and returns a list of the tokens that make up the text. Among the token
types that it recognizes are whitespace characters; newline or return characters;
sequences of alphabetic, numeric, and decimal characters; the end of a stream of
characters; unknown characters; alternate digits and decimals; and many fixed token
symbols, such as open parentheses, plus and minus signs, commas, and periods. See
page 6-58 for a complete list of recognized tokens and their defined constants.

IntlTokenize can return not only a list of the token types found in your text but also a
normalized copy of the text of each of the tokens, so that the content of your source text
is preserved along with the tokens generated from it.

Figure 6-3 illustrates the process that occurs when IntlTokenize converts text into a
sequence of tokens. It shows that very different text from two separate script systems can
result in the same set of tokens.
6-38 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Figure 6-3 The action of IntlTokenize

Because it uses the tokens resource belonging to the script system of the text being
analyzed, IntlTokenize works on only one script run at a time. However, one way to
process multiscript text is to make successive calls to IntlTokenize and append the
results of each to the token list, thus building a single token stream from multiple calls.

Note
The IntlTokenize function does not provide complete lexical
analysis; it returns a simple, sequential list of tokens. If necessary, your
application can then process the output of IntlTokenize at a more
sophisticated lexical or syntactic level. ◆

The rest of this section introduces the data structures used by IntlTokenize, discusses
specific features and how it handles specific types of text, and gives an example.

Macro Text

total3=sum(A3:B9);{yearly totals}

IntlTokenize

Tokens

(internal representation)

tokenAlpha

tokenEqual

tokenAlpha

tokenLeftParen

tokenAlpha

tokenColon

tokenAlpha

tokenRightParen

tokenSemicolon

tokenLeftComment

tokenLiteral

tokenRightComment

Tokens
('itl4')

resource

Tokens
('itl4')

resource
Using the Script Manager 6-39

C H A P T E R 6

Script Manager
Data Structures 6

When you call IntlTokenize, you supply it with a pointer to a token block record,
a data structure that you have allocated. The token block record has a pointer to your
source text and pointers to two other buffers you have allocated—one to hold the list
of token records that IntlTokenize generates and the other to hold the string
representations of those tokens, if you choose to have strings generated. See Figure 6-4.

IntlTokenize fills in the token list and the string list, updates information in the token
block record, and returns the information to you.

Figure 6-4 IntlTokenize data structures (simplified)

IntlTokenize

Token list

TokenRec 1

TokenRec 2

TokenRec 3Token strings

string 1

string 2

string 3

Token block

ptr to source text

ptr to token list

ptr to token strings

Source text
This is called source text. It appears as text. It is called

source text. This is called source text. It appears as text. It is

called source text.

This is called source text. It appears as text. It is called

source text. This is called source text.

It appears as text. It is called source text. This is called source

text. It appears as text. It is called

source text. This is called source text. It appears as text. It

is called source text.

This is called source text. It appears as text. It is called

source text. This is called source text. It appears as text.

It is called source text. This is called source text.

It appears as text. It is called

source text. This is called source text. It appears as text. It

is called source text.

This is called source text. It appears as text. It is called

source text. This is called source text.

It appears as text. It is called source text.

This is called source text. It appears as text. It is called

source text. This is called source text. It appears as text. It

is called source text.

This is called source text. It appears as text. It is called

source text. This is called source text.

It appears as text. It is called source text.

Information flow

Pointers
6-40 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Delimiters for Literals and Comments 6

Your application may specify up to two pairs of delimiters each for quoted literals
and for comments. Quoted literal delimiters consist of a single symbol, and comment
delimiters may be either one or two symbols (including the newline character for
notations whose comments automatically terminate at the end of a line). Each
delimiter is represented by a token, as is the entire literal between the opening and
closing delimiters—except when the literal contains an escape character; see “Escape
Character” (next).

Limited support exists for nested comments. Comments may be nested if so specified
by the doNest flag, with one restriction that must be strictly observed to prevent
IntlTokenize from malfunctioning: nesting is legal only if both the left and
right delimiters for the comment token are composed of two symbols each. If your
application specifies two different sets of comment delimiters, then the doNest flag
always applies to both.

IMPORTANT

When using nested comments specified by the doNest flag,
test thoroughly to ensure that the requirements of
IntlTokenize are met. ▲

Escape Character 6

The characters that compose literals within quotations and comments are normally
defined to have no syntactic significance; however, the escape character within a quoted
literal signals that the following character should not be treated as the closing delimiter.
Outside of the limits of a quoted literal, the escape character has no significance and is
not recognized as an escape character.

For example, if the backslash “\” (token type = tokenBackSlash) is defined as the
escape character, the IntlTokenize function would consider it to be an escape
character in the following string, and would not consider the second quotation mark to
be a closing delimiter:

"This is a quote \" within a quoted literal"

In the following string, however, IntlTokenize would not consider the backslash to be
an escape character, and therefore would consider the first quotation mark to be an
opening delimiter:

This is a backslash \" preceding a quoted literal"
Using the Script Manager 6-41

C H A P T E R 6

Script Manager
Alphanumeric Tokens 6

The IntlTokenize function allows you to specify that numeric characters do not have
to be considered numbers when mixed with alphabetic characters. If a flag is set,
alphabetic sequences may include digits, as long as first character is alphabetic. In that
case the sequence Highway61 would be converted to a single alphabetic token, instead
of the alphabetic token Highway followed by the number 61.

Alternate Numerals 6

Some script systems have not only Western digits (that is, the standard ASCII digits, the
numerals 0 through 9), but also their own numeral codes. IntlTokenize recognizes
these alternate numerals and constructs tokens from them, such as tokenAltNum and
tokenAltReal.

String Generation 6

To preserve the content of your source text as well as the tokens generated from it, your
application may instruct IntlTokenize to generate null-terminated,
even-byte-boundaried Pascal strings corresponding to each token. IntlTokenize
constructs the strings according to these rules:

■ If the token is anything but alphabetic or numeric, IntlTokenize copies the text of
the token verbatim into the Pascal string.

■ If the token represents non-Roman alphanumeric characters, IntlTokenize copies
the characters verbatim into the Pascal string.

■ If the token represents Roman alphabetic characters, IntlTokenize normalizes
them to standard ASCII characters (such as by changing 2-byte Roman to 1-byte
Roman) and writes them into the Pascal string.

■ If the token represents numeric characters—even if the script system uses an alternate
set of digits—IntlTokenize normalizes them into standard ASCII numerical digits,
with a period as the decimal separator, and creates a string from the result. This
allows users of other script systems to transparently use their own numerals or
Roman characters for numbers or keywords.

The tokens resource includes a string-copy routine that performs the necessary string
normalization.

Appending Results 6

You can make a series of calls to IntlTokenize and append the results of each call to
the results of previous calls. You can instruct IntlTokenize to use the output values
for certain parameters from each call as input values to the next call. At the end of your
sequence of calls you will have—in order—all the tokens and strings generated from the
calls to IntlTokenize.
6-42 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Appending results is the only way to use IntlTokenize to parse a body of text that has
been written in two or more different script systems. Because IntlTokenize can
operate only on a single script run at a time, you must first divide your text into script
runs and pass each script’s character stream separately to IntlTokenize.

Example 6

Here is an example of how the IntlTokenize function breaks text into segments that
that can be processed in a way that is meaningful in a particular script system. The
source text is identical to that shown in Figure 6-3 on page 6-39. Assume that you send
this programming-language statement to IntlTokenize:

total3=sum(A3:B9);{yearly totals}

IntlTokenize might convert that into the following sequence of tokens and
token strings:

This token sequence could then be processed meaningfully by an expression evaluator. If
the statement had been created under a different script system, in which comment
delimiters, semicolons, or equality were represented with different character codes, the
resulting token sequence would still be the same and could be evaluated identically—
although the strings generated from the tokens would be different.

The IntlTokenize function is described further on page 6-92.

Transliteration 6

The Script Manager provides support for transliteration, the automatic conversion of
text from one form to another within a single script system. In the Roman script system,
transliteration simply means case conversion. In Japanese, Chinese, and Korean script
systems, it means the phonetic conversion of characters from one subscript to another.

Token Token string

tokenAlpha 'total3'

tokenEqual '='

tokenAlpha 'sum'

tokenLeftParen '('

tokenAlpha 'A3'

tokenColon ':'

tokenAlpha 'B9'

tokenRightParen ')'

tokenSemicolon ';'

tokenLeftComment '{'

tokenLiteral 'yearly totals'

tokenRightComment '}'
Using the Script Manager 6-43

C H A P T E R 6

Script Manager
The TransliterateText function performs the conversions. Tables that control
transliteration for a 1-byte script system are in its international string-manipulation
('itl2') resource; the tables for a 2-byte script system are in the script’s transliteration
('trsl') resource. This illustrates the difference in the meaning of transliteration for the
two types of script systems: case conversion information is in the string-manipulation
resource, whereas information needed for phonetic conversion is in the transliteration
resource. The transliteration resource is available to all script systems, although currently
no 1-byte script systems make use of it.

Transliteration here does not mean translation; the Macintosh script management system
cannot translate text from one language to another. Nor does it include context-sensitive
conversion from one subscript to another; that can be accomplished with an input
method. See, for example, the discussions of input methods in the chapters “Introduction
to Text on the Macintosh” and “Text Services Manager” in this book. Transliteration can,
however, be an initial step for those more complex conversions:

■ Within the Japanese script system, you can transliterate from Hiragana to Romaji
(Roman) and from Romaji to Katakana, and vice versa. You cannot transliterate from
Hiragana to Kanji (Chinese characters). However, transliteration from Romaji to
Katakana or Hiragana could be an initial step for an input method that would
complete the context-sensitive conversion to Kanji.

■ Within the (traditional) Chinese script system, you can transliterate from the
Bopomofo or Zhuyinfuhao (phonetic) subscript to Roman, and vice versa. You cannot
transliterate from Zhuyinfuhao to Hanzi (Chinese characters). However,
transliteration from Zhuyinfuhao to Pinyin could be an initial step for an input
method that would complete the context-sensitive conversion to Hanzi.

■ Within the Korean script system, you can transliterate from Roman to Jamo, from
Jamo to Hangul, from Hangul to Jamo, and from Jamo to Roman. It is therefore
possible to transliterate from Hangul to Roman and from Roman to Hangul by a
two-step process. It is not possible to transliterate from Hangul into Hanja (Chinese
characters). Transliteration from Jamo to Hangul is used by the input method
supplied with the Korean script system; that transliteration is sufficient when Hanja
characters are not used. To include Hanja characters requires additional
context-sensitive processing by the input method.

The Script Manager defines two basic types of transliteration you can perform:
conversion to Roman characters, and conversion to a native subscript within the same
non-Roman script system. Within those categories there are subtypes. For instance, in
Roman text, case conversion can be either to uppercase or to lowercase; in Japanese text,
native conversion can be to Romaji, Hiragana, or Katakana.

You can specify which types of text can undergo conversion. For example, in Japanese
text you can, if you want to, limit transliteration to Hiragana characters only. Or you can
restrict it to case conversion of Roman characters only.
6-44 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Not all combinations of transliteration are possible, of course. Case conversion cannot
take place in scripts or subscripts that do not have case; transliteration from one
subscript to another cannot take place in scripts that do not have subscripts.

Transliteration is not perfect. Typically, it gives a unique result within a 2-byte script,
although it may not always be the most phonetic or natural result. Transliterations may
be incorrect in ambiguous situations; by analogy, in certain transliterations from English
“th” could refer to the sound in the, the sound in thick, or the sounds in boathouse.

Figure 6-5 shows some of the possible effects of transliteration. Each string on the right
side of the figure is the transliterated result of its equivalent string on the left.

■ Roman characters can be transposed from uppercase to lowercase and vice versa—
even if they are embedded in text that also contains Kanji.

■ One-byte Roman characters can be converted to 2-byte Roman characters. (The glyphs
for 2-byte Roman characters are typically larger and spaced farther apart, for better
appearance when interspersed with ideographic glyphs.)

■ Katakana can be converted to Hiragana.

■ Hiragana can be converted to 1-byte Roman characters.

Figure 6-5 The effects of transliteration

When you call TransliterateText, you specify a source mask, a target format, and a
target modifier. The source mask specifies which subscript or subscripts represented in
the source text should be converted to the target format. The target modifier provides
additional formatting instructions. For example, in Japanese text that contains Roman,
Hiragana, Katakana, and Kanji characters, you could use the source mask to limit
transliteration to Hiragana characters only. You could then use the target format to
specify conversion to Roman, and you could use the target modifier to further specify
that the converted text become uppercase.

to uppercase

TO LOWERCASE

Mixed

romaji*

TO UPPERCASE

to lowercase

MIXED

r o m a j i

nihonn

* 1-byte Romaji converted to 2-byte Romaji

*

Using the Script Manager 6-45

C H A P T E R 6

Script Manager
For all script systems, there are three currently defined values for source mask, with the
following assigned constants:

To specify that you want to convert only Roman characters, use smMaskAscii. To
convert only native characters, use smMaskNative. Use the smMaskAll constant to
specify that you want to transliterate all text. “Roman text” is defined as any Roman
characters in the character set of a given script system. In most cases, this means the
low-ASCII Roman characters, but—depending on the script system—it may also include
certain characters in the high-ASCII range whose codes are not used for the script
system’s native character set, and it may include 2-byte Roman characters in 2-byte
script systems. The definition of “native text” is also script-dependent.

The 2-byte script systems recognize the following additional values for source mask:

The low-order byte of the target parameter is the format; it determines what form the
text should be transliterated to. For all script systems, there are two currently supported
values for target format, with the following assigned constants:

Source mask constant Value Explanation

smMaskAscii 1 Convert from Roman text

smMaskNative 2 Convert from text native to current script

smMaskAll –1 Convert from all text

Source mask constant Hex. value Explanation

All 2-byte scripts:

smMaskAscii1 $04 Convert from 1-byte Roman text

smMaskAscii2 $08 Convert from 2-byte Roman text

Japanese:

smMaskKana1 $10 Convert from 1-byte Katakana text

smMaskKana2 $20 Convert from 2-byte Katakana text

smMaskGana2 $80 Convert from 2-byte Hiragana text

Korean:

smMaskHangul2 $100 Convert from 2-byte Hangul text

smMaskJamo2 $200 Convert from 2-byte Jamo text

Chinese:

smMaskBopomofo2 $400 Convert from 2-byte Zhuyinfuhao text

Target format constant Hex. value Explanation

smTransAscii $00 Convert to Roman

smTransNative $01 Convert to a subscript native to current script

smTransCase $FE Convert case for all text (obsolete)

smTransSystem $FF Convert to system script (obsolete)
6-46 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
The 2-byte script systems recognize the following additional values for target format:

The high-order byte of the target parameter is the target modifier; it provides
additional formatting instructions. All script systems recognize these values for target
modifier, with the following assigned constants:

For example, for TransliterateText to convert all the characters in a block of text to
1-byte Roman uppercase, the value of srcMask is smMaskAll and the target value is
smTransAscii1+smTransUpper. To convert only those characters that are already
(1-byte or 2-byte) Roman, the value of srcMask is smMaskAscii1+smMaskAscii2.

The TransliterateText function is described further on page 6-98.

Note
For uppercasing or lowercasing Roman text in general, use
UppercaseText or LowercaseText. Because the performance of
TransliterateText is slower, you may rarely want to use its
case-changing capabilities in Roman text. ◆

Target format constant Value Explanation

All 2-byte scripts:

smTransASCII1 2 Convert to 1-byte Roman text

smTransASCII2 3 Convert to 2-byte Roman text

Japanese:

smTransKana1 4 Convert to 1-byte Katakana text

smTransKana2 5 Convert to 2-byte Katakana text

smTransGana2 7 Convert to 2-byte Hiragana text

Korean:

smTransHangul2 8 Convert to 2-byte Hangul text

smTransJamo2 9 Convert to 2-byte Jamo text

Chinese:

smTransBopomofo2 10 Convert to 2-byte Zhuyinfuhao text

Target modifier constant Hex. value Explanation

smTransLower $4000 Target becomes lowercase

smTransUpper $8000 Target becomes uppercase
Using the Script Manager 6-47

C H A P T E R 6

Script Manager
Modifying Script Systems 6
The fourth principal use for the Script Manager is in modifying the contents of script
systems themselves. The routines described in this section are for specialized purposes,
such as providing regional variants to existing script systems or assigning script-specific
features to individual documents or applications. You can use these Script Manager
routines to

■ replace one or more of a script system’s international resources (this replacement
occurs within the context of your application only)

■ replace one or more of an individual script system’s routines (for 1-byte complex
scripts only)

Most text-processing applications need not perform either of these replacements.
However, if your program has special needs or if you are implementing a specific
regional variation of a script system with unusual text-handling features, you can use
these Script Manager calls.

Replacing a Script System’s Default International Resources 6

In certain situations, you may want to replace the script-system-supplied international
resources with some of your own. For example, your application might create
documents containing currency amounts and get the currency format from the
numeric-format resource. You may then want the unit of currency to remain the same,
even if the document is displayed on a Macintosh with system software localized for
another region.

You can store your own versions of some of the international resources in your
application’s or document’s resource file, to override those in the System file. In this case,
documents that your application creates could have their own copy of the
numeric-format resource that was used to create them.

To replace the numeric-format ('itl0') or long-date-format ('itl1') resource, follow
these two steps:

1. When your application starts up or when your document is opened, call
the GetScriptVariable function for your target script system to get the ID
number of the current default version of the resource you are replacing. Save that
ID number for later.

2. Call the SetScriptVariable function to set the script’s default ID number to the ID
of the resource that you are supplying.

If your replacement resource is attached to your application or document, it will
override the script system’s default version. When a call for a resource is made,
the Resource Manager searches first in the resource fork of the open document, then
in the resource fork of the active application, and then in the System file. This search
sequence is described in the chapter “Resource Manager” in Inside Macintosh: More
Macintosh Toolbox.
6-48 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
To substitute the string-manipulation ('itl2') or tokens ('itl4') resources, you must
take an additional step. If you want to replace the default resource currently used by a
script system, you must first clear your application’s international resources cache. The
cache is part of an application’s context as handled by the Process Manager; it is
initialized when the application is launched, and is switched in and out with the
application. It contains the resource ID numbers of the default string-manipulation and
tokens resources for all installed script systems. Once the cache is set up, access to
string-manipulation and tokens resources is exclusively through the ID numbers in
the cache.

Therefore, to replace a string-manipulation or tokens resource, it is not enough to attach
the resource to your document and call the SetScriptVariable function; this alone
does not affect any cached ID numbers. In addition, add this third step:

3. After calling SetScriptVariable as described in step 2, call
ClearIntlResourceCache. That will cause the cache to be reloaded with the
current default resource ID numbers, including your override of the previous default,
as each resource is called.

In this case, when a call for a resource is made, the Script Manager looks first in the cache
for the resource ID to use. If the cache has been cleared, the Script Manager gets the ID
from the script variables (and updates the cache with the new ID). The Script Manager
then calls the Resource Manager, requesting a resource with that ID. The Resource
Manager searches for the resource as described previously, taking it from your document
or application.

Because the system maintains a separate international resources cache for each
application’s context, your application can provide its own string-manipulation and
tokens resources without affecting the use of those resources by other applications or by
the system. When the Process Manager switches in another application, that
application’s international resources cache has the defaults needed by that application.

No matter which international resource you have replaced, there is one final step to take:

4. When your application exits or is switched out, be sure to call SetScriptVariable
once again to reset the script system’s default ID number to what it was before you
replaced it.

IMPORTANT

If the international resources selection flag is TRUE when a call to access
your supplied resources is made, the ID numbers of your supplied
resources must be within the system script range; if it is FALSE, the IDs
must be in the range of the current script. Otherwise, your resources will
not be found. See the appendix “International Resources” for a list of
script codes and their resource ID ranges. ▲
Using the Script Manager 6-49

C H A P T E R 6

Script Manager
Replacing a Script System’s Default Routines 6

Applications do not normally need to modify a script system’s text-handling routines.
For 1-byte complex script systems and for 2-byte script systems, most script-specific
behavior is built into tables in the script’s international resources. Text-handling code is
in Macintosh system software: in ROM, in the System file, or in one of two system
extensions—WorldScript I and WorldScript II. WorldScript I and WorldScript II handle
text for 1-byte complex and 2-byte script systems, respectively. They are described in the
appendix “Built-in Script Support” in this book. For most needs the table-driven
behavior is adequate, and you can access many of the tables through the Script Manager
calls described in the previous section.

Even so, for 1-byte complex script systems, the Script Manager offers you the ability to
modify or enhance the routines contained in WorldScript I. If you need specific
script-based behavior that is not currently supported, you can replace one or more script
utilities (low-level text-handling routines that employ the _ScriptUtil trap) or
QuickDraw patches for your target script system. You can create a patch and install it
with a System extension file (type 'INIT') that is executed at system startup.

IMPORTANT

Because this capability affects WorldScript I only, it is available only for
1-byte complex script systems. ▲

In every script system that uses WorldScript I, the dispatch-table element for every script
utility and QuickDraw patch consists of two pointers: one to the WorldScript I
implementation of the routine and one to the original (built-in Roman) routine. In
all cases, the WorldScript I routine executes first. In some cases, WorldScript I calls
the original routine after its own; in other cases, the pointer to the original routine is NIL
and the WorldScript I routine is all that executes. See Figure 6-6. This design allows
you to place a patched routine so that it executes before, in place of, or after the
WorldScript I routine.
6-50 Using the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Figure 6-6 Dispatch table entry for script utilities and QuickDraw patches

The script-based dispatch table design gives you a simple, flexible way to replace
individual routines without having to patch out all of _ScriptUtil or any of the
QuickDraw low-level routines in their entirety. Furthermore, in a multiscript
environment each patch applies only to its own script system. You can, for example,
patch stdText for the Thai script system only, leaving it unchanged for all other
script systems.

To replace only the WorldScript I implementation of a routine, replace its pointer in the
dispatch table; to keep the WorldScript I routine while replacing or patching the original
routine, replace the original-routine pointer in the dispatch table. The four Script
Manager routines that allow you to make those patches are
GetScriptUtilityAddress, SetScriptUtilityAddress,
GetScriptQDPatchAddress, and SetScriptQDPatchAddress. Either pointer in
the dispatch table may be NIL, meaning that WorldScript I either (1) doesn’t patch the
original routine or (2) doesn’t call the original routine.

For additional information on how to use these four Script Manager routines to
customize a script’s behavior, see the appendix “Built-in Script Support.”

...

...

...

pascal StdText():

...

...

...

Original code

Address of script’s
patch to stdText

Address of
original stdText

...

...

...

pascal ScriptStdText():

...

...

...

WorldScript I
Using the Script Manager 6-51

C H A P T E R 6

Script Manager
Script Manager Reference 6

This section describes the constants, data structures, and routines that are specific to the
Script Manager.

Constants 6
The Script Manager defines a large number of constants. This section lists and describes
the constants with which you can specify

■ script codes, language codes, and region codes

■ token codes

■ selectors for Script Manager variables

■ selectors for script variables

There are many other constants defined for other purposes that are listed with the
routines that use them. In addition, all constants are listed in the section “Summary of
the Script Manager” beginning on page 6-107.

Script Codes 6

You can specify script systems with implicit and explicit script code constants in the
script parameter of the GetScriptVariable and SetScriptVariable functions.
The implicit script codes smSystemScript and smCurrentScript are special
negative values for the system script and the font script, respectively.

Script constant Value Explanation

smSystemScript –1 System script

smCurrentScript –2 Font script

smRoman 0 Roman

smJapanese 1 Japanese

smTradChinese 2 Traditional Chinese

smKorean 3 Korean

smArabic 4 Arabic

smHebrew 5 Hebrew

smGreek 6 Greek

smCyrillic 7 Cyrillic

smRSymbol 8 Right-to-left symbols

smDevanagari 9 Devanagari
6-52 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
Note
The script code represented by the constant smUninterp is available for
representation of special symbols, such as items in a tool palette, that
must not be considered as part of any actual script system. For
manipulating and drawing such symbols, the smUninterp constant
should be treated as if it indicated the Roman script system rather than
the system script; that is, the default behavior of uninterpreted symbols
should be Roman. ◆

Note
The script code represented by the constant smRSymbol is available as
an alternative to smUninterp, for representation of special symbols that
have a right-to-left line direction. Note, however, that the script
management system provides no direct support for representation of
text with this script code. ◆

smGurmukhi 10 Gurmukhi

smGujarati 11 Gujarati

smOriya 12 Oriya

smBengali 13 Bengali

smTamil 14 Tamil

smTelugu 15 Telugu

smKannada 16 Kannada/Kanarese

smMalayalam 17 Malayalam

smSinhalese 18 Sinhalese

smBurmese 19 Burmese

smKhmer 20 Khmer

smThai 21 Thai

smLaotian 22 Laotian

smGeorgian 23 Georgian

smArmenian 24 Armenian

smSimpChinese 25 Simplified Chinese

smTibetan 26 Tibetan

smMongolian 27 Mongolian

smGeez 28 Geez/Ethiopic

smEthiopic 28 = smGeez

smEastEurRoman 29 Extended Roman for Slavic and Baltic languages

smVietnamese 30 Extended Roman for Vietnamese

smExtArabic 31 Extended Arabic for Sindhi

smUninterp 32 Uninterpreted symbols

Script constant Value Explanation (continued)
Script Manager Reference 6-53

C H A P T E R 6

Script Manager
Language Codes 6

Language codes have the following defined values. Note that each language is
associated with a script code.

Language
constant

Value Language (Script code)

langEnglish 0 English (smRoman)

langFrench 1 French (smRoman)

langGerman 2 German (smRoman)

langItalian 3 Italian (smRoman)

langDutch 4 Dutch (smRoman)

langSwedish 5 Swedish (smRoman)

langSpanish 6 Spanish (smRoman)

langDanish 7 Danish (smRoman)

langPortuguese 8 Portuguese (smRoman)

langNorwegian 9 Norwegian (smRoman)

langHebrew 10 Hebrew (smHebrew)

langJapanese 11 Japanese (smJapanese)

langArabic 12 Arabic (smArabic)

langFinnish 13 Finnish (smRoman)

langGreek 14 Greek (smGreek)

langIcelandic 15 Icelandic (smRoman)

langMaltese 16 Maltese (smRoman)

langTurkish 17 Turkish (smRoman)

langCroatian 18 Croatian (smRoman)

langTradChinese 19 Chinese (traditional chars.) (smTradChinese)

langUrdu 20 Urdu (smArabic)

langHindi 21 Hindi (smDevanagari)

langThai 22 Thai (smThai)

langKorean 23 Korean (smKorean)

langLithuanian 24 Lithuanian (smEastEurRoman)

langPolish 25 Polish (smEastEurRoman)

langHungarian 26 Hungarian (smEastEurRoman)

langEstonian 27 Estonian (smEastEurRoman)

langLettish 28 Lettish (smEastEurRoman)

langLatvian 28 = langLettish

langSaamisk 29 (language of Lapps/Sami) (smRoman)

langLappish 29 = langSaamisk

langFaeroese 30 Faeroese (smRoman)
6-54 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
langFarsi 31 Farsi (smArabic)

langPersian 31 = langFarsi

langRussian 32 Russian (smCyrillic)

langSimpChinese 33 Chinese (simplified chars.) (smSimpChinese)

langFlemish 34 Flemish (smRoman)

langIrish 35 Irish (smRoman)

langAlbanian 36 Albanian (smRoman)

langRomanian 37 Romanian (smEastEurRoman)

langCzech 38 Czech (smEastEurRoman)

langSlovak 39 Slovak (smEastEurRoman)

langSlovenian 40 Slovenian (smEastEurRoman)

langYiddish 41 Yiddish (smHebrew)

langSerbian 42 Serbian (smCyrillic)

langMacedonian 43 Macedonian (smCyrillic)

langBulgarian 44 Bulgarian (smCyrillic)

langUkrainian 45 Ukrainian (smCyrillic)

langByelorussian 46 Byelorussian (smCyrillic)

langUzbek 47 Uzbek (smCyrillic)

langKazakh 48 Kazakh (smCyrillic)

langAzerbaijani 49 Azerbaijani (smCyrillic)

langAzerbaijanAr 50 Azerbaijani (smArabic)

langArmenian 51 Armenian (smArmenian)

langGeorgian 52 Georgian (smGeorgian)

langMoldovan 53 Moldovan (smCyrillic)

langMoldavian 53 = langMoldovan (smCyrillic)

langKirghiz 54 Kirghiz (smCyrillic)

langTajiki 55 Tajiki (smCyrillic)

langTurkmen 56 Turkmen (smCyrillic)

langMongolian 57 Mongolian (smMongolian)

langMongolianCyr 58 Mongolian (smCyrillic)

langPashto 59 Pashto (smArabic)

langKurdish 60 Kurdish (smArabic)

langKashmiri 61 Kashmiri (smArabic)

langSindhi 62 Sindhi (smExtArabic)

langTibetan 63 Tibetan (smTibetan)

continued

Language
constant

Value Language (Script code)
(continued)
Script Manager Reference 6-55

C H A P T E R 6

Script Manager
langNepali 64 Nepali (smDevanagari)

langSanskrit 65 Sanskrit (smDevanagari)

langMarathi 66 Marathi (smDevanagari)

langBengali 67 Bengali (smBengali)

langAssamese 68 Assamese (smBengali)

langGujarati 69 Gujarati (smGujarati)

langPunjabi 70 Punjabi (smGurmukhi)

langOriya 71 Oriya (smOriya)

langMalayalam 72 Malayalam (smMalayalam)

langKannada 73 Kannada (smKannada)

langTamil 74 Tamil (smTamil)

langTelugu 75 Telugu (smTelugu)

langSinhalese 76 Sinhalese (smSinhalese)

langBurmese 77 Burmese (smBurmese)

langKhmer 78 Khmer (smKhmer)

langLao 79 Lao (smLaotian)

langVietnamese 80 Vietnamese (smVietnamese)

langIndonesian 81 Indonesian (smRoman)

langTagalog 82 Tagalog (smRoman)

langMalayRoman 83 Malay (smRoman)

langMalayArabic 84 Malay (smArabic)

langAmharic 85 Amharic (smEthiopic)

langTigrinya 86 Tigrinya (smEthiopic)

langGalla 87 Galla (smEthiopic)

langOromo 87 = langGalla

langSomali 88 Somali (smRoman)

langSwahili 89 Swahili (smRoman)

langRuanda 90 Ruanda (smRoman)

langRundi 91 Rundi (smRoman)

langChewa 92 Chewa (smRoman)

langMalagasy 93 Malagasy (smRoman)

langEsperanto 94 Esperanto (mod. smRoman)

langWelsh 128 Welsh (smRoman)

langBasque 129 Basque (smRoman)

langCatalan 130 Catalan (smRoman)

langLatin 131 Latin (smRoman)

Language
constant

Value Language (Script code)
(continued)
6-56 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
Region Codes 6

Region codes have the following defined values. Each region is associated with a
particular language code and script code (not shown). Note that the existence of a
defined region code does not necessarily imply the existence of a version of Macintosh
system software localized for that region.

langQuechua 132 Quechua (smRoman)

langGuarani 133 Guarani (smRoman)

langAymara 134 Aymara (smRoman)

langTatar 135 Tatar (smCyrillic)

langUighur 136 Uighur (smArabic)

langDzongkha 137 Bhutanese (smTibetan)

langJavaneseRom 138 Javanese (smRoman)

langSundaneseRom 139 Sundanese (smRoman)

Region constant Value Explanation

verUS 0 United States

verFrance 1 France

verBritain 2 Great Britain

verGermany 3 Germany

verItaly 4 Italy

verNetherlands 5 Netherlands

verFrBelgiumLux 6 French for Belgium and Luxembourg

verSweden 7 Sweden

verDenmark 9 Denmark

verPortugal 10 Portugal

verFrCanada 11 French Canada

verIsrael 13 Israel

verJapan 14 Japan

verAustralia 15 Australia

verArabia 16 the Arabic world

verArabic 16 = verArabia

verFinland 17 Finland

verFrSwiss 18 French for Switzerland

verGrSwiss 19 German for Switzerland
continued

Language
constant

Value Language (Script code)
(continued)
Script Manager Reference 6-57

C H A P T E R 6

Script Manager
Token Codes 6

The following constants define the types of tokens recognized by the IntlTokenize
function and specified in the field theToken of the token record (type TokenRec):

verGreece 20 Greece

verIceland 21 Iceland

verMalta 22 Malta

verCyprus 23 Cyprus

verTurkey 24 Turkey

verYugoCroatian 25 Croatian system for Yugoslavia

verIndiaHindi 33 Hindi system for India

verPakistan 34 Pakistan

verLithuania 41 Lithuania

verPoland 42 Poland

verHungary 43 Hungary

verEstonia 44 Estonia

verLatvia 45 Latvia

verLapland 46 Lapland

verFaeroeIsl 47 Faeroe Islands

verIran 48 Iran

verRussia 49 Russia

verIreland 50 Ireland

verKorea 51 Korea

verChina 52 People’s Republic of China

verTaiwan 53 Taiwan

verThailand 54 Thailand

minCountry The lowest defined region code
(for range-checking); currently = verUS

maxCountry The highest defined region code
(for range-checking); currently = verThailand

Constant Value Explanation

delimPad –2 Delimiter pad (special code)

tokenEmpty –1 Empty flag

tokenUnknown 0 Has no existing token type

tokenWhite 1 Whitespace character

tokenLeftLit 2 Opening literal marker

Region constant Value Explanation (continued)
6-58 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
tokenRightLit 3 Closing literal marker

tokenAlpha 4 Alphabetic

tokenNumeric 5 Numeric

tokenNewLine 6 New line

tokenLeftComment 7 Opening comment marker

tokenRightComment 8 Closing comment marker

tokenLiteral 9 Literal

tokenEscape 10 Escape character

tokenAltNum 11 Alternate number (such as at $B0–$B9)

tokenRealNum 12 Real number

tokenAltReal 13 Alternate real number

tokenReserve1 14 (reserved 1)

tokenReserve2 15 (reserved 2)

tokenLeftParen 16 Opening parenthesis

tokenLeftBracket 18 Opening square bracket

tokenRightBracket 19 Closing square bracket

tokenLeftCurly 20 Opening curly bracket

tokenRightCurly 21 Closing curly bracket

tokenLeftEnclose 22 Opening European double quote

tokenRightEnclose 23 Closing European double quote

tokenPlus 24 Plus

tokenMinus 25 Minus

tokenAsterisk 26 Times/multiply

tokenDivide 27 Divide

tokenSlash 29 Slash

tokenBackSlash 30 Backslash

tokenLess 31 Less than

tokenGreat 32 Greater than

tokenEqual 33 Equal

tokenLessEqual2 34 Less than or equal to (2 symbols)

tokenLessEqual1 35 Less than or equal to (1 symbol)

tokenGreatEqual2 36 Greater than or equal to (2 symbols)

tokenGreatEqual1 37 Greater than or equal to (1 symbol)

token2Equal 38 Double equal

tokenColonEqual 39 Colon equal
continued

Constant Value Explanation (continued)
Script Manager Reference 6-59

C H A P T E R 6

Script Manager
tokenNotEqual 40 Not equal

tokenLessGreat 41 Less/greater (not equal in Pascal)

tokenExclamEqual 42 Exclamation equal (not equal in C)

tokenExclam 43 Exclamation point

tokenTilde 44 Centered tilde

tokenComma 45 Comma

tokenPeriod 46 Period

tokenLeft2Quote 47 Opening double quote

tokenRight2Quote 48 Closing double quote

tokenLeft1Quote 49 Opening single quote

tokenRight1Quote 50 Closing single quote

token2Quote 51 Double quote

token1Quote 52 Single quote

tokenSemicolon 53 Semicolon

tokenPercent 54 Percent

tokenCaret 55 Caret

tokenUnderline 56 Underline

tokenAmpersand 57 Ampersand

tokenAtSign 58 At sign

tokenBar 59 Vertical bar

tokenQuestion 60 Question mark

tokenPi 61 Pi

tokenRoot 62 Square root

tokenSigma 63 Capital sigma

tokenIntegral 64 Integral

tokenMicro 65 Micro

tokenCapPi 66 Capital pi

tokenInfinity 67 Infinity

tokenColon 68 Colon

tokenHash 69 Pound sign (U.S. weight)

tokenDollar 70 Dollar sign

tokenNoBreakSpace 71 Nonbreaking space

tokenFraction 72 Fraction

tokenIntlCurrency 73 International currency

tokenLeftSingGuillemet 74 Opening single guillemet

tokenRightSingGuillemet 75 Closing single guillemet

Constant Value Explanation (continued)
6-60 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
Selectors for Script Manager Variables 6

This section lists and describes the selector constants for accessing the Script Manager
variables through calls to the GetScriptManagerVariable and
SetScriptManagerVariable functions. In every case the variable parameter passed
to or from the function is a long integer (4 bytes); the column “Size of variable” indicates
how many of the 4 bytes are necessary to hold the input or return value for that variable.
If fewer than 4 bytes are needed, the low byte or low word contains the information.

Descriptions of all the variables accessed by these constants follow the list.

tokenPerThousand 76 Per thousands

tokenEllipsis 77 Ellipsis character

tokenCenterDot 78 Center dot

Selector constant Value Size of
variable (bytes)

smVersion 0 2

smMunged 2 2

smEnabled 4 1

smBidirect 6 1

smFontForce 8 1

smIntlForce 10 1

smForced 12 1

smDefault 14 1

smPrint 16 4

smSysScript 18 2

smLastScript 20 2

smKeyScript 22 2

smSysRef 24 2

smKeyCache 26 4

smKeySwap 28 4

smGenFlags 30 4

smOverride 32 4

smCharPortion 34 2

smDoubleByte 36 1

smKCHRCache 38 4

smRegionCode 40 2

smKeyDisableState 42 1

Constant Value Explanation (continued)
Script Manager Reference 6-61

C H A P T E R 6

Script Manager
Selector constant Variable description

smVersion The Script Manager version number. This variable has the same
format as the version number obtained from calling the Gestalt
function with the Gestalt selector gestaltScriptMgrVersion.
The high-order byte contains the major version number, and the
low-order byte contains the minor version number.

smMunged The modification count for Script Manager variables. At startup,
smMunged is initialized to 0, and it is incremented when the
KeyScript procedure changes the current keyboard script and
updates the variables accessed via smKeyScript and
smLastScript. The smMunged selector is also incremented when
the SetScriptManagerVariable function is used to change a
Script Manager variable. You can check this variable at any time to
see whether any of your own data structures that may depend on
Script Manager variables need to be updated.

smEnabled The script count; the number of currently enabled script systems. At
startup time, the Script Manager initializes the script count to 0,
then increments it for each installed and enabled script system
(including Roman). You can use smEnabled to determine whether
more than one script system is installed—that is, whether your
application needs to handle non-Roman text.

IMPORTANT

Never call SetScriptManagerVariable with the smEnabled
selector. It could result in inconsistency with other script
system values. ▲

smBidirect The bidirectional flag, which indicates when at least one
bidirectional script system is enabled. This flag is set to TRUE ($FF)
if the Arabic or Hebrew script system is enabled.

smFontForce The font force flag. At startup, the Script Manager sets its value
from the system script’s international configuration ('itlc')
resource. The flag returns 0 for FALSE and $FF for TRUE. If the
system script is non-Roman, the font force flag controls whether a
font with ID in the Roman script range is interpreted as belonging
to the Roman script or to the system script. See “Using the Font
Force Flag” on page 6-24.

IMPORTANT

When you call SetScriptManagerVariable with the
smFontForce selector, be sure to pass only the value 0 or $FF, or a
later call to GetScriptManagerVariable may return an
unrecognized value. ▲

smIntlForce The international resources selection flag. At startup, the Script
Manager sets its value from the system script’s international
configuration ('itlc') resource. The flag returns 0 for FALSE and
$FF for TRUE. This flag controls whether international resources of
the font script or the system script are used for string manipulation.
See “Using the International Resources Selection Flag” on page 6-25.
6-62 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
IMPORTANT

When you call SetScriptManagerVariable with the
smIntlForce selector, be sure to pass only the value 0 or $FF, or a
later call to GetScriptManagerVariable may return an
unrecognized value. ▲

smForced The script-forced result flag. If the current script has been forced to
the system script, this flag is set to TRUE. Use the smForced
selector to obtain reports of the actions of the FontScript,
FontToScript, and IntlScript functions. This variable is for
information only; never set its value with
SetScriptManagerVariable.

smDefault The script-defaulted result flag. If the script system corresponding
to a specified font is not available, this flag is set to TRUE. Use this
selector to obtain reports of the actions of the FontScript,
FontToScript, and IntlScript functions. This variable is for
information only; never set its value with
SetScriptManagerVariable.

smPrint The print action routine vector, set up by the Script Manager at
startup. See Inside Macintosh: Devices for information on the print
action routine.

smSysScript The system script code. At startup, the Script Manager initializes
this variable from the system script’s international configuration
('itlc') resource. This variable is for information only; never set
its value with SetScriptManagerVariable. Constants for all
defined script codes are listed on page 6-52.

smLastScript The previously used keyboard script. When you change keyboard
scripts with the KeyScript procedure, the Script Manager moves
the old value of smKeyScript into smLastScript. KeyScript
can also swap the current keyboard script with the previous
keyboard script, in which case the contents of smLastScript and
smKeyScript are swapped. Constants for all defined script codes
are listed on page 6-52. Never set the value of this variable with
SetScriptManagerVariable.

smKeyScript The current keyboard script. The KeyScript procedure tests and
updates this variable. When you change keyboard scripts with the
KeyScript procedure, the Script Manager moves the old value of
smKeyScript into smLastScript. KeyScript can also swap the
current keyboard script with the previous keyboard script, in which
case the contents of smLastScript and smKeyScript are
swapped. The Script Manager also uses this variable to get the
proper keyboard icon and to retrieve the proper keyboard-layout
('KCHR') resource. Constants for all defined script codes are listed
on page 6-52. Never set the value of this variable directly with
SetScriptManagerVariable; call KeyScript to change
keyboard scripts.

smSysRef The System Folder volume reference number. Its value is initialized
from the system global variable BootDrive at startup.
Script Manager Reference 6-63

C H A P T E R 6

Script Manager
smKeyCache An obsolete variable. This variable at one time held a pointer to the
keyboard cache. The value it provided was not correct and should
not be used.

smKeySwap A handle to the keyboard-swap ('KSWP') resource. The Script
Manager initializes the handle at startup. The keyboard-swap
resource controls the key combinations with which the user can
invoke various actions with the KeyScript procedure, such as
switching among script systems. This resource is described in the
appendix “Keyboard Resources” in this book.

smGenFlags The general flags used by the Script Manager. The Script Manager
general flags is a long word value; its high-order byte is set from the
flags byte in the system script’s international configuration
('itlc') resource. The following constants are available to
designate bits in the variable accessed through smGenFlags:

smOverride The script override flags. At present, these flags are not set or used
by the Script Manager. They are, however, reserved for future use.

smCharPortion A value used by script systems to allocate intercharacter and
interword spacing when justifying text. It denotes the weight
allocated to intercharacter space versus interword space. The value
of this variable is initialized to 10 percent by the Script Manager,
although it currently has no effect on text of the Roman script
system. The variable is in 4.12 fixed-point format, which is a 16-bit
signed number with 4 bits of integer and 12 bits of fraction. (In that
format, 10 percent has the hexadecimal value $0199.)

smDoubleByte The 2-byte flag, a Boolean value that is TRUE if at least one 2-byte
script system is enabled.

smKCHRCache A pointer to the cache that stores a copy of the current
keyboard-layout ('KCHR') resource. The keyboard-layout resource
is described in the appendix “Keyboard Resources” in this book.

smRegionCode The region code for this localized version of system software,
obtained from the system script’s international configuration
('itlc') resource. This variable identifies the localized version of
the system script. Constants for all defined region codes are listed
starting on page 6-57.

smKeyDisableState
The current disable state for keyboards. The Script Manager
disables some keyboard scripts or keyboard switching when text
input must be restricted to certain script systems or when script
systems are being moved into or out of the System file.

Constant Value Explanation

smfNameTagEnab 29 (reserved for internal use)

smfDualCaret 30 Use dual caret for
mixed-directional text.

smfShowIcon 31 Show keyboard menu even if only
one keyboard layout or one script
(Roman) is available. (This bit is
checked only at system startup.)
6-64 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
See “Making Keyboard Settings” beginning on page 6-17. These are
the possible values for the variable accessed through
smKeyDisableState:

The script management system maintains the keyboard disable
state separately for each application. Never set the value of
this variable directly with SetScriptManagerVariable;
call KeyScript to change the keyboard disable state for
your application.

Selectors for Script Variables 6

This section lists and describes the selector constants for accessing script variables
through calls to the GetScriptVariable and SetScriptVariable functions. In
every case the variable parameter passed to or from the function is a long integer (4
bytes); the column “Size of variable” indicates how many of the 4 bytes are necessary to
hold the input or return value for that variable. If fewer than 4 bytes are needed, the low
byte or low word contains the information.

In many cases the value of a script variable is taken from the script system’s
international bundle ('itlb') resource. See the appendix “International Resources” for
a description of the international bundle resource.

Descriptions of all the variables accessed by these constants follow the list.

Value Explanation

0 All keyboards are enabled, switching is enabled

1 Keyboard switching is disabled

$FF Keyboards for all non-Roman secondary scripts are
disabled

Selector constant Value Size of variable
(bytes)

smScriptVersion 0 2

smScriptMunged 2 2

smScriptEnabled 4 1

smScriptRight 6 1

smScriptJust 8 1

smScriptRedraw 10 1

smScriptSysFond 12 2

smScriptAppFond 14 2

smScriptNumber 16 2

smScriptDate 18 2

smScriptSort 20 2

smScriptFlags 22 2
continued
Script Manager Reference 6-65

C H A P T E R 6

Script Manager
Selector constant Variable description

smScriptVersion
The script system’s version number. When the Script Manager loads
the script system, the script system puts its current version number
into this variable. The high-order byte contains the major version
number, and the low-order byte contains the minor version number.

smScriptMunged
The modification count for this script system’s script variables. The
Script Manager increments the variable accessed by the
smScriptMunged selector each time the SetScriptVariable
function is called for this script system. You can check this variable
at any time to see whether any of your own data structures that
depend on this script system’s script variables need to be updated.

smScriptEnabled
The script-enabled flag, a Boolean value that indicates whether the
script has been enabled. It is set to $FF when enabled and to 0 when
not enabled. Note that this variable is not equivalent to the Script
Manager variable accessed by the smEnabled selector, which is a
count of the total number of enabled script systems.

smScriptToken 24 2

smScriptEncoding 26 2

smScriptLang 28 2

smScriptNumDate 30 2

smScriptKeys 32 2

smScriptIcon 34 2

smScriptPrint 36 4

smScriptTrap 38 4

smScriptCreator 40 4

smScriptFile 42 4

smScriptName 44 4

smScriptMonoFondSize 78 4

smScriptPrefFondSize 80 4

smScriptSmallFondSize 82 4

smScriptSysFondSize 84 4

smScriptAppFondSize 86 4

smScriptHelpFondSize 88 4

smScriptValidStyles 90 1

smScriptAliasStyle 92 1

Selector constant Value Size of variable
(bytes) (continued)
6-66 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
smScriptRight The right-to-left flag, a Boolean value that indicates whether the
primary line direction for text in this script is right-to-left or
left-to-right. It is set to $FF for right-to-left text (used in Arabic and
Hebrew script systems) and to 0 for left-to-right (used in Roman
and other script systems).

smScriptJust The script alignment flag, a byte that specifies the default alignment
for text in this script system. It is set to $FF for right alignment
(common for Arabic and Hebrew), and it is set to 0 for left
alignment (common for Roman and other script systems). This flag
usually has the same value as the smScriptRight flag.

smScriptRedraw
The script-redraw flag, a byte that provides redrawing
recommendations for text of this script system. It describes how
much of a line should be redrawn when a user adds, inserts, or
deletes text. It is set to 0 when only a character should be redrawn
(used by the Roman script system), to 1 when an entire word
should be redrawn (used by the Japanese script system), and to –1
when the entire line should be redrawn (used by the Arabic and
Hebrew script systems). The following constants are available for
the script-redraw flag:

smScriptSysFond
The preferred system font, the font family ID of the system font
preferred for this script. In the Roman script system, this variable
specifies Chicago font, whose font family ID is 0 if Roman is the
system script. The preferred system font in the Japanese script
system is 16384, the font family ID for Osaka.
This variable holds similar information to the variable accessed
through the smScriptSysFondSize selector. However, changing
the value of this variable has no effect on the value accessed
through smScriptSysFondSize.

Note

Remember that in all localized versions of system software the
special value of 0 is remapped to the system font ID. Thus, if
an application running under Japanese system software specifies
a font family ID of 0 in a routine or in the txFont field of the
current graphics port, Osaka will be used. However, the variable
accessed by smScriptSysFond will still show the true ID for
Osaka (16384). ◆

smScriptAppFond
The preferred application font; the font family ID of the application
font preferred for this script. In the Roman script system, the value
of this variable is the font family ID for Geneva.

Constant Value Explanation

smRedrawChar 0 Redraw character only

smRedrawWord 1 Redraw entire word

smRedrawLine –1 Redraw entire line
Script Manager Reference 6-67

C H A P T E R 6

Script Manager
This variable holds similar information to the variable accessed
through the smScriptAppFondSize selector. However, changing
the value of this variable has no effect on the value accessed
through smScriptAppFondSize.

Note

Remember that in all localized versions of system software the
special value of 1 is remapped to the application font ID. For
example, if an application running under Arabic system software
specifies a font family ID of 1 in a routine, Nadeem will be used.
However, the variable accessed by smScriptSysFond will still
show the true ID for Nadeem (17926). ◆

smScriptNumber The resource ID of the script’s numeric-format ('itl0') resource.
The numeric-format resource includes formatting information for
the correct display of numbers, times, and short dates. The value of
this variable is initialized from the script system’s international
bundle resource. See the appendix “International Resources” for a
description of the numeric-format resource.

smScriptDate The resource ID of the script’s long-date-format ('itl1') resource.
The long-date-format resource includes formatting information for
the correct display of long dates (dates that include month or day
names). The value of this variable is initialized from the script
system’s international bundle resource. See the appendix
“International Resources” for a description of the long-date-format
resource.

smScriptSort The resource ID of the script’s string-manipulation ('itl2')
resource. The string-manipulation resource contains routines for
sorting and tables for word selection, line breaks, character types,
and case conversion of text. The value of this variable is initialized
from the script system’s international bundle resource. See the
appendix “International Resources” for a description of the
string-manipulation resource.

smScriptFlags The script flags word, which contains bit flags specifying attributes
of the script. The value of this variable is initialized from the script
system’s international bundle resource. The following constants are
available for examining attributes in the script flags word. Bits
above 8 are nonstatic, meaning that they may change during
program execution. (Note that the constant values represent bit
numbers in the flags word, not masks.)

Constant Value Explanation

smsfIntellCP 0 Can support intelligent cut
and paste (uses spaces as
word delimiters)

smsfSingByte 1 Has only 1-byte characters

smsfNatCase 2 Has both uppercase and
lowercase native characters

smsfContext 3 Is contextual
6-68 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
The smsfIntellCP flag is set if this script system uses spaces as
word delimiters. In such a script system it is possible to implement
intelligent cut and paste, in which extra spaces are removed when a
word is cut from text, and any needed spaces are added when a
word is pasted into text. Macintosh Human Interface Guidelines
recommends that you implement intelligent cut and paste in script
systems that support it.
If you use the CharToPixel function to determine text widths,
such as for line breaking, you need to clear the smsfReverse bit
first. For more information, see the chapter “QuickDraw Text” in
this book.

smScriptToken The resource ID of the script’s tokens ('itl4') resource. The
tokens resource contains information for tokenizing and number
formatting. The value of this variable is initialized from the script
system’s international bundle resource. See the appendix
“International Resources” in this book for a description of the
tokens resource.

smsfNoForceFont 4 Does not support font
forcing (ignores the font
force flag)

smsfB0Digits 5 Has alternate digits at
$B0–$B9; Arabic and
Hebrew, for example, have
their native numeric forms
at this location in their
character sets

smsfAutoInit 6 Is intialized by the Script
Manager; 1-byte simple
script systems can set this
bit to avoid having to
initialize themselves

smsfUnivExt 7 Uses the WorldScript I
extension

smsfSynchUnstyledTE 8 Synchronizes keyboard
with font for monostyled
TextEdit

smsfForms 13 Use contextual forms if this
bit is set; do not use them if
it is cleared

smsfLigatures 14 Use contextual ligatures if
this bit is set; do not use
them if it is cleared

smsfReverse 15 Reverse right-to-left text to
draw it in (left-to-right)
display order if this bit is
set; do not reorder text if
this bit is cleared

Constant Value Explanation (continued)
Script Manager Reference 6-69

C H A P T E R 6

Script Manager
smScriptEncoding
The resource ID of the script’s (optional) encoding/rendering
('itl5') resource. For 1-byte scripts, the encoding/rendering
resource specifies text-rendering behavior; for 2-byte scripts, it
specifies character-encoding information. The value of this variable
is taken from the script system’s international bundle resource. See
the appendix “International Resources” for a description of the
encoding/rendering resource.

smScriptLang The language code for this version of the script. A language is a
specialized variation of a specific script system. Constants for
all defined language codes are listed on page 6-54. The value of this
variable is initialized from the script system’s international bundle
resource.

smScriptNumDate
The numeral code and calendar code for the script. The numeral
code specifies the kind of numerals the script uses, and is in the
high-order byte of the word; the calendar code specifies the type of
calendar it uses and is in the low-order byte of the word. The value
of this variable is initialized from the script system’s international
bundle resource. It may be changed during execution when the
user selects, for example, a new calendar from a script system’s
control panel.
The following numeral-code constants are available for specifying
numerals. Note that they are bit numbers, not masks:

The following calendar-code constants are available for specifying
calendars. Note that they are bit numbers, not masks:

Constant Value Explanation

intWestern 0 Western numerals

intArabic 1 Native Arabic numerals

intRoman 2 Roman numerals

intJapanese 3 Japanese numerals

intEuropean 4 European numerals

intOutputMask $8000 Output mask

Constant Value Explanation

calGregorian 0 Gregorian calendar

calArabicCivil 1 Arabic civil calendar

calArabicLunar 2 Arabic lunar calendar

calJapanese 3 Japanese calendar

calJewish 4 Jewish calendar

calCoptic 5 Coptic calendar

calPersian 6 Persian calendar
6-70 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
smScriptKeys The resource ID of the script’s current keyboard-layout ('KCHR')
resource. The keyboard-layout resource is used to map virtual key
codes into the correct character codes for the script; it is described in
the appendix “Keyboard Resources” in this book. The value of this
variable is initialized from the script system’s international bundle
resource. It is updated when the user selects a new keyboard layout,
or when the application calls the KeyScript procedure. You can
force a particular keyboard layout to be used with your application
by setting the value of this variable and then calling KeyScript.

smScriptIcon The resource ID of the script’s keyboard icon family (resource types
'kcs#', 'kcs4', and 'kcs8'). The keyboard icon family consists
of the keyboard icons displayed in the keyboard menu; it is
described in the appendix “Keyboard Resources” in this book. The
value of this variable is initialized from the script system’s
international bundle resource. Note that, unlike smScriptKeys,
the value of this variable is not automatically updated when the
keyboard layout changes. (System software assumes that the icon
family has an identical ID to the keyboard-layout resource, and
usually ignores this variable.)

smScriptPrint The print action routine vector, set up by the script system (or by
the Script Manager if the smsfAutoInit bit is set) when the script
is initialized. See Inside Macintosh: Devices for information on the
print action routine.

smScriptTrap A pointer to the script’s script-record dispatch routine (for internal
use only).

smScriptCreator
The 4-character creator type for the script system’s file, that is, the
file containing the script system. For the Roman script system, it is
'ZSYS', for WorldScript I it is 'univ', and for World Script II it is
'doub'.

smScriptFile A pointer to the Pascal string that contains the name of the script
system’s file, that is, the file containing the script system. For the
Roman script system, the string is 'System'.

smScriptName A pointer to a Pascal string that contains the script system’s name.
For the Roman script system and 1-byte simple script systems, the
string is 'Roman'. For 1-byte complex script systems, this name is
taken from the encoding/rendering ('itl5') resource. For 2-byte
script systems, it is taken from the WorldScript II extension and is
'WorldScript II'.

smScriptMonoFondSize
The default font family ID and size (in points) for monospaced text.
The ID is stored in the high-order word, and the size is stored in the
low-order word. The value of this variable is taken from the script
system’s international bundle resource. Note that not all script
systems have a monospaced font.
Script Manager Reference 6-71

C H A P T E R 6

Script Manager
smScriptPrefFondSize
Currently not used.

smScriptSmallFondSize
The default font family ID and size (in points) for small text,
generally the smallest font and size combination that is legible on
screen. The ID is stored in the high-order word, and the size is
stored in the low-order word. Sizes are important; for example, a
9-point font may be too small in Chinese. The value of this variable
is taken from the script system’s international bundle resource.

smScriptSysFondSize
The default font family ID and size (in points) for this script
system’s preferred system font. The ID is stored in the high-order
word, and the size is stored in the low-order word. The value of this
variable is taken from the script system’s international bundle
resource.
This variable holds similar information to the variable accessed
through the smScriptSysFond selector. If you neeed font family
ID only and don’t want size information, it is simpler to use
smScriptSysFond. Note, however, that changing the value of this
variable has no effect on the value accessed through
smScriptSysFond.

smScriptAppFondSize
The default font family ID and size (in points) for this script
system’s preferred application font. The ID is stored in the
high-order word, and the size is stored in the low-order word. The
value of this variable is taken from the script system’s international
bundle resource.
This variable holds similar information to the variable accessed
through the smScriptAppFond selector. If you neeed font family
ID only and don’t want size information, it is simpler to use
smScriptAppFond. Note, however, that changing the value of this
variable has no effect on the value accessed through
smScriptAppFond.

smScriptHelpFondSize
The default font family ID and size (in points) for Balloon Help. The
ID is stored in the high-order word, and the size is stored in the
low-order word. Sizes are important; for example, a 9-point font
may be too small in Chinese. The value of this variable is taken
from the script system’s international bundle resource.

smScriptValidStyles
The set of all valid styles for the script. For example, the Extended
style is not valid in the Arabic script. When the
GetScriptVariable function is called with the
smScriptValidStyles selector, the low-order byte of the
returned value is a style code that includes all of the valid styles for
6-72 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
the script (that is, the bit corresponding to each QuickDraw style is
set if that style is valid for the specified script). See Figure 6-7.
The value of this variable is taken from the script system’s
international bundle resource.

Figure 6-7 Style code format

smScriptAliasStyle
The style to use for indicating aliases. When the
GetScriptVariable function is called with
smScriptAliasStyle, the low-order byte of the returned value is
the style code (see Figure 6-7) that should be used in that script for
indicating alias names (for example, in the Roman script system,
alias names are indicated in italics). The value of this variable is
taken from the script system’s international bundle resource.

Note
Some script systems, such as Arabic and Hebrew, have private
script-system selectors that are unique to those scripts. Those private
selectors are negative, whereas selectors that extend across script
systems are positive. ◆

Data Structures 6
This section presents the following types and data structures used by the Script
Manager: the token block record and the token record. Other data type definitions are in
the section “Summary of the Script Manager” beginning on page 6-107.

The Script Manager also makes use of many of the types and data structures defined in
the appendix “International Resources” in this book.

7 6 5 4 3 2 1 0

Bold
Italic
Underline
Outline
Shadow

Condense

Extend

(reserved)
Script Manager Reference 6-73

C H A P T E R 6

Script Manager
Token Block Record 6

The token block record, of data type TokenBlock, is a parameter block used to pass
information to the IntlTokenize function and to retrieve results from it.

TYPE

TokenBlock =

RECORD

source: Ptr; {pointer to source text to be tokenized}

sourceLength: LongInt; {length of source text in bytes}

tokenList: Ptr; {pointer to array of token records}

tokenLength: LongInt; {maximum size of TokenList}

tokenCount: LongInt; {number of tokens currently in TokenList}

stringList: Ptr; {pointer to list of token strings}

stringLength: LongInt; {length available for string list}

stringCount: LongInt; {current length of string list}

doString: Boolean; {make strings & put into StringList?}

doAppend: Boolean; {append to--not replace--TokenList?}

doAlphanumeric:Boolean; {identifiers may include numerics?}

doNest: Boolean; {do comments nest?}

leftDelims: ARRAY [0..1] OF TokenType;

{opening delimiters for literals}

rightDelims: ARRAY [0..1] OF TokenType;

{closing delimiters for literals}

leftComment: ARRAY [0..3] OF TokenType;

{opening delimiters for comments}

rightComment: ARRAY [0..3] OF TokenType;

{closing delimiters for comments}

escapeCode: TokenType; {escape symbol code}

decimalCode: TokenType; {decimal symbol code}

itlResource: Handle; {'itl4' resource of script for this text}

reserved: ARRAY [0..7] OF LongInt;

{must be zero!}

END;

TokenBlockPtr = ^TokenBlock;

The fields in the token block record are described under the routine description for
IntlTokenize, beginning on page 6-92.

Token Record 6

The token record (data type TokenRec) holds the results of the conversion of a sequence
of characters to a token by the IntlTokenize function. When it analyzes text,
IntlTokenize generates a token list, which is a sequence of token records.
6-74 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
TYPE

TokenRec =

RECORD

theToken: TokenType; {numeric code for token}

position: Ptr; {pointer to source text from }

{ which token was generated}

length: LongInt; {length of source text from }

{ which token was generated}

stringPosition: StringPtr; {pointer to Pascal string }

{ generated from token}

END;

TokenRecPtr = ^TokenRec;

The fields in the token record are described under the routine description for
IntlTokenize, on page 6-95.

Routines 6
The Script Manager routines documented in this section allow you to

■ control the system direction

■ access Script Manager variables

■ access script variables

■ control the keyboard and keyboard script

■ determine script codes

■ obtain character-type information

■ directly access a script system’s international resources

■ tokenize text

■ transliterate text

■ replace the default routines for a 1-byte complex script system

Throughout these routine descriptions, unless otherwise noted, the Script Manager
expects that

■ there is a buffer containing text characters only; font and style information are stored
separately

■ the storage order of the characters—the order in which character codes are stored in
memory—is their logical order, the order in which they would most naturally be
entered from the keyboard

■ all offsets within text buffers are zero-based and specified in bytes, not characters

■ a valid graphics port exists, and the font of the port is set correctly; all text-related
fields in the graphics port record reflect the characteristics of the text being
manipulated
Script Manager Reference 6-75

C H A P T E R 6

Script Manager
Assembly-language note

You can invoke each of the Script Manager routines that uses the
_ScriptUtil trap with a macro that has the same name as the routine,
preceded by an underscore. See “Summary of the Script Manager” at
the end of this chapter for a list of the routines that use the
_ScriptUtil trap. ◆

Checking and Setting the System Direction 6

The GetSysDirection routine returns the value of SysDirection, the global
variable that represents the system direction. A value of 0 for SysDirection means
that the primary line direction is left-to-right; a value of –1 means that the primary line
direction is right-to-left. The value of SysDirection is initialized from the system’s
international configuration resource, and may be controlled by the user. Your application
can use the SetSysDirection procedure to change SysDirection while drawing,
but should restore it when appropriate (such as when your application becomes inactive).

GetSysDirection 6

The GetSysDirection function returns the current value of SysDirection, the
global variable that determines the system direction (primary line direction).

FUNCTION GetSysDirection: Integer;

DESCRIPTION

There are two possible return values from GetSysDirection:

 0 = left-to-right line direction

–1 = $FFFF = right-to-left line direction

SetSysDirection 6

The SetSysDirection procedure sets the value of SysDirection, the global variable
that determines the system direction (primary line direction).

PROCEDURE SetSysDirection (newDirection: Integer);

newDirection
The desired value for SysDirection.
6-76 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
DESCRIPTION

There are two valid input values for newDirection:

 0 = left-to-right line direction

–1 = $FFFF = right-to-left line direction

Checking and Setting Script Manager Variables 6

The Script Manager maintains a set of variables that control general settings of the text
environment, including the identity of the system script and the keyboard script, and the
settings of the font force flag and the international resources selection flag.

You may want access to the Script Manager variables in order to understand the current
environment or to modify it. The GetScriptManagerVariable function retrieves the
values of the Script Manager variables, and the SetScriptManagerVariable function
sets their values. (The variables themselves are private and you cannot access them
directly.) When you call either routine, you use a selector to describe the variable that
interests you. The integer constants for all defined GetScriptManagerVariable/
SetScriptManagerVariable selectors are described beginning on page 6-61.

GetScriptManagerVariable 6

The GetScriptManagerVariable function retrieves the value of the specified Script
Manager variable.

FUNCTION GetScriptManagerVariable (selector: Integer): LongInt;

selector A value that specifies a particular Script Manager variable.

DESCRIPTION

Although GetScriptManagerVariable always returns a long integer, the actual
value may be a long integer, standard integer, or signed byte. If the value is not a long
integer, it is stored in the low-order word or byte of the long integer returned by
GetScriptManagerVariable; the remaining bytes are set to 0.

The GetScriptManagerVariable function returns 0 if the selector is invalid.

Note
For some valid selectors, 0 may also be a valid return value. For
example, when you call GetScriptManagerVariable with a selector
value of smRegionCode on a version of Macintosh system software that
has been localized for the United States, it returns 0. ◆

To specify the Script Manager variable whose value you need, use one of the selector
constants listed on page 6-61.
Script Manager Reference 6-77

C H A P T E R 6

Script Manager
SetScriptManagerVariable 6

The SetScriptManagerVariable function sets the specified Script Manager variable
to the value of the input parameter.

FUNCTION SetScriptManagerVariable (selector: Integer;

 param: LongInt): OSErr;

selector A value that specifies a particular Script Manager variable.

param The new value for the specified Script Manager variable.

DESCRIPTION

The actual values to be assigned may be long integers, standard integers, or signed
bytes. If the value is other than a long integer, you must store it in the low-order word or
byte of the param parameter and set the unused bytes to 0.

The SetScriptManagerVariable function returns the value smBadVerb if the
selector is not valid. Otherwise, it returns 0 (noErr).

To specify the Script Manager variable whose value you wish to change, use one of the
selector constants listed on page 6-61.

RESULT CODES

Checking and Setting Script Variables 6

Each enabled script system maintains a set of variables that control the current settings
of that script system, including the ID numbers of its international resources, its
preferred fonts and font sizes, and its primary line direction.

You may want access to the script variables in order to conform to the script’s current
settings or to modify them. The GetScriptVariable function retrieves the values of
the script variables, and the SetScriptVariable function sets their values. (The
variables themselves are private and you cannot access them directly.) When you call
either routine, you use a selector to describe the variable that interests you. The integer
constants for all defined GetScriptVariable/SetScriptVariable selectors are
described on page 6-65.

noErr 0 No error
smBadVerb –1 Invalid selector passed to the routine
6-78 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
GetScriptVariable 6

The GetScriptVariable function retrieves the value of the specified script variable
from the specified script system.

FUNCTION GetScriptVariable (script: ScriptCode;

 selector: Integer): LongInt;

script A value that specifies the script system whose variable you are accessing.

selector A value that specifies a particular script variable.

DESCRIPTION

Although GetScriptVariable always returns a long integer, the actual value may be
a long integer, standard integer, or signed byte. If the value is not a long integer, it is
stored in the low-order word or byte of the long integer returned by
GetScriptVariable; the remaining bytes are set to 0.

Valid selector values are defined by each script system. GetScriptVariable returns 0
if the selector value is invalid or if the specified script system is not installed.

Note
For some valid selectors, 0 may also be a valid return value.
For example, calling GetScriptVariable with a selector of
smScriptLang on a version of Macintosh system software that has
been localized for the United States returns 0. ◆

To specify the script variable whose value you need, use one of the selector
constants listed on page 6-65. To specify the script system, use one of the
script-code constants listed on page 6-52.

SetScriptVariable 6

The SetScriptVariable function sets the specified script variable for the specifed
script system to the value of the input parameter.

FUNCTION SetScriptVariable (script: ScriptCode; selector: Integer;

 param: LongInt): OSErr;

script A value that specifies the script system whose variable you are setting.

selector A value that specifies a particular script variable.

param The new value for the specified script variable.
Script Manager Reference 6-79

C H A P T E R 6

Script Manager
DESCRIPTION

The actual values to be assigned may be long integers, standard integers, or signed
bytes. If the value is not a long integer, you must store it in the low-order word or byte of
the param parameter and set the unused bytes to 0.

The SetScriptVariable function returns the value smBadVerb if the selector is not
valid, and smBadScript if the script is invalid. Otherwise, it returns 0 (noErr).

To specify the script variable whose value you wish to change, use one of the
selector constants listed on page 6-65. To specify the script system, use one of
the script-code constants listed on page 6-52.

RESULT CODES

Making Keyboard Settings 6

The Script Manager provides the KeyScript procedure to let you specify the current
keyboard script (the script system used for keyboard input), keyboard layout (the
mapping of keys to characters), or input method (a facility for entering 2-byte
characters), and to make various settings related to text input.

For the purposes of KeyScript, keyboard layout means a keyboard-layout ('KCHR')
resource, plus optionally a key-remap ('itlk') resource. To change keyboard layouts
means to change the current keyboard-layout resource.

KeyScript 6

The KeyScript procedure uses the supplied value to change the keyboard script, to
change the keyboard layout or input method within the current keyboard script, or to
make a setting related to text input. If the Keyboard menu is displayed, KeyScript also
updates the Keyboard menu.

PROCEDURE KeyScript (code: Integer);

code If 0 or positive, directly specifies a script system (that is, it is read as a
script code). Negative values have special meanings.

DESCRIPTION

The Keyscript procedure makes the change based on the selector with which it is
called. If more than one script system is enabled or if the smfShowIcon bit flag is set in
the Script Manager variable accessed by the GetScriptManagerVariable selector

noErr 0 No error
smBadVerb –1 Invalid selector passed to the routine
smBadScript –2 Invalid script code passed to the routine
6-80 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
smGenFlags, Keyscript also updates the Keyboard menu by changing the icon
displayed on the menu bar and placing a check beside the appropriate keyboard
menu item.

The code parameter is a selector that can explicitly specify a keyboard script by script
code. Script code constants are listed on page 6-52. If the selector specifies a script, then
the current default keyboard layout ('KCHR' resource) for that script, as specified in the
script’s international bundle resource, becomes the current keyboard layout.

The selector can also implicitly specify a keyboard script (for example, the next script), a
keyboard layout (for example, the previously used keyboard layout in the current
script), or an input method (for example, inline input versus window-based input). It can
also specify settings that enable or disable keyboard layouts and keyboard scripts, and
toggle among input options or line direction. The valid constants for the code parameter
are listed in Table 6-5 on page 6-18.

If you call KeyScript and explicitly specify a script system that is not available,
KeyScript does nothing. The current keyboard script remains unchanged.

SPECIAL CONSIDERATIONS

KeyScript operates only on those keyboard-layout and key-remap resources that are
present in the System file.

Your application’s keyboard-menu setting is not maintained by the Process Manager; if
the state of the keyboard menu is changed while you are switched out, the Process
Manager does not restore your setting when you are switched back in. However, the
Process Manager does maintain the keyboard disable state (Script Manager variable
smKeyDisableState) for your application. See “Selectors for Script Manager
Variables” beginning on page 6-61 for a description of the smKeyDisableState
variable.

KeyScript may move memory; your application should not call this procedure at
interrupt time.

SEE ALSO

The Process Manager is described in Inside Macintosh: Processes.

Determining Script Codes From Font Information 6

The FontScript, FontToScript, and IntlScript functions give you ways to
determine a script code from font information. This information is subject to two control
flags—the font force flag and the international resources selection flag. You can test and
set these flags with the GetScriptManagerVariable and
SetScriptManagerVariable selectors smFontForce and smIntlForce. For more
information on the font force flag, see “Using the Font Force Flag” on page 6-24. For
more information on the international resources selection flag, see “Using the
International Resources Selection Flag” on page 6-25.
Script Manager Reference 6-81

C H A P T E R 6

Script Manager
The routines start by initializing two result flags, the script-forced result flag and
the script-defaulted result flag, to FALSE. These flags are Script Manager variables,
accessed through the GetScriptManagerVariable function selectors smForced
and smDefault.

FontScript 6

The FontScript function returns the script code for the current script. The current
script is usually the font script.

FUNCTION FontScript: Integer;

DESCRIPTION

The FontScript function returns a script code. All recognized script codes and their
defined constants are listed on page 6-52. FontScript returns only explicit script codes
(≥ 0).

If the font of the active graphics port is Roman and the font force flag is TRUE, the script
code returned is that of the system script and the script-forced result flag is set to TRUE.

If the font of the active graphics port is non-Roman, the state of the font force flag is
ignored.

If the script system corresponding to the font of the active graphics port is not installed
and enabled, the script code returned is that of the system script and the script-defaulted
result flag is set to TRUE.

SPECIAL CONSIDERATIONS

FontScript may move memory; your application should not call this function at
interrupt time.

FontToScript 6

The FontToScript function translates a font family ID number into its corresponding
script code, if that script system is currently enabled.

FUNCTION FontToScript (fontNumber: Integer): Integer;

fontNumber
A font family ID number.
6-82 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
DESCRIPTION

The FontToScript function returns a script code. All recognized script codes and their
defined constants are listed on page 6-52. FontToScript returns only explicit script
codes (≥ 0).

If fontNumber is in the Roman range and the font force flag is TRUE, the script code
returned is that of the system script and the script-forced result flag is set to TRUE.

If fontNumber is in the non-Roman range, the state of the font force flag is ignored.

If the script system corresponding to fontNumber is not enabled, the script code
returned is that of the system script and the script-defaulted result flag is set to TRUE.

SPECIAL CONSIDERATIONS

FontToScript may move memory; your application should not call this function at
interrupt time.

IntlScript 6

The IntlScript function identifies the script system used by the Text Utilities
date-formatting, time-formatting, and string-sorting routines. It also identifies the script
system whose resources are returned by the Script Manager function
GetIntlResource. It is either the font script—the script system corresponding to the
current font of the active graphics port—or the system script.

FUNCTION IntlScript: Integer;

DESCRIPTION

The IntlScript function returns a script code. All recognized script codes and their
defined constants are listed on page 6-52. IntlScript returns only explicit script
codes (≥ 0).

If the international resources selection flag is TRUE, the script code returned is that of the
system script.

If the identified script system is not enabled, the script code returned is that of the
system script and the script-defaulted result flag is set to TRUE.

SPECIAL CONSIDERATIONS

IntlScript may move memory; your application should not call this function at
interrupt time.
Script Manager Reference 6-83

C H A P T E R 6

Script Manager
Analyzing Characters 6

This section describes the functions CharacterByteType, CharacterType, and
FillParseTable, which give you information about a character or group of characters,
specified by character code:

■ The CharacterByteType function identifies a byte in a text buffer as a 1-byte
character or as the first or second byte of a 2-byte character.

■ The CharacterType function returns specific information about the character at a
particular byte offset.

■ The FillParseTable function fills a 256-byte table that indicates, for each possible
byte value, whether it is the first byte of a 2-byte character.

The script system associated with the character you wish to examine must be enabled in
order for any of these three routines to provide useful information. For example, if only
the Roman script system is available and you attempt to identify a byte in a run of 2-byte
characters, the CharacterByteType function returns 0, indicating that the byte is a
1-byte character.

1-byte script systems

For 1-byte script systems, the character-type tables reside in the
string-manipulation ('itl2') resource and reflect region-specific or
language-specific differences in uppercase conventions. The
CharacterType function gets the tables from the string-manipulation
resource using the GetIntlResource function. ◆

2-byte script systems

For 2-byte script systems, the character-type tables reside in the
encoding/rendering ('itl5') resource, not the string-manipulation
resource. Whenever you call CharacterByteType, CharacterType,
or FillParseTable, the necessary character-set encoding information
is taken from the encoding/rendering resource. You cannot use the
GetIntlResource function to access 2-byte character-type
tables directly. ◆

CharacterByteType 6

The CharacterByteType function identifies a byte in a text buffer as a 1-byte character
or as the first or second byte of a 2-byte character.

FUNCTION CharacterByteType (textBuf: Ptr; textOffset: Integer;

 script: ScriptCode): Integer;

textBuf A pointer to a text buffer containing the byte to be identified.

textOffset
The offset to the byte to be identified. Offset is measured in bytes; the first
byte has an offset of 0.
6-84 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
script A value that specifies the script system of the text in the buffer. Constants
for all defined script codes are listed on page 6-52. To specify the font
script, pass smCurrentScript in this parameter.

DESCRIPTION

CharacterByteType returns one of three identifications: a 1-byte character, the first
byte of a 2-byte character, or the second byte of a 2-byte character. The first byte of a
2-byte character—the one at the lower offset in memory—is the high-order byte; the
second byte of a 2-byte character—the one at the higher offset—is the low-order byte.
This is the same order in which text is processed and numbers are represented.

From byte value alone, it is not possible to distinguish the second byte of a 2-byte
character from a 1-byte character. See the discussion of character encoding in the chapter
“Introduction to Text on the Macintosh” in this book. CharacterByteType
differentiates the second byte of a 2-byte character from a 1-byte character by assuming
that the byte at offset 0 is the first byte of a character. With that assumption, it then
sequentially identifies the size and starting position of each character in the buffer up to
textOffset.

SPECIAL CONSIDERATIONS

If you specify smCurrentScript for the script parameter, the value returned by
CharacterByteType can be affected by the state of the font force flag. It is unaffected
by the state of the international resources selection flag.

RESULT CODES

CharacterType 6

The CharacterType function returns a variety of information about the character
represented by a given byte, including its type, class, orientation, direction, case, and size
(in bytes).

FUNCTION CharacterType (textBuf: Ptr; textOffset: Integer;

script: ScriptCode): Integer;

textBuf A pointer to a text buffer containing the character to be examined.

textOffset
The offset to the location of the character to be examined. (It can be an
offset to either the first or the second byte of a 2-byte character.) Offset is
in bytes; the first byte of the first character has an offset of 0.

smFirstByte –1 First byte of a 2-byte character
smSingleByte 0 1-byte character
smLastByte 1 Second byte of 2-byte character
Script Manager Reference 6-85

C H A P T E R 6

Script Manager
script A value that specifies the script system the byte belongs to. Constants for
all defined script codes are listed on page 6-52. To specify the font script,
pass smCurrentScript in this parameter.

DESCRIPTION

The CharacterType return value is an integer bit field that provides information about
the requested character. The field has the following format:

The Script Manager defines the recognized character types, character classes, and
character modifiers (bits 12–15), with constants to describe them. All of the constants are
listed and described in the section “Getting Character-Type Information” beginning on
page 6-28.

The Script Manager also defines a set of masks with which you can isolate each of the
fields in the CharacterType return value. If you perform an AND operation with the
CharacterType result and the mask for a particular field, you select only the bits in
that field. Once you’ve done that, you can test the result, using the constants that
represent the possible results.

The CharacterType field masks are the following:

The character type of the character in question is the result of performing an AND
operation with smcTypeMask and the CharacterType result. Constants for the
defined character types are listed on page 6-28.

* In 2-byte script systems, bit 13 indicates whether or not the character is part of the main
character set (not a user-defined character).

Bit
range Name Explanation

0–3 Type Character types

4–7 (reserved)

8–11 Class Character classes (= subtypes)

12 Orientation Horizontal or vertical

13 Direction Left or right*

14 Case Uppercase or lowercase

15 Size 1-byte or 2-byte

Mask Hex. value Explanation

smcTypeMask $000F Character-type mask

smcReserved $00F0 (reserved)

smcClassMask $0F00 Character-class mask

smcOrientationMask $1000 Character orientation (2-byte scripts)

smcRightMask $2000 Writing direction (bidirectional scripts)
Main character set or subset (2-byte scripts)

smcUpperMask $4000 Uppercase or lowercase

smcDoubleMask $8000 Size (1 or 2 bytes)
6-86 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
The character class of the character in question is the result of performing an AND
operation with smcClassMask and the CharacterType result. Character classes can
be considered as subtypes of character types. Constants for the defined character classes
are listed on page 6-29.

The orientation of the character in question is the result of performing an AND operation
with smcOrientationMask and the CharacterType result. The orientation value can
be either smCharHorizontal or smCharVertical.

The direction of the character in question is the result of performing an AND operation
with smcRightMask and the CharacterType result. The direction value can be either
smCharLeft (left-to-right) or smCharRight (right-to-left).

The case of the character in question is the result of performing an AND operation with
smcUpperMask and the CharacterType result. The case value can be either
smCharLower or smCharUpper.

The size of the character in question is the result of performing an AND operation
with smcDoubleMask and the CharacterType result. The size value can be either
smChar1byte or smChar2byte.

Note
CharacterType calls CharacterByteType to determine whether the
byte at textOffset is a 1-byte character or the first byte or second byte
of a 2-byte character. The larger the text buffer, the longer
CharacterByteType takes to execute. To be most efficient, place the
pointer textBuf at the beginning of the character of interest before
calling CharacterType. (If you want to be compatible with older
versions of CharacterType, also set textOffset to 1, rather than 0,
for 2-byte characters.) ◆

SPECIAL CONSIDERATIONS

CharacterType may move memory; your application should not call this function
at interrupt time.

If you specify smCurrentScript for the script parameter, CharacterType
always assumes that the text in the buffer belongs to the font script. It is unaffected
by the state of the font force flag or the international resources selection flag.

For 1-byte script systems, the character-type tables are in the string-manipulation
('itl2') resource. For 2-byte script systems, they are in the
encoding/rendering ('itl5') resource. If the appropriate resource does not
include these tables, CharacterType exits without doing anything.

Some Roman fonts (for example, Symbol) substitute other characters for the
standard characters in the Standard Roman character set. Since the Roman script system
CharacterType function assumes the Standard Roman character set, it may return
inappropriate results for nonstandard characters.

In versions of system software earlier than 7.0, the textOffset parameter to the
CharacterType function must point to the second byte of a 2-byte character.
Script Manager Reference 6-87

C H A P T E R 6

Script Manager
RESULT CODES

The complete set of CharacterType return values is found in the section
“Getting Character-Type Information” beginning on page 6-28.

FillParseTable 6

The FillParseTable function helps your application to quickly process a buffer of
mixed 1-byte and 2-byte characters. It returns a 256-byte table that distinguishes the
character codes of all possible 1-byte characters from the first (high-order) byte values of
all possible 2-byte characters in the specified script system.

FUNCTION FillParseTable (VAR table: CharByteTable;

 script: ScriptCode): Boolean;

table A 256-byte table to be filled in by FillParseTable.

script A value that specifies the script system the parse table belongs to.
Constants for all defined script codes are listed on page 6-52. To specify
the font script, pass smCurrentScript in this parameter.

DESCRIPTION

Before calling FillParseTable, allocate space for a 256-byte table to pass to the
function in the table parameter.

The information returned by FillParseTable is a packed array defined by the
CharByteTable data type as follows:

CharByteTable = PACKED ARRAY[0..255] OF SignedByte;

In every script system, 2-byte characters have distinctive high-order (first) bytes that
allow them to be distinguished from 1-byte characters. FillParseTable fills a 256-byte
table, conceptually equivalent to a 1-byte character-set table, with values that indicate,
byte-for-byte, whether the character-code value represented by that byte index is the first
byte of a 2-byte character. An entry in the CharByteTable is 0 for a 1-byte character
and 1 for the first byte of a 2-byte character.

If your application is processing mixed characters, it can use the table to identify the
locations of the 2-byte characters as it makes a single pass through the text, rather than
having to call CharacterByteType or CharacterType for each byte of the text buffer
in turn. CharacterByteType and CharacterType start anew at the beginning of the
text buffer each time they are called, tracking character positions up to the offset of the
byte to be analyzed.
6-88 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
SPECIAL CONSIDERATIONS

FillParseTable may move memory; your application should not call this function at
interrupt time.

The table defined by CharByteTable is not dynamic; it does not get updated when the
current font changes. You need to call it separately for each script run in your text.

The return value from FillParseTable is always TRUE.

If you specify smCurrentScript for the script parameter, the value returned by
FillParseTable can be affected by the state of the font force flag. It is unaffected by
the international resources selection flag.

Directly Accessing International Resources 6

You can access the International resources (resource types 'itl0', 'itl1', 'itl2',
'itl4', and 'itl5') with the GetIntlResource function. You can access specific
tables within an international resource with the GetIntlResourceTable procedure. If
your application provides its own 'itl2' or 'itl4' resources, it should call the
ClearIntlResourceCache procedure before accessing those resources.

ClearIntlResourceCache 6

The ClearIntlResourceCache procedure clears the application’s international
resources cache, which contains the resource ID numbers of the string-manipulation
('itl2') and tokens ('itl4') resources for the current script.

PROCEDURE ClearIntlResourceCache;

DESCRIPTION

At application launch, the script management system sets up an international resources
cache for the application. The cache contains the resource ID numbers of the
string-manipulation and tokens resources for all enabled scripts.

If you provide your own string manipulation or tokens resource to replace the default
for a particular script, call ClearIntlResourceCache at launch to ensure that your
supplied resource is used instead of the script system’s 'itl2' or 'itl4' resource.

The current default ID numbers for a script system’s 'itl2' and 'itl4' resources are
stored in its script variables. You can read and modify these values with the
GetScriptVariable and SetScriptVariable functions using the selectors
smScriptSort (for the 'itl2' resource) and smScriptToken (for the 'itl4'
resource). Before calling ClearIntlResourceCache, you should set the script’s
default ID number to the ID of the resource that you are supplying.
Script Manager Reference 6-89

C H A P T E R 6

Script Manager
If the international resources selection flag is TRUE, the ID numbers of your supplied
resources must be in the system script range. Otherwise, the IDs must be in the range of
the current script.

IMPORTANT

If you use the SetScriptVariable function to change the
value of the 'itl2' or 'itl4' resource ID and then call
ClearIntlResourceCache to flush the cache, be sure to
restore the original resource ID before your application quits. ▲

SPECIAL CONSIDERATIONS

ClearIntlResourceCache may move memory; your application should not call this
procedure at interrupt time.

GetIntlResource 6

The GetIntlResource function returns a handle to one of the following international
resources: numeric-format ('itl0'), long-date-format ('itl1'), string-manipulation
('itl2'), tokens ('itl4'), or encoding/rendering ('itl5'). GetIntlResource
selects the resource of the requested type for the current script.

FUNCTION GetIntlResource (theID: Integer) :Handle;

theID Contains an integer (0, 1, 2, 4, or 5 respectively for the 'itl0', 'itl1',
'itl2', 'itl4', and 'itl5'resources) to identify the type of the
desired international resource.

DESCRIPTION

The GetIntlResource function returns a handle to the correct resource of the
requested type. The resource returned is that of the current script, which is either the
font script or the system script. See “Determining Script Codes From Font Information”
on page 6-21.

If GetIntlResource cannot return the requested resource, it returns a NIL handle and
sets the global variable resErr to the appropriate error code.

SPECIAL CONSIDERATIONS

GetIntlResource may move memory; your application should not call this function
at interrupt time.
6-90 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
SEE ALSO

See the Resource Manager chapter in Inside Macintosh: More Macintosh Toolbox for
information on resErr and how to get its value.

GetIntlResourceTable 6

The GetIntlResourceTable procedure gives you access to a specific word-selection,
line-break, number-parts, untoken, or whitespace table from the appropriate
international resource.

PROCEDURE GetIntlResourceTable (script: ScriptCode;

 tableCode: Integer;

 VAR itlHandle: Handle;

 VAR offset: LongInt;

 VAR length: LongInt);

script A script code, the value that specifies a particular script system. Constants
for all defined script codes are listed on page 6-52.

tableCode A number that specifies which table is requested.

itlHandle Upon completion of the call, contains a handle to the string-manipulation
('itl2') or tokens ('itl4') resource containing the table specified in
the tableCode parameter.

offset Upon completion of the call, contains the offset (in bytes) to the specified
table from the beginning of the resource.

length Upon completion of the call, contains the size of the table (in bytes).

DESCRIPTION

When you provide a script code in the script parameter, and a table code in the
tableCode parameter, GetIntlResourceTable returns a handle to the
string-manipulation resource or tokens resource containing that table, the offset of the
specified table from the beginning of the resource, and the length of the table.

If the script system whose table is requested is not available, GetIntlResourceTable
returns a NIL handle.

Constants for all defined script codes are listed on page 6-52.
Script Manager Reference 6-91

C H A P T E R 6

Script Manager
These are the defined constants for tableCode:

If you wish to manipulate the contents of the table you have requested, use the size
returned in the length parameter to allocate a buffer, and perform a block move of the
table’s contents into that buffer.

SPECIAL CONSIDERATIONS

GetIntlResourceTable may move memory; your application should not call this
procedure at interrupt time.

SEE ALSO

Block moves are described in the Memory Manager chapter of Inside Macintosh:
Memory.

Tokenization 6

The Script Manager provides a way to take programming-language text in an arbitrary
script system and break it into tokens: language-independent symbols that can be used
as input to a parser. The IntlTokenize function uses information in a script system’s
tokens ('itl4') resource to convert text to tokens that stand for names, symbols,
comments, and quoted literals.

IntlTokenize 6

The IntlTokenize function allows your application to convert text into a sequence of
language-independent tokens. It returns a list of tokens that correspond to the text that
you pass it.

FUNCTION IntlTokenize (tokenParam: TokenBlockPtr): TokenResults;

tokenParam
A pointer to a token block record. The record specifies the text to be
converted to tokens, the destination of the token list, a handle to the
tokens ('itl4') resource, and a set of options.

Constant Value Explanation

smWordSelectTable 0 Word-break table

smWordWrapTable 1 Line-break table

smNumberPartsTable 2 Number-parts table

smUnTokenTable 3 Untoken table

smWhiteSpaceList 4 Whitespace table
6-92 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
The token block record is a parameter block and a data structure of type TokenBlock,
described on page 6-74. You specify input values and receive return values in as
shown here:

Parameter block

→ source Ptr A pointer to the beginning of the
source text (not a Pascal string) to
be converted.

→ sourceLength LongInt The number of bytes in the source text.
↔ tokenList Ptr A pointer to a buffer you have

allocated, into which the
IntlTokenize function places the list
of token records it generates.

→ tokenLength LongInt The maximum size of token list (in
number of tokens, not bytes) that will
fit into the buffer pointed to by the
tokenList field.

↔ tokenCount LongInt On input: If doAppend = TRUE, must
contain the correct number of tokens
currently in the token list. (Ignored if
doAppend = FALSE.)
On output: The number of tokens
currently in the token list.

↔ stringList Ptr If doString = TRUE, must contain a
pointer to a buffer into which
IntlTokenize can place a list of
strings it generates. (Ignored if
doString = FALSE.)

→ stringLength LongInt If doString = TRUE, must contain the
size in bytes of the string list buffer
pointed to by the stringList field.
(Ignored if doString = FALSE.)

↔ stringCount LongInt On input: If doString = TRUE and
doAppend = TRUE, must contain the
correct current size in bytes of the
string list. (Ignored if doString =
FALSE or doAppend = FALSE.)
On output: The current size in bytes of
the string list. (Indeterminate if
doString = FALSE.)

→ doString Boolean If TRUE, instructs IntlTokenize to
create a Pascal string representing the
contents of each token it generates.
If FALSE, IntlTokenize generates
a token list without an associated
string list.

→ doAppend Boolean If TRUE, instructs IntlTokenize to
append tokens and strings it generates
to the current token list and string list.
If FALSE, IntlTokenize writes over
any previous contents of the buffer
pointed to by tokenList and
stringList.
Script Manager Reference 6-93

C H A P T E R 6

Script Manager
DESCRIPTION

The IntlTokenize function returns a list of tokens that correspond to the input
text. The token list is an array of token records (type TokenRec). Each token record
describes the token generated, specifies the part of the source text it came from, and
optionally provides a character string that is a normalized version of the text that
generated the token.

→ doAlphanumeric Boolean If TRUE, instructs IntlTokenize to
interpret numeric characters as
alphabetic when mixed with
alphabetic characters. If FALSE, all
numeric characters are interpreted as
numbers.

→ doNest Boolean If TRUE, instructs IntlTokenize to
allow nested comments (to any depth
of nesting). If FALSE, comment
delimiters may not be nested within
other comment delimiters.

→ leftDelims DelimType An array of two integers, each of
which contains the token code of the
symbol that may be used as an
opening delimiter for a quoted literal.
If only one opening delimiter is
needed, the other must be specified to
be delimPad.

→ rightDelims DelimType An array of two integers, each of
which contains the token code of the
symbol that may be used as the
matching closing delimiter for the
corresponding opening delimiter in the
leftDelims field.

→ leftComment CommentType An array of two pairs of integers, each
pair of which contains codes for the
two token types that may be used as
opening delimiters for comments.

→ rightComment CommentType An array of two pairs of integers, each
pair of which contains codes for the
two token types that may be used as
closing delimiters for comments.

→ escapeCode TokenType A single integer that contains the token
code for the symbol that may be an
escape character within a quoted literal.

→ decimalCode TokenType A single integer that contains the token
type of the symbol to be used for a
decimal point.

→ itlResource Handle A handle to the tokens ('itl4')
resource of the script system under
which the source text was created.

→ reserved ARRAY
 [0..7] OF
 LongInt

Must be set to 0.
6-94 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
IntlTokenize also returns a result code that specifies the type of error that
occurred, if any.

Before calling the IntlTokenize function, allocate memory for and set up the
following data structures:

■ A token block record (data type TokenBlock). The token block record is a parameter
block that holds both input and output parameters for the IntlTokenize function.

■ A token list to hold the results of the tokenizing operation. To set up the token list,
estimate how many tokens will be generated from your text, multiply that by the size
of a token record, and allocate a memory block of that size in bytes. An upper limit to
the possible number of tokens is the number of characters in the source text.

■ A string list, if you want the IntlTokenize function to generate character strings for
all the tokens. To set up the string list, multiply the estimated number of tokens by the
expected average size of a string, and allocate a memory block of that size in bytes. An
upper limit is twice the number of tokens plus the number of bytes in the source text.

IntlTokenize creates tokens based on information in the tokens ('itl4') resource
of the script system under which the source text was created. You must load the tokens
resource and place its handle in the token block record before calling the IntlTokenize
function.

The token block record contains both input and output values. At input, you must
provide values for the fields that specify the source text location, the token list location,
the size of the token list, the tokens ('itl4') resource to use, and several options that
affect the operation. You must set reserved locations to 0 before calling IntlTokenize.

On output, the token block record specifies how many tokens have been generated and
the size of the string list (if you have selected the option to generate strings).

The results of the tokenizing operation are contained in the token list, an array of token
records. A token record (data type TokenRec) consists of a token code, a pointer to a
location in the source text, the length of a character sequence in the source text, and an
optional pointer to a Pascal string:

TYPE

TokenRec =

RECORD

theToken: TokenType; {numeric code for token}

position: Ptr; {pointer to source text from }

{ which token was generated}

length: LongInt; {length of source text from }

{ which token was generated}

stringPosition: StringPtr; {pointer to Pascal string }

{ generated from token}

END;

TokenRecPtr = ^TokenRec;
Script Manager Reference 6-95

C H A P T E R 6

Script Manager
Field descriptions

theToken The token code that specifies the type of token (such as whitespace,
opening parenthesis, alphabetic or numeric sequence) described by
this token record. Constants for all defined token codes are listed on
page 6-58.

position A pointer to the first character in the source text that caused this
particular token to be generated.

length The length in bytes of the source text that caused this particular
token to be generated.

stringPosition If doString = TRUE, a pointer to a null-terminated Pascal
string, padded if necessary so that its total number of bytes
(length byte + text + null byte + padding) is even. If
doString = FALSE, this field is NIL.

Note

The value in the length byte of the null-terminated Pascal string
does not include either the terminating zero byte or the possible
additional padding byte. There may be as many as two additional
bytes beyond the specified length. ◆

Pascal strings are generated if the doString parameter in the token block record is set
to TRUE. The string is a normalized version of the source text that generated the token;
alternate digits are replaced with ASCII numerals, the decimal point is always an ASCII
period, and 2-byte Roman letters are replaced with low-ASCII equivalents.

To make a series of calls to IntlTokenize and append the results of each call to the
results of previous calls, set doAppend to FALSE and initialize tokenCount and
stringCount to 0 before making the first call to IntlTokenize. (You can ignore
stringCount if you set doString to FALSE.) Upon completion of the call,
tokenCount and stringCount will contain the number of tokens and the length in
bytes of the string list, respectively, generated by the call. On subsequent calls, set
doAppend to TRUE, reset the source and sourceLength parameters (and any other
parameters as appropriate) for the new source text, but maintain the output values for
tokenCount and stringCount from each call as input values to the next call. At the
end of your sequence of calls, the token list and string list will contain, in order, all the
tokens and strings generated from the calls to IntlTokenize.

If you are making tokens from text that was created under more than one script system,
you must load the proper tokens resource and place its handle in the token block record
separately for each script run in the text, appending the results each time.

Delimiters for quoted literals are passed to IntlTokenize in a two-integer array:

TYPE DelimType = ARRAY[0..1] OF TokenType;

The individual delimiters, as specified in the leftDelims and rightDelims
parameters, are paired by position. The first (in storage order) opening delimiter in
leftDelims is paired with the first closing delimiter in rightDelims.
6-96 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
Comment delimiters may be 1 or 2 tokens each and there may be two sets of opening
and closing pairs. They are passed to IntlTokenize in a commentType array:

TYPE CommentType = ARRAY[0..3] OF TokenType;

If only one token is needed for a delimiter, the second token must be specified to be
delimPad. If only one delimiter of an opening-closing pair is needed, then both of the
tokens allocated for the other symbol must be delimPad. The first token of a two-token
sequence is at the higher position in the leftComment or rightComment array. For
example, if the two opening (in this case, left) delimiters were “(*” and “{”, they would
be specified as follows:

leftComment[0] := tokenAsterisk; (*asterisk*)

leftComment[1] := tokenLeftParen; (*left parenthesis*)

leftComment[2] := delimPad ; (*nothing*)

leftComment[3] := tokenLeftCurly; (*curly brace*)

When IntlTokenize encounters an escape character within a quoted literal, it places
the portion of the literal before the escape character into a single token (of type
tokenLiteral), places the escape character into another token (tokenEscape), places
the character following the escape character into another token (whatever token type it
corresponds to), and places the portion of the literal following the escape sequence into
another token (tokenLiteral). Outside of a quoted literal, the escape character has no
special significance.

IntlTokenize considers the character specified in the decimalCode parameter to be a
decimal character only when it is flanked by numeric or alternate numeric characters, or
when it follows them.

SPECIAL CONSIDERATIONS

IntlTokenize may move memory; your application should not call this function at
interrupt time.

Because each call to IntlTokenize must be for a single script run, there can be no
change of script within a comment or quoted literal.

Comments and quoted literals must be complete within a single call to IntlTokenize
in order to avoid syntax errors.

IntlTokenize always uses the tokens resource whose handle you pass it in the token
block record. Therefore, it is not directly affected by the state of the font force flag or the
international resources selection flag. However, if you use the GetIntlResource
function to get a handle to the tokens resource to pass to IntlTokenize, remember that
GetIntlResource is affected by the state of the international resources selection flag.
See “Determining Script Codes From Font Information” beginning on page 6-21.
Script Manager Reference 6-97

C H A P T E R 6

Script Manager
RESULT CODES

SEE ALSO

 See the appendix “International Resources” in this book for a description of the tokens
('itl4') resource.

Transliteration 6

Transliteration is the conversion of text from one form or subscript to another within a
single script system. In the Roman script system, transliteration means case conversion.
In 2-byte script systems, it is the automatic conversion of characters from one subscript
to another. One common use for transliteration is as an initial stage of text conversion
for an input method.

TransliterateText 6

The TransliterateText function converts characters from one subscript to the closest
possible approximation in a different subscript within the same 2-byte script system.
TransliterateText also performs uppercasing and lowercasing, with consideration
for regional variants, in the Roman script system and on Roman text within 2-byte
script systems.

FUNCTION TransliterateText (srcHandle: Handle;

 dstHandle: Handle;

 target: Integer; srcMask: LongInt;

 script: ScriptCode): OSErr;

srcHandle A handle to the source text to be transliterated.

dstHandle A handle to a buffer that, upon completion of the call, contains the
transliterated text.

target A value that specifies what kind of text the source text is to be
transliterated into. The low byte of the target is the format to convert
to. The high byte contains modifiers, whose meanings depend on the
script code.

tokenOK 0 Valid token
tokenOverflow 1 Number of tokens exceeded maximum specified in

tokenList field of token block record
stringOverflow 2 Size of string list larger than maximum specified in

stringList field of token block record
badDelim 3 Invalid delimiter
badEnding 4 (currently unused)
crash 5 Unknown error
6-98 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
srcMask A bit array that specifies which parts of the source text are to be
transliterated. A bit is set for each script system or subscript that should
be converted.

script A value that specifies the script system of the text to be transliterated.
Constants for all defined script codes are listed on page 6-52. To specify
the font script, pass smCurrentScript in this parameter.

DESCRIPTION

The types of conversions TransliterateText performs are described in the section
“Transliteration” beginning on page 6-43.

The TransliterateText function converts all of the text that you pass it in the
srcHandle parameter. It determines the length of the source text (in bytes) from the
handle size.

Before calling TransliterateText, allocate a handle (of any size) to pass in the
dstHandle parameter. The length of the transliterated text may be different (as when
converting between 1-byte and 2-byte characters), and TransliterateText sets the
size of the destination handle as required. It is your responsibility to dispose of the
destination handle when you no longer need it.

The srcMask parameter is the source mask; it specifies which subscript(s) represented in
the source text should be converted to the target format. In all script systems, the
srcMask parameter may have the following values: smMaskAscii, smMaskNative,
and smMaskAll, as described on page 6-46. In 2-byte script systems, additional values
are recognized, as described on page 6-46.

The low-order byte of the target parameter is the target format; it determines what
form the the text should be transliterated to. In all script systems, there are two currently
supported values for target format: smTransAscii and smTransNative, as described
on page 6-46. In 2-byte script systems, additional values are recognized, as described
on page 6-47.

The high-order byte of the target parameter is the target modifier; it provides
additional formatting instructions. In all script systems, there are two values for target
modifer: smTransLower and smTransUpper, as described on page 6-47.

Note
Because the low-ASCII character set (character codes $20–$7F) is present
in all script systems, you could theoretically use the
TransliterateText function to convert characters from one script
system into another completely different script system. You could
transliterate from a native subscript into ASCII under one script system,
and then transliterate from that ASCII into a native subscript under a
different script system. Such a procedure is not recommended, however,
because of the imperfect nature of phonetic translation. Furthermore,
many script systems do not support transliteration from native
subscripts to ASCII. ◆
Script Manager Reference 6-99

C H A P T E R 6

Script Manager
SPECIAL CONSIDERATIONS

TransliterateText may move memory; your application should not call this
function at interrupt time.

If you pass smCurrentScript in the script parameter, the conversion performed by
TransliterateText can be affected by the state of the font force flag. It is unaffected
by the international resources selection flag.

Transliteration of a block of text does not work across script-run boundaries. Because the
TransliterateText function requires transliteration tables that are in a script
system’s international resources, you need to call it anew for each script run in your text.

Currently, the Roman version of TransliterateText checks the source mask only to
ensure that at least one of the bits corresponding to the smMaskAscii and
smMaskNative constants is set.

The Arabic and Hebrew versions of TransliterateText perform case conversion
only. They allow the target values smTransAscii and smTransNative only;
otherwise, they behave like the Roman version.

The TransliterateText tables for 1-byte script systems reside in the
script’s string-manipulation ('itl2') resource, so they can reflect region-specific
or language-specific differences in uppercase conventions. If the string-manipulation
resource does not include these tables, TransliterateText exits without
doing anything.

The TransliterateText tables for 2-byte script systems reside in the script’s
transliteration ('trsl') resource. If the 'trsl' resource does not include these tables,
TransliterateText exits without doing anything.

The Japanese, Traditional Chinese, and Simplified Chinese versions of
TransliterateText have two modes of operation:

■ If either smMaskAscii or smMaskNative is specified in the source mask, and if the
target is smTransAscii, and if either of the target modifiers is specified,
TransliterateText performs the specified case conversion on both 1-byte and
2-byte Roman letters.

■ Otherwise, TransliterateText performs conversions according to the target
format values defined on page 6-47. Any combination of source masks and target
format is permitted.

RESULT CODES

In addition to Memory Manager errors, TransliterateText can return the
following results:

noErr 0 No error
–1 Illegal source or target, or 'itl2' could not be loaded
6-100 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
Replacing a Script System’s Default Routines 6

The four Script Manager routines described in this section allow you to access or replace
the text-manipulation and text-display routines in WorldScript I, the system extension
for 1-byte complex script systems. The function GetScriptUtilityAddress and the
procedure SetScriptUtilityAddress work with the script utilities routines. The
function GetScriptQDPatchAddress and the procedure
SetScriptQDPatchAddress work with patches of the QuickDraw routines StdText,
StdTxMeas, and MeasureText, and the Font Manager routine FontMetrics.

For more information on how to use these calls, see the appendix “Built-in Script
Support” in this book.

For GetScriptUtilityAddress and SetScriptUtilityAddress, these are the
valid values for the selector parameter:

For GetScriptQDPatchAddress and SetScriptQDPatchAddress, these are the
valid values for the trapNum parameter:

Script utility Selector value

GetScriptVariable $000C

SetScriptVariable $000E

CharacterByteType $0010

CharacterType $0012

TransliterateText $0018

FindWordBreaks $001A

HiliteText $001C

FillParseTable $0022

FindScriptRun $0026

VisibleLength $0028

PixelToChar $002E

CharToPixel $0030

DrawJustified $0032

Measurejustified $0034

PortionLine $0036

QuickDraw patch trapNum value

_StdText $A882

_StdTxMeas $A8ED

_MeasureText $A837

_FontMetrics $A835
Script Manager Reference 6-101

C H A P T E R 6

Script Manager
GetScriptUtilityAddress 6

The GetScriptUtilityAddress function returns a pointer to the specified 1-byte
script utility—or the original Roman utility—for the given script system.

FUNCTION GetScriptUtilityAddress (selector: Integer;

 before: Boolean;

 script: ScriptCode): Ptr;

selector A value that specifies the name of the utility routine whose address
is needed.

before A Boolean that specifies which of two routines is needed. If TRUE, the
address returned is that of the WorldScript I implementation of the utility.
If FALSE, the address returned is that of the original routine (usually the
built-in Roman version).

script The numeric code that specifies the script system whose dispatch table
contains the pointers to the utility routines. Constants for all defined
script codes are listed on page 6-52.

DESCRIPTION

The GetScriptUtilityAddress function examines the specified script’s dispatch
table and returns a pointer to the desired routine.

Because each element in the dispatch table consists of a pair of addresses, one for the
WorldScript I implementation of the utility, and another for the original (Roman) version
of the utility, you can get the address of either routine. Either routine can then be
replaced, using the GetScriptUtilityAddress call.

This function can return NIL for the pointer if, for example, either the WorldScript I
implementation or the original Roman routine is not used by the script system.

Valid values for the selector parameter are listed on page 6-101.

If the specified script system is not enabled, GetScriptUtilityAddress returns a
NIL pointer.

SEE ALSO

WorldScript I is described in the appendix “Built-in Script Support” in this book.
6-102 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
SetScriptUtilityAddress 6

The SetScriptUtilityAddress procedure replaces the specified 1-byte script
utility—or the original Roman utility—for the given script.

PROCEDURE SetScriptUtilityAddress (selector: Integer;

 before: Boolean;

 routineAddr: Ptr;

 script: ScriptCode);

selector A value that specifies the name of the utility routine to be replaced.

before A Boolean that specifies which of two routines is to be replaced. If TRUE,
the WorldScript I implementation of the utility is replaced. If FALSE, the
original routine (usually the built-in Roman version) is replaced.

routineAddr
A pointer to the routine that is to replace the script utility.

script The numeric code that specifies the script system whose dispatch table
contains the pointers to the utility routines. Constants for all defined
script codes are listed on page 6-52.

DESCRIPTION

The SetScriptUtilityAddress procedure replaces the pointer to the desired routine
in the specified script’s dispatch table.

Several of the WorldScript I utilities call the original Roman routine after they execute.
Each element in the dispatch table consists of a pair of addresses: one for the
WorldScript I implementation of the utility, and another for the original (Roman) version
of the utility. With SetScriptUtilityAddress you can replace either routine. Thus
you can insert your patch code either before (or in place of) the WorldScript I version of
the utility, or before (or in place of) the original Roman routine.

IMPORTANT

When you patch a script system’s script utility, you alter that script’s
behavior for as long as it remains enabled. Therefore, be sure to restore
the pointer to its original state whenever your application quits or is
switched out by the Process Manager. ▲

Valid values for the selector parameter are listed on page 6-101.

SEE ALSO

WorldScript I is described in the appendix “Built-in Script Support” in this book.
Script Manager Reference 6-103

C H A P T E R 6

Script Manager
GetScriptQDPatchAddress 6

The GetScriptQDPatchAddress function returns a pointer to the specified
WorldScript I QuickDraw patch—or the built-in QuickDraw call—for the given
script system.

FUNCTION GetScriptQDPatchAddress (trapNum: Integer;

 before: Boolean;

 forPrinting: Boolean;

 script: ScriptCode): Ptr;

trapNum A value that specifies the name of the QuickDraw routine whose
address is needed.

before A Boolean that specifies which of two routines is needed. If TRUE, the
address returned is that of the WorldScript I patch to the QuickDraw
routine. If FALSE, the address returned is that of the original routine
(usually the built-in QuickDraw routine).

forPrinting
A Boolean that specifies whether the desired routine is for printing. If
TRUE, the address returned is that of a QuickDraw patch that is
specifically for printing; if FALSE, the address returned is that of a
QuickDraw patch that is not specifically for printing.

script The numeric code that specifies the script system whose dispatch table
contains the pointers to the QuickDraw routines. Constants for all defined
script codes are listed on page 6-52.

DESCRIPTION

The GetScriptQDPatchAddress function examines the specified script’s dispatch
table and returns a pointer to the desired routine.

Because each element in the dispatch table consists of a pair of addresses, one for the
WorldScript I patch to the QuickDraw routine, and another for the original QuickDraw
version of the routine, you can get the address of either routine. Either routine can then
be replaced, using the SetScriptQDPatchAddress call.

Some printers perform their own text layout on text that is passed to them. Therefore,
each QuickDraw patch has two entry points: one for screen display and printing, and
one for printing only. By specifying either TRUE or FALSE in the forPrinting
parameter, the pointer you obtain is to either the “for printing only” or the “not for
printing only” entry point. For example, some script systems might use the “for printing
only” entry point to perform extra-fine justification of text on a PostScript printer.

Valid values for the trapNum parameter are listed on page 6-101.

If the specified script system is not enabled, GetScriptQDPatchAddress returns
a NIL pointer.
6-104 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
SEE ALSO

WorldScript I is described in the appendix “Built-in Script Support” in this book.

In order to handle contextual formatting appropriately for each script system, printer
drivers should call the Script Manager’s print action routine, described in
Inside Macintosh: Devices.

SetScriptQDPatchAddress 6

The SetScriptQDPatchAddress procedure replaces the WorldScript I specified
QuickDraw patch—or the built-in QuickDraw call—for the given script.

PROCEDURE SetScriptQDPatchAddress (trapNum: Integer;

 before: Boolean;

 forPrinting: Boolean;

 routineAddr: Ptr;

 script: ScriptCode);

trapNum A value that specifies the name of the QuickDraw routine that is to
be replaced.

before A Boolean that specifies which of two routines is to be replaced. If
TRUE, the WorldScript I patch of the QuickDraw routine is replaced.
If FALSE, the original routine (usually the built-in QuickDraw routine)
is replaced.

forPrinting
A Boolean that specifies whether the replacement routine is for printing.
If TRUE, the new QuickDraw patch is specifically for printing; if FALSE,
the new QuickDraw patch is not specifically for printing.

routineAddr
A pointer to the routine that is to replace the existing QuickDraw routine.

script The numeric code that specifies the script system whose dispatch table
contains the pointers to the QuickDraw routines. Constants for all defined
script codes are listed on page 6-52.

DESCRIPTION

The SetScriptQDPatchAddress procedure replaces the pointer to the desired routine
in the specified script’s dispatch table.
Script Manager Reference 6-105

C H A P T E R 6

Script Manager
All of the WorldScript I patches call the original QuickDraw routine after they execute.
Each element in the dispatch table consists of a pair of addresses: one for the WorldScript
I patch, and another for the original (built-in QuickDraw) version of the routine. With
SetQDPatchAddress you can replace either routine. Thus you can insert your patch
code either before (or in place of) the WorldScript I QuickDraw patch, or before (or in
place of) the original QuickDraw routine.

Some printers perform their own text layout on text that is passed to them. Therefore,
each QuickDraw patch has two entry points: one for screen display and one for printing
only. By specifying either TRUE or FALSE in the forPrinting parameter, you specify
whether you are passing the “for printing only” or the “not for printing only” entry
point. For example, some script systems might use the “for printing only” entry point to
perform extra-fine justification of text on a PostScript printer.

IMPORTANT

When you patch a script system’s QuickDraw call, you alter that script’s
behavior for as long as it remains enabled. Therefore, be sure to restore
the pointer to its original state whenever your application quits or is
switched out by the Process Manager. ▲

Valid values for the trapNum parameter are listed on page 6-101.

SEE ALSO

WorldScript I is described in the appendix “Built-in Script Support” in this book.

In order to handle contextual formatting appropriately for each script system, printer
drivers should call the Script Manager’s print action routine, described in
Inside Macintosh: Devices.
6-106 Script Manager Reference

C H A P T E R 6

Script Manager

6
S

cript M
anager
Summary of the Script Manager 6

Pascal Summary 6

Constants 6

{Script system constants}

{Implicit script codes}

smSystemScript = -1; {designates system script.}

smCurrentScript = -2; {designates font script.}

smAllScripts = -3; {designates any script}

{Explicit script codes}

smRoman = 0; {Roman}

smJapanese = 1; {Japanese}

smTradChinese = 2; {Traditional Chinese}

smKorean = 3; {Korean}

smArabic = 4; {Arabic}

smHebrew = 5; {Hebrew}

smGreek = 6; {Greek}

smCyrillic = 7; {Cyrillic}

smRSymbol = 8; {Right-left symbol}

smDevanagari = 9; {Devanagari}

smGurmukhi = 10; {Gurmukhi}

smGujarati = 11; {Gujarati}

smOriya = 12; {Oriya}

smBengali = 13; {Bengali}

smTamil = 14; {Tamil}

smTelugu = 15; {Telugu}

smKannada = 16; {Kannada/Kanarese}

smMalayalam = 17; {Malayalam}

smSinhalese = 18; {Sinhalese}

smBurmese = 19; {Burmese}

smKhmer = 20; {Khmer/Cambodian}

smThai = 21; {Thai}

smLaotian = 22; {Laotian}
Summary of the Script Manager 6-107

C H A P T E R 6

Script Manager
smGeorgian = 23; {Georgian}

smArmenian = 24; {Armenian}

smSimpChinese = 25; {Simplified Chinese}

smTibetan = 26; {Tibetan}

smMongolian = 27; {Mongolian}

smGeez = 28; {Geez/Ethiopic}

smEthiopic = 28; {Synonym for smGeez}

smEastEurRoman = 29; {Synonym for smSlavic}

smVietnamese = 30; {Vietnamese}

smExtArabic = 31; {extended Arabic}

smUninterp = 32; {uninterpreted symbols, e.g. palette symbols}

{Language Codes}

langEnglish = 0; { smRoman script }

langFrench = 1; { smRoman script }

langGerman = 2; { smRoman script }

langItalian = 3; { smRoman script }

langDutch = 4; { smRoman script }

langSwedish = 5; { smRoman script }

langSpanish = 6; { smRoman script }

langDanish = 7; { smRoman script }

langPortuguese = 8; { smRoman script }

langNorwegian = 9; { smRoman script }

langHebrew = 10; { smHebrew script }

langJapanese = 11; { smJapanese script }

langArabic = 12; { smArabic script }

langFinnish = 13; { smRoman script }

langGreek = 14; { smGreek script }

langIcelandic = 15; { extended Roman script }

langMaltese = 16; { extended Roman script }

langTurkish = 17; { extended Roman script }

langCroatian = 18; { Serbo-Croatian in extended Roman script }

langTradChinese = 19; { Chinese in traditional characters }

langUrdu = 20; { smArabic script }

langHindi = 21; { smDevanagari script }

langThai = 22; { smThai script }

langKorean = 23; { smKorean script }

langLithuanian = 24; { smEastEurRoman script }

langPolish = 25; { smEastEurRoman script }

langHungarian = 26; { smEastEurRoman script }

langEstonian = 27; { smEastEurRoman script }

langLettish = 28; { smEastEurRoman script }
6-108 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
langLatvian = 28; { Synonym for langLettish }

langSaamisk = 29; { extended Roman script }

langLappish = 29; { Synonym for langSaamisk }

langFaeroese = 30; { smRoman script }

langFarsi = 31; { smArabic script }

langPersian = 31; { Synonym for langFarsi }

langRussian = 32; { smCyrillic script }

langSimpChinese = 33; { Chinese in simplified characters }

langFlemish = 34; { smRoman script }

langIrish = 35; { smRoman script }

langAlbanian = 36; { smRoman script }

langRomanian = 37; { smEastEurRoman script }

langCzech = 38; { smEastEurRoman script }

langSlovak = 39; { smEastEurRoman script }

langSlovenian = 40; { smEastEurRoman script }

langYiddish = 41; { smHebrew script }

langSerbian = 42; { Serbo-Croatian in smCyrillic script }

langMacedonian = 43; { smCyrillic script }

langBulgarian = 44; { smCyrillic script }

langUkrainian = 45; { smCyrillic script }

langByelorussian = 46; { smCyrillic script }

langUzbek = 47; { smCyrillic script }

langKazakh = 48; { smCyrillic script }

langAzerbaijani = 49; { Azerbaijani in smCyrillic script }

langAzerbaijanAr = 50; { Azerbaijani in smArabic script (Iran) }

langArmenian = 51; { smArmenian script }

langGeorgian = 52; { smGeorgian script }

langMoldovan = 53; { smCyrillic script }

langMoldavian = 53; { Synonym for langMoldovan }

langKirghiz = 54; { smCyrillic script }

langTajiki = 55; { smCyrillic script }

langTurkmen = 56; { smCyrillic script }

langMongolian = 57; { Mongolian in smMongolian script }

langMongolianCyr = 58; { Mongolian in smCyrillic script }

langPashto = 59; { smArabic script }

langKurdish = 60; { smArabic script }

langKashmiri = 61; { smArabic script }

langSindhi = 62; { smExtArabic script }

langTibetan = 63; { smTibetan script }

langNepali = 64; { smDevanagari script }

langSanskrit = 65; { smDevanagari script }

langMarathi = 66; { smDevanagari script }
Summary of the Script Manager 6-109

C H A P T E R 6

Script Manager
langBengali = 67; { smBengali script }

langAssamese = 68; { smBengali script }

langGujarati = 69; { smGujarati script }

langPunjabi = 70; { smGurmukhi script }

langOriya = 71; { smOriya script }

langMalayalam = 72; { smMalayalam script }

langKannada = 73; { smKannada script }

langTamil = 74; { smTamil script }

langTelugu = 75; { smTelugu script }

langSinhalese = 76; { smSinhalese script }

langBurmese = 77; { smBurmese script }

langKhmer = 78; { smKhmer script }

langLao = 79; { smLaotian script }

langVietnamese = 80; { smVietnamese script }

langIndonesian = 81; { smRoman script }

langTagalog = 82; { smRoman script }

langMalayRoman = 83; { Malay in smRoman script }

langMalayArabic = 84; { Malay in smArabic script }

langAmharic = 85; { smEthiopic script }

langTigrinya = 86; { smEthiopic script }

langGalla = 87; { smEthiopic script }

langOromo = 87; { synonym for langGalla }

langSomali = 88; { smRoman script }

langSwahili = 89; { smRoman script }

langRuanda = 90; { smRoman script }

langRundi = 91; { smRoman script }

langChewa = 92; { smRoman script }

langMalagasy = 93; { smRoman script }

langEsperanto = 94; { extended Roman script }

langWelsh = 128; { smRoman script }

langBasque = 129; { smRoman script }

langCatalan = 130; { smRoman script }

langLatin = 131; { smRoman script }

langQuechua = 132; { smRoman script }

langGuarani = 133; { smRoman script }

langAymara = 134; { smRoman script }

langTatar = 135; { smCyrillic script }

langUighur = 136; { smArabic script }

langDzongkha = 137; { (lang of Bhutan) smTibetan script }

langJavaneseRom = 138; { Javanese in smRoman script }

langSundaneseRom = 139; { Sundanese in smRoman script }
6-110 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
{ Region codes }

verUS = 0;

verFrance = 1;

verBritain = 2;

verGermany = 3;

verItaly = 4;

verNetherlands = 5;

verFrBelgiumLux = 6; {French for Belgium & Luxembourg}

verSweden = 7;

verSpain = 8;

verDenmark = 9;

verPortugal = 10;

verFrCanada = 11;

verNorway = 12;

verIsrael = 13;

verJapan = 14;

verAustralia = 15;

verArabia = 16;

verArabic = 16; {synonym for verArabia}

verFinland = 17;

verFrSwiss = 18; {Swiss French}

verGrSwiss = 19; {Swiss German}

verGreece = 20;

verIceland = 21;

verMalta = 22;

verCyprus = 23;

verTurkey = 24;

verYugoCroatian = 25; {Croatian system}

verIndiaHindi = 33; {Hindi system for India}

verPakistan = 34;

verLithuania = 41;

verPoland = 42;

verHungary = 43;

verEstonia = 44;

verLatvia = 45;

verLapland = 46;

verFaeroeIsl = 47;

verIran = 48;

verRussia = 49;

verIreland = 50; {English-language version for Ireland}
Summary of the Script Manager 6-111

C H A P T E R 6

Script Manager
verKorea = 51;

verChina = 52;

verTaiwan = 53;

verThailand = 54;

minCountry = verUS;

maxCountry = verThailand;

{Calendar codes}

calGregorian = 0;

calArabicCivil = 1;

calArabicLunar = 2;

calJapanese = 3;

calJewish = 4;

calCoptic = 5;

calPersian = 6;

{Numeral codes}

intWestern = 0;

intArabic = 1;

intRoman = 2;

intJapanese = 3;

intEuropean = 4;

intOutputMask = $8000;

{ CharacterByteType byte types }

smSingleByte = 0;

smFirstByte = -1;

smLastByte = 1;

smMiddleByte = 2;

{CharacterType field masks}

smcTypeMask = $000F;

smcReserved = $00F0;

smcClassMask = $0F00;

smcOrientationMask = $1000; {2-byte script glyph orientation}

smcRightMask = $2000;

smcUpperMask = $4000;

smcDoubleMask = $8000;

{Basic CharacterType character types}

smCharPunct = $0000;

smCharAscii = $0001;

smCharEuro = $0007;

smCharExtAscii = $0007; {more correct synonym for smCharEuro}
6-112 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
{Additional CharacterType character types for script systems}

smCharKatakana = $0002; {Japanese Katakana}

smCharHiragana = $0003; {Japanese Hiragana}

smCharIdeographic = $0004; {Hanzi, Kanji, Hanja}

smCharTwoByteGreek = $0005; {2-byte Greek in Far East systems}

smCharTwoByteRussian = $0006; {2-byte Cyrillic in Far East systems}

smCharBidirect = $0008; {Arabic/Hebrew}

smCharContextualLR = $0009; {contextual left-right: Thai, Indic scripts}

smCharNonContextualLR = $000A; {noncontextual left-right: Cyrillic, Greek}

smCharHangul = $000C; {Korean Hangul}

smCharJamo = $000D; {Korean Jamo}

smCharBopomofo = $000E; {Chinese Bopomofo (Zhuyinfuhao)}

{CharacterType classes for punctuation (smCharPunct)}

smPunctNormal = $0000;

smPunctNumber = $0100;

smPunctSymbol = $0200;

smPunctBlank = $0300;

{Additional CharacterType classes for punctuation in two-byte systems}

smPunctRepeat = $0400; {repeat marker}

smPunctGraphic = $0500; {line graphics}

{CharacterType Katakana and Hiragana classes for 2-byte systems}

smKanaSmall = $0100; {small Kana character}

smKanaHardOK = $0200; {can have dakuten}

smKanaSoftOK = $0300; {can have dakuten or han-dakuten}

{CharacterType ideographic classes for 2-byte systems}

smIdeographicLevel1 = $0000; {level 1 char}

smIdeographicLevel2 = $0100; {level 2 char}

smIdeographicUser = $0200; {user char}

{CharacterType Jamo classes for Korean systems}

smJamoJaeum = $0000; {simple consonant char}

smJamoBogJaeum = $0100; {complex consonant char}

smJamoMoeum = $0200; {simple vowel char}

smJamoBogMoeum = $0300; {complex vowel char}

{CharacterType glyph orientation for 2-byte systems}

smCharHorizontal = $0000; {horizontal character form, or for both}

smCharVertical = $1000; {vertical character form}
Summary of the Script Manager 6-113

C H A P T E R 6

Script Manager
{CharacterType directions}

smCharLeft = $0000;

smCharRight = $2000;

{CharacterType case modifers}

smCharLower = $0000;

smCharUpper = $4000;

{CharacterType character size modifiers (1 or multiple bytes)}

smChar1byte = $0000;

smChar2byte = $8000;

{TransliterateText target types for Roman}

smTransAscii = 0; {convert to ASCII}

smTransNative = 1; {convert to font script}

smTransCase = $FE; {convert case for all text}

smTransSystem = $FF; {convert to system script}

{TransliterateText target types for 2-byte scripts}

smTransAscii1 = 2; {1-byte Roman}

smTransAscii2 = 3; {2-byte Roman}

smTransKana1 = 4; {1-byte Japanese Katakana}

smTransKana2 = 5; {2-byte Japanese Katakana}

smTransGana2 = 7; {2-byte Japanese Hiragana (no 1-byte Hiragana)}

smTransHangul2 = 8; {2-byte Korean Hangul}

smTransJamo2 = 9; {2-byte Korean Jamo}

smTransBopomofo2 = 10; {2-byte Chinese Bopomofo (Zhuyinfuhao)}

{TransliterateText target modifiers}

smTransLower = $4000; {target becomes lowercase}

smTransUpper = $8000; {target becomes uppercase}

{TransliterateText resource format numbers}

smTransRuleBaseFormat = 1; {rule-based trsl resource format }

smTransHangulFormat = 2; {table-based Hangul trsl resource format}

{TransliterateText property flags}

smTransPreDoubleByting = 1; {convert all text to 2-byte }

{ before transliteration}

smTransPreLowerCasing = 2; {convert all text to lowercase }

{ before transliteration}

{TransliterateText source mask - general}

smMaskAll = $FFFFFFFF; {convert all text}
6-114 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
{TransliterateText source masks}

smMaskAscii = $00000001; {2^smTransAscii}

smMaskNative = $00000002; {2^smTransNative}

{TransliterateText source masks for 2-byte scripts}

smMaskAscii1 = $00000004; {2^smTransAscii1}

smMaskAscii2 = $00000008; {2^smTransAscii2}

smMaskKana1 = $00000010; {2^smTransKana1}

smMaskKana2 = $00000020; {2^smTransKana2}

smMaskGana2 = $00000080; {2^smTransGana2}

smMaskHangul2 = $00000100; {2^smTransHangul2}

smMaskJamo2 = $00000200; {2^smTransJamo2}

smMaskBopomofo2 = $00000400; {2^smTransBopomofo2}

{Result values from GetScriptManagerVariable, SetScriptManagerVariable, }

{ GetScriptVariable, and SetScriptVariable}

smNotInstalled = 0; {routine not available in specified script}

smBadVerb = -1; {bad selector passed to a routine}

smBadScript = -2; {bad script code passed to a routine}

{Values for script redraw flag}

smRedrawChar = 0; {redraw character only}

smRedrawWord = 1; {redraw entire word (2-byte systems)}

smRedrawLine = -1; {redraw entire line (bidirectional systems)}

{GetScriptManagerVariable and SetScriptManagerVariable selectors}

smVersion = 0; {Script Manager version number}

smMunged = 2; {Globals change count}

smEnabled = 4; {Count of enabled scripts, incl Roman}

smBidirect = 6; {At least one bidirectional script}

smFontForce = 8; {Force font flag}

smIntlForce = 10; {Intl resources selection flag}

smForced = 12; {Script was forced to system script}

smDefault = 14; {Script was defaulted to Roman script}

smPrint = 16; {Printer action routine}

smSysScript = 18; {System script}

smLastScript = 20; {Last keyboard script}

smKeyScript = 22; {Keyboard script}

smSysRef = 24; {System folder refNum}

smKeyCache = 26; {obsolete}

smKeySwap = 28; {Swapping table handle}

smGenFlags = 30; {General flags long}

smOverride = 32; {Script override flags}
Summary of the Script Manager 6-115

C H A P T E R 6

Script Manager
smCharPortion = 34; {Ch vs SpExtra proportion}

smDoubleByte = 36; {Flag for double-byte script installed}

smKCHRCache = 38; {Returns pointer to KCHR cache}

smRegionCode = 40; {Returns current region code (verXxx)}

smKeyDisableState = 42; {Returns current keyboard disable state}

{ GetScriptVariable and SetScriptVariable selectors.}

smScriptVersion = 0; {Script software version}

smScriptMunged = 2; {Script entry changed count}

smScriptEnabled = 4; {Script enabled flag}

smScriptRight = 6; {Right to left flag}

smScriptJust = 8; {Justification flag}

smScriptRedraw = 10; {Word redraw flag}

smScriptSysFond = 12; {Preferred system font}

smScriptAppFond = 14; {Preferred Application font}

smScriptBundle = 16; {Beginning of itlb verbs}

smScriptNumber = 16; {Script itl0 id}

smScriptDate = 18; {Script itl1 id}

smScriptSort = 20; {Script itl2 id}

smScriptFlags = 22; {flags word}

smScriptToken = 24; {Script itl4 id}

smScriptEncoding = 26; {id of optional itl5, if present}

smScriptLang = 28; {Current language for script}

smScriptNumDate = 30; {Script Number/Date formats.}

smScriptKeys = 32; {Script KCHR id}

smScriptIcon = 34; {ID # of SICN or kcs#/kcs4/kcs8 family}

smScriptPrint = 36; {Script printer action routine}

smScriptTrap = 38; {Trap entry pointer}

smScriptCreator = 40; {Script file creator}

smScriptFile = 42; {Script file name}

smScriptName = 44; {Script name}

smScriptMonoFondSize = 78; {default monospace FOND (hi) & size (lo)}

smScriptPrefFondSize = 80; {preferred FOND (hi) & size (lo)}

smScriptSmallFondSize = 82; {default small FOND (hi) & size (lo)}

smScriptSysFondSize = 84; {default system FOND (hi) & size (lo)}

smScriptAppFondSize = 86; {default app FOND (hi) & size (lo)}

smScriptHelpFondSize = 88; {default Help Mgr FOND (hi) & size (lo)}

smScriptValidStyles = 90; {mask of valid styles for script}

smScriptAliasStyle = 92; {style (set) to use for aliases}

{ Negative selectors for KeyScript }

smKeyNextScript = -1; { Switch to next available script }

smKeySysScript = -2; { Switch to the system script }

smKeySwapScript = -3; { Switch to previously-used script }
6-116 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
smKeyNextKybd = -4; { Switch to next keyboard in current keyscript }

smKeySwapKybd = -5; { Switch to previous keyboard in current keyscript }

smKeyDisableKybds = -6; { Disable keyboards not in system or Roman script }

smKeyEnableKybds = -7; { Re-enable keyboards for all enabled scripts }

smKeyToggleInline = -8; { Toggle inline input for current keyscript }

smKeyToggleDirection = -9; {Toggle default line direction (TESysJust)}

smKeyNextInputMethod = -10; {Switch to next input method in current script}

smKeySwapInputMethod = -11; {Switch to prev. input method in curr. script}

smKeyDisableKybdSwitch = -12; {Disable switching from current keyboard}

smKeySetDirLeftRight = -15; {Set default line dir. left-right,align left}

smKeySetDirRightLeft = -16; {Set default line dir. right-left,align right}

smKeyRoman = -17; { Set keyscript to Roman. Does nothing if Roman-only}

{ Bits in the smScriptFlags word

(bits above 8 are non-static) }

smsfIntellCP = 0; {Script has intelligent cut & paste}

smsfSingByte = 1; {Script has only single bytes}

smsfNatCase = 2; {Native chars have upper & lower case}

smsfContext = 3; {Script is contextual}

smsfNoForceFont = 4; {Script will not force characters}

smsfB0Digits = 5; {Script has alternate digits at B0-B9}

smsfAutoInit = 6; {Auto initialize the script}

smsfUnivExt = 7; {Script is handled by WorldScript I}

smsfSynchUnstyledTE = 8; {Synchronize keyboard and chartype in unstyled TE}

smsfForms = 13; {Uses contextual forms for letters}

smsfLigatures = 14; {Uses contextual ligatures}

smsfReverse = 15; {Reverses native text, right-left}

{ Bits in the smGenFlags long.}

{First (high-order) byte is set from itlc flags byte. }

smfShowIcon = 31; {Show icon even if only one script}

smfDualCaret = 30; {Use dual caret for mixed direction text}

smfNameTagEnab = 29; {Reserved for internal use}

{ Script Manager font equates. }

smFondStart = $4000; {start from 16K}

smFondEnd = $C000; {past end of range at 48K}

{ Miscellaneous font equates. }

smUprHalfCharSet = $80; {first char code in top half of std char set}

{ Character Set Extensions }

diaeresisUprY = $D9;

fraction = $DA;
Summary of the Script Manager 6-117

C H A P T E R 6

Script Manager
intlCurrency = $DB;

leftSingGuillemet = $DC;

rightSingGuillemet = $DD;

fiLigature = $DE;

flLigature = $DF;

dblDagger = $E0;

centeredDot = $E1;

baseSingQuote = $E2;

baseDblQuote = $E3;

perThousand = $E4;

circumflexUprA = $E5;

circumflexUprE = $E6;

acuteUprA = $E7;

diaeresisUprE = $E8;

graveUprE = $E9;

acuteUprI = $EA;

circumflexUprI = $EB;

diaeresisUprI = $EC;

graveUprI = $ED;

acuteUprO = $EE;

circumflexUprO = $EF;

appleLogo = $F0;

graveUprO = $F1;

acuteUprU = $F2;

circumflexUprU = $F3;

graveUprU = $F4;

dotlessLwrI = $F5;

circumflex = $F6;

tilde = $F7;

macron = $F8;

breveMark = $F9;

overDot = $FA;

ringMark = $FB;

cedilla = $FC;

doubleAcute = $FD;

ogonek = $FE;

hachek = $FF;

{ TokenType values }

tokenIntl = 4; {the itl resource number of the tokenizer}

tokenEmpty = -1; {used internally as an empty flag}

tokenUnknown = 0; {chars that do not match a defined token type}

tokenWhite = 1; {whitespace}
6-118 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
tokenLeftLit = 2; {literal begin}

tokenRightLit = 3; {literal end}

tokenAlpha = 4; {alphabetic}

tokenNumeric = 5; {numeric}

tokenNewLine = 6; {new line}

tokenLeftComment = 7; {open comment}

tokenRightComment = 8; {close comment}

tokenLiteral = 9; {literal}

tokenEscape = 10; {character escape (e.g. '\' in "\n", "\t")}

tokenAltNum = 11; {alternate number (e.g. $B0-B9 in Arabic,Hebrew)}

tokenRealNum = 12; {real number}

tokenAltReal = 13; {alternate real number}

tokenReserve1 = 14; {reserved}

tokenReserve2 = 15; {reserved}

tokenLeftParen = 16; {open parenthesis}

tokenRightParen = 17; {close parenthesis}

tokenLeftBracket = 18; {open square bracket}

tokenRightBracket = 19; {close square bracket}

tokenLeftCurly = 20; {open curly bracket}

tokenRightCurly = 21; {close curly bracket}

tokenLeftEnclose = 22; {open guillemet}

tokenRightEnclose = 23; {close guillemet}

tokenPlus = 24;

tokenMinus = 25;

tokenAsterisk = 26; {times/multiply}

tokenDivide = 27;

tokenPlusMinus = 28; {plus or minus symbol}

tokenSlash = 29;

tokenBackSlash = 30;

tokenLess = 31; {less than symbol}

tokenGreat = 32; {greater than symbol}

tokenEqual = 33;

tokenLessEqual2 = 34; {less than or equal, 2 characters (e.g. <=)}

tokenLessEqual1 = 35; {less than or equal, 1 character}

tokenGreatEqual2 = 36; {greater than or equal, 2 characters (e.g. >=)}

tokenGreatEqual1 = 37; {greater than or equal, 1 character}

token2Equal = 38; {double equal (e.g. ==)}

tokenColonEqual = 39; {colon equal}

tokenNotEqual = 40; {not equal, 1 character}

tokenLessGreat = 41; {less/greater, Pascal not equal (e.g. <>)}

tokenExclamEqual = 42; {exclamation equal, C not equal (e.g. !=)}

tokenExclam = 43; {exclamation point}
Summary of the Script Manager 6-119

C H A P T E R 6

Script Manager
tokenTilde = 44; {centered tilde}

tokenComma = 45;

tokenPeriod = 46;

tokenLeft2Quote = 47; {open double quote}

tokenRight2Quote = 48; {close double quote}

tokenLeft1Quote = 49; {open single quote}

tokenRight1Quote = 50; {close single quote}

token2Quote = 51; {double quote}

token1Quote = 52; {single quote}

tokenSemicolon = 53;

tokenPercent = 54;

tokenCaret = 55;

tokenUnderline = 56;

tokenAmpersand = 57;

tokenAtSign = 58;

tokenBar = 59; {vertical bar}

tokenQuestion = 60;

tokenPi = 61; {lower-case pi}

tokenRoot = 62; {square root symbol}

tokenSigma = 63; {capital sigma}

tokenIntegral = 64; {integral sign}

tokenMicro = 65;

tokenCapPi = 66; {capital pi}

tokenInfinity = 67;

tokenColon = 68;

tokenHash = 69; {e.g. #}

tokenDollar = 70;

tokenNoBreakSpace = 71; {non-breaking space}

tokenFraction = 72;

tokenIntlCurrency = 73;

tokenLeftSingGuillemet = 74;

tokenRightSingGuillemet = 75;

tokenPerThousand = 76;

tokenEllipsis = 77;

tokenCenterDot = 78;

tokenNil = 127;

delimPad = -2;

{ Table selectors for GetIntlResourceTable }

smWordSelectTable = 0; { get word break table from 'itl2' }

smWordWrapTable = 1; { get line break table from 'itl2' }

smNumberPartsTable = 2; { get number parts table from 'itl4' }

smUnTokenTable = 3; { get unToken table from 'itl4' }

smWhiteSpaceList = 4; { get whitespace table from 'itl4' }
6-120 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Data Types 6

TYPE TokenResults =

(tokenOK,tokenOverflow,stringOverflow,badDelim,

badEnding,crash);

CharByteTable = PACKED ARRAY[0..255] OF SignedByte;

TokenType = Integer;

DelimType = ARRAY[0..1] OF TokenType;

CommentType = ARRAY[0..3] OF TokenType;

TokenRec =

RECORD

theToken: TokenType;

position: Ptr; {pointer into original source}

length: LongInt; {length of text in original source}

stringPosition: StringPtr; {Pascal/C string copy of identifier}

END;

TokenRecPtr = ^TokenRec;

TokenBlock =

RECORD

source: Ptr; {pointer to stream of characters}

sourceLength: LongInt; {length of source stream}

tokenList: Ptr; {pointer to array of tokens}

tokenLength: LongInt; {maximum length of TokenList}

tokenCount: LongInt; {number tokens generated by tokenizer}

stringList: Ptr; {pointer to stream of identifiers}

stringLength: LongInt; {length of string list}

stringCount: LongInt; {number of bytes currently used}

doString: Boolean; {make strings & put into StringList}

doAppend: Boolean; {append to TokenList rather than replace}

doAlphanumeric: Boolean; {identifiers may include numeric}

doNest: Boolean; {do comments nest?}

leftDelims: DelimType;

rightDelims: DelimType;

leftComment: CommentType;

rightComment: CommentType;

escapeCode: TokenType;{escape symbol code}

decimalCode: TokenType;
Summary of the Script Manager 6-121

C H A P T E R 6

Script Manager
itlResource: Handle; {handle to current script itl4 resource}

reserved: ARRAY [0..7] OF LongInt; {must be zero!}

END;

TokenBlockPtr = ^TokenBlock;

Routines 6

Checking and Setting the System Direction

FUNCTION GetSysDirection: Integer;

PROCEDURE SetSysDirection (newDirection: Integer);

Checking and Setting Script Manager Variables

FUNCTION GetScriptManagerVariable
(selector: Integer): LongInt;

FUNCTION SetScriptManagerVariable
(selector: Integer; param: LongInt): OSErr;

Checking and Setting Script Variables

FUNCTION GetScriptVariable (script: ScriptCode;
selector: Integer): LongInt;

FUNCTION SetScriptVariable (script: ScriptCode; selector: Integer;
param: LongInt): OSErr;

Making Keyboard Settings

PROCEDURE KeyScript (code: Integer);

Determining Script Codes From Font Information

FUNCTION FontScript: Integer;

FUNCTION FontToScript (fontNumber: Integer): Integer;

FUNCTION IntlScript: Integer;

Analyzing Characters

FUNCTION CharacterByteType (textBuf: Ptr;textOffset: Integer;
script: ScriptCode): Integer;

FUNCTION CharacterType (textBuf: Ptr; textOffset: Integer;
script: ScriptCode): Integer;

FUNCTION FillParseTable (VAR table: CharByteTable;
script: ScriptCode): Boolean;
6-122 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Directly Accessing International Resources

PROCEDURE ClearIntlResourceCache;

FUNCTION GetIntlResource (theID: Integer): Handle;

PROCEDURE GetIntlResourceTable
(script: ScriptCode;tableCode: Integer;VAR
itlHandle: Handle; VAR offset: LongInt;VAR
length: LongInt);

Tokenization

FUNCTION IntlTokenize (tokenParam: TokenBlockPtr): TokenResults;

Transliteration

FUNCTION TransliterateText (srcHandle: Handle; dstHandle: Handle;
target: Integer; srcMask: LongInt;
script: ScriptCode): OSErr;

Replacing a Script System’s Default Routines

FUNCTION GetScriptUtilityAddress
(selector: Integer; before: Boolean;
script: ScriptCode): Ptr;

PROCEDURE SetScriptUtilityAddress
(selector: Integer; before: Boolean;
routineAddr: Ptr; script: ScriptCode);

FUNCTION GetScriptQDPatchAddress
(trapNum: Integer;
before: Boolean; forPrinting: Boolean;
script: ScriptCode): Ptr;

PROCEDURE SetScriptQDPatchAddress
(trapNum: Integer;before: Boolean;
forPrinting: Boolean; routineAddr: Ptr;
script: ScriptCode);
Summary of the Script Manager 6-123

C H A P T E R 6

Script Manager
C Summary 6

Constants 6

Please see page 6-107 for a listing of constants defined in Pascal by the Script Manager.
The constants as defined in C are identical to them.

Data Types 6

typedef unsigned char TokenResults;

typedef char CharByteTable[256];

typedef short TokenType;

typedef TokenType DelimType[2];

typedef TokenType CommentType[4];

struct TokenRec {

 TokenType theToken;

 Ptr position; /*pointer into original source*/

 long length; /*length of text in original source*/

 StringPtr stringPosition; /*Pascal/C string copy of identifier*/

};

typedef struct TokenRec TokenRec;

typedef TokenRec *TokenRecPtr;

struct TokenBlock {

 Ptr source; /*pointer to stream of characters*/

 long sourceLength; /*length of source stream*/

 Ptr tokenList; /*pointer to array of tokens*/

 long tokenLength; /*maximum length of TokenList*/

 long tokenCount; /*number tokens generated by tokenizer*/

 Ptr stringList; /*pointer to stream of identifiers*/

 long stringLength; /*length of string list*/

 long stringCount; /*number of bytes currently used*/

 Boolean doString; /*make strings & put into StringList*/

 Boolean doAppend; /*append to TokenList rather than replace*/

 Boolean doAlphanumeric; /*identifiers may include numeric*/

 Boolean doNest; /*do comments nest?*/
6-124 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
 TokenType leftDelims[2];

 TokenType rightDelims[2];

 TokenType leftComment[4];

 TokenType rightComment[4];

 TokenType escapeCode; /*escape symbol code*/

 TokenType decimalCode;

 Handle itlResource; /*handle to itl4 resource of current script*/

 long reserved[8]; /*must be zero!*/

};

typedef struct TokenBlock TokenBlock;

typedef TokenBlock *TokenBlockPtr;

Routines 6

Checking and Setting the System Direction

#define GetSysDirection() (* (short*) 0x0BAC);

pascal void SetSysDirection (short newDirection);

Checking and Setting Script Manager Variables

pascal long GetScriptManagerVariable
(short selector);

pascal OSErr SetScriptManagerVariable
(short selector, long param);

Checking and Setting Script Variables

pascal long GetScriptVariable
(ScriptCode script, short selector);

pascal OSErr SetScriptVariable
(ScriptCode script, short selector, long param);

Making Keyboard Settings

pascal void KeyScript (short code);

Determining Script Codes From Font Information

pascal short FontScript (void);

pascal short FontToScript (short fontNumber);

pascal short IntlScript (void);
Summary of the Script Manager 6-125

C H A P T E R 6

Script Manager
Analyzing Characters

pascal short CharacterByteType
(Ptr textBuf, short textOffset,
ScriptCode script);

pascal short CharacterType (Ptr textBuf, short textOffset,
ScriptCode script);

pascal Boolean FillParseTable
(CharByteTable table, ScriptCode script);

Directly Accessing International Resources

pascal void ClearIntlResourceCache
(void);

pascal Handle GetIntlResource
(short theID);

pascal void GetIntlResourceTable
(ScriptCode script, short tableCode,
Handle *itlHandle, long *offset, long *length);

Tokenization

pascal TokenResults IntlTokenize
(TokenBlockPtr tokenParam);

Transliteration

pascal OSErr TransliterateText
(Handle srcHandle, Handle dstHandle,
short target, long srcMask, ScriptCode script);

Replacing a Script System’s Default Routines

pascal Ptr GetScriptUtilityAddress
(short selector, Boolean before,
ScriptCode script);

pascal void SetScriptUtilityAddress
(short selector, Boolean before,
Ptr routineAddr, ScriptCode script);

pascal Ptr GetScriptQDPatchAddress
(short trapNum, Boolean before,
Boolean forPrinting, ScriptCode script);

pascal void SetScriptQDPatchAddress
(short trapNum, Boolean before,
Boolean forPrinting, Ptr routineAddr,
ScriptCode script);
6-126 Summary of the Script Manager

C H A P T E R 6

Script Manager

6
S

cript M
anager
Assembly-Language Summary 6

Trap Macros 6

Trap Macro Names

Global Variables 6

Pascal name Trap macro name

FontScript _FontScript

IntlScript _IntlScript

KeyScript _KeyScript

FontToScript _FontToScript

GetScriptManagerVariable _GetScriptManagerVariable

SetScriptManagerVariable _SetScriptManagerVariable

GetScriptVariable _GetScriptVariable

SetScriptVariable _SetScriptVariable

CharacterByteType _CharacterByteType

CharacterType _CharacterType

TransliterateText _TransliterateText

FillParseTable _FillParseTable

GetScriptUtilityAddress _GetScriptUtilityAddress

SetScriptUtilityAddress _SetScriptUtilityAddress

GetScriptQDPatchAddress _GetScriptQDPatchAddress

SetScriptQDPatchAddress _SetScriptQDPatchAddress

IntlTokenize _IntlTokenize

GetIntlResource _GetIntlResource

ClearIntlResourceCache _ClearIntlResourceCache

GetIntlResourceTable _GetIntlResourceTable

SysDirection System direction; the primary line direction and alignment for text
BootDrive The drive number of the startup volume
Summary of the Script Manager 6-127

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	Script Manager
	About the Script Manager
	The Script Manager and the Script Management Syste...
	The Script Manager and Applications
	Evolution of the Script Manager

	Using the Script Manager
	Testing for the Script Manager and Script Systems
	Controlling Settings
	Checking and Setting the System Direction
	Checking and Setting Script Manager Variables
	Checking and Setting Script Variables
	Making Keyboard Settings
	Synchronizing the Font Script and Keyboard Script

	Obtaining Information
	Determining Script Codes From Font Information
	Analyzing Characters
	Directly Accessing International Resources
	Using Currency, Number, and Date Formats
	Using Number Parts
	Retrieving Text From Tokens
	Using Word-Break Tables
	Using Whitespace Information

	Converting Text
	Tokenization
	Transliteration

	Modifying Script Systems
	Replacing a Script System’s Default International ...
	Replacing a Script System’s Default Routines

	Script Manager Reference
	Constants
	Script Codes
	Language Codes
	Region Codes
	Token Codes
	Selectors for Script Manager Variables
	Selectors for Script Variables

	Data Structures
	Token Block Record
	Token Record

	Routines
	Checking and Setting the System Direction
	Checking and Setting Script Manager Variables
	Checking and Setting Script Variables
	Making Keyboard Settings
	Determining Script Codes From Font Information
	Analyzing Characters
	Directly Accessing International Resources
	Tokenization
	Transliteration
	Replacing a Script System’s Default Routines

	Summary of the Script Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Trap Macros
	Global Variables

	 Text Services Manager TOC
	 Text Services Manager
	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

