CHAPTER 7

Text Services Manager

This chapter describes how text-processing applications can communicate flexibly and
efficiently with utilities that provide services to those applications. Applications that
need input methods, spell-checking, hyphenation, and so forth can use the Text Services
Manager to search for, obtain information about, and communicate with those utilities.
Utilities can use the Text Services Manager to request actions and information from
applications, and to send data to them.

Read this chapter if you are developing or enhancing an application to use text services.
In particular, if you want your application to support text input in a 2-byte script system,
you should use the Text Services Manager. Your application will then work with multiple
script systems and many input methods.

Read this chapter if you are writing or adapting a utility that provides a text service such
as text input. Utilities that work with the Text Services Manager are called text service
components. If your utility is a text service component, it will be able to communicate
with a wide range of applications.

Before reading this chapter, read the chapter “Introduction to Text on the Macintosh” in
this book. To use this chapter, you should also be familiar with the Apple Event Manager
and the Component Manager. For details on the Apple Event Manager, see Inside
Macintosh: Interapplication Communication. For more on the Component Manager, see
Inside Macintosh: More Macintosh Toolbox.

This chapter refers to routines, constants, and data structures from QuickDraw, the Event
Manager, the Window Manager, the Menu Manager, and the Process Manager. For
details on QuickDraw, see Inside Macintosh: Imaging. For more on the Event Manager,
Window Manager, and Menu Manager, see Inside Macintosh: Macintosh Toolbox Essentials.
For information on the Process Manager, see Inside Macintosh: Processes.

This chapter first provides a brief introduction to text services in general, input methods
in particular, and the Text Services Manager itself. If you are writing an application, it
then discusses how you can

» use the Text Services Manager routines for client applications, to send information to
text service components

» implement the text-service Apple event handlers in your client application, to receive
information from text service components

» communicate directly with the Component Manager and text service components, if
your application’s special needs require you to bypass the Text Services Manager

If you are writing a text service component, this chapter discusses how you can

» implement the text service component routines, so that the Text Services Manager and
client applications can request the text services you provide

» use the Text Services Manager routines for text service components, to send
information to client applications and the Text Services Manager

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

About Text Services

The Text Services Manager is the part of Macintosh system software that maintains
communication between applications that need text services and utility programs that
provide them. The Text Services Manager exists so that these two types of programs can
work together without needing to know anything about each others’ internal structures
or identities.

A text service is a specific text-handling task such as spell-checking, hyphenation, and
handling input of complex text. A text service component is a utility program that uses
the Text Services Manager to provide a text service to an application. Text service
components are registered components with the Component Manager, as described in
the Component Manager chapter of Inside Macintosh: More Macintosh Toolbox.

A client application is a text-processing program that uses the Text Services Manager to
request a service from a text service component. To accomplish this, a client application
needs to make the Text Services Manager aware of its existence and needs to make
specific Text Services Manager calls during execution.

In principle, text services can include many different types of tasks. However, only one
type of text service is currently defined: text input. This chapter describes how to work
with any type of text service component, and how to create any type of text service
component, but it emphasizes input methods. It also points out the ways in which input
methods are handled differently from other types of text service components.

About Input Methods

7-6

An input method is a facility that automatically converts phonetic or syllabic characters
into ideographic or other complex representations. It permits use of a standard keyboard
to generate the thousands to tens of thousands of different characters needed by

some languages. Text input in Japanese, Chinese, and Korean usually requires an

input method.

For example, text input in the Japanese script system requires software for transcribing
Romaji (phonetic Japanese using Roman characters) or Hiragana (syllabic Japanese) into
ideographic Kanji (Chinese characters). Each Kanji character may correspond to more
than one possible Hiragana sequence, and vice versa. The input method must
grammatically parse sentences or clauses of Hiragana text (which has no word
separations) and select the best combination of Kanji and Hiragana characters to
represent that text.

Chinese text input is similar to Japanese, in that a conversion from Pinyin (Roman) or
Zhuyinfuhao (phonetic) to ideographic Hanzi (Chinese characters) is required. Korean
text input requires conversion from Jamo (phonetic) to non-ideographic Hangul
(complex clusters of Jamo).

About Text Services

CHAPTER 7

Text Services Manager

Bottomline input allows the user to type text into a special floating input window—
usually displayed in the lower portion of the screen—where conversion is to take place.
The floating input window typically appears whenever the user starts typing characters.
See Figure 7-1.

Figure 7-1 Bottomline input with a floating input window

= I=———————— untitled =———U1=5

=

=<

Inline input is an input method in which conversion of characters takes place at the
current line position in the application where the text is intended to appear. This allows
the user to type text directly into the application window and requires no separate input
window. Inline input is the principal example of the kind of text service supported by
the Text Services Manager. See Figure 7-2.

Figure 7-2 Inline input
ST uwtitted =— =
L3S EREL 2K =

=<

About Input Methods 7-7

L

Jabeue sa2INIBS X3l

CHAPTER 7

Text Services Manager

With either bottomline input or inline input, the user can usually type Roman characters
or characters of another subscript. Figure 7-3 shows an example of a floating palette,
with which the user can select whether text entry is to be in 1-byte or 2-byte Romaji,
Katakana, or Hiragana. The user presses a key such as the Space bar to initiate
conversion from the input characters to the final characters.

The input method is often extended so that characters may be converted in extremely
precise ways. For example, in the Japanese script system, when Hiragana text is
converted to Kanji, the user has the option of changing any individual phrase:
lengthening it, shortening it, or selecting different possible interpretations. Figure 7-3
shows a scrolling list of additional conversion options displayed next to the converted
text in a floating input window. Only after the user is satisfied with the conversion and
presses the Return key is the text actually sent to the application.

Figure 7-3 Displaying conversion options for bottomline input

untitled

=ik

R]

ity

brtaniEBA s HF)
LD HE g DA HE)
Pofada(hsnt) [

=[]

Input methods commonly rely upon one or more dictionaries to perform conversion. The
main dictionary lists all standard conversion options for any valid syllabic or phonetic
input. Besides using the main dictionary, users can add specialized dictionaries, such as
legal or medical dictionaries, to extend the range of the input method. See the chapter
“Dictionary Manager” in this book for more information.

About Input Methods

CHAPTER 7

Text Services Manager

About the Text Services Manager

The Text Services Manager links text service components to client applications that use
text services. When a client application requests a service from the Text Services
Manager, the Text Services Manager routes the request to a text service component
associated with that application. The text service component processes the request and
may send text or other information back to the Text Services Manager, which passes it on
to the client application through an Apple event.

An application that explicitly uses the Text Services Manager is called a TSM-aware
application. An application that does not make calls to the Text Services Manager is
called non-TSM-aware. A non-TSM-aware application can still make indirect use of some
services of the Text Services Manager; see “Floating Input Windows” on page 7-13.

The Text Services Environment

The text services environment is a structure for the efficient flow of information between
client applications and text service components. It allows client applications to obtain
text services without having to know anything about the specific text service
components performing them. Likewise, it allows text service components to perform
their services without having to know anything about the specific client applications
making the requests.

The text services environment consists of a client application, a text service component,
the Apple Event Manager, the Component Manager, and the Text Services Manager. For
a client application to work within the text services environment, it must

= call the routines of the Text Services Manager application interface described under
“Text Services Manager Routines for Client Applications” on page 7-48. By using
these application-level routines, a client application becomes TSM-aware and
communicates with other parts of the environment.

= implement handlers for the Apple events described under “Apple Event Handlers
Supplied by Client Applications” on page 7-65. A client application receives text and
other information from a text service component through Apple events.

For a text service component to work within the text services environment, it must
= register as a component with the Component Manager

= call the routines of the Text Services Manager component interface described under
“Text Services Manager Routines for Components” on page 7-77

= implement the component-level text service component routines described under
“Text Service Component Routines” on page 7-84

About the Text Services Manager 7-9

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Figure 7-4 shows some of the flow of information in the text services environment when
a TSM-aware application uses a text service component. Application-level calls that an
application makes to the Text Services Manager application interface are converted to
component-level calls that are passed to an individual text service component. The text
service component in turn makes calls to the Text Services Manager component
interface; those calls are converted to Apple events that are passed on to the application.

The Text Services Manager controls the overall process by keeping track of which text
service components are available to a given application and which application is to
receive data from a given text service component. The Text Services Manager
communicates with text service components through the Component Manager;
applications that have special needs can likewise communicate directly with individual
text service components by calling the text service component routines.

[]Flow of text input
[JOthercalls

Figure 7-4 How a TSM-aware client application uses the Text Services Manager
Apple
event
TSM- Text Text service
aware I:> Services <:> component
0 cmomaman---e| IPUL application Manager
Key-down Key-down
event event

IMPORTANT

The event-handling structure of the Text Services Manager requires that
the low-memory global variable SEvt Enb be nonzero. If your
application sets SEvt Enb to 0 to force the Event Manager function
Syst enEvent to always return a value of FALSE, text service

components do not function correctly. See Inside Macintosh: Macintosh
Toolbox Essentials for more information on the Syst enEvent function

and the SEvt Enb global variable. a

7-10 About the Text Services Manager

CHAPTER 7

Text Services Manager

The Text Services Manager and Input Methods

Although the Text Services Manager can work with any type of text service component,
it provides several features specific to input methods for 2-byte script systems. The Text
Services Manager synchronizes the current input method with the current keyboard
script. For example, if the user changes from a Japanese to a Chinese font, the application
changes the keyboard script to Chinese and the Text Services Manager then switches the
current input method from Japanese to Chinese as well. Unlike with other text services,
the Text Services Manager opens and closes input methods, and takes care of their menu
handling.

Inline Input

A principal feature of the Text Services Manager is its support for inline input. Figure 7-4
shows how information flows through the Text Services Manager when a TSM-aware
application uses it for inline input. The application passes key-down events to the

text service component; the text service component sends text and messages back to

the application with Apple events. Events, messages, and requests for service

between the application and the text service component all pass through the Text
Services Manager.

For inline input, the Text Services Manager offers routines that let client applications and
text service components communicate about what happens in the active input area—the
portion of the screen in which the user enters text and where the text service component
displays converted text. The client application and the text service component share
control over the active input area.

The active input area is almost like a small window with invisible borders inside of the
application’s document window. It replaces the insertion point in the document, but it
can be any width; it can even occupy more than one entire line of text. Text within the
active input area can have its own font and size, different from that of body text. Text
within the active input area can even scroll out of sight if there is more text than can fit in
the space allotted for it in the active input area.

The application is responsible for determining the location and size of the active input
area, and for drawing and highlighting all text within it. The text service component

is responsible for accepting user input (as key-down events), for converting input text
to final text, and for telling the application what characters to draw—and what
characters to accept as confirmed—at every step of the way. The text service component
can also instruct the application to scroll certain parts of the active input area into

view, if necessary.

About the Text Services Manager 7-11

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

The text service component processes the user input, called raw text, as it is entered. The
text service component first has the application draw the text on the screen as entered.
Then it converts the raw text, translating it from phonetic or syllabic to ideographic or
complex syllabic characters. Finally, it confirms the converted text upon user approval of
the conversion. By convention in some script systems, a text service component converts
text when the user presses the Space bar after entering a sequence of characters, and
confirms the converted text when the user presses Return to accept the conversion.

See Figure 7-5. (In Korean, conversion happens continuously and automatically, and
confirmation happens by convention when the user presses either Return or the

Space bar.)

Figure 7-5 Entering, converting, and confirming text in an active input area

7-12

\‘D%
ﬁ§¢ﬂ

1. User enters raw text (gray underline) into
active input area.

S=————
LX)

3. User presses Return; converted text is
confirmed (no underline). Active input
area closes.

EIe=8———
5]

2. User presses Space bar; raw text is
converted (black underline) but remains
in active input area.

=]
R Sk

7
e

4. New active input area opens when user

enters more raw text.

The text service component continually removes the confirmed input from the active
input area and sends it to the application for storage in its text buffer. The text service
component uses Apple events for this purpose, and for notifying the application of every
character (raw, converted, or confirmed) that needs to be drawn or highlighted within

the active input area.

In a number of situations, a client application may need to initiate the confirmation of
input in progress. For example, if a user switches input methods, makes a menu
selection, or selects text outside the active input area, the user has implicitly requested
confirmation of the existing text. The client application needs to inform the text service
component so it can confirm all text, whether raw or converted, in the active input area.
The client application can make that request through a call to the Text Services Manager.

About the Text Services Manager

CHAPTER 7

Text Services Manager

Floating Input Windows

The Text Services Manager also provides a service to facilitate the use of an input
window for text entry and conversion when inline input is not supported by the
application or not desired by the user. This floating input window is a standard
bottomline input window: it usually appears in the lower portion of the screen, although
the user can drag it to any location. Once the user’s text has been converted correctly

in the window, it is sent to the application.

The Text Services Manager’s floating input window is mainly for use with applications
that are not TSM-aware. See Figure 7-4. The input window uses the floating window
service, a part of the Text Services Manager. It works this way:

1. The Process Manager intercepts key-down events and passes them to the
Text Services Manager.

2. The Text Services Manager passes them to the appropriate input method
for processing.

3. The input method then passes the processed text back to the Text Services Manager.
The floating window service displays the text in a floating input window.

4. When the user is finished with the text, the floating window service passes the
processed text back to the client application through standard key-down events
(not Apple events).

Figure 7-6 How a non-TSM-aware application uses the Text Services Manager
Non-TSM- A
aware <:! Floating window %
application Key-down service
event " o

1

Text service

Text Services| &= | component
Manager [

Key-down
event

g Input

[]Flow of text input
[]Othercalls

In this way the Text Services Manager can provide an input method text service
component for applications that have no knowledge of the text services environment.

TSM-aware applications should normally use inline input. However, the Text Services
Manager does allow TSM-aware applications to use a floating input window. Users may
prefer bottomline input if the size of the text displayed in the document makes reading
the characters difficult.

About the Text Services Manager 7-13

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Floating Utility Windows

Floating windows are useful for more than just text entry. Input methods can use the
Text Services Manager floating window service to create utility windows—floating
windows that display palettes or present lists of choices to the user. For example, most
Japanese input methods let a user set the input mode to either 2-byte Hiragana, 1-byte
Hiragana, 2-byte Romaji, or 1-byte Romaji. In the past, users selected these modes from
controls inside the input method’s input window. Now, since the system provides a
standard floating input window for non-TSM-aware applications as well as for
TSM-aware applications that request it, input methods should offer mode selection in a
separate floating palette. Figure 7-3 on page 7-8 shows an example of a floating palette
window used with bottomline input; Figure 7-9 on page 7-33 shows the same palette
used with inline input.

Figure 7-7 illustrates the window-layer organization provided by the Text Services
Manager. A floating window, whether an input window or a utility window, is always in
front of all application windows but behind any help balloons.

Figure 7-7 Floating window service layer

Untitled-1

Untitied-1

Application layers

Floating window layer B
: + Help layer
- [z2a =
i Input window Help
L balloon
| i [. .
‘ Floating palette @ - K

About Text Service Components

7-14

Text service components are components as defined and used by the Component
Manager. They have a specific structure, interface, and manner of execution. For more
information on components, see the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox. This section briefly describes the component description record,
a data structure associated with a text service component.

About Text Service Components

CHAPTER 7

Text Services Manager

The component description record, maintained by the Component Manager for each
registered component, identifies the characteristics of the component, including the
nature of services provided by the component and the manufacturer of the component. It
is filled out by the text service component at initialization.

The Conponent Descri pti on data type defines the format of the component
description record:

TYPE Component Description =

RECORD
conponent Type: CSType; {command set | D}
conponent SubType: OSType; {specifies flavor}

conponent Manuf act ur er:
CSType; {vendor |D}
conponent Fl ags: OSType; {control fl ags}
conponent Fl agsMask: OSType; {mask for control flags}
END;

Field descriptions

component Type For text service components, this field contains the interface type.
The interface type specifies the set of Apple events and component
commands associated with the text service component. Currently,
all text service components have the same interface type,
kText Ser vi ce, whose associated 4-character tagis' t svc' . To
obtain a list of all available text service components, a client
application can specify the value kText Ser vi ces in the
conponent Type field when calling the Component Manager
routine Get Ser vi ceLi st .

conponent SubType
For text service components, this field contains the text service
component type. The text service component type specifies the
function and optionally a set of additional routines and data
structures associated with that particular kind of text service
component. Currently, only one text service component type is
defined, ' i npm , specifying an inline input method.
conponent Manuf act ur er
The identification number of the manufacturer of this particular text
service component.

About Text Service Components 7-15

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

conponent Fl ags Four bytes that contain component-specific information. See
Figure 7-8:

Bits 0-7 contain the language code (as unsigned 8 bits).

Bits 8-14 contain the script code (as unsigned 7 bits).

Bit 15 indicates whether the text service component takes active
events. When bit 15 = 1, the text service component is interactive
and accepts user events. When bit 15 = 0, the text service
component is not interactive—that is, it only supplies batch services.

Apple has reserved bits 16-23, so text services must set them to 0.

The Component Manager defines bits 24-31.

7-16

Figure 7-8 The format of the conponent Fl ags field of the component description record
31 24 23 161514 87 0
N N J| L N J

L

Language code

Script code

Takes active key events

Reserved: must be set to 0

Flags defined by the Component Manager

conponent Fl agsMask

Four bytes that contain values used to affect the conponent FI ags
field. This field should be 0 in the component description record for
any text service component.

For example, an input method for the Japanese script system might assign the following
values to the conponent Type, conponent SubType, and conponent Fl ags fields of
component description record.

cd: Component Descri ption
: = kText Servi ce; {'tsvc'}

cd. component Type
cd. conponent SubType
cd. conponent Fl ags

About Text Service Components

kl nput Met hodServi ce; {'inpm}
$0000810B; {Japanese script & |language }

{ --takes user events}

CHAPTER 7

Text Services Manager

Using the Text Services Manager (for Client Applications)

This section describes how your client application can use the Text Services Manager
application interface to communicate with text service components, how it can use
Apple event handlers to receive information from text service components, and how it
can communicate directly with text service components—bypassing the Text Services
Manager altogether—for special purposes.

Testing for the Availability of the Text Services Manager

Use the Gest al t environmental selector gest al t TSMyr Ver si on to determine
whether the Text Services Manager is available. The Gest al t function returns a 32-bit
value indicating which version of the Text Services Manager is installed.

For more information on the Gest al t function, see the Gestalt Manager chapter in
Inside Macintosh: Operating System Utilities.

Calling the Text Services Manager

The application interface to the Text Services Manager consists of application-level calls
that your client application uses to send information to text service components by way
of the Text Services Manager. They are documented in detail under “Text Services
Manager Routines for Client Applications” on page 7-48. The Text Services Manager

maps many of those calls to equivalent component-level calls to text service components.

Those text service component routines are described under “Text Service Component
Routines” on page 7-84.

This section describes how your client application can use the application interface to the

Text Services Manager to

= prepare for communication with the Text Services Manager
» create an internal record called a TSM document

= make text services other than text input available to the user
» activate and deactivate a TSM document

= give text service components a chance to handle events, respond to menu selections,
and set the shape of the cursor

= explicitly confirm text within the active input area

= terminate communication with the Text Services Manager

Using the Text Services Manager (for Client Applications) 7-17

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Initializing as a TSM-Aware Application

If your client application plans to use any of the Text Services Manager
application-interface routines, it must call | ni t TSMAwar eAppl i cat i on at startup,
immediately after calling the rest of the Toolbox initialization routines. See Listing 7-1.

Listing 7-1 Initializing as a TSM-aware application

7-18

FUNCTION Initialize: OSErr;
VAR

nmyErr: CSErr;
BEA N

InitGaf(@hePort);

I nitFonts;

I ni t Wndows;

I ni t Menus;

TEInit;

InitD al ogs(NL);

I nitCursor;

I F (I nitTSMAwar eApplication = noErr) THEN
Initialize := DoNew, {application routine that }
{ creates wi ndow & TSM docunent}
END;

The Text Services Manager records the fact that your client application is TSM-aware,
and allocates any private data storage as necessary.

Creating a TSM Document

Your client application needs to create an internal record called a TSM document
(defined by the TSMDocument data type) before it can use any services provided
through the Text Services Manager. A TSM document is a private data structure that is
associated with each of your application’s documents that use a text service. You cannot
access the TSM document record directly. You call the NewTSMDocunent function to
instruct the Text Services Manager to create the TSM document. The Text Services
Manager returns a TSM document ID, an identifier that you supply in subsequent calls
to the Text Services Manager.

Typically, you create a TSM document for each window that your application uses. Use
the suppor t edl nt er f aceTypes array to indicate which text service interfaces you
support. Currently only one interface is defined—' t svc', the component type for text
services components. Pass any data you like in the r ef con parameter to the call. The
Text Services Manager returns the r ef con value in the key AETSMDocunent Ref con
parameter of any Apple event sent to your application. You can then use ther ef con
value to determine which TSM document and window the Apple event belongs to.

Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

Listing 7-2 shows the sample application’s DoNew function, which is called from the
initialization routine presented in Listing 7-1. The call to NewTSMDocumnent specifies
that the application supports one interface type (kText Ser vi ce). NewTSMDocunent
opens the default input method for the current keyboard script, assigns it to this
document, and returns the TSM document ID in the i doc| D parameter. The routine
makes use of a modified window record (type MyW ndowRecor d) that is a standard
window record with an additional field for holding the TSM document ID.

Listing 7-2 Creating a new TSM document and associating it with a window

FUNCTI ON DoNew. OSErr;

VAR
wRecordPtr: myW ndowPt r;
wi ndow: W ndowPt r;
support edTypes: I nterfaceTypeli st;
nmyErr: OSErr;
BEG N
supportedTypes[0] := kText Servi ce;

{all ocate storage for w ndow record}
wRecordPtr : = myW ndowPtr (NewPt r (si zeof (myW ndowRecord)));
| F wRecordPtr <> NIL THEN
BEG N
| F gCol or QDAvai | abl e THEN
wi ndow : = Get NewCW ndow(KW NDResI D, Ptr(wRecordPtr),
W ndowPtr (-1))
ELSE
wi ndow : = Get NewW ndow(KW NDRes| D, Ptr(wRecordPtr),
W ndowPtr(-1));

| F wi ndow = NIL THEN {couldn't get w ndow}
BEG N
Di sposePtr(Ptr(wRecordPtr)); {cl ean up}
DoNew : = kW ndowFai | ed;
Exi t (DoNew) ;
END;

nyErr : = NewTSMDocument (1, supportedTypes,
wRecor dPtr”. i docl D,
Longl nt (WRecordPtr));

END;
{do other window intialization, like creating scroll bars}
DoNew : = nyErr,;

END;

Using the Text Services Manager (for Client Applications) 7-19

Jabeue sa2INIBS X3l .

7-20

CHAPTER 7

Text Services Manager

Making Text Services Available to the User

Text services that are input methods are always displayed in the keyboard menu. System
software takes care of that; your application does not need to list input methods.
However, your application may wish to provide a menu or scrolling list to display other
types of available text services. (Note that, currently, no text services other than input
methods are available. This capability is provided for future extensibility.)

To obtain a list of the available text services on the user’s system, call the

Get Servi ceLi st function. You pass it an array of interface types (to indicate the types
of services you want returned in the list) and a pointer to a data structure (to hold the
list). The function returns the number of available components, and a name and
component identifier for each one.

Because text service components can be registered or unregistered at any time, your
client application should periodically call either Get Ser vi ceLi st or the Component
Manager function Get Conponent Li st ModSeed to see if the list of registered text
service components may have changed.

IMPORTANT

If your client application displays a list or menu of text

service components, do not show input methods. They are already
displayed in the Keyboard menu. To show them in two places would
be confusing to users. a

The Text Services Manager automatically opens input methods; your client application
does not have to open them. You do have to explicitly open all other types of text
services, however. If the user chooses a text service from a menu or list that you have
displayed, you need to open that text service.

You call the OpenText Ser vi ce function to associate the text service component with
the current TSM document. OpenText Ser vi ce then returns a valid component
instance to indicate that the text service component has been opened and initialized.

Whenever a user wishes to close a text service component that you have opened, call the
C oseText Ser vi ce function.

Activating and Deactivating a TSM Document

To notify the Text Services Manager that a window in your client application associated
with a TSM document has been activated, and that you are ready to use a text service
component, use the Act i vat eTSMDocunent function.

Listing 7-3 shows how to handle activating and deactivating a TSM document. You
specify the document using the ID assigned to it when it was created (with the
NewTSMDocurent function). This routine, like the previous samples, assumes that

the application has an extended window record with a field, i docl D, that contains the
TSM document ID.

Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

Listing 7-3 Activating and deactivating a TSM document

PROCEDURE DoActi vat e(w ndow. W ndowPtr; becom ngActive: Bool ean);
VAR
myErr: OSErr;
BEG N
| F becomni ngActive THEN
nyErr ;= Activat eTSMDocunent (MyW ndowPt r (Wi ndow) ~. i docl D)
ELSE
nyErr := Deactivat eTSMDocunent (MyW ndowPt r (wi ndow) ~. i docl D) ;
END;

When the Text Services Manager receives an Act i vat eTSMDocunent call, it deactivates
the currently active TSM document (if it hasn’t already been explicitly deactivated) and
stores the new document as the currently active TSM document. If the specified text
service component for the document has a menu, the Text Services Manager inserts the
menu into the menu bar as an application or system menu.

When a window in your client application associated with a TSM document has been
deactivated, you should call the Deact i vat eTSMDocunent function. The Text Services
Manager in turn calls the text service component function Deact i vat eText Ser vi ce
for any text service components associated with the TSM document being deactivated.

Input-method text services are handled in a special way: the identity of the input method
of the deactivated document is retained by the Text Services Manager, and compared
with the input method used by the next activated document. If the newly active
document uses the same input method, the Text Services Manager will simply activate
the new instance of the same input method. If the documents use different input
methods, the previous input method is then closed, and any windows belonging to it are
closed and menus are removed. The new input method is then activated. Not closing an
input method until it is actually unneeded avoids extra removal and immediate
redisplay of input method palettes and menus.

Passing Events, Menu Selections, and Cursor Setting

Whenever your client application receives an event from the Event Manager function

Wi t Next Event, you need to give each text service component an opportunity to
handle that event, if appropriate. Use the TSMEvent function to let the Text Services
Manager dispatch the events to the correct text service component. You provide a pointer
to the event record containing the event. The Text Services Manager passes the event in
turn to each component associated with the currently active TSM document, starting
with input methods. If the event is handled by a component, TSMEvent returns TRUE
and the event is changed to a null event. If the event is not handled, TSMEvent returns
FALSE and you are responsible for handling the event.

Listing 7-4 is a partial example of an event handler in which the application passes
events to the Text Services Manager for routing to text service components. If no text
service component handles an event, the application handles it. The global variable

Using the Text Services Manager (for Client Applications) 7-21

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

gUsi ngTSMis TRUE if the Text Services Manager is present and the application is
making use of it.

Listing 7-4 Passing events to a text service component

7-22

PROCCEDURE MyDoEvent (event: eventRecord);

VAR
handl edByTS: Bool ean;
got Event : Bool ean;
BEG N
VWH LE TRUE DO
BEG N
| F gHasWAi t Next Event THEN
BEG N
got Event : = Wit Next Event (everyEvent, event,
kSl eep, NL);
handl edByTS : = FALSE;
I F (gUsi ngTSM AND got Event) THEN
handl edByTS : = TSMEvent (event);
END;
| F got Event AND (NOT handl edByTS) THEN
{process event in normal way}
END;
END;

Whenever a user chooses a menu item, it may be from a text service component’s menu;
your application must therefore give the text service component a chance to respond.
(This situation occurs only with text service components that are not input methods.)

To do this, use the TSMVenuSel ect function with the result from the Menu Manager
function MenuSel ect in the menuResul t parameter. If TSMVENuUSel ect returns TRUE,
then the text service component has handled the menu selection, so your client
application does not need to do so. However, your application is still responsible for
removing the highlighting from the menu title after the selection has been handled.

Your client application is generally responsible for setting the cursor to an appropriate
shape. However, the text service component may have its own cursor requirements
when the cursor is within the boundaries of its windows or palettes. To allow a text
service component to set the cursor, use the Set TSMCur sor function. Call it whenever
you would normally set the cursor yourself. If Set TSMCur sor returns TRUE, the cursor
is either on a text service component window or on the active input area and a text
service component has set the cursor. In this case, you should not set the cursor.

Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

Confirming Active Text Within a TSM Document

Normally, an input method text service component ejects finished input from the active
input area continually as it processes user events, sending the confirmed text to your
application with the Update Active Input Area Apple event.

Circumstances may arise in which you need to confirm input in progress before the text
service component ejects it (that is, before the user presses Return). If, for example, the
user clicks the mouse in text outside the active input area, that constitutes an implicit
user acceptance of the text in the active input area. You should explicitly terminate any
active input and save the text that is in the active input area by calling the

Fi xTSMDocumnent function. The text service component sends the confirmed text to
your application and empties the active input area.

Listing 7-5 shows what happens when the user clicks the go-away box of the active
document window after entering some text in the active input area. The global variable
gl Docl Drepresents the ID of the active TSM document.

Listing 7-5 Confirming text in an active input area

PROCEDURE DoMbuseDown (event: Event Record);

VAR
part: I nt eger;
t heW ndow. W ndowPtr ;
nmyErr: CSErr;
BEG N
part := Fi ndW ndow(event.where, theW ndow);
CASE part OF
i nCont ent :
DoCont ent C i ck(t heW ndow, event);
i nDr ag:
Dr agW ndow(t heW ndow, event. where,
t heW ndow". port Rect) ;
i nGoAway:
| F TrackGoAway(t heW ndow, event.where) THEN
BEG N
nyErr : = Fi xTSMDocument (gl Docl D) ; {confirmtext}
DoAct i vat e(t heW ndow, FALSE); {deactivat e wi ndow}
H deW ndow(t heW ndow) ; {put it away}
gVi si bl e : = FALSE;
END;
END;
END;

Using the Text Services Manager (for Client Applications) 7-23

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Deleting a TSM Document

When your client application closes a document window and no longer needs its
associated TSM document, it needs to call the Del et eTSMDocumnent function to inform
the Text Services Manager that the TSM document should be deleted.

The Text Services Manager closes the text service components for the specified TSM
document by calling the Component Manager Cl oseConponent function for each open
text service component. It then disposes of the internal TSM document record for the
specified TSM document.

Closing Down as a TSM-Aware Application

To let the Text Services Manager perform needed housekeeping chores when your
application has closed, your client application needs to call
C oseTSMAwar eAppl i cat i on just before quitting, as shown in Listing 7-6.

Listing 7-6 Closing a TSM-aware application

7-24

FUNCTI ON DoQui t Appl i cation: OSErr;
VAR

nmyEerr: CSErr;
BEA N

{app-specific clean up}
nyErr := Cl oseTSMAwar eApplication; {ignore the error}

Exi t ToShel | ;
END;

Requesting a Floating Input Window for Text Entry

Your client application may need to provide for users who prefer to enter text using a
floating input window instead of entering text directly in the line of a document. For
example, when the text font size is too small for reading ideographic characters, too big
for convenient entry directly into the document window, or is being greeked, users may
prefer a floating input window.

Your client application calls the Usel nput W ndow function with the usel nput W ndow
parameter set to TRUE to display a floating input window for the TSM document you
specify in the i docl D parameter to the call. To display floating input windows for all
documents associated with your application, you set the i doc| D parameter to NI L and
the usel nput W ndow parameter to TRUE. To return to inline input, call

Usel nput W ndowwith the usel nput W ndow parameter set to FALSE.

Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

Associating Input Methods With Scripts and Languages

If you use the application-interface routines, the Text Services Manager automatically
associates a default input method with your TSM document every time the current script
and language change. Although it is unlikely that it would ever need to, your client
application can use Text Services Manager routines to control that automatic association.

The Operating System uses the Get Def aul t | nput Met hod and

Set Def aul t | nput Met hod functions to associate an input method with a given script
and language. When the user uses the Keyboard menu, Keyboard control panel, or other
device for controlling input method preferences, these functions establish permanent
associations (they last across restarts).

The Text Services Manager maintains a current text service language that it uses to
synchronize input methods to the current script system and language. The Operating
System calls the Set Text Ser vi ceLanguage function when the user switches the
keyboard script, and the floating window service calls the Cet Text Ser vi ceLanguage
function to determine the text service language.

These routines make use of the script-language record, described under “Identifying the
Supported Scripts and Languages” on page 7-42.

If your client application uses the Text Services Manager application-interface

routines, the Text Services Manager automatically synchronizes the input method to the
current text service language and there is no need to make the calls described here.

If your client application bypasses the Text Services Manager and uses the text

service component routines, the Text Services Manager does not provide automatic input
method synchronization and you may have to make some of these calls yourself.

See “Direct Access to Text Service Components” on page 7-36 for more information

on the Component Manager and on how to communicate directly with text

service components.

Handling Text Service Apple Events

Text service components send information to your client application through Apple
events. To communicate with an input method text service component, you need to
implement Apple event handlers that

= receive raw, converted, or confirmed text from the input method, update the active
input area, and highlight text appropriately

= convert screen location (in global coordinates) to text offset (in the active input area or
in the application’s text buffer), so that the input method can, for example, adjust the
caret position or cursor display to reflect the text beneath the cursor

= convert text offset to screen location, so that the input method can, for example, place
a list of conversion options next to a particular section of raw text

= respond to the input method’s request to show or hide a floating input window

Using the Text Services Manager (for Client Applications) 7-25

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Each Apple event contains two required parameters:

= The keyAETSMDocunent Ref con parameter is filled in by the Text Services Manager.
It tells the application which TSM document is affected by the Apple event.

= The keyAESer ver | nst ance parameter is filled in by the text service component,
and identifies the component that is sending the Apple event.

Other parameters are specific to each Apple event, and are described under “Apple
Event Handlers Supplied by Client Applications” on page 7-65.

For general rules for writing Apple event handlers, see the discussion of the Apple Event
Manager in Inside Macintosh: Interapplication Communication.

Receiving Text and Updating the Active Input Area

The text service component uses the Update Active Input Area Apple event to request
that your client application create and update an active input area, including drawing
text in the active input area, and accepting confirmed text. For details on active input
areas, see “Inline Input” on page 7-11. This Apple event also asks the client application to
update a range of text in the active input area and highlight appropriately.

Because your application is responsible for all drawing in the active input area, it
receives an Update Active Input Area Apple event whenever the user enters raw text (for
example, Romaji for Japanese input), whenever that raw text is converted to an
intermediate form (for example, Hiragana), whenever the text is converted (for example,
to Kanji), and whenever the converted text is confirmed. The input method also uses this
Apple event to instruct your application in how to highlight the various types of text
(raw, converted, and so on) within the active input area.

The input method uses the Update Active Input Area Apple event to send additional
information to your application, such as current caret position, a range of text that
should be scrolled into view if it is not visible, and boundaries of clauses
(language-specific groupings of text) that may exist in the active input area.

Listing 7-7 shows a sample handler for the Update Active Input Area Apple event.
The handler first receives the input parameters, including the text and the ranges of
text to highlight and update. The handler then puts any confirmed text into the
application’s text buffer.

Listing 7-7 A sample handler for the Update Active Input Area Apple event

7-26

FUNCTI ON MyHandl eUpdat eActi ve(t heAppl eEvent: Appl eEvent;
reply: Appl eEvent;
handl er Ref Con: Longlnt): OSErr;
VAR
theHi |l iteDesc: AEDesc;
t heUpdat eDesc: AEDesc;
t heText Desc: AEDesc;
myErr: OSErr;

Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

returnedType: DescType;

script: Scri pt LanguageRecor d;
fixLengt h: Longl nt;
ref con: Longl nt;
text Si ze: Longl nt ;
act ual Si ze: Longl nt ;

t hePi nRange: Text Range;

BEG N
{Get the required paraneter keyAETSMDocumrent Ref con}
nyErr := AECet Par anPtr (t heAppl eEvent, keyAETSMDocunent Ref con,
t ypeLongl nt eger, returnedType, @ efcon,
si zeof (refcon), actual Si ze);
I F nyErr = noErr THEN
BEG N
{Get the required paraneter keyAETheDat a}
t heText Desc. dat aHandl e := NI L;
nyErr : = AEGet Par anDesc(theAppl eEvent, keyAETheDat a,
typeChar, theTextDesc);
END;
IF nyErr <> noErr THEN
BEG N
MyHandl eUpdat eActive : = nmyErr;
Exi t (MyHandl eUpdat eActi ve) ;
END;

{CGet the required paraneter keyAEScri pt Tag}
nyErr := AEGet ParanPtr (t heAppl eEvent, keyAEScri pt Tag,
typelntl WitingCode, returnedType,
@cript, sizeof(script), actual Size);
IF nyErr = noErr THEN
{Get the required paraneter keyAEFi xLengt h}
nyErr := AEGCet Par anPtr (t heAppl eEvent, keyAEFi xLengt h,
t ypeLongl nt eger, returnedType,
@i xLength, sizeof (fixlength),
act ual Si ze);
IF nyErr = noErr THEN
BEG N
{CGet the optional paraneter keyAEHi |iteRange}
theHi | i teDesc. dataHandl e : = NI L;
myErr : = AEGet ParanDesc(t heAppl eEvent, keyAEH | it eRange,
typeText RangeArray, theHiliteDesc);
END;

Using the Text Services Manager (for Client Applications) 7-27

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

IF nyErr <> noErr THEN

BEG N
MyHandl eUpdat eActive : = nyErr;
nyErr := AED sposeDesc(theText Desc); {ignhore the error}
Exi t (MyHandl eUpdat eAct i ve) ;

END;

{Get the optional paraneter keyAEUpdateRange}
t heUpdat eDesc. dat aHandl e : = NIL;
myErr : = AEGet ParanDesc(t heAppl eEvent, keyAEUpdat eRange,
t ypeText RangeArray, theUpdateDesc);
IF nyErr <> noErr THEN
BEG N
MyHandl eUpdat eActive : = nyErr;
nyErr : = AED sposeDesc(theText Desc); {ignhore the error}
myErr := AED sposeDesc(theHiliteDesc);
Exi t (MyHandl eUpdat eActi ve);
END;

{Get the optional paraneter keyAEPi nRange}

myErr := AEGet ParanPtr (t heAppl eEvent, keyAEPi nRange,
t ypeText Range, returnedType,
@ hePi nRange, si zeof (t hePi nRange),
actual Si ze) ;

MyHandl eUpdat eActi ve : = nyErr;
I F nyErr = noErr THEN
BEG N
text Si ze : = Get Handl eSi ze(t heText Desc. dat aHandl e) ;
MyHandl eUpdat eActive : = MenError;
I F MenError = noErr THEN
BEG N
{if the value of keyAEFi xLength is -1, the text }
{ contained in the keyAETheDat a paraneter should }
{ conpletely replace the active input area in }
{ the application w ndow}

IF fixLength = -1 THEN fi xLength : = textSize;

{the application procedure Set NewText handl es }

{ updating and confirmng the text in the active }
{ input area, highlighting, and scrolling the }

{ specified offsets into view}

7-28 Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

Set NewText (refcon, script, theTextDesc. dataHandl e,
text Si ze, fixLength,
Text RangeAr r ayHandl e(t heUpdat eDesc. dat aHandl e) ,
Text RangeArrayHandl e(theHi | i t eDesc. dat aHandl e));

END;
END;
nyErr := AED sposeDesc(theText Desc); {ignore the errors}
myErr : = AED sposeDesc(theHiliteDesc);
nyErr : = AED sposeDesc(theUpdat eDesc);

END;

Converting Screen Position to Text Offset

An input method text service component uses the Position To Offset Apple event when it
needs to know the byte offset in a text buffer (usually the buffer corresponding to the
active input area) corresponding to a given screen position. An input method typically
sends the Position To Offset Apple event to your application in response to a
mouse-down event. If the event location is in the application window (including the
active input area), the input method may want to know which character the event
corresponds to, in order to locate the caret or define highlighting.

An input method may also send Position To Offset in response to Set TSMCur sor, so
that it can modify the appearance of the cursor depending on the type of text the cursor
passes over.

Your application’s handler returns a byte offset and a value indicating whether the
screen position is within the active input area. If it is, the offset is measured from the
start of the active input area (the leading edge of the first character on the first line). If it
is not, the offset is measured from the beginning of the application’s body text. The
definition of body text and the significance of measurements within it are specific to your
application; here it means any application text outside of the active input area.

To help the input method more specifically define individual characters, your
application can optionally return an indication as to whether the position corresponds to
the leading edge or the trailing edge of the glyph corresponding to the character at the
indicated offset.

The Position To Offset Apple event is similar in function to the QuickDraw

Pi xel ToChar function, and returns similar results. Your handler may use

Pi xel ToChar to get the information it returns to the text service component, or it may
use a TextEdit call, as shown in the following code sample.

Listing 7-8 shows a sample handler for the Position To Offset Apple event. The handler
first receives the input parameters, then uses the TextEdit function TEGet Of f set to
convert a screen location to text offset. The TEGet Of f set function is described in the
chapter “TextEdit” in this book.

Using the Text Services Manager (for Client Applications) 7-29

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Listing 7-8

FUNCTI ON MyHandl ePos2O f set (t heAppl eEvent :

VAR
myErr:
ret ur nedType:
ref con:
cur rent Poi nt :
cl i ckW ndow:
where, part:
ol dPort :
of fset:
te:
act ual Si ze:
bodyRect :
dr aggi ng:
i sivat ch:

BEG N

A sample handler for the Position To Offset Apple event

Appl eEvent ;
reply: Appl eEvent;
handl er Ref Con: Longlnt):

CSErr;
DescType,;
Longl nt;
Poi nt ;

W ndowPt r;
I nt eger;
Gafbtr;
Longl nt;
TEHandl e;
Longl nt ;
Rect ;

Bool ean;
Bool ean;

{Get the required paraneter TSMDocunent Ref con}

nmyErr

IF nyErr =

i = AEGet ParanPtr

nokErr
{Get the required paraneter

(t heAppl eEvent,

si zeof (refcon),
THEN
keyAECur r ent Poi nt }

CSErr;

keyAETSMDocurent Ref con,
t ypeLongl nt eger, returnedType, @ efcon,
act ual Si ze);

keyAECur r ent Poi nt

act ual Si ze);

nyErr := AEGet ParanPtr (theAppl eEvent,
t ypeQDPoi nt, returnedType,
@urrent Poi nt,
si zeof (current Point),
IF nyErr <> noErr THEN
BEG N

MyHandl ePos20F f set

= nyErr,;

Exi t (MyHandl ePos2O f set) ;

END;

where :
part

kTSMQut si deOf Body;
Fi ndW ndow(cur r ent Poi nt,

cli ckW ndow) ;

{the application function |IsW ndowFor TheAE returns TRUE}
{if the refcon is associated with the w ndow}

i sMatch : =

7-30

| sW ndowFor TheAE(r ef con,

cli ckW ndow) ;

Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

IF ((clickWndow = Front Wndow) AND
i sMatch AND (part = inContent)) THEN
BEG N
Get Port (ol dPort);
Set Port (cl i ckW ndow) ;

{convert currentPoint into the local }
{ coordinates of the current grafport}

d obal ToLocal (current Point);

{the application function Get TheBodyRect returns the}
{body rect of the w ndow}

bodyRect := Get TheBodyRect (cli ckW ndow) ;
| F PtInRect(currentPoint, bodyRect) THEN
BEG N

where := kTSM nsi deCk Body;

{the application function FindTheTEHandl e returns the }
{ window s TEHandl e. Then the TextEdit function }
{ TEGetOfset returns the offset corresponding to the point}

te := FindTheTEHandl e (clickW ndow);
of fset := TEGetOFfset (currentPoint, te);

{The application function IslnsidelnputArea returns }
{ TRUE if offset is within the active input area. }
{ It is application's responsibility to renenber }

{ the range of the input area.}

| F I slnsidel nput Area(offset, clickWndow) THEN
where := KTSM nsi deOf Acti vel nput Ar ea,;
END;

{get the optional paraneter: keyAEDraggi ng}
draggi ng : = FALSE;
nyErr := AEGet ParanPtr (theAppl eEvent, keyAEDraggi ng,
t ypeBool ean, returnedType,
@lr aggi ng, sizeof (draggi ng),
act ual Si ze);
END;
I F nyErr <> noErr THEN

Using the Text Services Manager (for Client Applications) 7-31

Jabeue sa2INIBS X3l .

7-32

CHAPTER 7

Text Services Manager

BEG N
MyHandl ePos2Of f set : = nyErr;
Exi t (MyHandl ePos20 f set) ;
END;

{if the paraneter keyAEdragging is TRUE and the nouse}

{ position is outside the body text, the application }

{ can scroll the text within the active input area, }

{ rather than returning kTSMlut si deCf Body. The application }
{ procedure Handl eScroll is handling the scrolling.}

I F (dragging = TRUE) AND (where = kTSMout si deCf Body) THEN
BEG N
Handl eScrol | (te, offset);
where : = kTSM nsi deOf Acti vel nput Area;
END;
Set Port (ol dPort);

{Construct the return paraneter keyAEX fset}
nyErr := AEPut ParanPtr(reply, keyAEO fset, typelLonglnteger,
@f fset, sizeof(offset));
IF nyErr = noErr THEN
{Construct the return paraneter keyAERegi onCl ass}
MyHandl ePos2CF f set : = AEPut ParanPtr(reply, keyAERegi ond ass,
typeShort | nt eger,
@here, sizeof (where))
ELSE MyHandl ePos2Cf fset : = nyErr;
END;

Converting Text Offset to Screen Position

An input method text service component uses the Offset To Position Apple event when it
needs to know the screen position corresponding to a given byte offset in the text buffer
for the active input area. An input method typically sends the Offset To Position Apple
event to your application when it needs to draw something in a specific spatial
relationship with a given character in the active input area. For example, it may need to
draw a floating window containing suggested conversion options beside a particular
range of raw or converted text. See Figure 7-9.

The text service component supplies a byte offset, measured from the character at the
start of the active input area. The application returns a point designating the global
coordinates of the caret position corresponding to that offset. Your application may
optionally return information about the font, size, and other measurements of the text in
the active input area, so that the text service component can more precisely locate the
elements it is to draw.

Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

Figure 7-9 Drawing a window with conversion options next to the active input area
T eYD—Dmmm—————r—— untitled =FFvF—=——=
Lo gy 5@1 ufs
=3

The Offset To Position Apple event is similar in function to the QuickDraw

Char ToPi xel function, and it returns similar results. Your handler may use

Char ToPi xel to get the information it returns to the text service component, or it may
use a TextEdit call, as shown in the following code sample.

Listing 7-9 shows a sample handler for the Offset To Position Apple event. The handler
first receives the input parameters, then uses the TextEdit function TEGet Poi nt to

convert a text offset to a screen location. The TEGet Poi nt function is described in the
chapter “TextEdit” in this book.

Listing 7-9 A sample handler for the Offset To Position Apple event

FUNCTI ON MyHandl eCf f set 2Pos(t heAppl eEvent :
reply: Appl eEvent;

handl er Ref Con: Longlnt):

VAR

nmyErr: OSErr;

rterr: CSErr;

returnedType: DescType;

of f Set : Longl nt ;

refcon: Longl nt ;

act ual Si ze: Longl nt;

t heW ndow: W ndowPt r;

te: TEHandl e;

ol dPort: GafPtr;

t hePoi nt : Poi nt ;

t heFi xed: Fi xed;
BEG N

Using the Text Services Manager (for Client Applications)

Appl eEvent ;

7-33

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

{Get the required paraneter keyAEO fset}
myErr := AEGet ParanPtr (t heAppl eEvent, keyAEO f set,
t ypeLongl nt eger, returnedType, @ff Set,
si zeof (of f Set), actual Si ze);
IF nyErr = noErr THEN
{CGet the required paraneter TSMDocument Ref con}
nyErr : = AEGet ParanPtr (t heAppl eEvent,
keyAETSMDocurent Ref con,
typeLongl nt eger, returnedType,
@ ef con, sizeof(refcon),
actual Si ze) ;
I F nyErr <> noErr THEN
BEG N
MyHandl e f set 2Pos : = nyErr;
Exi t (MyHandl eOf f set 2Pos) ;
END;
{the application function Get WndowFronRefcon returns the }
{ wi ndow which is associated with the refcon}

rterr := nokrr; {initialize rtErr}
t heW ndow : = Get W ndowFr onRef con(ref con);
| F theWndow = NIL THEN
rtErr := errOffsetlnvalid
ELSE
BEG N
{the application function FindTheTEHandl e returns the }
{ TEHandl e for the w ndow}

te := FindTheTEHandl e(t heW ndow) ;

{the TextEdit function TEGet Point returns the point }
{ corresponding to the given offset}

t hePoi nt : = TEGet Poi nt (of f Set, te);
IF (offSet > ter.teLength) OR (offSet < 0) THEN
rterr := errOffsetlnvalid
ELSE | F(Pt I nRect (t hePoi nt,t heW ndow*. port Rect) = FALSE) THEN
rtErr := errOfsetlsQutsided Vi ew
ELSE
BEG N
Cet Port (ol dPort);
Set Por t (t heW ndow) ;

7-34 Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

{Convert thePoint into global coordinates}

Local Tod obal (t hePoi nt) ;
Set Port (ol dPort);
END;

{construct the return paraneter keyAEPoint}
myErr := AEPut ParanPtr(reply, keyAEPoint, typeQDPoint,
@ hePoi nt, sizeof (thePoint));
IF nyErr = noErr THEN
{construct the optional return paraneter keyAEText Font}
nyErr := AEPut ParanPtr(reply, keyAEText Font,
typeLongl nteger, @e"".txFont,
si zeof (1 onglnt));
I F nyErr = noErr THEN
BEG N
{construct optional return paraneter keyAEText PointSi ze}
t heFi xed : = BSL(Fi xed(te”".txSize), 16);
nyErr := AEPut ParanPtr(reply, keyAEText PointSi ze,
typeFi xed, @ heFi xed,
si zeof (t heFi xed)) ;
END;
IF nyErr = noErr THEN
{construct optional return paranmeter keyAETextLi neHeight}
nyErr := AEPut ParanPtr(reply, keyAETextLi neHei ght,
typeShortlnteger, @e™".lineHeight,
si zeof (I nteger));
IF nyErr = noErr THEN
{construct optional return paraneter keyAETextLi neAscent}
nyErr := AEPut ParanPtr(reply, keyAETextLineAscent,
typeShortlnteger, @e"". fontAscent,
si zeof (I nteger));
I F nyErr = noErr THEN
BEG N
{construct the optional return paraneter keyAEAngle-- }
{90 = horizontal direction, 180 = vertical direction}
t heFi xed : = Fi xed(90);
myErr := AEPut ParanPtr(reply, keyAETextPointSize,
typeFi xed, @ heFi xed,
si zeof (Fi xed)) ;
END;
I F nyErr <> noErr THEN
BEG N

Using the Text Services Manager (for Client Applications) 7-35

Jabeue sa2INIBS X3l .

7-36

CHAPTER 7

Text Services Manager

MyHandl eX f set 2Pos : = nyErr;
Exi t (MyHandl e f set 2Pos) ;
END;

END;

{Construct the return paraneter keyErrorNunber}

MyHandl e f set 2Pos : = AEPut ParanPtr (reply, keyErrorNumber,
typeShortinteger, @tErr,
sizeof (rtErr));

END;

Showing or Hiding the Input Window

Input methods that work with a floating input window often offer options to the user for
either (1) continually displaying the input window, (2) displaying it only as text is being
typed in and hiding it immediately after the user confirms it, or (3) leaving the window
up for a specified amount of time after confirmation. The Show /Hide Input Window
Apple event requests that your client application make the bottomline floating input
window either visible or not visible. An input method text service component sends this
Apple event whenever it needs to know or change the current state of the window.

This Apple event is for use only by applications that display their own input windows. If
your application does not itself control the display of a floating input window, you can
ignore this Apple event. If your application uses the Text Services Manager floating
window service for bottomline input (by calling Usel nput W ndow), you do not receive
this Apple event because it is handled by the Text Sevices Manager.

Direct Access to Text Service Components

Your client application can bypass the Text Services Manager and communicate with text
service components directly. Many of the text service component routines correspond in
function to the Text Services Manager application-interface routines. It is therefore
possible for a client application to use the text service component routines if it needs to
exert finer control over its interaction with text service components or if it requires
specific kinds of text services or server-specific knowledge. It is not recommended in
most cases, because the Text Services Manager is not available to help with dispatching
and housekeeping chores.

Calling the Component Manager

If your client application does not use the Text Services Manager, it has to communicate
with the Component Manager directly to identify and initialize individual text service
components. You can use Component Manager calls to find components, set a default
component, get information about components, and open components. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for more information.

Using the Text Services Manager (for Client Applications)

CHAPTER 7

Text Services Manager

Calling Text Service Components

If your client application calls text service components directly, it uses the text service
component routines, a component-level interface described under “Text Service
Component Routines” on page 7-84.

After opening a text service component with the OpenConponent or

OpenDef aul t Conponent function, your client application calls

I nitiateText Servi ce function to instruct the text service component to commence
its operations.

To inform a text service component that its associated document window is becoming
active or inactive, call the Act i vat eText Ser vi ce or Deact i vat eText Servi ce
function.

You are responsible for adding the text service component menu to your application’s
menu bar. Furthermore, you are responsible for either disabling the menu or removing
it from your menu bar when the text service component becomes inactive. Call the

Cet Text Ser vi ceMenu function to obtain menus from each open text service
component.

To pass events to text service components, call the Text Ser vi ceEvent function. You
are also responsible for allowing the text service components to control the cursor. Use
the Set Text Ser vi ceCur sor function to give the text service component a chance to
set the cursor.

When a user makes a selection from the menu for a text service component, call the
Text Servi ceMenuSel ect function.You should call Text Ser vi ceMenuSel ect right
after the Menu Manager routines MenuSel ect or MenuKey.

Before closing the component, call the Ter m nat eText Ser vi ce function to tell the text
service component to finish its operations. You should remove the text service
component’s menu from the menu bar when the text service component is deactivated.

Using the Text Services Manager (for Text Service Components)

This chapter does not describe how to write a text service component. It describes only
the interface between text service components and the Text Services Manager. Each text
service component has several functions; it must be able to

= perform the tasks for which it was created
= communicate with the Component Manager

= receive calls from the Text Services Manager (or client applications), through the
Component Manager

= send calls to the Text Services Manager

How components perform their specific text-handling tasks is beyond the scope of Inside
Macintosh. How components communicate with the Component Manager is described
in the chapter “Component Manager” in Inside Macintosh: More Macintosh Toolbox.

Using the Text Services Manager (for Text Service Components) 7-37

Jabeue sa2INIBS X3l .

7-38

CHAPTER 7

Text Services Manager

How text service components communicate with the Text Services Manager is described
in this section.

The text service component routines are the component-level calls that the Text
Services Manager makes to text service components through the Component Manager.
See “Text Service Component Routines” on page 7-84 for detailed descriptions of the
calls. If you are writing a text service component, it must implement the text service
component routines.

Text service components also make calls to the Text Services Manager, to send Apple
events to client applications and to request the use of a floating window when needed.
See “Text Services Manager Routines for Components” on page 7-77 for detailed
descriptions of those component-interface calls.

For a brief discussion of some of the data types associated with text service components,
see “About Text Service Components” beginning on page 7-14.

Providing Menus and Icons

If you are writing a text service component, you can have it display its own menu,
provide an icon for the title of that menu, and provide icons for the Keyboard menu.

Providing a Text Service Component Menu

Although most user selections and configurations are best made with floating palettes, a
text service component may put one menu into the menu bar. For input-method text
service components, the menu cannot be hierarchical. Input-method menus appear on
the right (system) side of the menu bar, between the Help menu and the Keyboard
menu. Menus for non-input-method text service components appear on the left
(application) side of the menu bar. See Figure 7-10 on page 7-40.

To create the menu, follow the standard procedures as described in the Menu Manager
chapter of Inside Macintosh: Macintosh Toolbox Essentials. The Text Services Manager
installs the menu in the menu bar whenever your component is opened or activated. The
application (through the Text Services Manager) passes the menu commands to you for
handling when appropriate.

All instances of an input-method text service component must share one menu handle.
Therefore, make sure to allocate the handle in the System heap. You can store the menu
handle in your component’s r ef con field. See the discussion of the Component
Manager Set Conponent Ref con routine in Inside Macintosh: More Macintosh Toolbox.

IMPORTANT

An input-method text service component should never dispose
of its menu handle in response to a Ter nmi nat eText Ser vi ce
call (see page 7-86). Any other kind of text service component
should always dispose of its menu handle in response to a

Ter mi nat eText Servi ce call. a

Using the Text Services Manager (for Text Service Components)

CHAPTER 7

Text Services Manager

Using an icon for the menu title

If you wish to have an icon instead of text as the title of your text service
component menu, first create a small-icon suite (such as' kcs#',
"kcs4', and ' kcs8') to represent your menu title. Then, in your menu
resource, make the menu title a 5-byte Pascal string (6 bytes total size),
with this format:

Byte Value

0 $05 (Iength byte for menu string)
1 $01 (invalid character code)
2-5 Handle to icon suite

When the menu is created, the menu bar definition procedure knows
from the values of the first 2 bytes that the final 4 bytes are a handle to
an icon suite, and the procedure will put the icon in the menu bar. For
more on creating icon suites and drawing icons, see the Finder Interface
chapter of Inside Macintosh: Macintosh Toolbox Essentials. See also
Macintosh Human Interface Guidelines for design suggestions for color
icon families. O

Remember these limitations when considering an input-method menu: an input method
can put up only one menu, the menu cannot be hierarchical, and the menu can be
removed from the menu bar if there is insufficient room for it (on a small screen). It may
be more appropriate to use palettes.

Providing Input Method Icons for the Keyboard Menu

Any text service component that provides an input method must supply the following
keyboard icon resources to display an icon for the input method in the Keyboard menu:
"kes#',' kcs4' ,and ' kcs8' . The resource ID number of the keyboard icon resources
must equal the script code of the script system that the input method supports. If your
input method supports more than one script system, you can have more than one icon
suite, each with the appropriate resource IDs.

Using the Text Services Manager (for Text Service Components) 7-39

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Figure 7-10 shows a Keyboard menu displaying a Japanese input method and a Korean
input method, as well as keyboard layouts from several other script systems. The
Japanese input method is active; its icon is checked in the menu and appears highlighted
on the menu bar.

Figure 7-10 Input method icons in the Keyboard menu and menu bar

7-40

@ ¢ Ells

About Keyboards

e

C el e

& 1.5,
4y U.5. - System 6

== Pycckan

nvam
Rl AWARYS Nran

i Ezam™

The pencil icon between the Keyboard menu and the Help menu in Figure 7-10 is the
title for the menu belonging to the active input method.

For more information on keyboard icon suites, see the appendix “Keyboard Resources”
in this book. For information on script codes, see the chapter “Script Manager” in
this book.

Responding to Calls

When a client application makes certain calls to the Text Services Manager application
interface, the Text Services Manager in turn calls your text service component. Your text
service component responds to these calls by initiating or closing a text service,
manipulating text service windows, responding to events or menu commands, and
confirming text input.

Using the Text Services Manager (for Text Service Components)

CHAPTER 7

Text Services Manager

Initiating a Text Service

When your text service component receives the | ni ti at eText Ser vi ce call, it can
commence its operations to provide its text service. That may include opening windows
or palettes, initializing data structures, communicating with the user or application, or
otherwise getting started with its tasks.

The Text Services Manager may call | ni ti at eText Ser vi ce on its own or in response
to receiving the application-interface call OpenText Ser vi ce.

Activating Text Service Component Windows

If a window associated with a TSM document associated with your text service is being
activated, your text service component receives the Act i vat eText Ser vi ce call. You
should show floating windows associated with your component instance and prepare to
receive and handle events.

If the window is being deactivated, your text service component receives the

Deact i vat eText Ser vi ce call. You should perform any necessary cleanup or other
tasks associated with deactivating your current component instance. If your text service
component is not an input method, you should also hide all floating windows associated
with the document being deactivated. If your text service component is an input method
and if the newly activated document does not use your text services, you will receive the
H dePal et t eW ndows call. At that point you should hide all floating windows
associated with the component instance being deactivated.

The Text Services Manager calls Act i vat eText Ser vi ce and
Deact i vat eText Ser vi ce in response to receiving the application-interface calls
Acti vat eTSMDocumnent and Deact i vat eTSMDocument, respectively.

Responding to Events and Updating the Cursor and Menu

The Text Services Manager (or a client application) is responsible for adding your
text service component’s menu to the menu bar. When your text service component
receives a Get Text Ser vi ceMenu call, it needs to return a menu handle. The section
“Providing Menus and Icons” on page 7-38 gives instructions for creating text service
menus and icons.

When your text service component receives the call Text Ser vi ceEvent,

Text Ser vi ceMenuSel ect, or Set Text Ser vi ceCur sor, it should handle the event,
menu command, or cursor-drawing if appropriate. For example, when the user enters
text, you receive and handle the key-down events; you in turn inform the application
what characters to draw in the active input area. When the user makes a menu selection,
you are given an opportunity to check whether it is from your menu and then to act on
it. You are regularly given the opportunity to redraw the cursor, in case it may be over an
area under your control (such as a palette window or the active input area).

Using the Text Services Manager (for Text Service Components) 7-41

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

The Text Services Manager may call Get Text Ser vi ceMenu on its own or in response to
receiving the application-interface call OpenText Ser vi ce. The Text Services Manager
calls Text Ser vi ceEvent, Text Ser vi ceMenuSel ect, and Set Text Ser vi ceCur sor
in response to receiving the application-interface calls TSMEvent , TSMVenuSel ect, and
Set TSMCur sor, respectively.

Confirming Active Text Input

A client application may need your input method text service component to terminate
input immediately and confirm any text currently in the active input area. When your
text service component receives the call Fi xText Ser vi ce, it should confirm all text in
the active input area, just as if the user had pressed Return. It should send the confirmed
text to the client application through the Update Active Input Area Apple event.

The Text Services Manager calls Fi xText Ser vi ce in response to receiving the
application-interface call Fi xTSMDocunent .

Closing a Text Service

When your text service is no longer needed, the Text Services Manager calls your text
service component’s Ter mi nat eText Ser vi ce function before calling the Component
Manager to close the component. Your text service component should use this time to
confirm any active input in progress and then dispose of memory as needed.

The Text Services Manager may call Ter mi nat eText Ser vi ce on its own or in
response to receiving the application-interface call Cl oseText Ser vi ce.

Identifying the Supported Scripts and Languages

The Operating System, the Text Services Manager, or a client application may need to
determine which scripts and languages your text service component supports. When
you receive the Get Scri pt LanguageSupport call, you return that information in a
script-language support record.

The Get Scri pt LanguageSupport function and several Text Services Manager
application-interface routines use the script-language record—and the script-language
support record—to pass information about the scripts and languages associated with
text service components.

The script-language record provides a script code and language code for the script
system and the language associated with a given text service component. The
script-language record is defined by the Scri pt LanguageRecor d data type as follows:

TYPE Scri pt LanguageRecord =

RECORD
fScript: Scri pt Code;
f Language: LangCode;
END;

7-42 Using the Text Services Manager (for Text Service Components)

CHAPTER 7

Text Services Manager

Field descriptions

fScri pt The number that identifies a script system supported by the text
service component

f Language The number that identifies a language associated with the script
supported by the text service component

For a list of constants for all defined script and language codes, see the chapter “Script
Manager” in this book.

The script-language support record consists of an array of script-language records. It is
defined by the Scri pt LanguageSupport data type as follows:

TYPE Scri pt LanguageSupport =
RECORD
f Scri pt LanguageCount : I nt eger;
f Scri pt LanguageArray: ARRAY[0. .0] of ScriptLanguageRecord;
END;

Field descriptions

f Scri pt LanguageCount
The number of script-language records in this script-language
support record.

f Scri pt LanguageAr r ay
A variable-length array of script-language records.

The Text Services Manager can call Get Scri pt LanguageSupport on its own or in
response to receiving the application-interface call Get Text Ser vi ceLanguage.

Listing 7-10 gives an example of the response to the Get Scri pt LanguageSupport call
by a Chinese input method.

Listing 7-10 Determining the script and language for a text service component

TYPE
scri pt Handl ePtr= ~Scri pt LanguageSupport Handl e;

VAR
scriptHdl Ptr:scriptHandl ePtr;

{The following is part of the case statenent that dispatches }
{ text service conponent routines. It is the conponent’s }
{ response to receiving a GetScriptlLanguageSupport call}

kCMGet Scri pt LangSupport :
BEG N
scriptHdl Ptr := (scriptHandl ePtr) @ cnParans”. parans[0]);
| F scriptHdl Ptr® = NIL THEN

Using the Text Services Manager (for Text Service Components) 7-43

Jabeue sa2INIBS X3l .

7-44

CHAPTER 7

Text Services Manager

scriptHdl Ptr~ : = (ScriptLanguageSupport Handl e) NewHandl e
(si zeof (Scri pt LanguageSupport));
| F scriptHdl Ptr® <> NIL THEN
W TH scri pt Hdl Pt r~** DO BEA N
f Scri pt LanguageCount : = 1;
f Scri pt LanguageArray[0] .fScript:= smlradChi nese;
f Scri pt LanguageArray|[0] . f Language: =
| angTr adChi nese;

result := noFErr;
END;
ELSE
result := nmenfull Err;
END;
Making Calls

Your text service component needs to make two kinds of calls to the Text Services
Manager: calls that cause the sending of an Apple event to a client application, and calls
that request a floating window from the Text Services Manager.

Sending Apple Events to Client Applications

Apple events allow text service components to send information to and request specific
services of client applications. It is the responsibility of the client application to install
Apple event handlers for these Apple events. Using these events, the text service
component controls the text services environment by requesting a variety of services
from the client application.

Your text service component can send Apple events to request that a client application
perform the following actions:

= create or update text in an active input area

= help you track cursor movements by converting global coordinates to the byte offset
of characters in the active input area

= help you position items on the screen by converting the byte offset of characters in the
active input area to global coordinates

= show or hide a floating input window

Note

Your text service component must always use the KCur r ent Process
constant as the target address when it creates an Apple event to send to
the Text Services Manager. O

Using the Text Services Manager (for Text Service Components)

CHAPTER 7

Text Services Manager

To send Apple events to a client application, your text service component calls the Text
Services Manager SendAEFr onTSMConponent function. The Text Services Manager
then completes the Apple event and sends it to the application. For general information
on constructing and sending Apple events, see the discussion of the Apple Event
Manager in Inside Macintosh: Interapplication Communication.

Listing 7-11 shows an example of a text service component preparing and sending an
Update Active Input Area Apple event. The component creates the Apple event and
constructs the required parameters, including the text to be sent to the application. It also
constructs the optional parameters that specify highlighting and update ranges in the
text. It then calls Send AEFr onmirfSMConponent to send the Apple event. In this listing,

gl obal Handl e is a handle to a data structure in which the text service component
maintains all information about the text in the active input area.

Listing 7-11 Constructing and sending an Update Active Input Area Apple event

FUNCTI ON MyCr eat eUpdat el nl i neAr eaAE(gl obal Handl e: Tgl obal Handl e)
OSErr;

VAR
psnRecor d: ProcessSeri al Nunber;
myErr: OSErr;
addr Descri ptor: AEAddr essDesc;
t heAEvent : Appl eEvent ;
t heRepl y: Appl eEvent ;
sl Record: Scri pt LanguageRecor d;
t heRangeTabl eSi ze: Longl nt;
t heText Dat a: Handl e;
t heUpdat eRangeTabl e: Text RangeArr ay;
t heHi | i t eRangeTabl e: Text RangeArr ay;
BEG N

{Appl e event must go to the current process }
psnRecor d. hi ghLongOr PSN : = 0;
psnRecord. | owbongOf PSN : = kCurrent Process;
nyErr : = AECreateDesc(typeProcessSerial Number, @snRecord,
si zeof (psnRecord), addrDescriptor);
| F nyErr <> noErr THEN
BEG N
My Cr eat eUpdat el nl i neAr eaAE : = nyErr;
Exi t (MyCr eat eUpdat el nl i neAr eaAE) ;
END;

Using the Text Services Manager (for Text Service Components) 7-45

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

{create the Apple event record}
myErr := AECreat eAppl eEvent (kText Servi ced ass,
kUpdat eAct i vel nput Ar ea,
addr Descri pt or,
kAut oGener at eRet ur nl D,
kAnyTransacti onl D, theAEvent);
IF nyErr <> noErr THEN
BEG N
My Cr eat eUpdat el nl i neAr eaAE : = nyErr;
nyErr := AED sposeDesc(addrDescriptor); {ignhore the error}
Exi t (MyCr eat eUpdat el nl i neAr eaAE) ;
END;

{construct the required paraneter keyAEServerlnstance-- }
{ gl obal Handl e*™. fSelf = gl obal containing conponent instance}
nyErr := AEPut ParanPtr(t heAEvent, keyAEServer| nstance,
t ypeConponent | nst ance,
@l obal Handl er. f Sel f,
si zeof (Conponent | nst ance)) ;
IF nyErr = noErr THEN
BEG N
{construct required paraneter keyAEScriptTag }
{ --Korean in this case}
sl Record. f Scri pt : = snKorean;
sl Record. f Language : = | angKor ean;
myErr : = AEPut ParanPtr(t heAEvent, keyAEScri pt Tag,
typel nt1 Wi ti ngCode,
@| Record, sizeof(slRecord));
END;
I F nyErr = noErr THEN
BEG N
{construct required paraneter keyAETheData. gl obal Handl e }
{ is a handle to conponent's data structure describing }
{ all text in the active inline area}
t heText Data : = gl obal Handl e*”. f Text Dat a;
HLock(t heText Dat a) ;
nyErr := AEPut ParanPtr (t heAEvent, keyAETheData, typeChar,
t heText Dat a”,
gl obal Handl e~”. f Text Dat aLengt h) ;
HUNnl ock(t heText Dat a) ;
END;

7-46 Using the Text Services Manager (for Text Service Components)

CHAPTER 7

Text Services Manager

IF nyErr = noErr THEN
{construct the required paraneter keyAEFi xLengt h}
nyErr := AEPut ParanPtr (t heAEvent, keyAEFi xLengt h,
t ypel nt eger,
@l obal Handl e*”. f Fi xedLengt h,
si zeof (Longl nt));

IF nyErr = noErr THEN
BEG N
{construct the optional paraneter UpdateRangeTabl e}
t heUpdat eRangeTabl e : = gl obal Handl e*”. f Updat eRangeTabl e;
t heRangeTabl eSi ze : = si zeof (Text RangeAr r ay)
+ t heUpdat eRangeTabl e. f NunTX Ranges
* sj zeof (Text Range);
nyErr := AEPut ParanPtr (t heAEvent, keyAEFi xLengt h,
typel nt eger,
@ heUpdat eRangeTabl e,
t heRangeTabl eSi ze) ;
END;
IF nyErr = noErr THEN
BEG N
{construct the optional paraneter HiliteRangeTabl e}
theHi |iteRangeTabl e : = gl obal Handl e**.fHi | i t eRangeTabl e;
t heRangeTabl eSi ze : = si zeof (Text RangeArr ay)
+ theHi | it eRangeTabl e. f NunTX Ranges
* sj zeof (Text Range);
nyErr := AEPut ParanPtr (t heAEvent, keyAEFi xLengt h,
t ypel nt eger,
@heHi |iteRangeTabl e,
t heRangeTabl eSi ze)

END;
IF nyErr <> noErr THEN
BEG N
My Cr eat eUpdat el nl i neAr eaAE : = nyErr;
myErr := AED sposeDesc(theAEvent); {ignore the errors}

nyErr := AED sposeDesc(addrDescriptor);
Exi t (MyCr eat eUpdat el nl i neAr eaAE) ;
END;

{send the Apple event}
nyErr : = SendAEFr onmTSMConponent (t heAEvent, theReply,
KAEWA I t Reply + kAENever | nteract,
kAENormal Priority, 120, NIL, NL);
My Cr eat eUpdat el nl i neAr eaAE : = nyErr;

Using the Text Services Manager (for Text Service Components) 7-47

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

nyErr := AED sposeDesc(t heAEvent); {ignhore the errors}
myErr := AED sposeDesc(addrDescriptor);
nyErr := AED sposeDesc(theReply);

END;

Opening Floating Utility Windows

To open a floating utility window in front of the current client application, you use the
NewSer vi ceW ndow function. If the call is successful, NewSer vi ceW ndow allocates a
floating window in the floating window service layer, and returns a pointer to the
window. See “Floating Input Windows” on page 7-13 and “Floating Utility Windows” on
page 7-14 for a discussion of the Text Services Manager floating window service and the
floating window service layer.

Your text service component can open multiple floating windows. When your
component receives an event, you must determine if the event belongs to one of your
text service floating windows. To get a pointer to the frontmost window in the floating
window service layer, call the Get Fr ont Ser vi ceW ndow function. To find out which
part of your floating window an event occurred in, call the Fi ndSer vi ceW ndow
function. Your text service component can close the floating window you originally
allocated by using the Cl oseSer vi ceW ndow function.

Text Services Manager Reference

This section describes four categories of routines and handlers, and their related
constants and data structures:

» Text Services Manager routines called by client applications (the application interface
to the Text Services Manager)

» application-supplied handlers for Apple events initiated by text service components

» Text Services Manager routines called by text service components (the component
interface to the Text Services Manager)

» text service component routines, called by the Text Services Manager and possibly by
client applications

Text Services Manager Routines for Client Applications

7-48

The Text Services Manager provides an application interface that allows client
applications to use text service components independently of any specific knowledge of
those components. Your client application makes these application-level calls to the Text
Services Manager, which in turn calls the text service component using the
component-level routines described in the section “Text Service Component Routines”
on page 7-84.

Text Services Manager Reference

CHAPTER 7

Text Services Manager

The routines in the application interface let you

= initialize and close your TSM-aware application

= use TSM documents

= pass events, menu items, and cursor control to text service components
= confirm active input in TSM documents that use input methods

= provide text services to the user

= request a floating input window instead of inline input

= associate scripts and languages with text service components

Initializing and Closing as a TSM-Aware Application

If your client application uses any of the application-level Text Services Manager
routines, call the | ni t TSMAwar eAppl i cat i on function immediately after you have
called the other Toolbox initialization routines.

The Text Services Manager needs to perform some housekeeping when your client
application is closed. To expedite this process, call the CI oseTSMAwar eAppl i cati on
function when you quit.

InitTSMAwareApplication

The | ni t TSMAwar eAppl i cat i on function informs the Text Services Manager that
your application is TSM-aware.

FUNCTI ON | ni t TSMAwar eAppl i cati on: OSErr;

DESCRIPTION

The Text Services Manager notes that your application is TSM-aware by allocating the
necessary data in its internal data structures.

RESULT CODES
noErr No error
mentul | Err Insufficient memory to initialize
t smAl r eadyRegi st er edErr Application is already TSM-initialized
t smNot AnAppEr r The caller is not an application
SEE ALSO

For sample code that uses the | ni t TSMAwar eAppl i cat i on function, see Listing 7-1 on
page 7-18.

Text Services Manager Reference 7-49

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

CloseTSMAwareApplication

DESCRIPTION

RESULT CODES

SEE ALSO

The C oseTSMAwar eAppl i cat i on function informs the Text Services Manager that
you have closed your application.

FUNCTI ON Cl oseTSMAwar eAppl i cation: OSErr;

The Text Services Manager performs necessary housekeeping when your
application closes.

Before you call the Cl oseTSMAwar eAppl i cat i on function, be sure that your
application disposes of all open TSM documents by calling the Del et eTSMDocunent
function (see page 7-53).

nokErr No error
t smNever Regi st er edErr Application was never TSM-initialized

For sample code that uses the Cl oseTSMAwar eAppl i cat i on function, see Listing 7-6
on page 7-24.

Creating and Activating TSM Documents

This section describes the functions that let you create, activate, deactivate, and dispose
of a TSM document (for details on the contents of a TSM document, see the section
“Creating a TSM Document” on page 7-18).

NewTSMDocument

7-50

The NewTSMDocunment function creates a TSM document and returns a handle to the
document’s ID.

FUNCTI ON NewTSMDocunent (nunOflnterface: |nteger;
VAR supportedl nterfaceTypes:
I nterfaceTypeli st;
VAR i docl D. TSMbocurent | D;
ref Con: Longlnt): OSErr;

Text Services Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 7

Text Services Manager

nunOf I nterface
The number of supported text service interface types. Currently, this
number must be 1.

supportedl nterfaceTypes
Alist of supported interface types. This list helps the Text Services
Manager to locate the text services that have the correct interface type.
Currently, the Text Services Manager has defined one interface type:
kText Servi ce (="'tsvc'). The data type | nt erf aceTypelLi st isa
simple array of 4-character (OSType) tags.

i docl D Upon successful completion of the call, contains the document
identification number of the TSM document created.

ref Con A reference constant to store in the TSM document record. It may have
any value you wish.

Each time your client application calls the NewTSMDocument function, the Text Services
Manager creates an internal record called a TSM document and returns its ID.

If the call is successful, NewTSMDocument opens the default input method text service
component of the current keyboard script and assigns it to this document. If
NewTSMDocunent returnst snScri pt HasNol MEr r, it has still created a valid TSM
document, but has not associated an input method with it.

If NewTSMDocunent fails to create a new TSM document, it returns an error and sets
i docl Dto NI L.

NoErr No error

menful | Err Insufficient memory to open document

t smnsupportedTypeErr Supported type was not' t svc'

t smNever Regi st er edErr Application is not TSM-aware

tsnScri pt HasNol MVEr r Current script does not use input methods

t snmCant OpenConponent Er r Cannot open default input of current script

For sample code that uses the NewT'SMDocunent function, see Listing 7-2 on page 7-19.

ActivateTSMDocument

The Act i vat eTSMDocunent function instructs the Text Services Manager to mark the
TSM document associated with a newly active window as active.

FUNCTI ON Acti vat eTSMDocunent (idoclD: TSMDocunent| D): OSErr;

Text Services Manager Reference 7-51

Jabeue sa2INIBS X3l .

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 7

Text Services Manager

i docl D A TSM document identification number created by a prior call to the
NewTSMDocument function (see page 7-50).

When a window that has an associated TSM document becomes active, your client
application must call the Act i vat eTSMDocument function to inform the Text Services
Manager that the document is activated and is ready to use text service components.

Act i vat eTSMDocunent calls the equivalent text service component routine
Act i vat eText Ser vi ce (see page 7-85) for all open text service components associated
with the TSM document.

If a text service component has a menu, the Text Services Manager inserts the menu into
the menu bar.

noErr No error
t sm nval i dDocl DErr Document is not a valid TSM document

For sample code that uses the Act i vat eTSMDocunent function, see Listing 7-3 on
page 7-21.

DeactivateTSMDocument

DESCRIPTION

7-52

The Deact i vat eTSMDocument function instructs the Text Services Manager to mark
the TSM document as inactive.

FUNCTI ON Deacti vat eTSMDocument (i docl D: TSMDocunent| D): OSErr;

i docl D A TSM document identification number created by a prior call to the
NewTSMDocunent function (see page 7-50).

The Deact i vat eTSMDocunent function lets you inform the Text Services Manager that
a TSM document in your client application is no longer active and must temporarily stop
using text service components.

The Text Services Manager calls the equivalent text service component function
Deact i vat eText Ser vi ce (see page 7-85) for any text service component associated
with the TSM document being deactivated.

Text Services Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 7

Text Services Manager

IMPORTANT

Once your application is initialized as a TSM-aware application, at least
one TSM document must always be active when your application is
active. If a situation arises in which you are a TSM-aware application but
all of your TSM documents are inactive, any text service component that
has a menu or palette windows will be unable to communicate with the
user. The best policy is to always create a TSM document, even if only a
dummy document, immediately after initializing as a TSM-aware
application. a

noErr No error
tsm nval i dDocl DErr Document is not a valid TSM document

For sample code that uses the Deact i vat eTSMDocument function, see Listing 7-3 on
page 7-21.

DeleteTSMDocument

DESCRIPTION

RESULT CODES

The Del et eTSMDocument function closes all opened text service components for the
TSM document.

FUNCTI ON Del et eTSMDocunent (i docl D: TSMDocumnent| D): OSErr;

i docl D A TSM document identification number created by a prior call to the
NewTSMDocumnent function (see page 7-50).

When your application disposes of a TSM document, it must call the

Del et eTSMDocunent function to inform the Text Services Manager that the document
is no longer using text service components. Del et eTSMDocunent invokes the
Component Manager Cl oseConponent function for each open text service component
associated with this document. It also disposes of the internal data structure for the
TSM document.

noErr No error
tsm nval i dDocl DErr Document is not a valid TSM document
t smNever Regi st er edEr r Application is not TSM-aware

Text Services Manager Reference 7-53

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Passing Events to Text Service Components

TSMEvent

This section describes a function that lets you instruct the Text Services Manager to pass
certain events to the appropriate text service component.

DESCRIPTION

SEE ALSO

7-54

The TSMEvent function passes all events obtained from the Wi t Next Event function,
including null events, to the Text Services Manager.

FUNCTI ON TSMEvent (VAR event: Event Record): Bool ean;

event The event record for the event that has been obtained from
Wi t Next Event .

Your client application regularly obtains events such as key-down events from the
Toolbox Event Manager function Wi t Next Event . Some of these events may need to be
handled by text service components. The TSMEvent function lets you pass those events
to the Text Services Manager. The Text Services Manager dispatches the passed events to
the appropriate text service components by calling the Text Ser vi ceEvent function for
each component (see page 7-87).

If TSMEvent returns FALSE, you need to process the event as you normally do. If
TSMEvent returns TRUE, the event has been handled by a text service component and is
now a null event. You should process the null event as you normally do.

Note

The way the Text Services Manager uses and dispatches Apple events
creates the potential for a reentrance situation that your client
application should know about and be prepared to handle. When your
application calls TSMEvent , the Text Services Manager uses the Apple
Event Manager function AESend to pass data to your application
through an Apple event. Your Apple event handler is thus invoked
before the TSMEvent trap has returned. O

The Wai t Next Event function is described in the Event Manager chapter of
Inside Macintosh: Macintosh Toolbox Essentials.

For sample code that uses the TSMEvent function, see Listing 7-4 on page 7-22.

Text Services Manager Reference

CHAPTER 7

Text Services Manager

Passing Menu Selections and Cursor Setting

This section describes two functions, TSMVenuSel ect and Set TSMCur sor, that let you
instruct the Text Services Manager to pass menu commands and cursor control to the
appropriate text service component.

TSMMenuSelect

DESCRIPTION

SEE ALSO

The TSMvenuSel ect function gives the specified text service component a chance to
reply to a menu selection.

FUNCTI ON TSMvenuSel ect (nmenuResult: Longlnt): Bool ean;

menuResul t
The result from the Menu Manager MenuSel ect function.

When the user chooses a menu item, the item may belong to a text service component’s
menu. To provide an opportunity for the text service component to reply to its menu
selections, your application should call TSMMenuSel ect with the result from the Menu
Manager MenuSel ect function.

TSMvenuSel ect returns FALSE if a text service component did not handle the menu
selection. In this case, your client application should process the menu selection
normally. TSMVenuSel ect returns TRUE when a text service component handled the
menu selection. In this case, you should take no action.

After TSMVenuSel ect returns, your application should—as usual—call the Menu
Manager function Hi | i t eMenu with the menul D parameter set to 0 to remove the
highlighting from the menu title.

The Menu Manager is described in Inside Macintosh: Macintosh Toolbox Essentials.

SetTSMCursor

The Set TSMCur sor function provides an opportunity for the text service component to
set the shape of the cursor. If the text service component does not respond, your
application may set the cursor.

FUNCTI ON Set TSMCur sor (nousePos: Point): Bool ean;

Text Services Manager Reference 7-55

Jabeue sa2INIBS X3l .

DESCRIPTION

SEE ALSO

CHAPTER 7

Text Services Manager

mousePos A QuickDraw point indicating the position (in global coordinates) of the
cursor in your application.

Your client application is responsible for setting the cursor to an appropriate shape as it
passes over your various user interface elements. It is also necessary to provide an
opportunity for a text service component to set the cursor over its own user interface
elements. The Set TSMCur sor function allows the text service component to control the
shape of the cursor if appropriate.

Call Set TSMCur sor whenever you would normally call the QuickDraw Set Cur sor
procedure. When Set TSMCur sor returns TRUE, the cursor is positioned in a text service
component window or in the active input area and it has been set by a text service
component. Your client application should not set the cursor in this case. When

Set TSMCur sor returns FALSE, the cursor has not been set, and your client application
may set it.

Set TSMCur sor calls the equivalent text service component function

Set Text Ser vi ceCur sor (page 7-88) for each open text service component to

provide an opportunity for each one to set shape of the cursor. If a text service
component actually changes the shape of the cursor, the Text Services Manager does not
call Set Text Ser vi ceCur sor for the rest of the text service components and returns
TRUE. If none of the text service components sets the cursor, then Set TSMCur sor
returns FALSE.

The Set Cur sor procedure is described in the QuickDraw chapters of
Inside Macintosh: Imaging.

Confirming Active Input in a TSM Document

This section describes the Fi x TSMDocunent function, which allows you to explicitly
confirm text in the active input area.

FixTSMDocument

7-56

The Fi xTSMDocunent function informs the Text Services Manager that input in the
active input area of a specified TSM document has been interrupted, and that the text
service component must confirm the text and terminate user input.

FUNCTI ON Fi xTSMDocunent (i docl D: TSMDocunent|D): OSErr;

i docl D The identification number of a TSM document created by a prior call to
the NewTSMDocumnent function (see page 7-50).

Text Services Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 7

Text Services Manager

Typically, an inline input text service component removes confirmed input from the
active input area each time the user presses the Return key, and passes the confirmed
text to your application through an Apple event.

In certain situations, however, your client application may need to inform the text
service component that there has been an interruption in user input for a specific TSM
document. In this case you call the Fi x TSMDocumnent function to give the input method
text service component the opportunity to confirm any input in progress.

For instance, if the user clicks in the close box of the window in which active input is
taking place, call Fi xTSMDocunent before you close the window. The text service
component will pass you the current contents (both converted and unconverted) of the
active input area as confirmed text.

For simple activating and deactivating of your application’s window, it is not necessary
to confirm the text in the active inline area. The input method saves the text and restores
it when your window is reactivated.

noErr No error

tsm nval i dDocl DErr The document is not a valid TSM document
t smDocNot Acti veErr The TSM document is not active

t snTSNot CpenEr r The default input method is not open

For sample code that uses the Fi xTSMDocunent function, see Listing 7-5 on page 7-23.

Making Text Services Available to the User

This section describes functions that let you provide ways for the user to choose, open,
and close text service components that are not input methods.

Your client application is responsible for providing a way—usually a menu—for the user
to choose from among all available text service components. To get a list of available text
service components to display in a menu, call the Get Ser vi ceLi st function. Be sure to
filter out input methods, because the Keyboard menu already displays them.

When the user chooses a text service component that is not an input method, call the
OpenText Ser vi ce function to add the text service component to the TSM document.
The OpenText Ser vi ce and Cl oseText Ser vi ce functions let you inform the Text
Services Manager that a user of your client application has chosen to open or close a text
service component. The Text Services Manager then opens or closes the component and
associates it with a TSM document or ends the association as appropriate.

Text Services Manager Reference 7-57

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

GetServiceList

DESCRIPTION

7-58

The Get Ser vi ceLi st function obtains a complete list of text service components of a
given kind available to the user of your client application.

FUNCTI ON CGet Servi celLi st (nunOfl nterfaceTypes: |nteger;
support edl nterfaceTypes:
I nterfaceTypeli st;
VAR servi cel nfo: Text Servi celLi st Handl e;
VAR seedVal ue: Longlnt): OSErr;

nuntX | nt erfaceTypes
The number of interface types supported by your client application.

supportedl nterfaceTypes
Alist of the interface types supported by your client application. The data
type | nt er f aceTypelLi st is a simple list of 4-character (OSType) tags.
servicelnfo
A handle to the text service component list data structure. If the handle is
NI L, the Text Services Manager allocates the handle; otherwise, it
assumes the handle is a valid text service component list handle, as
defined by the Text Ser vi ceLi st Handl e data type.

seedVal ue A value that indicates whether the list of text service components
returned by Get Ser vi ceLi st may have been modified. This value is
returned in this parameter after the Text Services Manager calls the
Component Manager Get Conponent Li st ModSeed function.

When your client application calls Get Ser vi celLi st, the Text Services Manager locates
all the text service components that support the specified interface and text service
component types and creates a text service component list, defined by the

Text Servi ceLi st data type, that contains an entry for each of the text service
components.

It is possible to register text service components or withdraw them from registration at
any time. Once it has compiled a list of text services, the Text Services Manager invokes
the Get Conponent Li st ModSeed function and returns the value in the nodseed
parameter. You can save that value and, the next time you need to draw or regenerate
the list of services, call the Component Manager Get Conponent Li st ModSeed
function. If the seed value differs from the one you received from your last call to

Cet Servi celLi st, you need to call Get Ser vi ceLi st once more to update the
information. Alternatively, you can simply call Get Ser vi ceLi st each time you need to
update the list, although that may be less efficient.

Text Services Manager Reference

RESULT CODES

CHAPTER 7

Text Services Manager

Cet Ser vi ceLi st uses the text service component information record, defined by the
Text Ser vi cel nf o data type, and the text service component list record, defined by the
Text Ser vi ceLi st data type.

TYPE Text Servicelnfo =
RECORD
f Component : Conponent ;
fltemNanme: Str255;
END;
Text Servi cesl nfoPtr = ~Text Servi cel nf o;

Field descriptions

f Component A component identifier for this text service component. You can use
the component identifier in Text Services Manager functions that
open or obtain information about a text service component.

i temNane A Pascal string with the name of a text service component. (The
script system to use for displaying the string is specified in the
conponent Fl ags field of the component description record. See

page 7-15.)
TYPE Text Servi celLi st =
RECORD
f Text Servi ceCount : I nt eger;
f Servi ces: ARRAY[0. .0] of Text Servi cel nfo;
END;

Text Servi ceLi stPtr = ~Text Servi celLi st;
Text Servi ceLi st Handl e = ~Text Servi ceLi stPtr;

Field descriptions

f Text Ser vi ceCount
An integer that provides the number of text service components in
the text service component list.

f Servi ces A variable-length array of text service component information
records.

nokErr No error

menful | Err Insufficient memory

t smUnsuppor t edTypeErr Supported type was not' t svc'

Text Services Manager Reference 7-59

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

OpenTextService

The OpenText Ser vi ce function instructs the Text Services Manager to open a text
service component that a user has chosen and to associate it with a TSM document.

FUNCTI ON OpenText Servi ce (idoclD: TSMbocunent | D,
aConponent : Conponent;
VAR aConponent | nst ance:
Conponent I nst ance): OSErr;

i docl D The identification number of a TSM document created by a prior call to
the NewTSMDocumnent function (see page 7-50).

aConponent
A component identifier for this text service component.

aConponent | nst ance
Upon completion of the call, contains a component instance. This value
identifies your application’s connection to a text service component. You
must supply this value whenever you call the text service functions
provided by the component directly.

DESCRIPTION

You can obtain the component identifier to pass in aConponent by comparing the menu
item name selected by the user with the component item names in the
Text Ser vi celLi st record obtained by calling Get Ser vi ceLi st .

The Text Services Manager opens the requested component by calling the Component
Manager OpenConponent function.

If the specified text service component is already open, the Text Services Manager does
not open it again and the t smConponent Al r eadyQpenEr r error message is returned
as a result code. Whether or not the text service is open, the Text Services Manager calls
the functions | ni ti at eText Servi ce (see page 7-84) and Act i vat eText Ser vi ce
(see page 7-85) for the given text service and returns a valid component instance. Upon
completion of the OpenText Ser vi ce call, the selected text service component is
initialized and active.

Note

This function is for opening text service components other

than input methods. Your application does not need to open or close
input methods. O

RESULT CODES
noErr No error
t sm nval i dDocl DEr r The document is not a valid TSM document
t smConmponent Al r eadyQpenEr r Component is already open for this document
t smCant QpenConponent Er r Component doesn’t exist or won't open

7-60 Text Services Manager Reference

CHAPTER 7

Text Services Manager

CloseTextService

The O oseText Ser vi ce function deactivates the active TSM document’s association
with the specified text service and closes the service component.

FUNCTI ON Cl oseText Servi ce (idoclD: TSMbocunent | D
aConponent | nst ance: Conponent | nst ance):
OSErr;

i docl D The identification number of a TSM document created by a prior call to
the NewTSMDocunent function (see page 7-50).

aConponent | nst ance
The component instance created by a prior call to OpenText Ser vi ce.

DESCRIPTION

When a user wants to close an opened text service component, your client application
should call O oseText Ser vi ce.

If the text service component displays a menu, the Text Services Manager removes the
menu from the menu bar.

Note

This function is for closing text service components other than input
methods. Your application does not need to open or close

input methods. O

RESULT CODES
noErr No error
t sm nval i dDocl DEr r The document is not a valid TSM document
t smMNoQpenTSEr r The component for this document is not open

Requesting a Floating Input Window

In certain situations, bottomline input with a floating input window is preferable to
inline input for text input users. The Text Services Manager provides two ways to control
how the floating input window is used: with a single specified TSM document or with
all documents of a given application.

Text Services Manager Reference 7-61

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

UselnputWindow

DESCRIPTION

RESULT CODES

The Usel nput W ndow function associates a floating input window with a particular
TSM document or with all TSM documents of an application.

FUNCTI ON Usel nput W ndow (i docl D: TSMDocunent | D;
useW ndow. Bool ean): OSErr;

i docl D The TSM document ID of the particular TSM document to be associated
with the floating input window. If NI L, this call affects all your
application’s TSM documents.

useW ndow A Boolean value that indicates whether to use the floating input window.
Set it to TRUE if you want to use a floating window; set it to FALSE if you
do not want to use a floating window.

The Text Services Manager provides a floating input window for your application’s use
if you call Usel nput W ndowwith a value of TRUE in the useW ndow parameter. To
specify inline input instead, call Usel nput W ndowwith a value of FALSE in the

useW ndow parameter.

The default value for useW ndowis FALSE; if you do not call Usel nput W ndow the
Text Services Manager assumes that your application wants to use inline input. If your
application wants to save the user’s choice, it can put the last-used value for useW ndow
in a preferences file before quitting.

If you pass a valid TSM document ID for the i doc| D parameter, the useW ndow
parameter affects only that TSM document. If you pass NI L for the i docl D parameter,
the useW ndow parameter affects all your application’s TSM documents, including
documents you create after making this call.

noErr No error
t sm nval i dDocl DErr The document is not a valid TSM document
t smNever Regi st er edErr Application is not TSM-aware

Associating Scripts and Languages With Components

7-62

The utility routines described in this section allow you to

= assign a particular text service component as the default component to be associated
with a given script system and language

= determine which text service component is the default component associated with a
given script system and language

Text Services Manager Reference

CHAPTER 7

Text Services Manager

= determine the script system and language combination for the currently active text
service component

= assign a script system and language combination to the currently active text service
component

In addition to these routines, you can use the text service component function
Cet Scri pt LanguageSupport (described on page 7-90) to determine which additional
scripts and languages a text service component supports.

These routines make use of the script-language record, described under “Identifying the
Supported Scripts and Languages” on page 7-42.

SetDefaultInputMethod

DESCRIPTION

RESULT CODES

The operating system uses the Set Def aul t | nput Met hod function to assign a default
(input method) text service component to a given script and language.

FUNCTI ON Set Def aul t | nput Met hod (ts: Conponent;
VAR sl Record: Scri pt LanguageRecord):
OSErr;

ts The component identifier of the input method text service component to
be associated with the script and language combination given in the
sl Recor d parameter.

sl Record A script-language record that describes the script and language
combination to be associated with the input method text service
component specified in the t s parameter.

The operating system uses Set Def aul t | nput Met hod to associate an input method
text service component with a given script and language. The operating system calls this
function when the user expresses input method preferences through the Keyboard
menu, Keyboard control panel, or other device. The associations made with this function
are permanent; that is, they persist after restart.

If the script code and language code specified in the script-language record are
incompatible, Set Def aul t | nput Met hod returns the error par antrr.

NoErr No error
par ankrr The script does not match the language
t snicri pt HasNol Merr Current script does not use input methods

t smCant QpenConponent Er r Cannot open default input of current script

Text Services Manager Reference 7-63

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

GetDefaultInputMethod

DESCRIPTION

RESULT CODES

The Get Def aul t | nput Met hod function returns the default (input method) text service
component for a given script and language.

FUNCTI ON CGet Def aul t | nput Met hod (VAR ts: Conponent;
VAR sl Record: Scri pt LanguageRecord):
OSErr;

ts The component identifier of the input method text service component
that is associated with the script and language combination given in the
sl Recor d parameter.

sl Record Ascript-language record that describes the script and language
combination that is associated with the input method text service
specified in the t s parameter.

The operating system uses Get Def aul t | nput Met hod to find out which input method
to activate when the user selects a new keyboard script from the Keyboard menu or by
Command-key combination, or when an application calls KeyScr i pt to change
keyboard scripts.

In versions of Japanese system software starting with KanjiTalk 7.0, if the default input
method is an old (pre-KanjiTalk 7.0) non-TSM-aware method,

Get Def aul t | nput Met hod returns the error t sml nput Met hodl sA dEr r. In that case
the t s parameter contains the script code of the old input method in its high-order
word, and the reference ID of the old input method in its low-order word.

noErr No error
par ankrr The script does not match the language
t snScri pt HasNol Mer r The script does not use input methods

t sm nput Met hodl sA dErr The default input method is old-style

SetTextServiceLanguage

7-64

The Set Text Ser vi ceLanguage function changes the current input script
and language.

FUNCTI ON Set Text Ser vi ceLanguage (VAR sl Record:
Scri pt LanguageRecord): OSErr;

sl Record A script-language record for the current text service component.

Text Services Manager Reference

CHAPTER 7

Text Services Manager

DESCRIPTION

The operating system calls this Text Services Manager function when the user switches
the keyboard script, so that the Text Services Manager can synchronize the input method
with the current keyboard script.

RESULT CODES

noErr No error
par ankrr The script does not match the language
t snCant QpenConponent Er r Cannot open default input of the script

GetTextServiceLanguage

The Get Text Ser vi ceLanguage function returns the language supported by the
default (current) input method text service component for the current keyboard script.

FUNCTI ON Get Text Ser vi ceLanguage (VAR sl Record:
Scri pt LanguageRecord): OSErr;

sl Record Ascript-language record that, upon completion of the call, describes the
language supported by the current text service component.

RESULT CODES
noErr No error

Apple Event Handlers Supplied by Client Applications

This section describes the Apple events for which client applications must install
handlers. Text service components request action from and send information to client
applications through these Apple events.

Your application uses these Apple events to receive text from text service components, to
show or hide input windows, and to convert screen positions to text offsets—and vice
versa—for text service components. The conversion operations are used to track mouse
events and determine screen locations of text in the active input area.

The Apple events described in this section are all organized under the
kText Ser vi ced ass constant with a value of ' t svc' .

Text Services Manager Reference 7-65

Jabeue sa2INIBS X3l .

7-66

CHAPTER 7

Text Services Manager

lists the Apple event ID constants for the Apple events described in this section.

Table 7-1 Apple event ID constants

Constant Value Explanation

kUpdat eActi vel nput Ar ea " updt’ Update Active Input Area
kPos2O f set ''p2st’ Position To Offset

kOf f set 2Pos ‘st 2p' Offset To Position

kShowHi del nput W ndow "shiw Show /Hide Input Window

Table 7-2 shows the Apple event keyword constants used in the Apple events described

in this section.

Table 7-2 Apple event keyword constants

Constant Value
key AETSMDocument Ref con "refc’

keyAESer ver | nst ance "srvi'
keyAETheDat a ' kdat'
keyAEScri pt Tag "sclg'
keyAEFi xLengt h fixl!
keyAEHi | i t eRange "hrng'
keyAEUpdat eRange "udng'
keyAEC auseOf fset s "cl au'
keyAECur r ent Poi nt ' cpos'
keyAEDr aggi ng " bool '
keyAEOr f set "of st
keyAERegi onC ass "rgnc'
keyAEPoi nt ' gpos'
optional keyword for Update Active Input Area
keyAEPi nRange "pnrg'
optional keywords for Offset To Position

keyAEText Font "kt xf'
keyAEText Poi nt Si ze 'kt ps'
keyAEText Li neHei ght "kt h'
keyAEText Li neAscent 'kt as'

Text Services Manager Reference

Meaning

TSM document reference constant
Component instance

Text from active input area
Script-language record
Length of confirmed text
Highlight range in text
Update range in text
Clause offsets array
Current point

Dragging flag

Byte offset in text

Region class

Calculated point

Range for scrolling

Text font
Text size
Text line height

Font ascent

CHAPTER 7

Text Services Manager

Table 7-2 Apple event keyword constants (continued)
Constant Value Meaning
keyAEANngl e ' kang' Text angle

optional keyword for Position To Offset
keyAELeadi ngEdge "kl ef! Leading-edge Boolean

Table 7-3 lists the Apple event descriptor types discussed in this section.

Table 7-3 Apple event descriptor types

Constant Value Meaning

t ypeConponent | nst ance "cnpi’ Server instance

t ypeText RangeArr ay "tray' Text range array
typeO fset Array ' of ay' Offset array

typelntl WitingCode intl' Script-language record
t ypeQ@Poi nt " QDpt ' QuickDraw point

t ypeAEText "t TXT Apple event text
typeText " TEXT' Plain text

t ypeText Range "txrn' A text range record

t ypeTSMDocumnent Ref con "refc' TSM document reference constant
t ypeFi xed "fixd Fixed 16.16 format

Table 7-4 lists the Apple event descriptor type constants for region class discussed in
this section.

Table 7-4 Apple event descriptor type constants for the Apple event region class
Constant Value
kTSMQut si deOf Body 1
kTSM nsi deOf Body 2
kKTSM nsi deOF Acti vel nput Ar ea 3

For the values of standard Apple event constants used in the following section not listed
in these tables, see the Apple Event Registry: Standard Suites.

Text Services Manager Reference 7-67

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Creating and Updating an Active Input Area

7-68

The text service component uses the Update Active Input Area Apple event to request
that your client application create and update an active input area, and accept confirmed
text. For details on active input areas, see “Inline Input” on page 7-11.

Update Active Input Area—Creating and Updating an Active Input Area

Event class
Event ID

Requested action

Required parameters

Keyword:

Descriptor type:

Data:

Keyword:

Descriptor type:

Data:

Keyword:

Descriptor type:

Data:

Keyword:

Descriptor type:

Data:

kText Servi ced ass
kUpdat eAct i vel nput Ar ea

Update a range of text. Specify any necessary highlighting with
offsets in the optional key AEHi | i t eRange parameter.

key AETSMDocunent Ref con
t ypeLongl nt eger

A TSM document specifier (reference constant) supplied by the
application in a prior call to the NewTSMDocument function (see
page 7-50). This value is associated with the TSM document
whose active input area is to be updated.

keyAESer ver | nst ance
t ypeConponent | nst ance

A component instance value created by a prior call to the
Component Manager OpenConponent function. This value
identifies the text service component.

keyAETheDat a
t ypeChar

Text data that has been processed in some way by a text service
component.

keyAEScri pt Tag
typelntl WitingCode

The script code and language code associated with the text
returned in the key AETheDat a parameter. The information is
passed in a script-language record, as defined on page 7-42.

Text Services Manager Reference

CHAPTER 7

Text Services Manager

Update Active Input Area—Creating and Updating an Active Input Area (continued)

Required parameters
Keyword:
Descriptor type:
Data:

keyAEFi xLengt h
t ypeLongl nt eger

The length of the confirmed text in the active inline area.

If the value of key AEFi xLengt h is -1, the text contained in the
keyAETheDat a parameter is to completely replace the current
selection in the application window. In this case, there is to be no
active input area, the text is all considered to be confirmed, and is
to be made part of the body text of the client application.

If the value is 0, an active input area is in process, but there is no
completely confirmed text being sent.

If the value is greater than 0, the text specified in the
keyAETheDat a parameter up to the indicated offset is
confirmed data and should be consumed by the application. The
Text Services Manager considers any text beyond the offset
specified by the key AEFi xLengt h parameter to be inside the
active input area with the starting point of the active input area at
that offset. This is illustrated in Figure 7-11.

Figure 7-11 Updating text in an active input area

Tne wive dapkK oea

keyAEFi xLengt h = -1 (no conversion needed)

AT he wine dark sea

keyAEFi xLengt h = 0 (no confirmed text)

Tne uline dark sea

keyAEFi xLengt h =5 (first 5 characters are confirmed)

Text Services Manager Reference 7-69

Jabeue sa2INIBS X3l .

7-70

CHAPTER 7

Text Services Manager

Update Active Input Area—Creating and Updating an Active Input Area (continued)

Optional parameters
Keyword:
Descriptor type:
Data:

keyAEHi | i t eRange
t ypeText RangeArr ay

An array that specifies the ranges of text to be highlighted in
the active input area. It also specifies caret position. There are
5 types of highlighting:

Constant Applies to

kCar et Posi ti on The caret position only
kRawText All of the unconverted text
kSel ect edRawText Part of the unconverted text
kConvert edText All of the converted text
kSel ect edConvert edText Part of the converted text

For instance, the input method may have the application highlight
all raw text with a gray underline; but if it needs to further highlight
a selection within that raw text, it may specify a different underline
for the selected raw text. The text range array is an array of
text-range records, each of which has this form:

TYPE Text Range =

RECORD
fStart: Longl nt;
f End: Longl nt;
fHi liteStyle: I nt eger;
END,;

For the text-range record whose highlight style is
kCar et Posi ti on, bothf St art and f End are the same and denote
the position of the caret.

Negative values for a text range mean that the specified range only
adds to, rather than replaces, any current highlighting for the
specified type of text.

Text Services Manager Reference

CHAPTER 7

Text Services Manager

Update Active Input Area—Creating and Updating an Active Input Area (continued)

Optional parameters

Keyword:
Descriptor type:
Data:

Keyword:
Descriptor type:
Data:

Keyword:
Descriptor type:
Data:

Return parameter
Keyword:
Descriptor type:
Data:

keyAEUpdat eRange
t ypeText RangeArr ay

An array of text-range records that indicates the update range of the
active input area (in many circumstances, not all of the active input
area needs updating). Update Active Input Area always uses the
text-range records in the text range array in pairs. The first record (0)
specifies a range of old text (text in the inline buffer) to be updated;
the second record (1) specifies the range of text in key AETheDat a
that is to replace that old text. In general, the record n (n >=0, n is an
even number) specifies the range of old text to be updated and the
record n + 1 specifies the range of new text to replace the
corresponding old text. (The f Hi | i t eSt yl e field is ignored.)

keyAEPi nRange
t ypeText Range

A text range record that specifies a start offset and and an end offset
that should be scrolled into view if the text specified by these offsets
is not already in view. (The f Hi | i t eSt yl e field is ignored.)

keyAEC auseOf fset s
typeO fset Array

An offset array (defined by the Of f set Arr ay data type) that
specifies offsets of word or clause boundaries of the new text.
Offsets are from the start of the active input area. Applications can
use this information for word selection or other purposes.

TYPE OFfsetArray =
RECORD
f Nunf OF f set s: | nt eger;
fOfset: ARRAY[O..0] of Longlnt;
END;

The nunf Of f set s field contains an integer that specifies the
number of offsets in the offset array. The f Of f set field is an array
of long integers with the number of entries specified in the

nunof Of f set s field.

keyEr r or Nunber
typeShort | nt eger

Any errors that the application needs to return to the text service
component. The application must pass Memory Manager, TextEdit,
or other errors that it receives through to the component; otherwise,
it should pass 0 (noErr).

Text Services Manager Reference 7-71

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

The text range array data structure used in the key AEHi | i t eRange
and keyAEUpadat eRange parameters described above is defined by the
Text RangeAr r ay data type:

TYPE Text RangeArray =

RECORD

f Nunf Ranges: | nt eger;

f Range: ARRAY[0..0] of TextRange;
END;

The f Nunf Ranges field contains an integer that indicates how many text ranges this
array holds. The f Range field contains a series of text-range records. (If the array
consists of more than one text-range record, the size of the array must be calculated as
f Nunf Ranges * Si zeO (f Range) .)

For sample code that handles the Update Active Input Area Apple event, see Listing 7-7
on page 7-26.

Converting Global Coordinates to Text Offsets

The Position To Offset Apple event requests a client application to convert specified
global coordinates to byte offsets in text. The text service component uses this Apple
event for mouse tracking, in order to draw the caret, highlight text, or adjust the cursor
appearance.

Position To Offset—Converting Global Coordinates to Text Offset

Event class kText Servi ced ass
Event ID kPos2(O f set
Requested action Convert global coordinates specified in the key AECur r ent Poi nt

parameter to a byte offset. If the click is within the limits of the
active input area, the offset is relative to the start of the active input
area. Otherwise, the offset is relative to the start of the application’s
body text. The client application specifies the classification of the
location of the offset in the key AERegi onCl ass return parameter.

Required parameters
Keyword: key AETSMDocunent Ref con
Descriptor type: t ypeLongl nt eger

Data: A TSM document specifier (reference constant) supplied by the
application in a prior call to the NewTSMDocument function
(see page 7-50). This value is associated with the TSM document
affected by this event.

7-72 Text Services Manager Reference

CHAPTER 7

Text Services Manager

Position To Offset—Converting Global Coordinates to Text Offset (continued)

Required parameters

Keyword:
Descriptor type:
Data:

Keyword:
Descriptor type:
Data:

Optional parameter
Keyword:
Descriptor type:
Data:

Return
parameters

Keyword:
Descriptor type:
Data:

Keyword:
Descriptor type:
Data:

keyAESer ver | nst ance
t ypeConponent | nst ance

A component instance value created by a prior call to the
Component Manager OpenConponent function. This value
identifies the text service component.

keyAECur r ent Poi nt
t ypePoi nt

A point that contains the global coordinates that describe the
current mouse position.

keyAEdr aggi ng

t ypeBool ean

A Boolean value that indicates whether the input method is
currently tracking the mouse—that is, whether the user is dragging
the current selection. If it is TRUE, the application should pin the

cursor to the limits of the active input area (to avoid highlighting
beyond the limits of the active input area).

keyAEO! f set
t ypeLongl nt eger

Abyte offset that specifies the character corresponding to the
current mouse position (key AECur r ent Poi nt). If the click is
within the limits of the active input area, the offset is relative to the
start of the active input area. Otherwise, the offset is relative to the
start of the application’s body text.

keyAERegi onC ass
t ypeShort | nt eger

The classification of the position specified in the key AEC! f set
parameter. Three constants define the classification:

Valu
Constant e
kTSMQut si deCf Body 1
kTSM nsi deOf Body 2
kTSM nsi deOF Act i vel nput Ar ea 3

A value of kTSMOut si def Body means that the offset is

outside the application’s body text. A value of

kTSM nsi deCf Body means that the offset is inside the body text.
kTSM nsi deCf Act i vel nput Ar ea means that the offset is inside
the active input area.

continued

Text Services Manager Reference 7-73

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Position To Offset—Converting Global Coordinates to Text Offset (continued)

Return
parameters

Keyword: keyEr r or Nurmber
Descriptor type: typeShort | nt eger

Data: Any errors that the application needs to return to the text service
component. The application must pass Memory Manager, TextEdit,
or other errors that it receives through to the component;
otherwise, it should pass 0 (noEr r).

Optional return parameter

Keyword: keyAELeadi ngEdge
Descriptor type: t ypeBool ean
Data: A Boolean value that is equivalent to the | eadi ngEdge parameter

of the QuickDraw Pi xel ToChar function. It is TRUE if the
specified point corresponds to the leading edge of the character
whose offset is returned; it is FALSE if the specified point
corresponds to the trailing edge of the character.
For sample code that handles the Position To Offset Apple event, see Listing 7-8 on
page 7-30.

Converting Text Offsets to Global Coordinates

7-74

The Offset To Position Apple event requests that a client application convert byte offsets
in text to global coordinates. The text service component uses this Apple event to
determine where in the active input area to draw an element (such as the caret or a
palette of conversion choices) that relates to a particular character.

Offset To Position—Converting Text Offsets to Global Coordinates

Event class kText Servi ceC ass
Event ID kOf f set 2Pos
Requested action Convert a specified byte offset into global coordinates. The offset

value passed to the client application is relative to the start of the
active input area. If there is no active input area, the offset is relative
to the start of the current text body.

Required parameters

Keyword: key AETSMDocunent Ref con

Descriptor type: t ypeLongl nt eger

Data: A TSM document specifier (reference constant) supplied by the
application in a prior call to the NewTSMDocunent function (see
page 7-50). This value is associated with the TSM document
affected by this event.

Text Services Manager Reference

CHAPTER 7

Text Services Manager

Offset To Position—Converting Text Offsets to Global Coordinates (continued)

Required parameters

Keyword:
Descriptor type:
Data:

Keyword:
Descriptor type:
Data:

Return parameters
Keyword:
Descriptor type:
Data:

Keyword:
Descriptor type:
Data:

keyAESer ver | nst ance
t ypeConponent | nst ance

A component instance value returned by a prior call to the
Component Manager OpenConponent function. This value
identifies the text service component.

keyAEO f set
t ypeLongl nt eger

The text offset to be converted into a global point. Offset is in terms
of bytes from the start of the active input area.

keyAEPoi nt
t ypePoi nt

A point that contains the global coordinates obtained by converting
the byte offset passed in the key AECE f set parameter.

keyEr r or Number
typeShort | nt eger

err O fset | nval i d indicates that there is no text at the offset.
errOf fset | sQut si dedf Vi ewindicates that the text offset is out
of view.

The application must pass Memory Manager, TextEdit, or other
errors that it receives through to the component; otherwise, it
should pass 0 (noEr r).

Optional return parameters

Keyword:
Descriptor type:
Data:

Keyword:
Descriptor type:
Data:

Keyword:
Descriptor type:
Data:

keyAEText Font
t ypeLongl nt eger

The font of the text in the active input area. The application can
send this information to the input method to help the input method
position the active input area.

keyAEText Poi nt Si ze
typeFi xed

The size of the text in the active input area. The application can
send this information to the input method to help the input method
position the active input area.

keyAEText Li neHei ght
typeShort | nt eger

The line height of the text in the active input area. The application
can send this information to the input method to help the input
method position the active input area.

continued

Text Services Manager Reference 7-75

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Offset To Position—Converting Text Offsets to Global Coordinates (continued)
Optional return parameters

Keyword: keyAEText Li neAscent

Descriptor type: t ypeShort | nt eger

Data: The ascent height of the text in the active input area. The
application can send this information to the input method to help
the input method position the active input area.

Keyword: keyAEANgl e
Descriptor type: t ypeFi xed

Data: The orientation of the text in the active input area. The value 90
specifies a horizontal line direction and 180 specifies a vertical line
direction. The application can send this information to the input
method to help the input method position the active input area.

For sample code that handles the Offset To Position Apple event, see Listing 7-9 on
page 7-33.

Showing or Hiding the Floating Input Window

7-76

Input methods that supply floating input windows for bottomline input may need to
show or hide the input window at various times. The Show /Hide Input Window Apple
event requests the client application to make the floating input window either visible or
not visible, so that an input method can offer any of the above options.

Note

If your application is not displaying its own floating input window, you
can ignore this Apple event. O

Show/Hide Input Window—Showing or Hiding the Floating Input Window

Event class kText Servi ceCd ass
Event ID kShowHi del nput W ndow
Requested action Make the bottomline floating input window either visible or not

visible, depending on the value of the
key AEShowHi del nput W ndow parameter.

Required parameters
Keyword: key AETSMDocunent Ref con
Descriptor type: typeLongl nt eger

Data: A TSM document specifier (reference constant) supplied by the
application in a prior call to the NewTSMDocunent function (see
page 7-50). This value is associated with the TSM document for the
window being shown or hidden.

Keyword: keyAESer ver| nst ance
Descriptor type: t ypeConponent | nst ance

Text Services Manager Reference

CHAPTER 7

Text Services Manager

Show/Hide Input Window—Showing or Hiding the Floating Input Window (continued)

Data: A component instance value returned by a prior call to the
Component Manager OpenConponent function. This value
identifies the text service component.

Optional parameter

Keyword: keyAEShowHi del nput W ndow
Descriptor type: t ypeBool ean
Data: If TRUE, the bottomline input window should be shown; if FALSE, it

should be hidden. This parameter is not needed if the input method
is simply inquiring about the state of the input window.

Return parameter

Keyword: keyAEShowHi del nput W ndow

Descriptor type: t ypeBool ean

Data: The current state of the input window: TRUE if the window is
shown; FALSE if it is hidden. If the optional parameter
keyAEShowHi del nput W ndowis included, this return parameter
should show the state of the window before it was set to the state
requested in the optional parameter.

Text Services Manager Routines for Components

This section describes the Text Services Manager component interface—the routines and
related data structures that are for the use of text service components. These functions let
your text service component

= send Apple events to a client application to request specific information about the
active input area in a TSM document

= put up a floating window for various purposes

Sending Apple Events to a Client Application

This section describes the Send AEFr omiTSMConponent function, with which your text
service component sends Apple events to a client application.

Send AEFromTSMComponent

The SendAEFr onifSMConponent function sends Apple events from a text service
component to a client application.

FUNCTI ON SendAEFr onTSMConponent (VAR t heAppl eEvent: Appl eEvent;
VAR reply: Appl eEvent;
sendMbde: AESendMode;

Text Services Manager Reference 7-77

Jabeue sa2INIBS X3l .

DESCRIPTION

7-78

CHAPTER 7

Text Services Manager

sendPriority: AESendPriority;

ti meQut I nTicks: Longlnt;

i dleProc: IdleProchktr;
filterProc: EventFilterProcPktr):
OSErr;

t heAppl eEvent
The Apple event to be sent.

reply The reply Apple event returned by SendAEFr onlTSMConponent .

sendMbde The value that lets you specify one of the following modes specified by
corresponding constants: the reply mode for the Apple event, the
interaction level, the application switch mode, the reconnection mode,
and the return receipt mode. To obtain the value for this parameter, add
the appropriate constants. Comprehensive details about these constants
are provided in the description of the Apple Event Manager AESend
function in Inside Macintosh: Interapplication Communication.

sendPriority
The value that specifies whether to put the Apple event at the back of the
event queue (set with the KAENor mal Pri ori ty flag) or at the front of
the queue (KAEH ghPri ori ty flag).

ti meQut I nTi cks
The length of time (in ticks) that the client application is willing to wait
for the reply or return receipt from the server application before it times
out. If the value of this parameter is KNoTi meQut , the Apple event never
times out.

idleProc A pointer to a function for any tasks (such as displaying a globe, a
wristwatch, or a spinning beach ball cursor) that the application performs
while waiting for a reply or a return receipt.

filterProc
A pointer to a routine that accepts certain incoming Apple events that are
received while the handler waits for a reply or a return receipt and filters
out the rest.

The SendAEFr onifSMConponent function is essentially a wrapper routine for the Apple
Event Manager function AESend. See the description of AESend for additional necessary
information, including constants for the sendMbde parameter and result codes.

SendAEFr onTTSMConponent identifies your text service component from the
keyAESer ver | nst ance parameter in the Apple event specified in the

t heAppl eEvent parameter. If a reference constant (refcon) in a TSM document that
corresponds to this parameter is found in the internal data structures of the Text Services
Manager, SendAEFr onTSMConponent adds the reference constant as the

key AETSMDocunent Ref con parameter to the given Apple event before sending it to
the application.

Text Services Manager Reference

CHAPTER 7

Text Services Manager

If the client application is not TSM-aware, SendAEFr omIr'SMConponent routes the
Apple events to the floating input window to allow bottomline input.

IMPORTANT

If your text service component changes the environment in any way—
such as by modifying the A5 world or changing the current zone—while
constructing an Apple event, it must restore the previous settings before
sending the Apple event. a

Note

Your text service component should always use the kCur r ent Process
constant as the target address when it creates an Apple event to send to
the Text Services Manager. O

SEE ALSO

The AESend function is described with the Apple Event Manager in Inside Macintosh:
Interapplication Communication.

The kCur r ent Pr ocess constant is described in Inside Macintosh: Processes.

For sample code showing how a text service component calls the
SendAEFr onTSMConponent function, see Listing 7-11 on page 7-45.

Opening Floating Utility Windows

In conjunction with the Process Manager, the Text Services Manager maintains the
floating window service, whose windows occupy a special layer called the floating
window service layer. See Figure 7-7 on page 7-14.

The Text Services Manager uses the floating window service to provide a standard
floating input window when needed. Text service components can use the service to
create, close, and find floating windows used for various other user-interface purposes.
You can manipulate the service windows with these calls:

s The NewSer vi ceW ndow function lets you open a floating window in front of the
current application.

» The Cl oseSer vi ceW ndow function lets you close a previously allocated floating
window.

s The CGet Front Ser vi ceW ndow function helps you find out which is the frontmost
window in the floating window service layer.

» The Fi ndSer vi ceW ndow function helps you find out which part of a text service
component’s floating window a mouse-down event has occurred in.

Client applications

These calls may be made by client applications also. See the following
description of NewSer vi ceW ndow for special instructions for client
applications. O

Text Services Manager Reference 7-79

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

NewServiceWindow

The NewSer vi ceW ndow function opens a floating utility window in the floating
window service layer, in front of the current application. The text service component
may use the window for interaction with the user or other purposes.

FUNCTI ON NewSer vi ceW ndow (wSt orage: Ptr; boundsRect: Rect;
title: Str255; visible: Bool ean;
theProc: Integer; behind: WndowPtr;
goAwayFl ag: Bool ean;
ts: Conponentl nstance;

VAR wi ndow. W ndowPtr): OSErr;

WSt orage A pointer to the location in memory of the window record. Do not
allocate the window record on the stack. Always be sure to allocate the
window in the heap, or else pass NI L for this parameter.

boundsRect
A rectangle given in global coordinates that determines the size and
location of the new floating window. This rectangle becomes the
por t Rect field of the graphics port record (defined by the QuickDraw
G af Port data type) for this window.

title A Pascal string that contains the title of the window.

visible A Boolean value to determine whether the window is to be drawn. If
TRUE, NewSer vi ceW ndowdraws the window. First it calls the window
definition procedure defined in the t hePr oc parameter to draw the
window frame. Then it generates an update event for the entire window
contents.

t heProc The window definition procedure for the floating window.

behi nd A window pointer (defined by the Window Manager W ndowPt r data
type) that determines the plane of the floating window.
NewSer vi ceW ndowinserts the new window behind the window
pointed to by this parameter. To put the new window behind all other
windows, use behi nd = NI L. To place it in front of all other windows,
use behind = PO NTER(-1).

goAwayFl ag
A Boolean value that determines whether the go-away region should be
drawn in the window. If this parameter is TRUE and the window is
frontmost (as specified by the behi nd parameter), NewSer vi ceW ndow
draws a go-away region in the frame.

ts A component instance returned by a prior call to the Component
Manager QpenConponent function. This value is stored in the r ef con
field of the window record; text service components should not change
the value of the window’s r ef con field.

7-80 Text Services Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 7

Text Services Manager

Client applications

If you are a client application making this call, pass the Process Manager
constant KCur r ent Pr ocess in this parameter so that events in the new
window will be forwarded to you. After you have created the window,
you can use its r ef con field for private storage as usual. O

W ndow A pointer to the newly allocated floating window.

This function calls the Window Manager NewW ndow function. If a floating window is
successfully allocated, NewSer vi ceW ndowreturns a pointer to that window as the
function result. Otherwise, it returns NI L.

A text service component can open multiple windows in this layer. When a text service
component receives an event, it determines whether the event belongs to one of its text
service component windows by calling Fi ndSer vi ceW ndow

If you are an application that uses NewSer vi ceW ndow to open a floating window, be
sure to hide the floating window when you are switched out; that is, when another
application’s windows become active.

Balloon Help

If you are writing a text service component and want the service
window to have custom Balloon Help, place an' hwi n' resource (with
references to' hcrt' and' STR#' resources) in your component
resource fork, with a name equal to the window title. The Text Services
Manager will then open the resources automatically when needed. If
you are writing a client application, you need not follow anything other
than normal procedures to have Balloon Help. O

noErr No error
menful | Err Insufficient memory to open the window

Window definition procedures and the NewW ndow function are described in the
Window Manager chapter of Inside Macintosh: Macintosh Toolbox Essentials.

Balloon Help is described in the Help Manager chapter of Inside Macintosh: More
Macintosh Toolbox.

Text Services Manager Reference 7-81

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

CloseServiceWindow

The O oseSer vi ceW ndow function closes a previously allocated floating
input window.

FUNCTI ON C oseServi ceW ndow (w ndow. W ndowPtr): OSErr;

w ndow A pointer to the service window to close. This function calls the Window
Manager Cl oseW ndow procedure.

DESCRIPTION

If the window pointer is NI L or if it points to a non-floating window,
Cl oseSer vi ceW ndowreturns par ankrr.

RESULT CODES

nokErr No error
par ankrr Parameter error

SEE ALSO

The O oseW ndow procedure is described in the Window Manager chapter of Inside
Macintosh: Macintosh Toolbox Essentials.

GetFrontServiceWindow

The Get Fr ont Ser vi ceW ndow function determines which is the frontmost window in
the floating window service layer.

FUNCTI ON Get Fr ont Servi ceW ndow (VAR wi ndow. W ndowPtr): OSErr;

wi ndow A pointer to the frontmost window in the service layer.

DESCRIPTION

This function calls the Window Manager Fr ont W ndow function. The
Cet Front Ser vi ceW ndow function returns a pointer to the frontmost window in the
service layer. If there is no window in the service layer, it returns NI L.

SEE ALSO

The Fr ont W ndow function is described in the Window Manager chapter of Inside
Macintosh: Macintosh Toolbox Essentials.

7-82 Text Services Manager Reference

CHAPTER 7

Text Services Manager

FindServiceWindow

DESCRIPTION

SEE ALSO

The Fi ndSer vi ceW ndow function determines which part of a text service
component’s floating window a mouse-down event has occurred in.

FUNCTI ON Fi ndSer vi ceW ndow (t hePoi nt: Point;
VAR t heW ndow. W ndowPtr): |Integer;

t hePoi nt The point where the mouse button was pressed (in global coordinates, as
stored in the wher e field of the Event Manager event record).

t heW ndow A pointer to a Window Manager window pointer (defined by the
W ndowPt r data type) that identifies the floating window in which the
mouse-down event occurred. If the mouse-down event did not occur in a
text service component floating window, this parameter is set to NI L.

The Fi ndSer vi ceW ndow function is similar to the Window Manager Fi ndW ndow
function, except that Fi ndSer vi ceW ndowsearches the floating window service
layer only.

Fi ndSer vi ceW ndow calls the Window Manager Fi ndW ndow function. It returns one
of the following predefined constants to identify the location of the mouse-down event.

Constant Value Explanation

i nDesk 0 None of the following

i nMenuBar 1 In menu bar

i nSysW ndow 2 In system window

i nCont ent 3 In content region (except grow, if active)
i nDrag 4 In drag region

i nGr ow 5 In grow region (active window only)

i nGoAway 6 In go-away region (active window only)
i nZoom n 7 In zoom-in region

i nZoomQut 8 In zoom-out region

It the mouse position is not over a floating window, Fi ndSer vi ceW ndowreturns
i nDesk (0) as its function result, and sets the return parameter t heW ndowto NI L.

The Fi ndW ndow function is described in the Window Manager chapter of
Inside Macintosh: Macintosh Toolbox Essentials.

Event records are described in the Event Manager chapter of Inside Macintosh: Macintosh
Toolbox Essentials.

The Process Manager is described in Inside Macintosh: Processes.

Text Services Manager Reference 7-83

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Text Service Component Routines

This section describes the component-level routines and related data structures and
constants through which the Text Services Manager communicates with text service
components. The Text Services Manager uses the Component Manager to dispatch the
text service component routines to specific text service components.

Client applications also may make the calls described in this section, but the

Text Services Manager does not play a role in the connection between the client
application making the call and the text service component receiving it. If you are
an application making these calls, you need to know the component instance of the
component whose routine you are calling.

If you are writing a text service component, it must implement routines for the calls
described in this section. With these routines, your component

m provides a text service
= accepts events and updates its cursor and menu (if any)
= confirms active input when requested (if it is an input method)

= identifies the scripts and languages it supports

Providing a Text Service

This section describes the functions a text service component supports to initiate,
activate, deactivate, and terminate a text service. The Text Services Manager makes these
calls to components either on its own or in response to application-interface calls it
receives from client applications.

InitiateTextService

DESCRIPTION

7-84

The | ni ti at eText Ser vi ce function instructs a specified text service component to do
whatever it needs to set up its operations and commence its performance.

FUNCTION I nitiateText Service (ts: Conponentl nstance):
Conponent Resul t ;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.

The Text Services Manager can call | ni ti at eText Ser vi ce to any component that it
has already opened with the Component Manager QpenConponent or

OpenDef aul t Conponent functions. Text service components should be prepared to
handle | ni ti at eText Ser vi ce calls at any time.

Text Services Manager Reference

CHAPTER 7

Text Services Manager

Any text service component can receive multiple | ni ti at eText Ser vi ce calls. The
Text Services Manager calls | ni ti at eText Ser vi ce each time the user adds a text
service to a TSM document, even if the text service component has already been opened.
This provides an opportunity for the component to restart or to display user interface
elements that the user may have closed.

This function should return a Conponent Resul t value of zero if there is no error, and
an error code if there is one.

ActivateTextService

DESCRIPTION

The Act i vat eText Ser vi ce function notifies a text service component that its
associated document window is becoming active. This allows the text service component
to display any associated floating windows.

FUNCTI ON Acti vat eText Servi ce (ts: Conponentl nstance):
Conponent Resul t ;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.

The appropriate response to Act i vat eText Ser vi ce is for the text service component
to restore its active state, including displaying all floating windows if they have been
hidden. If it is an input method, it should specify the redisplay of any unconfirmed text
currently in the active input area.

DeactivateTextService

The Deact i vat eText Ser vi ce function lets a text service component know that its
associated document window is becoming inactive. This allows time for the text service
component to prepare for deactivation.

FUNCTI ON Deacti vat eText Servi ce (ts: Conponentlnstance):
Conponent Resul t ;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.

Text Services Manager Reference 7-85

Jabeue sa2INIBS X3l .

DESCRIPTION

CHAPTER 7

Text Services Manager

When it receives a Deact i vat eText Ser vi ce call, the text service component is
responsible for saving whatever state information it needs to save, so that it can restore
the proper information when it becomes active again. A component other than an input
method should also hide all its floating windows and menus. However, an input-method
component should not hide its windows in response to this call. If the subsequent
document being activated is using the same component’s service, it would be irritating
to the user to hide and then immediately redisplay the same windows. An input-method
component should hide its windows only in response to a Hi dePal et t eW ndows call.

An input method should not confirm any unconfirmed text in the active input area, but
should save it until reactivated.

HidePaletteWindows

DESCRIPTION

The Hi dePal et t eW ndows function instructs an input method to hide its floating
windows because another input method is becoming active.

FUNCTI ON Hi dePal ett eW ndows (ts: Component| nstance):
Conponent Resul t ;

ts A component instance created by a prior call to the Component Manager
OpenComnponent function.

The H dePal et t eW ndows function is not called every time a component’s document
becomes inactive; it is called by the Text Services Manager only if the new document that
is becoming active does not use the same text service component as the document last
deactivated. When it receives a Hi dePal et t eW ndows call, the text service component
should hide all its floating and nonfloating windows. Its menus, if any, will be removed
from the menu bar by the Text Services Manager.

If the text service component has no palettes, it should return a Conponent Resul t
value of noErr.

TerminateTextService

7-86

The Ter mi nat eText Ser vi ce function terminates the operations of a text service in
preparation for closing the text service component.

FUNCTI ON Ter m nat eText Service (ts: Conmponentl nstance):
Conponent Resul t ;

Text Services Manager Reference

DESCRIPTION

CHAPTER 7

Text Services Manager

ts A component instance created by a prior call to the Component Manager
OpenConponent function.

The Text Services Manager calls Ter m nat eText Ser vi ce before closing the
component instance. A text service component must use this opportunity to confirm any
inline input in progress.

If the text service component needs to remain open, it should return an OSEr r value in
the component result return value. This could happen, for example, if the user chooses
Cancel in response to a text service component dialog box.

If this call is made to the last open instance of a text service component, the component
should hide any open palette windows. If it is an input method, the component should
not dispose of its menu handle if it has a menu.

Responding to Events and Updating the Cursor and Menu

To pass events to text service components, the Text Services Manager calls the

Text Servi ceEvent function. To allow components to handle menu commands, it calls
Text Servi ceMenuSel ect . To allow components to set the shape of the cursor, it calls
Set Text Ser vi ceCur sor. To allow components to add their menus to the menu bar, it
calls Get Text Servi ceMenu.

TextServiceEvent

The Text Ser vi ceEvent function routes an event to a specified text service component.

FUNCTI ON Text Servi ceEvent (ts: Conponentl nstance;
nuntX Events: | nteger;
VAR event: EventRecord):
Conponent Resul t ;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.

nuncX Event s
The number of events being passed.

event The Event Manager event record (defined by the Event Recor d data
type) for the event being passed.

Text Services Manager Reference 7-87

Jabeue sa2INIBS X3l .

DESCRIPTION

CHAPTER 7

Text Services Manager

If the text service component handles the event, it should return a nonzero value for
component Resul t and it should change the event to a null event. If it does not handle
the event, it should return 0.

TextServiceMenuSelect

DESCRIPTION

The Text Ser vi ceMenuSel ect function lets a text service component handle
commands from its menus.

FUNCTI ON Text Servi ceMenuSel ect (ts: Conponentl nstance;
servi ceMenu: MenuHandl e;
item Integer): ConponentResult;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.
servi ceMenu

A Menu Manager menu handle (defined by the MenuHand| e data type)
to a specific text service component menu.

item The text service component menu item that the user has selected.

When the user makes a menu selection, the client application calls TSMVenuSel ect ; the
Text Services Manager in turn calls Text Ser vi ceMenuSel ect to all active
components. The text service component receiving this call should return 0 for
conponent Resul t if it did not handle the menu selection, and 1 if it did.

After the text service component performs the chosen task, it is not responsible for
removing the highlighting from the menu title.

SetTextServiceCursor

7-88

The Set Text Ser vi ceCur sor function lets the text service component control the
shape of the cursor.

FUNCTI ON Set Text Servi ceCursor (ts: Componentl nstance;
nousePos: Point): Conponent Result;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.

Text Services Manager Reference

DESCRIPTION

CHAPTER 7

Text Services Manager

mousePos Alocation (specified as a QuickDraw point) that specifies the global
coordinates for the vertical and horizontal position of the mouse.

The text service component must return a nonzero value for Conponent Resul t if it has
set the cursor, and 0 if it has not.

GetTextServiceMenu

DESCRIPTION

The Get Text Ser vi ceMenu function returns a handle to a menu belonging to a text
service component.

FUNCTI ON Get Text Servi ceMenu (ts: Conponentl nstance;
VAR servi ceMenu: MenuHandl e):
Conponent Resul t ;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.
servi ceMenu

A menu handle (defined by the Menu Manager MenuHand| e data type)
for the text service component that is to be updated.

The Text Services Manager calls Get Text Ser vi ceMenu to a text service component
when the component is opened or activated, so that it can put the component’s menu on
the menu bar.

The menu handle passed in ser vi ceMenu may be preallocated or it may be NI L. If
the menu handle is NI L, the text service component should allocate a new menu and
return it.

Note
All instances of an input-method component must share a single menu
handle, allocated in the system heap. O

If the text service component does not have a menu, it should return a
Conponent Resul t value of TSMHasNoMenuEr r.

Confirming Active Input in a TSM Document

To stop active input in a text service component, the Text Services Manager calls the
Fi xText Ser vi ce function described in this section.

Text Services Manager Reference 7-89

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

FixTextService

DESCRIPTION

The Fi xText Ser vi ce function explicitly terminates any input that is in progress in a
specified text service component.

FUNCTI ON Fi xText Servi ce (ts: Conponentl nstance): Conponent Result;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.

This function is equivalent to the user explicitly confirming text, but the request comes
instead from the application or from the Text Services Manager. The text service
component must stop accepting further input and confirm the current input, as
appropriate.

Identifying the Supported Scripts and Languages

The Text Services Manager or a client application may call the
Get Scri pt LanguageSupport function to find out all the scripts and languages
supported by your text service component.

GetScriptLanguageSupport

7-90

The Get Scri pt LanguageSupport function determines which languages and scripts a
specified text service component supports, including its primary language and script.

FUNCTI ON Get Scri pt LanguageSupport (ts: Conponentl nstance;
VAR scri pt Handl e:
Scri pt LanguageSupport Handl e) :
Component Resul t ;

ts A component instance created by a prior call to the Component Manager
OpenConponent function.

scri pt Handl e
A handle to a script-language support record. The handle must be either
NI L or a valid handle. If it is NI L, the text service component allocates a
new handle. If it is already a valid handle, the text service component
resizes it as necessary.

Text Services Manager Reference

DESCRIPTION

SEE ALSO

CHAPTER 7

Text Services Manager

The Get Scri pt LanguageSupport function lets a caller find out all scripts and
languages that your text service component supports. Get Scr i pt LanguageSuppor t
should return a list of scripts and languages in the scr i pt Handl e return parameter.
The Conponent Resul t return value should contain 0 if the list is correct, or an error
value if an error occurred.

The component should list all its supported scripts and languages, starting with the
primary script and language as specified in the conponent Fl ags field of its component
description record. See page 7-15.

The result is returned in a handle to a script-language support record. See “Identifying
the Supported Scripts and Languages” on page 7-42 for a description of the
script-language support record.

For sample code that shows a text service component responding to the
Get Scri pt LanguageSupport function, see Listing 7-10 on page 7-43.

Text Services Manager Reference 7-91

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Summary of the Text Services Manager

Pascal Summary

Constants

CONST

kTSMWer si on = 1;
kText Service = "tsvc';

{Version of Text Services Mnager}
{Conponent type for conponent description}

kl nput Met hodService = "inpnm; {Conponent subtype for conponent desc.}

bTakeActiveEvent = 15; {Bit set if conponent takes activate events}

bScri pt Mask = $00007F00; {Bits 8 - 14}

bLanguageMask = $000000FF; {Bits 0 - 7}

bScri pt LanguageMask = Scri pt Mask + bLanguageMask; {Bits 0 - 14}
{Hlite styl es}

kCaret Position = 1; {specify caret position}

kRawText = 2; {specify range of raw text}

kSel ect edRawText = 3; {specify range of selected raw text}

kConvertedText = 4; {specify range of converted text}

kSel ect edConvertedText = 5; {specify range of sel ected converted text}

{Appl e Event constants}

kText Servi ced ass = kText Servi ce;
kUpdat eAct i vel nput Area = ' updt’
kPos2Ohfset = ' p2st';

kOf f set 2Pos = 'st2p';

{Event cl ass}

{Update active inline area}
{Convert gl obal coordinates to }
{ character position}

{Convert character position to }

{ gl obal coordinate}
kShowHi del nput W ndow = ' shiw ; {show or hide the input w ndow}
{Event keywords}
keyAETSMDocunent Refcon = 'refc'; {TSM docunent refcon}
keyAEServerl nstance = 'srvi'; {Server instance}

keyAETheData = ' kdat"';

7-92 Summary of the Text Services Manager

{typeText}

{optional

CHAPTER 7

Text Services Manager

keyAEScri pt Tag = 'sclg';
keyAEFi xLength = "fixl";
keyAEHi | i t eRange "hrng'
keyAEUpdat eRange "udng'

keyAEC auseOfsets = 'clau';
keyAECurrent Poi nt = 'cpos';

keyAEDr aggi ng = ' bool ';
keyAEOr f set = 'ofst';
keyAERegi onCl ass = 'rgnc'
keyAEPoi nt = ' gpos';
keyAEBuUf fer Si ze = 'buff’';

keyAERequest edType = 'rtyp';

keyAEMoveVi ew = ' mvvw ;
keyAELength = 'l eng';
keyAENext Body = 'nxbd';

keyAEText Font = 'kt xf';

keyAEText Poi nt Si ze = 'kt ps';

keyAEText Li neHei ght
keyAEText Li neAscent
keyAEANngl e = ' kang';

keyAELeft Side = 'klef"';

"ktlh';
"ktas';

{optional keyword for Pos2Cf fset}

{Script tag}

{Hlite range array}
{Updat e range array}
{d ause offsets array}
{Current point}
{Draggi ng fl ag}
{Ofset}

{Regi on cl ass}
{Current point}

{Buffer size to get the text}

{Request ed text type}
{Move view flag}

{Lengt h}

{Next or previous body}

keywords for O f set 2Pos}

{type Bool ean}

{optional keyword for kShowH del nput W ndow}

keyAEShowHi del nput W ndow = 'shiw ; {type Bool ean}

{keyword for PinRange}

keyAEPi nRange = 'pnrg';

{Desc type ...}

t ypeConponent | nst ance =
typeText Range = "txrn';

|Cn,pi|

typeText RangeArray = 'tray';

typeOfsetArray = 'ofay';

typelntl WitingCode = "intl";

typeQPoint = ' Qpt"';
typeAEText = "t TXT';
typeText = ' TEXT';

kTSMQut si deOf Body = 1;
kTSM nsi deOf Body = 2;

{conponent i nstance}
{text range}

{text range array}
{of fset array}
{script code}

{ Qui ckDr aw poi nt}
{Appl e event text}
{plain text}

{Appl e event descriptor type constants}

Summary of the Text Services Manager

7-93

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

KTSM nsi deOr Acti vel nput Area = 3;

kNext Body = 1;
kPrevi ousBody = 2;

{Appl e event error constants}
errCOffsetlnvalid = -1800;
errOfsetlsQutsidedView = -1801;
err TopOf Docunent = -1810;
err TopOf Body = -1811;
err EndOf Docunent = -1812;
err EndOf Body = -1813;

Data Types

TYPE Text Range =

RECORD
fStart: Longl nt;
f End: Longl nt;
fH liteStyle: |Integer;
END;

Text RangePtr = ~Text Range;
Text RangeHandl e = "Text RangePtr;

Text RangeArray =

RECORD

f NunOf Ranges: | nt eger;

f Range: ARRAY [0..0] of TextRange;
END;

Text RangeArrayPtr = ~Text RangeArray;
Text RangeAr rayHandl e = ~Text RangeArrayPtr;

OfsetArray =

RECORD

fNunOf O f set s: | nt eger;

fOfset: ARRAY [0..0] of Longlnt;
END;

OfsetArrayPtr = "Ofset Array;
O fset ArrayHandle = "Offset ArrayPtr;

Text Servi celnfo =
RECORD
f Component : Conponent ;

7-94 Summary of the Text Services Manager

CHAPTER 7

Text Services Manager

fltemName: Str255;
END;
Text Servi cesl nfoPtr = ~Text Servi cel nf o;

Text Servi ceLi st =

RECORD

f Text Ser vi ceCount : I nt eger;

f Servi ces: ARRAY [0..0] of Text Servicel nfo;
END;

Text Servi ceLi stPtr = "Text Servi celLi st;
Text Servi ceLi st Handl e = ~Text Servi ceLi stPtr;

Scri pt LanguageRecord =

RECORD
fScript: Scri pt Code;
f Language: LangCode;
END;

Scri pt LanguageSupport =
RECORD
f Scri pt LanguageCount : I nt eger;
f Scri pt LanguageArray: ARRAY [0..0] of ScriptlLanguageRecord;
END;
Scri pt LanguageSupport Ptr = ~Scri pt LanguageSupport;
Scri pt LanguageSupport Handl e = ~Scri pt LanguageSupportPtr;

InterfaceTypeLi st = ARRAY [0..0] of OSType;

TSMDocunent| D = Ptr;

Text Services Manager Routines for Client Applications

Initializing and Closing as a TSM-Aware Application

FUNCTI ON | ni t TSMAwar eAppl i cati on: OSErr;
FUNCTI ON Cl oseTSMAwar eAppl i cation: OSErr;

Creating and Activating TSM Documents

FUNCTI ON NewTSMDocunent (nunOF I nterface: Integer;
VAR supportedl nterfaceTypes: InterfaceTypelist;
VAR i docl D: TSMDocunent | D
ref Con: Longlnt): OSErr;

FUNCTI ON Act i vat eTSMDocunent
(idocl D: TSMDocument | D): OSErr;

Summary of the Text Services Manager 7-95

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

FUNCTI ON Deact i vat eTSMDocunment
(idocl D TSMDocument|D): OSErr;

FUNCTI ON Del et eTSMDocunent (i docl D: TSMDocunent|D): OSErr;

Passing Events to Text Service Components

FUNCTI ON TSMEvent (VAR event: EventRecord): Bool ean;

Passing Menu Selections and Cursor Setting

FUNCTI ON TSMvenuSel ect (rmenuResul t: Longlnt): Bool ean;
FUNCTI ON Set TSMCur sor (rmousePos: Point): Bool ean;

Confirming Active Input in a TSM Document
FUNCTI ON Fi xTSMDocunent (i docl D: TSMDocunent|D): OSErr;

Making Text Services Available to the User

FUNCTI ON Get Ser vi ceLi st (nunOF I nterfaceTypes: Integer;
supportedl nterfaceTypes: InterfaceTypelist;
VAR servi cel nfo: Text Servi celLi st Handl e;
VAR seedVal ue: Longlint): OSErr;

FUNCTI ON OpenText Servi ce (idocl D TSMDocunent | D; aConponent: Conponent;
VAR aConponent | nst ance: Conponent | nstance):
OSErr;

FUNCTI ON O oseText Servi ce (idocl D TSMDocunent | D; aConponent | nst ance:
Conponent I nst ance): OSErr;

Requesting a Floating Input Window

FUNCTI ON Usel nput W ndow (idocl D: TSMDocunent| D; useW ndow. Bool ean):
OSErr;

Associating Scripts and Languages With Components

FUNCTI ON Set Def aul t | nput Met hod
(ts: Conponent;
VAR sl Record: Scri pt LanguageRecord): OSErr;
FUNCTI ON Cet Def aul t | nput Met hod
(VAR ts: Conponent;
VAR sl Record: Scri pt LanguageRecord): OSErr;
FUNCTI ON Set Text Ser vi ceLanguage
(VAR sl Record: ScriptLanguageRecord): OSErr;

FUNCTI ON Get Text Ser vi ceLanguage
(VAR sl Record: ScriptLanguageRecord): OSErr;

7-96 Summary of the Text Services Manager

CHAPTER 7

Text Services Manager

Text Services Manager Routines for Components

Sending Apple Events to a Client Application

FUNCTI ON SendAEFr omT'SMConponent
(VAR t heAppl eEvent: Appl eEvent;
VAR reply: Appl eEvent; sendvbde: AESendMbde;
sendPriority: AESendPriority;
ti meQut |l nTi cks: Longlnt;
idl eProc: IdleProcPtr;
filterProc: EventFilterProcPtr): OSErr;

Opening Floating Utility Windows

FUNCTI ON NewSer vi ceW ndow (wsStorage: Ptr; boundsRect: Rect;
title: Str255; visible: Boolean;
theProc: Integer; behind: WndowPtr;
goAwayFl ag: Bool ean; ts: Conponentl nstance;
VAR wi ndow. W ndowPtr): OSErr;

FUNCTI ON Cl oseServi ceW ndow (w ndow. WndowPtr): OSErr;

FUNCTI ON Get Fr ont Ser vi ceW ndow
(VAR wi ndow. W ndowPtr): OSErr;

FUNCTI ON Fi ndSer vi ceW ndow (thePoint: Point; VAR theWndow W ndowPtr):
| nt eger;

Text Service Component Routines

Providing a Text Service
FUNCTI ON | ni ti at eText Servi ce
(ts: Conponentl nstance): Conponent Result;

FUNCTI ON Acti vat eText Servi ce
(ts: Conponentl nstance): Conponent Result;

FUNCTI ON Deacti vat eText Servi ce
(ts: Conponentlnstance): Conponent Result;

FUNCTI ON Hi dePal ett eW ndows (ts: Conponentlnstance): Conponent Result;

FUNCTI ON Ter mi nat eText Servi ce
(ts: Conponentl nstance): Conponent Result;

Responding to Events and Updating the Cursor and Menu

FUNCTI ON Text Ser vi ceEvent (ts: Conponentlnstance; nunf Events: |nteger;
VAR event: EventRecord): Conponent Result;

Summary of the Text Services Manager

7-97

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

FUNCTI ON Text Ser vi ceMenuSel ect
(ts: Conponentl nstance; serviceMenu:
MenuHandl e; item Integer): ConponentResult;

FUNCTI ON Set Text Ser vi ceCur sor
(ts: Conponentlnstance; nousePos: Point):
Conponent Resul t ;

FUNCTI ON CGet Text Servi ceMenu (ts: Conponentl nstance;
VAR servi ceMenu: MenuHandl e): Conponent Resul t;

Confirming Active Input in a TSM Document

FUNCTI ON Fi xText Servi ce (ts: Conponentlnstance): Conponent Result;

Identifying the Supported Scripts and Languages

FUNCTI ON Get Scri pt LanguageSupport
(ts: Conponentl nstance; VAR scriptHandl e:
Scri pt LanguageSupport Handl e) : Conponent Resul t;

C Summary
Constants
#define kTSMW/ersion 1 /* Version of the

Text Services Manager */
#defi ne kText Service "tsvc' /* conponent type for

t he conponent description */
#defi ne kI nput Met hodService 'inpni /* conponent subtype for

t he conponent description */
#defi ne bTakeActiveEvent 15 /* bit set if the conponent

t akes active event */
#define DbScriptMask 0x00007F00 /[* bit 8 - 14 */
#defi ne blLanguageMask 0x000000FF /* bit 0 - 7 */
#define DbScriptlLanguageMask bScri pt Mask+bLanguageMask /* bit 0 - 14 */
/* Hlite styles ... */

t ypedef enum {
kCar et Position =
kRawText =
kSel ect edRawText =
kConvert edText =

/* specify caret position */

/* specify range of raw text */

/* specify range of selected raw text */
/* specify range of converted text */

i

7-98 Summary of the Text Services Manager

CHAPTER 7

Text Services Manager

kSel ect edConvertedText = 5 /* specify range of selected
converted text */
} HliteStyl eType;

/* Apple Event constants ... */

/* Event class ... */

#def i ne kText Servi ced ass kText Servi ce

/* event ID ... */

#def i ne kUpdat eActi vel nput Area ' updt' /* update active Inline area */

#defi ne kPos2O f set ''p2st’ /* converting gl obal coordinates
to char position */

#def i ne kOf f set 2Pos ''st 2p' /* converting char position
to gl obal coordi nates */

#def i ne kShowHi del nput W ndow "shiw /* show or hide bottonline
i nput wi ndow */

/* Event keywords ... */

#define keyTSMDocunent Ref con "refc' /* TSM docunent refcon */

#define keyAEServerlnstance "srvi' /* conponent instance */

#defi ne keyAETheDat a ' kdat' /* typeText */

#define KkeyAEScri ptTag "scl g /* script tag */

#define keyAEFi xLength "fixl' [* fix len ?2? */

#defi ne keyAEH | iteRange "hrng' /* hilite range array */

#defi ne keyAEUpdat eRange "udng' /* update range array */

#define keyAEC auseOffsets "clau /[* Cause Ofsets array */

#def i ne keyAECur r ent Poi nt ' cpos' /* current point */

#defi ne keyAEDraggi ng " bool /* dragging flag */

#define keyAEO f set ' of st [* offset */

#defi ne keyAERegi ond ass "rgnc' /* region class */

#defi ne keyAEPoi nt ' gpos' /* current point */

#define keyAEBufferSize " buf f’ /* buffer size to get text */

#defi ne keyAERequest edType "rtyp' /* requested text type */

#defi ne keyAEMoveVi ew "nvvw /* nmove view flag */

#define keyAELength "l eng’ /* length */

#defi ne keyAENext Body ' nxbd' /* next or previous body */

/* optional keyword for UpdateActivel nputArea */
#defi ne keyAEPi nRange "pnrg

/* optional keywords for O fset2Pos */
#defi ne keyAEText Font "kt xf
#define keyAEText PointSize ' kt ps'

Summary of the Text Services Manager 7-99

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

#defi ne keyAEText Li neHei ght
#define KkeyAETextLi neAscent
#define keyAEAngl e

/* optional

#defi ne keyAELeadi ngEdge

/* Apple event descriptor type ...
#define typeConmponentl| nstance
#defi ne typeText Range

#define typeText RangeArray
#define typeOfsetArray
#define typelntl WitingCode
#define typeQDPoi nt

#define typeAEText

#defi ne typeText

#define typeFixed

/* Appl e event descriptor type constants */

keywor ds for

t ypedef enum {

kTSMQut si deCf Body
kTSM nsi deCf Body

kKTSM nsi deOF Acti vel nput Ar ea

} AERegi ond assType;

typedef enum {
kNext Body
kPr evi ousBody
} AENext BodyType;

"ktlh'
'kt as’
' kang'

Pos2Of fset */

"kl ef

*/
cnpi
"txrn'
"tray'

' of ay'
“intl'
" QDpt !
"t TXT
" TEXT'
"fixd

= 1'
= 2,
=3

/* Apple Event error definitions */

t ypedef enum {
errOfsetlnvalid

errOffsetlsCutsi deO Vi ew

err TopOf Docunent
err TopOf Body
er r EndOf Docunent
er r EndCOf Body
} Appl eEvent Error Type;

7-100

- 1800,
- 1801,
-1810,
-1811,
-1812,
-1813

Summary of the Text Services Manager

/*
/*
/*
/*
/*
/*
/*
/*
/*

server instance */
text range record */
text range array */
of fset array */
script code */

Qui ckDraw Poi nt */
Appl e Event text */
Plain text */

Fi xed nunmber 16.16 */

CHAPTER 7

Text Services Manager

Data Types
struct Text Range { /* typeText Range 'txrn' */
long fStart;
long fENd;
short fHiliteStyle;
1
typedef struct TextRange Text Range;
t ypedef Text Range *Text RangePtr;
t ypedef Text RangePtr *Text RangeHandl e;
struct Text RangeArray ({ /* typeText RangeArray "txra' */
short f NumOf Ranges; /* specify the size of the fRange array */
Text Range f Range[1] ; /* when fNunt Ranges > 1, the size of this
array has to be calculated */
1

t ypedef struct Text RangeArray Text RangeArr ay;

t ypedef Text RangeArr ay *Text RangeArrayPtr;
t ypedef Text RangeArrayPtr *Text RangeArrayHandl e;
struct OfsetArray { /* typeOffset Array' offa' */
short fNuntX O f set s; /* specify the size of the fOffset array */
long fOfset[1]; /* when fNunOf Offsets > 1, the size of
this array has to be cal culated */
1

typedef struct O fsetArray O fset Array;

t ypedef O fsetArray *Offset ArrayPtr;

t ypedef O fsetArrayPtr *Of f set ArrayHandl e;

/* extract Script/Language code from Conponent flag ... */

#defi ne mGet Scri pt Code(cdRec) ((ScriptCode) (cdRec.conponentFlags &
bScri pt Mask) >> 8)

#defi ne nGetLanguageCode(cdRec) ((LangCode) cdRec. conponent Fl ags &

bLanguageMask)
typedef void *TSMDocunentl D;

/* text service conponent information |ist */
struct Text Servicelnfo {
Conponent f Conponent ;

Str 255

b

f1temName;

t ypedef struct Text Servicelnfo Text Ser vi cel nf o;

t ypedef

Text Servi cel nfo *Text Ser vi cel nfoPtr;

Summary of the Text Services Manager 7-101

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

/*text service conponent |ist*/
struct Text ServiceList {

short f Text Servi ceCount ; /* nunber of entries in the
'fServices' array */
Text Servi cel nfo f Services[1]; /* Note: array of ' Text Servicel nfo'
records follows */
1
typedef struct Text ServicelLi st Text Ser vi celi st ;
t ypedef Text Servi ceLi st *Text Servi ceLi stPtr;
t ypedef Text Servi ceLi st Ptr *Text Servi celLi st Handl e;

/*script and | anguage record*/
struct Scri pt LanguageRecord ({
Script Code fScript;
LangCode f Language;
1
t ypedef struct ScriptlLanguageRecord Scri ptLanguageRecord;

/*script and | anguage support record*/
struct Scri pt LanguageSupport {

short f Scri pt LanguageCount; /* nunber of entries in the
"fScript LanguageArray'
array */

Scri pt LanguageRecord fScript LanguageArray[1]; /* Note: array of
' Scri pt LanguageRecord'
records follows */

1

t ypedef struct ScriptlLanguageSupport Scri pt LanguageSupport ;

t ypedef Scri pt LanguageSupport *Scri pt LanguageSupport Ptr;

t ypedef Scri pt LanguageSupport Ptr *Scri pt LanguageSupport Handl e;

Text Services Manager Routines for Client Applications

Initializing and Closing as a TSM-Aware Application

pascal OSErr I nitTSMAwar eApplication ();
pascal OSErr C oseTSMAwar eApplication ();

Creating and Activating TSM Documents

pascal OSErr NewTSMDocunent (short nunOflnterface,
OSType supportedl nterfaceTypes[],
TSMDocunent | D *i docl D, | ong refCon);

7-102 Summary of the Text Services Manager

CHAPTER 7

Text Services Manager

pascal OSErr Activat eTSMDocunent
(TSMDocunent | D i docl D) ;

pascal OSErr Deacti vat eTSMDocument
(TSMDocunent | D i docl D) ;

pascal OSErr Del et eTSMDocunent
(TSMDocunent | D i docl D) ;

Passing Events to Text Service Components

pascal Bool ean TSMEvent (Event Record *event);

Passing Menu Selections and Cursor Setting

pascal Bool ean TSMvenuSel ect (1 ong nenuResul t);
pascal Bool ean Set TSMCursor (Point nousePos);

Confirming Active Input in a TSM Document
pascal OSErr Fi xTSMDocunment (TSMDocunentl| D i doclD);

Making Text Services Available to the User

pascal OSErr Get ServiceList (short nunOflnterfaceTypes,
OSType supportedl nterfaceTypes[],
Text Servi celLi st Handl e *servi cel nf o,
| ong *seedVal ue);
pascal OSErr OpenText Service
(TSMDocument | D i docl D, Conponent aConponent,
Conponent | nst ance *aConponent | nst ance) ;

pascal OSErr C oseText Service
(TSMDocunent | D i docl D,
Conponent | nst ance aConponent | nst ance)

Requesting a Floating Input Window
pascal OSErr Usel nput Wndow (TSMDocunent| D idocl D, Bool ean useW ndow) ;

Associating Scripts and Languages With Components

pascal OSErr Set Defaul t | nput Met hod
(Component ts,
Scri pt LanguageRecord *sl RecordPtr);

pascal OSErr Get Def aul t | nput Met hod
(Component *ts,
Scri pt LanguageRecord *sl RecordPtr);

Summary of the Text Services Manager 7-103

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

pascal OSErr Set Text Servi ceLanguage
(Scri pt LanguageRecord *sl RecordPtr);

pascal OSErr Get Text Servi ceLanguage
(Script LanguageRecord *sl RecordPtr);

Text Services Manager Routines for Components

Sending Apple Events to a Client Application

pascal OSErr SendAEFr omT'SMConponent
(Appl eEvent *t heAppl eEvent,
Appl eEvent *reply, AESendMbde sendMbde,
AESendPriority sendPriority,
long tineQutlnTicks, ldleProcPtr idleProc,
EventFilterProcPtr filterProc);

Opening Floating Utility Windows
pascal OSErr NewServi ceW ndow
(void *wStorage, const Rect *boundsRect,
Const Str255Param titl e, Bool ean visible,
short theProc, W ndowPtr behind,
Bool ean goAwayFl ag, Conponentl nstance ts,
W ndowPtr *wi ndow) ;
pascal OSErr C oseServi ceW ndow
(W ndowPtr w ndow) ;
pascal OSErr Get Front Servi ceW ndow
(W ndowPtr *wi ndow) ;
pascal short Fi ndServi ceW ndow
(Poi nt thePoint, WndowPtr *theW ndow);

Text Service Component Routines

Providing a Text Service
pascal ComponentResult InitiateTextService
(Component | nst ance ts);

pascal Component Result ActivateText Service
(Conponent | nstance ts);

pascal Component Result Deacti vat eText Service
(Conponent | nstance ts);

7-104 Summary of the Text Services Manager

CHAPTER 7

Text Services Manager

pascal Component Result Hi dePal etteW ndows
(Conponent | nstance ts);

pascal Component Result Terni nateText Servi ce
(Conponent | nst ance ts);

Responding to Events and Updating the Cursor and Menu

pascal Component Result Text Servi ceEvent
(Conponent | nst ance ts,
short numOf Events, Event Record *event)

pascal Component Result Text Servi ceMenuSel ect
(Conponent | nst ance ts,
MenuHandl e servi ceMenu, short item;

pascal Component Result Set Text Servi ceCursor
(Conponent I nstance ts, Point nousePos);

pascal Conponent Result Get Text Servi ceMenu
(Component I nstance ts, MenuHandl e *servi ceMenu);

Confirming Active Input in a TSM Document

pascal Component Result Fi xText Service
(Conponent | nst ance ts);

Identifying the Supported Scripts and Languages

pascal Component Result Get Scri pt LanguageSupport
(Conponent | nstance ts,
Scri pt LanguageSupport Handl e *scri pt Hdl) ;

Assembly-Language Summary

Trap Macros

Trap Macro Names for Text Services Manager Routines

Pascal name Trap macro name

NewT SMDocumnrent _NewTSMDocunent

Del et eTSMDocunent _Del et eTSMDocunent

Act i vat eTSMDocunent _Acti vat eTSMDocunent
Deact i vat eTSMDocumnent _Deact i vat eTSMDocunent
TSMEvent _TSMEvent

TSMMenuSel ect _TSMvenuSel ect

Summary of the Text Services Manager 7-105

Jabeue sa2INIBS X3l .

CHAPTER 7

Text Services Manager

Pascal name Trap macro name

Set TSMCur sor _Set TSMCur sor

Fi x TSMDocunent _Fi xTSMDocunent

Get Servi celLi st _Get Servi celLi st

OpenText Servi ce _OpenText Servi ce

Cl oseText Servi ce _Cl oseText Servi ce
SendAEFr omTSMConponent _SendAEFr omTSMConponent
Set Def aul t | nput Met hod _Set Def aul t I nput Met hod
Get Def aul t | nput Met hod _Get Def aul t | nput Met hod
Set Text Ser vi ceLanguage _Set Text Ser vi ceLanguage
Cet Text Ser vi ceLanguage _Cet Text Ser vi ceLanguage
Usel nput W ndow _Usel nput W ndow

NewSer vi ceW ndow _NewSer vi ceW ndow

Cl oseServi ceW ndow _Cl oseServi ceW ndow

Get Front Servi ceW ndow _Get Front Servi ceW ndow

I ni t TSMAwar eAppl i cati on _I ni t TSMAwar eAppl i cati on
Cl oseTSMAwar eAppl i cati on _Cl oseTSMAwar eAppl i cati on
Fi ndSer vi ceW ndow _Fi ndSer vi ceW ndow

Trap Macro Names for Text Service Component Routines

Pascal name Trap macro name

Get Scri pt LanguageSupport _Get Scri pt LanguageSuppor t
InitiateText Service _InitiateText Service
Ter m nat eText Servi ce _Term nat eText Servi ce
Act i vat eText Servi ce _Activat eText Servi ce
Deacti vat eText Servi ce _Deacti vat eText Servi ce
Text Ser vi ceEvent _Text Servi ceEvent

Cet Text Ser vi ceMenu _CGet Text Servi ceMenu
Text Servi ceMenuSel ect _Text Servi ceMenuSel ect
Fi xText Servi ce _Fi xText Servi ce

Set Text Ser vi ceCur sor _Set Text Ser vi ceCur sor
H dePal et t eW ndows _Hi dePal et t eW ndows

7-106 Summary of the Text Services Manager

CHAPTER 7

Text Services Manager

Result Codes

t snConmponent NoEr r

t smnsupScri pt LanguageErr
t sm nput Met hodNot FoundEr r
t smNot AnAppErr

t smAl r eadyRegi st er edErr

t smNever Regi st eredErr

t sm nval i dDocl DErr

t smrSMDocBusyEr r

t snDocNot Acti veErr

t smMNoQpenTSEr r

t smCant QpenConponent Err

t sniText Ser vi ceNot FoundEr r
t smDocunent OpenErr

t smJsel nput W ndowEr r

t smrSHasNoMenuEr r

t smISNot QpenEr r

t smConponent Al r eadyOpenEr r
t sm nput Met hodl sA dErr

t snBcri pt HasNol Mer r

t smnsupport edTypeErr

t smnknownEr r

Summary of the Text Services Manager

—2500
—2501
—2502
—2503
-2504
—2505
-2506
-2507
-2508
-2509
—2510
—2511
—2512
—2513
—2514
—2515
-2516
-2517
-2518
—2519

Component result: no error

Specified script and language are not supported
Specified input method cannot be found
The caller was not an application

The caller is already TSM-initialized

The caller is not TSM-aware

Invalid TSM document ID

Document is still active

Document is not active

There is no open text service component
Can'’t open the component

No text service component found

There are open documents

An input window is being used

The text service component has no menu
Text service component is not open

Text service component already open for document

The default input method is old-style
Script has no (or old) input method
Unsupported interface type

Any other error

7-107

Jabeue sa2INIBS X3l .

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Text on the Macintosh TOC
	 Introduction to Text on the Macintosh
	 TextEdit TOC
	 TextEdit
	 QuickDraw Text TOC
	 QuickDraw Text
	 Font Manager TOC
	 Font Manager
	 Text Utilities TOC
	 Text Utilities
	 Script Manager TOC
	 Script Manager
	 Text Services Manager TOC
	Text Services Manager
	About Text Services
	About Input Methods
	About the Text Services Manager
	The Text Services Environment
	The Text Services Manager and Input Methods
	Inline Input
	Floating Input Windows
	Floating Utility Windows

	About Text Service Components
	Using the Text Services Manager (for Client Applic...
	Testing for the Availability of the Text Services ...
	Calling the Text Services Manager
	Initializing as a TSM-Aware Application
	Creating a TSM Document
	Making Text Services Available to the User
	Activating and Deactivating a TSM Document
	Passing Events, Menu Selections, and Cursor Settin...
	Confirming Active Text Within a TSM Document
	Deleting a TSM Document
	Closing Down as a TSM-Aware Application
	Requesting a Floating Input Window for Text Entry
	Associating Input Methods With Scripts and Languag...

	Handling Text Service Apple Events
	Receiving Text and Updating the Active Input Area
	Converting Screen Position to Text Offset
	Converting Text Offset to Screen Position
	Showing or Hiding the Input Window

	Direct Access to Text Service Components
	Calling the Component Manager
	Calling Text Service Components

	Using the Text Services Manager (for Text Service ...
	Providing Menus and Icons
	Providing a Text Service Component Menu
	Providing Input Method Icons for the Keyboard Menu...

	Responding to Calls
	Initiating a Text Service
	Activating Text Service Component Windows
	Responding to Events and Updating the Cursor and M...
	Confirming Active Text Input
	Closing a Text Service
	Identifying the Supported Scripts and Languages

	Making Calls
	Sending Apple Events to Client Applications
	Opening Floating Utility Windows

	Text Services Manager Reference
	Text Services Manager Routines for Client Applicat...
	Initializing and Closing as a TSM-Aware Applicatio...
	Creating and Activating TSM Documents
	Passing Events to Text Service Components
	Passing Menu Selections and Cursor Setting
	Confirming Active Input in a TSM Document
	Making Text Services Available to the User
	Requesting a Floating Input Window
	Associating Scripts and Languages With Components

	Apple Event Handlers Supplied by Client Applicatio...
	Creating and Updating an Active Input Area
	Converting Global Coordinates to Text Offsets
	Converting Text Offsets to Global Coordinates
	Showing or Hiding the Floating Input Window

	Text Services Manager Routines for Components
	Sending Apple Events to a Client Application
	Opening Floating Utility Windows

	Text Service Component Routines
	Providing a Text Service
	Responding to Events and Updating the Cursor and M...
	Confirming Active Input in a TSM Document
	Identifying the Supported Scripts and Languages

	Summary of the Text Services Manager
	Pascal Summary
	Constants
	Data Types
	Text Services Manager Routines for Client Applicat...
	Text Services Manager Routines for Components
	Text Service Component Routines

	C Summary
	Constants
	Data Types
	Text Services Manager Routines for Client Applicat...
	Text Services Manager Routines for Components
	Text Service Component Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Dictionary Manager TOC
	 Dictionary Manager
	 Appendix Opener
	 Appendix A, Built-In Script Support TOC
	 Appendix A, Built-In Script Support
	 Appendix B, International Resources TOC
	 Appendix B, International Resources
	 Appendix C, Keyboard Resources TOC
	 Appendix C, Keyboard Resources
	 Appendix D, Renamed and Relocated Routines TOC
	 Appendix D, Renamed and Relocated Routines
	 Glossary
	 Index
	 Colophon

