

C H A P T E R 3

3

T
im

e M
anager

Time Manager 3

This chapter describes how you can use the Time Manager to schedule execution of a
routine after a specified amount of time has elapsed. It includes information about the
original Time Manager, as well as information about the revised Time Manager
introduced in system software version 6.0.3 and the extended Time Manager introduced
in system software version 7.0.

Because different versions of the Time Manager are available under different system
software versions, your application may need to determine which version is available in
its current environment. To do so, use the Gestalt function explained in the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities.

To use this chapter, you should be familiar with the Vertical Retrace Manager because it
provides an alternative (and sometimes preferable) method for scheduling routines for
future or periodic execution. For details on the Vertical Retrace Manager, see the chapter
“Vertical Retrace Manager” in this book.

About the Time Manager 3

The Time Manager allows applications and other software to schedule routines for
execution at a later time. By suitably defining the routine that is to be executed later, you
can use the Time Manager to accomplish a wide range of time-related activities. For
example, because a routine can reschedule itself for later execution, the Time Manager
allows your application to perform periodic or repeated actions. You can use the Time
Manager to

■ schedule routines for execution after a specified delay

■ set up tasks that run periodically

■ compute the time a routine takes to run

■ coordinate and synchronize actions in the Macintosh computer

The Time Manager provides a hardware-independent method of performing these
time-related tasks. In general, you should use the Time Manager instead of timing loops,
which can vary in duration because they depend on clock speed and interrupt-handling
speed.

To use the Time Manager, you must first issue a request by passing the Time Manager
the address of a task record, one of whose fields contains the address of the routine that
is to run. Then you need to activate that request by specifying the delay until the routine
is to run. The Time Manager uses a Time Manager queue to maintain requests that you
issue. The structure of this queue is similar to that of standard operating-system queues.
The Time Manager queue can hold any number of outstanding requests, and each
application can add any number of entries to the queue. If there are several requests
scheduled for execution at exactly the same time, the Time Manager schedules them for
execution as close to the specified time as possible, in the order in which they entered the
Time Manager queue.
About the Time Manager 3-3

C H A P T E R 3

Time Manager

The routine you place in the queue can perform any desired action so long as it does not
call the Memory Manager, either directly or indirectly. (You cannot call the Memory
Manager because Time Manager tasks are executed at interrupt time.)

The Time Manager introduced in system software version 7.0 is the third version
released. The three versions are known as the original Time Manager, the revised Time
Manager, and the extended Time Manager. The three versions are all upwardly
compatible—that is, each succeeding Time Manager version is a functional superset of
the previous one. However, code written for the extended Time Manager may not run
properly with either the original or revised version. For this reason, it is sometimes
important to know which Time Manager version is available on a specific computer.

You can use the Gestalt function to determine which version of the Time Manager is
present. You should pass Gestalt the selector gestaltTimeMgrVersion.

CONST

gestaltTimeMgrVersion = 'tmgr'; {Time Manager version}

If Gestalt executes successfully, it returns one of three constants:

CONST

gestaltStandardTimeMgr = 1; {original Time Manager}

gestaltRevisedTimeMgr = 2; {revised Time Manager}

gestaltExtendedTimeMgr = 3; {extended Time Manager}

If Gestalt returns an error, you should assume that the original Time Manager is
present. The following sections describe the features of each version of the Time Manager.

The Original Time Manager 3
The Time Manager was first introduced with the Macintosh Plus ROMs (which are also
used in Macintosh 512K enhanced models) and was intended for use internally by the
Operating System. The original Time Manager allows delays as small as 1 millisecond,
resulting in a maximum range of about 24 days.

To schedule a task for later execution, place an entry into the Time Manager queue and
then activate it. All Time Manager routines manipulate elements of the Time Manager
queue, which are stored in a Time Manager task record. The task record for the original
Time Manager is defined by the TMTask data type.

TYPE TMTask = {original and revised Time Manager task record}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

tmAddr: ProcPtr; {pointer to task}

tmCount: LongInt; {reserved}

END;
3-4 About the Time Manager

C H A P T E R 3

Time Manager

3

T
im

e M
anager

Of the four fields in this record, you need to fill in only the tmAddr field, which contains
a pointer to the routine that is to be executed at some time in the future. The remaining
fields are used internally by the Time Manager or are reserved by Apple Computer, Inc.
However, you should set the tmCount field to 0 when you set up a task record.

The original Time Manager includes three routines:

■ The InsTime procedure installs a task record into the Time Manager queue.

■ The PrimeTime procedure schedules a previously queued task record for future
execution.

■ The RmvTime procedure removes a task record from the Time Manager queue.

Note that installing a request into the Time Manager queue (by calling the InsTime
procedure) does not by itself schedule the specified routine for future execution. After
you queue a request, you still need to activate (or prime) the request by specifying the
desired delay until execution (by calling the PrimeTime procedure). Note also that the
task record is not automatically removed from the Time Manager queue after the routine
is executed. For this reason, you can reactivate the task by subsequent calls to
PrimeTime; you do not have to reinstall the task record.

To remove a task record from the queue, you must call the RmvTime procedure. The
RmvTime procedure removes a task record from the Time Manager queue whether or not
that task was ever activated and whether or not its specified time delay has expired.

The Revised Time Manager 3
System software version 6.0.3 introduced a revised version of the Time Manager. This
version provides better time resolution and more accurate measurements of elapsed
time. You can represent time delays in the revised Time Manager as microseconds (µsec)
as well as milliseconds (msec), with a finest resolution of 20 microseconds. The external
programming interface did not change from the original to the revised Time Manager,
although the revised version provides a means to distinguish microsecond delays from
millisecond delays.

The revised Time Manager interprets negative time values (which were not formerly
allowed) as negated microseconds. For example, a value of –50 is interpreted as a delay
of 50 microseconds. Positive time values continue to represent milliseconds. When
specified as microseconds, the maximum delay is about 35 minutes. When specified as
milliseconds, the maximum delay is about 1 day. (This differs from the maximum delay
in the original Time Manager because of the finer resolution of the revised Time
Manager.) When passed to PrimeTime, the time value is converted to an internal form.
For this reason, it makes no difference which unit you use if the delay falls within the
ranges of both.

The revised Time Manager provides additional features. The principal change concerns
the tmCount field of the Time Manager task record (previously reserved for use by
Apple Computer, Inc.). When you remove an active task from the revised Time
Manager’s queue, any time remaining until the scheduled execution time is returned in
the tmCount field. This change allows you to use the Time Manager to compute elapsed
About the Time Manager 3-5

C H A P T E R 3

Time Manager

times (as explained in the section “Computing Elapsed Time” on page 3-14). In addition,
the high-order bit of the qType field of the task record is used as a flag to indicate
whether the task timer is active. The InsTime procedure initially clears this bit, and
PrimeTime sets it. This bit is cleared when the time expires or when your application
calls RmvTime.

Although the revised Time Manager supports the specification of delay times in
microseconds, you should use this feature primarily for the more accurate measurement
of elapsed times. You should avoid specifying very small delay times as a way to execute
a routine repeatedly at frequent intervals because this technique may use a considerable
amount of processor time. The amount of processor time consumed by such timing
services varies, depending largely on the performance of the CPU. With
low-performance CPUs, little or no time may be left for other processing on the system
(for instance, moving the mouse or running the application).

The Extended Time Manager 3
The extended Time Manager (available with system software version 7.0 and later)
contains all the features of earlier Time Managers, with several extensions intended
primarily to provide drift-free, fixed-frequency timing services. These services, which
ensure that a routine is executed promptly after a specified delay, are important for
sound and multimedia applications requiring precise timing and real-time
synchronization among different events.

In the original and revised Time Managers, the value passed to PrimeTime indicates a
delay that is relative to the current time (that is, the time when you execute PrimeTime).
This presents problems if you attempt to implement a fixed-frequency timing service by
having the task call PrimeTime. The problem is that the time consumed by the Time
Manager and by any interrupt latency (which is not predictable) causes the task to be
called at a slightly slower and unpredictable frequency, which drifts over time. In
Figure 3-1, the desired fixed frequency of 1000 microseconds cannot be achieved because
the Time Manager overhead and interrupt latency cause a small and unpredictable delay
each time the task is reactivated.
3-6 About the Time Manager

C H A P T E R 3

Time Manager

3

T
im

e M
anager

Figure 3-1 Original and revised Time Managers (drifting, unpredictable frequency)

The extended Time Manager solves this problem by allowing you to reinstall a task with
an execution time that is relative to the time when the task last expired—not relative to
the time when the task is reinstalled. The extended Time Manager compensates for the
delay between the time when the task last expired and the time at which it was
reinstalled, thereby providing a truly drift-free, fixed-frequency timing service.

For example, if your application needs to execute a routine periodically at 1-millisecond
intervals, it can reactivate the existing Time Manager queue element by calling
PrimeTime in the task with a specified delay of 1 millisecond. When the Time Manager
receives this new execution request, it determines how long ago the previous
PrimeTime task expired and then decrements the specified delay by that amount. For
instance, if the previous task expired 100 microseconds ago, then the Time Manager
installs the new task with a delay of 900 microseconds. This technique is illustrated in
Figure 3-2.

Figure 3-2 The extended Time Manager (drift-free, fixed frequency)

Elapsed time

Time taken to reinstall routine

100 200 50

0 1000 2100 3300 4350

1000 ms 1000 1000 1000ms ms ms

Elapsed time

Time taken to reinstall routine

100 200 50

0 1000 2000 3000 4000 5000

1000 900 800 950 s s s s
About the Time Manager 3-7

C H A P T E R 3

Time Manager

The extended Time Manager implements these features by recognizing an expanded task
record and providing a new procedure, InsXTime. The Time Manager task record for
the extended Time Manager looks like this:

TYPE TMTask = {extended Time Manager task record}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

tmAddr: ProcPtr; {pointer to task}

tmCount: LongInt; {unused time}

tmWakeUp: LongInt; {wakeup time}

tmReserved: LongInt; {reserved for future use}

END;

Once again, your application fills in the tmAddr field. You should set tmWakeUp and
tmReserved to 0 when you first install an extended Time Manager task. The remaining
fields are used internally by the Time Manager. As in the revised Time Manager, the
tmCount field holds the time remaining until the scheduled execution of the task (this
field is set by RmvTime).

The tmWakeUp field contains the time at which the Time Manager task specified by
tmAddr was last executed (or 0 if it has not yet been executed). Its principal intended use
is to provide drift-free, fixed-frequency timing services, which are available only when
you use the extended Time Manager and only when you install Time Manager tasks by
calling the new InsXTime procedure.

When your application installs an extended Time Manager task (by calling the
InsXTime procedure), the behavior of the PrimeTime procedure changes slightly, as
described earlier in this section. If the value of the tmWakeUp field is zero when
PrimeTime is called, the delay parameter to PrimeTime is interpreted as relative to the
current time (just as in the original Time Manager), but the Time Manager sets the
tmWakeUp field to a nonzero value that indicates when the delay time should expire.
When your application calls PrimeTime with a Time Manager task whose tmWakeUp
field contains a nonzero value, the Time Manager interprets the specified delay as
relative to the time that the last call to PrimeTime on this task was supposed to expire.

Note
Nonzero values in tmWakeUp are in a format that is used internally by
the Time Manager. This format is subject to change. Your application
should never use the value stored in this field and should either set it to
0 or leave it unchanged. When you first create an extended Time
Manager task record, make sure that the value of the tmWakeUp field is
0; otherwise, the Time Manager may interpret it as a prior execution
time. ◆

The extended Time Manager allows for a previously impossible situation that may lead
to undesirable results. It is possible to call PrimeTime with an execution time that is in
the past instead of in the future. (In the original and revised Time Managers, only future
execution times are possible.) This situation arises when the value of the tmWakeUp field
3-8 About the Time Manager

C H A P T E R 3

Time Manager

3

T
im

e M
anager
specifies a time in the past and you issue a new PrimeTime request with a delay value
that is not large enough to cause the execution time to be in the future. This may occur
when fixed, high-frequency execution is required and the time needed to process each
execution, including the Time Manager overhead, is greater than the delay time between
requests.

When your application issues a PrimeTime request with a tmWakeUp value that would
result in a negative delay, the actual delay time is set to 0. The Time Manager updates the
tmWakeUp field to indicate the time when the task should have been performed (in the
past). Because the actual delay time is set to 0, the task is executed immediately. If your
application continually issues PrimeTime requests for times in the past, the Time
Manager and the tmAddr tasks consume all of the processor cycles. As a result, no time
is left for the application to run. Because this situation is a function of processor speed,
you should ensure compatibility by using the slowest processors to test applications that
use extended Time Manager features. Another solution to this problem is to vary the
wakeup frequency according to the processing power of the computer.

Using the Time Manager 3

The Time Manager is automatically initialized when the system starts up. At that time,
the queue of Time Manager task records is empty. The Operating System, applications,
and other software components may place records into the queue. Because the delay
time for a given task can be as small as 20 microseconds, you need to install an element
into the Time Manager queue before actually issuing a request to execute it at some
future time. You place elements into the queue by calling the InsTime procedure or (if
you need the fixed-frequency services of the extended Time Manager) the InsXTime
procedure. To activate the request, call PrimeTime. The Time Manager then marks the
specified task record as active by setting the high-order bit in the qType field of that
record.

The tmAddr field of the Time Manager task record contains the address of a task. The
Time Manager calls this task when the time delay specified by a previous call to
PrimeTime has elapsed. The task can perform any desired actions, as long as it does not
call the Memory Manager (either directly or indirectly) and does not depend on the
validity of handles to unlocked blocks.

Note
If the routine specified in the Time Manager task record is located in
your application’s heap, then your application must still be active when
the specified delay elapses, or the application should call RmvTime
before it terminates. Otherwise, the Time Manager does not know that
the address of that routine is not valid when the routine is called. The
Time Manager then attempts to call the task, but with a stale pointer. If
you want to let the application terminate after it has installed and
activated a Time Manager task record, load the routine into the system
heap. ◆
Using the Time Manager 3-9

C H A P T E R 3

Time Manager
There are two ways for an active queue element to become inactive. First, the specified
time delay can elapse, in which case the routine pointed to by the tmAddr field is called.
Second, your application can call the RmvTime procedure, in which case the amount of
time remaining before the delay would have elapsed (the unused time) is reported in the
tmCount field of the task record. This feature allows you to use the Time Manager to
compute elapsed times (see the section “Computing Elapsed Time” on page 3-14), which
is useful for obtaining performance measurements. Calling RmvTime removes an
element from the queue whether or not that task is active when RmvTime is called.

To use the Time Manager for periodic execution of a task, simply have the routine
pointed to by tmAddr call PrimeTime again. This technique is illustrated in the section
“Performing Periodic Tasks” on page 3-13. Similarly, you can execute a Time Manager
task a specific number of times by keeping a count of the number of times the task has
been called. In cases where the task needs access to your application’s global variables
(such as a count variable), make sure that the A5 register points to your application’s
global variables when the task is executed and that A5 is restored to its original value
when your task exits. A technique for this purpose is illustrated in “Using Application
Global Variables in Tasks” on page 3-11.

Installing and Activating Tasks 3
Listing 3-1 shows how to install and activate a Time Manager task. It assumes that the
procedure MyTask has already been defined; see Listing 3-3 and Listing 3-4 for examples
of simple task definitions.

Listing 3-1 Installing and activating a Time Manager task

PROCEDURE InstallTMTask;

CONST

kDelay = 2000; {delay value}

BEGIN

gTMTask.tmAddr := @MyTask; {get address of task}

gTMTask.tmWakeUp := 0; {initialize tmWakeUp}

gTMTask.tmReserved := 0; {initialize tmReserved}

InsXTime(@gTMTask); {install the task record}

PrimeTime(@gTMTask, kDelay); {activate the task record}

END;

In this example, InstallTMTask installs an extended Time Manager task record into
the Time Manager queue and then activates the task. (The extended Time Manager task
record, gTMTask, is a global variable of type TMTask.) After the specified delay has
elapsed (in this case, 2000 milliseconds, or 2 seconds), the procedure MyTask runs.

In cases where no task is to run after the specified delay has elapsed, you should set the
tmAddr field to NIL. To determine if the time has expired, you can check the task-active
bit in the qType field.
3-10 Using the Time Manager

C H A P T E R 3

Time Manager

3

T
im

e M
anager
Avoid calling PrimeTime with a Time Manager task record that has not yet expired,
because the results are unpredictable. If you wish to reactivate a prior unexpired request
in the Time Manager queue and specify a different delay, call RmvTime to cancel the
prior request, then call InsTime to reinstall the timer task, and finally call PrimeTime
to reschedule the task. Note, however, that it is possible and sometimes desirable to call
PrimeTime with a Time Manager task that you want to reactivate, because the timer
will have expired before the task is called.

Using Application Global Variables in Tasks 3
When a Time Manager task executes, the A5 world of the application that installed the
corresponding task record into the Time Manager queue might not be valid (for example,
the task might execute at interrupt time when that application is not the current
application). If so, an attempt to read the application’s global variables returns erroneous
results because the A5 register points to the application global variables of some other
application. When a Time Manager task uses an application’s global variables, you must
ensure that register A5 contains the address of the boundary between the application
global variables and the application parameters of the application that launched it. You
must also restore register A5 to its original value before the task exits.

It is relatively straightforward to read the current value of the A5 register when a Time
Manager task begins to execute (using the SetCurrentA5 function) and to restore it
before exiting (using the SetA5 function). It is more complicated, however, to pass to a
Time Manager task the value to which it should set A5 before accessing its application’s
global variables. The problem is that neither the original nor the extended Time Manager
task record contains an unused field in which your application could pass this
information to the task. The situation here is unlike the situation with Notification
Manager tasks or Sound Manager callback routines (both of which provide an easy way
to pass the address of the application’s A5 world to the task), but it is similar to the
situation with vertical retrace tasks.

Note
For a more detailed discussion of setting and restoring your
application’s A5 world, see the chapter “Memory Management Utilities”
in Inside Macintosh: Memory. ◆
Using the Time Manager 3-11

C H A P T E R 3

Time Manager
One way to gain access to the global variables of the application that launched a Time
Manager task is to pass to InsTime (or InsXTime) and PrimeTime the address of a
structure, the first segment of which is simply the corresponding Time Manager task
record and the remaining segment of which contains the address of the application’s A5
world. For example, you can define a new data structure, a Time Manager information
record, as follows:

TYPE TMInfo = {Time Manager information record}

RECORD

myTMTask: TMTask; {original and revised TM task record}

tmRefCon: LongInt; {space to pass address of A5 world}

END;

TMInfoPtr = ^TMInfo;

Note
The TMInfo record defined above is intended for use with the extended
Time Manager. ◆

Then you can install and activate your Time Manager task as illustrated in Listing 3-2.
The global variable gTMInfo is an information record of type TMInfo.

Listing 3-2 Passing the address of the application’s A5 world to a Time Manager task

PROCEDURE InstallTMTask;

CONST

kDelay = 2000; {delay value}

BEGIN

gTMInfo.myTMTask.tmAddr := @MyTask; {get address of task}

gTMInfo.myTMTask.tmWakeUp := 0; {initialize tmWakeUp}

gTMInfo.myTMTask.tmReserved := 0; {initialize tmReserved}

gTMInfo.tmRefCon := SetCurrentA5; {store address of A5 }

{ world}

InsTime(@gTMInfo); {install the info record}

PrimeTime(@gTMInfo, kDelay); {activate the info record}

END;

With the revised and extended Time Managers, the task is called with register A1
containing the address passed to InsTime (or InsXTime) and PrimeTime. Thus, the
Time Manager task simply needs to retrieve the TMInfo record and extract the
appropriate value of the application’s A5 world. Listing 3-3 illustrates a task definition
for this purpose.
3-12 Using the Time Manager

C H A P T E R 3

Time Manager

3

T
im

e M
anager
Listing 3-3 Defining a Time Manager task that can manipulate global variables

FUNCTION GetTMInfo: TMInfoPtr;

INLINE $2E89; {MOVE.L A1,(SP)}

PROCEDURE MyTask;

VAR

oldA5: LongInt; {A5 when task is called}

recPtr: TMInfoPtr;

BEGIN

recPtr := GetTMInfo; {first get your record}

oldA5 := SetA5(recPtr^.tmRefCon); {set A5 to app’s A5 world}

{Do something with the application’s globals here.}

oldA5 := SetA5(oldA5); {restore original A5 }

{ and ignore result}

END;

This technique works primarily because the revised and extended Time Managers do not
care if the record whose address is passed to InsTime (or InsXTime) and PrimeTime
is larger than expected. If you use this technique, however, be sure to retrieve the
address of the task record from register A1 as soon as you enter the Time Manager task
(because some compilers generate code that uses registers A0 and A1 to dereference
structures).

IMPORTANT

You cannot use the technique illustrated in Listing 3-3 with the original
Time Manager because it does not pass the address of the task record in
register A1. To gain access to your application’s global variables when
using the original Time Manager, you would need to store your
application’s A5 value in one of the application’s code segments (in
particular, in the code segment that contains the Time Manager task).
This technique involves the use of self-modifying code segments and is
not in general recommended. Applications that attempt to modify their
own 'CODE' resources may crash in operating environments (for
example, A/UX) that restrict an application’s access to its own code
segments. ▲

Performing Periodic Tasks 3
One way to install a periodic Time Manager task is to have the task reactivate itself.
Because the task record is already inserted into the Time Manager task queue, the task
can simply call PrimeTime to reactivate itself. To call PrimeTime, however, the task
needs to know the address of the corresponding task record. In the revised and extended
Time Managers, the task record’s address is placed into register A1 when the task is
Using the Time Manager 3-13

C H A P T E R 3

Time Manager
called. Listing 3-4 illustrates how the task can reactivate itself by retrieving the address
in register A1 and passing that address to PrimeTime.

Listing 3-4 Defining a periodic Time Manager task

FUNCTION GetTMInfo: TMInfoPtr;

INLINE $2E89; {MOVE.L A1,(SP)}

PROCEDURE MyTask; {for revised and extended TMs}

VAR

recPtr: TMInfoPtr;

CONST

kDelay = 2000; {delay value}

BEGIN

recPtr := GetTMInfo; {first get your own address}

{Do something here.}

PrimeTime(QElemPtr(recPtr), kDelay);

END;

IMPORTANT

You cannot use the technique illustrated in Listing 3-4 with the original
Time Manager because it does not pass the address of the task record in
register A1. ▲

Computing Elapsed Time 3
In the revised and extended Time Managers, the RmvTime procedure returns, in the
tmCount field of the task record, a value representing any unused time. This feature
makes the Time Manager extremely useful for computing elapsed times.

To compute the amount of time that a routine takes to run, call PrimeTime at the
beginning of the interval to be measured and specify a delay greater than the expected
elapsed time. Then call RmvTime at the end of the interval and subtract the unused time
returned in tmCount from the original delay passed to PrimeTime.

To obtain the most accurate results, you should calculate all times in microseconds (in
which case the tmCount field of the task record has a range of about 35 minutes). To get
an exact measurement, compute the overhead associated with calling the Time Manager
and subtract it from the preliminary result. Listing 3-5 illustrates a technique for
calculating that overhead.
3-14 Using the Time Manager

C H A P T E R 3

Time Manager

3

T
im

e M
anager
Listing 3-5 Calculating the time required to install and activate a Time Manager task

FUNCTION TMOverhead: LongInt;

VAR

myTask: TMTask; {a Time Manager task record}

myStart: LongInt; {initial delay passed to PrimeTime}

myElapsed: LongInt; {elapsed time}

BEGIN

myStart := -(MAXLONG); {use a large negative number}

WITH myTask DO {set up the task record}

BEGIN

tmAddr := NIL; {no task to execute}

tmWakeUp := 0;

tmReserved := 0;

END;

InsTime(@myTask); {install the task}

PrimeTime(@myTask, myStart); {prime the task}

RmvTime(@myTask); {remove the task}

myElapsed := myStart - myTask.tmCount;

TMOverhead := -(myElapsed); {the elapsed time}

END;

The TMOverhead function defined in Listing 3-5 sets up a Time Manager task record
with no completion routine. In this case, you can allocate the task record as a local
variable on the stack because the task record is removed before the function exits. Then
the task is activated by calling PrimeTime with a very large negative value. (The
negative value represents microseconds.) Immediately the task is deactivated and
removed. The function determines the elapsed time by subtracting the value returned in
the tmCount field of the task record from the original delay time.

Listing 3-6 illustrates how to measure the elapsed time associated with a request to delay
program execution by 1 tick.
Using the Time Manager 3-15

C H A P T E R 3

Time Manager
Listing 3-6 Calculating the time consumed by a 1-tick delay

FUNCTION CheckDelayTiming: LongInt;

VAR

myTask: TMTask; {a Time Manager task record}

myStart: LongInt; {initial delay passed to PrimeTime}

myEnd: LongInt; {unused time}

myTicks: LongInt; {ignored; needed for Delay procedure}

myElapsed: LongInt; {elapsed time}

BEGIN

myStart := -(MAXLONG); {use a large negative number}

WITH myTask DO {set up the task record}

BEGIN

tmAddr := NIL; {no task to execute}

tmWakeUp := 0;

tmReserved := 0;

END;

InsTime(@myTask); {install the task}

PrimeTime(@myTask, myStart); {prime the task}

Delay(1, myTicks); {delay for 1 tick}

RmvTime(@myTask); {remove the task}

myEnd := myTask.tmCount; {get unused part of myStart}

IF myEnd < 0 THEN {myEnd is in microseconds}

myElapsed := ABS(myStart - myEnd) - TMOverhead

ELSE {myEnd is in milliseconds}

myElapsed := ABS(myStart + (myEnd * 1000)) - TMOverhead;

CheckDelayTiming := myElapsed;{the elapsed time}

END;

The CheckDelayTiming function is similar to the TMOverhead function except that
the section of code to be timed occurs between the calls to PrimeTime and RmvTime.
The CheckDelayTiming function simply times a call to the Delay procedure with a
1-tick delay time. Once Delay has completed and the task record has been deactivated,
CheckDelayTiming determines whether the unused time returned in the tmCount
field represents microseconds or milliseconds. The value returned by
CheckDelayTiming is in microseconds.
3-16 Using the Time Manager

C H A P T E R 3

Time Manager

3

T
im

e M
anager
Time Manager Reference 3

This section describes the data structures and routines that are specific to the Time
Manager. It also describes the application-defined Time Manager task procedure whose
address is specified in the task record.

Data Structures 3
All Time Manager routines require that you pass the address of a Time Manager task
record, defined by the TMTask data type. If you are using the original or revised Time
Manager, the task record has this structure:

TYPE TMTask = {original and revised Time Manager task record}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

tmAddr: ProcPtr; {pointer to task}

tmCount: LongInt; {reserved}

END;

Field descriptions

qLink A pointer to the next element in the Time Manager queue. This field
is used internally by the Time Manager.

qType The type of queue. The Time Manager automatically sets this field
to the appropriate value. In the revised Time Manager, the
high-order bit of this field is a flag that indicates whether the task is
active.

tmAddr A pointer to the routine to be executed after the delay specified in a
call to PrimeTime.

tmCount Reserved in the original Time Manager. In the revised Time
Manager, the amount of time remaining until the task’s scheduled
execution time; this field is valid only after you call RmvTime with a
task that has not yet executed.

If you are using the extended Time Manager, the task record has this structure:

TYPE TMTask = {extended Time Manager task record}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

tmAddr: ProcPtr; {pointer to task}

tmCount: LongInt; {unused time}
Time Manager Reference 3-17

C H A P T E R 3

Time Manager
tmWakeUp: LongInt; {wakeup time}

tmReserved: LongInt; {reserved for future use}

END;

Field descriptions

qLink A pointer to the next element in the Time Manager queue. This field
is used internally by the Time Manager.

qType The type of queue. The Time Manager automatically sets this field
to the appropriate value. The high-order bit of this field is a flag that
indicates whether the task is active.

tmAddr A pointer to the routine that is to be executed after the delay
specified in a call to PrimeTime.

tmCount The time remaining until the task’s scheduled execution time. This
field is valid only after you call RmvTime with a task that has not
yet executed.

tmWakeUp The time when the task specified in the tmAddr field was last
executed. This field is used internally by the Time Manager. You
should set it to 0 when you first install a task record.

tmReserved Reserved.

Time Manager Routines 3
You can insert a task record into the Time Manager’s queue by calling InsTime or
InsXTime. Use InsXTime only if you wish to use the drift-free, fixed-frequency timing
services of the extended Time Manager; use InsTime in all other cases. After you have
queued a task record, you can activate it by calling PrimeTime. You can remove a task
record from the queue by calling RmvTime.

InsTime 3

You can install a task record into the Time Manager task queue using the InsTime
procedure.

PROCEDURE InsTime (tmTaskPtr: QElemPtr);

tmTaskPtr A pointer to an original task record to be installed in the queue.

DESCRIPTION

The InsTime procedure adds the Time Manager task record specified by tmTaskPtr to
the Time Manager queue. Your application should fill in the tmAddr field of the task
record and should set the tmCount field to 0. The tmTaskPtr parameter must point to
an original Time Manager task record.
3-18 Time Manager Reference

C H A P T E R 3

Time Manager

3

T
im

e M
anager
With the revised and extended Time Managers, you can set tmAddr to NIL if you do not
want a task to execute when the delay passed to PrimeTime expires. Also, the revised
Time Manager resets the high-order bit of the qType field to 0 when you call InsTime.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for InsTime are

RESULT CODES

InsXTime 3

Use the InsXTime procedure to install a task if you want to take advantage of the
drift-free, fixed-frequency timing services of the extended Time Manager.

PROCEDURE InsXTime (tmTaskPtr: QElemPtr);

tmTaskPtr A pointer to an extended task record to be installed in the queue.

DESCRIPTION

The InsXTime procedure adds the Time Manager task record specified by tmTaskPtr
to the Time Manager queue. The tmTaskPtr parameter must point to an extended Time
Manager task record. Your application must fill in the tmAddr field of that task. You
should set the tmWakeUp and tmReserved fields to 0 the first time you call InsXTime.

With the extended Time Manager, you can set tmAddr to NIL if you do not want a task
to execute when the delay passed to PrimeTime expires. Also, InsXTime resets the
high-order bit of the qType field to 0.

Registers on entry

A0 Address of the task record

Registers on exit

D0 Result code

noErr 0 No error
Time Manager Reference 3-19

C H A P T E R 3

Time Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for InsXTime are

RESULT CODES

PrimeTime 3

Use the PrimeTime procedure to activate a task in the Time Manager queue.

PROCEDURE PrimeTime (tmTaskPtr: QElemPtr; count: LongInt);

tmTaskPtr A pointer to a task record already installed in the queue.

count The desired delay before execution of the task.

DESCRIPTION

The PrimeTime procedure schedules the task specified by the tmAddr field of
tmTaskPtr for execution after the delay specified by the count parameter has elapsed.

If the count parameter is a positive value, it is interpreted as milliseconds. If count is a
negative value, it is interpreted in negated microseconds. (Microsecond delays are
allowable only in the revised and extended Time Managers.)

The task record specified by tmTaskPtr must already be installed in the queue (by a
previous call to InsTime or InsXTime) before your application calls PrimeTime.
PrimeTime returns immediately, and the specified task is executed after the specified
delay has elapsed. If you call PrimeTime with a time delay of 0, the task runs as soon as
interrupts are enabled.

In the revised and extended Time Managers, PrimeTime sets the high-order bit of the
qType field to 1. In addition, any value of the count parameter that exceeds the
maximum millisecond delay is reduced to the maximum. If you stop an unexpired task
(by calling RmvTime) and then reinstall it (by calling InsXTime), you can continue the
previous delay by calling PrimeTime with the count parameter set to 0.

Registers on entry

A0 Address of the task record

Registers on exit

D0 Result code

noErr 0 No error
3-20 Time Manager Reference

C H A P T E R 3

Time Manager

3

T
im

e M
anager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PrimeTime are

RESULT CODES

RmvTime 3

Use the RmvTime procedure to remove a task from the Time Manager queue.

PROCEDURE RmvTime (tmTaskPtr: QElemPtr);

tmTaskPtr A pointer to a task record to be removed from the queue.

DESCRIPTION

The RmvTime procedure removes the Time Manager task record specified by
tmTaskPtr from the Time Manager queue. In both the revised and extended Time
Managers, if the specified task record is active (that is, if it has been activated but the
specified time has not yet elapsed), the tmCount field of the task record returns the
amount of time remaining. To provide the greatest accuracy, the unused time is reported
as negated microseconds if that value is small enough to fit into the tmCount field (even
if the delay was originally specified in milliseconds); otherwise, the unused time is
reported in positive milliseconds. If the time has already expired, tmCount contains 0.

In the revised and extended Time Managers, RmvTime sets the high-order bit of the
qType field to 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for RmvTime are

Registers on entry

A0 Address of the task record

D0 Specified delay time (long)

Registers on exit

D0 Result code

noErr 0 No error

Registers on entry

A0 Address of the task record

Registers on exit

D0 Result code
Time Manager Reference 3-21

C H A P T E R 3

Time Manager
RESULT CODES

Application-Defined Routine 3
The Time Manager allows your software to install an application-defined routine that is
executed after a specified delay.

Time Manager Tasks 3

You pass the address of an application-defined Time Manager task in the tmAddr field of
the Time Manager task record.

MyTimeTask 3

A Time Manager task has the following syntax:

PROCEDURE MyTimeTask;

DESCRIPTION

The tmAddr field of a Time Manager task record contains the address of a task
procedure that is executed after the delay time passed to PrimeTime.

SPECIAL CONSIDERATIONS

Because the task procedure is executed at interrupt time, it should not allocate, move, or
purge memory (either directly or indirectly) and should not depend on the validity of
handles to unlocked blocks.

ASSEMBLY-LANGUAGE INFORMATION

In the revised and extended Time Managers, when the task procedure is called, register
A1 contains a pointer to the Time Manager task record associated with that procedure.

A task procedure must preserve all registers other than A0–A3 and D0–D3.

SEE ALSO

See the section “Using Application Global Variables in Tasks” on page 3-11 for
instructions on how to access your application’s global variables from within a task
procedure. See “Performing Periodic Tasks” on page 3-13 for instructions on how to
define a periodic task procedure.

noErr 0 No error
3-22 Time Manager Reference

C H A P T E R 3

Time Manager

3

T
im

e M
anager
Summary of the Time Manager 3

Pascal Summary 3

Constants 3

CONST

{Gestalt selector}

gestaltTimeMgrVersion = 'tmgr'; {Time Manager version}

{values returned by Gestalt}

gestaltStandardTimeMgr = 1; {original Time Manager}

gestaltRevisedTimeMgr = 2; {revised Time Manager}

gestaltExtendedTimeMgr = 3; {extended Time Manager}

Data Types 3

Original and Revised Time Manager Task Record

TYPE TMTask =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

tmAddr: ProcPtr; {pointer to task}

tmCount: LongInt; {reserved}

END;

Extended Time Manager Task Record

TYPE TMTask =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

tmAddr: ProcPtr; {pointer to task}

tmCount: LongInt; {unused time}

tmWakeUp: LongInt; {wakeup time}

tmReserved: LongInt; {reserved for future use}

END;
Summary of the Time Manager 3-23

C H A P T E R 3

Time Manager
TMTaskPtr = ^TMTask;

Time Manager Routines 3

PROCEDURE InsTime (tmTaskPtr: QElemPtr);

PROCEDURE InsXTime (tmTaskPtr: QElemPtr);

PROCEDURE PrimeTime (tmTaskPtr: QElemPtr; count: LongInt);

PROCEDURE RmvTime (tmTaskPtr: QElemPtr);

Application-Defined Routine 3

PROCEDURE MyTimeTask;

C Summary 3

Constants 3

/*Gestalt selector*/

#define gestaltTimeMgrVersion 'tmgr' /*Time Manager version*/

/*values returned by Gestalt*/

#define gestaltStandardTimeMgr 1 /*original Time Manager*/

#define gestaltRevisedTimeMgr 2 /*revised Time Manager*/

#define gestaltExtendedTimeMgr 3 /*extended Time Manager*/

Data Types 3

typedef pascal void (*TimerProcPtr)(void);

Original and Revised Time Manager Task Record

struct TMTask {

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

TimerProcPtr tmAddr; /*pointer to task*/

long tmCount; /*reserved*/

};
3-24 Summary of the Time Manager

C H A P T E R 3

Time Manager

3

T
im

e M
anager
Extended Time Manager Task Record

struct TMTask {

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

TimerProcPtr tmAddr; /*pointer to task*/

long tmCount; /*unused time*/

long tmWakeUp; /*wakeup time*/

long tmReserved; /*reserved for future use*/

};

typedef struct TMTask TMTask;

typedef TMTask *TMTaskPtr;

Time Manager Routines 3

pascal void InsTime (QElemPtr tmTaskPtr);

pascal void InsXTime (QElemPtr tmTaskPtr);

pascal void PrimeTime (QElemPtr tmTaskPtr, long count);

pascal void RmvTime (QElemPtr tmTaskPtr);

Application-Defined Routine 3

pascal void MyTimeTask (void);

Assembly-Language Summary 3

Data Structures 3

Structure of Original and Revised Time Manager Queue Entry

0 qLink long pointer to next queue entry
4 qType word queue type
6 tmAddr long pointer to task

10 tmCount long unused time; returned to caller
Summary of the Time Manager 3-25

C H A P T E R 3

Time Manager
Structure of Extended Time Manager Queue Entry

Result Codes 3

0 qLink long pointer to next queue entry
4 qType word queue type
6 tmAddr long pointer to task

10 tmCount long unused time; returned to caller
14 tmWakeUp long wakeup time; used internally by the Time Manager
18 tmReserved long reserved for future use

noErr 0 No error
3-26 Summary of the Time Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Processes and Tasks TOC
	 Introduction to Processes and Tasks
	 Process Manager TOC
	 Process Manager
	 Time Manager TOC
	Time Manager
	About the Time Manager
	The Original Time Manager
	The Revised Time Manager
	The Extended Time Manager

	Using the Time Manager
	Installing and Activating Tasks
	Using Application Global Variables in Tasks
	Performing Periodic Tasks
	Computing Elapsed Time

	Time Manager Reference
	Data Structures
	Time Manager Routines
	Application-Defined Routine
	Time Manager Tasks

	Summary of the Time Manager
	Pascal Summary
	Constants
	Data Types
	Time Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Time Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Data Structures

	Result Codes

	 Vertical Retrace Manager TOC
	 Vertical Retrace Manager
	 Notification Manager TOC
	 Notification Manager
	 Deferred Task Manager TOC
	 Deferred Task Manager
	 Segment Manager TOC
	 Segment Manager
	 Shutdown Manager TOC
	 Shutdown Manager
	 Glossary
	 Index
	 Colophon

