

C H A P T E R 6

6

D
eferred Task M

anager

Deferred Task Manager 6

This chapter describes how your application or device driver can use the Deferred Task
Manager to defer the execution of lengthy tasks until interrupts are reenabled.
Time-consuming tasks, if executed at interrupt time, can prevent the execution of
interrupt tasks having the same or lower priority. The Deferred Task Manager allows
you to improve interrupt handling by deferring a task until all other interrupts have
been serviced.

Lengthy tasks are often initiated by slot cards. As a result, you probably need to read the
information in this chapter only if your application or driver deals with slot-card
interrupts. However, you can use the services provided by the Deferred Task Manager
whenever you need to install a lengthy interrupt task capable of running with all
interrupts enabled. You can, for example, defer the execution of completion routines,
Time Manager routines, and VBL tasks.

To use this chapter, you should be familiar with interrupts and interrupt tasks in general.
See the chapter “Introduction to Processes and Tasks” in this book for an overview of
both interrupt and noninterrupt processing. Because the Deferred Task Manager
maintains all deferred tasks in a queue until their execution, you should also be familiar
with operating-system queues, as described in the chapter “Queue Utilities” in Inside
Macintosh: Operating System Utilities.

This chapter begins with a description of interrupt priority levels and explains when you
might need to use the Deferred Task Manager. Then it shows how you can use the
Deferred Task Manager to defer a task. The chapter concludes with a description of the
Deferred Task Manager’s data structure and routine.

About the Deferred Task Manager 6

Every type of interrupt has an interrupt priority level, a number that identifies the
importance of the interrupt. The microprocessor also maintains several bits in the status
register of the CPU that indicate which interrupts are currently to be processed and
which are to be ignored. This processor priority is always set to the interrupt priority
level of the highest-priority interrupt currently executing. For example, if no interrupts
are being serviced, the processor priority is 0. If the current application is then
interrupted by a vertical retrace interrupt, the interrupt priority is set to 1 during the
servicing of the interrupt and restored to 0 upon completion. If, during the servicing of
the vertical retrace interrupt, a level-2 interrupt occurs, the processor priority is set to 2
during the servicing of the interrupt and restored to 1 upon completion of any level-2
interrupt tasks.

The microprocessor ordinarily services an interrupt only if its interrupt priority level is
higher than the processor priority. Accordingly, when no interrupt routines are
executing, the microprocessor can service any new interrupt. If, however, a slot interrupt
is executing, the microprocessor ignores other slot interrupts and interrupts of lower
priority. As a result, a lower-priority interrupt (for example, a vertical retrace interrupt)
might not execute on schedule.
About the Deferred Task Manager 6-3

C H A P T E R 6

Deferred Task Manager

When the microprocessor is servicing one interrupt, it is said to disable other interrupts
whose priority level is lower than or the same as that of the interrupt being serviced.
This feature prevents the interruption of tasks by interrupts of lesser or equal priority.
You might, however, initiate an interrupt task that does not need this extra protection. If
an interrupt task takes so much time to execute that the disabling of other interrupts
during execution becomes significant, you might prefer it to have your interrupt task
executed at a time when all other interrupt tasks have been serviced and interrupts are
reenabled. The Deferred Task Manager provides a mechanism for this purpose.

Instead of immediately performing the main work of a task, such as a slot-interrupt task,
you can defer the task, or schedule it for execution when all interrupts have been
reenabled. You do this by placing information about the task to be deferred in a deferred
task record, which you then insert in the deferred task queue. The task is then known as
a deferred task. All system interrupt handlers check the deferred task queue just before
returning. If there are tasks in the queue and the microprocessor’s status register is about
to be reset to 0, the system interrupt handlers reenable interrupts and pass control to the
Deferred Task Manager to execute all the deferred tasks.

The Deferred Task Manager checks whether a VBL task is active. If so, the Deferred Task
Manager exits, and the deferred tasks remain deferred until the VBL task completes.
(The VBL task is interrupt code, and so the Deferred Task Manager is called again when
the Vertical Retrace Manager returns control to the primary interrupt handler.) If a VBL
task is not active, the Deferred Task Manager checks whether a deferred task is already
active. If so, the Deferred Task Manager exits. Otherwise, a deferred task is removed
from the queue and executed. When all deferred tasks have been removed from the
queue and executed, the Deferred Task Manager returns control to the primary interrupt
handler.

Each interrupt task is removed from the deferred task queue before it is executed. For
this reason, your interrupt code must reinstall the task record into the queue each time
the task is to be deferred. If your task is simple enough that reinstalling the task record
into the deferred task queue takes about as much time as doing the real work of the task,
then the Deferred Task Manager is not useful for your application. Note that interrupts
are disabled during the reinstallation of a task record into the deferred task queue, even
though they are reenabled before the reinstalled task is executed.

Although you can use the Deferred Task Manager for all types of interrupt tasks, it is
especially convenient for slot-interrupt tasks. Interrupts from NuBus™ slot devices are
received and decoded by special hardware on the main logic board. This hardware
generates level-2 interrupts. Because of the way the hardware works, the microprocessor
must disable lower-priority interrupts until it services the level-2 interrupts (otherwise, a
system error occurs). During the execution of slot-interrupt tasks, the microprocessor
disables other level-2 interrupts, such as those for sound, as well as all level-1 interrupts.
By using the Deferred Task Manager, you can defer the processing of slot interrupts until
all of the slots are scanned. Just before returning, the slot-interrupt handler executes any
tasks having records in the deferred task queue.

It is important to remember that deferred tasks are executed at the end of a hardware
interrupt cycle, before the secondary interrupt handler returns. In addition, the tasks in
the deferred task queue are executed only if the status register is being restored to 0 (that
6-4 About the Deferred Task Manager

C H A P T E R 6

Deferred Task Manager

6

D
eferred Task M

anager

is, all interrupts reenabled). If the status register is not being restored to 0, but only to
some higher level, deferred tasks are not executed during that hardware interrupt cycle.

This behavior, if not properly understood, can lead to some puzzling situations. For
example, applications can mask the CPU’s status register to disable certain interrupts.
Suppose that your application installs and activates a Time Manager task, which is
triggered by level-2 interrupts. If you don’t want the task to be executed during a specific
period of time, you can set the status register to 2, thus disabling all level-1 and level-2
interrupts. (In this case, the status register is set to 2, but not in response to a level-2
interrupt.)

Now suppose that a level-4 interrupt occurs, perhaps triggered by the arrival of some
LocalTalk data at a serial port. The LocalTalk interrupt handler is executed with the
status register set to 4. That handler might install a deferred task and then return.
Because the interrupt cycle is nearly complete, the system interrupt handler checks
whether the status register is about to be restored to 0. In the situation described, the
status register is about to be restored to 2, not to 0. As a result, any pending deferred
tasks, including the newly installed LocalTalk deferred task, are ignored. Moreover, if the
status register remains masked at 2, any additional deferred tasks installed by the
LocalTalk interrupt handler remains queued and are not executed.

Eventually, the application that masked the status register (to disable its Time Manager
task) will restore the status register to 0. At the end of the next hardware interrupt cycle,
all the pending deferred tasks are finally executed.

As you can see, it’s possible for an interrupt routine—in this example, the LocalTalk
interrupt handler—to install a deferred task that is not executed until after some future
hardware interrupt cycle. Indeed, that future hardware interrupt might well be another
LocalTalk interrupt. In other words, it’s possible for an interrupt routine to install a
deferred task and to be called again, before the deferred task has been executed. It’s even
possible for the interrupt routine to interrupt the deferred task that it installed during
some previous interrupt cycle. You need to make sure, for instance, that your interrupt
code doesn’t modify a data buffer that a deferred task is processing.

Keep these points in mind when you use the Deferred Task Manager to defer tasks:

■ The purpose of the Deferred Task Manager is to allow lengthy interrupt tasks to be
deferred until all interrupts can be reenabled.

■ Deferred tasks are executed with all interrupts enabled (that is, with the status register
set to 0).

■ Deferred tasks are not executed if some other interrupt code is executing. For
example, a deferred task will not interrupt a VBL task.

■ A deferred task is not executed if some other deferred task is being executed. A
deferred task cannot interrupt another deferred task.

■ Deferred tasks can be interrupted.

■ Deferred tasks are executed within the hardware interrupt cycle, even though the
status register is set to 0 before the tasks are executed. As a result, deferred tasks are
subject to all the normal limitations on interrupt-level code. In particular, deferred
tasks cannot call any routine that directly or indirectly allocates or moves memory,
About the Deferred Task Manager 6-5

C H A P T E R 6

Deferred Task Manager

and cannot depend on the validity of unlocked handles. See the chapter “Introduction
to Processes and Tasks” in this book for a complete description of these limitations.

■ Deferred tasks are not prioritized. They are executed in the order they were added to
the deferred task queue, no matter what interrupt level the code that installed them
was running at.

Using the Deferred Task Manager 6

You can use the Deferred Task Manager to defer the execution of some code that is to be
executed as a result of an interrupt. This section shows how to install a deferred task and
how to use a high-level language to access the optional parameter passed to your task in
register A1. Because the Deferred Task Manager is not available in all operating
environments, you need to check that it is available before using it. The following section
shows how to do this.

Checking for the Deferred Task Manager 6
The Deferred Task Manager was introduced primarily to allow slot handlers to defer
lengthy processing initiated by a slot interrupt and, until system software version 7.0,
was not available on all computers running the Macintosh Operating System. For
example, the Deferred Task Manager is not available on Macintosh Plus or Macintosh SE
computers running system software version 6.0. In addition, there is no support for the
Deferred Task Manager in versions of A/UX earlier than version 3.0.

As a result, you should always make sure that the Deferred Task Manager is available in
the current operating environment before attempting to use it. You can use the function
DeferredTasksAvailable, defined in Listing 6-1, to do this.

Listing 6-1 Checking for the availability of the Deferred Task Manager

FUNCTION DeferredTasksAvailable: Boolean;

CONST

_DTInstall = $A082;

BEGIN

DeferredTasksAvailable := TrapAvailable(_DTInstall);

END;

The DeferredTasksAvailable function simply calls the function TrapAvailable to
determine whether the trap _DTInstall is implemented. See the chapter “Gestalt
Manager” in Inside Macintosh: Operating System Utilities for a definition of the
TrapAvailable function.

System software versions 7.0 and later support the Deferred Task Manager on all
Macintosh computers, including the Macintosh Plus and Macintosh SE. However, the
6-6 Using the Deferred Task Manager

C H A P T E R 6

Deferred Task Manager

6

D
eferred Task M

anager

system global variables DTQueue (containing the address of the deferred task queue
header) and jDTInstall (containing the jump vector for the DTInstall function) are
not supported on the Macintosh Plus. You should not use DTQueue or jDTInstall on
the Macintosh Plus.

Installing a Deferred Task 6
The Deferred Task Manager provides a single routine, DTInstall, that you can use to
install elements into the deferred task queue. The deferred task queue is a standard
operating-system queue whose elements are defined by the DeferredTask data type.

TYPE DeferredTask =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

dtFlags: Integer; {reserved}

dtAddr: ProcPtr; {pointer to task}

dtParm: LongInt; {optional parameter passed in A1}

dtReserved: LongInt; {reserved; should be 0}

END;

Your application or driver needs to fill in only the qType, dtAddr, and dtReserved
fields. The dtAddr field specifies the address of the routine whose execution you want
to defer. You can also specify a value for the dtParm field, which contains an optional
parameter that is loaded into register A1 just before the routine specified by the dtAddr
field is executed. The dtFlags and dtReserved fields of the deferred task record are
reserved. You should set the dtReserved field to 0.

Listing 6-2 defines a routine, InstallDeferredTask, for installing a task element in
the deferred task queue. This element corresponds to the routine MyDeferredTask,
which does the real work of your interrupt task. The InstallDeferredTask routine
sets up a deferred task record and then installs it in the deferred task queue by calling
the DTInstall function. Note that you should call DTInstall only at interrupt time.

Listing 6-2 Installing a task into the deferred task queue

PROCEDURE InstallDeferredTask (theTask: DeferredTask);

VAR

myErr: OSErr;

BEGIN

WITH theTask DO

BEGIN

qType := ORD(dtQType); {set the queue type}

dtAddr := @MyDeferredTask; {set address of deferred task}

dtParm := 0; {no parameter needed here}
Using the Deferred Task Manager 6-7

C H A P T E R 6

Deferred Task Manager

dtReserved := 0; {clear reserved field}

END;

myErr := DTInstall(@theTask);

END;

Defining a Deferred Task 6
You define a deferred task as a procedure taking no parameters and put the address of
that procedure in the deferred task element whose address you pass to the DTInstall
function. When your task is executed, register A1 contains the optional parameter that
you put in the dtParm field of the task record.

If you write your deferred task in a high-level language, such as Pascal, you might need
to retrieve the value loaded into register A1. The function GetA1 defined in Listing 6-3
returns the value of the A1 register.

Listing 6-3 Finding the value of the A1 register

FUNCTION GetA1: LongInt;

INLINE

$2E89; {MOVE.L A1,(SP)}

You can call GetA1 in your deferred task, as illustrated in Listing 6-4.

Listing 6-4 Defining a deferred task

PROCEDURE DoDeferredTask (dtParm: LongInt);

BEGIN

{Your deferred task code goes here.}

END;

PROCEDURE MyDeferredTask;

VAR

myParm: LongInt;

BEGIN

myParm := GetA1; {retrieve parameter put in register A1}

DoDeferredTask(myParm); {run the deferred task}

END;

Note that MyDeferredTask calls GetA1 to retrieve the parameter passed in the register
A1. Then MyDeferredTask calls the application-defined procedure DoDeferredTask,
passing it that parameter. The DoDeferredTask procedure does the real work of the
deferred task. (This division into two routines is necessary to prevent problems caused
by some optimizing compilers.)
6-8 Using the Deferred Task Manager

C H A P T E R 6

Deferred Task Manager

6

D
eferred Task M

anager

Deferring a Slot-Based VBL Task 6
As indicated earlier in this chapter, you are most likely to use the Deferred Task Manager
when dealing with slot interrupts. All slot interrupts, including slot-based VBL
interrupts, disable all other slot interrupts. For this reason, as a slot-interrupt routine
(installed using SIntInstall) or a slot-based VBL interrupt routine (installed using
SlotVInstall) runs to completion, interrupts at that level and below are disabled. You
can help improve interrupt handling by using the Deferred Task Manager to defer your
slot-interrupt processing until interrupts have been reenabled.

Listing 6-5 provides another example of how to use the Deferred Task Manager. The
program defined there defers the cursor updating that would normally occur as a
slot-based VBL task. The time required to update the cursor can range from about 700 to
900 microseconds for monitors having a screen depth of 1 to 8 bits. Because the cursor
updating is done at slot-based VBL time, all other slot interrupts are put off
until updating is finished. This might adversely affect interrupt processing by your
application. Accordingly, it is useful to defer the cursor updating to noninterrupt time by
installing the updating as a deferred task.

The program defined in Listing 6-5 replaces the cursor-updating routine pointed at by
the system global variable jCrsrTask with a different routine. This new routine installs
the original routine as a deferred task.

Listing 6-5 Deferring cursor updating to noninterrupt time

*** MyDefTask

TaskBegin

MyDefTask

DC.L 0 ;qLink (handled by OS)

DC.W 0 ;qType (queue type: dtQType)

DC.W 0 ;dtFlags (reserved)

DC.L 0 ;dtAddr (pointer to routine to be executed)

DC.L 0 ;dtParm (optional parameter; not used here)

DC.L 0 ;dtReserved (should be zero)

SysCrsrTask

DC.L 0 ;pointer to system jCrsrTask

DefCrsrFlag

DC.W 0 ;1 if using a deferred task, 0 otherwise

PendingFlag

DC.W 0 ;1 if a jCrsrTask is pending, 0 otherwise

*** MyjCrsrTask

MyjCrsrTask

MOVEM.L A0/A1/D0,-(SP)

LEA PendingFlag,A0 ;see if a deferred jCrsrTask task is pending

TST.W (A0)
Using the Deferred Task Manager 6-9

C H A P T E R 6

Deferred Task Manager
BNE.S bailOut ;if yes, exit

MOVE.W #1,(A0) ;if no, set the pending flag

LEA MyDefTask,A0 ;point to our deferred task element

LEA DefjCrsrTask,A1 ;get address of deferred task routine

MOVE.L A1,dtAddr(A0) ;set up pointer to routine

MOVE.W #dtQType,dtType(A0) ;set queue type

_DTInstall ;install the task

MOVEM.L (SP)+,A0/A1/D0

RTS

bailOut

MOVEM.L (SP)+,A0/A1/D0

RTS

DefjCrsrTask

MOVEM.L A0,-(SP)

LEA SysCrsrTask,A0 ;get system cursor task address

MOVEA.L (A0),A0

JSR (A0) ;and call it

LEA PendingFlag,A0 ;clear pending call flag

CLR.W (A0)

MOVEM.L (SP)+,A0

RTS

TaskEnd

*** Entry

TaskSize EQU TaskEnd-TaskBegin

Entry

MOVE.L #TaskSize,D0 ;put TaskSize into D0

_NewPtr SYS,CLEAR ;make a block in the system heap

BNE.S Quit ;no room in system heap, so quit

MOVE.L 0,A2 ;got a good pointer; keep a copy

MOVE.L A0,A1 ;set up registers for BlockMove

LEA MyDefTask,A0

MOVE.W #TaskSize,D0

_BlockMove ;copy the task etc. into system heap

LEA dtQElSize(A2),A0 ;move original task pointer into our

MOVE.L jCrsrTask,(A0) ; pointer holder

LEA dtQElSize+4(A2),A0;replace jCrsrTask pointer with a pointer

MOVE.L A0,jCrsrTask ; to our jCrsrTask

Quit

RTS ;exit the program

END
6-10 Using the Deferred Task Manager

C H A P T E R 6

Deferred Task Manager

6

D
eferred Task M

anager
This code allocates a block of memory in the system heap. The allocated block is large
enough to hold a deferred task element, a pointer to the original cursor-updating
routine, and the replacement routine. The replacement routine simply retrieves the
relevant information (namely, the deferred task element and the saved address of the
original cursor-updating routine) stored in that block of memory and calls _DTInstall
to install a deferred task. The address of the replacement routine is placed into the
low-memory global variable jCrsrTask, whose original contents are stored in the
system heap.

Once the program defined in Listing 6-5 is run, the cursor-updating routine is
subsequently performed with interrupts enabled, thereby allowing other interrupts.
Because the cursor-updating routine is run with interrupts enabled, you may see a slight
flickering of the cursor when using this technique.

Deferred Task Manager Reference 6

This section summarizes the structure of the deferred task record and describes the
DTInstall function, which you can use to install a deferred task record into the
deferred task queue. It also describes the application-defined deferred task.

Data Structure 6
The deferred task queue is a standard operating-system queue. The DeferredTask data
type defines an element in the deferred task queue.

TYPE DeferredTask =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

dtFlags: Integer; {reserved}

dtAddr: ProcPtr; {pointer to task}

dtParm: LongInt; {optional parameter passed in A1}

dtReserved: LongInt; {reserved; should be 0}

END;

Field descriptions

qLink A pointer to the next entry in the deferred task queue, or NIL if
there are no more entries in the queue. You do not need to set this
field; the Deferred Task Manager does it for you.

qType The queue type. You must set this field to ORD(dtQType).
dtFlags Reserved.
dtAddr A pointer to the task to be executed. Set this field to the address of

the routine that you want to execute after interrupts have been
enabled.
Deferred Task Manager Reference 6-11

C H A P T E R 6

Deferred Task Manager
dtParm An optional parameter that is loaded into register A1 just before the
routine specified by the dtAddr field is executed.

dtReserved Reserved. You should set this field to 0.

Deferred Task Manager Routine 6
The Deferred Task Manager provides a single routine for installing task records into the
deferred task queue, the DTInstall function.

DTInstall 6

After defining the fields of a deferred task record, you can call the DTInstall function
to install the record into the deferred task queue.

FUNCTION DTInstall (dtTaskPtr: QElemPtr): OSErr;

dtTaskPtr A pointer to a queue element to add to the deferred task queue.

DESCRIPTION

The DTInstall function adds the specified task record to the deferred task queue. Your
application should fill in all fields of the task record except qLink and qFlags.

Ordinarily, you call DTInstall only at interrupt time. The DTInstall function does
not actually execute the routine specified in the dtAddr field of the task record. Each
system interrupt handler executes routines stored in the deferred task queue after
reenabling interrupts. After a routine in the queue is executed, it is removed from the
deferred task queue.

If the qType field of the task record is not set to ORD(dtQType), DTInstall returns
vTypErr and does not add the record to the queue. Otherwise, DTInstall returns
noErr.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DTInstall are

To reduce overhead at interrupt time, instead of executing the DTInstall trap, you can
load the jump vector jDTInstall into an address register other than A0 and execute a
JSR instruction using that register.

Registers on entry

A0 Pointer to new queue entry

Registers on exit

D0 Result code
6-12 Deferred Task Manager Reference

C H A P T E R 6

Deferred Task Manager

6

D
eferred Task M

anager
RESULT CODES

Application-Defined Routine 6
The Deferred Task Manager allows your interrupt routines to install an
application-defined routine whose execution is deferred until after all interrupts are
reenabled.

Deferred Tasks 6

You pass the address of an application-defined deferred task in the dtAddr field of a
deferred task record.

MyDeferredTask 6

A deferred task has the following syntax:

PROCEDURE MyDeferredTask;

DESCRIPTION

The dtAddr field of a deferred task record contains the address of a procedure that is
executed at the end of a hardware interrupt cycle when all interrupts are reenabled.

SPECIAL CONSIDERATIONS

Because the deferred task is executed during a hardware interrupt cycle, it should not
allocate, move, or purge memory (either directly or indirectly) and should not depend
on the validity of handles to unlocked blocks.

If a deferred task uses application global variables, it must ensure that register A5
contains the address of the boundary between the application global variables and
application parameters. For details, see the discussion of setting up and restoring the A5
register in the chapter “Memory Management Utilities” in Inside Macintosh: Memory.

A deferred task should avoid accessing system global variables or calling a trap that
would access one.

ASSEMBLY-LANGUAGE INFORMATION

When the deferred task is called, register A1 contains the value of the dtParm field in
the deferred task record passed to DTInstall.

A deferred task must preserve all registers other than A0–A3 and D0–D3.

noErr 0 No error
vTypErr –2 Invalid qType value (must be ORD(dtQType))
Deferred Task Manager Reference 6-13

C H A P T E R 6

Deferred Task Manager
Summary of the Deferred Task Manager 6

Pascal Summary 6

Data Type 6

TYPE DeferredTask =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

dtFlags: Integer; {reserved}

dtAddr: ProcPtr; {pointer to task}

dtParm: LongInt; {optional parameter passed in A1}

dtReserved: LongInt; {reserved; should be 0}

END;

Deferred Task Manager Routine 6

FUNCTION DTInstall (dtTaskPtr: QElemPtr): OSErr;

Application-Defined Routine 6

PROCEDURE MyDeferredTask;

C Summary 6

Data Type 6

struct DeferredTask {

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short dtFlags; /*reserved*/

ProcPtr dtAddr; /*pointer to task*/

long dtParm; /*optional parameter passed in A1*/

long dtReserved; /*reserved; should be 0*/

};
6-14 Summary of the Deferred Task Manager

C H A P T E R 6

Deferred Task Manager

6

D
eferred Task M

anager
Deferred Task Manager Routine 6

pascal OSErr DTInstall (QElemPtr dtTaskPtr);

Application-Defined Routine 6

pascal void MyDeferredTask (void);

Assembly-Language Summary 6

Deferred Task Manager Queue Element

Global Variables 6

Result Codes 6

0 qLink long pointer to next queue entry
4 qType word queue type
6 dtFlags word reserved
8 dtAddr long pointer to task

12 dtParm long optional parameter to be passed in A1
16 dtReserved long reserved; should be 0

DTQueue 10 bytes Deferred task queue header.
jDTInstall long Jump vector for DTInstall function.

noErr 0 No error
vTypErr –2 Invalid qType value (must be ORD(dtQType))
Summary of the Deferred Task Manager 6-15

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Processes and Tasks TOC
	 Introduction to Processes and Tasks
	 Process Manager TOC
	 Process Manager
	 Time Manager TOC
	 Time Manager
	 Vertical Retrace Manager TOC
	 Vertical Retrace Manager
	 Notification Manager TOC
	 Notification Manager
	 Deferred Task Manager TOC
	Deferred Task Manager
	About the Deferred Task Manager
	Using the Deferred Task Manager
	Checking for the Deferred Task Manager
	Installing a Deferred Task
	Defining a Deferred Task
	Deferring a Slot-Based VBL Task

	Deferred Task Manager Reference
	Data Structure
	Deferred Task Manager Routine
	Application-Defined Routine
	Deferred Tasks

	Summary of the Deferred Task Manager
	Pascal Summary
	Data Type
	Deferred Task Manager Routine
	Application-Defined Routine

	C Summary
	Data Type
	Deferred Task Manager Routine
	Application-Defined Routine

	Assembly-Language Summary
	Global Variables

	Result Codes

	 Segment Manager TOC
	 Segment Manager
	 Shutdown Manager TOC
	 Shutdown Manager
	 Glossary
	 Index
	 Colophon

