

C H A P T E R 7

7

S
egm

ent M
anager

Segment Manager 7

This chapter describes the Segment Manager, the part of the Macintosh Operating
System that loads and unloads your application’s code segments into and out of
memory. By dividing your application’s executable code into segments, you allow it to
run in a memory partition that is smaller than the total size of the application itself and
the data it is using.

To use this chapter, you should already be familiar with the basic concepts of the
Resource Manager and the Memory Manager. You need to know about the basic
operation of the Resource Manager because segments are stored as resources. You need
to know about the basic operation of the Memory Manager to understand when and
why segments might be purged from memory. See the chapter “Introduction to Memory
Management” in Inside Macintosh: Memory.

You should read this chapter if your application contains multiple code segments that do
not all need to be in memory at one time.

About the Segment Manager 7

Your application’s executable code is stored in its resource fork as one or more resources
of type 'CODE'. These code resources are known as segments because the division of
routines into code resources is controlled by segmentation directives you provide to your
development system.

The Process Manager loads some code segments into memory when your application is
launched. The Segment Manager loads other segments whenever you call any externally
referenced routine contained in those segments. Both of these operations occur
completely automatically and rely on information stored in your application’s jump
table and in the individual code segments themselves.

The Segment Manager loads segments into relocatable, purgeable blocks in your
application heap. A segment is locked when it is first read into memory and at any time
thereafter when routines in the segment are executing. This locking prevents the block
from being moved during heap compaction and from being purged during heap purging.

Although needed code segments are loaded into memory automatically, it is your
application’s responsibility to unload any segments that are not currently being used.
The Segment Manager provides a single procedure, UnloadSeg, that you can call to
unload a segment. To unload a segment is simply to unlock it. By unlocking unneeded
segments, you allow them to be relocated or purged if necessary to accommodate a later
memory-allocation request. Thus, using the Segment Manager to unload unneeded
segments is one important aspect of an efficient memory-management policy.

The following sections describe in detail the reasons for segmenting an application and
the structure of the jump table.
About the Segment Manager 7-3

C H A P T E R 7

Segment Manager

Code Segmentation 7
Your development system’s linker divides your application’s executable code into
segments according to directives that you provide. The main segment contains the main
program. This segment is loaded into memory when your application starts to run and is
never purged or unlocked as long as the application is running. The main event loop and
other frequently needed small routines are generally stored in the main segment.

Most applications, however, consist of multiple code segments. There are two principal
reasons for dividing code into different segments:

■ Compiler limitations. Most development systems generate PC-relative instructions
for intrasegment references (references to other routines within the same code
segment). Because PC-relative instructions on an MC68000 use a 16-bit offset, the
offset to the last routine in the segment cannot be larger than 32K bytes. Some
development systems therefore restrict the size of any one code segment to 32K bytes.

■ Memory limitations. Many applications are so large that the entire executable code,
together with static data (such as your application’s global data and resources) and
data created dynamically during the execution of the application (such as windows
and the items they contain), simply cannot fit into a memory partition of reasonable
size.

By dividing your executable code into segments, you can circumvent both these
limitations. The size of your application can increase as required to provide the desired
capabilities without necessitating an increased run-time memory partition. For example,
code that isn’t executed very often (such as code for printing a document) can be put into
a separate segment; it’s loaded when needed and can be unloaded to free the memory
for other uses when it’s no longer needed.

Note
Some development systems allow you to create segments that are larger
than 32K bytes. Consult your development system’s documentation to
determine how and when to increase segment size. ◆

The key fact to keep in mind when deciding how to group routines into segments is that
an entire segment is loaded into memory whenever you call one of the routines in the
segment. It makes sense, therefore, to group related routines in the same segment. You
should segment routines according to your run-time call chain rather than on a simple
file-by-file basis.

There are also some less obvious guidelines to follow when grouping routines into
segments.

■ Put your main event loop into the main segment.

■ Put any routines that handle low-memory conditions into a locked segment
(commonly the main segment). For example, if your application provides a grow-zone
function, put that function into a locked segment.

■ Put any routines that execute at interrupt time, including VBL tasks and Time
Manager tasks, into a locked segment (commonly the main segment).
7-4 About the Segment Manager

C H A P T E R 7

Segment Manager

7

S
egm

ent M
anager

■ Put into a separate segment any initialization routines that are executed exactly once
at application startup time. Then unload that segment after those routines are
executed. There is, however, at least one important exception to this rule. Routines
that allocate nonrelocatable objects in your application heap should be called in the
main segment, before you load any code segments that will later be unloaded. If you
put such allocation routines into a code segment that is later unloaded and purged,
you increase heap fragmentation. Routines such as MoreMasters and
InitWindows, which are typically called at the beginning of an application, allocate
nonrelocatable objects and should therefore be in the main segment.

The Jump Table 7

Note
This section describes how the Segment Manager works internally and
is included for informational purposes only. You don’t need this
information to use the Segment Manager routine. Moreover, the
information presented here might not be accurate for your development
system. See the note on page 7-7. ◆

The loading and unloading of segments are implemented through your application’s
jump table, an area of memory in your application’s partition that contains one entry for
every externally referenced routine in every code segment of your application. The
location of the jump table is illustrated in Figure 7-1.

Figure 7-1 The location of the jump table

High memory

CurrentA5

Jump table

Application parameters

pointer to QuickDraw global variables

QuickDraw global

variables

Application global

variables

Low memory

About the Segment Manager 7-5

C H A P T E R 7

Segment Manager

The jump table is accessed through the A5 register and is therefore part of your
application’s A5 world.

The jump table is created by your development system’s linker and is stored in segment
0 of your application (which is the 'CODE' resource with an ID of 0). Segment 0 is a
special segment created by the linker for every application; it contains information about
the A5 world and the jump table. Figure 7-2 illustrates the structure of segment 0.

Figure 7-2 The structure of segment 0

Segment 0 consists of these elements:

■ Size above A5. The size (in bytes) from the location pointed to by register A5 to the
upper end of the application space.

■ Size of globals. The size (in bytes) of the application global variables plus the
QuickDraw global variables.

■ Length of jump table. The size (in bytes) of the jump table.

Size above A5

Entry 1

Entry n

'CODE' resource 0Bytes

A5 offset of jump table

Entry 2

4

4

8

8

4

4

8

Size of globals

Length of jump table

Jump

table
7-6 About the Segment Manager

C H A P T E R 7

Segment Manager

7

S
egm

ent M
anager

■ A5 offset of jump table. The offset (in bytes) to the jump table from the location
pointed to by register A5. This offset is stored in the global variable CurJTOffset.

■ Jump table. A contiguous list of jump table entries.

When the MPW linker encounters a call to a routine in another code segment, it creates a
jump table entry for that routine. (All entries for a particular segment are stored
contiguously in the jump table.) The structure of a jump table entry varies according to
whether the segment it references is loaded or unloaded. If the segment is not yet loaded
into memory, the jump table entry has the structure illustrated in Figure 7-3.

Figure 7-3 Format of an MPW jump table entry when the segment is unloaded

Note
Some development systems use a different format for jump table entries
of unloaded routines to circumvent the 32K-byte limitation on the size of
segments, global data, or the jump table itself. Consult the
documentation for your development system to see whether it uses the
jump table entry formats described in this section and whether you can
safely call the UnloadSeg procedure (which changes jump table
entries). ◆

The jump table refers to segments by segment numbers assigned by the linker. If the
segment isn’t loaded, the entry contains code that loads the segment. When a segment is
unloaded, all its jump table entries are in the “unloaded” state. When a call to a routine
in an unloaded segment is made, the code in the last 6 bytes of its jump table entry is
executed. This code calls the _LoadSeg trap, which loads the segment into memory,
transforms all of its jump table entries to a “loaded” state, and invokes the routine by
executing the instruction in the last 6 bytes of its jump table entry. Figure 7-4 illustrates
the format of a jump table entry in the “loaded” state.

Offset of this routine

from beginning of segment

"Unloaded" state
Bytes

_LoadSeg trap number

2

4

2

Instruction that moves

the segment number onto

the stack for

_LoadSeg

About the Segment Manager 7-7

C H A P T E R 7

Segment Manager

Figure 7-4 Format of an MPW jump table entry when the segment is loaded

Subsequent calls to the routine also execute this instruction. When you call UnloadSeg,
it restores the jump table entries to their “unloaded” state. Notice that the last 6 bytes of
the jump table entry are always executed; the effect depends on the state of the entry at
the time.

To set all the jump table entries for a segment to a particular state, the Segment Manager
needs to know exactly where in the jump table all the entries are located. It gets this
information from the segment header, 4 bytes at the beginning of the segment that
contain the offset of the first routine’s entry from the beginning of the jump table
(2 bytes) and the number of entries for the segment (2 bytes).

Using the Segment Manager 7

The Segment Manager provides one routine for use by applications, the UnloadSeg
procedure. You use this routine to unload code segments. The Operating System also
provides two low-memory global variables that you can use to override the default
segment-loading behavior and to monitor the system’s automatic loading of code
segments.

Unloading Code Segments 7
You can use the UnloadSeg procedure to unload segments. To unload a particular
segment, pass UnloadSeg the address of any externally referenced routine contained in
that segment. For example, to unload the segment that contains the procedure
DoPrintFile, execute this line of code:

UnloadSeg(@DoPrintFile);

You can call UnloadSeg at any time except when you are executing code contained in
the segment to be unloaded. A typical strategy is to unload all code segments except

Offset of this routine

from beginning of segment

"Loaded" state
Bytes

2

6

Instruction that jumps to

the address of this routine

7-8 Using the Segment Manager

C H A P T E R 7

Segment Manager

7

S
egm

ent M
anager

segment 1 and any other essential code segments each time through your application’s
main event loop.

▲ W A R N I N G

Before you unload a segment, make sure that your application no longer
needs it. Never unload a segment that contains a completion routine or
other interrupt task (such as a Time Manager task or VBL task) that
might be executed after the segment is unloaded. Never unload a
segment that contains routines in the current call chain. ▲

The UnloadSeg procedure does not actually remove the segment from memory. Instead,
it unlocks the segment, thereby making the segment relocatable and purgeable. This
permits the Memory Manager to relocate or purge the segment if necessary to gain some
space in the application heap.

Loading Code Segments 7
The Segment Manager loads a code segment into memory automatically when you call
any externally referenced routine in that segment. In most cases, the Segment Manager
moves the block occupied by the code segment as high in the application heap as
possible (by calling the Memory Manager procedure MoveHHi) and locks the block (by
calling HLock) so that it cannot be moved or purged. You can disable or enable the call
to MoveHHi and monitor the loading of segments into memory by manipulating two
low-memory global variables.

If a code segment to be loaded is unlocked (that is, if it’s not in memory and its
resLocked attribute is clear, or if it is in memory and is unlocked), then the _LoadSeg
trap calls the Memory Manager procedure MoveHHi to move the segment toward the
top of the current heap. To prevent heap fragmentation, you should call the Memory
Manager procedure MaxApplZone early in your application’s execution. Otherwise, the
heap will grow incrementally, and these automatic calls to MoveHHi may leave your
code segments scattered throughout the heap. You can, however, disable the call to
MoveHHi by setting the low-memory global variable SegHiEnable to 0. If this variable
contains the value 0, _LoadSeg does not call MoveHHi to move the segment toward the
top of the heap.

Occasionally, especially during application development, it is useful to monitor the
otherwise largely invisible process of loading segments. You can do this by manipulating
the system global variable LoadTrap. Before any routine in a newly loaded code
segment is executed, the _LoadSeg trap inspects the LoadTrap global variable. If
LoadTrap has a nonzero value, then _LoadSeg calls the _Debugger trap. This
provides a useful way for you to monitor the loading of segments by the Segment
Manager.
Using the Segment Manager 7-9

C H A P T E R 7

Segment Manager

Segment Manager Reference 7

 This section describes the routine provided by the Segment Manager.

Routine 7
The Segment Manager provides only one routine, the UnloadSeg procedure.

UnloadSeg 7

You can unload a segment by calling the UnloadSeg procedure.

PROCEDURE UnloadSeg (routineAddr: Ptr);

routineAddr
The address of any externally referenced routine in the segment to unload.

DESCRIPTION

The UnloadSeg procedure unloads a segment, making its storage relocatable and
purgeable. You specify which segment to unload by passing the address of any
externally referenced routine in that segment. The segment won’t actually be purged
until the memory it occupies is needed. If the segment is purged, the Segment Manager
reloads it the next time one of the routines in it is called.

Note
The UnloadSeg procedure works only if called from outside the
segment to be unloaded. ◆
7-10 Segment Manager Reference

C H A P T E R 7

Segment Manager

7

S
egm

ent M
anager
Summary of the Segment Manager 7

Pascal Summary 7

Routine 7

PROCEDURE UnloadSeg (routineAddr: Ptr);

C Summary 7

Routine 7

pascal void UnloadSeg (void *routineAddr);

Assembly-Language Summary 7

Global Variables 7

Advanced Routine 7

CurJTOffset word Offset to jump table from location pointed to by A5.
LoadTrap byte If nonzero, call _Debugger before executing routine in a newly loaded

segment.
SegHiEnable byte If nonzero, don’t call MoveHHi when loading segments.

Trap macro On entry

_LoadSeg stack: segment number (word)
Summary of the Segment Manager 7-11

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Processes and Tasks TOC
	 Introduction to Processes and Tasks
	 Process Manager TOC
	 Process Manager
	 Time Manager TOC
	 Time Manager
	 Vertical Retrace Manager TOC
	 Vertical Retrace Manager
	 Notification Manager TOC
	 Notification Manager
	 Deferred Task Manager TOC
	 Deferred Task Manager
	 Segment Manager TOC
	Segment Manager
	About the Segment Manager
	Code Segmentation
	The Jump Table

	Using the Segment Manager
	Unloading Code Segments
	Loading Code Segments

	Segment Manager Reference
	Routine

	Summary of the Segment Manager
	Pascal Summary
	Routine

	C Summary
	Routine

	Assembly-Language Summary
	Global Variables
	Advanced Routine

	 Shutdown Manager TOC
	 Shutdown Manager
	 Glossary
	 Index
	 Colophon

