

C H A P T E R 1

1

Introduction to P
rocesses and Tasks

Introduction to Processes and Tasks 1

This chapter is a general introduction to process and task management on Macintosh
computers. It describes how the Operating System controls access to the CPU and other
system resources to create a cooperative multitasking environment in which your
application and any other open applications execute. This environment is managed
primarily by the Process Manager, which is responsible for launching processes,
scheduling their use of the available system resources, and handling their termination.

This chapter also describes how you can use the services provided by the Time Manager,
the Vertical Retrace Manager, and other parts of the Macintosh Operating System to
schedule tasks for execution outside the time provided to your application by the
Process Manager. Usually these tasks are executed in response to an interrupt.

You should read this chapter for an overview of how the Process Manager schedules
applications and loads them into memory. You also need to read this chapter if you
install any tasks that execute at interrupt time, which are subject to a number of
important restrictions.

To use this chapter, you need to be familiar with how your application uses memory, as
described in the chapter “Introduction to Memory Management” in Inside Macintosh:
Memory. You should also be familiar with how your application receives events, as
discussed in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter begins with a general discussion of processes and tasks. Then it describes in
detail the operation of the Process Manager in launching and scheduling processes. This
chapter ends with a description of installing tasks that execute at interrupt time. For a
more complete discussion of these topics, see the remaining chapters in this book.

The Cooperative Multitasking Environment 1

The Macintosh Operating System, the Finder, and several other system software
components work together to provide a multitasking environment in which a user can
have multiple applications open at once and can switch between open applications as
desired. To run in this environment, however, your application must follow certain rules
governing its use of the available system resources.

For example, your application should include a 'SIZE' resource that specifies how
large a memory partition it should be allocated at application launch time. If that much
memory is available when your application is launched, the Process Manager allocates it
and sets up your application partition. Similarly, your application should periodically
make an event call to allow the Operating System the opportunity to schedule other
applications for execution. Because the smooth operation of all applications depends on
their cooperation, this environment is known as a cooperative multitasking
environment.
The Cooperative Multitasking Environment 1-3

C H A P T E R 1

Introduction to Processes and Tasks

Note
The cooperative multitasking environment is available in system
software versions 7.0 and later, and when the MultiFinder option is
enabled in earlier system software versions. ◆

The Operating System schedules the processing of all applications and desk accessories.
When a user opens a document or application, the Operating System loads the
application code into memory and schedules the application to run at the next available
opportunity, usually when the current process or application relinquishes the CPU. In
most cases, the application runs immediately (or so it appears to the user).

The CPU is available only to the current application, whether it is running in the
foreground or the background. The application can be interrupted only by hardware
interrupts, which are transparent to the application. However, to give processing time to
background applications and to allow the user to interact with your application and
others, you must periodically call the Event Manager’s WaitNextEvent or
EventAvail function to allow your application to relinquish control of the CPU for
short periods. By using these event routines in your application, you allow the user to
interact not only with your application, but also with other applications.

Although a number of documents and applications can be open at the same time, only
one application is the active application. The active application is the application
currently interacting with the user; its icon appears in the right side of the menu bar. The
active application displays its menu bar and is responsible for highlighting the controls
of its frontmost window. In Figure 1-1, SurfWriter is the active application. Windows of
other applications are visible on the desktop behind the frontmost window.

Figure 1-1 The desktop with several applications open
1-4 The Cooperative Multitasking Environment

C H A P T E R 1

Introduction to Processes and Tasks

1

Introduction to P
rocesses and Tasks

Most processing in the cooperative multitasking environment is done by applications or
desk accessories. Occasionally, you might need to install a task to be executed in
response to an interrupt. In general, however, it is best to avoid installing interrupt tasks
if at all possible. Interrupt tasks must be small and fast, and they are subject to a number
of limitations that do not apply to applications. The Operating System itself is heavily
interrupt-driven, and you can severely impair the responsiveness of the computer by
installing too many tasks or tasks that take too long to complete.

About Processes 1

The Process Manager manages the scheduling of processes. A process is an open
application or, in some cases, an open desk accessory. (Desk accessories that are opened
in the context of an application are not considered processes.) The number of processes is
limited only by available memory.

The Process Manager maintains information about each process—for example, the
current state of the process, the address and size of its partition, its type, its creator, a
copy of all process-specific system global variables, information about its 'SIZE'
resource, and a process serial number. This process information is referred to as the
context of a process. The Process Manager assigns a process serial number to identify
each process. A process serial number identifies a particular instance of an application;
this number is unique during a single boot of the local machine.

The foreground process is the one currently interacting with the user; it appears to the
user as the active application. The foreground process displays its menu bar, and its
windows are in front of the windows of all other applications.

A background process is a process that isn’t currently interacting with the user. At any
given time a process is either in the foreground or the background; a process can switch
between the two states at well-defined times.

The foreground process has first priority for accessing the CPU. Other processes can
access the CPU only when the foreground process yields time to them. There is only one
foreground process at any one time. However, multiple processes can exist in the
background.

An application that is in the background can get CPU time but can’t interact with the
user while it is in the background. (However, the user can bring the application to the
foreground—for example, by clicking in one of the application’s windows.) Any
application that has the canBackground flag set in its 'SIZE' resource is eligible to
obtain access to the CPU when it is in the background.

Applications can be designed without a user interface; these are called background-only
applications. A background-only application does not call the Window Manager
InitWindows routine and is identified by having the onlyBackground flag set in its
'SIZE' resource. Background-only applications do not display windows or a menu bar
and are not listed in the Application menu.
About Processes 1-5

C H A P T E R 1

Introduction to Processes and Tasks

Background-only applications and applications that can run in the background should
be designed to relinquish the CPU often enough so that the foreground process can
perform its work and respond to the user.

Once an application is running, in either the foreground or the background, the CPU is
available only to that application. That application can be interrupted only by hardware
interrupts, which are transparent to the scheduling of the application. However, the
application that is running must periodically relinquish control of the CPU. This yielding
of the CPU allows background applications access to processing time and lets users
interact with the foreground application or switch to another application.

Your application can relinquish control of the CPU each time you call the Event Manager
functions WaitNextEvent or EventAvail. If, at that time, there are no events pending
for your application, the Process Manager may schedule other processes for execution.
(You can also call the GetNextEvent function; however, you should use
WaitNextEvent to provide greater support for cooperative multitasking.)

Process Creation 1
When a user first opens your application, the Process Manager creates a partition for it.
A partition is a contiguous block of memory that the Process Manager allocates for your
application’s use. The partition is divided into specific areas: application heap, A5 world,
and stack. The application heap contains the application’s 'CODE' segment 1, data
structures, resources, and other code segments as needed. The A5 world contains the
application’s QuickDraw global variables, its application global variables, and its jump
table, all of which are accessed through the A5 register. The application jump table
contains one entry for every externally referenced routine in every code segment of your
application. The application stack is used to store temporary variables. (See the chapter
“Introduction to Memory Management” in Inside Macintosh: Memory for more complete
details on these areas of your application’s partition.)

When you create an application, you specify in its 'SIZE' resource how much memory
you want the Process Manager to allocate for your application’s partition. You specify
two values: the preferred amount of memory to allocate and the minimum amount of
memory to allocate. When a user opens your application from the Finder, the Process
Manager first attempts to allocate a partition of the preferred size. If your application
cannot be launched in the preferred amount of memory, the Finder might display a
dialog box giving the user the option of opening the application using less than the
preferred size. The Finder will not launch your application if the minimum amount of
memory specified for your application is not available.

After the Process Manager creates a partition for your application, the Process Manager
loads your code into memory and sets up the stack, heap, and A5 world (including the
jump table) for your application. If the user selects one or more files to open or print, the
Finder sets up information your application can use to determine which files to open or
print.

The Process Manager assigns the application a process serial number, records its context,
and returns control to the launching application (usually the Finder). The Process
1-6 About Processes

C H A P T E R 1

Introduction to Processes and Tasks

1

Introduction to P
rocesses and Tasks

Manager typically transfers control to the new application after the launching
application makes a subsequent call to WaitNextEvent or EventAvail.

The next section describes how your application can allow other applications to receive
CPU time and how the Process Manager schedules CPU time among processes.

Process Scheduling 1
Your application can yield control of the CPU to other processes only at very specific
times, namely when you call the Event Manager functions WaitNextEvent or
EventAvail. Whenever your application calls one of these functions, the Process
Manager checks the status of your process and takes the opportunity to schedule other
processes.

Note
Your application can also yield processing time to other processes as a
result of calling other Toolbox routines containing internal calls to
WaitNextEvent or EventAvail. For example, your application can
yield the CPU to other processes as a result of calling either of the Apple
Event Manager functions AESend or AEInteractWithUser. See the
chapter “Apple Event Manager” in Inside Macintosh: Interapplication
Communication for information on using these two functions. ◆

In general, your application continues to receive processing time as long as any events
are pending for it. When your application is the foreground process, it yields time to
other processes in these situations: when the user wants to switch to another application
or when no events are pending for your application. Your application can also choose to
yield processing time to other processes when it is performing a lengthy operation.

A major switch occurs when the Process Manager switches the context of the foreground
process with the context of a background process (including the A5 worlds and
application-specific system global variables) and brings the background process to the
front, sending the previous foreground process to the background.

When your application is the foreground process and the user elects to work with
another application (by clicking in a window of another application, for example), the
Process Manager sends your application a suspend event if the
acceptSuspendResumeEvents bit is set in your application’s 'SIZE' resource. When
your application receives a suspend event, it should prepare to suspend foreground
processing, allowing the user to switch to the other application. For example, in response
to the suspend event, your application should remove the highlighting from the controls
of its frontmost window and take any other necessary actions. Your application is
actually suspended the next time it calls WaitNextEvent or EventAvail.

After your application receives the suspend event and calls WaitNextEvent or
EventAvail, the Process Manager saves the context of your process, restores the
context of the process to which the user is switching, and sends a resume event to that
process (if the acceptSuspendResumeEvents bit is set in its 'SIZE' resource). In
response to a resume event, your application should resume processing and start
About Processes 1-7

C H A P T E R 1

Introduction to Processes and Tasks

interacting with the user. For example, your application should highlight the controls of
its frontmost window.

A major switch also occurs when the user hides the active application (by choosing the
Hide command in the Application menu). In general, a major switch cannot occur when
a modal dialog box is the frontmost window. However, a major switch can occur when a
movable modal dialog box is the frontmost window.

A minor switch occurs when the Process Manager switches the context of a process to
give time to a background process without bringing the background process to the front.
For example, a minor switch occurs when no events are pending in the event queue of
the foreground process. In this situation, processes running in the background have an
opportunity to execute when the foreground process calls WaitNextEvent or
EventAvail. (If the foreground process has one or more events pending in the event
queue, then the next event is returned and the foreground process again has sole access
to the CPU.)

When an application is switched out in this way, the Process Manager saves the context
of the current process, restores the context of the next background process scheduled to
run, and sends the background process an event. At this time, the background process
can receive either update, null, or high-level events.

A background process should not perform any task that significantly limits the ability of
the foreground process to respond quickly to the user. A background process should call
WaitNextEvent often enough to let the foreground process be responsive to the user.
Upon receiving an update event, the background process should update only the content
of its windows. Upon receiving a null event, the background process can use the CPU to
perform tasks that do not require significant amounts of processing time.

The next time the background process calls WaitNextEvent or EventAvail, the
Process Manager saves the context of the background process and restores the context of
the foreground process (if the foreground process is not waiting for a specified amount
of time to expire before being scheduled again). The foreground process is then
scheduled to execute. If no events are pending for the foreground process and it is
waiting for a specified amount of time to expire, the Process Manager schedules the next
background process to run. The Process Manager continues to manage the scheduling of
processes in this manner.

Drivers and vertical blanking (VBL) tasks installed in the system heap are scheduled
regardless of which application is currently executing. Drivers installed in an
application’s heap are not scheduled to run when the application is not executing. See
the section “Task Scheduling,” beginning on page 1-11, for more information about the
scheduling of interrupt tasks.

Note
See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for specific information on how your application can handle
suspend and resume events and how your application can take
advantage of the cooperative multitasking environment. ◆
1-8 About Processes

C H A P T E R 1

Introduction to Processes and Tasks

1

Introduction to P
rocesses and Tasks

Whenever your application calls WaitNextEvent or EventAvail, the Process
Manager checks the status of your process and takes the opportunity to schedule other
processes. Using the WaitNextEvent function, you can control when your process is
eligible to be switched out.

The sleep parameter of the WaitNextEvent function specifies a length of time, in
ticks, during which the application relinquishes the CPU if no events are pending. For
example, if you specify a nonzero value in the sleep parameter and no events are
pending in your application’s event queue when you call WaitNextEvent, the
Process Manager saves the context of your process and schedules other processes until
an event becomes available or the time expires. Once the specified time expires or an
event becomes available for your application, your process becomes eligible to run. At
this time, the Process Manager schedules your process to run at the next available
chance. (You can also call the Process Manager’s WakeUpProcess function to make a
process eligible to run before the time in the sleep parameter expires.) If the time
specified by sleep expires and no events are pending for your application, the Process
Manager sends your application a null event.

In general, you should specify a value greater than 0 in the sleep parameter so that
those applications that need processing time can get it. If your application performs any
periodic task, then the frequency of the task usually determines what value you specify
in the sleep parameter. The less frequent the task, the higher the value of the sleep
parameter. A reasonable value for the sleep parameter is 60.

About Tasks 1

An interrupt is a form of exception, an error or special condition detected by the
microprocessor in the course of program execution. In particular, an interrupt is an
exception that is signaled to the processor by a device. You cannot predict what your
application will be doing when an interrupt task is executed. Interrupts can occur not
only between different statements that your application executes but also in the middle
of a single call that your application makes. For example, your application might invoke
a Toolbox trap, and the microprocessor could receive an interrupt in the middle of the
execution of the corresponding Toolbox routine.

Interrupts are usually sent by a device to notify the microprocessor of a change in the
condition of the device. Routines that are executed as a result of an interrupt are known
as interrupt tasks. For example, an interrupt might cause execution of an interrupt task
that checks regularly for a change in the position of the mouse and updates the position
of the cursor to reflect any change.

Your application can initiate interrupt tasks of its own. For example, you could write an
interrupt task that repeatedly spins the cursor or increments a global variable. However,
even application-generated interrupt tasks do not occur at predictable points in your
application’s execution. Applications can schedule tasks to be performed at regular time
intervals, such as 100 times per second, or in response to conditions in hardware devices.
Tasks scheduled at regular time intervals are actually executed in response to hardware
About Tasks 1-9

C H A P T E R 1

Introduction to Processes and Tasks
devices that perceive that requested time intervals have elapsed. The actual execution of
tasks is independent of the flow of application code.

Task Creation 1
Many interrupt tasks are handled by system software and are transparent to your
application. However, your application can use any of several facilities to install its own
interrupt tasks that are executed not at regular points in the flow of its code but at
intervals determined by hardware devices.

■ The Time Manager allows you to schedule periodic tasks and tasks to be executed
after a certain amount of time has elapsed. You can, for example, use the Time
Manager to compute elapsed times with great precision.

■ The Vertical Retrace Manager allows you to schedule tasks to be executed between
retraces of a video screen. Tasks that you schedule with the Vertical Retrace Manager
can reset themselves, just like Time Manager tasks. Although the Vertical Retrace
Manager lacks the great precision of the Time Manager, it is available on all Macintosh
models.

■ The Notification Manager allows both processes in the background and interrupt
tasks to alert the user. For example, your application might need to inform the user
that some error has occurred, rendering further background processing impossible.
You can pass to the Notification Manager’s installation routine a pointer to a response
procedure to be executed as the final stage of notification.

■ The Device Manager allows device drivers for slot cards to install interrupts. If you
are writing slot-interrupt tasks, you might also wish to use the Deferred Task
Manager, which allows you to defer lengthy interrupt tasks that might prevent other
interrupt tasks from executing.

All of these managers need to maintain information about multiple interrupt tasks that
might have been installed. To hold such information, the Operating System uses data
structures known as operating-system queues. For more information on the structure of
such queues, see the chapter “Queue Utilities” in Inside Macintosh: Operating System
Utilities.

When an interrupt causes the microprocessor to suspend normal execution, the
processor uses the stack to save the address of the next instruction and the processor’s
internal status. In this way, when the microprocessor completes execution of interrupt
tasks, it can resume the current process where it left off.

After storing these values on the stack, the microprocessor executes an interrupt handler
to deal with the interrupt. The addresses of all of the interrupt handlers, called interrupt
vectors, are stored in a vector table in low memory. For example, if the interrupt is a
vertical retrace interrupt, the microprocessor examines the value of the Vertical Retrace
Manager’s interrupt vector and executes the interrupt handler whose code starts at the
address referenced by that value. The vertical retrace interrupt handler might then
execute one or more vertical blanking tasks. When an interrupt task is executed, the
interrupt is said to be serviced.
1-10 About Tasks

C H A P T E R 1

Introduction to Processes and Tasks

1

Introduction to P
rocesses and Tasks
Each type of interrupt has an interrupt priority level, which defines how important it is
that an interrupt be serviced. The microprocessor also maintains a processor priority
that limits which interrupts will be serviced. When a device generates an interrupt
whose interrupt priority level is higher than the processor priority level, the processor
priority level is raised to the interrupt priority level, the interrupt is serviced, and the
processor priority level is lowered to its previous level. When a device generates an
interrupt whose interrupt priority level is lower than or equal to the processor priority
level, the interrupt is ignored; interrupts of levels lower than the processor priority are
said to be disabled when higher-level interrupts are executing. This scheme ensures that
relatively important interrupts are not themselves interrupted by less important
interrupts.

If you are writing a typical application, you do not need to worry about interrupts
themselves or the low-level details associated with them. Your application installs
interrupt tasks and ordinarily does not need to worry about the interrupts that cause
them to execute. For more information on interrupts themselves, see the chapter “Device
Manager” in Inside Macintosh: Devices and the chapter “Deferred Task Manager” in this
book.

Task Scheduling 1
As previously indicated, your interrupt tasks are executed in response to an interrupt.
Because the execution of an interrupt task is not tied to the normal execution of your
application, that task might continue to be executed even when your application is not
itself executing. For example, all Time Manager tasks installed by your application
continue to be executed as scheduled, whether or not your application is still the current
application.

If it doesn’t make sense to continue executing a particular Time Manager task when your
application is no longer receiving processing time, you need to disable the execution of
that task whenever your application is switched out and then reenable the task when
your application regains control of the CPU. To disable a Time Manager task, you can
remove its entry from the Time Manager queue. To reenable it, reinstall its entry in the
queue.

In some cases, the Operating System automatically disables some of your application’s
interrupt tasks when your application is switched out. All VBL tasks installed by the
Vertical Retrace Manager routine VInstall (which are known as system-based VBL
tasks) are disabled whenever the installing application loses control of the CPU, if the
address of the task is in the application partition. If you want to continue executing a
system-based VBL task when your application is switched out, you must make sure that
the address of the task is in the system partition. See the chapter “Vertical Retrace
Manager” in this book for details on how to accomplish this.

Note
A VBL task installed by the routine SlotVInstall (known as a
slot-based VBL task) is always executed as scheduled, regardless of the
task’s address. ◆
About Tasks 1-11

C H A P T E R 1

Introduction to Processes and Tasks
When an interrupt task is executed, the Operating System does not always restore the
installing application’s context. As a result, you might not be able to read any
application-specific system global variables from within the task. In addition, the task
will not have access to any application-installed patches (which are part of its context). If
your interrupt task depends on any part of your application’s context, it should call the
Process Manager function GetCurrentProcess to make sure that your process is
currently in control of the CPU and hence that its context is valid.

Note
Your interrupt code must also avoid calling traps that access
application-specific system global variables, unless you determine that
your application’s context is valid. In general, however, there is no way
to determine whether a trap accesses system global variables. ◆

Even if your application’s context is not valid, you can still access some information in
your application’s partition if you suitably set up and restore the A5 register within your
interrupt task. Your application global variables and your application’s jump table are
both accessed via an address in the microprocessor’s A5 register. If you need to read or
write any of your application’s global variables or call routines in another segment, you
must set up the A5 register with your application’s value of the CurrentA5 global
variable. Because you cannot in general inspect CurrentA5 at interrupt time, you need
to read its value at noninterrupt time and pass the value to your interrupt routine. See
the chapters “Time Manager” and “Vertical Retrace Manager” in this book for
illustrations of a technique you can use for this purpose. For more information on how to
set the A5 register properly, see the chapter “Memory Management Utilities” in Inside
Macintosh: Memory.

If you do call routines in another code segment at interrupt time, you must make sure
that the segment is already loaded in memory. Otherwise, the Operating System will call
the Segment Manager to load the segment into memory, which could cause memory to
be allocated.

▲ W A R N I N G

Interrupt tasks should never directly or indirectly cause memory to be
allocated, moved, or purged, because the heap might be in an
inconsistent state when the task is executed. ▲

For this same reason, your interrupt tasks must never depend on the validity of handles
that are not locked. The interrupt task might be called in the middle of a
memory-allocation request, during which time the Memory Manager might be moving
an unlocked block in the heap. If you must access relocatable blocks of heap memory
within an interrupt task, make sure to lock those blocks before installing the task.

If virtual memory is available in the current operating environment, you also need to
make certain that your interrupt tasks do not attempt to read information in a page of
memory that might not be resident in physical RAM. Otherwise, the Operating System
will attempt to read the affected pages of memory into physical RAM, which is likely to
cause the system to crash. To be safe, you should hold all data and code accessed at
interrupt time in physical memory. For details, see the chapter “Virtual Memory
Manager” in Inside Macintosh: Memory.
1-12 About Tasks

C H A P T E R 1

Introduction to Processes and Tasks

1

Introduction to P
rocesses and Tasks
Task Guidelines 1
This section summarizes the guidelines to follow if your application installs tasks that
are executed at interrupt time.

■ Make your interrupt task as short as possible. A good strategy is to have the interrupt
task modify a global variable from which your application can determine what
noninterrupt processing to perform. If this strategy is not sufficient, you can use the
Deferred Task Manager to defer lengthy interrupt tasks until all interrupts are
reenabled.

■ If you modify your application’s global variables from within an interrupt task or call
routines in another code segment, make sure to set up and restore the A5 register. The
chapters “Time Manager” and “Vertical Retrace Manager” in this book contain
examples of this technique.

■ Don’t call any routines that cause memory to be moved or compacted, either directly
or indirectly.

■ Don’t use any handles that are not locked.

■ Make sure that the code segment containing the interrupt task is loaded, locked, and
unpurgeable. Never unload a code segment containing an active interrupt task.

■ Do not allocate parameter blocks or task records as local variables of routines that
might return before the interrupt task is completed.

■ Do not make synchronous calls in an interrupt task.

■ Minimize the amount of stack space your task uses. Remember that some interrupt
tasks execute at times when your application is not the current application; as a result,
you might not be able to predict how much stack space is available to your task.

■ Preserve all microprocessor registers other than A0–A3 and D0–D3. Most compilers
for high-level languages automatically generate code that does this.
About Tasks 1-13

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Processes and Tasks TOC
	Introduction to Processes and Tasks
	The Cooperative Multitasking Environment
	About Processes
	Process Creation
	Process Scheduling

	About Tasks
	Task Creation
	Task Scheduling
	Task Guidelines

	 Process Manager TOC
	 Process Manager
	 Time Manager TOC
	 Time Manager
	 Vertical Retrace Manager TOC
	 Vertical Retrace Manager
	 Notification Manager TOC
	 Notification Manager
	 Deferred Task Manager TOC
	 Deferred Task Manager
	 Segment Manager TOC
	 Segment Manager
	 Shutdown Manager TOC
	 Shutdown Manager
	 Glossary
	 Index
	 Colophon

