

C H A P T E R 5

5

N
otification M

anager

Notification Manager 5

This chapter describes how you can use the Notification Manager to inform users of
significant occurrences in applications that are running in the background or in software
that is largely invisible to the user. This software includes device drivers, vertical
blanking (VBL) tasks, Time Manager tasks, completion routines, and desk accessories
that operate behind the scenes. It also includes code that executes during the system
startup sequence, such as code contained in 'INIT' resources.

The Notification Manager is available in system software versions 6.0 and later. You can
use the Gestalt function to determine whether the Notification Manager is present. See
the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities for complete
details on using Gestalt.

You need to read this chapter if your application, desk accessory, or device driver might
need to notify the user of some occurrence while it is running in the background or is
otherwise invisible to the user. You also need to read this chapter if you want to write
'INIT' resources that might need to inform the user of important occurrences during
their execution at system startup time.

About the Notification Manager 5

The Notification Manager provides a notification service. It allows software running in
the background (or otherwise unseen by the user) to communicate information to the
user. For example, applications that manage lengthy background tasks (such as printing
many documents or transferring large amounts of data to other machines) might need to
inform the user that the operation is complete. These applications cannot use the
standard methods of communicating with the user, such as alert or dialog boxes, because
such windows might easily be obscured by the windows of other applications.
Moreover, even if those windows are visible, the background application cannot be
certain that the user is aware of the change. A more reliable method is needed to manage
the communication between a background application and the user, who might be
awaiting the completion of the background task while running some other application in
the foreground.

In the same way, relatively invisible operations such as Time Manager tasks, VBL tasks,
or device drivers might need to inform the user that some previously started routine is
complete or perhaps that some error has rendered further execution undesirable or
impossible.

In all these cases, the communication generally needs to occur in one direction only, from
the background application (or task, or driver) to the user. The Notification Manager,
included in system software versions 6.0 and later, allows you to alert the user by
posting a notification, which is an audible or visible indication that your application (or
other piece of software) requires the user’s attention. You post a notification by issuing a
notification request to the Notification Manager, which places your request in a queue.
When your request reaches the top of the queue, the Notification Manager posts a
notification to the user.
About the Notification Manager 5-3

C H A P T E R 5

Notification Manager

You can request three types of notification:

■ Polite notification. A small icon blinks, by periodically alternating with the Apple
menu icon (the Apple logo) or the Application menu icon in the menu bar.

■ Audible notification. The Sound Manager plays the system alert sound or a sound
contained in an 'snd ' resource.

■ Alert notification. An alert box containing a short message appears on the screen. The
user must dismiss the alert box (by clicking the OK button) before foreground
processing can continue.

These types of notification are not mutually exclusive; for example, an application can
request both audible and alert notifications. Moreover, if the requesting software is listed
in the Application menu (and hence represents a process that is loaded into memory),
you can instruct the Notification Manager to place a diamond-shaped mark next to the
name of the requesting process. The mark is usually intended to prompt the user to
switch the marked application into the foreground. Finally, you can request that the
Notification Manager execute a notification response procedure, which is executed as
the final step in a notification.

In short, a notification consists of one or more of five possible actions. If you request
more than one action, they occur in the following order:

1. A diamond-shaped mark appears next to the name of your application in the
Application menu, as illustrated in Figure 5-1. Note that the diamond is present only
when your application is in the background (because the diamond is replaced by a
checkmark if your application is the active application). In Figure 5-1, the Traffic Light
application is the active application.

Figure 5-1 A notification in the Application menu

2. A small icon blinks, alternating with either the Apple menu icon or the Application
menu icon in the menu bar. Typically, the small icon is your application’s small icon.
Because several applications can post notifications, there might be a series of small
icons blinking in the menu bar. The location of each blinking icon varies according to
the posting application’s mark (if any). If your application is marked with a diamond
(or a checkmark) in the Application menu, the icon blinks above the Application
menu; otherwise, the icon blinks above the Apple menu.
5-4 About the Notification Manager

C H A P T E R 5

Notification Manager

5

N
otification M

anager

3. The Sound Manager plays a sound. Your application can supply its own sound (by
passing the Notification Manager a handle to an 'snd ' resource loaded into
memory) or request that the Sound Manager use the user’s system alert sound.

4. An alert box like the one in Figure 5-2 appears, and the user dismisses it. Your
application specifies the text in the alert box.

Figure 5-2 A notification alert box

5. A response procedure is executed. You can use the response procedure to remove the
notification request from the queue or perform other processing.

The mark in the Application menu and the blinking small icon remain until the
requesting application removes the notification request from the queue. However, the
sound and the alert box are presented only once, if at all.

Any applications, desk accessories, tasks, routines, or drivers can use the Notification
Manager, whether they are running in the background or not. It is especially useful for
background applications, such as the PrintMonitor application. (The system alarm,
which is called by the Alarm Clock desk accessory, also uses the Notification Manager.)
Foreground applications can, however, use the Notification Manager to achieve effects
(such as the blinking small icon) that are otherwise more difficult to create. For the same
reasons, the Notification Manager can be useful even to applications that might be
executing in a Finder-only environment under system software version 6.0.

The Notification Manager provides applications with a standard user interface for
notifying the user of significant events. The following three-level notification strategy for
communicating with the user is recommended:

1. Display a diamond next to the name of the application in the Application menu.

2. Insert a small icon into the list of icons displayed alternately with the Apple menu
icon or the Application menu icon in the menu bar, and display a diamond next to the
name of your application in the Application menu.

3. Display a diamond, insert a small icon, and display an alert box to notify the user that
something needs to be done.

Ideally, the user should be allowed to set the desired level of notification. The suggested
default level of notification is level 2. In levels 2 and 3, you might also play a sound, but
the user should have the ability to turn the sound off. In addition, a user should have the
About the Notification Manager 5-5

C H A P T E R 5

Notification Manager

ability to turn off background notification altogether, except when damage might occur
or data might be lost.

Note
This suggested notification strategy may not be appropriate for your
application. Notifications posted by system software might not follow
these guidelines. ◆

Each application, desk accessory, and device driver can issue any number of notification
requests. Each requested notification is presented separately to the user. For this reason,
avoid posting multiple notification requests for the same occurrence. Depending on the
method of notification you specify, multiple requests might result in an annoying
number of notification sounds or many alert boxes that the user must dismiss before
continuing.

Note that the Notification Manager provides a one-way communications path from an
application to the user. There is no provision for carrying information back from the user
to the requesting application, although it is possible for the requesting application to
determine if the notification was received. If you require this secondary communications
link, do not use the Notification Manager. Instead, you should wait until the user
switches your application into the foreground and then use standard means (for
example, a dialog box) to obtain the required information.

Using the Notification Manager 5

To issue a notification to the user, you need to create a notification request and install it
in the notification queue. The Notification Manager interprets the request and presents
the notification to the user at the earliest possible time. After you have notified the user
in the desired manner (that is, placed a diamond mark in the Application menu, added a
small blinking icon to the menu bar, played a sound, or displayed an alert box), you
might want the Notification Manager to call a response procedure. The response
procedure is useful for determining that the user has indeed seen the notification or for
reacting to the successful posting of the notification. Eventually, you need to remove the
notification request from the notification queue; you can do this in the response
procedure or when your application returns to the foreground.

The Notification Manager is automatically initialized at system startup time. It includes
two functions, one that allows you to install a request into the notification queue and one
that allows you to remove a request from that queue.

Creating a Notification Request 5
Information describing each notification request is contained in the notification queue,
which is a standard operating-system queue (as described in the chapter “Queue
Utilities” in Inside Macintosh: Operating System Utilities). Each entry in the notification
queue is a notification record—a static and nonrelocatable record of type NMRec. When
5-6 Using the Notification Manager

C H A P T E R 5

Notification Manager

5

N
otification M

anager

installing a request in the notification queue, your application must supply a pointer to a
notification record that indicates the type of notification you desire. Here is the NMRec
data structure:

TYPE NMRec =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

nmFlags: Integer; {reserved}

nmPrivate: LongInt; {reserved}

nmReserved: Integer; {reserved}

nmMark: Integer; {item to mark in menu}

nmIcon: Handle; {handle to icon}

nmSound: Handle; {handle to sound resource}

nmStr: StringPtr; {string to appear in alert box}

nmResp: ProcPtr; {pointer to response procedure}

nmRefCon: LongInt; {for application's use}

END;

To set up a notification request, you need to fill in the fields qType, nmMark, nmIcon,
nmSound, nmStr, nmResp, and nmRefCon. The remaining fields of this record are used
internally by the Notification Manager or are reserved for use by Apple Computer, Inc.

Field descriptions

qLink Points to the next element in the queue. This field is used internally
by the Notification Manager.

qType Indicates the type of queue. You should set this field to the value
ORD(nmType), which is 8.

nmFlags Reserved for use by Apple Computer, Inc.
nmPrivate Reserved for use by Apple Computer, Inc.
nmReserved Reserved for use by Apple Computer, Inc.
nmMark Indicates whether to place a diamond-shaped mark next to the

name of the application in the Application menu. If the value of
nmMark is 0, no such mark appears. If the value of nmMark is 1, the
mark appears next to the name of the calling application. If the
value of nmMark is neither 0 nor 1, it is interpreted as the reference
number of a desk accessory. An application should pass 1, a desk
accessory should pass its own reference number, and a driver or a
detached background task (such as a VBL task or Time Manager
task) should pass 0.

nmIcon Contains a handle to a small icon that is to blink periodically in the
menu bar. If the value of nmIcon is NIL, no icon appears in the
menu bar. This handle must be valid at the time that the notification
occurs; it does not need to be locked, but it must be nonpurgeable.

nmSound Contains a handle to a sound resource to be played with SndPlay.
If the value of nmSound is NIL, no sound is produced. If the value
Using the Notification Manager 5-7

C H A P T E R 5

Notification Manager

of nmSound is –1, then the system alert sound plays. This handle
does not need to be locked, but it must be nonpurgeable.

nmStr Points to a string that appears in the alert box. If the value of nmStr
is NIL, no alert box appears. Because the Notification Manager does
not make a copy of this string, your application should not release
this memory until it removes the notification request.

nmResp Points to a response procedure. If the value of nmResp is NIL, no
response procedure is executed when the notification is posted. If
the value of nmResp is –1, then a predefined procedure removes the
notification request immediately after it has completed.

nmRefCon A long integer available for your application’s own use.

Listing 5-1 illustrates how to set up a notification record. In this listing,
gMyNotification is a global variable of type NMRec and gText is a global variable of
type Str255.

Listing 5-1 Setting up a notification record

VAR

myResNum: Integer; {resource ID of small icon}

myResHand: Handle; {handle to small icon resource}

BEGIN

myResNum := 1234; {resource ID in resource fork}

myResHand := GetResource('SICN', myResNum);

{get icon from resource fork}

gText := 'Sample Alert Box'; {set message for alert box}

WITH gMyNotification DO

BEGIN

qType := ORD(nmType); {set queue type}

nmMark := 1; {put mark in Application menu}

nmIcon := myResHand; {blinking icon}

nmSound := Handle(-1); {play system alert sound}

nmStr := @gText; {display alert box}

nmResp := NIL; {no response procedure}

nmRefCon := 0; {not needed here}

END;

END;

This notification record requests all three types of notification—polite (blinking small
icon), audible (system alert sound), and alert (alert box). In addition, the diamond
appears in front of the application’s name in the Application menu. In this case, the small
icon has resource ID 1234 of type 'SICN' in the application’s resource fork.
5-8 Using the Notification Manager

C H A P T E R 5

Notification Manager

5

N
otification M

anager

Defining a Response Procedure 5
The nmResp field of the notification record contains the address of a response procedure
executed as the final stage of a notification. If no processing is necessary in response to
the notification, then you can supply the value NIL in that field. If you supply the
address of your own response procedure in the nmResp field, the Notification Manager
passes it one parameter, a pointer to your notification record. For example, this is how
you would declare a response procedure having the name MyResponse:

PROCEDURE MyResponse (nmReqPtr: NMRecPtr);

When the Notification Manager calls this response procedure, it does not set up the A5
register or application-specific system global variables for you. If you need to access
your application’s global variables, you should save its A5 value in the nmRefCon field.
See the chapter “Memory Management Utilities” in the book Inside Macintosh: Memory
for more information on saving and restoring the A5 world.

Response procedures should never cause anything to be drawn on the screen or
otherwise affect the human interface. Rather, you should use them simply to remove
notification requests from the notification queue and free any memory. If you specify the
special nmResp value of –1, the Notification Manager removes the queue element from
the queue automatically, and you don’t have to do it yourself. You have to pass your
own response routine, however, if you need to do anything else in the response
procedure, such as free the memory block containing the queue element or set an
application global variable indicating that the notification was received.

If you use audible or alert notifications, you should probably set nmResp to –1 to remove
the notification record from the queue as soon as the sound ends or the user dismisses
the alert box. However, if either nmMark or nmIcon has a nonzero value, you should not
set nmResp to –1 (because the Notification Manager would remove the diamond mark or
the small icon before the user could see it). Note that when the value of nmResp is –1, the
Notification Manager does not free the memory block containing the queue element; it
merely removes that element from the notification queue.

Because the execution of the response procedure is the last step in the notification
process, your application can determine whether the notification was posted by
examining a global variable that you set in the response procedure. In addition, to
determine that the user has actually received the notification, you need to request an
alert notification. This is necessary because the response procedure is executed only after
the user clicks the OK button in the alert box.

Installing a Notification Request 5
To add a notification request to the notification queue, call the NMInstall function. For
example, you can install the notification request defined in Listing 5-1 with the following
line of code:

myErr := NMInstall(@gMyNotification); {install request}
Using the Notification Manager 5-9

C H A P T E R 5

Notification Manager
If the call to NMInstall returns an error, then you cannot install the notification request
in the notification queue. In that case, your application should wait for the user to switch
it to the foreground before doing further processing. While waiting for a resume event,
your application should take care of other events, such as updates. Note, however, that
NMInstall fails only if it is passed invalid information, namely, the wrong value for
qType.

You can install notification requests at any time, even when the system is executing
'INIT' resources as part of the system startup sequence. If you need to notify the user
of some important occurrence during the execution of your 'INIT' resource, use the
Notification Manager to install a request in the notification queue. The system notifies
the user after the startup process completes, that is, when the normal event mechanism
begins. This saves you from having to interrupt the system startup sequence with dialog
or alert boxes and results in a cleaner and more uniform startup appearance.

Removing a Notification Request 5
To remove a notification request from the notification queue, call the NMRemove
function. For example, you can remove a notification request with this code:

myErr := NMRemove(@gMyNotification); {remove request}

You can remove requests at any time, either before or after the notification actually
occurs. Note that requests already issued by the Notification Manager are not
automatically removed from the queue.

Notification Manager Reference 5

This section describes the routines that are specific to the Notification Manager. It also
describes the application-defined notification response procedure.

Notification Manager Routines 5
The Notification Manager includes two functions, one to install a notification request
and one to remove it.

NMInstall 5

To install a notification request, use the NMInstall function.

FUNCTION NMInstall (nmReqPtr: NMRecPtr): OSErr;

nmReqPtr A pointer to a notification record.
5-10 Notification Manager Reference

C H A P T E R 5

Notification Manager

5

N
otification M

anager
DESCRIPTION

The NMInstall function adds the notification request specified by the nmReqPtr
parameter to the notification queue and returns a result code.

SPECIAL CONSIDERATIONS

Because NMInstall does not move or purge memory, you can call it from completion
routines or interrupt handlers as well as from the main body of an application and from
the response procedure of a notification request.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NMInstall are

RESULT CODES

NMRemove 5

To remove a notification request, use the NMRemove function.

FUNCTION NMRemove (nmReqPtr: NMRecPtr): OSErr;

nmReqPtr A pointer to a notification record.

DESCRIPTION

The NMRemove function removes the notification request identified by the nmReqPtr
parameter from the notification queue and returns a result code.

SPECIAL CONSIDERATIONS

Because NMRemove does not move or purge memory, you can call it from completion
routines or interrupt handlers as well as from the main body of an application and from
the response procedure of a notification request.

Registers on entry

A0 Address of NMRec record

Registers on exit

D0 Result code

noErr 0 No error
nmTypErr –299 Invalid qType value (must be ORD(nmType))
Notification Manager Reference 5-11

C H A P T E R 5

Notification Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NMRemove are

RESULT CODES

Application-Defined Routine 5
The Notification Manager allows you to define a notification response procedure.

Notification Response Procedures 5

You pass the address of an application-defined notification response procedure in the
nmResp field of a notification record.

MyResponse 5

If desired, you can specify the address of a completion or response procedure that is
executed as the last stage in a notification. The response procedure should have this
syntax:

PROCEDURE MyResponse (nmReqPtr: NMRecPtr);

nmReqPtr A pointer to a notification record.

DESCRIPTION

The nmResp field of the notification record contains the address of a response procedure
executed as the final stage of a notification. If no processing is necessary in response to
the notification, then you can supply the value NIL in that field. If you supply the
address of your own response procedure in the nmResp field, the Notification Manager
passes it one parameter, a pointer to your notification record.

Registers on entry

A0 Address of NMRec record

Registers on exit

D0 Result code

noErr 0 No error
qErr –1 Not in queue
nmTypErr –299 Invalid qType (must be ORD(nmType))
5-12 Notification Manager Reference

C H A P T E R 5

Notification Manager

5

N
otification M

anager
SEE ALSO

For more details on a response procedure, see “Defining a Response Procedure” on
page 5-9.
Notification Manager Reference 5-13

C H A P T E R 5

Notification Manager
Summary of the Notification Manager 5

Pascal Summary 5

Constant 5

CONST

nmType = 8; {queue type of notification queue}

Data Types 5

TYPE NMRec =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

nmFlags: Integer; {reserved}

nmPrivate: LongInt; {reserved}

nmReserved: Integer; {reserved}

nmMark: Integer; {item to mark in menu}

nmIcon: Handle; {handle to icon}

nmSound: Handle; {handle to sound resource}

nmStr: StringPtr; {string to appear in alert box}

nmResp: ProcPtr; {pointer to response procedure}

nmRefCon: LongInt; {for application's use}

END;

NMRecPtr = ^NMRec;

Notification Manager Routines 5

FUNCTION NMInstall (nmReqPtr: NMRecPtr): OSErr;

FUNCTION NMRemove (nmReqPtr: NMRecPtr): OSErr;

Application-Defined Routine 5

PROCEDURE MyResponse (nmReqPtr: NMRecPtr);
5-14 Summary of the Notification Manager

C H A P T E R 5

Notification Manager

5

N
otification M

anager
C Summary 5

Constant 5

enum {nmType = 8}; /*queue type of notification queue*/

Data Types 5

typedef pascal void (*NMProcPtr)(struct NMRec *);

struct NMRec {

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short nmFlags; /*reserved*/

long nmPrivate; /*reserved*/

short nmReserved; /*reserved*/

short nmMark; /*item to mark in menu*/

Handle nmIcon; /*handle to icon*/

Handle nmSound; /*handle to sound resource*/

StringPtr nmStr; /*string to appear in alert box*/

NMProcPtr nmResp; /*pointer to response procedure*/

long nmRefCon; /*for application's use*/

};

typedef struct NMRec NMRec;

typedef NMRec *NMRecPtr;

Notification Manager Routines 5

pascal OSErr NMInstall (NMRecPtr nmReqPtr);

pascal OSErr NMRemove (NMRecPtr nmReqPtr);

Application-Defined Routine 5

pascal void MyResponse (NMRecPtr nmReqPtr);

Result Codes 5
noErr 0 No error
qErr –1 Not in queue
nmTypErr –299 Invalid qType value (must be ORD(nmType))
Summary of the Notification Manager 5-15

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Processes and Tasks TOC
	 Introduction to Processes and Tasks
	 Process Manager TOC
	 Process Manager
	 Time Manager TOC
	 Time Manager
	 Vertical Retrace Manager TOC
	 Vertical Retrace Manager
	 Notification Manager TOC
	Notification Manager
	About the Notification Manager
	Using the Notification Manager
	Creating a Notification Request
	Defining a Response Procedure
	Installing a Notification Request
	Removing a Notification Request

	Notification Manager Reference
	Notification Manager Routines
	Application-Defined Routine
	Notification Response Procedures

	Summary of the Notification Manager
	Pascal Summary
	Constant
	Data Types
	Notification Manager Routines
	Application-Defined Routine

	C Summary
	Constant
	Data Types
	Notification Manager Routines
	Application-Defined Routine

	Result Codes

	 Deferred Task Manager TOC
	 Deferred Task Manager
	 Segment Manager TOC
	 Segment Manager
	 Shutdown Manager TOC
	 Shutdown Manager
	 Glossary
	 Index
	 Colophon

