

C H A P T E R 4

4

V
ertical R

etrace M
anager

Vertical Retrace Manager 4

This chapter describes the Vertical Retrace Manager, the part of the Operating System
that schedules and executes recurrent tasks during vertical retrace interrupts. You can
use the Vertical Retrace Manager to execute simple, repetitive tasks and avoid having to
execute those tasks repeatedly in your application’s main event loop.

You should read the information in this chapter if you want your application to schedule
tasks for execution during a vertical retrace interrupt. For example, you can use the
Vertical Retrace Manager to cycle among a series of cursors while some lengthy
operation is happening, thus presenting the illusion of a spinning cursor.

In general, you should use the Vertical Retrace Manager only when you need to
synchronize actions with the redrawing of the screen or when the tasks don’t need to be
executed at very precise intervals. As explained later in this chapter, certain conditions
can cause the Operating System to turn off vertical blanking interrupts for a period of
time. When this happens, the tasks in the vertical retrace task queue are not executed as
scheduled. As a result, you should not use the Vertical Retrace Manager to handle tasks
that must be executed consistently or with precise timing. For precise, uninterrupted
task execution, you should use the Time Manager. See the chapter “Time Manager” in
this book for details.

To use this chapter, you need to be familiar with interrupt-time processing and with the
general limitations on such processing. The chapter “Introduction to Processes and
Tasks” in this book describes these issues in detail. As emphasized in that chapter, you
should in general avoid executing tasks at interrupt time. If you must install a VBL task,
the code should be as short as possible. In addition, the code and any data it accesses
should be locked into physical memory if virtual memory is in operation.

To use this chapter, you might also need to be familiar with techniques for accessing
information in your application’s A5 world at interrupt time. The chapter “Introduction
to Memory Management” in Inside Macintosh: Memory describes the A5 world and the
routines you can use to manipulate the A5 register. This chapter provides complete code
samples that illustrate how to access your application’s A5 world in a VBL task. As a
result, you might be able to use the Vertical Retrace Manager to accomplish simple,
repetitive tasks without reading that chapter.

This chapter describes how the Vertical Retrace Manager works and then shows how
you can use the Vertical Retrace Manager to

■ install a simple task to be executed during vertical retrace interrupts

■ access information about a task record installed in the vertical retrace queue from
within that task

■ access your application’s global variables in a vertical retrace task

■ spin the cursor to indicate that the user must wait while the computer completes some
lengthy processing

■ install a vertical retrace task in the system heap so that it continues to be executed
even when your application is switched out
4-3

C H A P T E R 4

Vertical Retrace Manager

About the Vertical Retrace Manager 4

The video circuitry in a Macintosh computer, whether built-in or external, refreshes the
screen at regular intervals. For built-in monitors, the screen is refreshed approximately
60 times per second; for external monitors, the screen is refreshed at intervals
determined by the associated video hardware. To refresh the screen, the monitor’s
electron beam draws one pixel at a time, starting at the upper-left corner of the screen
and moving quickly to the lower-right corner. When the electron beam returns from the
lower-right corner of the screen to the upper-left corner, the video circuitry generates a
vertical retrace interrupt or vertical blanking (VBL) interrupt.

The Vertical Retrace Manager is the part of the Operating System that schedules and
executes tasks—known as VBL tasks—during a vertical retrace interrupt. The Operating
System itself uses the Vertical Retrace Manager to perform some important
housekeeping operations, such as moving the cursor in response to mouse movements
and checking whether the current application’s stack has expanded into its heap. Within
the limitations described in this chapter, you can use the Vertical Retrace Manager to
install your own recurrent tasks. For example, you can use the Vertical Retrace Manager
to spin the cursor to indicate that the user must wait while some processing initiated by
your application completes.

In general, the Vertical Retrace Manager is useful for small, repetitive tasks that do not
allocate or release memory and that you do not want to execute in your main event loop.
Whenever possible, it is best to manage periodic tasks within your main event loop. For
example, you can call the TextEdit routine TEIdle once each time through the loop, thus
causing the insertion point in a block of text to blink. However, if you want some task to
execute repetitively at a time when you do not want to reenter your main event loop
(perhaps because you don’t want your application to be switched out during some
lengthy operation), it might be possible to use the Vertical Retrace Manager to execute
the task.

The principal limitation on VBL tasks (aside from the limitations on any interrupt-time
processing) is that they cannot execute more frequently than once per VBL interrupt. The
exact amount of time between successive VBL interrupts depends on the refresh
frequency of the screen, which varies. On Macintosh computers that have a built-in
screen (such as the Macintosh Plus or Macintosh Classic), the vertical retrace frequency is
approximately 60.15 Hz, resulting in a period of approximately 16.63 milliseconds. If you
need a task to be executed more often than that, you should use the Time Manager,
which has a much finer resolution (up to 250 microseconds for drift-free task execution).

Unlike the Time Manager, the Vertical Retrace Manager is not an absolute timing
mechanism. Its operations are always relative to the VBL interrupt, which may be
disabled (for instance, during disk access). As a result, you should use the Time Manager
in cases where absolute time delays are important. Use the Vertical Retrace Manager,
however, in cases where the scheduled actions need simply to be synchronized with
other VBL tasks, such as moving the cursor or refreshing the screen.
4-4 About the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager

VBL Tasks Installed by the Operating System 4
The Operating System uses the Vertical Retrace Manager to accomplish a number of
repetitive tasks at uniform intervals. These are some of the VBL tasks installed by the
Operating System, grouped by the intervals at which they execute:

■ Every interrupt
n Update the value of the global variable Ticks, which a program may access

through the routine TickCount.
n Call the “stack sniffer” to see if the current application’s stack and heap have

collided. If so, the task calls the System Error Handler.
n Update the position of the cursor.

■ Every 30 interrupts
n Check whether the user has inserted a disk or mounted a volume. If so, the task

posts a disk-inserted event.

■ Every 32 interrupts
n Check whether a keyboard has been reattached after having been detached. If so,

the task resets the keyboard.

Some VBL routines may execute only on certain computers or only in certain versions of
system software. For example, on early Macintosh computers, a VBL task checks every
other interrupt to determine whether the state of the mouse button has changed from its
previous state and then remained unchanged for at least four interrupts. If so, that task
posts a mouse-down or mouse-up event, as appropriate. In Macintosh computers
equipped with Apple Desktop Bus mouse devices, the Operating System uses a different
mechanism for posting mouse-down and mouse-up events.

Note
VBL tasks installed by the Operating System are not maintained in the
same queue used for application-defined VBL tasks. ◆

Types of VBL Tasks 4
There are two general types of VBL tasks. A slot-based VBL task is linked to an external
video monitor. Because different monitors can have different refresh rates and hence
might execute VBL tasks at different times, the Vertical Retrace Manager maintains a
separate task queue for each video device attached to the computer. When a VBL
interrupt occurs for a particular device, the Vertical Retrace Manager executes any tasks
in the queue for the slot holding that monitor’s video card. You can install a slot-based
VBL task by calling the SlotVInstall function.

For Macintosh computers that have only a built-in monitor (such as a Macintosh Plus or
Macintosh Classic), there is no need to isolate VBL tasks into separate queues. Instead,
the Operating System maintains just one task queue and processes the tasks in that
queue when it receives a VBL interrupt. A VBL task that is not linked to an external
video device is known as a system-based VBL task. You can install a system-based VBL
task by calling the VInstall function.
About the Vertical Retrace Manager 4-5

C H A P T E R 4

Vertical Retrace Manager

To maintain compatibility on modular Macintosh computers for software that uses the
VInstall function, the Operating System generates a special interrupt at a frequency
identical to the retrace rate on compact Macintosh computers. This special interrupt is
generated approximately 60.15 times a second and mimics the vertical retrace interrupt
on compact models. This ensures that application tasks installed using the VInstall
function, as well as periodic system tasks such as updating the tick count and checking
whether the stack has expanded into the heap, are performed as usual.

To ensure the synchronization of your VBL task with the retracing of the screen, you
should check whether the SlotVInstall function is available in the current operating
environment. If it is, you should use the slot-based routines to install and remove your
VBL task. If not, you should use the system-based routines.

However, even if you synchronize your VBL task to the retracing of the screen correctly,
tasks may not always execute as scheduled. Some types of system activity, such as disk
access, may cause VBL interrupts to be disabled temporarily. (This is why cursor
movement sometimes becomes jerky during disk operations.) Also, if a VBL task takes
longer to perform than the time it takes to retrace the screen, other interrupt tasks may
miss one or more vertical retrace interrupts.

Like all interrupt tasks, VBL tasks cannot do everything that ordinary routines can. The
following list summarizes the operations that VBL tasks should not perform. A VBL task
that violates one of these rules may cause a system crash:

■ A VBL task must not allocate, move, or purge memory, or call any Toolbox routines
that might do so.

■ A VBL task must preserve all registers other than A0–A3 and D0–D3.

■ A VBL task cannot call a routine from another code segment unless it sets up the
application’s A5 world properly. In addition, that segment must already be loaded in
memory.

■ A VBL task cannot access your application global variables unless it sets up the
application’s A5 world properly. This technique is explained in “Accessing
Application Global Variables in a VBL Task,” beginning on page 4-13.

■ A VBL task’s code and any data accessed during the execution of the task must be
locked into physical memory if virtual memory is in operation.

The VBL Task Record 4
You install a VBL task by passing the Vertical Retrace Manager the address of a VBL task
record, which holds information about your VBL task. This information includes the
address of the procedure the Vertical Retrace Manager is to execute at interrupt time and
the number of interrupts before it should next execute the task. The VBLTask data type
defines a VBL task record.
4-6 About the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager

TYPE VBLTask =

RECORD

qLink: QElemPtr; {next entry in vertical retrace queue}

qType: Integer; {queue type}

vblAddr: ProcPtr; {pointer to task procedure}

vblCount: Integer; {interrupts until next execution}

vblPhase: Integer; {task phase}

END;

Your application needs to fill in only the qType, vblAddr, vblCount, and vblPhase
fields of the VBL task record. The qLink field, which contains a pointer to the next entry
in the VBL task’s vertical retrace queue, is set by the Vertical Retrace Manager when you
install the task by calling VInstall or SlotVInstall. Your application does not need
to set up the qLink field.

The Vertical Retrace Manager installs your VBL task record into the appropriate VBL
queue. A vertical retrace queue is a standard operating-system queue.

Note
For more information about the structure of operating-system queues,
see the chapter “Queue Utilities” in Inside Macintosh: Operating System
Utilities. ◆

You must set the qType field to ORD(vType) before you install the task. This specifies
that the task’s queue is a vertical retrace queue and not some other type of
operating-system queue.

The vblAddr field holds a pointer to the procedure that the Vertical Retrace Manager is
to execute.

When installing a VBL task, you specify, in the vblCount field, the number of interrupts
before the routine first executes. The Vertical Retrace Manager lowers this number by 1
during each interrupt. If decrementing vblCount produces a value of 0, the Vertical
Retrace Manager executes the procedure specified in the task record’s vblAddr field. If
you want the procedure to be executed again, that procedure is responsible for resetting
the value of the vblCount field to the desired value.

If you do not want the Vertical Retrace Manager to execute the task again, your task
should leave the value of vblCount at 0. Setting the vblCount field to 0 is one way of
disabling a task. (A more common approach is to remove the task record from its queue
by calling VRemove or SlotVRemove, but this should not be done by the VBL task
itself.) Note that if you set vblCount to 0 when installing a VBL task, the task will never
execute. If you want a task to execute immediately upon installation, set vblCount to 1.

The vblPhase field specifies the task’s phase count, indicating which interrupts are to
trigger the execution of the VBL task. You can set two VBL tasks installed at the same
time and scheduled for execution after the same number of interrupts out of phase with
one another—that is, executed during different interrupts—by specifying different phase
counts for each task. Unless you add many tasks to a VBL queue at one time, you can
usually set vblPhase to 0.
About the Vertical Retrace Manager 4-7

C H A P T E R 4

Vertical Retrace Manager

Vertical Retrace Queues 4
The Vertical Retrace Manager stores application-defined VBL task records in vertical
retrace queues, which are standard operating-system queues. If multiple tasks in the
same vertical retrace queue are scheduled to be executed during the same interrupt, the
Vertical Retrace Manager will execute the tasks in the order they were installed in the
queue.

Compact Macintosh computers maintain only one vertical retrace queue, because these
computers have only one screen. However, computers with multiple screens require
multiple vertical retrace queues. Because slot-based task installation and removal
routines apply to just one slot, the Vertical Retrace Manager maintains a separate vertical
retrace queue for each slot that contains a video card. In addition, to maintain
compatibility with the system-based VBL task installation and removal routines, the
Vertical Retrace Manager maintains a single, system-based vertical retrace queue for all
applications to share.

Ordinarily, you do not need to inspect or manipulate the contents of vertical retrace
queues directly. Instead, you can use the Vertical Retrace Manager routines for installing
task records in and removing them from vertical retrace queues.

In one case, however, you might need to inspect the header of a vertical retrace queue. If
you need to know whether some code is being called in response to a VBL interrupt, you
can inspect the qFlags field of the queue header. The Vertical Retrace Manager sets bit 6
of the qFlags field in the queue header to indicate that a VBL task in the queue is being
executed.

Assembly-Language Note

You can use the global constant inVBL to test this bit. ◆

VBL Tasks and Application Execution 4
Often, a VBL task performs services that are useful only to the application that installed
it. For instance, consider the VBL task defined in “Spinning the Cursor” beginning on
page 4-16. This task spins the cursor while your application performs some lengthy
operation and should be executed only if your application is in the foreground. If the
user switches your application into the background while it is occupied with that
lengthy operation, you probably want to disable that task for as long as your application
is in the background. Otherwise, the cursor will continue to spin, probably confusing
the user.

In other cases, a VBL task should continue to be executed even when the application that
installed it is no longer in the foreground. For instance, you probably wouldn’t want to
disable a VBL task that periodically checks for the arrival of electronic mail just because
your application is moved to the background.

The Process Manager automatically disables a system-based VBL task when the
application that installed it is swapped out in a major or minor switch, if the address of
the VBL task is anywhere in the application’s partition. Then, when that application
regains control of the processor, the Process Manager reenables that VBL task. If,
4-8 About the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager

however, the address of a system-based VBL task is in the system partition, the VBL task
continues to be executed, regardless of the processing status of the application that
launched it.

Note
When your system-based VBL task continues to be executed in this way,
the Process Manager does not restore the context of your application
before executing the VBL task. In particular, any trap patches installed
by your application might not be available to the VBL task. When a VBL
task depends on your application context, your task can call the Process
Manager function GetCurrentProcess to check whether your
application is the current process and hence that its context is valid. ◆

The address of a system-based VBL task, not the address of the VBL task record,
determines whether the Process Manager disables the task. See “Installing a Persistent
VBL Task,” beginning on page 4-20, for a technique you can use to prevent the disabling
of a task when the application that installed it is switched out.

By contrast, the Process Manager never disables a slot-based VBL task, no matter where
the task is located. As a result, if you want to disable a slot-based VBL task when your
application is in the background, you must do so yourself, either by removing the task
record from the VBL queue or by setting the vblCount field of the task record to 0. You
can do this in response to a suspend event. Then, when your application receives a
resume event, you can reenable the VBL task by reinstalling the task record or by
resetting the vblCount field of the task record to the appropriate value.

In some cases, you might want to disable a system-based VBL task manually, even
though the Process Manager also disables it when your application is switched out. This
is because the Process Manager reenables system-based VBL tasks when your
application receives processing time as a result of a minor switch, when your application
is still in the background. If the VBL task should be executed only when your application
is in the foreground, you need to disable it when your application receives a suspend
event and reenable it when your application receives a resume event. The easiest way to
do this is to set and reset the vblCount field of the task record, as described in the
previous paragraph.

The Process Manager treats VBL tasks slightly differently when your application quits or
crashes than when it is switched out. If either the task record for a VBL task or the code
of the VBL task is located in your application partition, the Process Manager removes
that task record from its VBL queue. (This is true for both slot-based and system-based
VBL tasks.) Conversely, if both a VBL task record and the task itself are located in the
system partition, the Process Manager doesn’t remove the task record from its VBL
queue when the application that installed them quits or crashes.

▲ W A R N I N G

Failure to remove VBL task records installed in the system partition
from their queues can lead to a system crash if the VBL task is located in
the system partition but accesses data in your application partition.
Because the Process Manager deallocates your application partition
when your application quits or crashes, the VBL task may attempt to
About the Vertical Retrace Manager 4-9

C H A P T E R 4

Vertical Retrace Manager
access undefined data. The easiest way to avoid this problem is to patch
the Process Manager’s ExitToShell procedure so that it removes all
VBL task records installed by your application. ▲

Using the Vertical Retrace Manager 4

You can use the Vertical Retrace Manager to install VBL task records in and remove VBL
task records from system-based or slot-based vertical retrace queues. To install a task
record, you must first fill in some of its fields and then call either VInstall or
SlotVInstall. See the next section, “Installing a VBL Task,” for information on
installing VBL tasks.

If it is to be executed more than once, a VBL task must access the task record and reset
the value of the task record’s vblCount field. The section “Accessing a Task Record at
Interrupt Time” on page 4-12 describes this technique. To disable a task temporarily, you
can simply set the vblCount field of its task record to 0. To remove a VBL task from its
VBL queue, call VRemove if you installed the task by calling VInstall or call
SlotVRemove if you installed the task by calling SlotVInstall.

If your VBL task needs to access your application global variables, you can put the
application’s A5 value or the global variables themselves into the second field of a record
whose first field contains the VBL task itself. The sections “Accessing Application Global
Variables in a VBL Task,” beginning on page 4-13, and “Spinning the Cursor,” beginning
on page 4-16, explain these techniques.

Installing a VBL Task 4
For any particular VBL task, you need to decide whether to install it as a system-based
VBL task or as a slot-based VBL task. You need to install a task as a slot-based VBL task
only if the execution of the task needs to be synchronized with the retrace rate of a
particular external monitor. If the task performs no processing that is likely to affect the
appearance of the screen or that depends on the state of an external monitor, it is
probably safe to install the task as a system-based VBL task.

▲ W A R N I N G

If you do decide that the execution of some VBL task needs to be
synchronized with the retrace rate of a monitor, you should first check
that the SlotVInstall function is available in the operating
environment. You can do this by calling the TrapAvailable function
defined in the chapter “Gestalt Manager” in Inside Macintosh: Operating
System Utilities. If you call SlotVInstall and it is not available, your
application will crash. ▲

If you are uncertain whether to install a task as a system-based or as a slot-based VBL
task, you should first install it as a system-based task (by calling VInstall). Then test
your application on a modular Macintosh computer with an external monitor whose
refresh rate is different from the refresh rate on a compact Macintosh computer
4-10 Using the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
(approximately 60.15 Hz). If any screen updating that occurs as a result of processing
done by your VBL task has an unacceptable appearance, you probably need to install the
task as a slot-based VBL task (by calling SlotVInstall). Remember, however, to check
whether SlotVInstall is available before you call it; if it isn’t available, call
VInstall. You can determine whether SlotVInstall is available by calling the
SlotRoutinesAvailable function defined in Listing 4-1.

Listing 4-1 Checking whether you can use slot-based VBL routines

FUNCTION SlotRoutinesAvailable: Boolean;

CONST

_SlotVInstall = $A06F;

BEGIN

SlotRoutinesAvailable := TrapAvailable(_SlotVInstall);

END;

If the slot-based routines are available and you want to use them, you need to know the
slot number of the video device to whose retrace the VBL task is to be synchronized.
Listing 4-2 illustrates a way to find the slot number of the main graphics device. To
access the device control entry for the main graphics device, you must first find the
device’s reference number. Then you can cast the device control entry into type
AuxDCEHandle and access the slot number directly. You can use a similar technique to
find the slot number of some other graphics device.

Listing 4-2 Determining the slot number of the main graphics device

FUNCTION MainSlotNumber: Integer;

VAR

mainDeviceRefNum: Integer; {number of main graphics device}

BEGIN

mainDeviceRefNum := GetMainDevice^^.gdRefNum;

MainSlotNumber :=

AuxDCEHandle(GetDCtlEntry(mainDeviceRefNum))^^.dCtlSlot;

END;

Note
For the sake of simplicity, the remainder of this chapter illustrates how
to use the Vertical Retrace Manager to handle system-based VBL tasks
only. Virtually all of the techniques shown here, however, can be used in
connection with slot-based VBL tasks as well. ◆

The InstallVBL function defined in Listing 4-3 shows how to fill in a VBL task record
and install it in the system-based VBL queue. It assumes that the task record
gMyVBLTask is a global variable of type VBLTask and that you have already defined
the procedure DoVBL, the actual VBL task. That procedure is subject to all of the usual
Using the Vertical Retrace Manager 4-11

C H A P T E R 4

Vertical Retrace Manager
limitations on VBL and other interrupt tasks. Also, if DoVBL is to be executed recurrently,
it must reset the vblCount field of the task record each time it is executed. The next
section, “Accessing a Task Record at Interrupt Time,” describes how to do this.

Listing 4-3 Initializing and installing a task record

FUNCTION InstallVBL: OSErr;

CONST

kInterval = 6; {frequency in interrupts}

BEGIN

WITH gMyVBLTask DO {initialize the VBL task}

BEGIN

qType := ORD(vType); {set queue type}

vblAddr := @DoVBL; {set address of VBL task}

vblCount := kInterval; {set task frequency}

vblPhase := 0; {no phase}

END;

InstallVBL := VInstall(@gMyVBLTask);

END;

Accessing a Task Record at Interrupt Time 4
A repetitive VBL task must access its task record so that it can reset the vblCount field.
As explained in “The VBL Task Record” on page 4-6, the Vertical Retrace Manager
decrements the vblCount field during each interrupt and executes the task when that
field reaches 0. The task is removed from its queue if the value of the vblCount field is
left at 0.

When the Vertical Retrace Manager executes the VBL task, it places the address of the
VBL task record into the A0 register. Listing 4-4 defines an inline function that moves
this value onto the stack.

Note
You should call the inline function in Listing 4-4 only from a VBL task. It
will not work if called from your main program. In addition, the call to
this function should be the first line of your VBL task, because other
processing might change the value in A0. ◆

Listing 4-4 Finding the address of the task record from within a VBL task

FUNCTION GetVBLRec: LongInt;

INLINE $2E88; {MOVE.L A0,(SP)}
4-12 Using the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
The GetVBLRec function defined in Listing 4-4 returns a long integer specifying the
address of the task record. Now that you can access the task record, you can easily reset
the value of the vblCount field. Listing 4-5 provides an example of a generic VBL task
that accesses the task record and resets the vblCount field.

Listing 4-5 Resetting a VBL task so that it executes again

PROCEDURE DoVBL;

CONST

kInterval = 6; {frequency in interrupts}

TYPE

VBLTaskPtr = ^VBLTask; {pointer to a VBLTask record}

VAR

taskPtr: VBLTaskPtr;

BEGIN

taskPtr := VBLTaskPtr(GetVBLRec);{get address of task record}

{Put task-specific code here.}

taskPtr^.vblCount := kInterval; {reset vblCount}

END;

Accessing Application Global Variables in a VBL Task 4
The Operating System stores the address of the boundary between the current
application’s global variables and its application parameters in the microprocessor’s A5
register. For this reason, most compilers generate references to application global
variables as offsets from the address contained in the A5 register. Therefore, if the value
in register A5 does not point to the boundary between your application’s global
variables and its application parameters, your attempts to access your application’s
global variables will fail.

Ordinarily, applications do not need to keep track of the value in the A5 register.
Although all applications share the register, the Process Manager keeps track of the
address of your application’s A5 world when a major or minor switch causes your
application to yield the CPU to other processes, and it restores that value when your
application regains access to the CPU. The A5 register is guaranteed to be correct for all
code that your application executes directly (that is, for all code that is not executed in
response to an interrupt or by a Toolbox or Operating System routine).

Because VBL tasks are interrupt routines, they might be executed when the value in the
A5 register does not point to the A5 world of your application. As a result, if you want to
access your application’s global variables in a VBL task, you need to set the A5 register
to its correct value when your VBL task begins executing and restore the previous value
upon exit.
Using the Vertical Retrace Manager 4-13

C H A P T E R 4

Vertical Retrace Manager
Note
For a more complete discussion of the A5 register, see the chapter
“Memory Management Utilities” in Inside Macintosh: Memory. ◆

The solution to this problem is to find a memory location that both the main program
and the VBL task can access. The main program can store the value of register A5
there, and the VBL task can set A5 correctly by reading that value. The functions
SetCurrentA5 and SetA5 can be used for this purpose. The application can store the
value of its A5 register by calling SetCurrentA5. Then, at interrupt time, the task can
begin by calling SetA5 to set the register to that value and end by calling SetA5 again,
this time to restore the register to its initial value, the one used by the main program.

The only memory location that a VBL task has access to is the address of the task record,
as explained in the previous section, “Accessing a Task Record at Interrupt Time.” So, if
your application stores the value of A5 directly following the task record in memory, it
can locate the value of A5 by first locating the task record. You can do this by defining a
new data type (called VBLRec in Listing 4-6) whose first field contains the VBL task and
whose second field contains a long integer specifying the value of the A5 register.

Listing 4-6 Storing the value of the A5 register directly after the task record in memory

TYPE VBLRec =

RECORD

myVBLTask: VBLTask; {the actual VBL task record}

vblA5: LongInt; {saved value of application’s A5}

END;

VBLRecPtr = ^VBLRec;

Now you can modify the application-defined procedure that installs a VBL task so that it
stores the value of register A5 in the vblA5 field of the VBLRec, as illustrated in
Listing 4-7.

Listing 4-7 Saving the value of the A5 register when installing a VBL task

FUNCTION InstallVBL: OSErr;

CONST

kInterval = 6; {frequency in interrupts}

BEGIN

WITH gMyVBLRec.myVBLTask DO {initialize the VBL task}

BEGIN

qType := ORD(vType); {set queue type}

vblAddr := @DoVBL; {set address of VBL task}

vblCount := kInterval; {set task frequency}

vblPhase := 0; {no phase}
4-14 Using the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
END;

myVBLRec.vblA5 := SetCurrentA5; {get our A5}

InstallVBL := VInstall(@gMyVBLRec.myVBLTask);

END;

You must also modify the VBL task so that it sets and restores the value of register A5
correctly. Listing 4-8 illustrates a simple VBL task that increments the global variable
gCounter and then resets itself to run again after the specified number of interrupts.

Listing 4-8 Setting up the A5 register and modifying a global variable in a VBL task

PROCEDURE DoVBL;

CONST

kInterval = 6; {frequency in interrupts}

VAR

curA5: LongInt; {stored value of A5}

recPtr: VBLRecPtr; {pointer to task record}

BEGIN

recPtr := VBLRecPtr(GetVBLRec); {get address of task record}

curA5 := SetA5(recPtr^.vblA5); {set our application’s A5 }

{ and store old A5 in curA5}

gCounter := gCounter + 1; {modify a global variable}

{Reset vblCount so that this procedure executes again.}

recPtr^.myVBLTask.vblCount := kInterval;

curA5 := SetA5(curA5); {restore the old A5 value}

END;

Because of the optimizations performed by some compilers, the actual work of the VBL
task and the setting and restoring of the A5 register might have to be placed in separate
procedures. If necessary, you can define a routine DoVBL that loads the proper value of
A5, calls another routine called RunVBL, and then restores the old value of A5. The
RunVBL routine does the work of the VBL task and resets the task record’s vblCount
field so that the DoVBL routine executes again. Listing 4-9 illustrates a sample definition
of the RunVBL function that modifies an application global variable.

Listing 4-9 Modifying application global variables in a VBL task

PROCEDURE RunVBL (aRecPtr: VBLRecPtr);

CONST

kInterval = 6; {frequency in interrupts}

BEGIN
Using the Vertical Retrace Manager 4-15

C H A P T E R 4

Vertical Retrace Manager
gCounter := gCounter + 1; {modify global variable}

{Reset vblCount so that this procedure executes again.}

aRecPtr^.myVBLTask.vblCount := kInterval;

END;

Listing 4-10 shows how to call RunVBL from the VBL task.

Listing 4-10 Setting up and restoring the A5 register in a VBL task

PROCEDURE DoVBL;

VAR

curA5: LongInt; {stored value of A5}

recPtr: VBLRecPtr; {pointer to task record}

BEGIN

recPtr := VBLRecPtr(GetVBLRec); {get address of task record}

curA5 := SetA5(recPtr^.vblA5); {set our application’s A5 }

{ and store old A5 in curA5}

RunVBL(recPtr); {run the actual VBL task}

curA5 := SetA5(curA5); {restore the old A5 value}

END;

If this separation of routines is necessary, you must make sure that the two routines
(DoVBL and RunVBL) are in the same code segment.

Spinning the Cursor 4
Some VBL tasks need access only to global variables that they do not share with the
main program. For example, you might wish to design a VBL task that animates the
beachball or watch cursor to indicate that the user must wait while the computer finishes
some lengthy processing. The main application might use the application-defined
procedures StartSpinning and StopSpinning to install and remove the VBL task,
but the application might not need to know, for example, which beachball or watch
cursor the VBL task is displaying at any given time. The VBL task itself would need to
know this information, because it must know which cursor to display when it is time to
change the cursor.

One way to implement such a VBL task is to use application global variables and set up
the A5 register properly, as described in the previous section, “Accessing Application
Global Variables in a VBL Task.” An alternate method, however, is simply to store the
information that the VBL task needs directly after the task record in memory, just as you
can store information about the program’s A5 value there. Then, because the VBL task
has access to all of the information it needs, it does not need to set up and restore the A5
register.
4-16 Using the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
The listings that follow use that strategy to implement cursor spinning. This cursor
spinning task implements simple animation of any number of cursor frames stored in
contiguous resources in the program’s resource fork.

Listing 4-11 provides a type definition for a cursor information record. This record holds
the task record and information specific to cursor spinning. Listing 4-11 also defines
several constants and a global variable to hold a cursor information record.

Listing 4-11 Defining a cursor information record

CONST

kInterval = 4; {frequency in interrupts}

kNumberOfCursors = 4; {total number of frames}

kInitialResID = 128; {ID of first cursor resource}

TYPE

CursorsList = ARRAY[1..kNumberOfCursors] OF CursHandle;

CursorTask =

RECORD

myVBLTask: VBLTask; {the actual VBLTask}

myCursors: CursorsList; {handles to the cursors}

myFrame: Integer; {cursor frame to display next}

END;

CursorTaskPtr = ^CursorTask;

VAR

gMyCursTask: CursorTask; {global cursor info. record}

Listing 4-12 shows the VBL task itself. The task changes the cursor and resets the task
record’s vblCount field so that the Vertical Retrace Manager executes the task again.

Listing 4-12 Changing the cursor within a VBL task

PROCEDURE ChangeCursor;

TYPE

BooleanPtr = ^Boolean; {to check a low-memory global}

VAR

recPtr: CursorTaskPtr;

BEGIN

recPtr := CursorTaskPtr(GetVBLRec); {get cursor information}

{If the cursor is busy, we should not change it.}

IF NOT BooleanPtr(CrsrBusy)^ THEN

WITH recPtr^ DO {update cursor information}

BEGIN

SetCursor(myCursors[myFrame]^^); {display the next cursor}

myFrame := myFrame + 1; {advance to next cursor frame}
Using the Vertical Retrace Manager 4-17

C H A P T E R 4

Vertical Retrace Manager
IF myFrame > kNumberOfCursors THEN

myFrame := 1; {wrap around to first frame}

END;

recPtr^.myVBLTask.vblCount := kInterval; {set task to run again}

END;

The ChangeCursor procedure retrieves the address of the VBL task record. If the cursor
isn’t already being changed, then ChangeCursor changes the cursor to the next one in
sequence and resets the index of the next cursor to display. Finally, ChangeCursor sets
itself to run again after the appropriate number of interrupts have occurred.

Note
It is permissible to call SetCursor at interrupt time, provided that the
cursor handle is locked and that some other routine is not currently
modifying the cursor. The system global variable CrsrBusy has the
value TRUE if the cursor is busy; in that case, you should not call
SetCursor. Listing 4-12 illustrates the proper way to change the cursor
at interrupt time. ◆

Listing 4-13 defines the procedure StartSpinning, which you can call before
beginning some lengthy operation. Because VBL tasks cannot depend on the validity of
unlocked handles, the StartSpinning procedure must lock the cursor handles in
memory before SetCursor is called in the ChangeCursor procedure.

Listing 4-13 Installing the cursor-spinning task into a vertical retrace queue

PROCEDURE StartSpinning;

CONST

kInitialDelay = 120; {initial delay before starting to spin}

VAR

myErr: OSErr;

count: Integer;

BEGIN

{Initialize cursor information.}

FOR count := 1 TO kNumberOfCursors DO

BEGIN

{Load cursor into memory.}

gMyCursTask.myCursors[count] := GetCursor(kInitialResID + count - 1);

{Lock cursor so that we can call SetCursor at interrupt time.}

HLockHi(Handle(gMyCursTask.myCursors[count]));

END;

gMyCursTask.myFrame := 1; {display cursor with kInitialResID first}

WITH gMyCursTask.myVBLTask DO {initialize the VBL task record}

BEGIN
4-18 Using the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
qType := ORD(vType); {set queue type}

vblAddr := @ChangeCursor; {get address of VBL task}

vblCount := kInitialDelay; {set task frequency}

vblPhase := 0; {no phase}

END;

myErr := VInstall(@gMyCursTask.myVBLTask);

END;

Notice that the initial delay (specified by the kInitialDelay constant in the
vblCount field) is much larger than the number of interrupts between subsequent
cursor changes (specified by the kInterval constant). This prevents the cursor from
starting to spin until a reasonable time (about 2 seconds) has elapsed.

Listing 4-14 shows how to remove the cursor-spinning task from the vertical retrace
queue.

Listing 4-14 Removing the cursor-spinning task from its vertical retrace queue

PROCEDURE StopSpinning;

VAR

myErr: OSErr;

count: Integer;

BEGIN

{Remove the task record from its queue.}

myErr := VRemove(@gMyCursTask.myVBLTask);

{Free memory occupied by the cursors.}

FOR count := 1 TO kNumberOfCursors DO

ReleaseResource(Handle(gMyCursTask.myCursors[count]));

InitCursor; {restore the arrow cursor}

END;

Depending on the needs of your application, you might want to load the cursors into
memory at application-launch time and release them when your application quits. If so,
you need to modify the StartSpinning and StopSpinning procedures accordingly.
Using the Vertical Retrace Manager 4-19

C H A P T E R 4

Vertical Retrace Manager
Installing a Persistent VBL Task 4
A persistent VBL task continues to be executed even when the Process Manager
switches out the application that installed it and that application is no longer in control
of the CPU. If you want to install a persistent system-based VBL task, you need to load
its VBL task record into the system partition. (Slot-based VBL tasks are always persistent,
no matter where you put the task record.) Listing 4-15 illustrates a simple way to load a
VBL task record into the system heap.

Listing 4-15 Installing a persistent VBL task

FUNCTION InstallPersistentVBL (VAR theVBLRec: VBLTask): OSErr;

TYPE

ProcPtrPtr = ^ProcPtr; {a pointer to a ProcPtr}

CONST

kJMPInstr = $4EF9; {this is an absolute JMP}

kJMPSize = 6; {size of an absolute JMP}

VAR

myErr: OSErr;

SysHeapPtr: Ptr;

tempPtr: Ptr;

BEGIN

SysHeapPtr := NewPtrSys(kJMPSize); {get a block in system heap}

myErr := MemError;

IF myErr <> noErr THEN {make sure we have the block}

BEGIN

InstallPersistentVBL := myErr;

Exit(InstallPersistentVBL);

END;

IntegerPtr(SysHeapPtr)^ := kJMPInstr; {move in the JMP instruction}

tempPtr := Ptr(ORD(SysHeapPtr)+SizeOf(Integer));

ProcPtrPtr(tempPtr)^ := theVBLRec.vblAddr; {move in the JMP address}

theVBLRec.vblAddr := ProcPtr(SysHeapPtr); {point record at sys heap}

InstallPersistentVBL := VInstall(@theVBLRec);{install the VBL task record}

END;

The InstallPersistentVBL function defined in Listing 4-15 allocates enough bytes
in the system heap to hold an integer that encodes an assembly-language JMP instruction
together with the absolute address to which to jump. It loads into that space the
assembly-language instruction and the address of the original VBL task, which is
extracted from the VBL task record passed to it as a parameter. Then
InstallPersistentVBL replaces the address of the original VBL task in that record
with the address of the block in the system heap. The net result is that the vblAddr field
of the VBL task record now contains an address in the system partition, making the VBL
task persistent.
4-20 Using the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
Vertical Retrace Manager Reference 4

This section describes the data structure and routines provided by the Vertical Retrace
Manager. The section “Data Structure” shows the Pascal data structure for the VBL task
record. The section “Vertical Retrace Manager Routines” describes the routines you can
use to install and remove slot-based and system-based VBL tasks; it also describes
several utility routines for advanced programmers. The section “Application-Defined
Routine” describes VBL tasks.

Data Structure 4
This section describes the VBL task record, the data structure you use to install VBL tasks
in and remove them from vertical retrace queues.

The VBL Task Record 4

A VBL task record describes a vertical retrace task. It indicates which task record (if any)
comes next in the vertical retrace queue, what procedure to use for the task, how many
interrupts to wait before the task is executed, and in what phase to execute the task. The
VBLTask data type defines a VBL task record.

TYPE VBLTask =

RECORD

qLink: QElemPtr; {next entry in vertical retrace queue}

qType: Integer; {queue type}

vblAddr: ProcPtr; {pointer to task procedure}

vblCount: Integer; {interrupts until next execution}

vblPhase: Integer; {task phase}

END;

Field descriptions

qLink A pointer to the next entry in the task’s vertical retrace queue.
qType The queue type. This field must be set to ORD(vType).
vblAddr A pointer to the VBL task.
vblCount The number of interrupts between successive calls to the VBL task

specified in the vblAddr field. If the value of vblCount is 0, the
task will never be executed. The Vertical Retrace Manager
decrements the value of this field after each interrupt. If
decrementing vblCount produces a value of 0, the Vertical Retrace
Manager executes the task. The task must then reset vblCount, or
its entry will be removed from the queue after it has been executed.
Vertical Retrace Manager Reference 4-21

C H A P T E R 4

Vertical Retrace Manager
vblPhase The phase count of the VBL task. In most cases, you can set this
field to 0. However, if you install multiple tasks with the same
vblCount at the same time, you can assign them different
vblPhase values so that the tasks are not executed during the
same interrupt. The value of the vblPhase field must be less than
the value of the vblCount field.

For more information about using the vblCount and vblPhase fields, see “The VBL
Task Record” on page 4-6.

Vertical Retrace Manager Routines 4
This section describes routines that allow you to install slot-based and system-based task
records in vertical retrace queues and to remove task records. This section also describes
utility routines that are of interest only to advanced programmers.

Slot-Based Installation and Removal Routines 4

You can use the functions SlotVInstall and SlotVRemove to install task records in
and remove them from slot-based vertical retrace queues.

SlotVInstall 4

You can use the SlotVInstall function to install a task record in a slot-based vertical
retrace queue.

FUNCTION SlotVInstall (vblTaskPtr: QElemPtr; theSlot: Integer):

 OSErr;

vblTaskPtr
A pointer to the task record to add to a queue.

theSlot The slot number of the video device to whose vertical retrace queue the
task record is added.

DESCRIPTION

The SlotVInstall function installs the task record specified by the vblTaskPtr
parameter in the vertical retrace queue associated with the video device specified by the
theSlot parameter. The Vertical Retrace Manager executes the task at intervals
determined by the task record’s vblCount and vblPhase fields. The task must reset
the value of the task record’s vblCount field if you want the task to be executed again.

The Vertical Retrace Manager continues to execute tasks installed using the
SlotVInstall function even when the application that installed them is switched out.
4-22 Vertical Retrace Manager Reference

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SlotVInstall are

RESULT CODES

SlotVRemove 4

You can use the SlotVRemove function to remove a task record from a slot-based
vertical retrace queue.

FUNCTION SlotVRemove (vblTaskPtr: QElemPtr; theSlot: Integer):

 OSErr;

vblTaskPtr
A pointer to the task record to remove from its queue.

theSlot The slot number of the video device from whose vertical retrace queue
the task record is removed.

DESCRIPTION

The SlotVRemove function removes the task record specified by the vblTaskPtr
parameter from the vertical retrace queue associated with the video device specified by
the theSlot parameter.

To disable a slot-based VBL task temporarily, you can set the vblCount field of the task
record to 0.

Registers on entry

A0 Pointer to the task record

D0 Slot number of the device associated with the vertical retrace queue

Registers on exit

D0 Result code

noErr 0 No error
vTypErr –2 Invalid qType value (must be ORD(vType))
slotNumErr –360 Invalid slot number
Vertical Retrace Manager Reference 4-23

C H A P T E R 4

Vertical Retrace Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SlotVRemove are

RESULT CODES

System-Based Installation and Removal Routines 4

You can use the functions VInstall and VRemove to install task records in and remove
them from the system-based vertical retrace queue. These routines exist to provide
compatibility with Macintosh computers that have built-in monitors. You can also use
these routines when you don’t need to synchronize the execution of your VBL task to
any monitor.

VInstall 4

You can use the VInstall function to install a task record into the system-based vertical
retrace queue.

FUNCTION VInstall (vblTaskPtr: QElemPtr): OSErr;

vblTaskPtr
A pointer to the task record to add to the queue.

DESCRIPTION

The VInstall function installs the VBL task record specified by the vblTaskPtr
parameter in the system-based vertical retrace queue. The Vertical Retrace Manager
executes the task at intervals determined by the task record’s vblCount and vblPhase
fields. The task must reset the value of the task record’s vblCount field if you want the
task to be executed again.

In current versions of system software, the Vertical Retrace Manager does not continue to
execute tasks installed using the VInstall function when the application that installed

Registers on entry

A0 Pointer to the task record

D0 Slot number of the device associated with the vertical retrace queue

Registers on exit

D0 Result code

noErr 0 No error
qErr –1 Task record isn’t in the queue
vTypErr –2 Invalid qType value (must be ORD(vType))
slotNumErr –360 Invalid slot number
4-24 Vertical Retrace Manager Reference

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
them is switched out, unless the address in the vblAddr field of the task record points in
the system partition.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for VInstall are

RESULT CODES

VRemove 4

You can use the VRemove function to remove a task record from the system-based
vertical retrace queue.

FUNCTION VRemove (vblTaskPtr: QElemPtr): OSErr;

vblTaskPtr
A pointer to the task record to remove from the queue.

DESCRIPTION

The VRemove function removes the task record specified by the vblTaskPtr parameter
from the system-based vertical retrace queue.

To disable a system-based VBL task temporarily, you can set the vblCount field of the
task record to 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for VRemove are

Registers on entry

A0 Pointer to the task record

Registers on exit

D0 Result code

noErr 0 No error
vTypErr –2 Invalid qType value (must be ORD(vType))

Registers on entry

A0 Pointer to the task record

Registers on exit

D0 Result code
Vertical Retrace Manager Reference 4-25

C H A P T E R 4

Vertical Retrace Manager
RESULT CODES

Utility Routines 4

The Vertical Retrace Manager provides several utility routines that allow you to change
the slot number of the primary video monitor, execute all tasks in a slot-based vertical
retrace queue, and access the head of the system-based vertical retrace queue.

Note
Most applications do not need to use the routines described in this
section. ◆

AttachVBL 4

The AttachVBL function changes the slot number of the primary video monitor.

FUNCTION AttachVBL (theSlot: Integer): OSErr;

theSlot The new slot number for the primary video monitor.

DESCRIPTION

The AttachVBL function changes the slot number of the primary monitor to the number
specified by the theSlot parameter. System software uses this routine to ensure correct
cursor updating.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for AttachVBL are

RESULT CODES

noErr 0 No error
qErr –1 Task record isn’t in the queue
vTypErr –2 Invalid qType value (must be ORD(vType))

Registers on entry

D0 Slot number

Registers on exit

D0 Result code

noErr 0 No error
slotNumErr –360 Invalid slot number
4-26 Vertical Retrace Manager Reference

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
DoVBLTask 4

Slot interrupt handlers for video cards should call the DoVBLTask function to handle the
execution of VBL tasks.

FUNCTION DoVBLTask (theSlot: Integer): OSErr;

theSlot Slot number corresponding to the vertical retrace queue whose tasks are
to be executed.

DESCRIPTION

The DoVBLTask function decrements the vblCount field of each task in the vertical
retrace queue corresponding to the theSlot parameter (except for tasks whose
vblCount field already contains the value 0). The function executes a task if
decrementing the vblCount field for a task record results in a value of 0.

If theSlot designates the slot of the primary video device, the position of the cursor is
also updated.

Slot interrupt handlers for video cards need to call this function to execute any tasks in
the queue for that slot. You can also call this function if you need to simulate vertical
retrace interrupts.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DoVBLTask are

To reduce overhead at interrupt time, instead of executing the _DoVBLTask trap, you
can load the jump vector jDoVBLTask into an address register and execute a JSR
instruction using that register.

RESULT CODES

Registers on entry

D0 Slot number

Registers on exit

D0 Result code

noErr 0 No error
slotNumErr –360 Invalid slot number
Vertical Retrace Manager Reference 4-27

C H A P T E R 4

Vertical Retrace Manager
GetVBLQHdr 4

You can obtain the header of the system-based vertical retrace queue by calling the
GetVBLQHdr function.

FUNCTION GetVBLQHdr: QHdrPtr;

DESCRIPTION

The GetVBLQHdr function returns a pointer to the header of the system-based vertical
retrace queue. In general, you need to call this function only if you want to manipulate
the contents of the system-based vertical retrace queue directly or if you want to read the
information stored in the queue header.

ASSEMBLY-LANGUAGE INFORMATION

The global variable VBLQueue contains the header of the system-based vertical retrace
queue.

The global variable ScrnVBLPtr contains a pointer to the header of the vertical retrace
queue associated with the slot for the primary monitor.

Application-Defined Routine 4
The Vertical Retrace Manager allows your software to install an application-defined
routine that is executed during vertical retrace interrupts.

VBL Tasks 4

You pass the address of an application-defined VBL task in the vblAddr field of the VBL
task record.

MyVBLTask 4

A VBL task has the following syntax:

PROCEDURE MyVBLTask;

DESCRIPTION

The vblAddr field of a VBL task record contains the address of a VBL task that is
executed after the number of interrupts specified in the vblCount field of the task
record. The task can be set to execute at any frequency (up to once per vertical retrace
interrupt). If the task uses application global variables or calls routines in another code
4-28 Vertical Retrace Manager Reference

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
segment, it must ensure that register A5 contains the address of the boundary between
the application global variables and the application parameters. In addition, if your task
calls routines in another code segment, that segment must already be loaded in memory.

Because of the optimizations performed by some compilers, the actual work of the VBL
task and the setting and restoring of the A5 register might have to be placed in separate
procedures. See Listing 4-9 and Listing 4-10 for an example of how you can do this.

Your VBL tasks shouldn’t call VRemove or SlotVRemove to remove its entry from the
queue. Instead, either your application should call one of those functions at noninterrupt
time or your task should simply not reset the vblCount of the task record.

SPECIAL CONSIDERATIONS

Because a VBL task is executed at interrupt time, it should not allocate, move, or purge
memory (either directly or indirectly) and should not depend on the validity of handles
to unlocked blocks.

The code of the VBL task and any data accessed during its execution must be locked into
physical memory if virtual memory is in operation.

Unless directed to do otherwise, some compilers insert code into your compiled
application to facilitate debugging operations. This additional code can, however, cause
trouble for VBL tasks and other interrupt processing. You might need to disable the
generation of debugging code by enclosing the interrupt code between the appropriate
compiler directives. Here’s an example:

{$PUSH}

{$D-}

{Don’t generate debugging code for this procedure.}

PROCEDURE DoVBL;

BEGIN

...

END;

{$POP}

Consult the documentation for your development system to see whether this is
necessary and, if it is, how to do it.

ASSEMBLY-LANGUAGE INFORMATION

When the VBL task is called, register A0 contains a pointer to the VBL task record
associated with that procedure.

A VBL task must preserve all registers other than A0–A3 and D0–D3. It must exit with an
RTS instruction.
Vertical Retrace Manager Reference 4-29

C H A P T E R 4

Vertical Retrace Manager
SEE ALSO

See the section “Accessing Application Global Variables in a VBL Task” beginning on
page 4-13 for instructions on how to access your application’s global variables in a VBL
task.
4-30 Vertical Retrace Manager Reference

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
Summary of the Vertical Retrace Manager 4

Pascal Summary 4

Data Type 4

TYPE VBLTask = {VBL queue element}

RECORD

qLink: QElemPtr; {next entry in vertical retrace queue}

qType: Integer; {queue type}

vblAddr: ProcPtr; {pointer to task procedure}

vblCount: Integer; {interrupts until next execution}

vblPhase: Integer; {task phase}

END;

Vertical Retrace Manager Routines 4

Slot-Based Installation and Removal Routines

FUNCTION SlotVInstall (vblTaskPtr: QElemPtr; theSlot: Integer): OSErr;

FUNCTION SlotVRemove (vblTaskPtr: QElemPtr; theSlot: Integer): OSErr;

System-Based Installation and Removal Routines

FUNCTION VInstall (vblTaskPtr: QElemPtr): OSErr;

FUNCTION VRemove (vblTaskPtr: QElemPtr): OSErr;

Utility Routines

FUNCTION AttachVBL (theSlot: Integer): OSErr;

FUNCTION DoVBLTask (theSlot: Integer): OSErr;

FUNCTION GetVBLQHdr : QHdrPtr;

Application-Defined Routine 4

PROCEDURE MyVBLTask;
Summary of the Vertical Retrace Manager 4-31

C H A P T E R 4

Vertical Retrace Manager
C Summary 4

Data Types 4

typedef pascal void (*VBLProcPtr)(void);

typedef struct { /*VBL queue element*/

QElemPtr qLink; /*next entry in vertical retrace queue*/

short qType; /*queue type*/

VBLProcPtr vblAddr; /*pointer to task procedure*/

short vblCount; /*interrupts until next execution*/

short vblPhase; /*task phase*/

} VBLTask;

Vertical Retrace Manager Routines 4

Slot-Based Installation and Removal Routines

pascal OSErr SlotVInstall (QElemPtr vblTaskPtr, short theSlot);

pascal OSErr SlotVRemove (QElemPtr vblTaskPtr, short theSlot);

System-Based Installation and Removal Routines

pascal OSErr VInstall (QElemPtr vblTaskPtr);

pascal OSErr VRemove (QElemPtr vblTaskPtr);

Utility Routines

pascal OSErr AttachVBL (short theSlot);

pascal OSErr DoVBLTask (short theSlot);

#define GetVBLQHdr() ((QHdrPtr) 0x0160)

Application-Defined Routine 4

pascal void MyVBLTask (void);
4-32 Summary of the Vertical Retrace Manager

C H A P T E R 4

Vertical Retrace Manager

4

V
ertical R

etrace M
anager
Assembly-Language Summary 4

Constants 4

vType EQU 1 ;VBL queue element type

inVBL EQU 6 ;bit index for VBL active flag

Data Structures 4

VBL Queue Element

Global Variables 4

Result Codes 4

0 vblink long next entry in vertical retrace queue
4 vblType word queue type
6 vblAddr long address of task procedure

10 vblCount word interrupts until next execution
12 vblPhase word phase count

CrsrBusy byte Set to TRUE if the cursor is being changed.
jDoVBLTask long Jump vector for DoVBLTask routine.
ScrnVBLPtr long Pointer to the primary monitor’s vertical retrace queue’s header.
VBLQueue 10 bytes Header of the vertical retrace queue.

noErr 0 No error
qErr –1 Task entry isn’t in the queue
vTypErr –2 Invalid qType value (must be ORD(vType))
slotNumErr –360 Invalid slot number
Summary of the Vertical Retrace Manager 4-33

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Processes and Tasks TOC
	 Introduction to Processes and Tasks
	 Process Manager TOC
	 Process Manager
	 Time Manager TOC
	 Time Manager
	 Vertical Retrace Manager TOC
	Vertical Retrace Manager
	About the Vertical Retrace Manager
	VBL Tasks Installed by the Operating System
	Types of VBL Tasks
	The VBL Task Record
	Vertical Retrace Queues
	VBL Tasks and Application Execution

	Using the Vertical Retrace Manager
	Installing a VBL Task
	Accessing a Task Record at Interrupt Time
	Accessing Application Global Variables in a VBL Ta...
	Spinning the Cursor
	Installing a Persistent VBL Task

	Vertical Retrace Manager Reference
	Data Structure
	The VBL Task Record

	Vertical Retrace Manager Routines
	Slot-Based Installation and Removal Routines
	System-Based Installation and Removal Routines
	Utility Routines

	Application-Defined Routine
	VBL Tasks

	Summary of the Vertical Retrace Manager
	Pascal Summary
	Data Type
	Vertical Retrace Manager Routines
	Application-Defined Routine

	C Summary
	Data Types
	Vertical Retrace Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Constants
	Data Structures
	Global Variables

	Result Codes

	 Notification Manager TOC
	 Notification Manager
	 Deferred Task Manager TOC
	 Deferred Task Manager
	 Segment Manager TOC
	 Segment Manager
	 Shutdown Manager TOC
	 Shutdown Manager
	 Glossary
	 Index
	 Colophon

