

C H A P T E R 1 3

13

A
ssem

bly-Language N
um

eric C
onversions

Assembly-Language Numeric Conversions 13

This chapter describes how you can use PowerPC assembly-language instructions to
perform the conversions required by the IEEE standard (described in Chapter 5,
“Conversions”). The assembler provides instructions that perform many of these
conversions. The conversion instructions have two operands, both of which are
floating-point registers. They are of the form

instr DST, SRC

and are interpreted as

DST ← op SRC

where SRC and DST are floating-point registers and op is some operation.

For each type of conversion, this chapter lists the assembly-language instructions you
can use to perform that conversion and gives an example of how to use the instructions.

Conversions From Integer to Floating-Point Formats 13

No single instruction is available to convert an integer to floating-point format.
However, you can perform this operation using the algorithm in Listing 13-1. First,
define the following constant:

kmagic: word 0x43300000,0x80000000

This constant must have an exponent of 52 after subtracting the bias for the double
format (1023), and the lower half of the constant (bit 33) must begin with a 1. In the
constant kmagic above, the first word (eight hexadecimal digits) corresponds to the
exponent part and the last word corresponds to the integer part.

When you have an integer you want to convert, invert its sign, append the exponent part
of the constant to the integer to be converted, and then load it into a floating-point
register with the new exponent appended. Finally, subtract the floating-point constant
from the newly formed floating-point integer. The assembly code in Listing 13-1 shows
how this is done. The code fragment assumes that general-purpose register GPR0
contains the value 0 and that register GPR3 contains the value to be converted.
Conversions From Integer to Floating-Point Formats 13-3

C H A P T E R 1 3

Assembly-Language Numeric Conversions

Listing 13-1 Converting a number from integer format to floating-point format

addis r1,r0,0x4330 # r1 contains 0x4330000

stw r1,20000(r0) # store exponent part for integer

xoris r3,r3,0x8000 # invert sign of integer

stw r3,20004(r0) # store fraction part for integer

now all parts are in memory

lfd f0,20000(r0) # load integer in double format into f0

lfd f1,kmagic(r0) # load constant into f1

fsub f0,f0,f1 # f0 contains converted integer

Conversions From Floating-Point to Integer Formats 13

To convert numbers in floating-point format to integer format, use one of two
instructions:

To convert double-format numbers to 32-bit integers, perform the following sequence of
instructions:

lfd f1,d(r2) # load double float input into f1

fctiw f2,f1 # f2 is fixed 32-bit integer version of input

stfd f2,d(r1) # store f2 at location d + (r1)

lwz r3,d+4(r1) # r3 is fixed 32-bit integer version of input

To convert single-format numbers to 32-bit integers, perform the following sequence of
instructions:

lfs f1,d(r2) # load single float input into f1

input automatically converted to double format

fctiw f2,f1 # f2 is fixed 32-bit integer version of input

stfs f2,d(r1) # store f2 at location d + (r1)

lwz r3,d+4(r1) # r3 is fixed 32-bit integer version of input

To truncate double- or single-format numbers, replace fctiw in the above examples
with fctiwz.

fctiw Convert and round in current direction.

fctiwz Convert and round toward zero (truncate).
13-4 Conversions From Floating-Point to Integer Formats

C H A P T E R 1 3

Assembly-Language Numeric Conversions

13

A
ssem

bly-Language N
um

eric C
onversions

Note
The conversion instructions might raise floating-point exceptions. For
more information, see the Motorola PowerPC 601 RISC Microprocessor
User’s Manual. ◆

Conversions From Single to Double Format 13

To convert a single floating-point number to double format, you simply load a
single-format number into a floating-point register; the conversion takes place
automatically. The following load instructions automatically convert single format to
double. These instructions raise no floating-point exceptions and treat zeros, NaNs, and
Infinities like any other value.

For more information on the load instructions, see Chapter 11, “Introduction to
Assembly-Language Numerics.”

Conversions From Double to Single Format 13

To convert a double floating-point number to single format, either store the double
number in single format (listed here and described in Chapter 11) or use the frsp
instruction.

For store instructions, the conversion takes place automatically. The store instructions
raise no floating-point exceptions and treat zeros, NaNs, and Infinities like any other
value. The frsp instruction converts a double-format number to single format and then
places it in the last half of a floating-point register. Use the frsp instruction immediately
before using the single form of any arithmetic instruction. The following example
performs single-precision addition on a number that has been converted to single format
using the frsp instruction.

lfs Load single format.

lfsu Load single format and update.

lfsux Load single format and update indexed.

lfsx Load single format indexed.

frsp Convert double to single format.

stfs Store in single format.

stfsu Store in single format and update.

stfsux Store in single format and update indexed.

stfsx Store in single format indexed.
Conversions From Single to Double Format 13-5

C H A P T E R 1 3

Assembly-Language Numeric Conversions

lfs f1,d(r1) #load single format number into f1

#conversion to double format is automatic

frsp f1,f1 #f1 is now in single format

fadds f0,f1,f1 #so that it can be added as single format number

Note
The frsp instruction might raise floating-point exceptions. See the
Motorola PowerPC 601 RISC Microprocessor User’s Manual for more
information. ◆
13-6 Conversions From Double to Single Format

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	Assembly-Language Numeric Conversions
	Conversions From Integer to Floating-Point Formats...
	Conversions From Floating-Point to Integer Formats...
	Conversions From Single to Double Format
	Conversions From Double to Single Format

	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

