

C H A P T E R 1 2

12

A
ssem

bly-Language E
nvironm

e
C

ontrols

Assembly-Language Environmental Controls 12

This chapter describes how to use assembly-language instructions to control the
floating-point environment (rounding direction and exception flags) described in
Chapter 4, “Environmental Controls.” The current state of the floating-point
environment is stored in the Floating-Point Status and Control Register and summarized
in the Condition Register. This chapter describes exactly how these two registers store
the environment. Then it describes the PowerPC assembler instructions you can use to
test or change the environment.

Read this chapter to learn how to access and manipulate the floating-point environment
in assembly language or to learn how the PowerPC architecture stores the floating-point
environment.

The Floating-Point Environment 12

The two special-purpose registers that reflect and control the floating-point environment
are the Floating-Point Status and Control Register and the Condition Register.

The Floating-Point Status and Control Register 12
The Floating-Point Status and Control Register (FPSCR) is a 32-bit register that stores the
current state of the floating-point environment. It specifies the current rounding
direction, whether any floating-point exceptions are enabled, and whether any
floating-point exceptions have occurred. Many instructions that manipulate the FPSCR
operate on 4-bit fields numbered 0 through 7. Figure 12-1 highlights some of the more
useful fields in the FPSCR, and Table 12-1 shows their bit assignments. For more
information on floating-point instructions, see the Motorola PowerPC 601 RISC
Microprocessor User’s Manual.

Figure 12-1 Floating-Point Status and Control Register (FPSCR)

0 1 2 3 4 5 6 7

0 3 4 7 8 23 24 27 28 3111 12 15 16 19 20

Rounding

direction bits

Exception

enable/disable bits

Condition codes

Invalid exception flags

Exception flags

Exception summaries

The Floating-Point Environment 12-3

ntal

C H A P T E R 1 2

Assembly-Language Environmental Controls

Table 12-1 Bit assignments for FPSCR fields

FPSCR
field

Bi
t Meaning if set

0 0 One or more of the floating-point exceptions occurred.

 1 One or more of the floating-point exceptions is enabled.

 2 One or more of the invalid exceptions occurred.

 3 An overflow exception occurred.

1 4 An underflow exception occurred.

 5 A divide-by-zero exception occurred.

 6 An inexact exception occurred.

 7 An invalid exception occurred because an operation other than load, store, move,
select, or mtfsf was attempted on a signaling NaN.

2 8 An invalid exception occurred because was attempted.

 9 An invalid exception occurred because was attempted.

10 An invalid exception occurred because was attempted.

11 An invalid exception occurred because was attempted.

3 12 An invalid comparison operation was attempted.

13 The fraction field of the result has been rounded.

14 The fraction field of the result is inexact.

15 Class descriptor. See “Inquiries: Class and Sign” on page 12-7.

4 16 Less than or less than 0. See “Inquiries: Class and Sign” on page 12-7.

17 Greater than or greater than 0. See “Inquiries: Class and Sign” on page 12-7.

18 Equal to or equal to 0. See “Inquiries: Class and Sign” on page 12-7.

19 Unordered or NaN. See “Inquiries: Class and Sign” on page 12-7.

5 20 Reserved.

21 An invalid exception occurred because of a software request. Not implemented in
MPC601.

22 An invalid square-root operation was attempted. Not implemented in MPC601.

23 An invalid exception occurred because of an invalid convert-to-integer operation.

6 24 The invalid exceptions are enabled.

25 The overflow exception is enabled.

26 The underflow exception is enabled.

27 The divide-by-zero exception is enabled.

∞ ∞–

∞ ∞⁄

0 0⁄

0 ∞×
12-4 The Floating-Point Environment

C H A P T E R 1 2

Assembly-Language Environmental Controls

12

A
ssem

bly-Language E
nvironm

e
C

ontrols

IMPORTANT

Bit 20 or 23 of the Machine State Register must be set for the FPSCR
exception enable bits to be valid. For more information, see the Motorola
PowerPC 601 RISC Microprocessor User’s Manual. ▲

The Condition Register 12
The Condition Register is a 32-bit register that stores the current state of the entire
PowerPC processor. It is grouped into eight 4-bit fields labeled CR0 through CR7 (see
Figure 12-2). Field CR1 (bits 4 through 7) reflects the results of floating-point operations.

Figure 12-2 Condition Register

7 28 The inexact exception is enabled.

29 Reserved.

30 Rounding direction. See “Setting the Rounding Direction” on page 12-9.

31 Rounding direction. See “Setting the Rounding Direction” on page 12-9.

Table 12-1 Bit assignments for FPSCR fields (continued)

FPSCR
field

Bi
t Meaning if set

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

4 5 6 7

0 3 4 7 8 23 24 27 28 3111 12 15 16 19 20

Floating-point overflow exception (FPSCR bit 3)

Floating-point invalid exception summary (FPSCR bit 2)

Floating-point exception enabled summary (FPSCR bit 1)

Floating-point exception summary (FPSCR bit 0)

The Floating-Point Environment 12-5

ntal

C H A P T E R 1 2

Assembly-Language Environmental Controls

If you append a dot (.) to a floating-point instruction, its status will be recorded in the
Condition Register as well as in the FPSCR. If you do not append a dot, the Condition
Register will not reflect the result of that instruction.

Use Condition Register fields in conditional branch instructions. Several instructions
allow you to store certain FPSCR bits in fields CR2 through CR4. After using one of these
instructions, you then use a conditional branch instruction of the form

instr field, address

where field is the Condition Register field 2 through 4 and address is the address to branch
to if the condition is true. Table 12-2 shows some commonly used PowerPC branch
instructions. Examples of how to use the conditional branch instructions appear later in
this chapter. For a complete list of conditional branch instructions, see the Motorola
PowerPC 601 RISC Microprocessor User’s Manual.

Bi
t Meaning

4 Set if bit 0 of the FPSCR is set. That is, this bit indicates whether any
floating-point exception has occurred.

5 Set if bit 1 of the FPSCR is set. That is, this bit indicates whether any of the
floating-point exceptions are enabled.

6 Set if bit 2 of the FPSCR is set. That is, this bit indicates whether an invalid
exception has occurred for any reason.

7 Set if bit 3 of the FPSCR is set. That is, this bit indicates whether an overflow has
occurred.

Table 12-2 Branch instructions using the Condition Register

Instruction Description

bta bit, address Branch to address if condition is true (bit = 1)

blt field, address Branch to address if less than (bit 0 of field = 1)

ble field, address Branch to address if less than or equal (bit 0 of field = 1 or bit 2 = 1)

beq field, address Branch to address if equal (bit 2 of field = 1)

bge field, address Branch to address if greater than or equal (bit 1 of field = 1 or
bit 2 = 1)

bgt field, address Branch to address if greater than (bit 1 of field = 1)

bnl field, address Branch to address if not less than (bit 0 of field = 0)

bne field, address Branch to address if not equal (bit 2 of field = 0)

bng field, address Branch to address if not greater than (bit 1 of field = 0)

bun field, address Branch to address if unordered (bit 3 of field = 1)

bnu field, address Branch to address if not unordered (bit 3 of field = 0)
12-6 The Floating-Point Environment

C H A P T E R 1 2

Assembly-Language Environmental Controls

12

A
ssem

bly-Language E
nvironm

e
C

ontrols

Inquiries: Class and Sign 12

As stated in Chapter 2, “Floating-Point Data Formats,” the result of a floating-point
operation is either a normalized number, a denormalized number, a zero, a NaN, or an
Infinity. This section describes how the class and sign of a floating-point number can be
determined in PowerPC assembly language.

Floating-Point Result Flags and Condition Codes 12
FPSCR bits 15 through 19 are the floating-point result flags. Bit 15 is in FPSCR field 3,
and bits 16 through 19 are in FPSCR field 4. For many instructions, FPSCR bits 15
through 19 specify the class and sign of the instruction’s result. For comparison
instructions, bits 16 through 19 store the result of the comparison.

Table 12-3 shows how bits 15 through 19 are interpreted, depending on whether the
previous instruction was a comparison operation or not.

Bi
t Meaning

15 The class descriptor. If this bit is set, the result is either a quiet NaN or a
denormalized number, depending on the settings of bits 16 through 19.

16 < or < 0. For comparison operations, this bit is set if the first operand is less than
the second operand. For other operations, this bit is set if the result is negative
(< 0).

17 > or > 0. For comparison operations, this bit is set if the first operand is greater
than the second operand. For other operations, this bit is set if the result is
positive (> 0).

18 = or = 0. For comparison operations, this bit is set if the first operand is equal to
the second operand. For other operations, this bit is set if the result is 0 (= 0).

19 Unordered or NaN. For comparison operations, this bit is set if either of the
operands is a NaN. For other operations, this bit is set if the result is a NaN or an
Infinity, depending on the value of bit 15.

Table 12-3 Values for FPSCR bits 15 through 19

Bits 15–19
Result for
comparisons Result for other operations

00001 Unordered Not applicable

00010 == (equal to) +0

00100 > (greater than) Positive normalized number

00101 Not applicable +∞

01000 < (less than) Negative normalized number
Inquiries: Class and Sign 12-7

ntal

C H A P T E R 1 2

Assembly-Language Environmental Controls

Example: Determining Class 12
To determine the class of a floating-point operation, copy the FPSCR bits to the
Condition Register and then branch on the Condition Register field, as shown in
Listing 12-1. To copy FPSCR bits to the Condition Register, use the mcrfs instruction,
which has the form

mcrfs DST, SRC

where DST is a 4-bit Condition Register field and SRC is an FPSCR field.

Listing 12-1 Determining the class of an assembler instruction result

fadd f0,f1,f2 # sets FPSCR bits 15–19 from f0

mcrfs 2,3 # copy FPSCR bits 12–15 to CR2

mcrfs 3,4 # copy FPSCR bits 16–19 to CR3

CR bits 11 – 15 are class and sign of f0

bun 3,inf # if bit 3 of CR3 is 1, result is

Infinity or NaN

beq 3,zero # if bit 2 of CR3 is 1, result is zero

blt 3,norm # if bit 0 or 1 of CR3 is 1,

bgt 3,norm # result is a normalized or

denormalized number

inf:

bta 11,NaN # if bit 11 is set, result = quiet NaN

else result is an Infinity

continued

01001 Not applicable

10001 Unordered Quiet NaN

10010 == (equal to)

10100 > (greater than) Positive denormalized number

11000 < (less than) Negative denormalized number

Table 12-3 Values for FPSCR bits 15 through 19 (continued)

Bits 15–19
Result for
comparisons Result for other operations

∞–

0–
12-8 Inquiries: Class and Sign

C H A P T E R 1 2

Assembly-Language Environmental Controls

12
A

ssem
bly-Language E

nvironm
e

C
ontrols
norm:

bta 11,denorm # if bit 11 is set, result is denorm

else result is norm

zero:

return class of zero

denorm:

return class of denormalized number

The fadd instruction, which adds two floating-point numbers, is one of the many
floating-point instructions that set FPSCR bits 15 through 19 to the class and sign of its
result. To read these FPSCR bits, Listing 12-1 copies them to the Condition Register using
the mcrfs instruction. This instruction operates on 4-bit fields. Bits 15 through 19 are
contained in two fields (3 and 4), so two separate mcrfs instructions are required to
copy all pertinent bits to the Condition Register. Once the bits are copied, Condition
Register fields 2 and 3 contain FPSCR fields 3 and 4, which means that Condition
Register bits 11 through 15 reflect FPSCR bits 15 through 19. Next, the branch
instructions test the values in the Condition Register and determine what type of result
the fadd instruction had.

Setting the Rounding Direction 12

Bits 30 and 31 of the FPSCR specify the current rounding direction, as shown in
Table 12-4. The section “Rounding Direction Modes” in Chapter 4, “Environmental
Controls,” describes what the different rounding directions do.

Bits 30 and 31 are in FPSCR field 7.

Table 12-4 Rounding direction bits in the FPSCR

Mode Bit 30 Bit 31

To nearest (default) 0 0

Toward zero 0 1

Upward 1 0

Downward 1 1
Setting the Rounding Direction 12-9

ntal

C H A P T E R 1 2

Assembly-Language Environmental Controls
To set the rounding direction, use the mtfsfi instruction. It has the form

mtfsfi DST, n

where DST is a 4-bit FPSCR field and n is an integer value to be copied into DST. Here
are some examples.

mtfsfi 7,0 # set rounding direction to to-nearest

mtfsfi 7,1 # set rounding direction to toward-zero

mtfsfi 7,2 # set rounding direction to upward

mtfsfi 7,3 # set rounding direction to downward

Floating-Point Exceptions 12

The assembly-language numeric implementation contains the same five floating-point
exception flags that are described in the IEEE standard. This section describes how to
enable, disable, set, clear, and test these exception flags.

Exception Bits in the FPSCR 12
Table 12-5 summarizes the FPSCR bits that control floating-point exceptions. For each
bit, it shows which FPSCR field contains that bit. Note that all of these bits, unless
otherwise specified, are sticky; that is, once set, they stay set until you specifically clear
them. For information on exactly what happens when a floating-point exception occurs,
see the Motorola PowerPC 601 RISC Microprocessor User’s Manual.

Table 12-5 Floating-point exception bits in the FPSCR

Exception
FPSCR
field Bit Comment

All 0 0 Exception summary; set if any floating-point
exception has occurred

0 1* Exception enable summary; set if any
floating-point exception is enabled

Invalid 0 2* Invalid exception summary; bits 7 through 12 or
21 through 23 tell why the exception occurred

1 7 Signaling NaN

2 8

2 9

2 10

2 11

∞ ∞–

∞ ∞⁄

0 0⁄

0 ∞×
12-10 Floating-Point Exceptions

C H A P T E R 1 2

Assembly-Language Environmental Controls

12
A

ssem
bly-Language E

nvironm
e

C
ontrols
Signaling and Clearing Floating-Point Exceptions 12
To signal or clear a floating-point exception explicitly, set or clear its bit in the FPSCR.
For example, the following instructions signal an overflow exception and then clear that
exception:

mtfsb1 3 # sets FPSCR bit 3 to 1, signaling overflow

mtfsb0 3 # clears FPSCR bit 3, so no overflow

These two instructions operate on individual FPSCR bits rather than on 4-bit FPSCR
fields. The instruction mtfsb1 sets the specified bit in the FPSCR to 1. The mtfsb1
instruction shown here sets bit 3, which is the overflow exception flag; therefore this
instruction signals that an overflow has occurred. Similarly, the mtfsb0 instruction sets
the specified FPSCR bit to 0 and therefore clears the overflow exception.

* This field is not sticky; it applies only for the last instruction executed.
† Not implemented in MPC601.

3 12 Comparison operation produced invalid

5 21 Software request produced invalid†

5 22 Square root produced invalid†

5 23 Convert-to-integer operation produced invalid

6 24 Invalid exception enable/disable

Overflow 0 3 Overflow flag

6 25 Overflow enable/disable

Underflow 1 4 Underflow flag

6 26 Underflow enable/disable

Divide-by-zero 1 5 Divide-by-zero flag

6 27 Divide-by-zero enable/disable

Inexact 1 6 Inexact flag

3 13* Fraction rounded

3 14* Fraction inexact

6 28 Inexact enable/disable

Table 12-5 Floating-point exception bits in the FPSCR (continued)

Exception
FPSCR
field Bit Comment
Floating-Point Exceptions 12-11

ntal

C H A P T E R 1 2

Assembly-Language Environmental Controls
Enabling and Disabling Floating-Point Exceptions 12
To enable or disable a floating-point exception, set or clear its enable bit in the FPSCR.

Note
Disabling a floating-point exception does not mean that its flag will
never be set. For the exact meaning of disabling a particular
floating-point exception, see the Motorola PowerPC 601 RISC
Microprocessor User’s Manual. ◆

For example, the following instructions enable and then disable the overflow exception:

mtfsb1 25 # sets FPSCR bit 25; overflow enabled

mtfsb0 25 # clears FPSCR bit 25; overflow disabled

You can also use the following commands to enable and disable all floating-point
exceptions at once:

mtfsfi 6,0 # disables all floating-point exceptions

mtfsfi 6,15 # enables all floating-point exceptions

As you can see from Table 12-1 on page 12-4, FPSCR field 6 contains all of the
floating-point exception enable switches, so to enable or disable all floating-point
exceptions at once, you need to set or clear this field. The mtfsfi instruction (described
on page 12-10) copies a 16-bit signed integer value into an FPSCR field; so the first
instruction shown here disables all floating-point exceptions by clearing all bits in
field 6, and the second instruction enables all floating-point exceptions by setting all bits
in field 6.

IMPORTANT

For the FPSCR exception enable bits to be valid, bit 20 or 23 of the
Machine State Register must be set. For more information, see the
Motorola PowerPC 601 RISC Microprocessor User’s Manual. ▲

Testing for Floating-Point Exceptions 12
If you would like to see whether an exception occurred, test the Condition Register.
Listing 12-2 checks the Condition Register to see if an exception has occurred and, if so,
branches to a routine that determines the type of exception. It uses the fadd. form of
the floating-point add instruction to copy the exception summary bits to Condition
Register field 1. If the add instruction causes an exception, this example uses the mcrfs
instruction (described on page 12-8) to copy the FPSCR fields containing floating-point
exception flags to Condition Register fields 2 through 5 and then uses branch
instructions to see which type of exception has occurred.
12-12 Floating-Point Exceptions

C H A P T E R 1 2

Assembly-Language Environmental Controls

12
A

ssem
bly-Language E

nvironm
e

C
ontrols
Listing 12-2 Testing for occurrence of floating-point exceptions

fadd. f0,f1,f2 # f1 + f2 = f0. CR1 contains except.summary

bta 4,error # if bit 0 of CR1 is set, go to error

bit 0 is set if any exception occurs

. # if clear, continue operation

.

.

error:

mcrfs 2,1 # copy FPSCR bits 4–7 to CR field 2

now CR1 and CR2 (bits 6 through 10)

contain all exception bits from FPSCR

bta 6,invalid # CR bit 6 signals invalid

bta 7,overflow # CR bit 7 signals overflow

bta 8,underflow # CR bit 8 signals underflow

bta 9,divbyzero # CR bit 9 signals divide-by-zero

bta 10,inexact # CR bit 10 signals inexact

invalid:

mcrfs 2,2 # copy FPSCR bits 8–11 to CR field 2

mcrfs 3,3 # copy FPSCR bits 12–15 to CR field 3

mcrfs 4,5 # copy FPSCR bits 20–23 to CR field 4

invalid bits are now CR bits 11–16 and bit 23

now do exception handling based on which invalid bit

is set

overflow:

do exception handling for overflow exception

underflow:

do exception handling for underflow exception

divbyzero:

#do exception handling for the divide-by-zero exception

inexact:

do exception handling for the inexact exception
Floating-Point Exceptions 12-13

ntal

C H A P T E R 1 2

Assembly-Language Environmental Controls
Saving and Restoring the Floating-Point Environment 12

To save and restore the state of the entire floating-point environment, use the mffs and
mtfsf instructions.

The mffs instruction saves the FPSCR to a floating-point register. It has the form

mffs DST

where DST is the floating-point register into which the FPSCR should be copied. For
example, the instruction

mffs f0

saves the current state of the FPSCR register in bits 32 through 63 of floating-point
register F0. Bits 0 through 31 of register F0 are set to 1’s.

To restore a floating-point environment that you have previously saved, use the mtfsf
instruction. This instruction copies a 4-bit field from a floating-point register into an
FPSCR field. It has the form

mtfsf DST, SRC

where DST is a 4-bit FPSCR field and SRC is the floating-point register from which the
field should be copied. The instruction assumes that the last half of the floating-point
register SRC contains an FPSCR value. Thus, if you specify

mtfsf 3,f0

bits 44 through 47 of register F0 are copied into FPSCR field 3, bits 12 through 15.
Figure 12-3 shows how the FPSCR fields map to a floating-point register.
12-14 Saving and Restoring the Floating-Point Environment

C H A P T E R 1 2

Assembly-Language Environmental Controls

12
A

ssem
bly-Language E

nvironm
e

C
ontrols
Figure 12-3 SRC and DST fields for mtfsf instruction

Listing 12-3 saves the floating-point environment and then restores it.

Listing 12-3 Saving and restoring the floating-point environment

mffs f10 # FPSCR copied into register f10

other floating-point computations occur here

mtfsf 0,f10 # restore bits 0 and 3

mtfsf 1,f10 # restore bits 4 through 7

mtfsf 2,f10 # restore bits 8 through 11

mtfsf 3,f10 # restore bits 12 through 15

mtfsf 4,f10 # restore bits 16 through 19

mtfsf 5,f10 # restore bits 20 through 23

mtfsf 6,f10 # restore bits 24 through 27

mtfsf 7,f10 # restore bits 28 through 31

entire FPSCR now restored

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

35 36 39 40 55 56 59 60 6343 44 47 48 51 52

0 3 4 7 8 23 24 27 28 3111 12 15 16 19 20

31 320

DST (FPSCR)

SRC (floating-point register)
Saving and Restoring the Floating-Point Environment 12-15

ntal

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	Assembly-Language Environmental Controls
	The Floating-Point Environment
	The Floating-Point Status and Control Register
	The Condition Register

	Inquiries: Class and Sign
	Floating-Point Result Flags and Condition Codes
	Example: Determining Class

	Setting the Rounding Direction
	Floating-Point Exceptions
	Exception Bits in the FPSCR
	Signaling and Clearing Floating-Point Exceptions
	Enabling and Disabling Floating-Point Exceptions
	Testing for Floating-Point Exceptions

	Saving and Restoring the Floating-Point Environmen...

	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

