

C H A P T E R 5

5

C
onversions

Conversions 5

This chapter describes how floating-point numbers can be converted in PowerPC
Numerics. PowerPC Numerics can convert floating-point numbers to different data
formats automatically or explicitly. For example, when a floating-point expression is
evaluated, one or more of its operands might automatically be converted to a different
data format. When a floating-point value is assigned to a variable, another automatic
conversion might be necessary. You may also perform such conversions explicitly using
the conversion utilities provided by your numeric implementation.

This chapter lists the supported numeric conversions and describes how each of these
conversions is performed. You should read it to find out exactly how a floating-point
value is converted to a different format. Chapter 3, “Expression Evaluation,” describes
how PowerPC Numerics decides when operands must be converted during expression
evaluation. Parts 2 and 3 describe the conversion utilities available to the users of
different implementations.

About Conversions 5

The IEEE standard requires the following types of conversions:

■ from floating-point formats to integer formats

■ from integer formats to floating-point formats

■ from floating-point values to integer values, with the result in a floating-point format

■ between all supported floating-point formats

■ between binary and decimal numbers

PowerPC Numerics supports all of these, as well as conversions between decimal
formats.

Converting Floating-Point to Integer Formats 5

In the PowerPC Numerics environment, the following three types of floating-point to
integer conversions are supported either directly by the programming languages or by
library implementations:

■ round to integer in current rounding direction (the required conversion, discussed in
detail in Chapter 4, “Environmental Controls”)

■ chop to integer (or round toward zero)

■ add half to magnitude and chop

Although the IEEE standard specifies that conversions from floating-point to integer
formats be rounded in the current rounding direction, high-level languages usually
define their own methods. For example, the default method of converting from
floating-point to integer formats in C is simply to discard the fractional part (truncate).
About Conversions 5-3

C H A P T E R 5

Conversions

In general, when a language defines the rounding behavior for conversion to or from an
integer, PowerPC Numerics languages conform.

Conversions from floating-point to integer formats raise the invalid floating-point
exception flag in any of the following cases:

■ The floating-point value is out of range for the integer type (for example, an attempt
to convert a 64-bit integer value stored in the double data type to a 32-bit integer type).

■ The floating-point value is a NaN.

■ The floating-point value is an Infinity.

All floating-point to integer conversions that are in range but inexact (that is, the
floating-point value was not an integer) raise the inexact floating-point exception flag,
although this is not required by the IEEE standard.

Table 5-1 shows some examples of how floating-point values might be converted to a
32-bit integer format by rounding in the current rounding direction. Note that IEEE
rounding in the default direction (to nearest) differs from most common rounding
functions on halfway cases.

Rounding Floating-Point Numbers to Integers 5

PowerPC Numerics can also round floating-point numbers to integers and leave them
stored in the same floating-point data format. These conversions may round in the
current rounding direction, or they may explicitly round upward, downward, to the
nearest value, or toward zero. These operations do not affect zeros, NaNs, or Infinities,
because these three types of special values are already considered integers.

Table 5-1 Examples of floating-point to integer conversion

Floating-point
number

Rounded
to nearest

Rounded
 toward 0

Rounded
downward

Rounded
upward

 1.5 2 1 1 2

 2.5 2 2 2 3

–2.2 –2 –2 –3 –2

2,147,483,648.5 NaN NaN NaN NaN
5-4 Rounding Floating-Point Numbers to Integers

C H A P T E R 5

Conversions

5

C
onversions

Converting Integers to Floating-Point Formats 5

When an integer is converted to a floating-point format whose precision is greater than
or equal to the size of the integer format, the conversion is exact. When an integer is
converted to a floating-point format whose precision is less than the size of the integer
format, the integer is rounded in the current rounding direction. For example, because
the single format has 24 bits in the significand, any integer requiring more than 24 bits of
precision will not be converted to its exact value.

Converting Between Floating-Point Formats 5

PowerPC Numerics supports conversions between all three of its floating-point data
formats. This section describes these conversions.

Converting Between Single and Double Formats 5
The PowerPC microprocessor directly supports the single and double formats and
conversions between them. When a single format number is converted to a double
format number, the conversion is exact.

When a double format number is converted to a single format number, it is rounded to
the closest single value in the current rounding direction. The conversion might raise the
exceptions shown in Table 5-2.

Converting Between Single and Double-Double Formats 5
When a single format number is converted to a double-double format number, the result
is exact. The following actions take place (as shown in Figure 5-1):

1. The single number is converted to double format.

2. The resulting double number is placed in the head of the double-double number.

3. The tail of the double-double number is set to 0.

4. The sign of the tail is set to the sign of the head.

Table 5-2 Double to single conversion: Possible exceptions

Exception Raised when

Inexact Significand requires > 24 bits of precision

Overflow Exponent > 127

Underflow Exponent < –126
Converting Integers to Floating-Point Formats 5-5

C H A P T E R 5

Conversions

Figure 5-1 Single to double-double conversion

When a double-double number is converted to a single number, the following actions
take place (as shown in Figure 5-2):

1. The head and tail of the double-double number are added together.

2. The sum is rounded to the closest single value in the current rounding direction.

Figure 5-2 Double-double to single conversion

Single

number

Double

number

Double-double

number

Head Tail

0

Double

number

Double-double

number

+

Single

number

Head Tail
5-6 Converting Between Floating-Point Formats

C H A P T E R 5

Conversions

5

C
onversions

The double-double to single conversion might raise the exceptions shown in Table 5-3.

Converting Between Double and Double-Double Formats 5
When a double format number is converted to a double-double format number, the
result is exact. The following actions take place:

1. The double number is placed in the head of the double-double number.

2. The tail of the double-double number is set to 0.

3. The sign of the tail is set to the sign of the head.

When a double-double number is converted to a double number, the following actions
take place:

1. The head and tail of the double-double number are added together.

2. The sum is rounded to the closest double value in the current rounding direction.

The conversion might raise the inexact exception if the significand requires more than 53
bits of precision.

Converting Between Binary and Decimal Numbers 5

PowerPC Numerics automatically converts between binary and decimal numbers, and
some implementations allow you to perform such conversions manually. This section
describes when conversions between binary and decimal numbers are performed and
how they are performed.

Accuracy of Decimal-to-Binary Conversions 5
As explained in Chapter 1, “IEEE Standard Arithmetic,” some real numbers that can be
represented exactly in decimal cannot be represented exactly as binary floating-point
numbers. As a result, it is important that conversions between the two types of numbers
be as accurate as possible. Given a rounding direction, for every decimal value there is a
best—that is, correctly rounded—binary value for each binary format. Conversely, for
any rounding direction, each binary value has a corresponding best decimal
representation for a given decimal format. Ideally, binary-to-decimal conversions should
obtain this best value to reduce accumulated errors.

Table 5-3 Double-double to single conversion: Possible exceptions

Exception Raised when

Inexact Significand requires > 24 bits of precision

Overflow Exponent > 127

Underflow Exponent < –126
Converting Between Binary and Decimal Numbers 5-7

C H A P T E R 5

Conversions

Conversion functions in PowerPC Numerics meet or exceed the stringent error bounds
specified by the IEEE standard. This means that even though in extreme cases the
conversions do not deliver the correctly rounded results, the results they do deliver are
very nearly as good as the correctly rounded results. (The IEEE standard does not
specify error bounds for conversions involving values beyond the double format. See
IEEE Standard 754 for a more detailed description of error bounds.)

Automatic Conversions 5
Whenever a computer reads a decimal number into a binary format, it automatically
converts the number to binary. Similarly, whenever a computer writes a binary number
and a decimal format is specified for the output, it automatically converts the number
from binary to decimal.

Suppose an application repeatedly reads and writes decimal data, meaning that it
repeatedly converts values from decimal to binary and back. Such conversion cycles
would occur, for example, in repeated execution of an application that updates a decimal
file on a binary computer. Each time the application runs, it deliberately changes only a
handful of values, but all the values get converted from decimal to binary and back
again. Some computers use a conversion strategy that just drops extra digits; that is, it
truncates the value. If the application were run on such a computer, the computer’s
rounding by truncation could cause severe downward drift. Using IEEE arithmetic with
rounding to nearest, the values do not drift when you run the application repeatedly.
That is, even though the conversions might change a few values the first time you run
the program, there will be no further changes on subsequent conversions.

Figure 5-3 is a graphical model of such a conversion cycle with rounding to nearest,
where the vertical marks represent decimal and binary computer numbers on the
number line. The one-way arrow shows a decimal-to-binary conversion that does not get
converted back to the original decimal value; the two-way arrow shows subsequent
conversions returning the same value. In all cases, repeated conversions after the first
give the same binary value; the error does not keep increasing.

Figure 5-3 Conversion cycle with first-time error

Decimal

Binary

Numbers with similar precision
5-8 Converting Between Binary and Decimal Numbers

C H A P T E R 5

Conversions

5

C
onversions

What’s more, if the binary format has enough extra precision beyond that of the decimal
format, to-nearest rounding returns the original value the first time. The two-way arrow
in Figure 5-4 shows a conversion cycle with different degrees of precision; here, the
nearest decimal value to the binary result is always the original decimal value.

Figure 5-4 Conversion cycle with correct result

For the round-trip conversion from decimal to binary and back to decimal, the size of the
decimal number you can start with and be sure that the round-trip produces the original
value exactly depends on the binary data format. For single format, at most 6 decimal
digits can be converted and return you the exact original value; for double format,
15 decimal digits, and for double-double format, 31 decimal digits.

You might also want to be sure conversions from binary numbers to decimal and back
return the original value. For example, suppose your program writes out some stored
values, and the output from this program is used as input to another program. You want
to know how many decimal digits to print out to ensure that the conversion back to
binary results in the original value. Again, the binary data format determines how many
decimal digits are required for the conversion to return the original value. For single
format, printing out 9 decimal digits insures an exact round trip; for double format,
17 decimal digits.

Note
These values bracket the ones given in Table 2-7 on page 2-16. ◆

Note that for the double-double format, because of its indefinite precision, there is no
reasonable number of decimal digits you can print out to guarantee the conversion
returns the original value. The number of decimal digits required varies with the
difference between the head’s exponent and the tail’s exponent. In the best case, the
head’s exponent is exactly 54 greater than the tail’s exponent so that there is no gap
between the head and the tail. In this case, 34 decimal digits are required to reproduce
the original double-double value exactly. The worst case is when the tail is 0. No number
of decimal digits is sufficient to provide an exact round trip when the tail is 0 (assuming
an infinite exponent range).

Decimal

Binary

Numbers with different precision
Converting Between Binary and Decimal Numbers 5-9

C H A P T E R 5

Conversions

Consider the case where a double-format number is converted to double-double format.
For example, if you take 1.2 represented in double format and convert it to
double-double format, the result (in hexadecimal) is

0x3FF33333 0x33333333 0x00000000 0x00000000

The first two hexadecimal numbers are stored in the head, and the last two are stored in
the tail. Suppose you want to convert this double-double number to decimal. If you
choose 34 decimal digits, the result is

1.199999999999999955591079014993738

This result is the closest 34-decimal digit approximation of the above double-double
number. It is also the closest 34-decimal digit approximation of an infinitely precise
binary value whose exponent is 0 and whose fractional part is represented by 13
sequences of “0011” followed by 52 binary zeros followed by some nonzero bits. When
you convert this decimal value back to double-double format, PowerPC Numerics
returns the closest double-double approximation of the infinitely precise value using all
of the bits of precision available to it. That is, it will use all 53 bits in the head and 53 bits
in the tail to store nonzero values and adjust the exponent of the tail accordingly. The
result is

0x3FF33333 0x33333333 0xXXXYZZZZ 0xZZZZZZZZ

where XXX represents the sign and exponent of the tail, and YZZZ . . . represents the start
of a nonzero value. Because the tail is always nonzero, this value is guaranteed to be not
equal to the original double-double value.

Manual Conversions 5
A numeric implementation may provide functions that convert binary floating-point
numbers to decimal and that convert decimal numbers to binary floating-point numbers.
The decimal number can be input in one of two formats: as part of a decimal structure
(described next) or as a character string. A numeric implementation also may provide a
scanner for converting from decimal strings to decimal structures and a formatter for
converting from decimal structures to decimal strings.

Converting Between Floating-Point and Decimal Structures 5

If the decimal number is part of a decimal structure, the structure contains

■ a sign field

■ an exponent field

■ a significand field
5-10 Converting Between Binary and Decimal Numbers

C H A P T E R 5

Conversions

5

C
onversions

For example, the file fp.h defines the following decimal structure for C:

typedef struct decimal

{

char sgn;

char unused;

short exp;

struct

{

unsigned char length;

unsigned char text[SIGDIGLEN];

unsigned chard unused;

} sig;

} decimal;

The field sgn represents the sign, exp represents the exponent, and the structure sig
represents the significand. The length field of the sig structure gives the length of the
significand, and the character array text contains the significand. The decimal
structure may either be input for a function that converts it to a binary floating-point
number or output for a function that converts a binary floating-point number to this
format.

IMPORTANT

When you create a decimal structure, you must set sig.length to the
size of the string you place in sig.text. You cannot leave the length
field undefined. ▲

Conversions from floating-point types to decimal structures also require a decimal
format structure to specify how the decimal number should look. The decimal format
structure contains the following information:

■ whether the number should be in fixed or floating style

■ if fixed style, the number of digits that should be to the right of the decimal point

■ if floating style, the number of significant digits

For example, the file fp.h defines the decform structure for this purpose for the
C programming language:

typedef struct decform

{

char style; /* FLOATDECIMAL or FIXEDDECIMAL */

char unused;

short digits;

} decform;
Converting Between Binary and Decimal Numbers 5-11

C H A P T E R 5

Conversions

Converting Between Floating-Point and Decimal Strings 5

Languages may provide routines to convert between numeric decimal strings and the
numeric data formats. Note that conversions take place in the following cases:

■ use of decimal constants in source code

■ input of decimal strings (by procedures such as read in Pascal)

■ calls to explicit routines

All conversions to decimal strings are controlled by a decimal formatting structure as
described in the previous section.
5-12 Converting Between Binary and Decimal Numbers

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	About Conversions
	Converting Floating-Point to Integer Formats
	Rounding Floating-Point Numbers to Integers
	Converting Integers to Floating-Point Formats
	Converting Between Floating-Point Formats
	Converting Between Single and Double Formats
	Converting Between Single and Double-Double Format...
	Converting Between Double and Double-Double Format...

	Converting Between Binary and Decimal Numbers
	Accuracy of Decimal-to-Binary Conversions
	Automatic Conversions
	Manual Conversions
	Converting Between Floating-Point and Decimal Stru...
	Converting Between Floating-Point and Decimal Stri...

	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

