

C H A P T E R 1 0

10

Transcendental F
unctions

Transcendental Functions 10

EXAMPLES

z = log(+1.0); /* z = +0.0 because e0 = 1 */

z = log(–1.0); /* z = NAN because negative arguments are not

allowed. The invalid exception is raised. */

log10 10

You can use the log10 function to compute the common logarithm of a real number.

double_t log10 (double_t x);

x Any positive floating-point number.

DESCRIPTION

The log10 function returns the common (base 10) logarithm of its argument.

 such that

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x other than +1)

■ invalid (when x is negative)

SPECIAL CASES

Table 10-15 shows the results when the argument to the log10 function is a zero, a NaN,
or an Infinity, plus other special cases for the log10 function.

10 x()log log10 x y = = x 10 y=

10 x()log
Logarithmic Functions 10-23

C H A P T E R 1 0

Transcendental Functions

EXAMPLES

z = log10(+1.0); /* z = 0.0 because 10

0

 = 1 */

z = log10(10.0); /* z = 1.0 because 10

1

 = 10. The inexact

exception is raised. */

z = log10(–1.0); /* z = NAN because negative arguments are not

allowed. The invalid exception is raised. */

log1p 10

You can use the

log1p

 function to compute the natural logarithm of 1 plus a real
number.

double_t log1p (double_t x);

x

Any floating-point number greater than –1.

DESCRIPTION

The

log1p

 function computes the natural logarithm of 1 plus its argument.

 such that

For small numbers, use the function call

log1p(x)

 instead of the function call

log(1 + x)

. The call

log1p(x)

 produces a more exact result because it avoids the
roundoff error that might occur when the expression

1 + x

 is computed.

*

If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-15

Special cases for the

log10

 function

Operation
Resul
t Exceptions raised

 for

x

 < 0 NaN Invalid

+0 None

–

∞

Divide-by-zero

–

∞

Divide-by-zero

NaN None

*

+

∞

None

NaN Invalid

10 x()log

10 +1()log

10 +0()log

10 0–()log

10 NaN()log

10 +∞()log

10 ∞–()log

1p x()log loge x 1+ () ln x 1+ () y = = = 1 x+ 10 y=
10-24 Logarithmic Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions

EXCEPTIONS

When

x

 is finite and nonzero, the result of might raise one of the following
exceptions:

■

inexact (for all finite, nonzero values of

x

 > –1)

■

invalid (when

x

 is less than –1)

■

divide-by-zero (when

x

 is –1)

SPECIAL CASES

Table 10-16 shows the results when the argument to the

log1p

 function is a zero, a NaN,
or an Infinity, plus other special cases for the

log1p

 function.

EXAMPLES

z = log1p(–1.0); /* z = log(0) = –INFINITY. The divide-by-zero

and inexact exceptions are raised. */

z = log1p(0.0); /* z = log(1) = 0.0 because e

0

 = 1. */

z = log1p(–2.0); /* z = log(–1) = NAN because logarithms of

negative numbers are not allowed. The

invalid exception is raised. */

*

If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-16

Special cases for the

log1p

 function

Operation
Resul
t Exceptions raised

for

x

 < –1 NaN Invalid

–

∞

Divide-by-zero

+0 None

–0 None

NaN None

*

+

∞

None

NaN Invalid

1p x()log

1p x()log

1p 1–()log

1p +0()log

1p 0–()log

1p NaN()log

1p +∞()log

1p ∞–()log
Logarithmic Functions 10-25

C H A P T E R 1 0

Transcendental Functions

log2 10

You can use the log2 function to compute the binary logarithm of a real number.

double_t log2 (double_t x);

x Any positive floating-point number.

DESCRIPTION

The log2 function returns the binary (base 2) logarithm of its argument.

 such that

The exp2 function performs the inverse operation.

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x other than +1)

■ invalid (when x is negative)

SPECIAL CASES

Table 10-17 shows the results when the argument to the log2 function is a zero, a NaN,
or an Infinity, plus other special cases for the log2 function.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-17 Special cases for the log2 function

Operation
Resul
t Exceptions raised

 for x < 0 NaN Invalid

+0 None

Divide-by-zero

Divide-by-zero

NaN None*

+∞ None

NaN Invalid

2 x()log log2 x y = = x 2y=

2 x()log

2 x()log

2 +1()log

2 +0()log ∞–

2 0–()log ∞–

2 NaN()log

2 +∞()log

2 ∞–()log
10-26 Logarithmic Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions

EXAMPLES

z = log2(+1.0); /* z = +0 because 2

0

 = 1 */

z = log2(2.0); /* z = 1 because 2

1

 = 2. The inexact exception

is raised. */

z = log2(–1.0); /* z = NAN because negative arguments are not

allowed. The invalid exception is raised. */

logb 10

 You can use the logb function to determine the value in the exponent field of a
floating-point number.

double_t logb (double_t x);

x

 Any floating-point number.

DESCRIPTION

The

logb

 function returns the signed exponent of its argument

x

 as a signed integer
value.

 such that

When the argument is a denormalized number, the exponent is determined as if the
input argument had first been normalized.

Note that for a nonzero finite

x

, .

That is, for a nonzero finite

x

, the magnitude of

x

 taken to the power of its inverse
exponent is between 1 and 2.

This function conforms to IEEE Standard 854, which differs from IEEE Standard 754 on
the treatment of a denormalized argument

x

.

EXCEPTIONS

If

x

 is finite and nonzero, the result of is exact.

b x()log y= x f 2y×=

1 fabs scalb x b x()log–,()() 2<≤

b x()log
Logarithmic Functions 10-27

C H A P T E R 1 0

Transcendental Functions

SPECIAL CASES

Table 10-18 shows the results when the argument to the

logb

 function is a zero, a NaN,
or an Infinity.

EXAMPLES

z = logb(789.9); /* z = 9.0 because 789.9

≈

 1.54

×

 2

9

 */

z = logb(21456789);/* z = 24.0 because 21456789

≈

 1.28 × 224 */

modf 10

You can use the modf function to split a real number into a fractional part and an integer
part.

float modff (float x, float *iptrf);

double modf (double x, double *iptr);

x Any floating-point number.

iptr A pointer to a floating-point variable in which the integer part can be
stored upon return.

DESCRIPTION

The modf function splits its first argument into a fractional part and an integer part. This
is an ANSI standard C function.

 such that |f| < 1.0 and

The fractional part is returned as the value of the function, and the integer part is stored
as a floating-point number in the area pointed to by iptr. The fractional part and the
integer part both have the same sign as the argument x.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-18 Special cases for the logb function

Operation
Resul
t Exceptions raised

–∞ Divide-by-zero

–∞ Divide-by-zero

NaN None*

+∞ None

+∞ None

b +0()log

b 0–()log

b NaN()log

b +∞()log

b ∞–()log

modf x n,() f= f n+ x=
10-28 Logarithmic Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXCEPTIONS

If x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 10-19 shows the results when the floating-point argument to the modf function is a
zero, a NaN, or an Infinity.

EXAMPLES

z = modf(1.0, n); /* z = 0.0 and n = 1.0 */

z = modf(+INFINITY, n); /* z = 0.0 and n = +INFINITY because the

value +∞ is an integer. */

Trigonometric Functions 10

MathLib provides the following trigonometric functions:

The remaining trigonometric functions can be computed easily and efficiently from the
transcendental functions provided.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-19 Special cases for the modf function

Operation Result Exceptions raised

+0 (n = 0) None

 (n = 0) None

NaN (n = NaN) None*

+0 (n = +∞) None

 (n =) None

 Computes the cosine of x.

Computes the sine of x.

Computes the tangent of x.

Computes the arc cosine of x.

Computes the arc sine of x.

Computes the arc tangent of x.

Computes the arc tangent of y/x.

modf x n,()

modf +0 n,()

modf 0– n,() 0–

modf NaN n,()

modf +∞ n,()

modf ∞– n,() 0– ∞–

x()cos

x()sin

x()tan

x()acos

x()asin

x()atan

atan2 y x,()
Trigonometric Functions 10-29

C H A P T E R 1 0

Transcendental Functions
The arguments for trigonometric functions (cos, sin, and tan) and return values for
inverse trigonometric functions (acos, asin, atan, and atan2) are expressed in
radians. The cosine, sine, and tangent functions use an argument reduction based on the
remainder function (see page 6-11 in Chapter 6, “Numeric Operations and Functions”)
and the constant pi, where pi is the nearest approximation of π with 53 bits of precision.
The cosine, sine, and tangent functions are periodic with respect to the constant pi, so
their periods are different from their mathematical counterparts and diverge from their
counterparts when their arguments become very large.

cos 10

You can use the cos function to compute the cosine of a real number.

double_t cos (double_t x);

x Any finite floating-point number.

DESCRIPTION

The cos function returns the cosine of its argument. The argument is the measure of
an angle expressed in radians. This function is symmetric with respect to the y-axis
(cos x = cos –x).

The acos function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, raises the inexact exception.

SPECIAL CASES

Table 10-20 shows the results when the argument to the cos function is a zero, a NaN, or
an Infinity, plus other special cases for the cos function.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-20 Special cases for the cos function

Operation
Resul
t Exceptions raised

–1 Inexact

1 None

1 None

NaN None*

NaN Invalid

NaN Invalid

arccos y()()

x()cos

π()cos

+0()cos

0–()cos

NaN()cos

+∞()cos

∞–()cos
10-30 Trigonometric Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXAMPLES

z = cos(0); /* z = 1.0. */

z = cos(pi/2); /* z = –0.0. The inexact exception is raised. */

z = cos(pi); /* z = –1.0. The inexact exception is raised. */

z = cos(–pi/2);/* z = 0.0. The inexact exception is raised. */

z = cos(–pi); /* z = –1.0. The inexact exception is raised. */

sin 10

You can use the sin function to compute the sine of a real number.

double_t sin (double_t x);

x Any finite floating-point number.

DESCRIPTION

The sin function returns the sine of its argument. The argument is the measure of an
angle expressed in radians. This function is antisymmetric with respect to the y-axis
(sin x ≠ sin –x).

The asin function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-21 shows the results when the argument to the sin function is a zero, a NaN, or
an Infinity, plus other special cases for the sin function.

arcsin y()()

x()sin
Trigonometric Functions 10-31

C H A P T E R 1 0

Transcendental Functions
EXAMPLES

z = sin(pi/2); /* z = 1. The inexact exception is raised. */

z = sin(pi); /* z = 0. The inexact exception is raised. */

z = sin(–pi/2); /* z = –1. The inexact exception is raised. */

z = sin(–pi); /* z = 0. The inexact exception is raised. */

tan 10

You can use the tan function to compute the tangent of a real number.

double_t tan (double_t x);

x Any finite floating-point number.

DESCRIPTION

The tan function returns the tangent of its argument. The argument is the measure of an
angle expressed in radians. This function is antisymmetric.

The atan function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-21 Special cases for the sin function

Operation
Resul
t Exceptions raised

0 Inexact

+0 None

–0 None

NaN None*

NaN Invalid

NaN Invalid

π()sin

+0()sin

0–()sin

NaN()sin

+∞()sin

∞–()sin

arctan y()()

x()tan
10-32 Trigonometric Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
SPECIAL CASES

Table 10-22 shows the results when the argument to the tan function is a zero, a NaN, or
an Infinity, plus other special cases for the tan function.

EXAMPLES

z = tan(pi); /* z = 0. The inexact exception is raised. */

z = tan(pi/2); /* z = +INFINITY. The inexact exception is

raised. */

z = tan(pi/4); /* z = 1. The inexact exception is raised. */

acos 10

You can use the acos function to compute the arc cosine of a real number between –1
and +1.

double_t acos (double_t x);

x Any floating-point number in the range –1 ≤ x ≤ 1.

DESCRIPTION

The acos function returns the arc cosine of its argument x. The return value is expressed
in radians in the range [0, π].

such that for –1 ≤ x ≤ 1

The cos function performs the inverse operation .

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-22 Special cases for the tan function

Operation
Resul
t Exceptions raised

0 Inexact

+∞ Inexact

+0 None

None

NaN None*

NaN Invalid

NaN Invalid

π()tan

π 2⁄()tan

+0()tan

0–()tan 0–

NaN()tan

+∞()tan

∞–()tan

x()acos arccos x() y= = y()cos x=

y()cos()
Trigonometric Functions 10-33

C H A P T E R 1 0

Transcendental Functions
EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x other than 1)

■ invalid (if |x|>1)

SPECIAL CASES

Table 10-23 shows the results when the argument to the acos function is a zero, a NaN,
or an Infinity, plus other special cases for the acos function.

EXAMPLES

z = acos(1.0); /* z = arccos (1) = 0.0 */

z = acos(–1.0); /* z = arccos (–1) = π. The inexact exception is
raised. */

asin 10

You can use the asin function to compute the arc sine of a real number between –1
and 1.

double_t asin (double_t x);

x Any floating-point number in the range –1 ≤ x ≤ 1.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-23 Special cases for the acos function

Operation
Resul
t Exceptions raised

 for |x| > 1 NaN Invalid

π Inexact

+0 None

π/2 Inexact

π/2 Inexact

NaN None*

NaN Invalid

NaN Invalid

x()acos

x()acos

1–()acos

+1()acos

+0()acos

0–()acos

NaN()acos

+∞()acos

∞–()acos
10-34 Trigonometric Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
DESCRIPTION

The asin function returns the arc sine of its argument. The return value is expressed in
radians in the range [, +]. This function is antisymmetric.

such that for –1 ≤ x ≤ 1

The sin function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x)

■ invalid (if |x| > 1)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-24 shows the results when the argument to the asin function is a zero, a NaN,
or an Infinity, plus other special cases for the asin function.

EXAMPLES

z = asin(1.0); /* z = arcsin 1 = π/2. The inexact exception is
raised. */

z = asin(–1.0); /* z = arcsin –1 = –π/2. The inexact exception
is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-24 Special cases for the asin function

Operation
Resul
t Exceptions raised

 for |x| > 1 NaN Invalid

–π/2 Inexact

π/2 Inexact

+0 None

None

NaN None*

NaN Invalid

NaN Invalid

π 2⁄– π 2⁄

x()asin arcsin x() y= = y()sin x=

y()sin()

x()asin

x()asin

1–()asin

+1()asin

+0()asin

0–()asin 0–

NaN()asin

+∞()asin

∞–()asin
Trigonometric Functions 10-35

C H A P T E R 1 0

Transcendental Functions
atan 10

You can use the atan function to compute the arc tangent of a real number.

double_t atan (double_t x);

x Any floating-point number.

DESCRIPTION

The atan function returns the arc tangent of its argument. The return value is expressed
in radians in the range [, +]. This function is antisymmetric.

 such that for all x

The tan function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all nonzero values of x)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-25 shows the results when the argument to the atan function is a zero, a NaN,
or an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-25 Special cases for the atan function

Operation Result Exceptions raised

+0 None

None

NaN None*

+ Inexact

– Inexact

π 2⁄– π 2⁄

x()atan arctan x() y= = y()tan x=

y()tan()

x()atan

+0()atan

0–()atan 0–

NaN()atan

+∞()atan π 2⁄

∞–()atan π 2⁄
10-36 Trigonometric Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXAMPLES

z = atan(1.0); /* z = arctan 1 = π/4 */
z = atan(–1.0); /* z = arctan –1 = –π/4. The inexact exception

is raised. */

atan2 10

You can use the atan2 function to compute the arc tangent of a real number divided by
another real number.

double_t atan2 (double_t y, double_t x);

y Any floating-point number.

x Any floating-point number.

DESCRIPTION

The atan2 function returns the arc tangent of its first argument divided by its second
argument. The return value is expressed in radians in the range [–π, +π], using the signs
of its operands to determine the quadrant.

such that

EXCEPTIONS

When x and y are finite and nonzero, the result of might raise one of the
following exceptions:

■ inexact (if either x or y is any finite, nonzero value)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

2 y x,()atan arctan y x⁄() z= = z()tan y x⁄=

2 y x,()atan
Trigonometric Functions 10-37

C H A P T E R 1 0

Transcendental Functions
SPECIAL CASES

Table 10-26 shows the results when one of the arguments to the atan2 function is a zero,
a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

EXAMPLES

z = atan2(1.0, 1.0); /* z = arctan 1/1 = arctan 1 = π/4. The
inexact exception is raised. */

z = atan2(3.5, 0.0); /* z = arctan 3.5/0 = arctan ∞ = π/2 */

* If both arguments are NaNs, it is undefined which one atan2 returns.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-26 Special cases for the atan2 function

Operation Result Exceptions raised

+0 x > 0 None

+π x < 0 None

+π/2 y > 0 None

–π/2 y < 0 None

±0 None

x > 0 Inexact

–π x < 0 Inexact

+π/2 y > 0 None

–π/2 y < 0 None

±π Inexact

NaN* None†

NaN None†

π/2 Inexact

±0 None

±3π/4 Inexact

–π/2 Inexact

±π None

±3π/4 Inexact

2 +0 x,()atan

2 y +0,()atan

2 0± +0,()atan

2 0– x,()atan 0–

2 y 0–,()atan

2 0± 0–,()atan

2 NaN x,()atan

2 y NaN,()atan

2 +∞ x,()atan

2 y +∞,()atan

2 ∞± +∞,()atan

2 ∞– x,()atan

2 y ∞–,()atan

2 ∞± ∞–,()atan
10-38 Trigonometric Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
Hyperbolic Functions 10

MathLib provides hyperbolic and inverse hyperbolic functions.

These functions are based on other transcendental functions and defer most exception
generation to the core functions they use.

cosh 10

You can use the cosh function to compute the hyperbolic cosine of a real number.

double_t cosh (double_t x);

x Any floating-point number.

DESCRIPTION

The cosh function returns the hyperbolic cosine of its argument. This function is
symmetric.

The acosh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

Hyperbolic cosine of x.

Hyperbolic sine of x.

Hyperbolic tangent of x.

Inverse hyperbolic cosine of x.

Inverse hyperbolic sine of x.

Inverse hyperbolic tangent of x.

x()cosh

x()sinh

x()tanh

x()acosh

x()asinh

x()atanh

arccosh y()()

x()cosh
Hyperbolic Functions 10-39

C H A P T E R 1 0

Transcendental Functions
SPECIAL CASES

Table 10-27 shows the results when the argument to the cosh function is a zero, a NaN,
or an Infinity.

EXAMPLES

z = cosh(1.0); /* z ≈ 1.54308. The inexact exception is
raised. */

z = cosh(–1.0); /* z ≈ 1.54308. The inexact exception is
raised. */

sinh 10

You can use the sinh function to compute the hyperbolic sine of a real number.

double_t sinh (double_t x);

x Any floating-point number.

DESCRIPTION

The sinh function returns the hyperbolic sine of its argument. This function is
antisymmetric.

The asinh function performs the inverse operation .

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-27 Special cases for the cosh function

Operation
Resul
t Exceptions raised

+1 None

+1 None

NaN None*

+∞ None

+∞ None

+0()cosh

0–()cosh

NaN()cosh

+∞()cosh

∞–()cosh

arcsinh y()()
10-40 Hyperbolic Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-28 shows the results when the argument to the sinh function is a zero, a NaN,
or an Infinity.

EXAMPLES

sinh(1.0); /* z ≈ 1.175201. The inexact exception is raised. */
sinh(–1.0); /* z ≈ –1.175201. The inexact exception is raised. */

tanh 10

You can use the tanh function to compute the hyperbolic tangent of a real number.

double_t tanh (double_t x);

x Any floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-28 Special cases for the sinh function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

x()sinh

+0()sinh

0–()sinh 0–

NaN()sinh

+∞()sinh

∞–()sinh ∞–
Hyperbolic Functions 10-41

C H A P T E R 1 0

Transcendental Functions
DESCRIPTION

The tanh function returns the hyperbolic tangent of its argument. The return value is in
the range [–1, +1]. This function is antisymmetric.

The atanh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of raises the following exception:

■ inexact (for all finite, nonzero values of x)

SPECIAL CASES

Table 10-29 shows the results when the argument to the tanh function is a zero, a NaN,
or an Infinity.

EXAMPLES

z = tanh(1.0); /* z ≈ 0.761594. The inexact exception is
raised. */

z = tanh(–1.0); /* z ≈ 0.761594. The inexact exception is
raised. */

acosh 10

You can use the acosh function to compute the inverse hyperbolic cosine of a real
number.

double_t acosh (double_t x);

x Any floating-point number in the range 1 ≤ x ≤ +∞.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-29 Special cases for the tanh function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+1 None

–1 None

arctanh y()()

x()tanh

+0()tanh

0–()tanh 0–

NaN()tanh

+∞()tanh

∞–()tanh
10-42 Hyperbolic Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
DESCRIPTION

The acosh function returns the inverse hyperbolic cosine of its argument. This function
is antisymmetric.

such that

The cosh function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite values of x > 1)

■ invalid (if x < 1)

SPECIAL CASES

Table 10-30 shows the results when the argument to the acosh function is a zero, a NaN,
or an Infinity, plus other special cases for the acosh function.

EXAMPLES

z = acosh(1.0); /* z = +0 */

z = acosh(0.0); /* z = NAN. The invalid exception is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-30 Special cases for the acosh function

Operation
Resul
t Exceptions raised

 for x < 1 NaN Invalid

+0 None

NaN Invalid

NaN Invalid

NaN None*

+∞ None

NaN Invalid

x()acosh arccosh x y = = cosh y x =

y()cosh()

x()acosh

x()acosh

1()acosh

+0()acosh

0–()acosh

NaN()acosh

+∞()acosh

∞–()acosh
Hyperbolic Functions 10-43

C H A P T E R 1 0

Transcendental Functions

asinh 10

You can use the

asinh

 function to compute the inverse hyperbolic sine of a real number.

 double_t asinh (double_t x);

x

Any floating-point number.

DESCRIPTION

The

asinh

 function returns the inverse hyperbolic sine of its argument. This function is
antisymmetric.

such that

The

sinh

 function performs the inverse operation .

EXCEPTIONS

When

x

 is finite and nonzero, the result of might raise one of the following
exceptions:

■

inexact (for all finite, nonzero values of

x

)

■

underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-31 shows the results when the argument to the

asinh

 function is a zero, a NaN,
or an Infinity.

*

If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-31

Special cases for the

asinh function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

x()asinh arcsinh x y = = sinh y x =

y()sinh()

x()asinh

+0()asinh

0–()asinh 0–

NaN()asinh

+∞()asinh

∞–()asinh ∞–
10-44 Hyperbolic Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions

EXAMPLES

z = asinh(1.0); /* z

≈

 0.881374. The inexact exception is

raised. */

z = asinh(–1.0); /* z

≈

 0.881374. The inexact exception is

raised. */

atanh 10

You can use the

atanh

 function to perform the inverse hyperbolic tangent of a real
number.

double_t atanh (double_t x);

x

Any floating-point number in the range –1

≤

x

≤

 1.

DESCRIPTION

The

atanh

 function returns the inverse hyperbolic tangent of its argument. This function
is antisymmetric.

such that

The

tanh

 function performs the inverse operation .

EXCEPTIONS

When

x

 is finite and nonzero, the result of might raise one of the following
exceptions:

■

inexact (for all finite, nonzero values of

x

 other than +1 and –1)

■

invalid (if |

x

| > 1)

■

underflow (if the result is inexact and must be represented as a denormalized number
or 0)

x()atanh arctanh x y = = tanh y x =

y()tanh()

x()atanh
Hyperbolic Functions 10-45

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Std Arith TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	Transcendental Functions, Part 2 (Reference)
	Logari thmic Functi ons
	Trigonometric Functions
	Hyperbolic Functions

	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

