

C H A P T E R 3

3

E
xpression E

valuation

Expression Evaluation 3

This chapter describes the ways in which an expression with floating-point operations
can be evaluated in the PowerPC Numerics environment. The environment does not
require that all floating-point operations be performed with a certain precision. Instead,
it lets each implementation choose the most efficient precision to use. An implementation
can dictate that all floating-point operations be performed with a given precision, or an
implementation may define a method by which the best possible precision is chosen for
each expression. This chapter describes the two methods that numeric implementations
can use to choose a precision and compares the methods using several examples.

You should read this chapter to learn how PowerPC Numerics determines the precision
of a floating-point expression.

About Expression Evaluation 3

The evaluation format of a floating-point operation is the data format used to evaluate
the operation. An expression evaluation method is the means by which evaluation
formats are determined. The IEEE standard does not cover expression evaluation
methods, but the FPCE technical report does. Expression evaluation methods in
PowerPC Numerics comply with the FPCE recommendations.

All PowerPC Numerics expression evaluation methods have a predefined minimum
evaluation format, and they may or may not have widest-need evaluation. The
minimum evaluation format is the narrowest evaluation format allowed for any
operation. Any of the three floating-point data formats (single, double, or
double-double) can be designated as the minimum evaluation format. Widest-need
evaluation is a method used to determine the evaluation format for complex
expressions (expressions with more than one floating-point operation). The following
sections describe how expressions are evaluated without widest-need evaluation and
with widest-need evaluation.

Evaluating Expressions Without Widest Need 3

Without widest-need evaluation, a complex expression is considered as a series of
simple expressions (expressions with only one floating-point operation), and the
evaluation format of each simple expression is determined separately. The evaluation
format of a simple expression is either its semantic type (the widest format used for its
operands) or the minimum evaluation format, whichever is wider. For example, consider
the operation

s * d

where s is a single-format variable and d is a double-format variable. The operation’s
semantic type is double because double is the widest format used for an operand. If the
minimum format is defined to be single, the operation is evaluated in double precision
About Expression Evaluation 3-3

C H A P T E R 3

Expression Evaluation

because double is wider than single. If the minimum format is double-double,
double-double precision is used because double-double is wider than double. Evaluating
this operation in double-double precision means that the values of both variables will be
converted to double-double format before the multiplication is performed and that
double-double format will be used for temporary storage of the result.

This expression evaluation method applies only to floating-point operations subject to
the usual arithmetic conversions (automatic conversions performed in the C
programming language). The following operations are subject to the usual arithmetic
conversions:

■ arithmetic operations

■ comparison operations

The following operations are not subject to the usual arithmetic conversions:

■ assignment

■ assignment of actual function arguments to formal function parameters

■ explicit conversions to different data types (for example, casts in C)

For example, consider the C expression

dd + (d = s * s)

where dd denotes a double-double format variable or number, d is double format, s is
single format, and the minimum evaluation format is double. Without widest-need
evaluation, this expression is treated as three simple expressions:

■ s * s

■ d assigned the result of s * s

■ dd + the result of d = s * s

The semantic type of the first simple expression (s * s) is single, which is narrower than
the minimum evaluation format, so it will be evaluated in double. The values of both of
its operands are converted to double format and are then multiplied to produce a double
result. The next simple expression is an assignment operation, which is not subject to the
usual arithmetic conversions so the expression evaluation method does not apply. It
produces a double format result also. Then, the last simple expression is considered. Its
semantic type is double-double, so that will be the evaluation format. The result of the
assignment is converted to double-double format, then added to the double-double
variable. Figure 3-1 illustrates this process.
3-4 Evaluating Expressions Without Widest Need

C H A P T E R 3

Expression Evaluation

3

E
xpression E

valuation

Figure 3-1 Evaluating complex expressions without widest need

Evaluating Expressions With Widest Need 3

Widest-need evaluation first looks at all of the operands of all of the subexpressions in a
complex expression to determine the semantic type of the complex expression. As before,
if the semantic type is wider than the minimum evaluation format, the semantic type is
the evaluation format. If not, the minimum evaluation format is used. Only
subexpressions with operations subject to the usual arithmetic conversions are
considered when determining the evaluation format; operations such as assignment
statements or casts are ignored.

dd + (d = s ∗ s)

+

dd

d

s s

∗

=

(d)

+

dd

d

d

∗

=

(d)

d

+

dd

d d

=

+

dd d

(dd)

+

dd dd

(dd)

dd
Evaluating Expressions With Widest Need 3-5

C H A P T E R 3

Expression Evaluation

After the evaluation format is determined, widest-need evaluation applies this format to
the operands of the outermost operation in the expression using one of the following
rules:

■ If the operand is a floating-point variable or constant, it is converted to the evaluation
format.

■ If the operand is an operation subject to the usual arithmetic conversions (for
example, arithmetic operations and comparison operations) or the assignment of
values to function parameters, its operands are converted to the evaluation format
before the operation is performed.

■ If the operand is an operation not subject to the usual arithmetic conversions (for
example, an assignment operation, function call, or cast), its evaluation format is
determined separately from the outer expression. After the operation has been
performed, its result is converted to the evaluation format of the complex expression.

These three rules are applied repeatedly until the end of the expression is reached. For
example, consider the C expression in Figure 3-2. Widest-need evaluation looks at this
expression as the addition of a double-double variable to the result of another
expression. To determine the evaluation format of this addition operation, widest need
first looks at all of the variables and constants in the entire expression that are not part of
a function call, cast, or assignment operation. There is only one variable that meets these
requirements, and it is in double-double format. Therefore, double-double format is the
evaluation format of the addition operation.

Now, widest-need evaluation can apply the addition operation’s evaluation format to
the rest of the expression using the three rules just given. Addition is an operation
subject to the usual arithmetic conversions, and so its operands will be converted before
the operation is performed. The first operand is a double-double variable, so it will be
converted to the evaluation format immediately. (In this case, the variable already is in
the evaluation format.) The second operand is an assignment operation. The assignment
operation is not subject to arithmetic conversions, so it will be performed before any
conversion takes place. This means that the evaluation format for the assignment
operation must be determined. The operation’s semantic type is double, so it will be
performed in double precision.

As before, this double format must now be applied to the operands of the assignment.
The first operand is already in double format. The second operand is a multiplication
operation. Because multiplication is subject to the usual arithmetic conversions, its
operands are converted before the operation is performed. Both of the multiplication
operation’s operands are single-format variables, so the values of these two variables are
converted to double. The multiplication operation is calculated in double precision. Now
the assignment can be performed, resulting in a double-format number. This result of the
assignment statement is now the second operand of the addition operation. It is
converted to double-double format, and then the addition is performed in
double-double precision.
3-6 Evaluating Expressions With Widest Need

C H A P T E R 3

Expression Evaluation

3

E
xpression E

valuation

Figure 3-2 Evaluating complex expressions with widest need

dd + (d = s ∗ s)

+

dd

d

s s

∗

=

+

dd

d

s

∗

=

s

+

dd d

(dd)

+

dd dd

(dd)

dd

(dd)

(dd)

+

dd

d

s

∗

=

s

(dd)

+

dd

d

d

∗

=

d

(dd)

(d)

(d)

(d)

(d)

(d)
Evaluating Expressions With Widest Need 3-7

C H A P T E R 3

Expression Evaluation

Comparisons of Expression Evaluation Methods 3

You can think of the difference between using and not using widest-need evaluation
as the way these two expression evaluation methods navigate the parse tree for a
complex expression. Widest-need evaluation determines the evaluation format of
the topmost expression first and enforces that format on all lower expressions. If a
complex expression is evaluated without widest need, the evaluation format of the
bottommost expression is determined first, and the results are converted to wider
formats as wider formats are encountered working back up the tree.

Figure 3-3 shows how an expression is evaluated using both methods. In this example,
dd is a double-double format constant or variable, d is double format, and s is single
format. The minimum evaluation format is single. This expression makes a call to a
function named dfunc, which takes a parameter of type double and returns a double
value.

If this expression is evaluated without widest need, the evaluation format of the
multiplication operation (s * s) is determined first without regard to the rest of the
expression. Its semantic type is single, which is the same as the minimum evaluation
format, so it is evaluated in single precision. Its result is then converted to double
precision when it is passed to the function dfunc, which takes a double parameter. The
function returns a double result. The next expression is the addition operation, which
has a semantic type of double-double. The addition will be performed in double-double
precision because double-double format is wider than the minimum evaluation format.
The double-format return value from dfunc is converted to double-double, the addition
is performed, and a double-double result is returned.

If this expression is evaluated with widest-need evaluation, the evaluation format of the
addition operation is determined first. All of the variables in the expression that are not
assigned to function parameters or not part of an assignment statement or cast are
looked at to determine the evaluation format. In this expression, the two variables
considered are the dd variable and the dfunc function call. Because dd is double-double
format, the evaluation format of the addition operation is double-double. Now, the
double-double format is applied down the parse tree to the operands of the addition
operation. The first operand is already in double-double format. The second operand is a
function call. As explained on page 3-6, function calls are not subject to the usual
arithmetic conversions, so their evaluation formats are determined independently of the
outer expression and their results are determined before any conversion takes place. The
evaluation format for the assignment of values to the parameters of dfunc is double
because dfunc takes a parameter of type double. The multiplication operation is an
operand to this operation, so the multiplication is performed in double precision. The
result of dfunc is returned in double format, then is converted to double-double format
before the addition is performed.
3-8 Comparisons of Expression Evaluation Methods

C H A P T E R 3

Expression Evaluation

3

E
xpression E

valuation

Figure 3-3 Evaluating an expression with a function call

+

s

∗ (s)

dd

s

Without widest need With widest need

dfunc()

+

dd dfunc()

s

+

dd dfunc()

d

+

dd d

+

dd d

+

dd dd

dd

+

s

∗

dd

s

dfunc()

(dd)

+

d

∗

dd

d

dfunc()

(dd)

(d)

+

dd dfunc()

(dd)

d

+

dd d

+

dd dd

dd

double dfunc (double);

dd + dfunc(s ∗ s)

(dd)

(dd) (dd)

(dd)
Comparisons of Expression Evaluation Methods 3-9

C H A P T E R 3

Expression Evaluation

Figure 3-4 shows how widest-need evaluation protects against midexpression overflow
and underflow better than expression evaluation methods that do not use widest need.
In this example, s denotes a single-format variable or number, d is double format, dd is
double-double format, and the minimum evaluation format is single.

Figure 3-4 Evaluating an expression with arithmetic operations

Without widest-need evaluation, the expression in Figure 3-4 is considered as two
separate simple expressions. The multiplication operation (s * s) is considered first. Its
semantic type (single format) is the same as the minimum evaluation format, so the
multiplication is performed in single precision. The semantic type of the addition
operation is double-double, which is wider than the single minimum format. The
addition operation is evaluated in double-double precision, so the value of its
single-format operand is converted to double-double format before the result is
calculated.

+

s

∗ (s)dd

s

+

sdd

+

sdd

(dd)

+

dddd

(dd)

dd

+

s

∗dd

s

+

dd

+

dddd

(dd)

dd

(dd)

+

s

∗dd

s

(dd)

(dd)

+

dd

+

∗dd

(dd)

(dd)

dddddd

Could protect

against overflow

Could overflow

dd + (s ∗ s)

Without widest need With widest need
3-10 Comparisons of Expression Evaluation Methods

C H A P T E R 3

Expression Evaluation

3
E

xpression E
valuation
With widest-need evaluation, all of the operands in the complex expression are looked at
first to determine the semantic type. The semantic type is double-double because of the
double-double variable. This means that the multiplication of the two single-format
variables is performed in double-double precision.

Suppose that the two single variables have the values 1038 and 10, respectively.
Multiplying these two values produces 1039. However, 1039 is out of the range of single
format. If these numbers are multiplied in single precision (that is, if widest-need
evaluation is not used), it will produce +∞ and a floating-point overflow exception. If the
multiplication is evaluated in double-double precision (that is, if widest-need evaluation
is used), the correct result is returned because 1039 is within the range of the
double-double format.
Comparisons of Expression Evaluation Methods 3-11

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	Expression Evaluation
	About Expression Evaluation
	Evaluating Expressions Without Widest Need
	Evaluating Expressions With Widest Need
	Comparisons of Expression Evaluation Methods

	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

