

C H A P T E R 2

2

F
loating-P

oint D
ata F

orm
ats

Floating-Point Data Formats 2

This chapter describes the data formats your PowerPC application can use to represent
floating-point numbers. It begins by discussing in general the methods PowerPC
Numerics uses to store and interpret floating-point values and by explaining why those
methods were chosen. The chapter introduces the special values zero, NaN
(Not-a-Number), and Infinity and explains why these special values are necessary. Next
is an in-depth description of the numeric data formats with a discussion of how these
formats represent floating-point values. At the end of the chapter, you will find a table
comparing the size, range, and precision of the numeric data formats. This table can help
you choose which data format is best for your application.

You should read this chapter to learn about the floating-point data formats available on
PowerPC processor-based Macintosh computers and to learn more about how your
computer encodes and manipulates floating-point numbers.

About Floating-Point Data Formats 2

The IEEE standard defines several floating-point data formats, one required and the
others recommended. IEEE requires that each data format have a sign bit (s), an
exponent field (e), and a fraction field (f). For each format, it lists requirements for the
minimum lengths of these fields. For example, the standard describes a 32-bit single
format whose exponent field must be 8 bits long and whose fraction field must be 23 bits
long. Figure 2-1 shows the IEEE requirements for the single format. (In this figure, msb
stands for most significant bit and lsb stands for least significant bit.)

Figure 2-1 IEEE single format

The only required data format is the 32-bit single format. A 64-bit double format is
strongly recommended. The IEEE standard also describes two data formats called
single-extended and double-extended and recommends that floating-point environments
provide the extended format corresponding to the widest basic format (single or double)
they support.

To conform to the IEEE requirements on floating-point data formats, the PowerPC
Numerics environment provides three data formats: single (32 bits), double (64 bits), and
double-double (128 bits). The single and double formats are implemented exactly as
described in the standard. The double-double format is provided in place of the
recommended double-extended format. IEEE requires that the double-extended format
be at least 79 bits long with at least a 15-bit exponent. The double-double format is

1 23

s e f

msb lsb msb lsb

8

About Floating-Point Data Formats 2-3

C H A P T E R 2

Floating-Point Data Formats

128 bits long and has an 11-bit exponent. The double-double format is just what its name
sounds like: two double-format numbers combined. The PowerPC assembly-language
multiply-add instructions, which multiply two double-format numbers and add a third
with at most one roundoff error, make implementing the double-double format much
more efficient than implementing a true IEEE double-extended format. See Chapter 14,
“Assembly-Language Numeric Operations,” for more information on the multiply-add
instructions.

Table 2-1 shows how the three numeric data formats correspond to C variable types. For
more information about data types in C, refer to Chapter 7, “Numeric Data Types in C.”

The IEEE standard also makes requirements about how the values in these data formats
are interpreted. PowerPC Numerics follows these requirements exactly. They are
described in the next section.

Interpreting Floating-Point Values 2

Regardless of which data format (single, double, or double-double) you use, the
numerics environment uses the same basic method to interpret which floating-point
value the data format represents. This section describes that method.

Every floating-point data format has a sign bit, an exponent field, and a fraction field.
These three fields provide binary encodings of a sign (+ or –), an exponent, and a
significand, respectively, of a floating-point value. The value is interpreted as

where

± is the sign stored in the sign bit (1 is negative, 0 is positive).

significand has the form where . . . are
the bits in the fraction field and is an implicit bit whose value is
interpreted as described in the sections “Normalized Numbers” and
“Denormalized Numbers.” The significand is sometimes called the
mantissa.

Table 2-1 Names of data types

PowerPC Numerics data format C type

IEEE single float

IEEE double double

Double-double long double

 significand 2 exponent bias – ×±

b0 b1b2b3 bprecision 1– b1b2b3 bprecision 1–

b0
2-4 Interpreting Floating-Point Values

C H A P T E R 2

Floating-Point Data Formats

2
F

loating-P
oint D

ata F
orm

ats

exponent

 is the value of the exponent field.

bias

 is the bias of the exponent. The

bias

 is a predefined value (127 for single
format, 1023 for double and double-double formats) that is added to the
exponent when it is stored in the exponent field. When the floating-point
number is evaluated, the bias is subtracted to return the correct exponent.
The minimum biased exponent field (all 0’s) and maximum biased
exponent field (all 1’s) are assigned special floating-point values
(described in the next several sections).

In a numeric data format, each valid representation belongs to exactly one of these
classes, which are described in the sections that follow:

■

normalized numbers

■

denormalized numbers

■

Infinities

■

NaNs (signaling or quiet)

■

zeros

Normalized Numbers 2

The numeric data formats represent most floating-point numbers as

normalized
numbers,

 meaning that the implicit leading bit (on page 2-4) of the significand is 1.
Normalization maximizes the resolution of the data type and ensures that
representations are unique. Figure 2-2 shows the magnitudes of normalized numbers in
single precision on the number line. The spacing of the vertical marks indicates the
relative density of numbers in each binade. (A

binade

 is a collection of numbers between
two successive powers of 2.) Notice that the numbers get more dense as they approach 0.

Note

The figure shows only the relative density of the numbers; in reality, the
density is immensely greater than it is possible to show in such a figure.
For example, there are (8,388,608) single-precision numbers in the
interval .

◆

 Figure 2-2 Normalized single-precision numbers on the number line

b0

223

2 126– x 2 125–<≤

0 2–126 2–125 2–124–2–126–2–125–2–124

Gap in normalized numbers

–+
Interpreting Floating-Point Values 2-5

C H A P T E R 2

Floating-Point Data Formats

Using only normalized representations creates a gap around the value 0, as shown in
Figure 2-2. If a computer supports only the normalized numbers, it must round all tiny
values to 0. For example, suppose such a computer must perform the operation ,
where

x

 and

 y

 are very close to, but not equal to, each other. If the difference between

x

and

y

 is smaller than the smallest normalized number, the computer must deliver 0 as
the result. Thus, for such

flush-to-zero systems,

 the following statement is

not

 true for all
real numbers:

 if and only if

Denormalized Numbers 2

Instead of using only normalized numbers and allowing this small gap around 0,
PowerPC processor-based Macintosh computers use

denormalized numbers,

 in which
the leading implicit bit (on page 2-4) of the significand is 0 and the minimum
exponent is used.

Note

Some references use the term

subnormal

numbers

 instead of

denormalized numbers.

◆

Figure 2-3 illustrates the relative magnitudes of normalized and denormalized numbers
in single precision. Notice that the denormalized numbers have the same density as the
numbers in the smallest normalized binade. This means that the roundoff error is the
same regardless of whether an operation produces a denormalized number or a very
small normalized number. As stated previously, without denormalized numbers,
operations would have to round tiny values to 0, which is a much greater roundoff error.

Figure 2-3

Denormalized single-precision numbers on the number line

To put it another way, the use of denormalized numbers makes the following statement
true for all real numbers:

 if and only if

x y–

x y– 0= x y=

b0

 Denormalized numbers in gap

0 2–126 2–125 2–124–2–126–2–125–2–124
–+

x y– 0= x y=
2-6 Interpreting Floating-Point Values

C H A P T E R 2

Floating-Point Data Formats

2
F

loating-P
oint D

ata F
orm

ats

Another advantage of denormalized numbers is that error analysis involving small
values is much easier without the gap around zero shown in Figure 2-2 (Demmel 1984).

The computer determines that a floating-point number is denormalized (and therefore
that its implicit leading bit is interpreted as 0) when the biased exponent field is filled
with 0’s and the fraction field is nonzero.

Table 2-2 shows how a single-precision value becomes progressively denormalized as
it is repeatedly divided by

2, with rounding to nearest. This process is called

gradual
underflow.

 In the table, values . . . are denormalized; is the smallest positive
denormalized number in single format. Notice that as soon as the values are too small to
be normalized, the biased exponent value becomes 0.

Infinities 2

An

Infinity

 is a special bit pattern that can arise in one of two ways:

■

When an operation (such as) should produce a mathematical infinity, the result is
an Infinity.

■

When an operation attempts to produce a number with a magnitude too great for the
number’s intended floating-point data type, the result might be a value with the
largest possible magnitude or it might be an Infinity (depending on the current
rounding direction).

*

Whenever division returns an inexact tiny value, the exception bit for underflow is set to
indicate that a low-order bit has been lost.

Table 2-2

Example of gradual underflow

Variable or
operation Value

Biased
exponent Comment

1.100 1100 1100 1100 1100 1101

×

 2

1.100 1100 1100 1100 1100 1101

×

 1

0.110 0110 0110 0110 0110 0110

×

 0 Inexact

*

0.011 0011 0011 0011 0011 0011

×

 0 Exact result

0.001 1001 1001 1001 1001 1010

×

 0 Inexact

*

.

.

.

0.000 0000 0000 0000 0000 0011

×

 0 Exact result

0.000 0000 0000 0000 0000 0010

×

 0 Inexact

*

0.000 0000 0000 0000 0000 0001

×

 0 Exact result

0.0 0 Inexact

*

A0

A2 A25 A25

A0 2 125–

A1 A0 2⁄= 2 126–

A2 A1 2⁄= 2 126–

A3 A2 2⁄= 2 126–

A4 A3 2⁄= 2 126–

A23 A22 2⁄= 2 126–

A24 A23 2⁄= 2 126–

A25 A24 2⁄= 2 126–

A26 A25 2⁄=

1 0⁄
Interpreting Floating-Point Values 2-7

C H A P T E R 2

Floating-Point Data Formats
These bit patterns (as well as NaNs, introduced next) are recognized in subsequent
operations and produce predictable results. The Infinities, one positive and one negative,
generally behave as suggested by the theory of limits. For example:

■ Adding 1 to +∞ yields +∞.

■ Dividing by +0 yields .

■ Dividing 1 by yields .

The computer determines that a floating-point number is an Infinity if its exponent field
is filled with 1’s and its fraction field is filled with 0’s. So, for example, in single format, if
the sign bit is 1, the exponent field is 255 (which is the maximum biased exponent for the
single format), and the fraction field is 0, the floating-point number represented is
(see Figure 2-4).

Figure 2-4 Infinities represented in single precision

NaNs 2
When a numeric operation cannot produce a meaningful result, the operation delivers a
special bit pattern called a NaN (Not-a-Number). For example, zero divided by zero, +∞
added to , and yield NaNs. A NaN can occur in any of the numeric data formats
(single, double, and double-double), but generally, system-specific integer types
(non-numeric types exclusively for integer values) have no representation for NaNs.

NaNs propagate through arithmetic operations. Thus, the result of 3.0 added to a NaN is
the same NaN. If two operands of an operation are NaNs, the result is one of the NaNs.
NaNs are of two kinds: quiet NaNs, the usual kind produced by floating-point
operations, and signaling NaNs.

When a signaling NaN is encountered as an operand of an arithmetic operation, the
invalid-operation exception is signaled and a quiet NaN is the delivered result. Signaling
NaNs are not created by any numeric operations, but you might find it useful to create
signaling NaNs manually. For example, you might fill uninitialized memory with
signaling NaNs so that if one is ever encountered in a program, you will know that
uninitialized memory is accessed.

A NaN may have an associated code that indicates its origin. These codes are listed
in Table 2-3. The NaN code is the 8th through 15th most significant bits of the fraction
field.

1– ∞–

∞– 0–

∞–

Hexadecimal Binary

7F800000 0 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 0FF800000

∞

∞–

+

∞– 1–
2-8 Interpreting Floating-Point Values

C H A P T E R 2

Floating-Point Data Formats

2
F

loating-P
oint D

ata F
orm

ats
Note
The PowerPC processor always returns 0 for the NaN code. ◆

The computer determines that a floating-point number is a NaN if its exponent field is
filled with 1’s and its fraction field is nonzero. The most significant bit of the fraction
field distinguishes quiet and signaling NaNs. It is set for quiet NaNs and clear for
signaling NaNs. For example, in single format, if the sign field has the value 1, the
exponent field has the value 255, and the fraction field has the value 65,280, then the
number is a signaling NaN. If the sign is 1, the exponent is 255, and the fraction field has
the value 4,259,584 (which means the fraction field has a leading 1 bit), the value is a
quiet NaN. Figure 2-5 illustrates these examples.

Table 2-3 NaN codes

Decima
l

Hexadecima
l Meaning

1 0x01 Invalid square root, such as

2 0x02 Invalid addition, such as

4 0x04 Invalid division, such as

8 0x08 Invalid multiplication, such as

9 0x09 Invalid remainder or modulo, such as x rem 0

17 0x11 Attempt to convert invalid ASCII string

21 0x15 Attempt to create a NaN with a zero code

33 0x21 Invalid argument to trigonometric function (such as cos,
sin, tan)

34 0x22 Invalid argument to inverse trigonometric function (such as
acos, asin, atan)

36 0x24 Invalid argument to logarithmic function (such as log,
)

37 0x25 Invalid argument to exponential function (such as exp,
expm1)

38 0x26 Invalid argument to financial function (compound or
annuity)

40 0x28 Invalid argument to inverse hyperbolic function (such as
acosh, asinh)

42 0x2A Invalid argument to gamma function (gamma or lgamma)

1–

+∞() ∞–()+

0 0⁄

0 ∞×

10log
Interpreting Floating-Point Values 2-9

C H A P T E R 2

Floating-Point Data Formats
Figure 2-5 NaNs represented in single precision

Zeros 2
Each floating-point format has two representations for zero: +0 and . Although the
two zeros compare as equal , their behaviors in IEEE arithmetic are slightly
different.

Ordinarily, the sign of zero does not matter except (possibly) for a function
discontinuous at zero. Though the two forms are numerically equal, a program can
distinguish +0 from by operations such as division by zero or by performing the
numeric copysign function.

The sign of zero obeys the usual sign laws for multiplication and division. For example,
 and . Because extreme negative underflows yield ,

expressions like produce the correct sign for ∞ when x is tiny and negative.
Addition and subtraction produce only in these cases:

■

■

When rounding downward, with x finite,

■

■

The square root of is .

The sign of zero is important in complex arithmetic (Kahan 1987).

The computer determines that a floating-point number is 0 if its exponent field and its
fraction field are filled with 0’s. For example, in single format, if the sign bit is 0, the
exponent field is 0, and the fraction field is 0, the number is +0 (see Figure 2-6).

FF80FF00 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0FFC0FF00

Hexadecimal Binary

Signaling

NaN

Quiet NaN

1 1 1 1 1 1 1 0

0–
+0() 0–=

0–

+0() 1–()× 0–= 1 0–()⁄ ∞–= 0–
1 x 3⁄

0–

0–() +0() yields – 0–

0–() 0–() yields + 0–

x x yields – 0–

x x–() yields + 0–

0– 0–
2-10 Interpreting Floating-Point Values

C H A P T E R 2

Floating-Point Data Formats

2
F

loating-P
oint D

ata F
orm

ats

Figure 2-6

Zeros represented in single precision

Formats 2

This section shows the three numeric data formats: single, double, and double-double.
These are pictorial representations and might not reflect the actual byte order in any
particular implementation.

Each of the diagrams on the following pages is followed by a table that gives the rules
for evaluating the number. In each field of each diagram, the leftmost bit is the most
significant bit (msb) and the rightmost is the least significant bit (lsb). Table 2-4 defines
the symbols used in the diagrams.

Single Format 2

The 32-bit

single format

 is divided into three fields having 1, 8, and 23 bits (see
Figure 2-7).

Table 2-4

Symbols used in format diagrams

Symbo
l Description

v

Value of number

 s Sign bit
e

Biased exponent (

exponent

 +

bias

)

f

Fraction (

significand

 without leading bit)

Hexadecimal Binary

00000000 0

1 080000000

+ 0

– 0
Formats 2-11

C H A P T E R 2

Floating-Point Data Formats

Figure 2-7

Single format

The interpretation of a single-format number depends on the values of the exponent
field (

e

) and the fraction field (

f

), as shown in Table 2-5.

Figure 2-8 shows the range and density of the real numbers that can be represented as
single-format floating-point numbers using normalized and denormalized values. The
vertical marks indicate the relative density of the numbers that can be represented. As
explained in the section “Normalized Numbers” on page 2-5, the number of
representable values gets more dense closer to 0.

Figure 2-8

Single-format floating-point numbers on the real number line

Table 2-5

Values of single-format numbers (32 bits)

If biased
exponent

e

 is:

And
fraction

f

is:

Then value

v

 is: And the class of

v

 is:

(any) Normalized

Denormalized

Zero

Infinity

v

 is a NaN NaN

1 23

s e f

msb lsb msb lsb

8

0 e 255< < v 1–()s 2 e 127–() 1. f()××=

e 0= f 0 ≠ v 1–()s 2 126–() 0. f()××=

e 0= f 0= v 1–()s 0×=

e 255= f 0= v 1–()s ∞×=

e 255= f 0 ≠

0

–1.4 × 10– 45 +1.4 × 10– 45

–+

–3.4 × 1038 +3.4 × 1038
2-12 Formats

C H A P T E R 2

Floating-Point Data Formats

2
F

loating-P
oint D

ata F
orm

ats

Double Format 2

The 64-bit

double format

 is divided into three fields having 1, 11, and 52 bits (see
Figure 2-9).

Figure 2-9

Double format

The interpretation of a double-format number depends on the values of the exponent
field (

e

) and the fraction field (

f

), as shown in Table 2-6.

Figure 2-10 shows the range and density of the real numbers that can be represented as
double-format floating-point numbers using normalized and denormalized values. The
vertical marks indicate the relative density of the numbers that can be represented. As
explained in the section “Normalized Numbers” on page 2-5, the number of
representable values gets more dense closer to 0.

Table 2-6

Values of double-format numbers (64 bits)

If biased
exponent

e

 is:

And
fraction

f

is: Then value

v

 is: And the class of

v

 is:

 (any) Normalized

Denormalized

Zero

Infinity

v

 is a NaN NaN

1 52

s e f

msb lsb msb

11

lsb

0 e 2047< < v 1– () s 2 e 1023– () 1. f ()×× =

e 0= f 0 ≠ v 1–()s 2 1022–() 0. f()××=

e 0= f 0= v 1–()s 0×=

e 2047= f 0= v 1–()s ∞×=

e 2047= f 0 ≠
Formats 2-13

C H A P T E R 2

Floating-Point Data Formats

Figure 2-10

Double-format floating-point values on the real number line

Double-Double Format 2

The 128-bit

double-double format

 is made up of two double-format numbers (see
Figure 2-11).

Figure 2-11

Double-double format

The value of a double-double number is the sum of its head and tail components. These
two components are both double numbers, and therefore the value of each component is
determined as shown in Table 2-6. It is recommended that the tail’s exponent be at least
54 less than the head’s exponent. Numeric operations that produce double-double
results always produce numbers in this form.

IMPORTANT

It is possible, but not recommended, to create a double-double format
that does not follow this form. If you do not follow this form when
creating a double-double number, the results are unpredictable.

▲

–1.8 × 10308 0 +1.8 × 10308

Range of

single

Range of

single

–4.9 × 10–324

–+

+4.9 × 10–324

1 52

s e f

msb lsb msb

11

lsb

1 52

s e f

msb lsb msb

11

lsb

Head Tail
2-14 Formats

C H A P T E R 2

Floating-Point Data Formats

2
F

loating-P
oint D

ata F
orm

ats

The requirement that the tail’s exponent be at least 54 less than the head’s exponent
guarantees that the significand of the tail is more or less concatenated to the significand
of the head (which is 53 bits long) when the two values are added together. For example,
if the head component’s exponent is , the tail component’s exponent can be no
greater than , so that in the value represented by this double-double format number,
the head represents the first 53 binary digits and the tail represents the remaining digits.

Note that the difference between the exponent values may be greater than 54 and that
the head and the tail can have different signs. To continue with the example, suppose the
tail’s exponent is instead of . The binary number represented would be as shown
in Figure 2-12.

Figure 2-12

Double-double format number example

The head represents the binary places down to . The tail represents the binary
places down to . The zeros between the head and the tail are necessary to
represent the binary places to . This particular number has 112 units of
precision—53 units from the head, 53 from the tail, and 6 units between the head and the
tail. The double-double format always has at least 107 bits of precision, and if the tail’s
exponent is more than 54 less than the head’s exponent, it has even greater precision.

If the value of the head component is a normalized number, then the value of the
double-double number is the sum of the head and the tail. In the recommended form, if
the head is not a normalized number (meaning it is denormalized, 0, NaN, or Infinity),
the head contains the value of the double-double number, and the tail contains 0. This
way, when you add the head and the tail, you still get the value of the head.

Although the precision of the double-double format is much greater than that of the
double format, the range of the two formats is the same. However, because the
double-double format is implemented in software, this format is much slower to use
than the double format. Because of this, you should always use the double format unless
you need the extra precision provided by the double-double format.

2200

2146

2140 2146

11111111 . . . 00000000000 111111111 . . .

Head Tail

2200 2147

2140 287

2146 2141
Formats 2-15

C H A P T E R 2

Floating-Point Data Formats

Range and Precision of Data Formats 2

Table 2-7 shows the precision, range, and memory usage for each numeric data format.
You can use this table to compare the data formats and choose which one is needed for
your application. Typically, choosing a data format requires that you determine the
tradeoffs between

■

fixed-point or floating-point form

■

precision

■

range

■

memory usage

■

speed

In the table, decimal ranges are expressed as rounded, two-digit decimal representations
of the exact binary values. The speed of a given data format varies depending on the
particular implementation of PowerPC Numerics. (See Chapter 5, “Conversions,” for
information on aspects of conversion relating to precision.)

Table 2-7

Summary of PowerPC Numerics data formats

Single Double Double-double

Size (bytes:bits)

4:32 8:64 16:128

Range of binary exponents

Minimum

Maximum 127 1023 1023

Significand precision

Bits 24 53

≥

 107

Decimal digits 7–8 15–16

≥

 32

Decimal range (approximate)

Maximum positive

Minimum positive norm

Minimum positive denorm

Maximum negative denorm

Maximum negative norm

Minimum negative

126– 1022– 1022–

3.4 10+38× 1.8 10+308× 1.8 10+308×

1.2 10 38–× 2.2 10 308–× 2.2 10 308–×

1.4 10 45–× 4.9 10 324–× 4.9 10 324–×

1.4– 10 45–× 4.9– 10 324–× 4.9– 10 324–×

1.2– 10 38–× 2.2– 10 308–× 2.2– 10 308–×

3.4– 10+38× 1.8– 10+308× 1.8– 10+308×
2-16 Range and Precision of Data Formats

C H A P T E R 2

Floating-Point Data Formats

2

F
loating-P

oint D
ata F

orm
ats
For example, in single format, the largest representable number is composed as follows:

significand

.111111111111111111111112

exponent

value

≈

The smallest positive normalized number representable in single format is made up as
follows:

significand

.000000000000000000000002

exponent

value

≈

For denormalized numbers, the smallest positive value representable in the single
format is made up as follows:

significand

.000000000000000000000012

exponent

value

≈

2 2 23––()=

1=

127=

2 2 23––() 2127×=

3.403 1038×

1=

1=

126–=

1 2 126–×=

1.175 10 38–×

2 23–=

0=

126–=

2 23–= 2 126–×
1.401 10 45–×
Range and Precision of Data Formats 2-17

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	Floating-Point Data Formats
	About Floating-Point Data Formats
	Interpreting Floating-Point Values
	Normalized Numbers
	Denormalized Numbers
	Infinities
	NaNs
	Zeros

	Formats
	Single Format
	Double Format
	Double-Double Format

	Range and Precision of Data Formats

	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

