

C H A P T E R 1 1

11

Introduction to A
ssem

bly-Language N
um

erics

Introduction to Assembly-Language Numerics 11

This chapter introduces the numeric implementation in PowerPC assembly language. It
describes the basics of the floating-point architecture, showing what floating-point data
formats and registers are available, what numeric operations are available in assembly
language, and what load and store instructions you must use before you can perform
assembly-language numeric operations. An example application using assembly-
language numeric operations is shown at the end of this chapter.

Read this chapter to learn how to use the numeric assembly-language instructions
described in Chapters 12 through 14.

PowerPC Floating-Point Architecture 11

This section describes those pieces of the PowerPC architecture used in floating-point
operations, which include

■ floating-point data formats

■ floating-point registers

■ floating-point special-purpose registers

■ the Machine State Register

Floating-Point Data Formats 11
The PowerPC architecture supports only the single and double floating-point data
formats. These formats can represent normalized numbers, denormalized numbers,
zeros, NaNs, and Infinities, and are interpreted exactly as described in Chapter 2,
“Floating-Point Data Formats.” The double-double data format is implemented in
software and therefore is not a valid format in PowerPC hardware.

The PowerPC hardware is double-based. This means that when you load a single-format
number into a register, it is automatically converted to double format. In addition, all
arithmetic operations are performed on double-format numbers unless they are
specifically forced to be performed on single-format numbers.

Floating-Point Registers 11
The PowerPC architecture contains thirty-two 64-bit floating-point registers labeled F0
through F31 (or FP0 through FP31). Because the registers are 64 bits long, they store
values using the double data format.
PowerPC Floating-Point Architecture 11-3

C H A P T E R 1 1

Introduction to Assembly-Language Numerics

Floating-Point Special-Purpose Registers 11
The two special-purpose registers that affect floating-point operations are the
Floating-Point Status and Control Register and the Condition Register.

The Floating-Point Status and Control Register (FPSCR) is a 32-bit register that stores
the current state of the floating-point environment. It specifies the current rounding
direction and notes whether any floating-point exceptions are enabled and whether any
floating-point exceptions have occurred.

The Condition Register is a 32-bit register that stores the current state of the entire
PowerPC processor. It is grouped into eight 4-bit fields labeled CR0 through CR7. Field
CR1 reflects the results of floating-point operations. You may also specify one of the
Condition Register fields as a place to store the result of a floating-point comparison
operation or the result of a floating-point environment manipulation operation.

The FPSCR and the Condition Register are discussed more fully in Chapter 12,
“Assembly-Language Environmental Controls.”

The Machine State Register 11
The Machine State Register is a 32-bit supervisor-level register that reflects the current
state of the entire PowerPC processor. It differs from the Condition Register in that it is
accessible only by supervisor-level software and in that it stores the processor state in a
different way. The Machine State Register contains 3 bits that control floating-point
computations:

■ Bit 18 specifies whether the floating-point instructions are available. If bit 18 is 0, the
processor cannot execute floating-point instructions.

■ Bits 20 and 23 specify whether floating-point exceptions are enabled. If both of these
bits are 0, floating-point instructions will not raise any floating-point exceptions. If
either of these bits is set, instructions can raise floating-point exceptions.

Floating-Point Instructions 11

Most floating-point operations are performed by the PowerPC floating-point processor.
Floating-point arithmetic, conversion, comparison, and other operations are supported
through assembler instructions. The only basic arithmetic operations supported are add,
subtract, multiply, divide, and round-to-integer. In addition to instructions that perform
the basic numeric operations, PowerPC assembly language provides instructions that
can perform both a multiply and an add or subtract with at most a single roundoff error
(called multiply-add instructions) and instructions that manipulate the sign bit of a
number. All PowerPC floating-point assembler instructions conform to the IEEE
standard.

All floating-point instructions (other than load instructions) operate on data located in
the floating-point registers. The data must be loaded into a floating-point register before
any operation can be performed.
11-4 Floating-Point Instructions

C H A P T E R 1 1

Introduction to Assembly-Language Numerics

11

Introduction to A
ssem

bly-Language N
um

erics

Even though the floating-point registers are double format, the data can be in either
single or double format. The instruction mnemonic specifies whether the data in the
floating-point register is interpreted as single or double format. For example, fadd
means add two double-format numbers, and fadds means add two single-format
numbers.

Load and Store Instructions 11

Before you perform any floating-point computation, you must load a value into a
floating-point register. To do this, use one of the load instructions. Load instructions load
either single or double floating-point numbers from memory into floating-point
registers. Store instructions take the contents of a floating-point register and store them
in memory.

Load and store instructions take one of two forms depending on which address mode is
used. The first form is

instr FPR, D(GPR)

instr Specifies which type of load or store is to be performed.

FPR A floating-point register, which is either the source or the destination for
the operation, depending on whether it is a load or a store.

D A 16-bit signed integer value.

GPR A general-purpose register or the value 0.

The D(GPR) part of the instruction determines the memory address involved. If GPR is
not 0, it is interpreted as a general-purpose register and the contents of register GPR are
added to the value D to produce the memory address. If GPR is 0, it is interpreted as the
value 0 rather than as register GPR0, so 0 is added to D to produce the memory address.

Load instructions of this form are interpreted as FPR ← (D + (GPR)), which means that
the instruction loads into FPR the contents of the memory address obtained by adding D
to the contents of GPR (unless GPR is 0).

Store instructions of this form are interpreted as D + (GPR) ← (FPR), which means that
the instruction stores the contents of FPR at the memory address obtained by adding D
to the contents of GPR (unless GPR is 0).

The second form for load and store operations uses a different address mode:

instr FPR, GPR1, GPR2

instr Specifies which type of load or store is to be performed.

FPR A floating-point register, which is either the source or the destination for
the operation, depending on whether it is a load or a store.

GPR1 A general purpose register or the value 0.

GPR2 A general-purpose register.
Load and Store Instructions 11-5

C H A P T E R 1 1

Introduction to Assembly-Language Numerics

GPR1 and GPR2 determine the memory address involved. If GPR1 is not 0, it is
interpreted as a general-purpose register, and the contents of register GPR1 are added to
the contents of register GPR2 to produce the memory address. If GPR1 is 0, it is
interpreted as the value 0 rather than as register GPR0, so 0 is added to the contents of
register GPR2 to produce the memory address.

Load instructions of this form are interpreted as FPR ← ((GPR1) + (GPR2)) unless GPR1
is 0.

Store instructions of this form are interpreted as (GPR1) + (GPR2) ← (FPR) unless
GPR1 is 0.

Table 11-1 lists and describes the PowerPC load and store instructions. There are two
load and two store instructions for each address mode. One version simply performs
the load or store, and the other version puts the effective memory address into the
general-purpose register specified in the instruction (shown as Rn in the table).

Each of the load and store instructions has a single and a double form, making a total of
eight load and eight store instructions. If the single form of a load instruction is used, the
number is converted to double format before the load is performed. If the single form of
a store instruction is used, the number is converted to single format before it is stored.
See Chapter 13, “Assembly-Language Numeric Conversions,” for more information
about conversions performed during load and store operations.

None of the load and store instructions raise floating-point exceptions or make special
cases of zeros, NaNs, or Infinities.

Table 11-1 Load and store floating-point instructions

Address
mode Instruction syntax Operation

d(Rn) lfd DST, n(GPR) Load double format

stfd SRC, n(GPR) Store double format

lfs DST, n(GPR) Load single format

stfs SRC, n(GPR) Store single format

lfdu DST, n(GPR) Load double format and update

stfdu SRC, n(GPR) Store double format and update

lfsu DST, n(GPR) Load single format and update

stfsu SRC, n(GPR) Store single format and update
11-6 Load and Store Instructions

C H A P T E R 1 1

Introduction to Assembly-Language Numerics

11
Introduction to A

ssem
bly-Language N

um
erics
Numerics Example Using PowerPC Assembly Language 11

Listing 11-1 is a code example that shows when the PowerPC assembly-language
numeric features might be useful. The instructions used in this example are described in
the Motorola PowerPC 601 RISC Microprocessor User’s Manual. This example evaluates the
polynomial

It illustrates the evaluation of a polynomial

using Horner’s recurrence

On entry, general-purpose register GPR0 contains the degree n (<256) of the polynomial,
and floating-point register F1 points to a function argument x. The coefficient table
consists of double-format coefficients, starting with . In this particular
polynomial, .

Rn, Rm lfdx DST, GPR1, GPR2 Load double format indexed

stfdx SRC, GPR1, GPR2 Store double format indexed

lfsx DST, GPR1,GPR2 Load single format indexed

stfsx SRC, GPR1, GPR2 Store single format indexed

lfdux DST, GPR1, GPR2 Load double format and update indexed

stfdux SRC, GPR1, GPR2 Store double format and update indexed

lfsux DST, GPR1, GPR2 Load single format and update indexed

stfsux SRC, GPR1, GPR2 Store single format and update indexed

Table 11-1 Load and store floating-point instructions (continued)

Address
mode Instruction syntax Operation

x3 2x2 5–+

c0xn c1xn 1– . . . c n + + +

r c0←

r r x×()← cj for j + 1 to n =

n 1+ c0

n 3, c 0 1, c 1 2, c 2 0, and c 3 5–= = = = =
Numerics Example Using PowerPC Assembly Language 11-7

C H A P T E R 1 1

Introduction to Assembly-Language Numerics

Listing 11-1

Polynomial evaluation

r0: equ 0 # general-purpose register 0

r5: equ 5 # general-purpose register 5

f0: equ 0 # floating-point register 0

f1: equ 1 # floating-point register 1

f2: equ 2 # floating-point register 2

CTR: equ 9 # Count Register for loops

extern polyeval{DS} # export the routine descriptor

extern .polyeval # export the entry point

put the code in a program control section

csect polyeval{PR}

#high-level languages prepend a period to function names

.polyeval:

 lwz r0,0(r5) # r0 = degree

 lfd f0,4(r5) # f0 = leading coefficient, c0

 addic r5,r5,4 # r5 = address of leading coeff. &c0

 mtspr CTR,r0 # CTR = r0

loop:

lfdu f2,8(r5) # f2 = next coefficient

update r5 = r5 + 8

 fmadd f0,f0,f1,f2 # f0 = f0 * f1 + f2; ...

res = res * x + c[j]

bdnz loop # CTR = CTR - 1, branch if CTR

≠

 0

 fmr f1,f0 # f1 = f0

 blr # return through the Link Register

nop

#

Set up the table of contents. It must include at least the

exported routines. It may also contain global data or pointers

to data.

#

polyeval_TOC: tc polyeval{tc}, polyeval{PR}

11-8 Numerics Example Using PowerPC Assembly Language

C H A P T E R 1 1

Introduction to Assembly-Language Numerics

11
Introduction to A

ssem
bly-Language N

um
erics

#

Build a transition vector for all exported routines so they can

be accessed through an inter-TOC call.

#

 csect polyeval{DS} # it’s in a separate control section

 dc.l .polyeval # contains the entry point

 dc.l 0 # loader will fill in correct TOC

pointer

 dc.l 0 # save space for environment pointer
Numerics Example Using PowerPC Assembly Language 11-9

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	Introduction to Assembly-Language Numerics
	PowerPC Floating-Point Architecture
	Floating-Point Data Formats
	Floating-Point Registers
	Floating-Point Special-Purpose Registers
	The Machine State Register

	Floating-Point Instructions
	Load and Store Instructions
	Numerics Example Using PowerPC Assembly Language

	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

