

C H A P T E R 6

6

N
um

eric O
perations and F

uncti

Numeric Operations and Functions 6

This chapter describes the operations (comparisons, arithmetic operations, and auxiliary
and transcendental functions) that PowerPC Numerics allows you to perform on
floating-point numbers. Numeric operations are evaluated as floating-point expressions;
as such they are affected by, and might affect, the floating-point environment.

Read this chapter to find out what numeric operations are supported and how they
work. For more information about how floating-point operations are evaluated in
general, see Chapter 3, “Expression Evaluation.” For a description of the floating-point
environment, see Chapter 4, “Environmental Controls.”

Comparisons 6

PowerPC Numerics supports the usual numeric comparisons: less than, less than or
equal to, greater than, greater than or equal to, equal to, and not equal to (see Table 6-1
for a complete listing). For real numbers, these comparisons behave according to the
familiar ordering of real numbers.

Comparisons With NaNs and Infinities 6
Numeric comparisons handle NaNs and Infinities as well as real numbers. The usual
trichotomy for real numbers is extended so that, for any numeric values a and b, exactly
one of the following statements is true:

■ a < b

■ a > b

■ a = b

■ a and b are unordered

The following rule determines which statement is true: If a or b is a NaN, then a and b are
unordered; otherwise, a is less than, equal to, or greater than b according to the ordering
of the real numbers, with the understanding that

and < every real number < +∞

Comparison Operators 6
The meaning of high-level language relational operators is a natural extension of their
old meaning based on trichotomy. For example, the C expression is true if x is
less than y or if x equals y, and is false if x is greater than y or if x and y are unordered.
Note that the numeric not-equal relation means less than, greater than, or unordered.

+0 0–= ∞–

x y=<
Comparisons 6-3

ons

C H A P T E R 6

Numeric Operations and Functions

The FPCE technical report extends the usual set of C relational operators to a set of 14
comparisons, shown in Table 6-1.

Some relational operators in high-level language comparisons contain the predicate less
than or greater than, but not unordered. In C, those relational operators are <, <=, >,
and >= (but not == and !=). For those relations, comparisons signal invalid if the
operands are unordered, that is, if either operand is a NaN. For the operators equal and
nonequal, comparisons with NaN are not misleading; thus, when x or y is a NaN, the
relation x == y is false, which is not misleading. Likewise, when x or y is a NaN, x != y
returns true, again not misleading. On the other hand, when x or y is a NaN, x < y being
false might tempt you to conclude that x ≥ y, so PowerPC Numerics signals invalid to
help you avoid the pitfall. Table 6-1 shows the results of such comparisons in C.

The full 26 distinct comparison predicates of the IEEE standard may be obtained by
logical negation of all of the operators except for == and !=, which never signal invalid.
For example, (x < y) and !(x !< y) are logically equivalent for all possible values of a
and b, but the former raises the invalid exception flag when x and y compare unordered
while the latter does not.

A comparison with a signaling NaN as an operand always signals invalid, just as in
arithmetic operations.

Table 6-1 Comparison symbols

Symbo
l Relation

Invalid if
unordered?

< Less than Yes

> Greater than Yes

<= Less than or equal to Yes

>= Greater than or equal to Yes

== Equal to No

!= Not equal to (unordered, less than, or greater than) No

!<>= Unordered No

<> Less than or greater than Yes

<>= Not unordered (less than, equal to, or greater than) Yes

!<= Not less than or equal to (unordered or greater than) No

!< Not less than (unordered, greater than, or equal to) No

!>= Not greater than or equal to (unordered or less than) No

!> Not greater than (unordered, less than, or equal to) No

!<> Unordered or equal No
6-4 Comparisons

C H A P T E R 6

Numeric Operations and Functions

6

N
um

eric O
perations and F

uncti

In addition to the comparison operators, there are also library functions that perform
comparisons. See “Comparison Functions” in Chapter 10, “Transcendental Functions.”

Arithmetic Operations 6

PowerPC Numerics provides the seven arithmetic operations required by the IEEE
standard for its three data types, as shown for the C language in Table 6-2 and described
in the sections that follow.

The language processors for the PowerPC automatically use their chosen expression
evaluation methods for the normal inline operators (+, –, *, /). All the arithmetic
operations produce the best possible result: the mathematically exact result, coerced to
the precision and range of the evaluation format. The coercions honor the user-selectable
rounding direction and handle all exceptions according to the requirements of the IEEE
standard (see Chapter 4, “Environmental Controls”).

Some of the arithmetic operations are implemented in software. These operations are
declared to be type double_t, which is defined to be type double.

+ 6

You can use the + symbol to add two real numbers.

x + y

x Any floating-point number.

y Any floating-point number.

Table 6-2 Arithmetic operations in C

Operation C symbol

Add +

Subtract –

Multiply *

Divide /

Square root sqrt

Remainder remainder

Round-to-integer rint
Arithmetic Operations 6-5

ons

C H A P T E R 6

Numeric Operations and Functions

DESCRIPTION

The + operator performs the standard addition of two floating-point numbers.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of x + y is exact or it raises
one of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 6-3 shows the results when one of the operands of the addition operation is a zero,
a NaN, or an Infinity. In this table, x is any floating-point number.

– 6

You can use the – symbol to subtract one real number from another.

x – y

x Any floating-point number.

y Any floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-3 Special cases for floating-point addition

Operation
Resul
t Exceptions raised

x None

x None

+0 None

None

NaN None*

+∞ None

None

NaN Invalid

x +0()+

x 0–()+

0–() +0()+

0–() 0–()+ 0–

x NaN+

x +∞()+

x ∞–()+ ∞–

+∞ ∞–()+
6-6 Arithmetic Operations

C H A P T E R 6

Numeric Operations and Functions

6
N

um
eric O

perations and F
uncti
DESCRIPTION

The – operator performs the standard subtraction of two floating-point numbers.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of x – y is exact or it raises one
of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 6-4 shows the results when one of the operands of the subtraction operation is a
zero, a NaN, or an Infinity. In this table, x is any floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-4 Special cases for floating-point subtraction

Operation
Resul
t Exceptions raised

x None

−x None

+0 None

x None

−x None

None

+0 None

x – NaN NaN None*

NaN – x NaN None*

None

+∞ None

NaN Invalid

+∞ None

None

NaN Invalid

x +0()–

+0() x–

+0() 0–()–

x 0–()–

0–() x–

0–() +0()– 0–

0–() 0–()–

x +∞()– ∞–

+∞() x–

+∞() +∞()–

x ∞–()–

∞–() x– ∞–

∞–() ∞–()–
Arithmetic Operations 6-7

ons

C H A P T E R 6

Numeric Operations and Functions
* 6

You can use the * symbol to multiply two real numbers.

x * y

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The * operator performs the standard multiplication of two floating-point numbers
.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of x * y is exact or it raises
one of the following exceptions:

■ inexact (if the result of x * y must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 6-5 shows the results when one of the operands of the multiplication operation is a
zero, a NaN, or an Infinity. In this table, x is a nonzero floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-5 Special cases for floating-point multiplication

Operation
Resul
t Exceptions raised

x * +0 ±0 None

x * ±0 None

±∞ * ±0 NaN Invalid

x * NaN NaN None*

x * +∞ ±∞ None

x * ±∞ None

±0 * ±∞ NaN Invalid

x y×()

0–

∞–
6-8 Arithmetic Operations

C H A P T E R 6

Numeric Operations and Functions

6
N

um
eric O

perations and F
uncti
/ 6

You can use the / symbol to divide one real number by another.

x / y

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The / operator performs the standard division of two floating-point numbers.

EXCEPTIONS

When x and y are both finite and nonzero, either the result of is exact or it raises one
of the following exceptions:

■ inexact (if the result must be rounded or if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 6-6 shows the results when one of the operands of the division operation is a zero,
a NaN, or an Infinity. In this table, x is any floating-point number.

Table 6-6 Special cases for floating-point division

Operation
Resul
t Exceptions raised

±0 None

±∞ Divide-by-zero

±0 None

±∞ Divide-by-zero

NaN Invalid

NaN None*

NaN None*

±0 None

continued

x y⁄

+0() x⁄

x +0()⁄

0–() x⁄

x 0–()⁄

±0 ±0⁄

x NaN⁄

NaN x⁄

x +∞()⁄
Arithmetic Operations 6-9

ons

C H A P T E R 6

Numeric Operations and Functions
sqrt 6

You can use the square root (sqrt) function to compute the square root of a real number.

double_t sqrt(double_t x);

x Any positive floating-point number.

DESCRIPTION

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of the
following exceptions:

■ inexact (if the result must be rounded)

■ invalid (if x is negative)

SPECIAL CASES

Table 6-7 shows the results when the argument to the square root function is a zero, a
NaN, or an Infinity, plus other special cases for the square root function. In this table, x is
a finite, nonzero floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

±∞ None

x / ±0 None

±∞ None

NaN Invalid

Table 6-6 Special cases for floating-point division (continued)

Operation
Resul
t Exceptions raised

+∞() x⁄

∞–()

∞–() x⁄

∞±() ∞±()⁄

sqrt x() x=

sqrt x()
6-10 Arithmetic Operations

C H A P T E R 6

Numeric Operations and Functions

6
N

um
eric O

perations and F
uncti
remainder, remquo, and fmod 6

You can use the remainder, remquo, and fmod functions to perform the remainder
operation recommended in the IEEE standard.

double_t remainder (double_t x, double_t y);

double_t remquo (double_t x, double_t y, int *quo);

double_t fmod (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

quo On return, the signed lowest seven bits (in the range of −127 to +127,
inclusive) of the integer value closest to the quotient . This partial
quotient might be of use in certain argument reduction algorithms.

DESCRIPTION

The IEEE remainder (rem) operation returns the result of the following computation.

 rem

where n is the integer nearest the exact value of the quotient . This expression can be
found even in the conventional integer-division algorithm, shown in Figure 6-1.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-7 Special cases for floating-point square root

Operation
Resul
t Exceptions raised

NaN Invalid

+0 None

None

 NaN None*

+∞ None

NaN Invalid

sqrt x() for x < 0

sqrt +0()

sqrt 0–() 0–

sqrt NaN()

sqrt +∞()

sqrt ∞–()

x y⁄

r x= y x y n×–=

x y⁄
Arithmetic Operations 6-11

ons

C H A P T E R 6

Numeric Operations and Functions

Figure 6-1

Integer-division algorithm

Whenever ,

n

 is even.

If the value of

r

is

0, the sign of

r

 is that of

x

.

The rem operation is always exact.

The IEEE rem operation differs from other commonly used remainder and modulo
operations. It returns a remainder of the smallest possible magnitude, and it always
returns an exact remainder. Other remainder functions can be constructed from the IEEE
remainder function by appropriately adding or subtracting

y

.

EXCEPTIONS

When

x

 and

y

 are finite, nonzero floating-point numbers in single or double format, the
result of

x

 rem

y

 is exact.

SPECIAL CASES

Table 6-8 shows the results when one of the arguments to the rem operation is a zero, a
NaN, or an Infinity. In this table,

x

 is a finite, nonzero floating-point number.

*

If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-8

Special cases for floating-point remainder

Operation Result Exceptions raised

+0 rem

x

 +0 None

x

 rem NaN Invalid

 rem

x

 None

x

 rem NaN Invalid

x

 rem NaN NaN None

*

NaN rem

x

NaN None

*

x

 rem +

∞

x

None

+

∞

 rem

x

NaN Invalid

x

 rem

x

None

 rem

x

 NaN Invalid

n

y x

x – y × n
y × n

Integral quotient approximation

Dividend

Remainder

Divisor

n x y⁄– 1 2⁄=

+0()

0– 0–

0–()

∞–

∞–
6-12 Arithmetic Operations

C H A P T E R 6

Numeric Operations and Functions

6
N

um
eric O

perations and F
uncti

EXAMPLES

z = remainder(5, 3); /* z = –1. */

/* 5 rem 3 = 5 – 3

×

 2 = –1 because 1 < 5/3 < 2 and because

5/3 = 1.66666... is closer to 2 than to 1, quo is taken to

be

2. */

z = remainder(43.75, 2.5); /* z = –1.25. */

/* 43.75 rem 2.5 = 43.75 – 2.5 × 18 = –1.25 because
17 < 43.75/2.5 < 18 and because 43.75/2.5 = 17.5 is

equally close to both 17 and 18, quo is taken to be the

even quotient, 18. */

z = remainder(43.75, +INFINITY); /* z = 43.75 */

/* 43.75 rem ∞ = 43.75 – 0 × ∞ = 43.75 because 43.75 / ∞ = 0,
quo is taken to be 0. */

rint 6

You can use the round-to-integer operation (rint function) to round a number to the
nearest integer in the current rounding direction.

double_t rint(double_t x);

x Any floating-point number.

DESCRIPTION

The rint function rounds its argument to an integer in the current rounding direction.
The available rounding directions are upward, downward, to nearest (default), and
toward zero. With the default rounding direction, if the argument is equally near two
integers, the even integer is used as the result.

In each floating-point data type, all values of sufficiently great magnitude are integers.
For example, in single format, all numbers whose magnitudes are at least are
integers. This means that +∞ and are already integers and return exact results.

The rint function performs the round-to-integer arithmetic operation described in the
IEEE standard. For other C functions that perform rounding to integer, see Chapter 9,
“Conversion Functions.”

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises the
following exception

■ inexact (if x is not an integer)

223

∞–

rint x()
Arithmetic Operations 6-13

ons

C H A P T E R 6

Numeric Operations and Functions
SPECIAL CASES

Table 6-9 shows the results when the argument to the round-to-integer operation is a
zero, a NaN, or an Infinity.

EXAMPLES

Table 6-10 shows some example results of rint, given different rounding directions.

Auxiliary Functions 6

The IEEE standard defines a number of recommended functions (called auxiliary
functions) that are generally useful in numerical programming. The recommended
functions supported by PowerPC Numerics are

■ : copy the sign

■ : absolute value

■ : binary exponent

■ nan functions: NaN generators

■ nextafter functions

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 6-9 Special cases for floating-point round-to-integer

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

Table 6-10 Examples of rint

Example

Current rounding direction

To nearest Toward 0 Downward Upward

rint(1.5) 2 1 1 2

rint(2.5) 2 2 2 3

rint(–2.2) –2 –2 –3 –2

rint +0()

rint 0–() 0–

rint NaN()

rint +∞()

rint ∞–() ∞–

copysign x y,()

fabs x()

logb x()
6-14 Auxiliary Functions

C H A P T E R 6

Numeric Operations and Functions

6
N

um
eric O

perations and F
uncti
■ : binary scaling

The auxiliary functions are provided in the C library MathLib. For more information
about these functions, see Part 2.

Transcendental Functions 6

PowerPC Numerics provides several basic mathematical functions in addition to the
auxiliary functions recommended in the IEEE standard. These functions include

■ logarithms

■ exponentials

■ two important financial functions

■ trigonometric functions

■ a random number generator

■ error and gamma functions

For information about the transcendental functions supported, see Part 2.

scalb x()
Transcendental Functions 6-15

ons

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	Numeric Operations and Functions
	Comparisons
	Comparisons With NaNs and Infinities
	Comparison Operators

	Arithmetic Operations
	Auxiliary Functions
	Transcendental Functions

	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

