

C H A P T E R 1 0

10

Transcendental F
unctions

Transcendental Functions 10

This chapter describes how to use the transcendental and auxiliary functions declared in
MathLib. This chapter describes the following types of functions:

■ comparison

■ sign manipulation

■ exponential

■ logarithmic

■ trigonometric

■ hyperbolic

■ financial

■ error and gamma

It shows the declarations of these functions, describes what they do, describes
when they raise floating-point exceptions, and gives examples of how to use them.
For functions that manipulate the floating-point environment, see Chapter 8,
“Environmental Control Functions.” For functions that perform conversions, see
Chapter 9, “Conversion Functions.” For basic arithmetic and comparison operations,
see Chapter 6, “Numeric Operations and Functions.”

Some transcendental functions have two implementations: double precision and
double-double precision. The double-double-precision implementation has the letter l
appended to the name of the function and performs exactly the same as the double
version. This book uses the double-precision implementation’s name to mean both of
these implementations. All of the transcendental function declarations appear in the
file fp.h.

Comparison Functions 10

MathLib provides four functions that perform comparisons between two floating-point
arguments:

These functions take advantage of the rule from the IEEE standard that all values except
NaNs have an order:

< all negative real numbers < = +0 < all positive real numbers < +∞

These functions also make special cases of NaNs so that they raise no floating-point
exceptions.

Returns the positive difference x – y or 0.

Returns the maximum of x or y.

Returns the minimum of x or y.

Returns the relationship between x and y.

fdim x y,()
fmax x y,()
fmin x y,()
relation x y,()

∞– 0–
Comparison Functions 10-3

C H A P T E R 1 0

Transcendental Functions

fdim 10

You can use the fdim function to determine the positive difference between two real
numbers.

double_t fdim (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The fdim function returns the positive difference between its two arguments.

if x > y
if x ≤ y

EXCEPTIONS

When x and y are finite and nonzero and x > y, either the result of is exact or
it raises one of the following exceptions:

■ inexact (if the result of x – y must be rounded)

■ overflow (if the result of x – y is outside the range of the data type)

■ underflow (if the result of x – y is inexact and must be represented as a denormalized
number or 0)

SPECIAL CASES

Table 10-1 shows the results when one of the arguments to the fdim function is a zero, a
NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

Table 10-1 Special cases for the fdim function

Operation
Resul
t Exceptions raised

+0 None

x None

+0 None

x None

NaN* None†

NaN None†

fdim x y,() x y–=

fdim x y,() +0=

fdim x y,()

fdim +0 y,()

fdim x +0,()

fdim 0– y,()

fdim x 0–,()

fdim NaN y,()

fdim x NaN,()
10-4 Comparison Functions

C H A P T E R 1 0

Transcendental Functions

10

Transcendental F
unctions

EXAMPLES

z = fdim(+INFINITY, 300); /* z = +∞ – 300 = +INFINITY because
+∞ > 300 */

z = fdim(300, +INFINITY); /* z = +0 because 300 ≤ +∞ */

fmax 10

You can use the fmax function to find out which is the larger of two real numbers.

double_t fmax (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The fmax function determines the larger of its two arguments.

if x ≥ y
if x < y

If one of the arguments is a NaN, the other argument is returned.

EXCEPTIONS

When x and y are finite and nonzero, the result of is exact.

* If both arguments are NaN, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

+∞ None

+0 None

+0 None

+∞ None

Table 10-1 Special cases for the fdim function (continued)

Operation
Resul
t Exceptions raised

fdim +∞ y,()

fdim x +∞,()

fdim ∞– y,()

fdim x ∞–,()

fmax x y,() x=

fmax x y,() y=

fmax x y,()
Comparison Functions 10-5

C H A P T E R 1 0

Transcendental Functions
SPECIAL CASES

Table 10-2 shows the results when one of the arguments to the fmax function is a zero, a
NaN, or an Infinity. In this table, x is a finite, nonzero floating-point number. (Note that
the order of operands for this function does not matter.)

EXAMPLES

z = fmax(–INFINITY, –300,000); /* z = –300,000 because any

integer is greater than */

z = fmax(NAN, –300,000); /* z = –300,000 by definition of the

function fmax. */

fmin 10

You can use the fmin function to determine which is the smaller of two real numbers.

double_t fmin (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

* If both arguments are NaNs, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-2 Special cases for the fmax function

Operation Result Exceptions raised

x if x > 0 None

+0 if x < 0

x if x > 0 None

if x < 0

+0 None

x* None†

+∞ None

x None

fmax +0 x,()

fmax 0– x,()

0–

fmax 0± 0±,()

fmax NaN x,()

fmax +∞ x,()

fmax ∞– x,()

∞–
10-6 Comparison Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
DESCRIPTION

The fmin function determines the lesser of its two arguments.

if x ≤ y
if y < x

If one of the arguments is a NaN, the other argument is returned.

EXCEPTIONS

When x and y are finite and nonzero, the result of is exact.

SPECIAL CASES

Table 10-3 shows the results when one of the arguments to the fmin function is a zero, a
NaN, or an Infinity. In this table, x is a finite, nonzero floating-point number. (Note that
the order of operands for this function does not matter.)

EXAMPLES

z = fmin(–INFINITY, –300,000); /* z = –INFINITY because is

smaller than any integer. */

z = fmin(NAN, –300,000); /* z = –300,000 by definition of the

function fmin. */

* If both arguments are NaNs, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-3 Special cases for the fmin function

Operation Result Exceptions raised

x if x < 0 None

+0 if x > 0

x if x < 0 None

+0 if x > 0

+0 None

x* None†

x None

None

fmin x y,() x=

fmin x y,() y=

fmin x y,()

fmin +0 x,()

fmin 0– x,()

fmin 0± 0±,()

fmin NaN x,()

fmin +∞ x,()

fmin ∞– x,() ∞–

∞–
Comparison Functions 10-7

C H A P T E R 1 0

Transcendental Functions
relation 10

You can use the relation function to determine the relationship (less than, greater
than, equal to, or unordered) between two real numbers.

relop relation (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The relation function returns the relationship between its two arguments.

The relation function is type relop, which is an enumerated type. This function
returns one of the following values:

Programs can use the result of this function in expressions to test for combinations not
supported by the comparison operators, such as “less than or unordered.”

EXCEPTIONS

When x and y are finite and nonzero, the result of is exact.

SPECIAL CASES

Table 10-4 shows the results when one of the arguments to the relation function is a
zero, a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point
numbers.

if x > y GREATERTHAN

if x < y LESSTHAN

if x = y EQUALTO

if x or y is a NaN UNORDERED

Table 10-4 Special cases for the relation function

Operation Result Exceptions raised

< if y > 0 None

> if y < 0 None

> if x > 0 None

< if x < 0 None

relation x y,()

relation +0 y,()

relation x +0,()
10-8 Comparison Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXAMPLES

r = relation(x, y);

if ((r == LESSTHAN) || (r == UNORDERED))

printf("No, y is not greater than x.\n");

Sign Manipulation Functions 10

MathLib provides two functions that manipulate the sign bit of the floating-point value:

Because these functions only manipulate the sign bit of the value and do not try to
compute the value at all, they raise no floating-point exceptions.

* If the NaN is a signaling NaN, the invalid exception is raised.

< if y > 0 None

> if y < 0 None

> if x > 0 None

< if x < 0 None

= None

Unordered None*

Unordered None*

> None

< None

= None

< None

> None

= None

Copies the sign of y to x.

Returns the absolute value (positive form) of x.

Table 10-4 Special cases for the relation function (continued)

Operation Result Exceptions raised

relation 0– y,()

relation x 0–,()

relation +0 0–,()

relation NaN y,()

relation x NaN,()

relation +∞ y,()

relation x +∞,()

relation +∞ +∞,()

relation ∞– y,()

relation x ∞–,()

relation ∞– ∞–,()

copysign x y,()
fabs x()
Sign Manipulation Functions 10-9

C H A P T E R 1 0

Transcendental Functions
copysign 10

You can use the copysign function to assign to some real number the sign of a second
value.

double_t copysign (double_t x, double_t y);

long double copysignl (long double x, long double y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The copysign function copies the sign of the y parameter into the x parameter and
returns the resulting number.

copysign(x, 1.0) is always the absolute value of x. The copysign function simply
manipulates sign bits and hence raises no exception flags.

EXCEPTIONS

When x and y are finite and nonzero, the result of is exact.

SPECIAL CASES

Table 10-5 shows the results when one of the arguments to the copysign function is a
zero, a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point
numbers.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-5 Special cases for the copysign function

Operation Result Exceptions raised

0 with sign of y None

|x| None

0 with sign of y None

–|x| None

NaN with sign of y None*

x with sign of NaN None*

∞ with sign of y None

|x| None

∞ with sign of y None

–|x| None

copysign x y,()

copysign +0 y,()

copysign x +0,()

copysign 0– y,()

copysign x 0–,()

copysign NaN y,()

copysign x NaN,()

copysign +∞ y,()

copysign x +∞,()

copysign ∞– y,()

copysign x ∞–,()
10-10 Sign Manipulation Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXAMPLES

z = copysign(–1234.567, 1.0);/* z = 1234.567 */

z = copysign(1.0, –1234.567);/* z = –1.0 */

fabs 10

You can use the fabs function to determine the absolute value of a real number.

double_t fabs (double_t x);

long double fabsl (long double x);

x Any floating-point number.

DESCRIPTION

The fabs function returns the absolute value (positive value) of its argument.

This function looks only at the sign bit, not the value, of its argument.

EXCEPTIONS

When x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 10-6 shows the results when the argument to the fabs function is a zero, a NaN, or
an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-6 Special cases for the fabs function

Operation
Resul
t Exceptions raised

+0 None

+0 None

NaN None*

+∞ None

+∞ None

fabs x() x=

fabs x()

fabs +0()

fabs 0–()

fabs NaN()

fabs +∞()

fabs ∞–()
Sign Manipulation Functions 10-11

C H A P T E R 1 0

Transcendental Functions
EXAMPLES

z = fabs(–1.0); /* z = 1 */

z = fabs(245.0); /* z = 245 */

Exponential Functions 10

MathLib provides six exponential functions:

exp 10

You can use the exp function to raise e to some power.

double_t exp (double_t x);

x Any floating-point number.

DESCRIPTION

The exp function performs the exponential function on its argument.

The log function performs the inverse operation .

EXCEPTIONS

When x is finite and nonzero, the result of might raise the following exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

The base e or natural exponential .

The base 2 exponential .

The base e exponential minus 1.

Returns (equivalent to scalb).

Returns .

Returns .

exp x() ex

exp2 x() 2x

expm1 x()
ldexp x n,() x 2n×
pow x y,() x y

scalb x n,() x 2n×

exp x() ex=

ln e x ()

exp x()
10-12 Exponential Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions

SPECIAL CASES

Table 10-7 shows the results when the argument to the

exp

 function is a zero, a NaN, or
an Infinity.

EXAMPLES

z = exp(0.0); /* z =

e

0

 = 1. */

z = exp(1.0); /* z =

e

1

≈

 2.71828128

 . . .

The inexact exception is

raised. */

exp2 10

You can use the

exp2

 function to raise 2 to some power.

double_t exp2 (double_t x);

x

Any floating-point number.

DESCRIPTION

The

exp2

 function returns the base 2 exponential of its argument.

The

log2

 function performs the inverse operation .

*

If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-7

Special cases for the

exp

 function

Operation
Resul
t Exceptions raised

+1 None

+1 None

NaN None

*

+

∞

None

+0 None

exp +0()

exp 0–()

exp NaN()

exp +∞()

exp ∞–()

exp2 x() 2x=

log2 2
x ()
Exponential Functions 10-13

C H A P T E R 1 0

Transcendental Functions

EXCEPTIONS

When

x

 is finite and nonzero, the result of might raise the following exceptions:

■

inexact (for all finite, nonzero values of

x

)

■

overflow (if the result is outside the range of the data type)

■

underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-8 shows the results when the argument to the

exp2

 function is a zero, a NaN, or
an Infinity.

EXAMPLES

z = exp2(2.0); /* z = 2

2

 = 4. The inexact exception is raised. */

z = exp2(1.5); /* z = 2

1.5

≈

 2.82843. The inexact exception is

raised. */

expm1 10

You can use the

expm1

 function to raise

e

 to some power and subtract 1.

double_t expm1 (double_t x);

x

Any floating-point number.

*

If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-8 Special cases for the exp2 function

Operation
Resul
t Exceptions raised

+1 None

+1 None

NaN None*

+∞ None

+0 None

exp2 x()

exp2 +0()

exp2 0–()

exp2 NaN()

exp2 +∞()

exp2 ∞–()
10-14 Exponential Functions

C H A P T E R 1 0

Transcendental Functions

10

Transcendental F
unctions

DESCRIPTION

The expm1 function returns the natural exponential decreased by 1.

For small numbers, use the function call expm1(x) instead of the expression

exp(x) – 1

The call expm1(x) produces a more exact result because it avoids the roundoff error
that might occur when the expression is computed.

EXCEPTIONS

When x is finite and nonzero, the result of might raise the following
exceptions:

■ inexact (for all finite, nonzero values of x)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-9 shows the results when the argument to the expm1 function is a zero, a NaN,
or an Infinity.

EXAMPLES

z = expm1(–2.1); /* z = e–2.1 – 1 = –0.877544. The inexact
exception is raised. */

z = expm1(6); /* z = e6 – 1 = 402.429. The inexact
exception is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-9 Special cases for the expm1 function

Operation
Resul
t Exceptions raised

+0 None

–0 None

NaN None*

+∞ None

–1 None

expm1 x() ex 1–=

expm1 x()

expm1 +0()

expm1 0–()

expm1 NaN()

expm1 +∞()

expm1 ∞–()
Exponential Functions 10-15

C H A P T E R 1 0

Transcendental Functions
ldexp 10

You can use the ldexp function to perform efficient scaling by a power of 2.

double_t ldexp (double_t x, int n);

x Any floating-point number.

n An integer representing a power of 2 by which x should be multiplied.

DESCRIPTION

The ldexp function computes the value without computing . This is an ANSI
standard C library function.

The scalb function (described on page 10-19) performs the same operation as this
function. The frexp function performs the inverse operation; that is, it splits x into its
fraction field and exponent field.

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of
the following exceptions:

■ inexact (if an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-10 shows the results when the floating-point argument to the ldexp function is
a zero, a NaN, or an Infinity. In this table, n is any integer.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-10 Special cases for the ldexp function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

x 2n× 2n

ldexp x n,() x 2n×=

ldexp x n,()

ldexp +0 n,()

ldexp 0– n,() 0–

ldexp NaN n,()

ldexp +∞ n,()

ldexp ∞– n,() ∞–
10-16 Exponential Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXAMPLES

z = ldexp(3.0, 3); /* z = 3 × 23 = 24 */
z = ldexp(0.0, 3); /* z = 0 × 23 = 0 */

pow 10

You can use the pow function to raise a real number to the power of some other real
number.

double_t pow (double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The pow function computes x to the y power. This is an ANSI standard C library
function.

Use the function call pow(x,y) instead of the expression

exp(y * log(x))

The call pow(x,y) produces a more exact result.

There are some differences between this implementation and the behavior of the pow
function in a SANE implementation. For example, in SANE pow(NAN,0) returns a NaN,
whereas in PowerPC Numerics, pow(NAN,0) returns a 1.

EXCEPTIONS

When x and y are finite and nonzero, either the result of is exact or it raises
one of the following exceptions:

■ inexact (if y is not an integer or an underflow or overflow occurs)

■ invalid (if x is negative and y is not an integer)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-11 shows the results when one of the arguments to the pow function is a zero, a
NaN, or an Infinity, plus other special cases for the pow function. In this table, x and y are
finite, nonzero floating-point numbers.

pow x y,() x y=

pow x y,()
Exponential Functions 10-17

C H A P T E R 1 0

Transcendental Functions
* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-11 Special cases for the pow function

Operation Result Exceptions raised

for x < 0 NaN if y is not integer Invalid

if y is integer None

±0 if y is odd integer > 0 None

+0 if y > 0 but not odd integer None

±∞ if y is odd integer < 0 Divide-by-zero

+∞ if y < 0 but not odd integer Divide-by-zero

+1 None

±0 if y is odd integer > 0 None

+0 if y > 0 but not odd integer None

±∞ if y is odd integer < 0 Divide-by-zero

+∞ if y < 0 but not odd integer Divide-by-zero

+1 None

NaN if y ≠ 0 None*

+1 if y = 0 None*

NaN None*

+∞ if y > 0 None

+0 if y < 0 None

+1 if y = 0 None

+∞ if |x| > 1 None

+0 if |x| < 1 None

NaN if |x| = 1 Invalid

if y is odd integer > 0 None

+∞ if y > 0 but not odd integer None

if y is odd integer < 0 None

+0 if y < 0 but not odd integer None

+1 if y = 0 None

+0 if |x| > 1 None

+∞ if |x| < 1 None

NaN if |x| = 1 Invalid

pow x y,()

x y

pow +0 y,()

pow x +0,()

pow 0– y,()

pow x 0–,()

pow NaN y,()

pow x NaN,()

pow +∞ y,()

pow x +∞,()

pow ∞– y,() ∞–

0–

pow x ∞–,()
10-18 Exponential Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXAMPLES

z = pow(NAN, 0); /* z = 1 */

scalb 10

You can use the scalb function to perform efficient scaling by a power of 2.

double_t scalb (double_t x, long int n);

x Any floating-point number.

n An integer representing a power of 2 by which x should be multiplied.

DESCRIPTION

The scalb function performs efficient scaling of its floating-point argument by a power
of 2.

Using the scalb function is more efficient than performing the actual arithmetic.

This function performs the same operation as the ldexp transcendental function
described on page 10-16.

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of
the following exceptions:

■ inexact (if the result causes an overflow or underflow exception)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-12 shows the results when the floating-point argument to the scalb function is
a zero, a NaN, or an Infinity. In this table, n is any integer.

scalb x n,() x 2n×=

scalb x n,()
Exponential Functions 10-19

C H A P T E R 1 0

Transcendental Functions
EXAMPLES

z = scalb(1, 3); /* z = 1 × 23 = 8 */

Logarithmic Functions 10

MathLib provides seven logarithmic functions:

frexp 10

You can use the frexp function to find out the values of a floating-point number’s
fraction field and exponent field.

double_t frexp (double_t x, int *exponent);

x Any floating-point number.

exponent A pointer to an integer in which the value of the exponent can be
returned.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-12 Special cases for the scalb function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

Splits x into fraction and exponent fields.

Base e or natural logarithm.

Base 10 logarithm.

Computes .

Base 2 logarithm.

Returns exponent part of x.

Splits x into an integer and a fraction.

scalb +0 n,()

scalb 0– n,() 0–

scalb NaN n,()

scalb +∞ n,()

scalb ∞– n,() ∞–

frexp x exp,()
x()log

10 x()log

1p x()log 1 x+()log

2 x()log

b x()log

modf x iptr,()
10-20 Logarithmic Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
DESCRIPTION

The frexp function splits its first argument into a fraction part and a base 2 exponent
part. This is an ANSI standard C library function.

such that

or

such that and

The return value of frexp is the value of the fraction field of the argument x. The
exponent field of x is stored in the address pointed to by the exponent argument.

For finite nonzero inputs, frexp returns either 0.0 or a value whose magnitude is
between 0.5 and 1.0.

The ldexp and scalb functions perform the inverse operation (compute).

EXCEPTIONS

If x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 10-13 shows the results when the input argument to the frexp function is a zero, a
NaN, or an Infinity.

EXAMPLES

z = frexp(2E300, n); /* z ≈ 0.746611 and n = 998. In other
words, 2 × 10300 ≈ 0.746611 × 2998. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-13 Special cases for the frexp function

Operation Result Exceptions raised

+0 (n = 0) None

 (n = 0) None

NaN (n is undefined) None*

+∞ (n is undefined) None

 (n is undefined) None

frexp x n,() f= x f 2n×=

frexp x n,() f= n 1 b x()log+()= f scalb x n–,()=

f 2n×

frexp x n,()

frexp +0 n,()

frexp 0– n,() 0–

frexp NaN n,()

frexp +∞ n,()

frexp ∞– n,() ∞–
Logarithmic Functions 10-21

C H A P T E R 1 0

Transcendental Functions
log 10

You can use the log function to compute the natural logarithm of a real number.

double_t log (double_t x);

x Any positive floating-point number.

DESCRIPTION

The log function returns the natural (base e) logarithm of its argument.

 such that

The exp function performs the inverse (exponential) operation.

EXCEPTIONS

When x is finite and nonzero, the result of might raise one of the following
exceptions:

■ inexact (for all finite, nonzero values of x other than +1)

■ invalid (if x is negative)

SPECIAL CASES

Table 10-14 shows the results when the argument to the log function is a zero, a NaN, or
an Infinity, plus other special cases for the log function.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-14 Special cases for the log function

Operation
Resul
t Exceptions raised

for x < 0 NaN Invalid

+0 None

Divide-by-zero

Divide-by-zero

NaN None*

+∞ None

NaN Invalid

x()log loge x ln x y = = = x e y=

x()log

x()log

+1()log

+0()log ∞–

0–()log ∞–

NaN()log

+∞()log

∞–()log
10-22 Logarithmic Functions

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	Transcendental Functions, Part 1 (Reference)
	Comparison Functions
	Sign Manipulation Functions
	Exponential Functions
	Logarithmic Functions

	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

