

C H A P T E R 8

8

E
nvironm

ental C
ontrol F

unctions

Environmental Control Functions 8

This chapter describes how to control the floating-point environment using functions
defined in MathLib.

As described in Chapter 4, “Environmental Controls,” the rounding direction and the
exception flags are the parts of the environment that you can access. You can test and
change the rounding direction, and you can test, set, and clear the exceptions flags. You
may also save and restore both the rounding direction and exception flags together as a
single entity. This chapter describes the functions that perform these tasks. For the
definitions of rounding direction and exception flags, see Chapter 4.

Read this chapter to learn how to access and manipulate the floating-point environment
in the C language. All of the environmental control function declarations appear in the
file fenv.h.

IMPORTANT

If your compiler supports the environmental access switch described in
Appendix D, “FPCE Recommendations for Compilers,” the switch must
be turned on in the program before you use any of the functions
described in this chapter. ▲

Controlling the Rounding Direction 8

In MathLib, the following functions control the rounding direction:

The four rounding direction modes are defined as the constants shown in Table 8-1.

fegetround 8

You can use the fegetround function to save the current rounding direction.

int fegetround (void);

fegetround Returns the current rounding direction.

fesetround Sets the rounding direction.

Table 8-1 Rounding direction modes in MathLib

Rounding
direction Constant

To nearest FE_TONEAREST

Toward zero FE_TOWARDZERO

Upward FE_UPWARD

Downward FE_DOWNWARD
Controlling the Rounding Direction 8-3

C H A P T E R 8

Environmental Control Functions

DESCRIPTION

The fegetround function returns an integer that specifies which rounding direction is
currently being used. The integer it returns will be equal to one of the constants shown
in Table 8-1. You can save the returned value in an integer variable to save the current
rounding direction.

EXAMPLES

int rounddir;

double_t x, y, result;

rounddir = fegetround(); /* save rounding direction */

result = x + y;

if (rounddir == FE_TONEAREST)

printf("The result was rounded to the nearest value.\n");

else if (rounddir == FE_UPWARD)

printf("The result was rounded upward.\n");

else if (rounddir == FE_DOWNWARD)

printf("The result was rounded downward.\n");

else if (rounddir == FE_TOWARDZERO)

printf("The result was rounded toward zero.\n");

fesetround 8

You can use the fesetround function to change the rounding direction.

int fesetround (int round);

round One of the four rounding direction constants (see Table 8-1).

DESCRIPTION

The fesetround function sets the rounding direction to the mode specified by its
argument. If the value of round does not match any of the rounding direction constants,
the function returns 0 and does not change the rounding direction.

By convention, if you change the rounding direction inside a function, first save the
rounding direction of the calling function using fegetround and restore the saved
direction at the end of the function. This way, the function does not affect the rounding
direction of its caller. If the function is to be reentrant, then storage for the caller’s
rounding direction must be local.
8-4 Controlling the Rounding Direction

C H A P T E R 8

Environmental Control Functions

8

E
nvironm

ental C
ontrol F

unctions

One reason to change the rounding direction would be to put bounds on errors (at least
for the basic arithmetic operations and square root). Suppose you want to evaluate an
expression such as

where a, b, c, d, f, and g are positive.

To make sure that the result is always larger than the exact value, you can change the
expression such that all roundings cause errors in the same direction. The example that
follows changes the rounding direction to compute an upper bound for the expression,
and then restores the previous rounding.

EXAMPLES

double_t big_divide(void)

{

double_t x_up, a, b, c, d, f, g;

int r; /* specifies rounding direction */

r = fegetround(); /* save caller’s rounding direction */

fesetround(FE_DOWNWARD);

/* downward rounding for denominator */

x_up = f + g;

fesetround(FE_UPWARD);

/* upward rounding for expression */

x_up = (a * b + c * d) / x_up;

fesetround(r);

/* restore caller’s rounding direction */

return(x_up);

}

Controlling the Exception Flags 8

In MathLib, the following functions control the floating-point exception flags:

feclearexcept Clears one or more exceptions.

fegetexcept Saves one or more exception flags.

feraiseexcept Raises one or more exceptions.

fesetexcept Restores the state of one or more exception flags.

fetestexcept Returns the value of one or more exception flags.

x a b c d×+×() f g+()⁄=
Controlling the Exception Flags 8-5

C H A P T E R 8

Environmental Control Functions

The five floating-point exception flags are defined as the constants shown in Table 8-2.

MathLib also defines another constant, FE_ALL_EXCEPT, which is the logical OR of all
five exceptions. Using FE_ALL_EXCEPT, you can manipulate all five floating-point
exception flags as a single entity. The type fexcept_t also exists so that all
the exception flags may be accessed at once.

feclearexcept 8

You can use the feclearexcept function to clear one or more floating-point exceptions.

void feclearexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be cleared.

DESCRIPTION

The feclearexcept function clears the floating-point exceptions specified by its
argument. The argument may be one of the constants in Table 8-2, two or more of these
constants ORed together, or the constant FE_ALL_EXCEPT.

EXAMPLES

feclearexcept(FE_INEXACT); /* clears the inexact flag */

feclearexcept(FE_INEXACT|FE_UNDERFLOW);

/* clears the inexact and underflow flags */

feclearexcept(FE_ALL_EXCEPT); /* clears all flags */

Table 8-2 Floating-point exception flags in MathLib

Exception Constant

Inexact FE_INEXACT

Divide-by-zero FE_DIVBYZERO

Underflow FE_UNDERFLOW

Overflow FE_OVERFLOW

Invalid FE_INVALID
8-6 Controlling the Exception Flags

C H A P T E R 8

Environmental Control Functions

8

E
nvironm

ental C
ontrol F

unctions

fegetexcept 8

You can use the fegetexcept function to save the current value of one or more
floating-point exception flags.

void fegetexcept (fexcept_t *flagp, int excepts);

flagp A pointer to where the exception flag values are to be stored.

excepts A mask indicating which exception flags to save.

DESCRIPTION

The fegetexcept function saves the values of the floating-point exception flags
specified by the argument excepts to the area pointed to by the argument flagp. The
excepts argument may be one of the constants in Table 8-2 on page 8-6, two or more of
these constants ORed together, or the constant FE_ALL_EXCEPT.

EXAMPLES

fegetexcept(flagp, FE_INVALID); /* saves the invalid flag */

fegetexcept(flagp, FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);

/* saves the invalid, overflow, and divide-by-zero flags */

fegetexcept(flagp, FE_ALL_EXCEPT); /* saves all flags */

feraiseexcept 8

You can use the feraiseexcept function to raise one or more floating-point exceptions.

void feraiseexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be set.

DESCRIPTION

The feraiseexcept function sets the floating-point exception flags specified by its
argument. The argument may be one of the constants in Table 8-2 on page 8-6, two or
more of these constants ORed together, or the constant FE_ALL_EXCEPT.
Controlling the Exception Flags 8-7

C H A P T E R 8

Environmental Control Functions

EXAMPLES

feraiseexcept(FE_OVERFLOW); /* sets the overflow flag */

feraiseexcept(FE_INEXACT|FE_UNDERFLOW);

/* sets the inexact and underflow flags */

feraiseexcept(FE_ALL_EXCEPT); /* sets all flags */

fesetexcept 8

You can use the fesetexcept function to restore the values of the floating-point
exception flags previously saved by a call to fegetexcept.

void fesetexcept (const fexcept_t *flagp, int excepts);

flagp A pointer to the values the floating-point exception flags should have.

excepts A mask indicating which exception flags should have their values
changed.

DESCRIPTION

The fesetexcept function sets the floating-point exception flags indicated by
the argument excepts to the values indicated by the argument flagp. The excepts
argument may be one of the constants in Table 8-2 on page 8-6, two or more of these
constants ORed together, or the constant FE_ALL_EXCEPT.

You must call fegetexcept before this function to set the flagp argument. This
argument cannot be set in any other way.

EXAMPLES

fesetexcept(flagp, FE_INVALID); /* restores the invalid flag */

fesetexcept(flagp, FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);

/* restores the invalid, overflow, and divide-by-zero flags */

fesetexcept(flagp, FE_ALL_EXCEPT); /* restores all flags */

fetestexcept 8

You can use the fetestexcept function to find out if one or more floating-point
exceptions has occurred.

int fetestexcept (int excepts);

excepts A mask indicating which floating-point exception flags should be tested.
8-8 Controlling the Exception Flags

C H A P T E R 8

Environmental Control Functions

8
E

nvironm
ental C

ontrol F
unctions
DESCRIPTION

The fetestexcept function tests the floating-point exception flags specified by its
argument. The argument may be one of the constants in Table 8-2 on page 8-6, two or
more of these constants ORed together, or the constant FE_ALL_EXCEPT.

If all exception flags being tested are clear, fetestexcept returns a 0. If one of the
flags being tested is set, fetestexcept returns the constant associated with that flag. If
more than one flag is set, fetestexcept returns the result of ORing their constants
together. For example, if the inexact exception is set, fetestexcept returns
FE_INEXACT. If both the inexact and overflow exceptions flags are set, fetestexcept
returns FE_INEXACT | FE_OVERFLOW.

EXAMPLES

feraiseexcept(FE_DIVBYZERO|FE_OVERFLOW);

feclearexcept(FE_INEXACT|FE_UNDERFLOW|FE_INVALID);

/* Now the divide-by-zero and overflow flags are 1, and the

rest of the flags are 0. */

i = fetestexcept(FE_INEXACT);

/* i = 0 because inexact is clear */

i = fetestexcept(FE_DIVBYZERO);

/* i = FE_DIVBYZERO */

i = fetestexcept(FE_UNDERFLOW);

/* i = 0 */

i = fetestexcept(FE_OVERFLOW);

/* i = FE_OVERFLOW */

i = fetestexcept(FE_ALL_EXCEPT);

/* i = FE_DIVBYZERO | FE_OVERFLOW */

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);

/* i = FE_DIVBYZERO */

Accessing the Floating-Point Environment 8

MathLib defines four functions that access the entire floating-point environment:

fegetenv Returns the current environment.

feholdexcept Saves the previous environment and clears all exception flags.

fesetenv Sets new environmental values.

feupdateenv Restores a previously saved environment.
Accessing the Floating-Point Environment 8-9

C H A P T E R 8

Environmental Control Functions
These functions take parameters of type fenv_t. Type fenv_t is the environment word
type. In general, the environmental access functions either take a pointer to a variable of
type fenv_t or accept the macro FE_DFL_ENV, which defines the default environment
(default rounding direction and all exceptions cleared).

fegetenv 8

You can use the fegetenv function to save the current state of the floating-point
environment.

void fegetenv (fenv_t *envp);

envp A pointer to an environment word that will store the current state of the
environment upon the function’s return.

DESCRIPTION

The fegetenv function saves the current state of the rounding direction modes and the
floating-point exception flags in the object pointed to by its envp argument.

EXAMPLES

double_t func (double_t x, double_t y)

{

fenv_t *env;

x = x + y; /* floating-point op; may raise exceptions */

fegetenv(env); /* save state of env after add */

y = y * x; /* floating-point op; may raise exceptions */

.

.

.

}

feholdexcept 8

You can use the feholdexcept function to save the current floating-point environment
and then clear all exception flags.
8-10 Accessing the Floating-Point Environment

C H A P T E R 8

Environmental Control Functions

8
E

nvironm
ental C

ontrol F
unctions
int feholdexcept (fenv_t *envp);

envp A pointer to an environment word where the environment should be
saved.

DESCRIPTION

The feholdexcept function stores the current environment in the argument envp and
clears the floating-point exception flags. Note that this function does not affect the
rounding direction. It is the same as performing the following two calls:

fegetenv(envp);

feclearexcept(FE_ALL_EXCEPT);

Call feholdexcept at the beginning of a function so that the function can start with all
exceptions cleared but not change the caller’s environment. Use feupdateenv to
restore the caller’s environment at the end of the function. The feupdateenv function
keeps any exceptions raised by the current function set while restoring the rest of the
caller’s environment. Thus, using feholdexcept and feupdateenv together
preserves all raised floating-point exceptions while allowing new ones to be raised as
well.

EXAMPLES

void subroutine(void)

{

fenv_t *e; /* local storage for environment */

feholdexcept(e); /* save caller’s environment and

clear exceptions */

/* subroutine’s operations here */

 feupdateenv(e); /* restore caller’s environment */

}

fesetenv 8

You can use the fesetenv function to restore the floating-point environment.

void fesetenv (const fenv_t *envp);

envp A pointer to a word containing the value to which the environment
should be set.
Accessing the Floating-Point Environment 8-11

C H A P T E R 8

Environmental Control Functions
DESCRIPTION

The fesetenv function sets the floating-point environment to the value pointed to by
its argument envp. The value of envp must come from a call to either fegetenv or
feholdexcept, or it may be the constant FE_DFL_ENV, which specifies the default
environment. In the default environment, all exception flags are clear and the rounding
direction is set to the default.

EXAMPLES

double_t func (double_t x, double_t y)

{

fenv_t *env;

fesetenv(FE_DFL_ENV); /* clear environment */

x = x + y; /* floating-point op; may raise exceptions */

fegetenv(env); /* save state of env after add */

y = y * x; /* floating-point op; may raise exceptions */

fesetenv(env); /* ignore environmental changes by

multiplication operator */

.

.

.

}

feupdateenv 8

You can use the feupdateenv function to restore the floating-point environment
previously saved with feholdexcept.

void feupdateenv (const fenv_t *envp);

envp A pointer to the word containing the environment to be restored.

DESCRIPTION

The feupdateenv function, which takes a saved environment as argument, does the
following:

1. It temporarily saves the exception flags (raised by the current function).

2. It restores the environment received as an argument.

3. It signals the temporarily saved exceptions.
8-12 Accessing the Floating-Point Environment

C H A P T E R 8

Environmental Control Functions

8
E

nvironm
ental C

ontrol F
unctions
The feupdateenv function facilitates writing subroutines that appear to their callers to
be atomic operations (such as addition, square root, and others). Atomic operations pass
extra information back to their callers by signaling exceptions; however, they hide
internal exceptions, which might be irrelevant or misleading. Thus, exceptions signaled
between the feholdexcept and feupdateenv functions are hidden from the calling
function unless the exceptions remain raised when the feupdateenv procedure is
called.

EXAMPLES

/* NumFcn signals underflow if its result is denormalized,

overflow if its result is INFINITY, and inexact always, but hides

spurious exceptions occurring from internal computations. */

long double NumFcn(void)

{

fenv_t e; /* local environment storage */

enum NumKind c; /* for class inquiry */

fexcept_t * flagp;

long double result;

feholdexcept(&e); /* save caller’s environment and

 clear exceptions */

/* internal computation */

c = fpclassify(result); /* class inquiry */

feclearexcept(FE_ALL_EXCEPT); /* clear all exceptions */

 feraiseexcept(FE_INEXACT); /* signal inexact */

 if (c == FP_INFINITE)

 feraiseexcept(FE_OVERFLOW);

else if (c == FP_SUBNORMAL)

 feraiseexcept(FE_UNDERFLOW);

feupdateenv(&e);

/* restore caller’s environment, and then signal

 exceptions raised by NumFcn */

return(result);

}

Accessing the Floating-Point Environment 8-13

C H A P T E R 8

Environmental Control Functions
Environmental Controls Summary 8

This section summarizes the C constants, macros, functions, and type definitions
associated with controlling the floating-point environment.

C Summary 8

Constants 8

Rounding Direction Modes

#define FE_TONEAREST 0x00000000

#define FE_TOWARDZERO 0x00000001

#define FE_UPWARD 0x00000002

#define FE_DOWNWARD 0x00000003

Floating-Point Exception Flags

#define FE_INEXACT 0x02000000 /* inexact */

#define FE_DIVBYZERO 0x04000000 /* divide-by-zero */

#define FE_UNDERFLOW 0x08000000 /* underflow */

#define FE_OVERFLOW 0x10000000 /* overflow */

#define FE_INVALID 0x20000000 /* invalid */

#define FE_ALL_EXCEPT (FE_INEXACT | FE_DIVBYZERO | FE_UNDERFLOW | \

FE_OVERFLOW | FE_INVALID)

#define FE_DFL_ENV &_FE_DFL_ENV /* pointer to default environment*/

Data Types 8

typedef long int fenv_t;

typedef long int fexcept_t;
8-14 Environmental Controls Summary

C H A P T E R 8

Environmental Control Functions

8
E

nvironm
ental C

ontrol F
unctions
Environment Access Routines 8

Controlling the Rounding Direction

int fegetround (void);

int fesetround (int round);

Controlling the Exception Flags

void feclearexcept (int excepts);

void fegetexcept (fexcept_t *flagp, int excepts);

void feraiseexcept (int excepts);

void fesetexcept (const fexcept_t *flagp, int excepts);

int fetestexcept (int excepts);

Accessing the Floating-Point Environment

void fegetenv (fenv_t *envp);

int feholdexcept (fenv_t *envp);

void fesetenv (const fenv_t *envp);

void feupdateenv (const fenv_t *envp);
Environmental Controls Summary 8-15

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	Environmental Control Functions
	Controlling the Rounding Direction
	Controlling the Exception Flags
	Accessing the Floating-Point Environment
	Environmental Controls Summary
	C Summary
	Constants
	Data Types
	Environment Access Routines

	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

