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This chapter describes the numeric data types available in C and shows how to 
determine the class and sign of values represented in numeric data types. As stated in 
Chapter 2, “Floating-Point Data Formats,” the PowerPC Numerics environment 
provides three numeric data formats: single (32 bits long), double (64 bits long), and 
double-double (two double formats combined, resulting in 128 bits). Each can represent 
normalized numbers, denormalized numbers, zeros, NaNs, and Infinities. See Chapter 2 
for information about the numeric data formats and about how they represent values. 
Read this chapter to find out about the mapping of numeric formats to floating-point 
types in C, about the floating-point type declarations made in the PowerPC Numerics 
library (MathLib), and about the library utilities available that can determine the class of 
a floating-point value.

C Data Types 7

Table 7-1 shows how the PowerPC Numerics data formats map to the C floating-point 
variable types. This mapping follows the recommendations in the FPCE technical report.

Efficient Type Declarations 7

MathLib contains two floating-point type definitions, float_t and double_t in the 
header Types.h. If you define a variable to be float_t or double_t, it means “use 
the most efficient floating-point format for this architecture.” Table 7-2 shows the 
definitions for float_t and double_t for both the PowerPC and 680x0 architecture.

Table 7-1 Names of data types

PowerPC Numerics format C type

IEEE single float

IEEE double double

Double-double long double

Table 7-2 float_t and double_t types

Architecture float_t type double_t type

PowerPC float double

680x0 long double long double
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For the PowerPC architecture, the most natural format for computations is double, but 
the architecture allows computations in single precision as well. Therefore, for the 
PowerPC architecture, float_t is defined to be float (single precision) and 
double_t is defined to be double. The 680x0 architecture is based on an 80-bit 
double-extended format (known as extended) and performs all computations in this 
format regardless of the type of the operands. Therefore, float_t and double_t are 
both long double (extended precision) for the 680x0 architecture.

If you declare a variable to be type double_t and you compile the program as a 
PowerPC application, the variable is of type double. If you recompile the same program 
as an 680x0 application, the variable is of type long double.

Inquiries: Class and Sign 7

MathLib provides macros you can use to determine the class and sign of a floating-point 
value. All of these macros return type long int. They are listed in Table 7-3.

Table 7-3 Class and sign inquiry macros

Macro Value returned Condition

fpclassify(x) FP_SNAN x is a signaling NaN

FP_QNAN x is a quiet NaN

FP_INFINITE x is  or +∞

FP_ZERO x is +0 or 

FP_NORMAL x is a normalized number

FP_SUBNORMAL x is a denormalized (subnormal) number

isnormal(x) TRUE x is a normalized number

isfinite(x) TRUE x is not , +∞, or NaN

isnan(x) TRUE x is a NaN (quiet or signaling)

signbit(x) 1 The sign bit of x is 1 (x is negative)

0 The sign bit of x is 0 (x is positive)

∞–

0–

∞–
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Creating Infinities and NaNs 7

MathLib defines the constants INFINITY and NAN, so that you can assign these values to 
variables in your program, and provides the following function that returns NaNs:

double nan  (const char *tagp);

The nan function returns a quiet NaN with a fraction field that is equal to the argument 
tagp. The argument tagp is a pointer to a string that will be copied into bits 8 through 
15 of the NaN’s fraction field. The string should specify a decimal number between 0 
and 255. For example:

nan("32")

creates a NaN with code 32. If you supply a negative string, it is the same as supplying 
the string “0”. If you supply a string greater than 255, it is the same as supplying the 
string “255”. For a list of predefined NaN codes, see Chapter 2, “Floating-Point Data 
Formats.”
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This section summarizes the C constants, macros, functions, and type definitions 
associated with creating floating-point values or determining the class and sign of a 
floating-point value. 

C Summary 7

Constants 7

#ifdef powerc

#define LONG_DOUBLE_SIZE 16

#elif mc68881

#define LONG_DOUBLE_SIZE 12

#else

#define LONG_DOUBLE_SIZE 10

#endif      /* powerc */

#define HUGE_VAL _ _inf()

#define INFINITY _ _inf()

#define NAN nan("255")

Class and Sign Inquiry Macros

#define fpclassify (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _fpclassify  (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _fpclassifyd (x) : \

_ _fpclassifyf (x))

#define isnormal (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isnormal (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isnormald (x) : \

_ _isnormalf (x))
7-6 Numeric Data Types Summary
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#define isfinite (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isfinite (x) : \

( sizeof (x) == DOUBLE_SIZE) ? \

_ _isfinited (x) : \

_ _isfinitef (x))

#define isnan (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isnan (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isnand (x) : \

_ _isnanf (x))

#define signbit (x) (( sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _signbit (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _signbitd (x) : \

_ _signbitf (x))

Data Types 7

enum NumberKind

{

FP_SNAN = 0, /* signaling NaN */

FP_QNAN, /* quiet NaN */

FP_INFINITE, /* + or – infinity */

FP_ZERO, /* + or – zero */

FP_NORMAL, /* all normal numbers */

FP_SUBNORMAL /* denormal numbers */

};

#ifdef powerpc

typedef float float_t;

typedef double double_t;

#else

typedef long double float_t;

typedef long double double_t;

#endif      /* powerpc */

Special Value Routines 7

Creating NaNs

double nan (const char *tagp);
Numeric Data Types Summary 7-7
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