

A P P E N D I X B

B

P
orting P

rogram
s to P

ow
erP

C
 N

um
erics

Figure B-0
Listing B-0
Table B-0
Porting Programs to PowerPC
Numerics B

This appendix contains information of interest to programmers who are porting
programs from a non-Macintosh computer to run on a PowerPC processor-based
Macintosh computer using PowerPC Numerics. If you are such a programmer and you
think you are getting errors because of differences in numerics, you should read this
appendix.

Porting applications to run in the PowerPC Numerics environment is easier than porting
to other computers. Expressions that produce good results on other computers usually
give at least as good results using PowerPC Numerics.

Note
If you are porting a program that uses SANE, read Appendix A, “SANE
Versus PowerPC Numerics,” instead of this appendix. ◆

Semantics of Arithmetic Evaluation B

When you translate programs from one language to another, be aware of the hidden
pitfalls in translation. For example, an operation in one language might have similar
syntax to an operation in another language without being similar semantically. Here’s an
example of similar functions with different syntaxes:

■ Fortran, SIGN(A,B) (two operands)

■ BASIC, SIGN(A) (one operand)

Languages can also differ in how they treat mixed integers and reals. For example,
Fortran truncates integer quotients to integers, so (you have to write to
obtain a fraction). The programmer translating must be aware that the results of such
expressions depend on the language used.

Languages also differ in how they convert from a real number to an integer. For
example, in Fortran, assigning a floating-point value to an integer rounds toward zero.

Here are the operations used to truncate a real number to an integer in three languages:

■ C: assignments and casts

■ Fortran: AINT, INT

■ Pascal: Trunc

3 7⁄ 0= 3.0 7.0⁄
Semantics of Arithmetic Evaluation B-1

A P P E N D I X B

Porting Programs to PowerPC Numerics

Mixed Formats B

On certain computers, the formats for single and double are identical except for their
length. On those machines, for arguments passed by address, a calling routine can store
data in one format and a called routine can read data in another format without apparent
error.

If you have a program that exploits this confusion, you’ll have to revise it before you can
run it on a machine that uses PowerPC Numerics. (Type checking is of no help here; if
the discrepancy was such that type checking could detect it, the original compiler would
have caught it.)

Floating-Point Precision B

Floating-point precision may differ from the original machine to the target machine.

Some computers have floating-point formats that have a wider range than the current
PowerPC Numerics formats. Wider formats include the VAX™ H format, the IBM Q
format, and the HP quad format. Programs use these wide formats for computation
involving input data from a narrower format to minimize the occurrence of overflow
and underflow and to preserve accuracy. The double-double data format provides
enough precision to preserve accuracy; but it offers no greater range than the double
format, so it will not protect against overflow and underflow. Keep in mind that
problems may arise when a program uses formats wider than double-double.

CDC and Cray computers have a single format that is wider than IEEE single and a
double format that is wider than IEEE double format. When porting code from those
machines, you should consider changing type declarations from single to double format.

The Rules of Evaluation B

Each computer uses different rules of evaluation. Here are three reasonable rules:

■ Rule 1: Round the result to the wider of the two operand formats.

■ Rule 2: Round the result to the widest available format.

■ Rule 3: Round the result to the widest format in the expression.

Rule 1 is instant rounding. It is the rule on computers having many registers the same
width as memory. This rule has been used by IBM and CDC Fortran since 1963. It is not
part of the Fortran standard, though it is often thought to be.
B-2 Mixed Formats

A P P E N D I X B

Porting Programs to PowerPC Numerics

B

P
orting P

rogram
s to P

ow
erP

C
 N

um
erics

Rule 2 is what SANE does by evaluating in extended precision. Other machines using
this approach include the PDP-11C (using double precision) and floating-point
coprocessors such as the 8087 and the MC68881. This approach does not take best
advantage of machines with separate processing units for each floating-point format.

Rule 3 is what PowerPC Numerics does and is the way you do it when computing by
hand. It was the rule in Fortran until 1963. By this rule, if you see an expression with
mixed precision, you assume the user wants the widest visible precision.

With PowerPC Numerics, you can write code to simulate any of these rules. To simulate
rule 1, use separate assignments when computing subexpressions. To simulate rule 2,
convert all operands to double-double format before performing an expression.

For transported code, either you have to understand the programmer’s tricks or you
have to mimic the way rounding works on the programmer’s machine. With PowerPC
Numerics, you can set the rounding direction to mimic other machines.

The Invalid Exception B

Many computers used to stop on an invalid operation, such as 0/0. Programmers have
made the best of this and not bothered to test in advance for values that could cause an
invalid operation. It is better to stop than to give a plausible but incorrect answer.

When a program written that way runs on PowerPC Numerics, it produces a NaN
where it formerly would have stopped. The NaN might cause the program to take an
unplanned branch and thus produce an erroneous answer. Because the program does
not test for invalid operations, the user will not know whether the answers the program
finally delivers have been influenced by exceptional events that formerly would have
stopped the computer.

Programs sometimes contain code that depends on an ill-documented effect or on one
that varies from machine to machine. If you have inherited such a program and you do
not know what it does about exceptional conditions, here are some possible strategies:

■ Insert tests on operands that could cause invalid operations.

■ Change the program to make sure that NaNs propagate as NaNs rather than as
plausible answers.

■ After evaluations, add code to test the invalid flag and deliver a meaningful result or
message and then clear the flag.

If you have a program with code you can’t change and you distrust the results it gives
when invalid operations occur, you should set up tests that halt programming on those
invalid operations and set the environment to simulate the environment in which the
program was designed to run.
The Invalid Exception B-3

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	Porting Programs to PowerPC Numerics
	Semantics of Arithmetic Evaluation
	Mixed Formats
	Floating-Point Precision
	The Rules of Evaluation
	The Invalid Exception

	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

