

C H A P T E R 1 4

14

A
ssem

bly-Language N
um

eric O
perations

Assembly-Language Numeric Operations 14

This chapter describes how you can perform comparison and arithmetic numeric
operations using PowerPC assembly language. This chapter describes the following
types of instructions:

■ comparison

■ arithmetic

■ multiply-add

■ move

It shows the format of these instructions and gives examples of use. For complete details
on any of these instructions, see the Motorola PowerPC 601 RISC Microprocessor User’s
Manual. For operations that manipulate the floating-point environment, see Chapter 12,
“Assembly-Language Environmental Controls.” For operations that perform
conversions, see Chapter 13, “Assembly-Language Numeric Conversions.”

Comparison Operations 14

The assembler provides two floating-point comparison instructions:

The only difference is that the ordered comparison instruction generates an invalid
exception if one of the input registers contains a NaN.

The comparison instructions have three operands. They are of the form

instr DST, SRC1, SRC2

DST A field in the Condition Register (0 through 7) into which the result of the
comparison is placed.

SRC1, SRC2 Two floating-point registers.

Comparison instructions are interpreted as

DST ← SRC1 compare SRC2

The comparison instructions compare the contents of two floating-point registers and
place the results of the comparison in a Condition Register field as well as in bits 16
through 19 (field 4) of the FPSCR. The results in the Condition Register and FPSCR are
interpreted as follows:

fcmpo Ordered comparison

fcmpu Unordered comparison
Comparison Operations 14-3

C H A P T E R 1 4

Assembly-Language Numeric Operations

Use a conditional branch instruction after the comparison instruction to use the results of
the comparison, as shown in the following example:

fcmpo 2,f0,f11 # compare f0 to f11 and put result in CR2

blt 2,addr1 # go to addr1 if bit 0 (<) of CR2 is 1

bgt 2,addr2 # go to addr2 if bit 1 (>) of CR2 is 1

beq 2,addr3 # go to addr3 if bit 2 (=) of CR2 is 1

bun 2,addr4 # go to addr4 if bit 3 (unordered) of CR2 is 1

Arithmetic Operations 14

PowerPC assembly language supports five of the seven IEEE arithmetic operations:

■ add

■ subtract

■ multiply

■ divide

■ round-to-integer

Except for the round-to-integer operation, these operations may be performed by a
variety of instructions. The instructions that perform arithmetic operations are divided
into three categories: arithmetic instructions, multiply-add instructions, and move
instructions. (fctiw, described in Chapter 13, “Assembly-Language Numeric
Conversions,” performs the round-to-integer operation.)

Arithmetic Instructions 14
There are four arithmetic instructions:

Resul
t Meaning

0001 Unordered

0010 SRC1 = SRC2

0100 SRC1 > SRC2

1000 SRC1 < SRC2

fadd Adds two floating-point values.

fsub Subtracts two floating-point values.

fmul Multiplies two floating-point values.

fdiv Divides two floating-point values.
14-4 Arithmetic Operations

C H A P T E R 1 4

Assembly-Language Numeric Operations

14

A
ssem

bly-Language N
um

eric O
perations

Note
These instructions might raise floating-point exceptions. See the
Motorola PowerPC 601 RISC Microprocessor User’s Manual for more
information. ◆

Floating-point arithmetic instructions have three operands, all of which are
floating-point registers. They are of the form

instr DST, SRC1, SRC2

Arithmetic instructions are interpreted as

DST ← SRC1 op SRC2

where SRC1, SRC2, and DST are floating-point registers and op is some operation.

Each of these instructions works on both single and double floating-point numbers.
There are four versions of each instruction:

instr Perform operation specified by instr. Interpret data in floating-point
registers as double format.

instr. Perform operation specified by instr. Interpret data in floating-point
registers as double format. Record any exceptions raised in the Condition
Register.

instrs Perform operation specified by instr. Interpret data in floating-point
registers as single format.

instrs. Perform operation specified by instr. Interpret data in floating-point
registers as single format. Record any exceptions raised in the Condition
Register.

Note that all exceptions are always recorded in the FPSCR and are sometimes recorded
in the Condition Register as well.

The following example adds two double floating-point numbers and stores the results:

lfd f1,d(r1) # load double number into register f1

lfd f2,d(r2) # load double number into register f2

fadd f0,f1,f2 # f0 contains result

stfd f0,d(r3) # store result in double format

And the next example adds two single floating-point numbers and stores the results:

lfs f1,d(r4) # load single number into register f1

frsp f1,f1 # stay single

lfs f2,d(r5) # load single number into register f2

frsp f2,f2 # stay single

fadds. f0,f1,f2 # result placed in f0 in single format

CR1 reflects any exceptions

stfs f0,d(r6) # store result in single format
Arithmetic Operations 14-5

C H A P T E R 1 4

Assembly-Language Numeric Operations

Multiply-Add Instructions 14
There are four multiply-add instructions:

Note
These instructions might raise floating-point exceptions. See the
Motorola PowerPC 601 RISC Microprocessor User’s Manual for more
information. ◆

PowerPC assembly language provides the multiply-add instructions to perform more
complex operations with at most a single roundoff error rather than the two potential
roundoff errors that would result from performing the operations separately.

The multiply-add instructions take four operands, all of which are floating-point
registers:

instr DST, SRC1, SRC2, SRC3

Multiply-add instructions are interpreted as

DST ← (SRC1 × SRC2) ± SRC3

where SRC1, SRC2, SRC3, and DST are floating-point registers.

Multiply-add instructions can take one of four forms:

instr Perform operation specified by instr. Interpret data in floating-point
registers as double format.

instr. Perform operation specified by instr. Interpret data in floating-point
registers as double format. Record any exceptions raised in the Condition
Register.

instrs Perform operation specified by instr. Interpret data in floating-point
registers as single format.

instrs. Perform operation specified by instr. Interpret data in floating-point
registers as single format. Record any exceptions raised in the Condition
Register.

Note that all exceptions are always recorded in the FPSCR and are sometimes recorded
in the Condition Register as well.

fmadd Perform multiply, add.

fmsub Perform multiply, subtract.

fnmadd Perform multiply, add, and negate.

fnmsub Perform multiply, subtract, and negate.
14-6 Arithmetic Operations

C H A P T E R 1 4

Assembly-Language Numeric Operations

14
A

ssem
bly-Language N

um
eric O

perations
The following example multiplies two double-format numbers, adds a third, and stores
the result:

lfd f1,d(r1) # load double number into register f1

lfd f2,d(r2) # load double number into register f2

lfd f3,d(r3) # load double number into register f3

fmadd f0,f1,f2,f3 # f0 = f1 × f2 + f3
stfd f0,d(r4) # store result as double format

The following example performs the same operations on single-format numbers:

lfs f1,d(r5) # load single number into register f1

frsp f1,f1 # stay single

lfs f2,d(r6) # load single number into register f2

frsp f2,f2 # stay single

lfs f3,d(r7) # load single number into register f3

frsp f3,f3 # stay single

fmadds. f0,f1,f2 # f0 = f1 × f2 + f3
f0 contains single format number

CR1 reflects any exceptions

stfs f0,d(r8) # store result in single format

Move Instructions 14
There are four move instructions:

Move instructions perform sign manipulations while copying a value from one
floating-point register to another. Because they manipulate only the sign bit, they
generate no floating-point exceptions. They take two operands, both of which are
floating-point registers. They are of the form

instr DST, SRC

Floating-point move instructions are interpreted as

DST ← op SRC

where SRC and DST are floating-point registers and op is some operation that is
performed on the contents of SRC.

Note that you may copy a value from a register into the same register. For example:

fneg f1,f1 # f1 has just been negated

fabs Move absolute value of register.

fmr Move register value.

fneg Move negative value of register.

fnabs Move negative absolute value of register.
Arithmetic Operations 14-7

C H A P T E R 1 4

Assembly-Language Numeric Operations
Transcendental and Auxiliary Functions 14

PowerPC assembly language does not directly support any of the IEEE auxiliary
functions or the transcendental functions listed in this book. If you are writing a
numerics application in assembly language, you can access the routines in the C library
MathLib to perform these operations, provided you set up the stack frame properly. For
information on how to set up the stack frame, see the book Assembler for Macintosh With
PowerPC.
14-8 Transcendental and Auxiliary Functions

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	Assembly-Language Numeric Operations
	Comparison Operations
	Arithmetic Operations
	Arithmetic Instructions
	Multiply-Add Instructions
	Move Instructions

	Transcendental and Auxiliary Functions

	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

