

C H A P T E R 7

7

N
um

eric D
ata Types in C

Numeric Data Types in C 7

This chapter describes the numeric data types available in C and shows how to
determine the class and sign of values represented in numeric data types. As stated in
Chapter 2, “Floating-Point Data Formats,” the PowerPC Numerics environment
provides three numeric data formats: single (32 bits long), double (64 bits long), and
double-double (two double formats combined, resulting in 128 bits). Each can represent
normalized numbers, denormalized numbers, zeros, NaNs, and Infinities. See Chapter 2
for information about the numeric data formats and about how they represent values.
Read this chapter to find out about the mapping of numeric formats to floating-point
types in C, about the floating-point type declarations made in the PowerPC Numerics
library (MathLib), and about the library utilities available that can determine the class of
a floating-point value.

C Data Types 7

Table 7-1 shows how the PowerPC Numerics data formats map to the C floating-point
variable types. This mapping follows the recommendations in the FPCE technical report.

Efficient Type Declarations 7

MathLib contains two floating-point type definitions, float_t and double_t in the
header Types.h. If you define a variable to be float_t or double_t, it means “use
the most efficient floating-point format for this architecture.” Table 7-2 shows the
definitions for float_t and double_t for both the PowerPC and 680x0 architecture.

Table 7-1 Names of data types

PowerPC Numerics format C type

IEEE single float

IEEE double double

Double-double long double

Table 7-2 float_t and double_t types

Architecture float_t type double_t type

PowerPC float double

680x0 long double long double
C Data Types 7-3

C H A P T E R 7

Numeric Data Types in C

For the PowerPC architecture, the most natural format for computations is double, but
the architecture allows computations in single precision as well. Therefore, for the
PowerPC architecture, float_t is defined to be float (single precision) and
double_t is defined to be double. The 680x0 architecture is based on an 80-bit
double-extended format (known as extended) and performs all computations in this
format regardless of the type of the operands. Therefore, float_t and double_t are
both long double (extended precision) for the 680x0 architecture.

If you declare a variable to be type double_t and you compile the program as a
PowerPC application, the variable is of type double. If you recompile the same program
as an 680x0 application, the variable is of type long double.

Inquiries: Class and Sign 7

MathLib provides macros you can use to determine the class and sign of a floating-point
value. All of these macros return type long int. They are listed in Table 7-3.

Table 7-3 Class and sign inquiry macros

Macro Value returned Condition

fpclassify(x) FP_SNAN x is a signaling NaN

FP_QNAN x is a quiet NaN

FP_INFINITE x is or +∞

FP_ZERO x is +0 or

FP_NORMAL x is a normalized number

FP_SUBNORMAL x is a denormalized (subnormal) number

isnormal(x) TRUE x is a normalized number

isfinite(x) TRUE x is not , +∞, or NaN

isnan(x) TRUE x is a NaN (quiet or signaling)

signbit(x) 1 The sign bit of x is 1 (x is negative)

0 The sign bit of x is 0 (x is positive)

∞–

0–

∞–
7-4 Inquiries: Class and Sign

C H A P T E R 7

Numeric Data Types in C

7

N
um

eric D
ata Types in C

Creating Infinities and NaNs 7

MathLib defines the constants INFINITY and NAN, so that you can assign these values to
variables in your program, and provides the following function that returns NaNs:

double nan (const char *tagp);

The nan function returns a quiet NaN with a fraction field that is equal to the argument
tagp. The argument tagp is a pointer to a string that will be copied into bits 8 through
15 of the NaN’s fraction field. The string should specify a decimal number between 0
and 255. For example:

nan("32")

creates a NaN with code 32. If you supply a negative string, it is the same as supplying
the string “0”. If you supply a string greater than 255, it is the same as supplying the
string “255”. For a list of predefined NaN codes, see Chapter 2, “Floating-Point Data
Formats.”
Creating Infinities and NaNs 7-5

C H A P T E R 7

Numeric Data Types in C

Numeric Data Types Summary 7

This section summarizes the C constants, macros, functions, and type definitions
associated with creating floating-point values or determining the class and sign of a
floating-point value.

C Summary 7

Constants 7

#ifdef powerc

#define LONG_DOUBLE_SIZE 16

#elif mc68881

#define LONG_DOUBLE_SIZE 12

#else

#define LONG_DOUBLE_SIZE 10

#endif /* powerc */

#define HUGE_VAL _ _inf()

#define INFINITY _ _inf()

#define NAN nan("255")

Class and Sign Inquiry Macros

#define fpclassify (x) ((sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _fpclassify (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _fpclassifyd (x) : \

_ _fpclassifyf (x))

#define isnormal (x) ((sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isnormal (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isnormald (x) : \

_ _isnormalf (x))
7-6 Numeric Data Types Summary

C H A P T E R 7

Numeric Data Types in C

7

N
um

eric D
ata Types in C

#define isfinite (x) ((sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isfinite (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isfinited (x) : \

_ _isfinitef (x))

#define isnan (x) ((sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _isnan (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _isnand (x) : \

_ _isnanf (x))

#define signbit (x) ((sizeof (x) == LONG_DOUBLE_SIZE) ? \

_ _signbit (x) : \

(sizeof (x) == DOUBLE_SIZE) ? \

_ _signbitd (x) : \

_ _signbitf (x))

Data Types 7

enum NumberKind

{

FP_SNAN = 0, /* signaling NaN */

FP_QNAN, /* quiet NaN */

FP_INFINITE, /* + or – infinity */

FP_ZERO, /* + or – zero */

FP_NORMAL, /* all normal numbers */

FP_SUBNORMAL /* denormal numbers */

};

#ifdef powerpc

typedef float float_t;

typedef double double_t;

#else

typedef long double float_t;

typedef long double double_t;

#endif /* powerpc */

Special Value Routines 7

Creating NaNs

double nan (const char *tagp);
Numeric Data Types Summary 7-7

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	Numeric Data Types in C
	C Data Types
	Efficient Type Declarations
	Inquiries: Class and Sign
	Creating Infinities and NaNs
	Numeric Data Types Summary
	C Summary
	Constants
	Data Types
	Special Value Routines

	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

