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IEEE Standard Arithmetic 1

This chapter describes why IEEE standard floating-point arithmetic is important and 
why you should use it when programming. PowerPC Numerics is an implementation of 
the IEEE Standard 754 for binary floating-point arithmetic as well as the standard 
proposed by the Floating-Point C Extensions (FPCE) branch of the Numerical C 
Extensions Group (NCEG). This chapter explains the benefits that PowerPC Numerics 
provides by conforming to these standards. It provides an overview of both the IEEE and 
the FPCE recommendations—describing the scope of these standards and explaining 
how following them improves the accuracy of your programs. It provides some 
examples to demonstrate how much easier programming is when the standards are 
followed. Finally, it describes in general how PowerPC Numerics differs from the 
Standard Apple Numerics Environment (SANE).

You should read this chapter if you are unfamiliar with IEEE Standard 754 or the FPCE 
technical report and you want to find out more about them. If you are already familiar 
with these standards but you would like to find out how PowerPC Numerics 
implements them, you can skip to the next chapter.

About the IEEE Standard 1

PowerPC Numerics is a floating-point environment that complies with IEEE 
Standard 754. There are two IEEE standards for floating-point arithmetic: 
IEEE Standard 754 for binary floating-point arithmetic and IEEE Standard 854 for 
radix-independent floating-point arithmetic. When you see the term IEEE standard 
in this book without a number following, it means IEEE Standard 754. 

The IEEE standards ensure that computers represent real numbers as accurately as 
possible and that computers perform arithmetic on real numbers as accurately as 
possible. Although there are infinitely many real numbers, a computer can represent 
only a finite number of them. Computers represent real numbers as binary 
floating-point numbers. Binary floating-point numbers can represent real numbers 
exactly in relatively few cases; in all other cases the representation is approximate. For 
example, 1/2 (0.5 in decimal) can be represented exactly in binary as 0.1. Other real 
numbers that can be represented exactly in decimal have repeating digits in binary and 
hence cannot be represented exactly, as shown in Table 1-1. For example, 1/10, or 
decimal 0.1 exactly, is 0.000110011 . . . in binary. Errors of this kind are unavoidable in 
any computer approximation of real numbers. Because of these errors, sums of fractions 
are often slightly incorrect. For example, 4/3 – 5/6 is not exactly equal to 1/2 on any 
computer, even on computers that use IEEE standard arithmetic.
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The IEEE standard defines data formats for floating-point numbers, shows how to 
interpret these formats, and specifies how to perform operations (known as 
floating-point operations) on numbers in these formats. It requires the following types 
of floating-point operations:

■ basic arithmetic operations (add, subtract, multiply, divide, square root, remainder, 
and round-to-integer)

■ conversion operations, which convert numbers to and from the floating-point data 
formats

■ comparison operations, such as less than, greater than, and equal to

■ environmental control operations, which manipulate the floating-point environment

The IEEE standard requires that the basic arithmetic operations have the following 
attributes:

■ The result must be accurate in the precision in which the operation is performed. 
When a numerics environment is performing a floating-point operation, it calculates 
the result to a predetermined number of binary digits. This number of digits is called 
the precision. The result must be correct to the last binary digit.

■ If the result cannot be represented exactly in the destination data format, it must be 
changed to the closest value that can be represented, using rounding. See the section 
“Careful Rounding” on page 1-5 for more information on why careful rounding is 
important.

■ If an invalid input is provided or if the result cannot be represented exactly, a 
floating-point exception must be raised. See the section “Exception Handling” on 
page 1-6 for a description of why exception handling is important in floating-point 
arithmetic.

* 10 significant digits
† 23 significant digits
‡ Exact value

Table 1-1 Approximation of real numbers

Fraction
Decimal 
approximation* Binary approximation†

1/10 0.1000000000‡ 0.000110011001100110011001101

1/2 0.5000000000‡ 0.100000000000000000000000‡

4/3 1.333333333 1.01010101010101010101011

5/6 0.8333333333 0.110101010101010101010101

4/3 – 5/6 0.4999999997 0.100000000000000000000001
1-4 About the IEEE Standard
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Starting to Use IEEE Arithmetic 1
You can get the benefit of much of the IEEE standard without special programming 
techniques; you simply use the floating-point variable formats and operations available 
in the programming language in which you are working, and the computer takes care of 
the rest. Other features might require changes to your applications. If you are new to 
numerical programming, you should approach the IEEE standard features in three 
stages:

1. Recompile your old programs with no changes; you will get many of the benefits.

2. Make small changes to obtain more benefits. For example, at this stage you might 
remove all code that tests for division by zero.

3. Use the advanced features, such as environmental controls, for special applications.

If you already use the IEEE standard features but your application is written for a 
non-Macintosh computer, see Appendix B, “Porting Programs to PowerPC Numerics.”

Careful Rounding 1
If the result of an IEEE arithmetic operation cannot be represented exactly in binary 
format, the number is rounded. IEEE arithmetic normally rounds results to the nearest 
value that can be represented in the chosen data format. The difference between the 
exact result and the represented result is the roundoff error.

The IEEE standard requires that users be able to choose to round in directions other than 
to the nearest value. For example, sometimes you might want to know that rounding has 
not invalidated a computation. One way to do that would be to force the rounding 
direction so that you can be sure your results are higher (or lower) than the exact answer. 
Because it conforms to the IEEE standard, PowerPC Numerics gives you a means of 
doing that. Fully developed, this strategy is called interval arithmetic (Kahan 1980). For 
complete details on rounding directions, see Chapter 4, “Environmental Controls.” 

The following example is a simple demonstration of the advantages of careful rounding. 
Suppose your application performs operations that are mutually inverse; that is, 
operations ,  ,  such that . There are many such 
operations, such as

,

,

Suppose  is the computed value of , and  is the computed value of . 
Because many numbers cannot be represented exactly in binary, the computed values 

 and  will often differ from  and . Even so, if both functions are 
continuous and well behaved, and if you always round  and  to the nearest 
value, you might expect your computer arithmetic to return x when it performs the cycle 
of inverse operations, . It is difficult to predict when this relation will hold for 
computer numbers. Experience with other computers says it is too much to expect, but 
IEEE arithmetic very often returns the correct inverse value.

y f x( )= x g y( )= g f x( )( ) x=

y x2= x y=

y 375x= x y 375⁄=

F x( ) f x( ) G y( ) g y( )

F x( ) G y( ) f x( ) g y( )
F x( ) G y( )

G F x( )( )
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The reason for IEEE arithmetic’s good behavior with respect to inverse operations is that 
it rounds so carefully. Even with all operations in, say, single precision, it evaluates the 
expression 3 × 1/3 to 1.0 exactly; some computers that do not follow the standard do not 
evaluate this expression exactly. If you find that surprising, you might enjoy running the 
code example in Listing 1-1 on a computer that does not use IEEE arithmetic and then on 
a PowerPC processor-based Macintosh computer. The default rounding provided by the 
numerics environment gives good results; the PowerPC processor-based Macintosh 
computer prints “No failures.” The program will fail on a computer that doesn’t have 
IEEE arithmetic—in particular, that doesn’t round halfway cases in the same way that 
the IEEE standard’s default rounding direction mode does.

Listing 1-1 Inverse operations

#include <stdio.h>

main()

{

float x, y, a, b;

int ix, iy, 

int nofail = 1; /* Boolean, initialized to true */

for (ix = 1; ix <= 12; ix++) {

if ((ix != 7) && (ix != 11)) { /* x is a sum of powers of two */

for (iy = 1; iy <= 50; iy++) {

x = ix;

y = iy;

a = y / x;

b = x * a; /* b == (x * y / x) == y */

if (b != y) {

nofail = 0; /* false */

printf("It failed for x = %d, y = %d\n", ix, iy);

}

}

}

}

if (nofail) printf("No failures\n");

}

Exception Handling 1
The IEEE standard defines five exceptions that indicate when an exceptional event has 
occurred. They are

■ invalid operation

■ underflow
1-6 About the IEEE Standard
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■ overflow

■ division by zero

■ inexact result

There are three ways your application can deal with exceptions:

■ Continue operation.

■ Stop on exceptions if you think they will invalidate your results.

■ Include code to do something special when exceptions happen.

The IEEE standard lets programs deal with the exceptions in reasonable ways. It defines 
the special values NaN (Not-a-Number) and Infinity, which allow a program to continue 
operation; see the section “Interpreting Floating-Point Values” in Chapter 2, 
“Floating-Point Data Formats.” The IEEE standard also defines exception flags, which a 
program can test to detect exceptional events.

IEEE arithmetic allows the option to stop computation when exceptional events arise, 
but there are good reasons why you might prefer not to have to stop. The following 
examples illustrate some of those reasons.

Example: Finding Zero Return Values 1

Suppose you want to find the first positive integer that causes a function to cross the 
x-axis. A simple version of the code might look like this:

for (i = 0; i < MAXVALUE; i++)

if (func(i) == 0)

printf("It crosses when x = %g\n", i);

Further, suppose that func was defined like this:

double func(double x)

{

return(sqrt(x - 3));

}

The intent of the for loop is to find out where the function crosses the x-axis and print 
out that information; it does not really care about the value returned from func unless 
the value is 0. However, this loop will fail when i is less than 3 because you cannot take 
the square root of a negative number. With a C compiler that supports PowerPC 
Numerics, performing the square root operation on a negative number returns a NaN, 
allowing the loop to produce the desired result. To obtain the desired result on all 
computers, something more cumbersome would have to be written. By allowing the 
square root of a negative number, PowerPC Numerics allows more straightforward code.
About the IEEE Standard 1-7



 

C H A P T E R  1

 

IEEE Standard Arithmetic

               
This program fragment demonstrates the principal service performed by NaNs: they 
permit deferred judgments about variables whose values might be unavailable (that is, 
uninitialized) or the result of invalid operations. Instead of having the computer stop a 
computation as soon as a NaN appears, you might prefer to have it continue if whatever 
caused the NaN is irrelevant to the solution.

Example: Searching Without Stopping 1

Suppose a program has to search through a database for a maximum value that has to be 
calculated. The search loop might call a subroutine to perform some calculation on the 
data in each record and return a value for the program to test or compare. The code 
might look like this:

max = –INFINITY;

for (i = 0; i < MAXRECORDS; i++)

if((temp = computation(record[i].value)) > max)

max = temp;

Suppose that the value field of the record structure is not a required field when the 
data is entered, so that for some records, data might be nonexistent or invalid. In many 
machines, that would cause the program to stop. To avoid having the program stop 
during the search, you would have to add tests for all the exceptional cases. With 
PowerPC Numerics, the subroutine computation does not stop for nonexistent or 
invalid data; it simply returns a NaN.

This is another example of the way arithmetic that includes NaNs allows the program to 
ignore irrelevancies, even when they cause invalid operations. Using arithmetic without 
NaNs, you would have to anticipate all exceptional cases and add code to the program 
to handle every one of them in advance. With NaNs, you can handle all exceptional 
cases after they have occurred, or you can simply ignore them, as in this example.

Example: Parallel Resistances 1

Like NaNs, Infinities enable the program to handle cases that otherwise would require 
special programming to keep from stopping. Here is an example where arithmetic with 
Infinities is entirely reasonable.

When three electrical resistances R1, R2, and R3 are connected in parallel, as shown in 
Figure 1-1, their effective resistance is the same as a single resistance whose value R123 is 
given by this formula: 

R123 1
1

R1
------- 1

R2
------- 1

R3
-------+ +

-----------------------------------=
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Figure 1-1 Parallel resistances

The formula gives correct results for positive resistance values between 0 (corresponding 
to a short circuit) and ∞ (corresponding to an open circuit) inclusive. On computers that 
do not allow division by zero, you would have to add tests designed to filter out the 
cases with resistance values of zero. (Negative values can cause trouble for this formula, 
regardless of the style of the arithmetic, but that reflects their troublesome nature in 
circuits, where they can cause instability.)

Arithmetic with Infinities usually gives reasonable results for expressions in which each 
independent variable appears only once.

Using IEEE Arithmetic 1

This section provides some example computations and describes how using IEEE 
arithmetic in the PowerPC Numerics environment makes programming these 
computations easier.

Evaluating Continued Fractions 1
Consider a typical continued fraction .

A B A' B'

R1

R2

R3

R123

cf x( )

cf x( ) 4 3

x 2– 1

x 7– 10

x 2– 2
x 3–
------------–

------------------------------+
------------------------------------------------–

-------------------------------------------------------------------–=
Using IEEE Arithmetic 1-9



C H A P T E R  1

IEEE Standard Arithmetic
An algebraically equivalent expression is :

Both expressions represent the same rational function, one whose graph is smooth and 
unexceptional, as shown in Figure 1-2.

Figure 1-2 Graph of continued fraction functions cf(x) and rf(x)

Although the two functions  and  are equal, they are not computationally 
equivalent. For instance, consider  at the following values of x:

Whereas  is perfectly well behaved, those values of x lead to division by zero when 
computing  and cause many computers to stop. In IEEE standard arithmetic, 
division by zero produces an Infinity. Therefore, PowerPC Numerics has no difficulty in 
computing  for those values.

On the other hand, simply computing  instead of  can also cause problems. If 
the absolute value of x is so big that overflows the chosen data format, then  
approaches  but computing  encounters , 
which yields something else. PowerPC Numerics returns NaN for such cases; some other 
machines return . Also, at arguments x 
between 1.6 and 2.4, the formula  suffers from roundoff error much more than 

 does. For those reasons, computing  is preferable to computing  if 
division by zero works the way it does in PowerPC Numerics, that is, if it produces 
Infinity instead of stopping computation.

rf x( )

rf x( ) 622 x 751 x 324 x 59 4x–( )–( )–( )–
112 x 151 x 72 x 14 x–( )–( )–( )–

----------------------------------------------------------------------------------------=

10

5

0
–5 0 5 10

rf x( ) cf x( )
rf x( )

x 1= rf 1( ) 7=

x 2= rf 2( ) 4=

x 3= rf 3( ) 8 5⁄=

x 4= rf 4( ) 5 2⁄=

rf x( )
cf x( )

cf x( )

rf x( ) cf x( )
x 4 cf x( )

cf ∞( ) 4= rf x( ) overflow( ) underflow( )⁄

maximum  value ( ) maximum  value ( )⁄  1=
rf x( )

cf x( ) cf x( ) rf x( )
1-10 Using IEEE Arithmetic
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In general, division by zero is an exceptional event not merely because it is rare but 
because different applications require different consequences. If you are not satisfied 
with the consequences supplied by the default PowerPC Numerics environment, you 
can choose other consequences by making the program test for NaNs and Infinities (or 
for the flags that signal their creation).

Rather than sprinkle tests throughout the program in an attempt to keep exceptions from 
occurring, you might prefer to put one or two tests near the end of the code to detect the 
(rare) occurrence of an exception and modify the results appropriately. That is more 
economical than testing every divisor for zero (since zero divisors are rare).

 

Computing the Area of a Triangle 1

 

Here is a familiar and straightforward task that fails when subtraction is aberrant: 
Compute the area  of a triangle given the lengths  of its sides. The 
formula given here performs this calculation almost as accurately as its individual 
floating-point operations are performed by the computer it runs on, provided the 
computer does not drop digits prematurely during subtraction. The formula works 
correctly, and provably so, on a wide range of machines, including all implementations 
of PowerPC Numerics.

The classical formula, attributed to Heron of Alexandria, is

where .

For needle-shaped triangles, that formula gives incorrect results on computers 

 

even when 
every arithmetic operation is correctly rounded

 

. For example, Table 1-2 shows an extreme 
case with results rounded to five decimal digits. With the values shown, rounded 

 must give either 100.01 or 100.02. Substituting those values for 

 

s

 

 in 
Heron’s formula yields either 0.0 or 1.5813 instead of the correct value 1.000025.

Evidently, Heron’s formula would be a very bad way for computers to calculate ratios of 
areas of nearly congruent needle-shaped triangles.

 

Table 1-2

 

Area using Heron’s formula

 

  Correct
Rounding 
downward

Roundin
g
upward

 
x

 
100.01 100.01 100.01

 y  99.995 99.995 99.995  

z

 

0.025 0.025 0.025

(

 

x

 

+ (

 

y

 

+

 

z

 

) ) / 2 100.015 100.01 100.02

 

A

 

1.000025 0.0000 1.5813

A x y z, ,( ) x y z, ,

A x y z, ,( ) s s x–( ) s y–( ) s z–( )=

s x y z+ +( ) 2⁄=

x y z+( )+( ) 2⁄
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A good procedure, numerically stable on machines that do not truncate prematurely 
during subtraction (such as machines that use IEEE arithmetic), is the following:

1. Sort  so that .

2. Test for  to see whether the triangle exists.

3. Compute A by the formula

▲ W A R N I N G

This formula works correctly only if you do not remove any of the 
parentheses. ▲

The success of the formula depends upon the following easily proved theorem:

THEOREM If p and q are represented exactly in the same conventional floating-point format, and 
if , then  too is representable exactly in the same format (unless  suffers 
underflow, something that cannot happen in IEEE arithmetic).

The theorem merely confirms that subtraction is exact when massive cancellation occurs. 
That is why each factor inside the square root expression is computed correctly to within 
a unit or two in its last digit kept, and A is not much worse, on computers that subtract 
the way PowerPC Numerics does. On machines that flush tiny results to zero, this 
formula for A fails because can underflow.

About the FPCE Technical Report 1

Even though many computers now conform to the IEEE standard, the standard has 
suffered from a lack of high-level portability. The reason is that the standard does not 
define bindings to high-level languages; it only defines a programming environment. For 
instance, the standard defines data formats that should be supported but does not tell 
how these data formats should map to variable types in high-level languages. It also 
specifies that the user must be able to control rounding direction but falls short of 
defining how the user is able to do so. 

However, the definition of a binding is in progress for the C programming language. The 
Floating-Point C Extensions (FPCE) branch of the Numerical C Extensions Group 
(NCEG), or ANSI X3J11.1, has proposed a general floating-point specification for the 
C programming language, called the FPCE technical report, that contains additional 
specifications for implementations that comply with IEEE floating-point standards 754 
and 854. 

The FPCE technical report not only specifies how to implement the requirements of the 
IEEE standards, but also requires some additional functions, called transcendental 
functions (sometimes called elementary functions). These functions are consistent with 
the IEEE standard and can be used as building blocks in numerical functions. The 
transcendental functions include the usual logarithmic and exponential functions, as 
well as  and ; financial functions for compound interest and annuity 

x y z, , x y z≥ ≥

z x y–≥

A x y z+( )+( ) z x y–( )–( ) x y z–( )+( )( ) 4⁄=

1 2⁄ p q⁄ 2≤ ≤ p q– p q–

p q–( )

ln 1 x+( ) e x 1–
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generator. The PowerPC Numerics library, contained in the file MathLib, implements 
the transcendental functions. 

Part 2 of this book describes how PowerPC Numerics complies with the 
recommendations in the FPCE technical report. 

PowerPC Numerics Versus SANE 1

Although PowerPC Numerics is an implementation of the IEEE Standard, it is not the 
Standard Apple Numerics Environment (SANE). SANE is the numerics environment 
used on 680x0-based Macintosh computers, and it is the numerics environment used 
when you run a 680x0 application on a PowerPC processor-based Macintosh computer. 
PowerPC Numerics is the environment used when you run an application built for 
a PowerPC processor-based Macintosh computer.

There are fundamental differences between PowerPC Numerics and SANE because of 
the differences in the microprocessors on which the two environments are used. The 
major difference is that SANE supports an 80-bit extended type and performs all 
floating-point computations in extended precision. This protects the user from roundoff 
error, overflows, and underflows that might occur in an intermediate value when 
determining the result of an expression. Because the PowerPC processor is double-based, 
support of an 80-bit data type would be inefficient. It instead supports a 128-bit type (in 
software) called double-double (which corresponds to the long double type in C). 
PowerPC Numerics provides this wide type only for cases where precision greater than 
that provided by the double format is necessary; PowerPC Numerics does not perform 
all computations in double-double precision. Instead, PowerPC Numerics recommends a 
method by which an expression is evaluated in the widest precision necessary (see 
Chapter 3, “Expression Evaluation”).

Another fundamental difference is that PowerPC Numerics conforms to the FPCE 
recommendations as well as to the IEEE standard. C implementations using SANE do 
not necessarily comply with the FPCE recommendations.

See Appendix A, “SANE Versus PowerPC Numerics,” for more information on the 
differences between PowerPC Numerics and SANE.
PowerPC Numerics Versus SANE 1-13
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