

A P P E N D I X A

A

S
A

N
E

 V
ersus P

ow
erP

C
 N

um
erics

Figure A-0
Listing A-0
Table A-0
SANE Versus PowerPC
Numerics A

This appendix describes how PowerPC Numerics differs from the Standard Apple
Numerics Environment (SANE) and tells you how to port programs that use SANE
features so that they use PowerPC Numerics features instead. SANE is the numerics
environment used on 680x0-based Macintosh computers. If you have written programs
that perform floating-point computations for a 680x0-based Macintosh computer, that
program uses SANE features. Unlike PowerPC Numerics, SANE is not compliant with
the recommendations in the FPCE technical report. Compliance with the FPCE report
allows a higher level of portability.

If you run a 680x0 application on a PowerPC processor-based Macintosh computer, it
uses SANE instead of the PowerPC Numerics environment unless you recompile the
program with a PowerPC compiler. If you want to recompile a program written for the
680x0-based Macintosh computer, you might have to modify some of your code.

Read this chapter if you are familiar with SANE and you want to know how PowerPC
Numerics compares with SANE. The first section lists the differences between SANE and
PowerPC Numerics. The last section provides some suggestions for porting your code.

Comparison of SANE and PowerPC Numerics A

This section goes chapter by chapter through Part 1 of the Apple Numerics Manual, second
edition, and tells where the two environments are alike and where they differ.

Floating-Point Data Formats A
The single and double data formats supported by PowerPC Numerics are identical to the
single and double data formats supported by SANE. PowerPC Numerics adds the
double-double format not supported in SANE. PowerPC Numerics does not support the
SANE floating-point formats comp (integral value) and 80-bit (and 96-bit) extended.

Conversions A
PowerPC Numerics converts any floating-point format or integer format to any other
floating-point format. SANE supports only conversions to and from the extended data
format because it performs all floating-point operations in extended precision.
Comparison of SANE and PowerPC Numerics A-1

A P P E N D I X A

SANE Versus PowerPC Numerics

Conversions between binary and decimal in SANE are accurate up to a certain number
of decimal digits for each floating-point data format. All conversions in PowerPC
Numerics except conversions to or from double-double are correctly rounded.

Expression Evaluation A
SANE uses the extended data format as the minimum evaluation format for all
floating-point operations. All operations are evaluated with the greatest amount of
precision possible, which ensures against midexpression overflow and underflow.

PowerPC Numerics does not specify one evaluation method but strongly recommends a
single or double minimum evaluation format with widest-need evaluation. This method
permits all expressions to be evaluated in as wide a format as is necessary without
forcing a wider format on expressions that could be done more quickly and as accurately
with a narrower format.

Note that with PowerPC Numerics, you are not ensured against midexpression overflow
and underflow as you are with SANE. For example, suppose you have the following
expression:

double d1, d2, d3, result;

d1 = d2 = d3 = 1.7E308; /* maximum number in double */

result = (d1 + d2) / d3;

With PowerPC Numerics, the expression d1 + d2 will overflow the double format, thus
producing +∞. Infinity divided by the variable d3 will still be +∞, and so the variable
result will be assigned +∞. With SANE, d1, d2, and d3 are converted to extended
format. The expression d1 + d2 will not overflow the extended format, and so the
variable result will be assigned the value 2.

Infinities, NaNs, and Denormalized Numbers A
Infinities, NaNs, and denormalized numbers are represented and used identically in
SANE and PowerPC Numerics.

Arithmetic and Comparison Operations A
SANE and PowerPC Numerics support the same seven basic arithmetic operations (add,
subtract, multiply, divide, square root, remainder, and round-to-integer). SANE has only
one version of the remainder and round-to-integer functions. PowerPC Numerics has
two versions of the remainder function and several round-to-integer functions.

Note
SANE’s square root, remainder, and round-to-integer functions return
type extended and take type extended as input. PowerPC Numerics
uses type double instead. ◆
A-2 Comparison of SANE and PowerPC Numerics

A P P E N D I X A

SANE Versus PowerPC Numerics

A

S
A

N
E

 V
ersus P

ow
erP

C
 N

um
erics

Both SANE and PowerPC Numerics support the following comparison operators: <, <=,
>=, >, ==, and !=. All other comparison operators shown in Table 6-1 on page 6-4 in this
book are not supported by SANE.

Environmental Controls A
SANE and PowerPC Numerics support the same rounding direction modes and the
same floating-point exception flags.

SANE supports dynamic rounding precision modes because it performs all operations in
extended and is therefore required by IEEE to support dynamic rounding precision
modes. PowerPC Numerics does not support rounding precision modes.

SANE supports halts for each of the five floating-point exceptions. PowerPC Numerics
does not currently support halts, although it might in the future.

Transcendental (Elementary) Functions A
In SANE, all transcendental functions are in extended format. That is, all of them take
type extended for floating-point input and all of them return type extended. In
PowerPC Numerics, all transcendental functions take double for floating-point input
and return type double. Some of the functions have a version that performs the same
operation in double-double precision.

SANE supports a subset of the transcendental functions that PowerPC Numerics
supports. The functions not supported by SANE are

Of the functions supported by both SANE and PowerPC Numerics, a few are
implemented differently in the two environments. See the section “Differences in
Transcendental Functions” on page A-5 for details.

Porting SANE to PowerPC Numerics 14

If you have a program that is written to take advantage of SANE features, you might
want to port it to the PowerPC processor to take advantage of the increased speed. This
section provides tips on how to do so.

erf erfc fdim

fmax fmin gamma

lgamma nearbyint rinttol

round roundtol trunc
Porting SANE to PowerPC Numerics A-3

A P P E N D I X A

SANE Versus PowerPC Numerics

Perform the following steps to be sure that your program will run on both 680x0-based
and PowerPC processor-based Macintosh computers:

1. Replace all uses of type comp with type double or long int.

2. Replace sane.h and math.h with fp.h and fenv.h.

3. Replace uses of extended with double_t or, if this is not possible, with long
double.

4. Replace SANE-specific functions with their MathLib equivalents. SANE-specific
functions include the functions listed as implemented differently in MathLib in the
section “Differences in Transcendental Functions” on page A-5, all class and sign
inquiry functions, and all environmental control functions.

The following sections guide you through these four steps.

Replacing Variables of Type comp A
The first step in porting a SANE program is to remove uses of the data type comp. The
type comp is a floating-point type with 64 bits of precision. In SANE, type comp is
automatically converted to extended format whenever an expression is evaluated, just
like every other SANE data format. In other words, comp is a floating-point type
disguised as an integer type. In most cases you can replace type comp with type double,
which provides 53 bits of precision. If your comp variables require greater than 53 bits of
precision, you might need to write your own integer arithmetic package.

Using MathLib Instead of the SANE Library A
The next step in porting a SANE program is to use the header files fp.h and fenv.h.
The files fp.h and fenv.h replace sane.h and math.h. All of the transcendental
functions declared in sane.h are now declared in fp.h, and most of them work exactly
the same way in the two environments. If your program includes the header file math.h
instead of sane.h, you should replace it with fp.h as well. The fp.h file declares all of
the functions and macros declared in the ANSI header file math.h plus some additional
ones.

Be aware of the differences in function prototypes in the files sane.h and fp.h. If your
program currently uses sane.h, the declarations for transcendental functions look like
this:

extended func_name (extended func_params);

In other words, all transcendental functions in sane.h are type extended and take
type extended as arguments. These declarations mean that you can pass any
floating-point type to a transcendental function without losing precision.

In fp.h, the typical transcendental function declaration has the form

double_t func_name (double_t func_params);
A-4 Porting SANE to PowerPC Numerics

A P P E N D I X A

SANE Versus PowerPC Numerics

A
S

A
N

E
 V

ersus P
ow

erP
C

 N
um

erics
The double_t type changes definition based on which processor the program is run on.
For the PowerPC processor, double_t is defined to be type double. For the 680x0
processor, double_t is defined to be type extended. Therefore, when you change from
using sane.h to using fp.h, your program will compile on both the 680x0 and the
PowerPC processors and there will be no change in the way your program runs on the
680x0. For more information on the double_t type, see “Portable Declarations” on
page A-9.

In some cases, a numeric function also has a long double implementation in MathLib.
The declarations of the long double implementations are in fp.h and have the form

long double func_namel (long double func_params);

See the function descriptions in Part 2 of this book to find out if a function you are using
has a long double implementation. If it does, you should examine the types of the
parameters you are passing to that function and you should examine the return values. If
a function parameter or return value requires more than 53 bits of precision, you may
need to use the long double implementation of the function when it runs on a
PowerPC processor. To do this, you simply add the letter l to the function call.

Replacing Extended Format Variables A
When changing extended variables, first change all variables that are declared as
extended to type double_t. For the 680x0 processor, double_t is defined as
extended. For the PowerPC processor, double_t is defined as double. Once you
make this change, your program runs with no changes on the 680x0 processor but now
also runs on the PowerPC processor. Next, you need to examine each double_t variable
to see if it will overflow on the PowerPC processor. If the variable requires more than
53 bits of precision, change its declaration to long double.

Using MathLib Functions A
As mentioned previously, PowerPC Numerics (specifically, the MathLib library)
provides a superset of the functions that SANE provides. In most cases you don’t need to
make any changes to your existing calls to the SANE library. However, there are a few
transcendental functions that have a different implementation in MathLib. Also, the
names have changed for the class and sign inquiries and floating-point environmental
controls.

Differences in Transcendental Functions A

The following transcendental functions are implemented differently in MathLib than in
the SANE library:

■ The copysign function does not follow the IEEE standard in SANE, which reverses
the order of the function’s parameters. PowerPC Numerics follows the parameter
order described in the IEEE standard.
Porting SANE to PowerPC Numerics A-5

A P P E N D I X A

SANE Versus PowerPC Numerics
■ The exp1 function in SANE is named expm1 in PowerPC Numerics.

■ The ipower function is replaced with the pow function in PowerPC Numerics.

■ The log1 function in SANE is named log1p in PowerPC Numerics.

■ The nextafter functions in SANE are nextfloat, nextdouble, and nextextended.
In PowerPC Numerics, they are nexafterf, nextafterd, and nextafterl for
float, double, and long double, respectively.

■ The nan function in SANE takes a character parameter, but the PowerPC Numerics
nan function takes a character string parameter.

■ The SANE pi function is replaced with the constant pi, the SANE inf function is
replaced with the constant INFINITY, and the NAN constant remains the same.

■ The pow function behaves differently in the two environments. For example, in SANE
pow(NAN,0) returns a NaN, whereas in PowerPC Numerics, pow(NAN,0) returns
a 1.

■ The remainder function in SANE takes three parameters, the last one being a return
value. The PowerPC Numerics remainder function takes two parameters. The
remquo function is analogous to the SANE remainder function.

■ The scalb function does not follow the IEEE standard in SANE, which reverses the
order of the function’s parameters. PowerPC Numerics follows the parameter order
described in the IEEE standard.

Differences in Class and Sign Inquiries A

The class and sign inquiry functions declared in sane.h are not implemented in
MathLib. Instead, MathLib provides a set of macros that perform the same actions.
Table A-1 shows the declarations in sane.h on the left and the corresponding
declaration in the MathLib header file fp.h on the right.

* The fpclassify macro returns a long integer.

Table A-1 Class and sign inquiries in SANE versus MathLib

sane.h declaration fp.h declaration

#define SNAN 0
#define QNAN 1
#define INFINITE 2
#define ZERONUM 3
#define NORMALNUM 4
#define DENORMALNUM 5
typedef short numclass;

enum NumberKind {
FP_SNAN = 0,
FP_QNAN,
FP_INFINITE,
FP_ZERO,
FP_NORMAL,
FP_SUBNORMAL };

numclass classfloat (extended x);
numclass classdouble(extended x);
numclass classcomp(extended x);
numclass classextended(extended x);

#define fp_classify(x)*

long signnum (extended x); #define signbit(x)
A-6 Porting SANE to PowerPC Numerics

A P P E N D I X A

SANE Versus PowerPC Numerics

A
S

A
N

E
 V

ersus P
ow

erP
C

 N
um

erics
Differences in Environmental Controls A

MathLib’s environmental control functions are declared in the header file fenv.h. They
affect only rounding direction modes and floating-point exceptions, and they are
different from the functions that perform the same tasks in the SANE library.

If the SANE program uses rounding precision modes, you must remove this code to run
it on the PowerPC processor. The PowerPC processor almost always uses less precision
than SANE when evaluating expressions, so this should not be a problem. See Chapter 3,
“Expression Evaluation,” for details.

If the SANE program uses halts, you need to replace them with your own exception
handling routines.

Replace the floating-point environmental access function or macro on the left side of
Table A-2 with the corresponding function or macro on the right side. If your compiler
supports the environmental access switch described in Appendix D, “FPCE
Recommendations for Compilers,” you must turn the switch on before using any of the
functions or macros from Table A-2.

Table A-2 Environmental access functions in SANE versus MathLib

sane.h declaration fenv.h declaration

#define INVALID 1
#define UNDERFLOW 2
#define OVERFLOW 4
#define DIVBYZERO 8
#define INEXACT 16

#define FE_INEXACT 0x02000000
#define FE_DIVBYZERO 0x04000000
#define FE_UNDERFLOW 0x08000000
#define FE_OVERFLOW 0x10000000
#define FE_INVALID 0x20000000

#define IEEEDEFAULTENV #define FE_DFL_ENV &_FE_DFL_ENV

typedef short exception; typedef long int fexcept_t;

typedef short environment typedef long int fenv_t;

#define TONEAREST 0
#define UPWARD 1
#define DOWNWARD 2
#define TOWARDZERO 3

#define FE_TONEAREST 0x00000000
#define FE_TOWARDZERO 0x00000001
#define FE_UPWARD 0x00000002
#define FE_DOWNWARD 0x00000003

typedef short rounddir; —

void setexception(exception e,
 long s);

int fesetexcept(const fexcept_t
 *flagp, int excepts);
int feclearexcept(int excepts);
int feraiseexcept(int excepts);

long testexception(exception e); int fetestexcept(int excepts);

void setround (rounddir r); int fesetround(int round);

rounddir getround(void); int fegetround(void);

continued
Porting SANE to PowerPC Numerics A-7

A P P E N D I X A

SANE Versus PowerPC Numerics
Listing A-1 is a C code fragment that runs on both the 680x0 and PowerPC processors. It
performs the pow function, tests for the occurrence of the inexact exception, and prints
the results.

Listing A-1 Using environmental controls in SANE and PowerPC Numerics

double_t x, y, result;/* double on PowerPC,extended on 680x0 */

#ifdef _ _SANE_ _ /* 680x0 processor */

exception fp_inexact;

#else /* PowerPC processor */

fexcept_t fp_inexact;

#endif

#ifdef _ _SANE_ _ /* 680x0 processor */

setenvironment(IEEEDEFAULTENV);

#else /* PowerPC processor */

fesetenv(FE_DFL_ENV);

#endif

result = pow(x, y);

#ifdef _ _SANE_ _ /* 680x0 processor */

fp_inexact = testexception (INEXACT);

#else /* PowerPC processor */

fp_inexact = fetestexcept (FE_INEXACT);

#endif

printf ("pow(%g,%g) = %g\t", x, y, result);

if (fp_inexact)

printf ("INEXACT\n");

* The feholdexcept function, although it replaces the procentry SANE function, affects only the exception
flags. It does not affect the rounding direction.

void setenvironment(environment e); void fesetenv(const fenv_t *envp);

void getenvironment(environment *e); void fegetenv(fenv_t *envp);

void procentry(environment *e); int feholdexcept(fenv_t *envp);*

void procexit(environment e); void feupdateenv(const fenv_t *envp);

Table A-2 Environmental access functions in SANE versus MathLib (continued)

sane.h declaration fenv.h declaration
A-8 Porting SANE to PowerPC Numerics

A P P E N D I X A

SANE Versus PowerPC Numerics

A
S

A
N

E
 V

ersus P
ow

erP
C

 N
um

erics
Compatibility Tools in MathLib A
This section describes some tools provided in MathLib that help with compatibility
between two environments. The tools include type definitions that help you make
efficient, portable variable declarations and macros that are defined differently on the
two architectures.

Portable Declarations A

MathLib defines two floating-point type definitions, float_t and double_t, in the
header file Types.h. If you define a variable to be float_t or double_t, it means
“use the most efficient floating-point type for this architecture.” Table A-3 shows the
definitions for float_t and double_t on PowerPC architecture compared with 680x0
architecture.

The PowerPC architecture is based on the IEEE double format. The most natural format
for computations is double, but the architecture allows computations in single format as
well. Therefore, float_t is defined to be float (single precision) and double_t is
defined to be double for the PowerPC architecture. The 680x0 architecture is based on
the extended format and performs all computations in extended format regardless of the
type of the operands. Therefore, float_t and double_t are both long double
(extended precision) for the 680x0 architecture.

If you declare a variable to be type double_t and you compile the source code as a
PowerPC application, the variable is double format. If you recompile the same source
code as an 680x0 application, the variable is extended format.

If your compiler is FPCE-compliant, it also supports the pragmas that allow the most
efficient floating-point type to be used for function return values, parameters, and local
variables. See Appendix D, “FPCE Recommendations for Compilers,” for more
information on these pragmas.

Table A-3 float_t and double_t definitions

Architecture float_t double_t

PowerPC float double

680x0 long double long double
Porting SANE to PowerPC Numerics A-9

A P P E N D I X A

SANE Versus PowerPC Numerics
Macros A

You might find the following macros useful to isolate 680x0-specific code from
PowerPC-specific code:

Macro Description

_ _SANE_ _ Defined if sane.h is used

_ _FP_ _ Defined if fp.h is used

LONG_DOUBLE_SIZE Returns the size in bytes of long double on the processor on
which the program is run

DOUBLE_SIZE Returns the size in bytes of double on the processor on which
the program is run

DECIMAL_DIG Returns the maximum size in digits of a decimal number that
can be converted to binary
A-10 Porting SANE to PowerPC Numerics

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	SANE Versus PowerPC Numerics
	Comparison of SANE and PowerPC Numerics
	Floating-Point Data Formats
	Conversions
	Expression Evaluation
	Infinities, NaNs, and Denormalized Numbers
	Arithmetic and Comparison Operations
	Environmental Controls
	Transcendental (Elementary) Functions

	Porting SANE to PowerPC Numerics
	Replacing Variables of Type comp
	Using MathLib Instead of the SANE Library
	Replacing Extended Format Variables
	Using MathLib Functions
	Differences in Transcendental Functions
	Differences in Class and Sign Inquiries
	Differences in Environmental Controls

	Compatibility Tools in MathLib
	Portable Declarations
	Macros

	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

