

C H A P T E R 9

9

C
onversion F

unctions

Conversion Functions 9

This chapter describes how you can perform the conversions required by the IEEE
standard using MathLib C functions. For each type of conversion, this chapter lists the
functions you can use to perform that conversion. It shows the declarations of these
functions, describes what they do, describes when they raise floating-point exceptions,
and gives examples of how to use them. For a description of the conversions required by
the IEEE standard and the details of how each conversion is performed in PowerPC
Numerics, see Chapter 5, “Conversions.” All of the conversion function declarations
appear in the file fp.h.

Converting Floating-Point to Integer Formats 9

In C, the default method of converting floating-point numbers to integers is to simply
discard the fractional part (truncate). MathLib provides two functions that convert
floating-point numbers to integers using methods other than the default C method and
that return the integers in integer types.

rinttol 9

You can use the rinttol function to round a real number to the nearest integer in the
current rounding direction.

long int rinttol (double_t x);

x Any floating-point number.

DESCRIPTION

The rinttol function rounds its argument to the nearest integer in the current
rounding direction and places the result in a long int type. The available rounding
directions are upward, downward, to nearest, and toward zero.

The rinttol function provides the floating-point to integer conversion as described in
the IEEE standard. It differs from rint (described on page 6-13) in that it returns the
value in an integer type; rint returns the value in a floating-point type.

Returns the nearest integer to x in the current rounding direction as an
integer type.

Adds 1/2 to the magnitude of x, chops to an integer, and returns the
value as an integer type.

rinttol x()

roundtol x()
Converting Floating-Point to Integer Formats 9-3

C H A P T E R 9

Conversion Functions

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of the
following exceptions:

■ inexact (if x is not an integer)

■ invalid (if the integer result is outside the range of the long int type)

SPECIAL CASES

Table 9-1 shows the results when the argument to the rinttol function is a zero, a
NaN, or an Infinity.

EXAMPLES

z = rinttol(+INFINITY);/* z = unspecified value for all rounding

directions because +INFINITY exceeds the

range of long int. The invalid exception

is raised. */

z = rinttol(300.1); /* z = 301 if rounding direction is upward

else z = 300. The inexact exception is

raised.*/

z = rinttol(–300.1); /* z = –301 if rounding direction is

downward else z = –300. The inexact

exception is raised. */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-1 Special cases for the rinttol function

Operation Result Exceptions raised

+0 None

None

Undefined None*

Undefined Invalid

Undefined Invalid

rinttol x()

rinttol +0()

rinttol 0–() 0–

rinttol NaN()

rinttol +∞()

rinttol ∞–()
9-4 Converting Floating-Point to Integer Formats

C H A P T E R 9

Conversion Functions

9

C
onversion F

unctions

roundtol 9

You can use the roundtol function to round a real number to the nearest integer value
by adding 1/2 to the magnitude and truncating.

long int roundtol (double_t x);

x Any floating-point number.

DESCRIPTION

The roundtol function adds 1/2 to the magnitude of its argument and chops to integer,
returning the answer in long int type.

The result is returned in an integer data type. (The return type is the difference between
the roundtol function and the round function, described on page 9-10.)

This function is not affected by the current rounding direction. Notice that the
roundtol function rounds halfway cases (1.5, 2.5, and so on) away from 0. With the
default rounding direction, rinttol (described on page 9-3) rounds halfway cases to
the even integer.

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of
the following exceptions:

■ inexact (if x is not an integer)

■ invalid (if the integer result is outside the range of the long int type)

SPECIAL CASES

Table 9-2 shows the results when the argument to the roundtol function is a zero, a
NaN, or an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-2 Special cases for the roundtol function

Operation Result Exceptions raised

+0 None

None

Undefined None*

Undefined Invalid

Undefined Invalid

roundtol x()

roundtol +0()

roundtol 0–() 0–

roundtol NaN()

roundtol +∞()

roundtol ∞–()
Converting Floating-Point to Integer Formats 9-5

C H A P T E R 9

Conversion Functions

EXAMPLES

z = roundtol(+INFINITY); /* z = an unspecified value because

+∞ is outside of the range of long
int. */

z = roundtol(0.5); /* z = 1 because |0.5| + 0.5 = 1.0. The

inexact exception is raised. */

z = roundtol(–0.9); /* z = –1 because |–0.9| + 0.5 = 1.4.

The inexact exception is raised. */

Rounding Floating-Point Numbers to Integers 9

MathLib provides six functions that convert floating-point numbers to integers and
return the integer in a floating-point type. The first is the rint function, which performs
the round-to-integer operation as described in Chapter 6, “Numeric Operations and
Functions.” The other functions either round in a specific direction or perform a
variation of the rint operation.

ceil 9

You can use the ceil function to round a real number upward to the nearest integer
value.

double_t ceil (double_t x);

x Any floating-point number.

DESCRIPTION

The ceil function rounds its argument upward. This is an ANSI standard C library
function. The result is returned in a floating-point data type.

Returns the nearest integer not less than x.

Returns the nearest integer not greater than x.

Returns the nearest integer to x in the current rounding direction.

Adds 1/2 to the magnitude of x and chops to an integer.

Truncates the fractional part of x.

ceil x()
floor x()
nearbyint x()
round x()
trunc x()
9-6 Rounding Floating-Point Numbers to Integers

C H A P T E R 9

Conversion Functions

9

C
onversion F

unctions

This function is the same as performing the following code sequence:

r = fegetround(); /* save current rounding direction */

fesetround(FE_UPWARD); /* round upward */

rint(x); /* round to integer */

fesetround(r); /* restore rounding direction */

EXCEPTIONS

When x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 9-3 shows the results when the argument to the ceil function is a zero, a NaN, or
an Infinity.

EXAMPLES

z = ceil(+INFINITY); /* z = +INFINITY because +INFINITY is already

an integer value by definition. */

z = ceil(300.1); /* z = 301.0 */

z = ceil(–300.1); /* z = –300.0 */

floor 9

You can use the floor function to round a real number downward to the next integer
value.

double_t floor (double_t x);

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-3 Special cases for the ceil function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

ceil x()

ceil +0()

ceil 0–() 0–

ceil NaN()

ceil +∞()

ceil ∞–() ∞–
Rounding Floating-Point Numbers to Integers 9-7

C H A P T E R 9

Conversion Functions
x Any floating-point number.

DESCRIPTION

The floor function rounds its argument downward. This is an ANSI standard C library
function. The result is returned in a floating-point data type.

This function is the same as performing the following code sequence:

r = fegetround(); /* save current rounding direction */

fesetround(FE_DOWNWARD); /* round downward */

rint(x); /* round to integer */

fesetround(r); /* restore rounding direction */

EXCEPTIONS

When x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 9-4 shows the results when the argument to the floor function is a zero, a NaN,
or an Infinity.

EXAMPLES

z = floor(+INFINITY); /* z = +INFINITY because +∞ is already an
integer value by definition. */

z = floor(300.1); /* z = 300.0 */

z = floor(–300.1); /* z = –301.0 */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-4 Special cases for the floor function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

floor x()

floor +0()

floor 0–() 0–

floor NaN()

floor +∞()

floor ∞–() ∞–
9-8 Rounding Floating-Point Numbers to Integers

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
nearbyint 9

You can use the nearbyint function to round a real number to the nearest integer in the
current rounding direction.

double_t nearbyint (double_t x);

x Any floating-point number.

DESCRIPTION

The nearbyint function rounds its argument to the nearest integer in the current
rounding direction. The available rounding directions are upward, downward, to
nearest, and toward zero.

The nearbyint function provides the floating-point to integer conversion described in
the IEEE Standard 854. It differs from rint (described on page 6-13) only in that it does
not raise the inexact flag when the argument is not already an integer.

EXCEPTIONS

When x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 9-5 shows the results when the argument to the nearbyint function is a zero, a
NaN, or an Infinity.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-5 Special cases for the nearbyint function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

nearbyint x()

nearbyint +0()

nearbyint 0–() 0–

nearbyint NaN()

nearbyint +∞()

nearbyint ∞–() ∞–
Rounding Floating-Point Numbers to Integers 9-9

C H A P T E R 9

Conversion Functions
EXAMPLES

z = nearbyint(+INFINITY); /* z = +INFINITY for all rounding

directions. */

z = nearbyint(300.1); /* z = 301.0 if rounding direction is

upward, else z = 300.0. */

z = nearbyint(–300.1); /* z = –301.0 if rounding direction is

downward, else z = –300.0. */

round 9

You can use the round function to round a real number to the integer value obtained by
adding 1/2 to the magnitude and truncating.

double_t round (double_t x);

x Any floating-point number.

DESCRIPTION

The round function adds 1/2 to the magnitude of its argument and chops to integer. The
result is returned in a floating-point data type.

This function is not affected by the current rounding direction. Notice that the round
function rounds halfway cases (1.5, 2.5, and so on) away from 0. With the default
rounding direction, rint (described on page 6-13) rounds halfway cases to the even
integer.

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises the
following exception:

■ inexact (if x is not an integer value)

SPECIAL CASES

Table 9-6 shows the results when the argument to the round function is a zero, a NaN,
or an Infinity.

round x()
9-10 Rounding Floating-Point Numbers to Integers

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
EXAMPLES

z = round(+INFINITY); /* z = +INFINITY because +∞ is already an
integer value by definition. */

z = round(0.5); /* z = 1.0 because |0.5| + 0.5 = 1.0. The

inexact exception is raised. */

z = round(–0.9); /* z = –1.0 because |–0.9| + 0.5 = 1.4.

The inexact exception is raised. */

trunc 9

You can use the trunc function to truncate the fractional part of a real number so that
just the integer part remains.

double_t trunc (double_t x);

x Any floating-point number.

DESCRIPTION

The trunc function chops off the fractional part of its argument. This is an ANSI
standard C library function.

This function is the same as performing the following code sequence:

r = fegetround(); /* save current rounding direction */

fesetround(FE_TOWARDZERO); /* round toward zero */

rint(x); /* round to integer */

fesetround(r); /* restore rounding direction */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-6 Special cases for the round function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

round +0()

round 0–() 0–

round NaN()

round +∞()

round ∞–() ∞–
Rounding Floating-Point Numbers to Integers 9-11

C H A P T E R 9

Conversion Functions
EXCEPTIONS

When x is finite and nonzero, the result of is exact.

SPECIAL CASES

Table 9-7 shows the results when the argument to the trunc function is a zero, a NaN,
or an Infinity.

EXAMPLES

z = trunc(+INFINITY); /* z = +INFINITY because +∞ is already an
integer value by definition. */

z = trunc(300.1); /* z = 300.0 */

z = trunc(–300.1); /* z = –300.0 */

Converting Integers to Floating-Point Formats 9

In the C programming language, conversions from integers stored in an integer format
to floating-point formats are automatic when you assign an integer to a floating-point
variable.

double d;

int x = 1;

d = x; /* value 1 automatically converted to double format */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 9-7 Special cases for the trunc function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+∞ None

None

trunc x()

trunc +0()

trunc 0–() 0–

trunc NaN()

trunc +∞()

trunc ∞–() ∞–
9-12 Converting Integers to Floating-Point Formats

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
Converting Between Floating-Point Formats 9

In the C programming language, conversions between floating-point formats are
automatic when you assign a floating-point number of one type to a variable of another
type.

float f = 0.0f; /* single format */

double d = 1.1;

long double ld; /* double-double format */

f = d; /* double 1.1 converted to single format */

ld = f; /* single 1.1 converted to double-double format */

d = ld; /* double-double 1.1 converted to double format */

Converting Between Binary and Decimal Numbers 9

MathLib provides two functions that let you manually convert between binary and
decimal formats.

Conversions between binary floating-point numbers and decimal numbers use
structures of type decimal. The decimal structure is defined in the header file fp.h as

struct decimal

{

char sgn;

char unused;

short exp;

struct

{

unsigned char length;

unsigned char text[SIGDIGLEN];

unsigned char unused;

} sig;

} decimal;

sgn The sign of the number (0 is positive, 1 is negative).

exp The exponent of the number. The exponent is expressed as a power of 10.

dec2num Converts a decimal number to a binary number.

num2dec Converts a binary number to a decimal number.
Converting Between Floating-Point Formats 9-13

C H A P T E R 9

Conversion Functions
sig The significand. String sig.text contains the significand as a decimal
integer in the form of a string, that is, with the string length in the zeroth
byte (sig.length) and the initial character of the string in the first byte
(sig.text[0] to sig.text[SIGDIGLEN – 1]).

The value represented is

(−1)sgn×sig×10exp

For example, if sgn equals 1, exp equals −3, and sig equals “85” (string length
sig.length equals 2, not shown), then the number represented is −0.085.

Note
The maximum length of the string sig is implementation dependent.
The limit is 36 characters. Also, the representations of 0 and 1 in the
16-bit word sgn are implementation dependent. ◆

Conversions from binary to decimal use a decimal format structure to specify how the
number should look in decimal. The decform structure is defined in the header file
fp.h as

struct decform

{

char style; /* FLOATDECIMAL or FIXEDDECIMAL */

char unused;

short digits;

} decform;

style The style of output. This field equals 0 (FLOATDECIMAL) for floating
and 1 (FIXEDDECIMAL) for fixed.

digits The number of significant digits for the floating style and the number of
digits to the right of the decimal point for the fixed style. (The value of
digits may be negative if the style is fixed.)

Note
Formatting details, such as the representations of 0 and 1 in the 16-bit
style word, are implementation dependent. ◆

If the style field of the decform structure equals 0 (in C, f.style == FLOATDECIMAL),
the output is formatted in floating style, with the digits field specifying the number of
significant digits required. Output in floating style is represented in the following format;
Table 9-8 defines its components.

[– |]m[.nnn]e[+ | -]dddd
9-14 Converting Between Binary and Decimal Numbers

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
If the style field of the decform structure equals 1 (in C, f.style == FIXEDDECIMAL),
the output is formatted in fixed style, with the digits field specifying the number of digits
to follow the decimal point. All output in fixed style is represented in the following format;
Table 9-9 defines its components.

[-]mmm[.nnn]

Note that if sgn equals 0, then floating-style output begins with a space but fixed-style
output does not.

Double-double values being converted to decimal strings are first rounded to 113 bits (if
they in fact span more than that number of bits in their significands) and then converted
to the decimal string of the desired length.

Table 9-8 Format of decimal output string in floating style

Component Description

Minus sign (–) or space Minus sign if sgn = 1; space if sgn = 0

m Single digit, 0 only if value represented is 0

Point (.) Present if digits > 1

nnn String of digits; present if digits > 1

e The letter e

Plus sign (+) or minus sign (–) Plus sign if exp ≥ 0; minus sign if exp < 0.

dddd One to four exponent digits

Table 9-9 Format of decimal output string in fixed style

Component Description

Minus sign (–) Present if sgn = 1

mmm String of digits; at least one digit but no superfluous leading zeros

Point (.) Present if digits > 0

nnn String of digits of length equal to digits; present if digits > 0
Converting Between Binary and Decimal Numbers 9-15

C H A P T E R 9

Conversion Functions
dec2num 9

You can use the dec2num function to convert a decimal number to a binary
floating-point number.

float dec2f (const decimal *d);

double_t dec2num (const decimal *d);

long double dec2numl (const decimal *d);

short int dec2s (const decimal *d);

long int dec2l (const decimal *d);

d The decimal structure to be converted. See page 9-13 for the definition of
the decimal structure.

DESCRIPTION

The dec2num function converts a decimal number in a decimal structure to a double
format floating-point number. Conversions from the decimal structure type handle any
sig string of length 36 or less (with an implicit decimal point at the right end).

There are three versions of this function that convert to a floating-point type: dec2f
converts the decimal number to the float type, dec2num converts to the double type,
and dec2numl converts to the long double type. The other two versions of this
function, dec2s and dec2l, convert to the short and long integer types, respectively.

IMPORTANT

When you create a decimal structure, you must set sig.length to the
size of the string you place in sig.text. You cannot leave the length
field undefined. ▲

Before using this function, you can use the numeric formatter (str2dec, described on
page 9-21) to convert a decimal string to a decimal structure suitable for input to the
dec2num function.

EXCEPTIONS

When the sig string is longer than 36 characters, the result is undefined.

SPECIAL CASES

The following special cases apply:

■ If sig.text[0] is “0” (zero), the decimal structure is converted to zero. For
example, a decimal structure with sig = “0913” is converted to zero.
9-16 Converting Between Binary and Decimal Numbers

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
■ If sig.text[0] is “N”, the decimal structure is converted to a NaN. The
succeeding characters of sig are interpreted as a hexadecimal representation of the
result’s significand: if fewer than four characters follow the N, then they are right
aligned in the high-order 15 bits of the field f illustrated in the section “Formats” in
Chapter 2, “Floating-Point Data Formats”; if four or more characters follow the N,
then they are left aligned in the result’s significand.

■ If sig.text[0] is “I”, the decimal structure is converted to an Infinity.

EXAMPLES

decimal d;

double_t result;

d.sgn = 0;

d.exp = 3;

d.sig.length = 3;

d.sig.text[0] = '2';

d.sig.text[1] = '0';

d.sig.text[2] = '8';

result = dec2num(&d); /* result = 208,000 stored in double

format */

num2dec 9

You can use the num2dec function to convert a binary floating-point number to a
decimal number.

void num2dec (const decform *f, double_t x, decimal *d);

void num2decl (const decform *f, long double x, decimal *d);

f A decform structure that describes how the number should look in
decimal. See page 9-14 for a description of the decform structure.

x The floating-point number to be converted.

d Upon return, a pointer to the decimal structure containing the number.
See page 9-13 for a description of the decimal structure.

DESCRIPTION

The num2dec function converts a floating-point number to a decimal number. The
decimal number is contained in a decimal structure. Each conversion to a decimal
structure d is controlled by a decform structure f. All implementations allow 36 digits
to be returned in the sig field of the decimal structure. The implied decimal point is at
the right end of sig, with exp set accordingly.
Converting Between Binary and Decimal Numbers 9-17

C H A P T E R 9

Conversion Functions
After using the num2dec function, you can use the dec2str function to convert the
decimal structure to a character string.

IMPORTANT

Use the same decimal format structure settings for dec2str as you
used for num2dec; otherwise, the results are unspecified. ▲

EXCEPTIONS

When the number of digits specified in a decform structure exceeds an implementation
maximum (which is 36), the result is undefined.

A number might be too large to represent in a chosen fixed style. For instance, if the
implementation’s maximum length for sig is 36, then (which requires 33 digits to
the left of the point in fixed-style representations) is too large for a fixed-style
representation specifying more than two digits to the right of the point. If a number is
too large for a chosen fixed style, then (depending on the numeric implementation) one
of two results is returned: an implementation might return the most significant digits of
the number in sig and set exp so that the decimal structure contains a valid
floating-style approximation of the number; alternatively, an implementation might
simply set sig to the string “?”. Note that in any implementation, the following test
determines whether a nonzero finite number is too large for the chosen fixed style.

decimal d;

decform f;

int too_big; /* Boolean */

too_big = (-d.exp != f.digits) || (d.sig.text[0] == "?");

For fixed-point formatting, PowerPC Numerics treats a negative value for digits as a
specification for rounding to the left of the decimal point; for example, digits = –2
means to round to hundreds. For floating-point formatting, a negative value for digits
gives unspecified results.

SPECIAL CASES

■ For zeros, the character “0” is placed in sig.text[0].

■ For NaNs, The character “N” is placed in sig.text[0]. The character “N” might be
followed by a hexadecimal representation of the input significand. The third and
fourth hexadecimal digits following the “N” give the NaN code. For example,
“N4021000000000000” has NaN code 0x21.

■ For Infinities, the character “I” is placed in sig.text[0].

In all three of these cases, exp is undefined.

1035
9-18 Converting Between Binary and Decimal Numbers

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
EXAMPLES

decimal d;

decform f;

double_t fp_num = 1.000007;

f.style = FLOATDECIMAL; /* floating-point format */

f.digits = 7; /* seven significant digits */

num2dec(&f, fp_num, &d); /* d now contains 1.000007 expressed

in decimal structure */

Converting Between Decimal Formats 9

MathLib provides a scanner for converting from decimal strings to decimal structures
and a formatter for converting from decimal structures to decimal strings.

dec2str 9

You can use the dec2str function to convert a number in a decimal structure to a
decimal string.

void dec2str (const decform *f, const decimal *d, char *s);

f A decform structure that describes how the number should look in
decimal. See page 9-14 for a description of the decform structure.

d The decimal structure to be converted. See page 9-13 for the definition of
the decimal structure.

s On return, a string representing the number in decimal.

DESCRIPTION

The dec2str function is the PowerPC Numerics formatter. It takes a number from a
decimal structure and converts it to a string. You can use the num2dec function to
convert a binary floating-point number to a decimal structure appropriate for input to
the dec2str function.

dec2str Converts decimal structures to decimal strings. The PowerPC Numerics
formatter.

str2dec Converts decimal strings to decimal structures. The PowerPC Numerics
scanner.
Converting Between Decimal Formats 9-19

C H A P T E R 9

Conversion Functions
IMPORTANT

Use the same decimal format structure settings for dec2str as you
used for num2dec; otherwise, results are unspecified. ▲

The numeric formatter is controlled by a decform structure f. With floating style,
numbers formatted using the same value for f.digits have aligning decimal points
and e’s. To ensure that numbers have the same width also, pad the exponent-digits field
with spaces to a width of 4. For example, if f.digits = 12, then pad 12 + 8 – length(s)
spaces on the right of the result string s. The value 8 accounts for the sign, point, letter e,
exponent sign, and four exponent digits. Note that this scheme gives the correct field
width for NaNs and Infinities too.

With fixed style, numbers formatted using the same value for f.digits have aligning
decimal points if enough leading spaces are added to the result string s to attain a fixed
width, which must be no narrower than the widest s.

IMPORTANT

When you create a decimal structure, you must set sig.length to the
size of the string you place in sig.text. You cannot leave the length
field undefined. ▲

EXCEPTIONS

The formatter is always exact and signals no exceptions.

SPECIAL CASES

For fixed-point formatting, dec2str treats a negative value for digits as a
specification for rounding to the left of the decimal point; for example, digits = –2
means to round to hundreds. For floating-point formatting, values for digits less
than 1 are treated as 1.

NaNs are formatted as NAN; Infinities are formatted as INF. A leading sign or space is
included according to the style convention.

The formatter never returns fewer significant digits than are contained in sig. However,
if the decform structure calls for more significant digits than are contained in sig, then
the formatter pads with zeros as needed.

If more than 80 characters are required to honor digits, then the formatter returns the
string “?”.

EXAMPLES

Suppose you have an accounting program that computes exact values using binary
numbers of pennies and prints outputs in dollars and cents. If you simply divide
the number of pennies by 100 to get dollars, you incur errors because hundredths are not
exact in binary. One way to print out exact values in dollars and cents is to convert the
number of pennies to a decimal structure, perform the division by adjusting the
exponent, and print the result, as shown in Listing 9-1.
9-20 Converting Between Decimal Formats

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
Listing 9-1 Accounting program

#include <fp.h>

decform df;

double pennies; /* This is the input value */

decimal dpennies; /* decimal value for pennies */

char * dollars; /* string to print as $$$.¢¢ */

{

df.style = FIXEDDECIMAL;

df.digits = 0; /* start with 0 digits after decimal point */

num2dec(&df, pennies, &dpennies); /* decimal pennies */

dpennies.exp = dpennies.exp – 2; /* divide by 100 */

df.digits = 2; /* request 2 digits after decimal point */

dec2str(&df, &dpennies, dollars);

/* dollar string to print */

}

str2dec 9

You can use the str2dec function to convert a decimal string to a decimal structure.

void str2dec (const char *s, short *ix, decimal *d, short *vp);

s The character string containing the number to be converted.

ix On entry, the starting position in the string. On return, one greater than
the position of the last character in the string that was parsed if the entire
string was not converted successfully.

d On return, a pointer to the decimal structure containing the decimal
number. See page 9-13 for a description of the decimal structure.

vp On return, a Boolean argument indicating the success of the function. If
the entire string was parsed, vp is true. If part of the string was parsed,
vp is false and ix indicates where the function stopped parsing.

DESCRIPTION

The str2dec function is the PowerPC Numerics scanner, which is designed for use both
with fixed strings and with strings being received interactively character by character.
The scanner parses the longest possible numeric substring; if no numeric substring is
recognized, then the value of ix remains unchanged.
Converting Between Decimal Formats 9-21

C H A P T E R 9

Conversion Functions
To convert floating-point strings embedded in text, parse to the beginning of a
floating-point string ([+ | –] digit) and pass the current scan location as the index into the
text. The conversion routine will return the value scanned and a new value of the index
for continued parsing.

You might need to distinguish those numeric ASCII strings that represent values of an
integer format. You can do this by scanning the source, looking for integer syntax. You
can handle integers yourself and send to the numeric scanner any strings with
floating-point syntax (that is, containing a period (.), an E, or an e). You might also want
to pass along to the scanner any strings that cause integer overflow.

EXCEPTIONS

The scanner signals no exceptions. It faithfully converts all values within range that are
representable in the decimal structure format.

SPECIAL CASES

To convert a zero, NaN, or Infinity, use one of the following as input:

EXAMPLES

Listing 9-2 shows an example of how to scan decimal strings into an application and
then convert the strings to binary floating-point numbers using MathLib functions. Table
9-10 shows some sample inputs to the loop shown in Listing 9-2 and the results after
each string has been converted to a decimal structure using str2dec.

Listing 9-2 Scanning algorithm

s = ""; /* initialize string */

/* loop until string is not a valid prefix*/

do

 {

/* code to get next character and append to string goes here */

/* scan string */

 ix = 0;

 str2dec(s, &ix, &d, &vp);

 }

while (vp = false);

/* convert from decimal to numeric-format result */

result = dec2num(d);

–0 +0 0 –INF Inf NAN –NaN() nan
9-22 Converting Between Decimal Formats

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
Table 9-10 Examples of conversions to decimal structures

Input
string

Index Output
value Valid prefixIn Out

12 0 2 12 True

12E 0 2 12 True

12E– 0 2 12 True

12E–3 0 5 12E–3 True

12E–X 0 2 12 False

12E–3X 0 5 12E–3 False

x12E–3 1 6 12E–3 True

IN 0 0 NAN True

INF 0 3 INF True
Converting Between Decimal Formats 9-23

C H A P T E R 9

Conversion Functions
Conversions Summary 9

This section summarizes the C constants, macros, functions, and type definitions
associated with converting floating-point values.

C Summary 9

Constants 9

#define SIGDIGLEN 36 /* significant decimal digits */

#define DECSTROUTLEN 80 /* max length for dec2str output */

#define FLOATDECIMAL ((char)(0))

#define FIXEDDECIMAL ((char)(1))

Data Types 9

struct decimal

{

char sgn; /* sign 0 for +, 1 for – */

char unused;

short exp; /* decimal exponent */

struct

{

unsigned char length;

unsigned char text[SIGDIGLEN]; /* significant digits */

unsigned char unused;

} sig;

};

typedef struct decimal decimal;

struct decform

{

char style; /* FLOATDECIMAL or FIXEDDECIMAL */

char unused;

short digits;

};

typedef struct decform decform;
9-24 Conversions Summary

C H A P T E R 9

Conversion Functions

9
C

onversion F
unctions
Conversion Routines 9

Converting Floating-Point Formats to Integer Formats

long int rinttol (double_t x);

long int roundtol (double_t x);

Rounding Floating-Point Numbers to Integers

double_t ceil (double_t x);

double_t floor (double_t x);

double_t nearbyint (double_t x);

double_t round (double_t x);

double_t trunc (double_t x);

Converting Decimal Numbers to Binary Numbers

float dec2f (const decimal *d);

double_t dec2num (const decimal *d);

long double dec2numl (const decimal *d);

short int dec2s (const decimal *d);

long int dec2l (const decimal *d);

Converting Binary Numbers to Decimal Numbers

void num2dec (const decform *f, double_t x, decimal *d);

void num2decl (const decform *f, long double x, decimal *d);

Converting Between Decimal Formats

void dec2str (const decform *f, const decimal *d, char *s);

void str2dec (const char *s, short *ix, decimal *d,
short *vp);
Conversions Summary 9-25

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	Conversion Functions
	Converting Floating-Point to Integer Formats
	Rounding Floating-Point Numbers to Integers
	Converting Integers to Floating-Point Formats
	Converting Between Floating-Point Formats
	Converting Between Binary and Decimal Numbers
	Converting Between Decimal Formats
	Conversions Summary
	C Summary
	Constants
	Data Types
	Conversion Routines

	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

