

A P P E N D I X D

D

F
P

C
E

 R
ecom

m
endations for C

om
pilers

Figure D-0
Listing D-0
Table D-0
FPCE Recommendations for
Compilers D

This appendix gives some recommendations for what compilers should implement to
comply with the FPCE technical report. The PowerPC Numerics library provides much
of this compliance, but some aspects of the report must be implemented by the compiler.
This appendix describes those features that must be implemented in the compiler and
recommends how they should be implemented. You should read this appendix if you are
a compiler designer, or if you are a programmer and want to know what numeric
features to look for in your compiler.

Environmental Access Switch D

To allow compilers to better optimize applications without ignoring the floating-point
environment altogether, the FPCE technical report defines the following pragma to be
used as an environmental access switch:

#pragma fenv_access on | off | default

The environmental access switch specifies whether an application may access the
floating-point environment. Access to the floating-point environment must occur as if at
run time, whereas optimizations occur at compile time. At compile time, the default (to
nearest) rounding mode is in effect and all exception flags are clear (this is the default
environment). Without an environmental access switch, the compiler must always
assume that every floating-point expression might produce an exception, and therefore
the compiler cannot perform some types of optimizations (such as forward and
backward code motion) on floating-point expressions.

If the environmental access switch is supported, whenever programmers use any of the
environmental control functions (described in Chapter 8, “Environmental Control
Functions”), they should first turn on the switch. Where the switch is on, the compiler
does not fully optimize floating-point expressions, because it assumes that that part of
the application can access the floating-point environment. (Accessing the floating-point
environment means setting the rounding direction or reading the status of the exception
flags.) Where the switch is off, the compiler can fully optimize any floating-point
expression because it assumes that that part of the application does not access the
floating-point environment. If the application accesses the floating-point environment
when the switch is off, the result is undefined.
Environmental Access Switch D-1

A P P E N D I X D

FPCE Recommendations for Compilers

If an application uses the default rounding mode and does not access floating-point
exception flags, the programmer may turn off the environmental access switch, allowing
the application to be fully optimized. If the application contains modules that must
access the floating-point environment, the programmer must turn on the environmental
access switch in those modules and turn it off in all other modules. In this way, the
modules that do not require access can be fully optimized.

The FPCE technical report recommends these programming conventions:

■ A function call must not alter its caller’s modes, clear its caller’s flags, or depend on
the state of its caller’s flags unless the function is so documented.

■ A function call is assumed to require default modes unless its documentation
specifically promises otherwise or unless it does not contain floating-point
expressions.

■ A function call is assumed to have the potential of raising floating-point exceptions
unless its documentation specifically promises otherwise or unless it does not contain
floating-point expressions.

■ At compile time, the default environment is in effect.

These conventions allow the programmer to ignore the floating-point environment
altogether if default modes are sufficient for the application or function.

Where supported, the fenv_access pragma can occur only outside external
declarations. It enables or disables compiler optimizations until another fenv_access
pragma is encountered or until the end of the module. The default state for
fenv_access is implementation dependent.

Contraction Operator Switch D

To allow programmer control of whether contraction operators are used, the FPCE
technical report defines the following pragma:

#pragma fp_contract on | off

When the fp_contract pragma is turned on, the compiler can produce contraction
operators in the generated code. For the PowerPC processor, the contraction operators
are the multiply-add instructions. These instructions perform a multiplication operation
and either an addition or a subtraction operation with at most a single roundoff error.
For some input values, the result of a multiply-add instruction is slightly different than if
the operations were performed separately. This difference in value might be
unacceptable in certain programs. Compilers that support the fp_contract pragma
allow programmers to disable the generation of multiply-add instructions where
necessary.
D-2 Contraction Operator Switch

A P P E N D I X D

FPCE Recommendations for Compilers

D

F
P

C
E

 R
ecom

m
endations for C

om
pilers

Where supported, the fp_contract pragma can occur only outside external
declarations. It enables or disables contraction operators until another fp_contract
pragma is encountered or until the end of the module. The default state for
fp_contract is implementation dependent.

Hexadecimal Floating-Point Constants D

The FPCE technical report expands the definition of a floating-point constant in C to
include hexadecimal floating-point constants. This format makes it easier to represent
constants equal to or near arbitrary powers of 2 because they can be represented in
hexadecimal instead of having to be converted to decimal.

A hexadecimal floating-point constant has the form

0xhex_digit_seq[.hex_digit_seq]p[+|-]binary_exponent[suffix]

which is interpreted as

hex_digit_seq A sequence of hexadecimal digits. The first digit sequence must be
preceded by the characters 0X or 0x. The hexadecimal point and the digit
sequence appearing after it are optional.

binary_exponent
A decimal integer representing a power of 2. The exponent may or may
not have a sign, but it must be preceded by the character p.

suffix One of the standard C floating-point constant suffixes such as f for
float. All floating-point constants are type double unless specified
otherwise.

Some examples of hexadecimal floating-point constant expressions are

0x1.1111p–2 /* interpreted as 1.111116 × 2–2 */
0x256p35f /* interpreted as 25616 × 235 */

Implementing an Expression Evaluation Method D

Though PowerPC Numerics can recommend certain expression evaluation methods,
these methods must be implemented by the compiler. As described in Chapter 3,
“Expression Evaluation,” compilers may or may not support widest-need evaluation.
This section describes

■ the advantages and disadvantages of supporting and not supporting widest-need
evaluation

hex_digit_seq.hex_digit_seq 2 +|-()binary_exponent×
Hexadecimal Floating-Point Constants D-3

A P P E N D I X D

FPCE Recommendations for Compilers

■ some special issues compilers must consider regarding evaluating floating-point
constants and initializing floating-point variables

■ the FPCE-recommended macros and pragmas that help programmers use the most
efficient types possible and determine which expression evaluation method is being
used

Expression Evaluation Without Widest Need 14
The main advantage of using an expression evaluation method without widest-need
evaluation is that it is simple to implement. The PowerPC architecture is based on
single-precision and double-precision operations, so either single or double is a logical
choice for the minimum evaluation format.

Choosing single as the minimum format provides the highest performance for
single-precision algorithms yet still allows double and double-double algorithms to be
performed with greater precision and range. A single minimum evaluation format, then,
allows the best possible performance for all expressions by allowing the semantic type of
a simple expression to determine its evaluation format.

Choosing double as the minimum format provides extra precision and range to
single-precision operations and conforms to the traditional behavior of the C
programming language (traditional C performs all floating-point operations in double
precision). Performing all single-precision operations in double precision protects the
operations against roundoff errors and against encountering an overflow or underflow
in an intermediate value. For example, consider the following expression:

If you perform this expression by hand, you get . If all constants are in single format,
the expression produces +∞. The constant is near the end of the range of single
format. Multiplying by produces , which is rounded to +∞. Then, +∞ is divided
by , and the answer is still +∞.

If the minimum evaluation format is double, the constants and are converted
to double format before the result is calculated. The multiplication operation no longer
overflows the range of the data type because the double format can easily hold . The
value divided by produces , which is then converted back to single format.

Choosing the double-double format provides the greatest available precision to all
floating-point operations, protecting double-precision operations as well as
single-precision operations from roundoff errors. However, it significantly decreases
performance for those expressions that would normally be evaluated in a narrower
format. In most cases, the extra precision is not necessary.

Imposing a narrow format allows the best possible performance for narrow-format
operations but might produce more roundoff errors in places where the extra precision
really is necessary. Using widest-need evaluation for complex expressions in conjunction
with a minimum evaluation format minimizes the disadvantages of choosing one
minimum evaluation format.

1038 1020×
1020

1038

1038

1020 1058

1020

1038 1020

1058

1058 1020 1038
D-4 Implementing an Expression Evaluation Method

A P P E N D I X D

FPCE Recommendations for Compilers

D

F
P

C
E

 R
ecom

m
endations for C

om
pilers

Expression Evaluation With Widest Need 14
Widest-need evaluation provides some of the advantages of using double-double as the
minimum format while eliminating the pitfalls. With widest-need evaluation, if an
expression contains a double-double variable, all other variables in that expression will
ultimately be converted to double-double format, thus reducing the chance of roundoff
error in these expressions. If an expression does not contain a double-double variable,
widest-need evaluation allows the expression to be evaluated in the narrowest format
possible, allowing the best possible performance for that expression.

Widest-need evaluation can seriously inhibit the common subexpression removal
optimization for subexpressions of narrower types. If the type of a subexpression is
narrower than the type of its enclosing expression, the format of the enclosing expression
is imposed on that subexpression. The subexpression’s operands are converted to the
wider format. Because the conversion must occur as if at run time, the common
subexpression removal optimization is in effect disabled for this subexpression.

Floating-Point Constant Evaluation D
When a floating-point constant expression appears in a program, the expression
evaluation method determines its evaluation format. When widest-need evaluation is
not used, the constant is the wider of the minimum evaluation format and the semantic
type of the expression. With widest-need evaluation in effect, the constant is converted to
the evaluation format of the complex expression it is part of.

In most cases, floating-point constant expressions must be evaluated as if at run time,
although they may actually be evaluated at compile time. At compile time, the default
rounding direction is in effect, and no floating-point exceptions may be flagged. (These
conditions are known as the default floating-point environment. See Chapter 4,
“Environmental Controls,” for more information.) However, if evaluation takes place as
if at run time, the floating-point environment may affect or be affected by the evaluation.
This means that if an expression is unexceptional and the default rounding direction is in
effect, the expression can be evaluated at compile time. If the expression is exceptional or
the current environment is not in the default state, the expression must be evaluated at
run time.

In the following two cases the evaluation always takes place at compile time:

■ The constant expression appears within the declaration of a variable explicitly
declared to be static:

static double x = 0.3 + 0.3;

■ The constant expression appears within the declaration of an aggregate type variable
(array, structure, or union):

struct {int x = 0; double y = 0.3 + 0.3;} numbers;
Implementing an Expression Evaluation Method D-5

A P P E N D I X D

FPCE Recommendations for Compilers

The requirement that floating-point constant expressions be evaluated as if at run time
usually inhibits the constant folding optimization, in which values of constants are
combined at compile time to produce fewer operations at run time. However, constant
folding can occur

■ if a floating-point constant expression is required to be evaluated at compile time (that
is, if the expression is part of the declaration of either an explicitly declared static
variable or an aggregate type)

■ if the evaluation of the expression at compile time has exactly the same results as it
would if evaluated at run time. This can happen under the following conditions:
n If an expression evaluates to be nonexceptional at compile time, it would also

evaluate to be nonexceptional at run time.
n If the expression appears in a portion of the program where access to the

floating-point environment is disabled, the default environment will be in effect at
run time, just as it is at compile time.

The following example illustrates when floating-point constant expressions are
evaluated:

#pragma fenv_access on

void f(void) {

float w[] = {0.0 / 0.0}; /* no exception raised */

static float x = 0.0 / 0.0; /* no exception raised */

float y = 0.0 / 0.0; /* exception raised */

x = 1.0 / 4.0; /* exact (no exception raised) */

y = 1.0 / 3.0; /* exception raised */

}

#pragma fenv_access off

void g(void) {

double z;

z = 0.0 / 0.0; /* no exception raised */

}

In the declaration of the array w, a floating-point constant expression contains division by
zero. This operation is evaluated at compile time because it appears in the declaration of
an aggregate type. Similarly, the division by zero in the declaration of x is evaluated at
compile time because it is declared static. Neither of these expressions generates an
exception, because they occur at compile time, although the compiler should generate a
warning message in each case.

The next declaration (of float y) also includes the expression . This expression
is evaluated at run time, and the invalid-operation exception is raised.

The first statement in function f assigns to x the value of the floating-point constant
expression . The compiler looks at this expression to determine if it will raise any
exceptions. The expression is found to be exact, so the compiler can optimize it.

0.0 0.0⁄

1.0 4.0⁄
D-6 Implementing an Expression Evaluation Method

A P P E N D I X D

FPCE Recommendations for Compilers

D
F

P
C

E
 R

ecom
m

endations for C
om

pilers
The second statement of the function f assigns to y the value of the floating-point
constant expression . The compiler determines that this expression will raise the
inexact exception, so it must be evaluated at run time. The compiler cannot optimize it.

Finally, function g assigns to the double variable z the value of the floating-point
constant expression . This statement appears after the fenv_access pragma has
been turned off. This pragma (described in the section “Environmental Access Switch”
on page D-1) signals to the compiler that the default environment will be in effect at run
time. Because exceptions are disabled in the default environment, this statement will not
raise a run-time exception, and so it may be evaluated at compile time and optimized.

Initializing Floating-Point Objects D
A program achieves better performance if it initializes data (including floating-point
data) at compile time. The degree to which this is possible depends on the programming
language and the compiler options that are supported.

As specified for the C programming language, floating-point constant expressions are
generally evaluated as if at run time. This includes floating-point constants that initialize
floating-point variables. However a floating-point variable may be initialized at compile
time

■ if the variable is declared to be static

static float x = 0.3;

■ if the variable is part of an aggregate type

struct {int x = 0; float y = 0.3;} numbers;

■ if the initializing value is nonexceptional (exact) and is in the format of the variable

double y = 0.0;
float x = 0.0f;

■ if access to the floating-point environment is disabled in the part of the program
where the variable is initialized

#pragma fenv_acess off
float x = 0.3;

For programming languages other than C, the data initialization model may be simpler.
For example, in Fortran static initialization is accomplished with the DATA statement
(embedded in a BLOCK DATA subprogram for labeled COMMON initialization), and
the initializing values may only be constants or parameters. Such initialization is
accomplished as if at compile time. Variables not initialized by the DATA statement are
considered uninitialized and are assigned values at execution time with executable
statements.

Data initialization rules for Pascal compilers are implementation defined and must be
fully documented. In MPW Pascal targeting 680x0-based Macintosh computers, for
example, a unit requiring initialization of its data declares a public procedure, called at
execution time by the host program, that performs the initialization. Apple II Pascal, on
the other hand, supports an initialization section within the unit.

1.0 3.0⁄

0.0 0.0⁄
Implementing an Expression Evaluation Method D-7

A P P E N D I X D

FPCE Recommendations for Compilers
Compiler Extensions for Expression Evaluation D
The FPCE technical report recommends that compilers implement two macros that help
a programmer determine which expression evaluation method is being used and three
pragmas that help a programmer use the most efficient data type for functions.

Determining the Expression Evaluation Method D

Two macros that characterize the evaluation method for floating-point expressions may
be defined in the float.h header file. The macro _MIN_EVAL_FORMAT tells which
numeric data format is used as the minimum evaluation format:

The macro _WIDEST_NEED_EVAL specifies if widest-need evaluation is performed:

Widening for Efficiency D

In general, programmers want to use the most efficient floating-point data type for the
architecture on which their applications will run. If the application is to run on more
than one architecture, you cannot guarantee that the most efficient type on one
architecture will be the most efficient type for the others. The FPCE technical report
recommends three preprocessor pragmas to facilitate running the same application
efficiently on different architectures. When these pragmas are turned on, the compiler
uses the wider of the architecture’s most efficient type and the declared type for any
function, parameter, or local variable declared after the pragma.

#pragma fp_wide_function_returns on | off

#pragma fp_wide_function_parameters on | off

#pragma fp_wide_variables on | off

If the first pragma, fp_wide_function_returns, is turned on in a module, all of the
functions defined below the pragma will have return values in the most efficient data
type for the architecture if it is wider than the declared return type. If the following
example is compiled for the 680x0 architecture, both functions ffunc and ldfunc
return type long double. If compiled for the PowerPC architecture, ffunc returns
type double and ldfunc returns type long double (because data types may be
widened to the most efficient type but not narrowed).

#pragma fp_wide_function_returns on

float ffunc (float f) { /* code for ffunc */ }

long double ldfunc (double y) { /* code for ldfunc */ }

0 float (single)

1 double

2 long double (double-double)

0 no

1 yes
D-8 Implementing an Expression Evaluation Method

A P P E N D I X D

FPCE Recommendations for Compilers

D
F

P
C

E
 R

ecom
m

endations for C
om

pilers
If the second pragma, fp_wide_function_parameters, is turned on in a module, all
of the parameters for all of the functions defined below the pragma are converted to the
most efficient data type for the architecture if it is wider than the declared types of the
parameters. In the following example, the parameters x and y are both type double on
the PowerPC architecture and type long double on the 680x0 architecture. If an
architecture’s most efficient type was float, the types for both parameters would
remain the same (because a parameter’s type may be widened to the most efficient type
but never narrowed).

#pragma fp_wide_function_parameters on

float func(float x, double y) { /* code for func */ }

If the third pragma, fp_wide_variables, is turned on in a module, all local variables
defined below the pragma are converted to the most efficient data type for the
architecture if it is wider than the declared types of the variables. In the following
example, the variables z and q are both type double on the PowerPC architecture and
type long double on the 680x0 architecture. If an architecture’s most efficient type was
float, the types for both variables would remain the same (because a variables’s type
may be widened to the most efficient type but never narrowed).

#pragma fp_wide_variables on

float func(float x)

{

float z;

double q;

/* code */

}

These pragmas can occur only outside external declarations. Each pragma remains in
effect until it is explicitly turned off or until the end of the module. The default state for
all three pragmas is off.

If an address or sizeof operator is applied to a widened parameter or variable, a
compile-time warning is issued. Casts avoid widening in areas where one of these
pragmas is turned on.
Implementing an Expression Evaluation Method D-9

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Standard Arithmetic TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	 Transcendental Functions, Part 3 (Summary)
	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	FPCE Recommendations for Compilers
	Environmental Access Switch
	Contraction Operator Switch
	Hexadecimal Floating-Point Constants
	Implementing an Expression Evaluation Method
	Expression Evaluation Without Widest Need
	Expression Evaluation With Widest Need
	Floating-Point Constant Evaluation
	Initializing Floating-Point Objects
	Compiler Extensions for Expression Evaluation
	Determining the Expression Evaluation Method
	Widening for Efficiency

	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

