

C H A P T E R 1 0

Transcendental Functions 10

SPECIAL CASES

Table 10-32 shows the results when the argument to the atanh function is a zero, a NaN,
or an Infinity, plus other special cases for the atanh function.

EXAMPLES

z = atanh(1.0); /* z = +INFINITY */

z = atanh(–1.0); /* z = –INFINITY */

Financial Functions 10

MathLib provides two functions, compound and annuity, that can be used to solve
various financial or time-value-of-money problems.

compound 10

You can use the compound function to determine the compound interest earned given
an interest rate and period.

double_t compound (double_t rate, double_t periods);

rate The interest rate (any positive floating-point number).

periods The number of interest periods (any positive floating-point number). This
argument might or might not be an integer.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-32 Special cases for the atanh function

Operation
Resul
t Exceptions raised

 for |x| > 1 NaN Invalid

None

+∞ None

+0 None

None

NaN None*

NaN Invalid

NaN Invalid

x()atanh

1–()atanh ∞–

+1()atanh

+0()atanh

0–()atanh 0–

NaN()atanh

+∞()atanh

∞–()atanh
10-46 Financial Functions

C H A P T E R 1 0

Transcendental Functions

10

Transcendental F
unctions

DESCRIPTION

The compound function computes the compound interest earned.

When rate is a small number, use the function call compound(rate,n) instead of the
function call pow((1 + rate),n). The call compound(rate,n) produces a more
exact result because it avoids the roundoff error that might occur when the expression
1 + rate is computed.

The compound function is directly applicable to computation of present and future
values:

where PV is the amount of money borrowed and FV is the total amount that will be paid
on the loan.

EXCEPTIONS

When r and n are finite and nonzero, the result of might raise one of
the following exceptions:

■ inexact (for all finite, nonzero values of r > –1)

■ invalid (if r < –1)

■ divide-by-zero (if r is –1 and n < 0)

SPECIAL CASES

Table 10-33 shows the results when one of the arguments to the compound function is a
zero, a NaN, or an Infinity, plus other special cases for the compound function. In this
table, r and n are finite, nonzero floating-point numbers.

Table 10-33 Special cases for the compound function

Operation Result Exceptions raised

 for r < –1 NaN Invalid

0 if n > 0 None

+∞ if n < 0 Divide-by-zero

1 None

1 None

continued

compound r n,() 1 r+()n=

PV FV 1 r+() n–× FV
compound r n,()---------------------------------------= =

FV PV 1 r+()n× PV compound× r n,()= =

compound r n,()

compound r n,()

compound 1– n,()

compound +0 n,()

compound r +0,()
Financial Functions 10-47

C H A P T E R 1 0

Transcendental Functions

EXAMPLES

z = compound(–2, 12); /* z = NAN because a negative interest

rate does not make sense. The invalid

exception is raised. */

z = compound(–1, –1); /* z = +INFINITY because a negative

interest rate and negative loan period

do not make sense. The divide-by-zero

exception is raised. */

z = compound(0, INFINITY);/* z = NAN. The invalid exception is

raised. */

annuity 10

You can use the annuity function to compute the present and future value of annuities.

double_t annuity (double_t rate, double_t periods);

rate The interest rate (any positive floating-point number).

periods The number of interest periods (any positive floating-point number). This
argument might or might not be an integer.

* If both arguments are NaNs, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

1 None

1 None

NaN Invalid

NaN* None†

NaN None†

+∞ if n > 0 None

0 if n < 0 None

+∞ None

NaN Invalid

0 None

Table 10-33 Special cases for the compound function (continued)

Operation Result Exceptions raised

compound 0– n,()

compound r 0–,()

compound 0± ∞±,()

compound NaN n,()

compound r NaN,()

compound +∞ n,()

compound r +∞,()

compound ∞– n,()

compound r ∞–,()
10-48 Financial Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
DESCRIPTION

The annuity function computes the present and future values of annuities.

When rate is a small number, use the function call annuity(rate,n) instead of the
expression:

(1 – compound(rate, –n)) / rate

The call annuity(rate,n) produces a more exact result because it avoids the roundoff
errors that might occur when this expression is computed.

This function is directly applicable to the computation of present and future values of
ordinary annuities:

where PV is the amount of money borrowed, FV is the total amount that will be paid on
the loan, and PMT is the amount of one periodic payment.

EXCEPTIONS

When r and n are finite and nonzero, the result of might raise one of the
following exceptions:

■ inexact (for all finite, nonzero values of r > –1)

■ invalid (if r < –1)

■ divide-by-zero (if r = –1 and n > 0)

annuity r n,() 1 1 r+() n––
r

------------------------------=

PV PMT 1 1 r+() n––
r

------------------------------× PMT annuity r n,()×= =

FV PMT 1 1 r+()n–
r

----------------------------× PMT 1 r+()n 1 1 r+() n––
r

------------------------------××= =

PMT compound× r n,() annuity r n,()×=

annuity r n,()
Financial Functions 10-49

C H A P T E R 1 0

Transcendental Functions
SPECIAL CASES

Table 10-34 shows the results when one of the arguments to the annuity function is a
zero, a NaN, or an Infinity, plus other special cases for the annuity function. In this
table, r and n are finite, nonzero floating-point numbers.

EXAMPLES

z = annuity(–1, 5); /* z = +INFINITY. The divide-by-zero

exception is raised. */

z = annuity(–2, –2); /* z = NAN. The invalid exception

is raised. */

* If both arguments are NaNs, the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-34 Special cases for the annuity function

Operation Result Exceptions raised

 for r < –1 NaN Invalid

+∞ if n > 0 Divide-by-zero

–1 if n < 0 None

n None

+0 None

n None

+0 None

NaN* None†

NaN None†

0 if n > 0 None

if n < 0 None

1/r None

NaN Invalid

None

annuity r n,()

annuity 1– n,()

annuity +0 n,()

annuity r +0,()

annuity 0– n,()

annuity r 0–,()

annuity NaN n,()

annuity r NaN,()

annuity +∞ n,()

∞–

annuity r +∞,()

annuity ∞– n,()

annuity r ∞–,() ∞–
10-50 Financial Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
Error and Gamma Functions 10

MathLib provides four error and gamma functions:

erf 10

You can use the erf function to perform the error function.

double_t erf (double_t x);

x Any floating-point number.

DESCRIPTION

The erf function computes the error function of its argument. This function is
antisymmetric.

EXCEPTIONS

When x is finite and nonzero, either the result of erf(x) is exact or it raises one of the
following exceptions:

■ inexact (if the result must be rounded or an underflow occurs)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

Error function

Complementary error function

Computes Γ(x)

Computes the natural logarithm of the absolute value of gamma(x)

erf x()
erfc x()
gamma x()
lgamma x()

erf x() 2
π--- e t–()2dt

0

x

∫=
Error and Gamma Functions 10-51

C H A P T E R 1 0

Transcendental Functions
SPECIAL CASES

Table 10-35 shows the results when the argument to the erf function is a zero, a NaN, or
an Infinity.

EXAMPLES

z = erf(1.0); /* z ≈ 0.842701. The inexact exception is
raised. */

z = erf(–1.0); /* z ≈ –0.842701. The inexact exception is
raised. */

erfc 10

You can use the erfc function to perform the complementary error function.

double_t erfc (double_t x);

x Any floating-point number.

DESCRIPTION

The erfc function computes the complementary error of its argument. This function is
antisymmetric.

For large positive numbers (around 10), use the function call erfc(x) instead of the
expression 1.0 – erf(x). The call erfc(x) produces a more exact result.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-35 Special cases for the erf function

Operation
Resul
t Exceptions raised

+0 None

None

NaN None*

+1 None

–1 None

erf +0()

erf 0–() 0–

erf NaN()

erf +∞()

erf ∞–()

erfc x() 1.0 erf x()–=
10-52 Error and Gamma Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of the
following exceptions:

■ inexact (if the result must be rounded or an underflow occurs)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

SPECIAL CASES

Table 10-36 shows the results when the argument to the erfc function is a zero, a NaN,
or an Infinity.

EXAMPLES

z = erfc(–INFINITY); /* z = 1 – erf() = 1 – –1 = +2.0 */

z = erfc(0.0); /* z = 1 – erf(0) = 1 – 0 = 1.0 */

gamma 10

You can use the gamma function to perform .

double_t gamma (double_t x);

x Any positive floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-36 Special cases for the erfc function

Operation
Resul
t Exceptions raised

+1 None

+1 None

NaN None*

+0 None

+2 None

erfc x()

erfc +0()

erfc 0–()

erfc NaN()

erfc +∞()

erfc ∞–()

∞–

Γ x()
Error and Gamma Functions 10-53

C H A P T E R 1 0

Transcendental Functions
DESCRIPTION

The gamma function performs .

The gamma function reaches overflow very fast as x approaches +∞. For large values, use
the lgamma function (described in the next section) instead.

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of
the following exceptions:

■ inexact (if the result must be rounded or an overflow occurs)

■ invalid (if x is a negative integer)

■ overflow (if the result is outside the range of the data type)

SPECIAL CASES

Table 10-37 shows the results when the argument to the gamma function is a zero, a NaN,
or an Infinity, plus other special cases for the gamma function.

EXAMPLES

z = gamma(–1.0); /* z = NAN. The invalid exception is raised. */

z = gamma(6); /* z = 120 */

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-37 Special cases for the gamma function

Operation
Resul
t Exceptions raised

for negative integer x NaN Invalid

NaN Invalid

NaN Invalid

NaN None*

+∞ Overflow

NaN Invalid

Γ x()

gamma x() Γ x() e t– tx 1– dt

0

∞

∫= =

gamma x()

gamma x()

gamma +0()

gamma 0–()

gamma NaN()

gamma +∞()

gamma ∞–()
10-54 Error and Gamma Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
lgamma 10

You can use the lgamma function to compute the natural logarithm of the absolute value
of .

double_t lgamma (double_t x);

x Any positive floating-point number.

DESCRIPTION

The lgamma function computes the natural logarithm of the absolute value of .

EXCEPTIONS

When x is finite and nonzero, either the result of is exact or it raises one of
the following exceptions:

■ inexact (if the result must be rounded or an overflow occurs)

■ overflow (if the result is outside the range of the data type)

■ invalid (if x ≤ 0)

SPECIAL CASES

Table 10-38 shows the results when the argument to the lgamma function is a zero, a
NaN, or an Infinity, plus other special cases for the lgamma function.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-38 Special cases for the lgamma function

Operation
Resul
t Exceptions raised

for x < 0 NaN Invalid

NaN Invalid

NaN Invalid

NaN None*

+∞ Overflow

NaN Invalid

Γ x()

Γ x()

lgamma x() loge Γ x()() ln Γ x()()= =

lgamma x()

lgamma x()

lgamma +0()

lgamma 0–()

lgamma NaN()

lgamma +∞()

lgamma ∞–()
Error and Gamma Functions 10-55

C H A P T E R 1 0

Transcendental Functions
EXAMPLES

z = lgamma(–1.0); /* z = NAN. The invalid exception is

raised. */

z = lgamma(3.41); /* z = 1.10304. The inexact exception is

raised. */

Miscellaneous Functions 10

There are three remaining MathLib transcendental functions:

nextafter 10

You can use the nextafter functions to find out the next value that can be represented
after a given value in a particular floating-point type.

float nextafterf (float x, float y);

double nextafterd (double x, double y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The nextafter functions (one for each data type) generate the next representable neighbor
of x in the direction of y in the proper format.

The floating-point values representable in single and double formats constitute a finite
set of real numbers. The nextafter functions illustrate this fact by returning the next
representable value.

If , returns x if x and y are not signed zeros.

Returns next representable number after x in direction of y.

Computes hypotenuse of a right triangle.

A pseudorandom number generator.

nextafter x y,()
hypot x()
randomx x()

x y= nextafter x y,()
10-56 Miscellaneous Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
EXCEPTIONS

When x and y are finite and nonzero, either the result of is exact or it
raises one of the following exceptions:

■ inexact (if an overflow or underflow exception occurs)

■ overflow (if x is finite and the result is infinite)

■ underflow (if the result is inexact, must be represented as a denormalized number
or 0, and x ≠ y)

SPECIAL CASES

Table 10-39 shows the results when one of the arguments to a nextafter function is a zero,
a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

* If both arguments are NaNs, the value of the first NaN is returned.
† If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-39 Special cases for the nextafter functions

Operation Result Exceptions raised

Next representable
number in direction of y

Underflow

Next representable
number in direction of 0

None

Next representable
number in direction of y

Underflow

+0 None

Next representable
number in direction of 0

None

None

NaN* None†

NaN None†

Largest respresentable
number

None

Next representable
number greater than x

None

Smallest representable
number

None

Next representable
number smaller than x

None

nextafter x y,()

nextafter +0 y,()

nextafter x +0,()

nextafter 0– y,()

nextafter 0– +0,()

nextafter x 0–,()

nextafter +0 0–,() 0–

nextafter NaN y,()

nextafter x NaN,()

nextafter +∞ y,()

nextafter x +∞,()

nextafter ∞– y,()

nextafter x ∞–,()
Miscellaneous Functions 10-57

C H A P T E R 1 0

Transcendental Functions
EXAMPLES

z = nextafterf(1.0, +∞);/* z = 1.000000000000000000000012
 ≈ 1.000000119209289551 */

z = nextafterd(1.0, +∞);/* z = 1.00000000…0000000000000000012

 ≈ 1.000000000000000222 */

hypot 10

You can use the hypot function to compute the length of the hypotenuse of a right
triangle.

double_t hypot(double_t x, double_t y);

x Any floating-point number.

y Any floating-point number.

DESCRIPTION

The hypot function computes the square root of the sum of the squares of its arguments.
This is an ANSI standard C library function.

The function hypot performs its computation without undeserved overflow or
underflow. For example, if is greater than the maximum representable value
of the data type but the square root of is not, then no overflow occurs.

EXCEPTIONS

When x and y are finite and nonzero, either the result of is exact or it raises
one of the following exceptions:

■ inexact (if the result must be rounded or an overflow or underflow occurs)

■ overflow (if the result is outside the range of the data type)

■ underflow (if the result is inexact and must be represented as a denormalized number
or 0)

hypot x y,() x2 y2+=

x2 y2+
x2 y2+

hypot x y,()
10-58 Miscellaneous Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
SPECIAL CASES

Table 10-40 shows the results when one of the arguments to the hypot function is a zero,
a NaN, or an Infinity. In this table, x and y are finite, nonzero floating-point numbers.

EXAMPLES

z = hypot(2.0, 2.0); /* z = sqrt(8.0) ≈ 2.82843. The inexact
exception is raised. */

randomx 10

You can use the randomx function to generate a random number.

double_t randomx (double_t * x);

x The address of an integer in the range stored as a
floating-point number.

* If the NaN is a signaling NaN, the invalid exception is raised.

Table 10-40 Special cases for the hypot function

Operation
Resul
t Exceptions raised

|y| None

|x| None

|y| None

|x| None

NaN None*

NaN None*

∞ None

∞ None

+∞ None

+∞ None

+∞ None

+∞ None

hypot +0 y,()

hypot x +0,()

hypot 0– y,()

hypot x 0–,()

hypot NaN y,()

hypot x NaN,()

hypot NaN ∞±,()

hypot ∞± NaN,()

hypot +∞ y,()

hypot x +∞,()

hypot ∞– y,()

hypot x ∞–,()

1 x 231 2–≤ ≤
Miscellaneous Functions 10-59

C H A P T E R 1 0

Transcendental Functions
DESCRIPTION

The randomx function is a pseudorandom number generator. The function randomx
returns a pseudorandom number in the range of its argument. It uses the iteration
formula

If seed values of x are not integers or are outside the range specified for x, then results
are unspecified. A pseudorandom rectangular distribution on the interval (0, 1) can be
obtained by dividing the results from randomx by

EXCEPTIONS

The results are unspecified if the value of x is a noninteger or is outside of the range

SPECIAL CASES

If x is a zero, NaN, or Infinity, the results are unspecified.

EXAMPLES

 = any value in the range .

x 75 x×()mod 231 1–()←

231 1– scalb 31 1,() 1–=

1 x 231≤ ≤ 2–

randomx 1() 1 x 231≤ ≤ 2–
10-60 Miscellaneous Functions

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
Transcendental Functions Summary 10

This section summarizes the transcendental functions declared in the MathLib header
file fp.h and the constants and data types that they use.

C Summary 10

Constants 10

extern const double_t pi;

Data Types 10

typedef short relop;

enum

{

GREATERTHAN = ((relop) (0)),

LESSTHAN,

EQUALTO,

UNORDERED

};

Transcendental Functions 10

Comparison Functions

double_t fdim (double_t x, double_t y);

double_t fmax (double_t x, double_t y);

double_t fmin (double_t x, double_t y);

relop relation (double_t x, double_t y);

Sign Manipulation Functions

double_t copysign (double_t x, double_t y);

double_t fabs (double_t x);

long double copysignl (long double x, long double y);

long double fabsl (long double x);
Transcendental Functions Summary 10-61

C H A P T E R 1 0

Transcendental Functions
Exponential Functions

double_t exp (double_t x);

double_t exp2 (double_t x);

double_t expm1 (double_t x);

double_t ldexp (double_t x, int n);

double_t pow (double_t x, double_t y);

double_t scalb (double_t x, long int n);

Logarithmic Functions

double_t frexp (double_t x, int *exponent);

double_t log (double_t x);

double_t log10 (double_t x);

double_t log1p (double_t x);

double_t log2 (double_t x);

double_t logb (double_t x);

float modff (float x, float *iptrf);

double modf (double x, double *iptr);

Trigonometric Functions

double_t cos (double_t x);

double_t sin (double_t x);

double_t tan (double_t x);

double_t acos (double_t x);

double_t asin (double_t x);

double_t atan (double_t x);

double_t atan2 (double_t y, double_t x);

Hyperbolic Functions

double_t cosh (double_t x);

double_t sinh (double_t x);

double_t tanh (double_t x);

double_t acosh (double_t x);

double_t asinh (double_t x);

double_t atanh (double_t x);
10-62 Transcendental Functions Summary

C H A P T E R 1 0

Transcendental Functions

10
Transcendental F

unctions
Financial Functions

double_t compound (double_t rate, double_t periods);

double_t annuity (double_t rate, double_t periods);

Error and Gamma Functions

double_t erf (double_t x);

double_t erfc (double_t x);

double_t gamma (double_t x);

double_t lgamma (double_t x);

Nextafter Functions
float nextafterf (float x, float y);

double nextafterd (double x, double y);

Hypotenuse Function
double_t hypot (double_t x, double_t y);

Random Number Generator Function

double_t randomx (double_t * x);
Transcendental Functions Summary 10-63

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Part I, The PowerPC Numerics Environment
	 IEEE Std Arith TOC
	 IEEE Standard Arithmetic
	 Floating-Point Data Formats TOC
	 Floating-Point Data Formats
	 Expression Evaluation TOC
	 Expression Evaluation
	 Environmental Controls TOC
	 Environmental Controls
	 IEEE Conversions TOC
	 IEEE Conversions
	 Numeric Operations and Functions TOC
	 Numeric Operations and Functions
	 Part II, The PowerPC Numerics C Implementation
	 Numeric Data Types in C TOC
	 Numeric Data Types in C
	 Environmental Control Functions TOC
	 Environmental Control Functions
	 Conversion Functions TOC
	 Conversion Functions
	 Transcendental Functions TOC
	 Transcendental Functions, Part 1 (Reference)
	 Transcendental Functions, Part 2 (Reference)
	Transcendental Functions (Summary)
	Financial Functions
	Error and Gamma Functions
	Miscellaneous Functions
	Transcendental Functions Summary
	C Summary
	Constants
	Data Types
	Transcendental Functions

	 Part III, Numerics in PowerPC Assembly Language
	 Introduction to Assembly-Language Numerics TOC
	 Introduction to Assembly-Language Numerics
	 Assembly-Language Environmental Controls TOC
	 Assembly-Language Environmental Controls
	 Assembly-Language Numeric Conversions TOC
	 Assembly-Language Numeric Conversions
	 Assembly-Language Numeric Operations TOC
	 Assembly-Language Numeric Operations
	 Part IV, Appendixes
	 SANE and PowerPC Numerics
	 Porting Programs to PowerPC Numerics
	 MathLib Header Files
	 FPCE Recommendations for Compilers
	 MathLib Reference
	 PowerPC Assembly-Language Reference
	 Glossary
	 Bibliography
	 Index
	 Colophon

