

C H A P T E R 6

6

D
ialog M

anager

Dialog Manager 6

when the user clicks its close box. The next time the user invokes the Global Changes
command, the dialog box is already available, in the same location and with the same
text selected as when it was last used.

If you adjust the menus when you display a dialog box, be sure to return them to an
appropriate state when you close the dialog box, as described in “Adjusting Menus for
Modal Dialog Boxes” beginning on page 6-68 and “Adjusting Menus for Movable Modal
and Modeless Dialog Boxes” on page 6-73.

Dialog Manager Reference 6

This section describes the data structure, routines, and resources that are specific to the
Dialog Manager.

The “Data Structure” section shows the Pascal data structure for the dialog record, which
the Dialog Manager creates and maintains. The “Dialog Manager Routines” section
describes Dialog Manager routines for invoking alerts, creating and disposing of dialog
boxes, manipulating items in alert and dialog boxes, and handling events in dialog boxes.

The “Application-Defined Routines” section describes routines that your application
must supply when you need to create application-defined items in dialog boxes, to filter
events that the Dialog Manager doesn’t handle, and to define its own alert sounds.

The “Resources” section describes the dialog resource, the alert resource, the item list
resource, the dialog color table resource, the alert color table resource, and the item
color table resource. The summary sections that conclude this chapter include listings
of the constants that define values for the item types in alert and dialog boxes, the OK
and Cancel buttons in alert boxes, and the icons in note alert boxes, caution alert boxes,
and stop alert boxes, along with the constants used by the Gestalt function for the
Dialog Manager.

Data Structure 6
This section describes the dialog record. Your application doesn’t need to create or use
this record; rather, your application simply uses the appropriate Dialog Manager
routines, creates any necessary resources, and then allows the Dialog Manager to create
and use records of this data type as necessary. The dialog record is described here for
completeness only.

The Dialog Record 6

To create an alert or a dialog box, you use a Dialog Manager routine—such as Alert or
GetNewDialog—that incorporates information from your item list resource and from
your alert resource or dialog resource into a data structure, called a dialog record, in
memory. The Dialog Manager creates a dialog record, which is a data structure of type
DialogRecord, whenever your application creates an alert or a dialog box. Your
application generally should not create a dialog record or directly access its fields.
Dialog Manager Reference 6-101

C H A P T E R 6

Dialog Manager

TYPE DialogPtr = WindowPtr;

DialogPeek = ^DialogRecord

DialogRecord =

RECORD

window: WindowRecord; {dialog window}

items: Handle; {item list resource}

textH: TEHandle; {current editable text item}

editField: Integer; {editable text item number }

{ minus 1}

editOpen: Integer; {used internally; reserved}

aDefItem: Integer; {default button item number}

END;

Field descriptions

window The window record for the alert box or dialog box.
items A handle to the item list resource for the alert or the dialog box.
textH A handle to the current editable text item.
editField The current editable text item.
editOpen Used internally; reserved.
aDefItem The item number of the default button.

Dialog Manager Routines 6
This section describes the routines for initializing the Dialog Manager, invoking alerts,
creating and disposing of dialog boxes, manipulating items in alert and dialog boxes,
and handling events in alert and dialog boxes.

Some Dialog Manager routines can be accessed using more than one spelling of the
routine’s name, depending on the interface files supported by your development
environment. For example, GetDialogItem is also available as GetDItem.
Table 6-1 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 6-1 Mapping between new and previous names of Dialog Manager routines

New name Previous name

DialogCopy DlgCopy

DialogCut DlgCut

DialogDelete DlgDelete

DialogPaste DlgPaste

DisposeDialog DisposDialog

FindDialogItem FindDItem
6-102 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6

D
ialog M

anager

Initializing the Dialog Manager 6

Before using the Dialog Manager, you must initialize—in order—QuickDraw, the
Font Manager, the Window Manager, the Menu Manager, and TextEdit. The first
Dialog Manager routine to call is the InitDialogs procedure, which initializes
the Dialog Manager.

At your application’s request, the Dialog Manager uses the system alert sound for
signaling the user during various alert stages. For alerts, if you want the Dialog Manager
to play sounds other than the system alert sound, write your own sound procedure
(described on page 6-144) and call the ErrorSound procedure to make it the current
sound procedure.

By default, the Dialog Manager displays static text and editable text items in the system
font. To make it easier to localize your application for use with worldwide versions of
system software, you should not change the font. However, if you determine that it is
imperative for your application to display static text or editable text in a font other than
the system font, you can use the SetDialogFont procedure.

InitDialogs 6

Use the InitDialogs procedure to initialize the Dialog Manager.

PROCEDURE InitDialogs (resumeProc: ResumeProcPtr);

GetAlertStage GetAlrtStage

GetDialogItem GetDItem

GetDialogItemText GetIText

HideDialogItem HideDItem

NewColorDialog NewCDialog

ResetAlertStage ResetAlrtStage

SelectDialogItemText SelIText

SetDialogFont SetDAFont

SetDialogItem SetDItem

SetDialogItemText SetIText

ShowDialogItem ShowDItem

UpdateDialog UpdtDialog

Table 6-1 Mapping between new and previous names of Dialog Manager routines (continued)

New name Previous name
Dialog Manager Reference 6-103

C H A P T E R 6

Dialog Manager

resumeProc
A pointer to a procedure used by the System Error Handler in case a fatal
system error occurs on a system that predates MultiFinder. For System 7,
your application should set this parameter to NIL.

DESCRIPTION

Before using the Dialog Manager, you must initialize QuickDraw, the Font Manager,
the Window Manager, the Menu Manager, and TextEdit, in that order. Then, to
initialize the Dialog Manager, call InitDialogs once before all other Dialog Manager
routines. The InitDialogs procedure does the following initialization:

■ It saves the pointer passed in the resumeProc parameter. For System 7, your
application should set the resumeProc parameter to NIL.

■ It installs the system alert sound. To change the system alert sound, use the
ErrorSound procedure.

■ It passes empty strings to the ParamText procedure.

ErrorSound 6

To use your own alert sound instead of the system alert sound for signaling the user, use
the ErrorSound procedure.

PROCEDURE ErrorSound (soundProc: SoundProcPtr);

soundProc A pointer to a procedure that generates the desired alert sounds.

DESCRIPTION

The Dialog Manager uses the system alert sound for signaling the user during various
alert stages. The system alert sound, which is a sound resource stored in the System
file, is played whenever system software or your application uses the Sound Manager
procedure SysBeep. By changing the setting in the Sound control panel, the user can
determine which sound is played. If you want to use sounds other than the system
alert sound at various alert stages, write your own sound procedure and call the
ErrorSound procedure to make it the current sound procedure.

SPECIAL CONSIDERATIONS

If you pass NIL in the soundProc parameter, the Dialog Manager neither plays sounds
nor causes the menu bar to blink, and thus the user receives no signal.

SEE ALSO

See the description of MyAlertSound on page 6-144 for a discussion of how to write
the sound procedure pointed to by the soundProc parameter. For examples of how to
incorporate sound alerts into alert stages, see Listing 6-2 on page 6-21 and Listing 6-3 on
page 6-22.
6-104 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6

D
ialog M

anager

SetDialogFont 6

Although you generally should not change the font used in static and editable text items,
you can do so with the SetDialogFont procedure. The SetDialogFont procedure is
also available as the SetDAFont procedure.

PROCEDURE SetDialogFont (fontNum: Integer);

fontNum A font ID number. Do not rely on font number constants. Instead, use
the Font Manager function GetFNum to find the font number to pass in
this parameter.

DESCRIPTION

For subsequently created dialog and alert boxes, SetDialogFont sets the font of the
dialog or alert box’s graphics port to the specified font. If you don’t call this procedure,
the system font is used. The SetDialogFont procedure does not affect titles of controls,
which are always displayed in the system font.

SPECIAL CONSIDERATIONS

There are a number of caveats regarding the SetDialogFont procedure.

First, the Standard File Package does not always properly calculate the position of the
standard file dialog box once this procedure has been called; for example, the standard
file dialog box may be partially obscured by a menu bar. Second, be aware that this
procedure affects all static text and editable text items in all of the alert and dialog boxes
you subsequently display. Third, SetDialogFont does not change the font for control
titles. Fourth, you can’t use SetDialogFont to change the font size or font style.
Finally, and most importantly, your application will be much easier to localize if you
always use the system font in your alert and dialog boxes and never use
SetDialogFont.

SEE ALSO

See the chapter “Font Manager” in Inside Macintosh: Text for information about the
GetFNum function.

Creating Alerts 6

To create an alert—consisting of an alert sound, an alert box, or both—use one of
these functions: NoteAlert, CautionAlert, StopAlert, and Alert. The first
three functions display, respectively, the note, caution, and stop alert icons (see
Figure 6-3, Figure 6-4, and Figure 6-5) in the upper-left corner of the alert box. The
Alert function allows you to display your own icon or to have no icon at all in the
upper-left corner of your alert box.
Dialog Manager Reference 6-105

C H A P T E R 6

Dialog Manager
These functions take descriptive information about the alert from an alert resource that
you provide. When you call one of these functions, you pass it the resource ID of the
alert resource and a pointer to an event filter function. These functions create a dialog
record, play an alert sound, and display an alert box according to the alert stages that
you specify in the alert resource.

You should specify a pointer to an event filter function when you call the Alert,
StopAlert, CautionAlert, and NoteAlert functions. You can use the same
event filter function in most or all of your alert and modal dialog boxes.

If you need to find out the current alert stage—for example, to ensure that your applica-
tion deactivates the frontmost window only if an alert box is to be displayed at that
stage—use the GetAlertStage function. To change the current alert stage, use the
ResetAlertStage procedure.

Your application does not dispose of alert boxes; the Dialog Manager does that for you
automatically.

Alert 6

To display an alert box (or, if appropriate for the alert stage, to play an alert sound
instead of or in addition to displaying the alert box), you can use the Alert function.
This function does not display a default icon in the upper-left corner of the alert box;
you can leave this area blank, or you can specify your own icon in the alert’s item list
resource, which in turn is specified in the alert resource.

FUNCTION Alert (alertID: Integer;

filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure.

DESCRIPTION

The Alert function creates the alert defined in the specified alert resource. The function
calls the current alert sound procedure and passes it the sound number specified in the
alert resource for the current alert stage. If no alert box is to be drawn at this stage,
Alert returns –1; otherwise, it uses the NewDialog function to create and display the
alert box. The default system window colors are used unless your application provides
an alert color table resource with the same resource ID as the alert resource.
6-106 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
The Alert function uses the ModalDialog procedure, which repeatedly gets and
handles most events for you. The ModalDialog procedure, in turn, gets each event by
calling the Event Manager function GetNextEvent. If the event is a mouse-down event
outside the content region of the alert box, ModalDialog emits an error sound and gets
the next event.

The Alert function continues calling ModalDialog until the user selects an enabled
control (typically a button), at which time the Alert function removes the alert box from
the screen and returns the item number of the selected control. Your application then
responds as appropriate when the user clicks this item.

For events inside the alert box, ModalDialog passes the event to an event filter function
before handling the event. The event filter function provides a secondary event-handling
loop for events that ModalDialog doesn’t handle. You specify a pointer to your event
filter function in the filterProc parameter of the Alert function.

If you set the filterProc parameter to NIL, the Dialog Manager uses the standard
event filter function, which behaves as follows:

■ If the user presses the Return or Enter key, the event filter function returns TRUE and
returns the item number for the default button.

However, your application should provide a simple event filter function that not only
replicates this behavior but also

■ returns TRUE and the item number for the Cancel button if the user presses Esc or
Command-period

■ updates your windows in response to update events (this also allows background
windows to receive update events) and returns FALSE

■ returns FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents.

Unless the event filter function handles the event in its own way and returns TRUE,
ModalDialog handles the event inside the alert box as follows:

■ If the user presses the mouse button while the cursor is in a control, the Control
Manager function TrackControl tracks the cursor. If the user releases the
mouse button while the cursor is in an enabled control, Alert, StopAlert,
CautionAlert, and NoteAlert remove the alert box and return the control’s
item number. (Generally, buttons should be the only controls you use in alert boxes.)

■ If the user presses the mouse button while the cursor is in any enabled item other than
a control, Alert, StopAlert, CautionAlert, and NoteAlert remove the alert box
and return the item number. (Generally, button controls should be the only enabled
items in alert boxes.)

■ If user presses the mouse button while the cursor is in a disabled item or in no item,
 or if any other event occurs, Alert, StopAlert, CautionAlert, and NoteAlert
do nothing.
Dialog Manager Reference 6-107

C H A P T E R 6

Dialog Manager
The Alert function uses the QuickDraw routine SetPort to make the alert box the
current graphics port. It’s not necessary for your application to call SetPort again
before displaying alert boxes, because you can’t draw into any other windows between
the time you create an alert box and the time the Dialog Manager displays it.

SPECIAL CONSIDERATIONS

If you need to display an alert box while your application is running in the background
or is otherwise invisible to the user, you should use the Notification Manager to post a
notification to the user. The Notification Manager automatically displays an alert box
containing whatever message you specify; you will not need to use the Dialog Manager
to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to an alert box
that your application presents.

SEE ALSO

The ModalDialog procedure is described on page 6-135. See “Writing an Event Filter
Function for Alert and Modal Dialog Boxes” beginning on page 6-86 for a discussion of
how to write an event filter function. See “Creating Alert Sounds and Alert Boxes”
beginning on page 6-18 for a discussion of alerts and alert stages. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about button
titles and messages in alert boxes. Alert resources are described on page 6-150. Alert
color table resources are described on page 6-157. The Dialog Manager uses the system
alert sound as the error sound unless you change it by calling the ErrorSound pro-
cedure, described on page 6-104. See “Responding to Events in Alert Boxes” beginning
on page 6-81 for a discussion of how to respond to events returned by the Alert
function. See the chapter “Notification Manager” in Inside Macintosh: Processes for
information about the Notification Manager.

The NoteAlert, CautionAlert, and StopAlert functions are identical to the Alert
function, except that NoteAlert (described on page 6-110), CautionAlert (described
on page 6-111), and StopAlert (described next) display icons in the upper-left corners
of alert boxes.
6-108 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
StopAlert 6

To display an alert box with a stop icon in its upper-left corner (or, if appropriate for the
alert stage, to play an alert sound instead of or in addition to displaying the alert box),
use the StopAlert function.

FUNCTION StopAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

DESCRIPTION

The StopAlert function is the same as the Alert function except that, before drawing
the items in the alert box, StopAlert draws the stop icon in the upper-left corner
(within the rectangle with local coordinates [10,20,42,52]). The stop icon has the
following resource ID:

CONST stopIcon = 0; {stop icon}

By default, the Dialog Manager uses the standard stop icon from the System file. You can
change this icon by providing your own 'ICON' resource with this resource ID number.

Use a stop alert to inform the user that a problem or situation is so serious that the action
cannot be completed. Stop alerts typically have only a single button (OK), because all the
user can do is acknowledge that the action cannot be completed.

SEE ALSO

Figure 6-5 on page 6-9 illustrates the stop icon in a typical stop alert. Except that it
includes a stop icon in the alert box, StopAlert is identical to the Alert function. See
the description of the Alert function on page 6-106 for detailed information about the
parameters and behavior of both of these functions.
Dialog Manager Reference 6-109

C H A P T E R 6

Dialog Manager
NoteAlert 6

To display an alert box with a note icon in its upper-left corner (or, if appropriate for the
alert stage, to play an alert sound instead of or in addition to displaying the alert box),
use the NoteAlert function.

FUNCTION NoteAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

DESCRIPTION

The NoteAlert function is the same as the Alert function except that, before drawing
the items in the alert box, NoteAlert draws the note icon in the upper-left corner
(within the rectangle with local coordinates [10,20,42,52]). The note icon has the
following resource ID:

CONST noteIcon = 1; {note icon}

By default, the Dialog Manager uses the standard note icon from the System file. You can
change this icon by providing your own 'ICON' resource with this resource ID number.

Use a note alert to inform users of a minor mistake that won’t have any disastrous
consequences if left as is. Usually this type of alert simply offers information, and the
user responds by clicking an OK button. Occasionally, a note alert may ask a simple
question and provide a choice of responses.

SEE ALSO

Figure 6-3 on page 6-8 illustrates the note icon in a typical note alert. Except that it
includes a note icon in the alert box, NoteAlert is identical to the Alert function. See
the description of the Alert function on page 6-106 for detailed information about the
parameters and behavior of both of these functions.
6-110 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
CautionAlert 6

To display an alert box with a caution icon in its upper-left corner (or, if appropriate for
the alert stage, to play an alert sound instead of or in addition to displaying the alert
box), use the CautionAlert function.

FUNCTION CautionAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

DESCRIPTION

The CautionAlert function is the same as the Alert function except that, before
drawing the items in the alert box, CautionAlert draws the caution icon in the
upper-left corner (within the rectangle with local coordinates [10,20,42,52]). The caution
icon has the following resource ID:

CONST cautionIcon = 2; {caution icon}

By default, the Dialog Manager uses the standard caution icon from the System file.
You can change this icon by providing your own 'ICON' resource with this resource
ID number.

Use a caution alert to alert the user of an operation that may have undesirable results if
it’s allowed to continue. Give the user the choice of continuing the action (by clicking an
OK button) or stopping it (by clicking a Cancel button).

SEE ALSO

Figure 6-4 on page 6-9 illustrates the caution icon in a typical caution alert. Except
that it includes a caution icon in the alert box, CautionAlert is identical to the
Alert function. See the description of the Alert function on page 6-106 for detailed
information about the parameters and behavior of both of these functions.
Dialog Manager Reference 6-111

C H A P T E R 6

Dialog Manager
GetAlertStage 6

To determine the stage of the last occurrence of an alert, use the GetAlertStage
function. The GetAlertStage function is also available as the GetAlrtStage function.

FUNCTION GetAlertStage: Integer;

DESCRIPTION

The GetAlertStage function returns a number from 0 to 3 as the stage of the last
occurrence of an alert. For example, you can use the GetAlertStage function to
ensure that your application deactivates the active window only if an alert box is to be
displayed at that stage.

ASSEMBLY-LANGUAGE INFORMATION

The global variable ACount contains this number. In addition, the global variable
ANumber contains the resource ID of the alert resource of the last alert that occurred.

SEE ALSO

Listing 6-19 on page 6-66 illustrates how to use GetAlertStage to determine whether
to deactivate a window for the current alert stage. Listing 6-2 on page 6-21 illustrates
how to use an alert resource to specify different alert responses according to different
alert stages.

ResetAlertStage 6

To reset the current alert stage to the first alert stage, use the ResetAlertStage
procedure. The ResetAlertStage procedure is also available as the
ResetAlrtStage procedure.

PROCEDURE ResetAlertStage;

DESCRIPTION

The ResetAlertStage procedure resets every alert to a first-stage alert.

SEE ALSO

Listing 6-2 on page 6-21 illustrates how to use an alert resource to specify different alert
responses according to different alert stages.
6-112 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Creating and Disposing of Dialog Boxes 6

To create a dialog box, you should generally use the GetNewDialog function, which
takes information about the dialog from a dialog resource in a resource file. Like window
resources, dialog resources isolate descriptive information from your application code
for ease of modification or translation to other languages. However, you can also use the
NewDialog and NewColorDialog functions—for which you pass descriptive
information in parameters—to create dialog boxes.

The NewColorDialog function is identical to the NewDialog function, except that
NewColorDialog returns a pointer to a color graphics port.

When you no longer need a dialog box, use the CloseDialog procedure if
you allocated the memory for the dialog record of the dialog box and use the
DisposeDialog procedure if you did not. (To merely make the dialog box invisible
to the user, you can use the Window Manager procedure HideWindow.)

GetNewDialog 6

To create a dialog box from a description in a dialog resource, use the GetNewDialog
function.

FUNCTION GetNewDialog (dialogID: Integer; dStorage: Ptr;

behind: WindowPtr): DialogPtr;

dialogID The resource ID of a dialog resource. If the dialog resource is missing,
the Dialog Manager returns to your application without creating the
dialog box.

dStorage A pointer to the memory for the dialog record. If you set this parameter to
NIL for modal dialog boxes and movable modal dialog boxes, the Dialog
Manager automatically allocates memory for them in your application
heap. For a modeless dialog box, however, you should allocate your
own memory as you would for a window—otherwise, your heap could
become fragmented.

behind A pointer to the window behind which the dialog box is to be placed
on the desktop. Always set this parameter to the window pointer
Pointer(-1) to bring the dialog box in front of all other windows.

DESCRIPTION

The GetNewDialog function creates a dialog record from the information in the dialog
resource and returns a pointer to it. You can use this pointer with Window Manager or
QuickDraw routines to manipulate the dialog box. If the dialog resource specifies that
the dialog box should be visible, the dialog box is displayed. If the dialog resource
specifies that the dialog box should initially be invisible, use the Window Manager
procedure ShowWindow to display the dialog box.
Dialog Manager Reference 6-113

C H A P T E R 6

Dialog Manager
If you supply a dialog color table resource with the same resource ID as the dialog
resource, GetNewDialog uses the NewColorDialog function and returns a pointer
to a color graphics port. If no dialog color table resource is present, GetNewDialog
uses NewDialog to return a pointer to a black-and-white graphics port, although
system software draws the window frame using the system’s default colors.

The dStorage and behind parameters of GetNewDialog have the same meaning as
they do in the Window Manager function GetNewWindow. Always set the behind
parameter to Pointer(-1) to bring the dialog box to the front.

The dialog resource contains the resource ID of the dialog box’s item list resource. After
calling the Resource Manager to read the item list resource into memory (if it’s not
already in memory), GetNewDialog makes a copy of the item list resource and uses
that copy; thus you may have several dialog boxes with identical items.

If you provide a dialog color table resource, GetNewDialog copies it before passing it to
the Window Manager routine SetWinColor unless the number-of-entries element of
the dialog color table resource is set to –1, in which case the default window colors are
used instead. The GetNewDialog function makes the copy so that the dialog color table
resource can be purged without affecting the dialog box.

SPECIAL CONSIDERATIONS

The GetNewDialog function doesn’t release the memory occupied by the resources.
Therefore, your application should mark all resources used for a dialog box as purgeable.

If either the dialog resource or the item list resource can’t be read, the function result is
NIL; your application should test to ensure that NIL is not returned before performing
any more operations with the dialog box or its items.

For modal dialog boxes, the Dialog Manager function ModalDialog traps all events.
This prevents your event loop from receiving activate events for your windows. Thus,
if one of your application’s windows is active when you use GetNewDialog to create
a modal dialog box, you must explicitly deactivate that window before displaying the
modal dialog box.

If you ever need to display a dialog box while your application is running in the back-
ground or is otherwise invisible to the user, you should use the Notification Manager to
post a notification to the user. The Notification Manager automatically displays an alert
box containing whatever message you specify; you do not use the Dialog Manager to
create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to the dialog box
that your application presents.

The GetNewDialog function uses either NewDialog or NewColorDialog, each of
which generates an update event for the entire window contents. Thus, with the
6-114 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
exception of controls, items aren’t drawn immediately. The Dialog Manager calls the
Control Manager to draw controls, and the Control Manager draws them immediately.
So the controls won’t be drawn twice, the Dialog Manager calls the Window Manager
procedure ValidRect for the enclosing rectangle of each control. If you find that there
is too great a lag between the drawing of controls and the drawing of other items, try
making the dialog box initially invisible and then calling the Window Manager
procedure ShowWindow to show it.

SEE ALSO

See “Creating Dialog Boxes” beginning on page 6-23 and “Displaying Alert and Dialog
Boxes” beginning on page 6-61 for discussions and examples of how to use
GetNewDialog.

The GetNewWindow and ShowWindow procedures are described in the chapter
“Window Manager” of this book. The Notification Manager is described in the
chapter “Notification Manager” in Inside Macintosh: Processes.

“Adjusting Menus for Modal Dialog Boxes” beginning on page 6-68 and “Adjusting
Menus for Movable Modal and Modeless Dialog Boxes” on page 6-73 discuss menu
adjustment when your application displays dialog boxes. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about messages
and control titles in dialog boxes.

NewColorDialog 6

To create a dialog box, you can use the NewColorDialog function, which returns a
pointer to a color graphics port. Generally, you should instead use GetNewDialog to
create a dialog box, because GetNewDialog takes information about the dialog box
from a dialog resource in a resource file. (Like window resources, dialog resources isolate
descriptive information from your application code for ease of modification or transla-
tion to other languages.) The NewColorDialog function is also available as the
NewCDialog function.

FUNCTION NewColorDialog (dStorage: Ptr; boundsRect: Rect;

 title: Str255; visible: Boolean;

 procID: Integer; behind: WindowPtr;

 goAwayFlag: Boolean; refCon: LongInt;

 items: Handle): CDialogPtr;

dStorage A pointer to the memory for the dialog record. If you set this parameter to
NIL for modal dialog boxes and movable modal dialog boxes, the Dialog
Manager allocates memory for them on your application heap. For a
modeless dialog box, however, you should allocate your own memory
as you would for a window—otherwise, your heap could become
fragmented.
Dialog Manager Reference 6-115

C H A P T E R 6

Dialog Manager
boundsRect
A rectangle, given in global coordinates, that determines the size and
position of the dialog box; these coordinates specify the upper-left and
lower-right corners of the dialog box.

title A text string used for the title of a modeless or movable modal dialog
box. You can specify an empty string (not NIL) for a title bar that contains
no text.

visible A flag that specifies whether the dialog box should be drawn on the
screen immediately. If you set this parameter to FALSE, the dialog box is
not drawn until your application uses the Window Manager procedure
ShowWindow to display it.

procID The window definition ID for the type of dialog box. Use the dBoxProc
constant to specify modal dialog boxes, the noGrowDocProc constant to
specify modeless dialog boxes, and the movableDBoxProc constant to
specify movable modal dialog boxes.

behind A pointer to the window behind which the dialog box is to be placed on
the desktop. Always set this parameter to the window pointer
Pointer(-1) to bring the dialog box in front of all other windows.

goAwayFlag
A flag to specify whether a modeless dialog box should have a close box
in its title bar when the dialog box is active. If you set this parameter to
TRUE, the dialog window has a close box in its title bar when the window
is active; only modeless dialog boxes should have close boxes.

refCon A value that the Dialog Manager uses to set the refCon field of the
dialog box’s window record. Your application may store any value here
for any purpose. For example, your application can store a number that
represents a dialog box type, or it can store a handle to a record that
maintains state information about the dialog box. You
can use the Window Manager procedure SetWRefCon at any time to
change this value in the dialog record for a dialog box, and you can use
the GetWRefCon function to determine its current value.

items A handle to an item list resource for the dialog box. You can get the
handle by calling the Resource Manager function GetResource to read
the item list resource into memory. Use the Memory Manager procedure
HNoPurge to make the handle unpurgeable while you use it or use the
Operating System utility function HandToHand to make a copy of the
handle and use the copy.

DESCRIPTION

The NewColorDialog function creates a dialog box as specified by its parameters
and returns a pointer to a color graphics port for the new dialog box. The first eight
parameters (dStorage through refCon) are passed to the Window Manager function
NewCWindow, which creates the dialog box. You can use this pointer with Window
Manager or QuickDraw routines to manipulate the dialog box.

The Dialog Manager uses the default window colors for the dialog box. By using the
system’s default colors, you ensure that your application’s interface is consistent with
6-116 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
that of the Finder and other applications. However, if you absolutely feel compelled to
break from this consistency, you can use the Window Manager procedure SetWinColor
to use your own dialog color table resource that specifies colors other than the default
colors. Be aware, however, that nonstandard colors in your alert and dialog boxes may
initially confuse your users.

The Window Manager creates an auxiliary window record for the color dialog box. You
can access this record with the Window Manager function GetAuxWin. (The
dialogCItemhandle field of the auxiliary window record points to the dialog box’s
item color table resource.) If the dialog box’s content color isn’t white, it’s a good idea
to call NewColorDialog with the visible flag set to FALSE. After the color table
and color item list resource are installed, use the Window Manager procedure
ShowWindow to display the dialog box if it’s the frontmost window. If the dialog box
is a modeless dialog box that is not in front, use the Window Manager procedure
ShowHide to display it.

When specifying the size and position of the dialog box in the boundsRect parameter,
you should generally try to center dialog boxes between the left and right margins of the
screen or the window where the user is working, whichever is more appropriate. Also
ensure that the tops of dialog boxes (including the title bars of modeless and movable
modal dialog boxes) lie below the menu bar when you position them on the main screen.
You can use the Menu Manager function GetMBarHeight to determine the height of
the menu bar.

SPECIAL CONSIDERATIONS

For modal dialog boxes, the Dialog Manager function ModalDialog traps all events.
This prevents your event loop from receiving activate events for your windows. Thus, if
one of your application’s windows is active when you use NewColorDialog to create
a modal dialog box, you must explicitly deactivate that window before displaying the
modal dialog box.

If you ever need to display a dialog box while your application is running in the back-
ground or is otherwise invisible to the user, you should use the Notification Manager
to post a notification to the user. The Notification Manager automatically displays an
alert box containing whatever message you specify; you do not need to use the Dialog
Manager to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to the dialog box
that your application presents.

The NewColorDialog function generates an update event for the entire window
contents. Thus, with the exception of controls, items aren’t drawn immediately. The
Dialog Manager calls the Control Manager to draw controls, and the Control Manager
draws them immediately. So that the controls won’t be drawn twice, the Dialog Manager
Dialog Manager Reference 6-117

C H A P T E R 6

Dialog Manager
calls the Window Manager procedure ValidRect for the enclosing rectangle of each
control. If you find that there is too great a lag between the drawing of controls and the
drawing of other items, try making the dialog box initially invisible and then calling the
Window Manager procedure ShowWindow to show it.

SEE ALSO

Window Manager routines are described in the chapter “Window Manager” in this book.
The Notification Manager is described in the chapter “Notification Manager” in Inside
Macintosh: Processes. See Inside Macintosh: Memory for a description of HNoPurge. See
Inside Macintosh: Operating System Utilities for a description of HandToHand.

“Adjusting Menus for Modal Dialog Boxes” beginning on page 6-68 and “Adjusting
Menus for Movable Modal and Modeless Dialog Boxes” on page 6-73 discuss menu bar
adjustment when your application displays dialog boxes. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about messages
and control titles in dialog boxes. The GetResource function is described in the chapter
“Resource Manager” of Inside Macintosh: More Macintosh Toolbox.

NewDialog 6

To create a dialog box, you can use the NewDialog function, which returns a pointer to a
black-and-white graphics port (although system software draws the window frame of
the dialog box using the system’s default window colors). Generally, you should instead
use GetNewDialog to create a dialog box; GetNewDialog takes information about the
dialog from a dialog resource in a resource file. (Like window resources, dialog resources
isolate descriptive information from your application code for ease of modification or
translation to other languages.)

The NewDialog function is identical to the NewColorDialog function, except that
NewDialog returns a pointer to a black-and-white graphics port. See the discussion
of NewColorDialog on page 6-115 for descriptions of the parameters that you also
pass to NewDialog.

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect;

 title: Str255; visible: Boolean;

 procID: Integer; behind: WindowPtr;

 goAwayFlag: Boolean; refCon: LongInt;

 items: Handle): DialogPtr;

DESCRIPTION

The NewDialog function creates a dialog box as specified by its parameters and returns
a pointer to a black-and-white graphics port for the new dialog box. The first eight
parameters (dStorage through refCon) are passed to the Window Manager function
NewWindow, which creates the dialog box.
6-118 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
When specifying the size and position of the dialog box in the boundsRect parameter,
you should generally try to center dialog boxes between the left and right margins of the
screen or the window where the user is working, whichever is more appropriate. Also
ensure that the tops of dialog boxes (including the title bars of modeless and movable
modal dialog boxes) lie below the menu bar when you position them on the main screen.
You can use the Menu Manager function GetMBarHeight to determine the height of the
menu bar.

SEE ALSO

If you use a dialog color table resource to change the default window colors, use the
NewColorDialog function, which returns a pointer to a color graphics port. See the
description of NewColorDialog on page 6-115 for additional information common to
both the NewDialog and NewColorDialog functions.

CloseDialog 6

To dismiss a dialog box for whose dialog record you allocated memory, use the
CloseDialog procedure.

PROCEDURE CloseDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The CloseDialog procedure removes a dialog box from the screen and deletes it from
the window list. The CloseDialog procedure releases the memory occupied by

■ the data structures associated with the dialog box (such as its structure, content, and
update regions)

■ all the items in the dialog box (except for pictures and icons, which might be shared
by other resources) and any data structures associated with them

Generally, you should provide memory for the dialog record of modeless dialog boxes
when you create them. (You can let the Dialog Manager provide memory for modal and
movable modal dialog boxes.) You should then use CloseDialog to close a modeless
dialog box when the user clicks the close box or chooses Close from the File menu.

Because CloseDialog does not dispose of the dialog resource or the item list
resource, it is important to make these resources purgeable. Unlike GetNewDialog,
NewColorDialog does not use a copy of the item list resource. Thus, if you
use NewColorDialog to create a dialog box, you may want to use CloseDialog to
keep the item list resource in memory even if you didn’t supply a pointer to the memory.
Dialog Manager Reference 6-119

C H A P T E R 6

Dialog Manager
SEE ALSO

If you let the Dialog Manager allocate memory for the dialog box (by passing NIL in the
dStorage parameter to the GetNewDialog, NewColorDialog, or NewDialog
function), use the DisposeDialog procedure, described next, instead of CloseDialog.

DisposeDialog 6

To dismiss a dialog box for which the Dialog Manager supplies memory, use the
DisposeDialog procedure. The DisposeDialog procedure is also available
as the DisposDialog procedure.

PROCEDURE DisposeDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DisposeDialog procedure calls the CloseDialog procedure and, in addition,
releases the memory occupied by the dialog box’s item list resource and the dialog
record. Call DisposeDialog when you’re done with a dialog box if you pass NIL in
the dStorage parameter to GetNewDialog, NewColorDialog, or NewDialog.

Generally, your application should not allocate memory for the dialog records of modal
dialog boxes or movable modal dialog boxes. In these cases your application should use
DisposeDialog when the user clicks the OK or Cancel button.

SEE ALSO

If you allocate memory for the dialog box (for example, by passing a pointer in the
dStorage parameter to the GetNewDialog, NewColorDialog, or NewDialog
function), use CloseDialog, described on page 6-119, instead of DisposeDialog.

Manipulating Items in Alert and Dialog Boxes 6

In many cases, you won’t have to make any changes to alert or dialog boxes after you
define them in the resource file. If you do need to make changes, use the Dialog Manager
routines described in this section.

For most item manipulation, first call the GetDialogItem procedure to get the
information about the item. You can then use other routines to manipulate that item. Use
the SetDialogItem procedure if you use any of these other routines to change the
item. You must also use SetDialogItem to install any of your own application-defined
draw procedures. If you use SetDialogItem, make the dialog box initially invisible,
change the item as appropriate, then make the dialog box visible by using the Window
Manager procedure ShowWindow. (For information about manipulating text in an
alert box or a dialog box, see “Handling Text in Alert and Dialog Boxes” beginning on
page 6-129.)
6-120 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
You can dynamically add items to and remove items from a dialog box by using the
AppendDITL and ShortenDITL procedures. These procedures are especially useful
if you share a single item list resource among multiple dialog boxes, because you can
then use AppendDITL or ShortenDITL to add or remove items as appropriate for
individual dialog boxes. You typically make such dialog boxes invisible, use the
AppendDITL and ShortenDITL procedures as appropriate, then make the dialog
boxes visible by using the Window Manager procedure ShowWindow.

GetDialogItem 6

To get a handle to an item so that you can manipulate it (for example, to determine its
current value, to change it, or to install a pointer to a draw procedure for an
application-defined item), use the GetDialogItem procedure. The GetDialogItem
procedure is also available as the GetDItem procedure.

PROCEDURE GetDialogItem (theDialog: DialogPtr; itemNo: Integer;

 VAR itemType: Integer; VAR item: Handle;

 VAR box: Rect);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

itemType A value that represents the type of item requested in the itemNo
parameter. You can use any of these constants to determine the value
returned in this parameter:

 CONST

ctrlItem = 4; {add this constant to the next }

{ four constants}

btnCtrl = 0; {standard button control}

chkCtrl = 1; {standard checkbox control}

radCtrl = 2; {standard radio button}

resCtrl = 3; {control defined in a 'CNTL'}

helpItem = 1; {help balloons}

statText = 8; {static text}

editText = 16; {editable text}

iconItem = 32; {icon}

picItem = 64; {QuickDraw picture}

userItem = 0; {application-defined item}

itemDisable = 128; {add to any of the above to }

{ disable it}
Dialog Manager Reference 6-121

C H A P T E R 6

Dialog Manager
item For an application-defined draw procedure, a pointer to the draw
procedure (coerced to a handle), returned for the item specified in the
itemNo parameter; for all other item types, a handle to the item.

box The display rectangle (described in coordinates local to the dialog box),
returned for the item specified in the itemNo parameter.

DESCRIPTION

The GetDialogItem procedure returns in its parameters the following information
about the item numbered itemNo in the item list resource of the specified dialog box:
in the itemType parameter, the item type; in the item parameter, a handle to the item
(or, for application-defined draw procedures, the procedure pointer); and in the box
parameter, the display rectangle for the item.

For most item manipulation, first use the GetDialogItem procedure to get the informa-
tion about the item. You can then use other routines, such as GetDialogItemText and
SetDialogItem, to determine and change the value of that item.

SEE ALSO

Listing 6-12 on page 6-49 illustrates the use of GetDialogItem in conjunction with
GetDialogItemText to retrieve the text entered by a user in an editable text item.
Listing 6-16 on page 6-58 illustrates the use of GetDialogItem in conjunction with
SetDialogItem to install the draw procedure for an application-defined item into
a dialog box. Listing 6-26 on page 6-83 illustrates the use of GetDialogItem to
determine the current value of a checkbox in a dialog box.

SetDialogItem 6

After using the GetDialogItem procedure to get a handle to an item from a dialog box,
use the SetDialogItem procedure to set or change the item. The SetDialogItem
procedure is also available as the SetDItem procedure.

PROCEDURE SetDialogItem (theDialog: DialogPtr; itemNo: Integer;

 itemType: Integer; item: Handle;

 box: Rect);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

itemType A value that represents the type of item in the itemNo parameter. To
specify the value for this parameter, you can use any of the constants
listed on page 6-121 for the itemType parameter of the GetDialogItem
procedure.
6-122 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
item For an application-defined item, a pointer to the draw procedure (coerced
to a handle) for the item specified in the itemNo parameter; for all other
item types, a handle to the item.

box The display rectangle (described in coordinates local to the dialog box) for
the item specified in the itemNo parameter.

DESCRIPTION

The SetDialogItem procedure sets the item specified by the itemNo parameter for the
specified dialog box. This procedure installs the item without drawing it; typically you
create an invisible dialog box, use SetDialogItem, then use the Window Manager
procedure ShowWindow to draw the dialog box and its items.

SEE ALSO

Listing 6-16 on page 6-58 illustrates how to use SetDialogItem to install an
application-defined draw procedure. The ShowWindow procedure is described in the
chapter “Window Manager” of this book.

HideDialogItem 6

Although you should rarely need to do so, you can make an item in a dialog box
invisible by using the HideDialogItem procedure. The HideDialogItem procedure
is also available as the HideDItem procedure.

PROCEDURE HideDialogItem (theDialog: DialogPtr; itemNo: Integer);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

DESCRIPTION

The HideDialogItem procedure hides the item specified by itemNo by giving it a
display rectangle that’s off the screen. Specifically, if the left coordinate of the item’s
display rectangle is less than 8192 (hexadecimal $2000), HideDialogItem adds 16,384
(hexadecimal $4000) to both the left and right coordinates of the rectangle. If the item is
already hidden (that is, if the left coordinate is greater than 8192), HideDialogItem
does nothing. To redisplay an item that’s been hidden by HideDialogItem, you can
use the ShowDialogItem procedure.
Dialog Manager Reference 6-123

C H A P T E R 6

Dialog Manager
SPECIAL CONSIDERATIONS

If your application needs to display a number of dialog boxes that are similar except for
one or two items, it’s generally easier to modify the common elements using the
AppendDITL and ShortenDITL procedures than to use the HideDialogItem and
ShowDialogItem procedures.

The rectangle for a static text item must always be at least as wide as the first character of
the text.

You generally shouldn’t use HideDialogItem to make an editable text item invisible,
because as the user presses the Tab key, the Dialog Manager attempts to move the cursor
to the hidden editable text item, where the user’s subsequent keystrokes will be placed.

ShowDialogItem 6

To redisplay an item that has been hidden by the HideDialogItem procedure, use the
ShowDialogItem procedure. The ShowDialogItem procedure is also available as the
ShowDItem procedure.

PROCEDURE ShowDialogItem (theDialog: DialogPtr; itemNo: Integer);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

DESCRIPTION

The ShowDialogItem procedure redisplays the item specified in itemNo by restoring
the display rectangle the item had prior to the HideDialogItem call. Specifically, if
the left coordinate of the item’s display rectangle is greater than 8192, ShowDialogItem
subtracts 16,384 from both the left and right coordinates of the rectangle. If the item
is already visible (that is, if the left coordinate is less than 8192), ShowDialogItem
does nothing.

The ShowDialogItem procedure adds the rectangle that contained the item to the
update region so that it will be drawn. Note that if the item is a control you define in a
control ('CNTL') resource, the rectangle added to the update region is the rectangle
defined in the control resource, not the display rectangle defined in the item list resource.
If the item is an editable text item, ShowDialogItem activates it by calling the TextEdit
procedure TEActivate.
6-124 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
FindDialogItem 6

To determine the item number of an item at a particular location in a dialog box, use the
FindDialogItem function. The FindDialogItem function is also available as the
FindDItem function.

FUNCTION FindDialogItem (theDialog: DialogPtr; thePt: Point)

 : Integer;

theDialog A pointer to a dialog record.

thePt A point, specified in coordinates local to the dialog box.

DESCRIPTION

If the point specified in the parameter thePt lies within an item, FindDialogItem
returns a number corresponding to the position of that item in the dialog box’s item list
resource. If the point doesn’t lie within the item’s rectangle, FindDialogItem returns
–1. If items overlap, FindDialogItem returns the item number of the first item, in the
item list resource, containing the point.

This function is useful for changing the cursor when it’s over a particular item.

The FindDialogItem function returns 0 for the first item in the item list resource,
1 for the second, and so on. To get the proper item number before calling the
GetDialogItem or SetDialogItem procedure, add 1 to FindDialogItem’s
function result, as shown here:

theItem := FindDialogItem(theDialog, thePoint) + 1;

Note that FindDialogItem returns the item number of disabled items as well as
enabled items.

AppendDITL 6

To add items to an existing dialog box while your application is running, use the
AppendDITL procedure.

PROCEDURE AppendDITL (theDialog: DialogPtr; theDITL: Handle;

 theMethod: DITLMethod);

theDialog A pointer to a dialog record. This is the dialog record to which you will
add the item list resource specified in the parameter theDITL.

theDITL A handle to the item list resource whose items you want to append to the
dialog box.
Dialog Manager Reference 6-125

C H A P T E R 6

Dialog Manager
theMethod The manner in which you want the new items to be displayed in the
existing dialog box. You can pass a negative value to offset the appended
items from a particular item in the existing dialog box. You can also pass
any of these constants:

CONST

overlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}

DESCRIPTION

The AppendDITL procedure adds the items in the item list resource specified in the
parameter theDITL to the items of a dialog box. This procedure is especially useful if
several dialog boxes share a single item list resource, because you can use AppendDITL
to add items that are appropriate for individual dialog boxes. Your application can use
the Resource Manager function GetResource to get a handle to the item list resource
whose items you wish to add.

In the parameter theMethod, you specify how to append the new items, as follows:

■ If you use the overlayDITL constant, AppendDITL superimposes the appended
items over the dialog box. That is, AppendDITL interprets the coordinates of the
display rectangles for the appended items (as specified in their item list resource) as
local coordinates within the dialog box.

■ If you use the appendDITLRight constant, AppendDITL appends the items to the
right of the dialog box by positioning the display rectangles of the appended items
relative to the upper-right coordinate of the dialog box. The AppendDITL procedure
automatically expands the dialog box to accommodate the new dialog items.

■ If you use the appendDITLBottom constant, AppendDITL appends the items to the
bottom of the dialog box by positioning the display rectangles of the appended items
relative to the lower-left coordinate of the dialog box. The AppendDITL procedure
automatically expands the dialog box to accommodate the new dialog items.

■ You can also append a list of items relative to an existing item by passing a negative
number in the parameter theMethod. The absolute value of this number is
interpreted as the item in the dialog box relative to which the new items are to be
positioned. For example, if you pass –2, the display rectangles of the appended
items are offset relative to the upper-left corner of item number 2 in the dialog box.

You typically create an invisible dialog box, call the AppendDITL procedure, then make
the dialog box visible by using the Window Manager procedure ShowWindow.

SPECIAL CONSIDERATIONS

The AppendDITL procedure modifies the contents of the dialog box (for instance, by
enlarging it). To use an unmodified version of the dialog box at a later time, your
application should use the Resource Manager procedure ReleaseResource to release
the memory occupied by the appended item list resource. Otherwise, if your application
calls AppendDITL to add items to that dialog box again, the dialog box remains
6-126 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
modified by your previous call—for example, it will still be longer at the bottom if you
previously used the appendDITLBottom constant.

The AppendDITL procedure is available in System 7 and in earlier versions of the
Communications Toolbox. Before calling AppendDITL, you should make sure that it
is available by using the Gestalt function with the gestaltDITLExtAttr selector.
Test the bit indicated by the gestaltDITLExtPresent constant in the response
parameter. If the bit is set, then AppendDITL is available.

SEE ALSO

Listing 6-13 on page 6-54 and Listing 6-14 on page 6-55 illustrate a typical use
of AppendDITL. Figure 6-29 on page 6-52 shows the result of using the
overlayDITL constant, Figure 6-30 on page 6-52 shows the result of using the
appendDITLRight constant, Figure 6-31 on page 6-53 shows the result of using
the appendDITLBottom constant, and Figure 6-32 on page 6-53 shows the result
of using a negative number in the parameter theMethod.

The chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox describes
the GetResource and ReleaseResource routines. The Gestalt function is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.
See the chapter “Window Manager” in this book for information about ShowWindow.

ShortenDITL 6

To remove items from an existing dialog box while your application is running, use the
ShortenDITL procedure.

PROCEDURE ShortenDITL (theDialog: DialogPtr;

 numberItems: Integer);

theDialog A pointer to a dialog record.

numberItems
The number of items to remove (starting from the last item in the item
list resource).

DESCRIPTION

The ShortenDITL procedure removes the specified number of items from the dialog
box. This procedure is especially useful if several dialog boxes share a single item list
resource, because you can use ShortenDITL to remove items as necessary for
individual dialog boxes.

You typically create an invisible dialog box, call the ShortenDITL procedure, then make
the dialog box visible by using the Window Manager procedure ShowWindow. Note that
ShortenDITL does not automatically resize the dialog box; you can use
the Window Manager procedure SizeWindow if you need to resize the dialog box.
Dialog Manager Reference 6-127

C H A P T E R 6

Dialog Manager
SPECIAL CONSIDERATIONS

The ShortenDITL procedure is available in System 7 and in earlier versions of the
Communications Toolbox. Before calling ShortenDITL, you should make sure that it
is available by using the Gestalt function with the gestaltDITLExtAttr selector.
Test the bit indicated by the gestaltDITLExtPresent constant in the response
parameter. If the bit is set, then ShortenDITL is available.

SEE ALSO

You can use the CountDITL function, described next, to determine the number of items
in the dialog box’s item list resource. See the chapter “Window Manager” in this book
for information on the ShowWindow and SizeWindow procedures. The Gestalt
function is described in the chapter “Gestalt Manager” in Inside Macintosh: Operating
System Utilities.

CountDITL 6

You can determine the number of items in a dialog box by using the CountDITL
function.

FUNCTION CountDITL (theDialog: DialogPtr): Integer;

theDialog A pointer to a dialog record.

DESCRIPTION

The CountDITL function returns the number of current items in a dialog box. You
typically use CountDITL in conjunction with ShortenDITL to remove items from a
dialog box.

SPECIAL CONSIDERATIONS

The CountDITL function is available in System 7 and in earlier versions of the Commu-
nications Toolbox. Before calling CountDITL, you should make sure that it is available
by using the Gestalt function with the gestaltDITLExtAttr selector. Test the bit
indicated by the gestaltDITLExtPresent constant in the response parameter. If the
bit is set, then CountDITL is available.

SEE ALSO

The Gestalt function is described in the chapter “Gestalt Manager” in Inside Macintosh:
Operating System Utilities.
6-128 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Handling Text in Alert and Dialog Boxes 6

The Dialog Manager provides several routines for manipulating text. You can use the
ParamText procedure to supply text strings, such as document titles, dynamically
in the static text items of alert and dialog boxes. The GetDialogItemText and
SetDialogItemText procedures are useful for determining and changing text in both
static text and editable text items. You can use the SelectDialogItemText procedure
to select and highlight text in an editable text item.

When a dialog box containing an editable text item is active, use the DialogCut
procedure to handle the Cut editing command, the DialogCopy procedure to handle
the Copy command, the DialogPaste procedure to handle the Paste command, and
the DialogDelete procedure to handle the Clear command.

Once you determine that an event occurs in a modeless or movable modal dialog box,
you can use the DialogSelect function, which is described on page 6-139, to handle
key-down events in editable text items automatically. The ModalDialog procedure
uses DialogSelect to handle key-down events in the editable text items of modal
dialog boxes.

ParamText 6

To substitute text strings in the static text items of your alert or dialog boxes while your
application is running, use the ParamText procedure.

PROCEDURE ParamText (param0: Str255; param1: Str255;

param2: Str255; param3: Str255);

param0 A text string to substitute for the special string ^0 in the static text items
of all subsequently created alert and dialog boxes.

param1 A text string to substitute for the special string ^1 in the static text items
of all subsequently created alert and dialog boxes.

param2 A text string to substitute for the special string ^2 in the static text items
of all subsequently created alert and dialog boxes.

param3 A text string to substitute for the special string ^3 in the static text items
of all subsequently created alert and dialog boxes.

DESCRIPTION

The ParamText procedure replaces the special strings ^0 through ^3 in the static text
items of all subsequently created alert and dialog boxes with the text strings you pass as
parameters. Pass empty strings (not NIL) for parameters not used.

SPECIAL CONSIDERATIONS

The strings used in ParamText are stored in the low-memory global variable
DAStrings, which specifies a set of string handles used by the Dialog Manager.
Dialog Manager Reference 6-129

C H A P T E R 6

Dialog Manager
If the user launches a desk accessory in your application’s partition and the desk
accessory calls ParamText, it may change the text in your application’s dialog box.

You should be very careful about using ParamText in modeless dialog boxes. If a
modeless dialog box using ParamText is onscreen and you display another dialog box
or alert box that also uses ParamText, both boxes will be affected by the latest call
to ParamText.

The strings you pass in the parameters to ParamText cannot contain the special strings
^0 through ^3, or else the procedure will enter an endless loop of substitutions in
versions of system software earlier than 7.1.

Note that you should try to store text strings in resource files to facilitate translation into
other languages; therefore, ParamText is best used for supplying text strings, such as
document names, that the user specifies. To avoid problems with grammar and sentence
structure when you localize your application, you should use ParamText to supply
only one text string per screen message.

SEE ALSO

Listing 6-9 on page 6-47 and Listing 6-10 on page 6-48 show an example of how you can
use ParamText to supply the title of the user’s current document to your alert and
dialog boxes. If you need to supply a default text string to an editable text item while
your application is running, use SetDialogItemText. The SetDialogItemText
procedure also allows you to set or change the entire text string for a static text item.

GetDialogItemText 6

After using the GetDialogItem procedure to get a handle to an editable text item or a
static text item in a dialog box, you can use the GetDialogItemText procedure to get
the text string contained in that item. The GetDialogItemText procedure is also
available as the GetIText procedure.

PROCEDURE GetDialogItemText (item: Handle; VAR text: Str255);

item A handle to an editable text item or a static text item in a dialog box.

text The text contained within the item.

DESCRIPTION

The GetDialogItemText procedure returns, in the text parameter, the text of the
given editable text or static text item.

SPECIAL CONSIDERATIONS

If the user types more than 255 characters in an editable text item,
GetDialogItemText returns only the first 255.
6-130 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
SEE ALSO

Listing 6-12 on page 6-49 illustrates how to use GetDialogItemText to retrieve
the text that a user types into an editable text item.

SetDialogItemText 6

After using the GetDialogItem procedure to get a handle to an editable text item or
a static text item in a dialog box, you can use the SetDialogItemText procedure to
display a particular text string in that item. The SetDialogItemText procedure is also
available as the SetIText procedure.

PROCEDURE SetDialogItemText (item: Handle; text: Str255);

item A handle to an editable text item or a static text item in a dialog box.

text The text to display in the item.

DESCRIPTION

The SetDialogItemText procedure places the specified text in the specified item and
draws the item. This procedure is useful for supplying a default text string—such as a
document name—for an editable text item while your application is running.

SPECIAL CONSIDERATIONS

All strings should be stored in resource files to ease translation into other languages.

SEE ALSO

For static text items, the ParamText procedure, described on page 6-129, is useful when
you need to determine and provide only a portion of a text string while your application
is running.

SelectDialogItemText 6

To select and highlight text contained in an editable text item, use the
SelectDialogItemText procedure. The SelectDialogItemText procedure
is also available as the SelIText procedure.

PROCEDURE SelectDialogItemText (theDialog: DialogPtr;

 itemNo: Integer;

 strtSel: Integer;

 endSel: Integer);
Dialog Manager Reference 6-131

C H A P T E R 6

Dialog Manager
theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an editable text item in the
dialog box’s item list resource.

strtSel A number representing the position of the first character to begin
selecting.

endSel A number representing one position past the last character to be selected.

DESCRIPTION

If the item in the itemNo parameter is an editable text item that contains text, the
SelectDialogItemText procedure sets the text selection range to extend from
the character position specified in the strtSel parameter up to but not including the
character position specified in the endSel parameter. The selection range is highlighted
unless strtSel equals endSel, in which case a blinking vertical bar is displayed to
indicate an insertion point at that position. If the editable text item doesn’t contain text,
SelectDialogItemText displays the insertion point.

You can select the entire text by specifying the number 0 in the strtSel parameter and
the number 32767 in the endSel parameter.

For example, if the user makes an unacceptable entry in the editable text item, your
application can display an alert box reporting the problem and then use
SelectDialogItemText to select the entire text so it can be replaced by a new
entry. Without this procedure, the user would have to select the item before making
the new entry.

SEE ALSO

For details about text selection range and character position, see the chapter “TextEdit”
in Inside Macintosh: Text.

DialogCut 6

When a dialog box containing an editable text item is active, use the DialogCut
procedure to handle the Cut editing command. The DialogCut procedure is also
available as the DlgCut procedure.

PROCEDURE DialogCut (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogCut procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TECut to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.
6-132 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TECut procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogCopy 6

When a dialog box containing an editable text item is active, use the DialogCopy
procedure to handle the Copy editing command. The DialogCopy procedure is also
available as the DlgCopy procedure.

PROCEDURE DialogCopy (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogCopy procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TECopy to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TECopy procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogPaste 6

When a dialog box containing an editable text item is active, use the DialogPaste
procedure to handle the Paste editing command. The DialogPaste procedure is also
available as the DlgPaste procedure.

PROCEDURE DialogPaste (theDialog: DialogPtr);

theDialog A pointer to a dialog record.
Dialog Manager Reference 6-133

C H A P T E R 6

Dialog Manager
DESCRIPTION

The DialogPaste procedure checks whether the dialog box has any editable text
items and, if so, applies the TextEdit procedure TEPaste to the selected editable text
item. Your application should test whether a dialog box is the frontmost window
when handling mouse-down events in the Edit menu and then call this routine when
appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TEPaste procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogDelete 6

When a dialog box containing an editable text item is active, use the DialogDelete
procedure to handle the Clear editing command. The DialogDelete procedure is also
available as the DlgDelete procedure.

PROCEDURE DialogDelete (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogDelete procedure checks whether the dialog box has any editable text
items and, if so, applies the TextEdit procedure TEDelete to the selected text. Your
application should test whether a dialog box is the frontmost window when handling
mouse-down events in the Edit menu and then call this routine when appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TEDelete procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.
6-134 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Handling Events in Dialog Boxes 6

Handling events in an alert box is very simple: after you invoke an alert box, the Dialog
Manager handles most events for you by automatically calling the ModalDialog
procedure. To handle events in a modal dialog box, your application must explicitly call
the ModalDialog procedure after displaying the dialog box. In either case, when an
enabled item is clicked, the Dialog Manager returns the item number. You’ll then do
whatever is appropriate in response to that click. For both alert and modal dialog boxes,
you should also provide a simple event filter function that allows other windows to
respond to update events and that allows your alert or dialog box to respond to a few
key-down events for keys such as Return, Enter, and Esc.

You can use your normal event-handling code to determine whether an event occurs in a
modeless or movable modal dialog box, or you can use the IsDialogEvent function to
learn whether they need to be handled as part of a dialog box. Once you determine that
an event occurs in a modeless or movable modal dialog box, you can use the
DialogSelect function to handle key-down events in editable text items automatically,
to handle update and activate events automatically, and to report the enabled items
clicked by the user. You then respond as appropriate to clicks in your active items. Or
you can use Control Manager, TextEdit, and Window Manager routines (such as
FindWindow, BeginUpdate, EndUpdate, FindControl, TrackControl, and
TEClick) to handle these events without the aid of the Dialog Manager.

ModalDialog 6

To handle events when you display a modal dialog box, use the ModalDialog
procedure.

PROCEDURE ModalDialog (filterProc: ModalFilterProcPtr;

VAR itemHit: Integer);

filterProc
A pointer to an event filter function.

itemHit A number representing the position of the selected item in the item list
resource for the active modal dialog box.

DESCRIPTION

Call the ModalDialog procedure immediately after displaying a modal dialog box. The
ModalDialog procedure assumes that a modal dialog box is displayed as the current
port, and ModalDialog repeatedly handles events inside that port until an event
involving an enabled dialog box item—such as a click in a radio button, for example—
occurs. If the event is a mouse-down event outside the content region of the dialog box,
ModalDialog emits the system alert sound and gets the next event. After receiving an
event involving an enabled item, ModalDialog returns its item number in the itemHit
parameter. Your application should then do whatever is appropriate in response to an
event in that item. Your application should continue calling ModalDialog until the user
selects the OK or Cancel button.
Dialog Manager Reference 6-135

C H A P T E R 6

Dialog Manager
For events inside the dialog box, ModalDialog passes the event to the event filter
function pointed to in the filterProc parameter before handling the event. When the
event filter returns FALSE, ModalDialog handles the event. If the event filter function
handles the event, the event filter function returns TRUE, and ModalDialog performs
no more event handling.

If you set the filterProc parameter to NIL, the standard event filter function is
executed. The standard event filter function returns TRUE and causes ModalDialog to
return item number 1, which is the number of the default button, when the user presses
the Return key or the Enter key. However, your application should provide a simple
event filter function that

■ returns TRUE and the item number for the default button if the user presses the
Return or Enter key

■ returns TRUE and the item number for the Cancel button if the user presses the Esc
key or the Command-period key combination

■ updates your windows in response to update events (this allows background
applications to receive update events) and return FALSE

■ returns FALSE for all events that your event filter function doesn’t handle

You can use the same event filter function in most or all of your alert and modal
dialog boxes.

You can also use the event filter function specified in the filterProc parameter to test
for and respond to keyboard equivalents and more complex events—for instance, the
user dragging the cursor within an application-defined item.

To handle events, ModalDialog calls the IsDialogEvent function. If the result of
IsDialogEvent is TRUE, then ModalDialog calls the DialogSelect function to
handle the event. Unless the event filter function returns TRUE, ModalDialog handles
the event as follows:

■ In response to an activate or update event for the dialog box, ModalDialog activates
or updates its window.

■ If the user presses the mouse button while the cursor is in an editable text item,
ModalDialog responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If a key-down event occurs and
there’s an editable text item, ModalDialog uses TextEdit to handle text entry and
editing automatically. If the editable text item is enabled, ModalDialog returns its
item number after it receives either the mouse-down or key-down event. Normally,
editable text items are disabled, and you use the GetDialogItemText procedure to
read the information in the items only after the user clicks the OK button.

■ If the user presses the mouse button while the cursor is in a control, ModalDialog
calls the Control Manager function TrackControl. If the user releases the mouse
button while the cursor is in an enabled control, ModalDialog returns the control’s
item number. Your application should respond appropriately—for example, by
performing a command after the user clicks the OK button.
6-136 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
■ If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, ModalDialog returns the item’s number, and your application should
respond appropriately. Generally, only controls should be enabled. If your application
creates a control more complex than a button, radio button, or checkbox, your
application must handle events inside that item with your event filter function.

■ If the user presses the mouse button while the cursor is in a disabled item or in no
item, or if any other event occurs, ModalDialog does nothing.

SPECIAL CONSIDERATIONS

Do not use ModalDialog for movable modal dialog boxes (that is, those created with
the movableDBoxProc window definition ID) or for modeless dialog boxes (that is,
those created with the noGrowDocProc window definition ID). If you want the Dialog
Manager to assist you in handling events for movable modal and modeless dialog boxes,
use the IsDialogEvent and DialogSelect functions instead.

The ModalDialog procedure calls the Event Manager function GetNextEvent with a
mask that excludes disk-inserted events. To receive disk-inserted events, your event filter
function can call the Event Manager procedure SetSystemEventMask.

When ModalDialog calls TrackControl, it does not allow you to specify the action
procedure necessary for anything more complex than a button, radio button, or
checkbox. If you need a more complex control (for example, one that measures how long
the user holds down the mouse button or how far the user has moved an indicator), you
can create your own control, a picture, or an application-defined item that draws a
control- like object in your dialog box. You must then provide an event filter function
that appropriately handles events in that item.

SEE ALSO

Listing 6-26 on page 6-83 illustrates the use of ModalDialog. “Responding to Events in
Editable Text Items” beginning on page 6-79 describes how ModalDialog uses TextEdit
to handle text entry and editing in editable text items. The IsDialogEvent and
DialogSelect functions (which your application may use instead of ModalDialog
for modeless and movable modal dialog boxes) are described on page 6-138 and
page 6-139, respectively. See the description of MyEventFilter on page 6-145 for
information about the event filter function your application should specify in the
filterProc parameter.

The GetNextEvent and SetSystemEventMask routines are described in the chapter
“Event Manager” in this book. See that chapter as well for a discussion of disk-inserted
events. See “Responding to Events in Controls” on page 6-78 for a description of how
your application should respond to events inside of controls; the TrackControl
function is fully described in the chapter “Control Manager” in this book. Also see that
chapter for information about creating your own nonstandard controls. TextEdit is
described in the chapter “TextEdit” of Inside Macintosh: Text.
Dialog Manager Reference 6-137

C H A P T E R 6

Dialog Manager
IsDialogEvent 6

To determine whether a modeless dialog box or a movable modal dialog box is active
when an event occurs, you can use the IsDialogEvent function.

FUNCTION IsDialogEvent (theEvent: EventRecord): Boolean;

theEvent An event record returned by an Event Manager function such as
WaitNextEvent.

DESCRIPTION

If any event, including a null event, occurs when your dialog box is active,
IsDialogEvent returns TRUE; otherwise, it returns FALSE. When IsDialogEvent
returns FALSE, pass the event to the rest of your event-handling code. When
IsDialogEvent returns TRUE, pass the event to DialogSelect after testing for the
events that DialogSelect does not handle.

A dialog record includes a window record. When you use the GetNewDialog,
NewDialog, or NewColorDialog function to create a dialog box, the Dialog Manager
sets the windowKind field in the window record to dialogKind. To determine whether
the active window is a dialog box, IsDialogEvent checks the windowKind field.

Before passing the event to DialogSelect, you should perform the following tests
whenever IsDialogEvent returns TRUE:

■ Check whether the event is a key-down event for the Return, Enter, Esc, or
Command-period keystrokes. When the user presses the Return or Enter key, your
application should respond as if the user had clicked the default button; when the
user presses Esc or Command-period, your application should respond as if the user
had clicked the Cancel button. Use the Control Manager procedure HiliteControl
to highlight the applicable button for 8 ticks.

■ At this point, you may also want to check for and respond to any special events that
you do not wish to pass to DialogSelect or that require special processing before
you pass them to DialogSelect. You would need to do this, for example, if the
dialog box needs to respond to disk-inserted events.

■ Check whether the event is an update event for a window other than the dialog box
and, if it is, update your window.

■ For complex items that you create, such as pictures or application-defined items that
emulate complex controls, test for and respond to mouse events inside those items as
appropriate. When DialogSelect calls TrackControl, it does not allow you to
specify the action procedure necessary for anything more complex than a button,
radio button, or checkbox. If you need a more complex control (for example, one that
measures how long the user holds down the mouse button or how far the user has
moved an indicator), you can create your own control or a picture or an
application-defined item that draws a control-like object in your dialog box. You must
then test for and respond to those events yourself.
6-138 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
If your application uses IsDialogEvent to help handle events when you display a
movable modal dialog box, perform the following additional tests before passing events
to DialogSelect:

■ Test for mouse-down events in the title bar of the movable modal dialog box and
respond by dragging the dialog box accordingly.

■ Test for and respond to mouse-down events in the Apple menu and, if the movable
modal dialog box includes editable text items, in the Edit menu. (You should disable
all other menus when you display a movable modal dialog box.)

■ Play the system alert sound for every other mouse-down event outside the movable
modal dialog box.

SPECIAL CONSIDERATIONS

Both IsDialogEvent and DialogSelect are unreliable when running in versions of
system software earlier than System 7. You shouldn’t use these routines if you expect
your application to run in earlier versions of system software.

SEE ALSO

The WaitNextEvent function is described in the chapter “Event Manager” in this book.
See Inside Macintosh: Sound for a description of the SysBeep procedure. The
FrontWindow function is described in the chapter “Window Manager” in this book.

DialogSelect 6

After determining that an event related to an active modeless dialog box or an active
movable modal dialog box has occurred, you can use the DialogSelect function to
handle most of the events inside the dialog box.

FUNCTION DialogSelect (theEvent: EventRecord;

 VAR theDialog: DialogPtr;

 VAR itemHit: Integer): Boolean;

theEvent An event record returned by an Event Manager function such as
WaitNextEvent.

theDialog A pointer to a dialog record for the dialog box where the event occurred.

itemHit A number corresponding to the position of an item within the item list
resource of the active dialog box.

DESCRIPTION

The DialogSelect function handles most of the events relating to a dialog box. If the
event is an activate or update event for a dialog box, DialogSelect activates or
updates it and returns FALSE. If the event involves an enabled item, DialogSelect
Dialog Manager Reference 6-139

C H A P T E R 6

Dialog Manager
returns a function result of TRUE. In its itemHit parameter, it returns the item number
of the item selected by the user. In the parameter theDialog, it returns a pointer to
the dialog record for the dialog box where the event occurred. In all other cases, the
DialogSelect function returns FALSE. When DialogSelect returns TRUE, do
whatever is appropriate as a response to the event involving that item in that particular
dialog box; when it returns FALSE, do nothing.

Generally, only controls should be enabled in a dialog box; therefore your application
should normally respond only when DialogSelect returns TRUE after the user clicks
an enabled control, such as the OK button.

The DialogSelect function first obtains a pointer to the window containing the event.
For update and activate events, the event record contains the window pointer. For other
types of events, DialogSelect calls the Window Manager function FrontWindow.
The Dialog Manager then makes this window the current graphics port by calling the
QuickDraw procedure SetPort. Then DialogSelect prepares to handle the event by
setting up text information if there are any editable text items in the active dialog box.

If the event is an update event for a dialog box, DialogSelect calls the Window
Manager procedure BeginUpdate, the Dialog Manager procedure DrawDialog,
and then the Window Manager procedure EndUpdate. When an item is a control
defined in a control ('CNTL') resource, the rectangle added to the update region is the
rectangle defined in the control resource, not the display rectangle defined in the item
list resource.

The DialogSelect function handles the event as follows:

■ In response to an activate or update event for the dialog box, DialogSelect
activates or updates its window and returns FALSE.

■ If a key-down event or an auto-key event occurs and there’s an editable text item
in the dialog box, DialogSelect uses TextEdit to handle text entry and editing,
and DialogSelect returns TRUE for a function result. In its itemHit parameter,
DialogSelect returns the item number.

■ If a key-down event or an auto-key event occurs and there’s no editable text item in
the dialog box, DialogSelect returns FALSE.

■ If the user presses the mouse button while the cursor is in an editable text item,
DialogSelect responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If the editable text item is disabled,
DialogSelect returns FALSE. If the editable text item is enabled, DialogSelect
returns TRUE and in its itemHit parameter returns the item number. Normally,
editable text items are disabled, and you use the GetDialogItemText function to
read the information in the items only after the OK button is clicked.

■ If the user presses the mouse button while the cursor is in a control, DialogSelect
calls the Control Manager function TrackControl. If the user releases the mouse
button while the cursor is in an enabled control, DialogSelect returns TRUE for a
function result and in its itemHit parameter returns the control’s item number. Your
application should respond appropriately—for example, by performing a command
after the user clicks the OK button.
6-140 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
■ If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, DialogSelect returns TRUE for a function result and in its itemHit
parameter returns the item’s number. Generally, only controls should be enabled. If
your application creates a complex control—such as one that measures how far a dial
is moved—your application must handle mouse events in that item before passing the
event to DialogSelect.

■ If the user presses the mouse button while the cursor is in a disabled item, or if it is in
no item, or if any other event occurs, DialogSelect does nothing.

■ If the event isn’t one that DialogSelect specifically checks for (if it’s a null event,
for example), and if there’s an editable text item in the dialog box, DialogSelect
calls the TextEdit procedure TEIdle to make the insertion point blink.

SPECIAL CONSIDERATIONS

Because DialogSelect handles only mouse-down events in a dialog box and
key-down events in a dialog box’s editable text items, you should handle other events
as appropriate before passing them to DialogSelect. Likewise, when DialogSelect
calls TrackControl, it does not allow you to specify any action procedure necessary for
anything more complex than a button, radio button, or checkbox. If you need a more
complex control (for example, one that measures how long the user holds down the
mouse button or how far the user has moved an indicator), you can create your own
control or a picture or an application-defined item that draws a control-like object in
your dialog box. You must then test for and respond to those events yourself.

Within dialog boxes, use the procedures DialogCut, DialogCopy, DialogPaste, and
DialogDelete to support Cut, Copy, Paste, and Clear commands in editable text boxes.

The DialogSelect function is unreliable when running in versions of system software
earlier than System 7. You shouldn’t use this routine if you expect your application to
run under earlier versions of system software.

SEE ALSO

Listing 6-25 on page 6-79 illustrates the use of DialogSelect to make the cursor blink
in editable text items during null events; Listing 6-29 on page 6-92 illustrates the use of
DialogSelect to handle mouse events in a modeless dialog box; Listing 6-33 on
page 6-96 illustrates the use of DialogSelect to handle key-down events in editable
text items; Listing 6-34 on page 6-98 illustrates the use of DialogSelect to handle
activate events in a modeless dialog box.
Dialog Manager Reference 6-141

C H A P T E R 6

Dialog Manager
DrawDialog 6

If you don’t use any other Dialog Manager routines for handling events in a dialog box,
you can use the DrawDialog procedure to draw its entire contents.

PROCEDURE DrawDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DrawDialog procedure draws the entire contents of the specified dialog box. The
DrawDialog procedure draws all dialog items, calls the Control Manager procedure
DrawControls to draw all controls, and calls the TextEdit procedure TEUpdate to
update all static and editable text items and to draw their display rectangles. The
DrawDialog procedure also calls the application-defined items’ draw procedures if
the items’ rectangles are within the update region.

The DialogSelect, ModalDialog, Alert, StopAlert, NoteAlert, and
CautionAlert routines use DrawDialog automatically. If you use GetNewDialog
to create a dialog box but don’t use any of these other Dialog Manager routines when
handling events in the dialog box, you can use DrawDialog to redraw the contents of
the dialog box when it’s visible. If the dialog box is invisible, first use the Window
Manager procedure ShowWindow and then use DrawDialog.

SEE ALSO

See the chapters “Window Manager” and “Event Manager” in this book for more
information on update and activate events for windows. The DrawControls procedure
is described in the chapter “Control Manager” in this book. The TEUpdate procedure is
described in the chapter “TextEdit” in Inside Macintosh: Text.

UpdateDialog 6

You can use the UpdateDialog procedure to redraw the update region of a
specified dialog box. The UpdateDialog procedure is also available as the
UpdtDialog procedure.

PROCEDURE UpdateDialog (theDialog: DialogPtr;

updateRgn: RgnHandle);

theDialog A pointer to a dialog record.

updateRgn A handle to the window region that needs to be updated.
6-142 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
DESCRIPTION

The UpdateDialog procedure redraws only the region in a dialog box specified in the
updateRgn parameter. Because the DialogSelect, ModalDialog, Alert,
StopAlert, NoteAlert, and CautionAlert routines automatically call DrawDialog
to handle update events in your alert and dialog boxes, your application might never
need to use UpdateDialog.

Instead of drawing the entire contents of the specified dialog box, UpdateDialog
draws only the items in the specified update region. You can use UpdateDialog in
response to an update event, and you should usually bracket it by calls to the Window
Manager procedures BeginUpdate and EndUpdate. The UpdateDialog procedure
uses the QuickDraw procedure SetPort to make the dialog box the current graphics
port. For drawing controls, UpdateDialog uses the Control Manager procedure
UpdateControls, which is faster than the DrawControls procedure.

SEE ALSO

Listing 6-35 on page 6-99 illustrates the use of UpdateDialog to respond to update
events in a modeless dialog box. See the chapter “Window Manager” in this book for
more information on update and activate events for windows. The UpdateControls
procedure is described in the chapter “Control Manager” in this book.

Application-Defined Routines 6
If you supply an application-defined item in a dialog box, you must provide a draw
procedure for the Dialog Manager to use when displaying the item; that procedure is
referred to in this section as MyItem. If you want the Dialog Manager to play sounds
other than the system alert sound, you must provide your own sound procedure,
referred to in this section as MyAlertSound. To supplement the Dialog Manager’s
ability to handle events in the Macintosh multitasking environment, you should provide
an event filter function that the Dialog Manager calls whenever it displays alert boxes
and modal dialog boxes. This function is referred to as MyEventFilter.

MyItem 6

To draw your own application-defined item in a dialog box, provide a draw procedure
that takes two parameters: a window pointer to the dialog box and an item number from
the dialog box’s item list resource. For example, this is how you should declare the
procedure if you were to name it MyItem:

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: Integer);

theWindow A pointer to the dialog record for the dialog box containing an
application-defined item. If your procedure can draw in more than
one dialog box, this parameter tells your procedure which one to
draw in.
Dialog Manager Reference 6-143

C H A P T E R 6

Dialog Manager
itemNo A number corresponding to the position of an item in the item list
resource for the specified dialog box. If your procedure draws more
than one item, this parameter tells your procedure which one to draw.

DESCRIPTION

The Dialog Manager calls your procedure to draw an application-defined item at the
time you display the specified dialog box. When calling your draw procedure, the Dialog
Manager sets the current port to the dialog box’s graphics port. Normally, you create an
invisible dialog box and then use the Window Manager procedure ShowWindow to
display the dialog box.

Before you display the dialog box, use the SetDialogItem procedure to install this
procedure in the dialog record. Before using SetDialogItem, you must first use the
GetDialogItem procedure to obtain a handle to an item of type userItem.

If you enable the application-defined item that you draw with this procedure, the
ModalDialog procedure and the DialogSelect function return the item’s number
when the user clicks that item. If your application needs to respond to a user action more
complex than this (for example, if your application needs to measure how long the user
holds down the mouse or how far the user drags the cursor), your application must track
the cursor itself. If you use ModalDialog, your event filter function must handle events
inside the item; if you use DialogSelect, your application must handle events inside
the item before handing events to DialogSelect.

SEE ALSO

Listing 6-17 on page 6-59 illustrates a procedure that draws a bold outline around
a button of any size and shape; Listing 6-16 on page 6-58 shows the use of
GetDialogItem and SetDialogItem to install this draw procedure in a dialog
record. The ShowWindow procedure is described in the chapter “Window Manager”
in this book.

MyAlertSound 6

If you want the Dialog Manager to play sounds other than the system alert sound, write
your own sound procedure and call the ErrorSound procedure to make it the current
sound procedure. For example, you can declare a sound procedure named
MyAlertSound, as shown here:

PROCEDURE MyAlertSound (soundNo: Integer);

soundNo An integer from 0 to 3, representing the four possible alert stages.
6-144 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
DESCRIPTION

For each of the four alert stages that can be reported in the soundNo parameter, your
procedure can emit any sound that you define. When the Dialog Manager calls your
procedure, it passes 0 as the sound number for alert sounds specified by the silent
constant in the alert resource. The Dialog Manager passes 1 for sounds specified by the
sound1 constant, 2 for sounds specified by the sound2 constant, and 3 for sounds
specified by the sound3 constant.

SPECIAL CONSIDERATIONS

When the Dialog Manager detects a click outside an alert box or a modal dialog box, it
uses the Sound Manager procedure SysBeep to play the system alert sound. By
changing settings in the Sound control panel, the user can select which sound to play as
the system alert sound. For consistency with system software and other Macintosh
applications, your sound procedure should call SysBeep whenever your sound
procedure receives sound number 1 (which you can represent with the sound1 constant).

SEE ALSO

Listing 6-3 on page 6-22 illustrates how to use MyAlertSound. The SysBeep procedure
is described in Inside Macintosh: Sound.

MyEventFilter 6

To supplement the Dialog Manager’s ability to handle events, your application should
provide an event filter function that the Dialog Manager calls when it displays alert
boxes and modal dialog boxes. Your event filter function should have three parameters
and return a Boolean value. For example, this is how you would declare it if you were to
name it MyEventFilter:

FUNCTION MyEventFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

theDialog A pointer to a dialog record for an alert box or a modal dialog box.

theEvent An event record returned by an Event Manager function such as
WaitNextEvent.

itemHit A number corresponding to the position of an item in the item list
resource for the alert or modal dialog box.
Dialog Manager Reference 6-145

C H A P T E R 6

Dialog Manager
DESCRIPTION

After receiving an event that it does not handle, your function should return FALSE.
When your function returns FALSE, ModalDialog handles the event, which you pass
in the parameter theEvent. (Your function can also change the event to simulate a
different event and return FALSE, which passes the event to the Dialog Manager for
handling.) If your function does handle the event, your function should return TRUE
as a function result, and in the itemHit parameter return the number of the item
that it handled. The ModalDialog procedure and, in turn, the Alert, NoteAlert,
StopAlert, and CautionAlert functions then return this item number in their own
itemHit parameters.

Your event filter function should perform the following tasks:

■ return TRUE and the item number for the default button if the user presses Return
or Enter

■ return TRUE and the item number for the Cancel button if the user presses Esc or
Command-period

■ update your windows in response to update events (this allows background
applications to receive update events) and return FALSE

■ return FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor in an application-
defined item. For example, if you provide an application-defined item that requires you
to measure how long the user holds down the mouse button or how far the user drags
the cursor, use the event filter function to handle events inside that item.

The ModalDialog procedure calls the Event Manager function GetNextEvent with a
mask that excludes disk-inserted events; to receive disk-inserted events, your event filter
function can call the Event Manager procedure SetSystemEventMask.

You can use the same event filter function in most or all of your alert and modal
dialog boxes.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. Your event filter function should always
check whether the Return key or Enter key was pressed and, if so, return the number of
the default button in the itemHit parameter and a function result of TRUE.

In all alert and dialog boxes, any buttons that are activated by key sequences should
invert to indicate which item has been selected. Use the Control Manager procedure
HiliteControl to invert a button for 8 ticks, long enough to be noticeable but not so
long as to be annoying. The Control Manager performs this action whenever users click
a button, and your application should do this whenever the user presses the keyboard
equivalent of a button click.
6-146 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
For modal dialog boxes that contain editable text items, your application should handle
menu bar access to allow use of your Edit menu and its Cut, Copy, Paste, Clear, and
Undo commands. Your event filter function should then test for and handle clicks
in your Edit menu and keyboard equivalents for the appropriate commands in your
Edit menu. Your application should respond by using the procedures DialogCut,
DialogCopy, DialogPaste, and DialogDelete to support the Cut, Copy, Paste, and
Clear commands.

For an alert box, you specify a pointer to your event filter function in a parameter that
you pass to the Alert, StopAlert, CautionAlert, and NoteAlert functions. For a
modal dialog box, specify a pointer to your event filter function in a parameter that you
pass to the ModalDialog procedure.

SEE ALSO

Listing 6-27 on page 6-88 illustrates an event filter function. The functions
GetNextEvent and SetSystemEventMask are described in the chapter
“Event Manager” in this book.

Resources 6
This section describes resources used by the Dialog Manager for displaying alerts and
dialog boxes. These resources are

■ the dialog ('DLOG') resource, which specifies the window type, display rectangle,
and item list resource for a dialog box

■ the alert ('ALRT') resource, which specifies alert sounds, a display rectangle, and an
item list resource for an alert box

■ the item list ('DITL') resource, which specifies the items—such as buttons and static
text—to display in an alert box or a dialog box

■ the dialog color table ('dctb') resource, which lets you supply a color graphics port
for a dialog box and also use colors other than the default colors in a dialog box

■ the alert color table ('actb') resource, which lets you use colors other than the
default colors in an alert box

■ the item color table ('ictb') resource, which lets you change the default colors,
typeface, font style, and font size of items in an alert box or a dialog box

This section describes the structures of these resources after they are compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
files for these resources, see “Using the Dialog Manager” beginning on page 6-17 for
detailed information.
Dialog Manager Reference 6-147

C H A P T E R 6

Dialog Manager

The Dialog Resource 6

You can use a dialog resource to define a dialog box. A dialog resource is a resource of
type 'DLOG'. All dialog resources must be marked purgeable, and they must have
resource ID numbers greater than 128.

To specify the items in a dialog box, you must also provide an item list resource,
described beginning on page 6-151. Use the GetNewDialog function (described on
page 6-113) to create the dialog box defined in the dialog resource.

The format of a Rez input file for a dialog resource differs from its compiled output
format. This section describes the structure of a Rez-compiled dialog resource. If you
are concerned only with creating a dialog resource, see “Creating Dialog Boxes”
beginning on page 6-23.

Figure 6-42 shows the format of a compiled dialog resource.

Figure 6-42 Structure of a compiled dialog ('DLOG') resource

The compiled version of a dialog resource contains the following elements:

■ Rectangle. This determines the dialog box’s dimensions and, possibly, its position.
(The last element in the dialog resource usually specifies a position for the dialog box.)

■ Window definition ID.
n If the integer 0 appears here (as specified in the Rez input file by the dBoxProc

window definition ID), the Dialog Manager displays a modal dialog box.

'DLOG' resource type

Dialog box position

Alignment byte

Rectangle

Window definition ID

Visibility

Reserved

Close box specification

Reserved

Reference constant

Item list ID

Window title

8

2

1

1

1

1

4

2

1 to 256

2

0 or 1

Bytes
6-148 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager

n If the integer 4 appears here (as specified in the Rez input file by the
noGrowDocProc window definition ID), the Dialog Manager displays a
modeless dialog box.

n If the integer 5 appears here (as specified in the Rez input file by the
movableDBoxProc window definition ID), the Dialog Manager displays
a movable modal dialog box.

These types of dialog boxes are illustrated in Figure 6-6 on page 6-10, Figure 6-8 on
page 6-12, and Figure 6-7 on page 6-11, respectively.

■ Visibility. If this is set to a value of 1 (as specified by the visible constant in the Rez
input file), the Dialog Manager displays this dialog box as soon as you call the
GetNewDialog function. If this is set to a value of 0 (as specified by the invisible
constant in the Rez input file), the Dialog Manager does not display this dialog box
until you call the Window Manager procedure ShowWindow.

■ Close box specification. This specifies whether to draw a close box. Normally, this is
set to a value of 1 (as specified by the goAway constant in the Rez input file) only for a
modeless dialog box to specify a close box in its title bar. Otherwise, this is set to a
value of 0 (as specified by the noGoAway constant in the Rez input file).

■ Reference constant. This contains any value that an application stores here. For
example, an application can store a number that represents a dialog box type, or
it can store a handle to a record that maintains state information about the dialog
box or other window types. An application can use the Window Manager procedure
SetWRefCon at any time to change this value in the dialog record for a dialog box,
and you can use the GetWRefCon function to determine its current value.

■ Item list resource ID. The ID of the item list resource that specifies the items—such as
buttons and static text—to display in the dialog box.

■ Window title. This is a Pascal string displayed in the dialog box’s title bar only when
the dialog box is modeless.

■ Alignment byte. This is an extra byte added if necessary to make the previous Pascal
string end on a word boundary.

■ Dialog box position. This specifies the position of the dialog box on the screen. (If your
application positions dialog boxes on its own, don’t use these constants, because your
code may conflict with the Dialog Manager.)
n If 0x0000 appears here (as specified by the noAutoCenter constant in the Rez

input file), the Dialog Manager positions this dialog box according to the global
coordinates specified in the rectangle element of this resource.

n If 0xB00A appears here (as specified by the alertPositionParentWindow
constant in the Rez input file), the Dialog Manager positions the dialog box over
the frontmost window so that the window’s title bar appears. This is illustrated in
Figure 6-33 on page 6-63.

n If 0x300A appears here (as specified by the alertPositionMainScreen constant
in the Rez input file), the Dialog Manager centers the dialog box near the top of the
main screen. This is illustrated in Figure 6-34 on page 6-63.

n If 0x700A appears here (as specified in the Rez input file by the
alertPositionParentWindowScreen constant), the Dialog Manager
positions the dialog box on the screen where the user is currently working.
This is illustrated in Figure 6-35 on page 6-64.
Dialog Manager Reference 6-149

C H A P T E R 6

Dialog Manager

The Alert Resource 6

You can use an alert resource to define an alert. An alert resource is a resource of type
'ALRT'. All alert resources must be marked purgeable, and they must have resource ID
numbers greater than 128.

To specify the items in an alert box, you must also provide an item list resource,
described beginning on page 6-151. To display the alert, you call either the NoteAlert,
CautionAlert, StopAlert, or Alert function and pass it the resource ID of the
alert resource. The NoteAlert, CautionAlert, StopAlert, and Alert functions
are described in “Creating Alerts” beginning on page 6-105.

The format of a Rez input file for an alert resource differs from its compiled output
format. This section describes the structure of a Rez-compiled alert resource. If you are
concerned only with creating an alert resource, see “Creating Alert Sounds and Alert
Boxes” beginning on page 6-18.

Figure 6-43 shows the structure of a compiled alert resource.

Figure 6-43 Structure of a compiled alert ('ALRT') resource

The compiled version of an alert resource contains the following elements:

■ Rectangle. This determines the alert box’s dimensions and, possibly, its position. (The
last element in the alert resource usually specifies a position for the alert box.)

■ Item list resource ID. The ID of the item list resource that specifies the items—such as
buttons and static text—to display in the alert box.

■ Fourth-stage alert information. This specifies the response when the user repeats the
action that invokes this alert four or more consecutive times. The Dialog Manager
responds in the manner specified in the 4 bits that make up this element.
n If the first bit is set, the Dialog Manager draws a bold outline around the second

item in the item list resource (typically, the Cancel button) and—if your application
does not specify an event filter function—returns 2 when the user presses the
Return or Enter key at the fourth consecutive occurrence of the alert. If the first bit
is not set, the Dialog Manager draws a bold outline around the first item in the item
list resource (typically, the OK button) and—if your application does not specify an
event filter function—returns 1 when the user presses the Return or Enter key.

Rectangle 8

'ALRT' resource type Bytes

4th-stage alert information

Item list resource ID

Alert box position

2

1

2

3rd-stage alert information
2nd-stage alert information 1st-stage alert information

1

6-150 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager

n If the second bit is set, the Dialog Manager displays the alert box at this stage. If the
second bit is not set, the Dialog Manager doesn’t display the alert box at this stage.

n If neither of the next 2 bits is set, the Dialog Manager plays no alert sound at this
stage. If bit 3 is set and bit 4 is not set, the Dialog Manager plays the first alert
sound—by default, the system alert sound. If bit 3 is not set and bit 4 is set, the
Dialog Manager plays the second alert sound; by default, it plays the system alert
sound twice. If both bit 3 and bit 4 are set, the Dialog Manager plays the third alert
sound; by default, it plays the system alert sound three times. By defining your
own alert sound (described on page 6-144) and calling the ErrorSound procedure
(described on page 6-104) to make it the current sound procedure, you can specify
your own alert sounds.

■ Third-stage alert information. This specifies the response when the user repeats the
action that invokes this alert three consecutive times. The Dialog Manager interprets
these 4 bits in the manner described for the fourth-stage alert.

■ Second-stage alert information. This specifies the response when the user repeats the
action that invokes this alert two consecutive times. The Dialog Manager interprets
these 4 bits in the manner described for the fourth-stage alert.

■ First-stage alert information. This specifies the response for the first time that the user
performs the action that invokes this alert. The Dialog Manager interprets these 4 bits
in the manner described for the fourth-stage alert.

■ Alert box position. This specifies the position of the alert box on the screen. (If your
application positions alert boxes on its own, don’t use these constants, because your
code may conflict with the Dialog Manager.)
n If 0x0000 appears here (as specified by the noAutoCenter constant in the Rez

input file), the Dialog Manager positions this alert box according to the global
coordinates specified in the rectangle element of this resource.

n If 0xB00A appears here (as specified by the alertPositionParentWindow
constant in the Rez input file), the Dialog Manager positions the alert box over the
frontmost window so that the window’s title bar appears. This is illustrated in
Figure 6-33 on page 6-63.

n If 0x300A appears here (as specified by the alertPositionMainScreen constant
in the Rez input file), the Dialog Manager centers the alert box near the top of the
main screen. This is illustrated in Figure 6-34 on page 6-63.

n If 0x700A appears here (as specified in the Rez input file by the
alertPositionParentWindowScreen constant), the Dialog Manager
positions the alert box on the screen where the user is currently working.
This is illustrated in Figure 6-35 on page 6-64.

The Item List Resource 6

You use an item list resource to specify items—such as buttons and text—in alert boxes
and dialog boxes. An item list resource is a resource with the resource type 'DITL'. All
item list resources must be marked purgeable, and they must have resource ID numbers
greater than 128.
Dialog Manager Reference 6-151

C H A P T E R 6

Dialog Manager
For an alert box, you specify the resource ID of the item list resource in an alert
resource (described beginning on page 6-150). For a dialog box that you create with
the GetNewDialog function, you specify the resource ID of the item list resource in a
dialog resource (described beginning on page 6-148). For a dialog box that you create
with either the NewColorDialog function (described on page 6-115) or the NewDialog
function (described on page 6-118), you use the Resource Manager function
GetResource to read the item list resource into memory and to provide a handle to
the item list resource in memory.

The format of a Rez input file for an item list resource differs from its compiled output
format. This section describes the structure of a Rez-compiled item list resource. If you
are concerned only with creating an item list resource, see “Providing Items for Alert and
Dialog Boxes” beginning on page 6-26.

Figure 6-44 shows the format of a compiled item list resource.

Figure 6-44 Structure of a compiled item list ('DITL') resource

The compiled version of an item list resource contains the following elements:

■ Item count minus 1. This value is 1 less than the total number of items defined in
this resource.

■ A variable number of items.

The format of each item depends on its type. Figure 6-45 shows the format of an item
defined to be a button, a checkbox, a radio button, a static text item, or an editable
text item.
The compiled version of a button, checkbox, radio button, static text item, or editable
text item consists of the following elements:

■ Reserved. The Dialog Manager uses the element for storage.

■ Display rectangle. This determines the size and location of the item in the alert box or
dialog box. The display rectangle is specified in coordinates local to the alert box
or dialog box; these coordinates specify the upper-left and lower-right corners of
the item.

'DITL' resource type Bytes

Item count minus 1 2

(Variable)

(Variable)Last item

(variable format)

First item

(variable format)
6-152 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager

Figure 6-45 Structure of compiled button, checkbox, radio button, static text, and editable
text items

■ Enable flag. This specifies whether the item is enabled or disabled. If this bit is set,
the item is enabled and the Dialog Manager reports to your application whenever
mouse-down events occur inside this item.

■ Item type.
n If this bit string is set to 4 (as specified in the Rez input file by the Button

constant), then the item is a button.
n If this bit string is set to 5 (as specified in the Rez input file by the CheckBox

constant), then the item is a checkbox.
n If this bit string is set to 6 (as specified in the Rez input file by the RadioButton

constant), then the item is a radio button.
n If this bit string is set to 8 (as specified in the Rez input file by the StaticText

constant), then the item is static text.
n If this bit string is set to 16 (as specified in the Rez input file by the EditText

constant), then the item is editable text.

■ Text. This specifies the text that appears in the item. This element consists of a length
byte and as many as 255 additional bytes for the text. (“Titles for Buttons, Checkboxes,
and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text and
Editable Text Items” beginning on page 6-40 contain recommendations about appro-
priate text in items.)
n For a button, checkbox, or radio button, this is the title for that control.
n For a static text item, this is the text of the item.
n For an editable text item, this can be an empty string (in which case the editable

text item contains no text), or it can be a string that appears as the default string in
the editable text item.

■ Alignment byte. This is added if necessary to make the previous text string end on a
word boundary.

Reserved 4	

Button, checkbox, radio button,

static text, and editable text items

Bytes

8	

1 to 256

0 or 1

Display rectangle

Enable flag

Text

Alignment byte

Item type (7 bits) 1
Dialog Manager Reference 6-153

C H A P T E R 6

Dialog Manager

Figure 6-46 shows the format for an element defined to be a control, an icon, or a
picture item.

Figure 6-46 Structure of compiled control, icon, and picture items

The compiled version of a control, an icon, or a picture item consists of the following
elements:

■ Reserved. The Dialog Manager uses the element for storage.

■ Display rectangle. This determines the size and location of the item in the alert box
or dialog box. The display rectangle is specified in coordinates local to the alert or
dialog box.

■ Enable flag. This specifies whether the item is enabled or disabled. If this bit is set, the
item is enabled and the Dialog Manager reports to your application whenever
mouse-down events occur inside this item.

■ Item type.
n If this 7-bit string is set to 7 (as specified in the Rez input file by the Control

constant), then the item is a button.
n If this is set to 32 (as specified in the Rez input file by the Icon constant), then the

item is an icon.
n If this is set to 64 (as specified in the Rez input file by the Picture constant), then

the item is a QuickDraw picture.

■ Resource ID.
n For a control item, this is the resource ID of a 'CTRL' resource.
n For an icon item, this is the resource ID of an 'ICON' resource and, optionally, a

'cicn' resource
n For a picture item, this is the resource ID of a 'PICT' resource.

Figure 6-47 shows the format for an application-defined item.

Control, icon, and picture items Bytes

Display rectangle

Reserved

Resource ID

8

2

1

Reserved 4

1Enable flag Item type (7 bits)
6-154 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Figure 6-47 Structure of a compiled application-defined item

The compiled version of an application-defined item consists of the following elements:

■ Reserved. The Dialog Manager uses the element for storage.

■ Display rectangle. This determines the size and location of the application-defined
item in the alert box or dialog box. The display rectangle is specified in coordinates
local to the alert box or dialog box.

■ Enable flag. This specifies whether the application-defined item is enabled or
disabled. If this bit is set, the item is enabled and the Dialog Manager reports to
your application whenever mouse-down events occur inside this item.

■ Item type. This is set to a value of 0 (as specified in the Rez input file by the
UserItem constant).

Figure 6-48 shows the format for a help item. (Help items are described in detail in the
chapter “Help Manager” of Inside Macintosh: More Macintosh Toolbox.)

Figure 6-48 Structure of compiled help items

4	

Application-defined items Bytes

Reserved

Display rectangle

Enable flag
Reserved

8

1	Item type (7 bits)
1	

Help items Bytes

Size

HelpItem type

Resource ID

Item number

(HMScanAppendhdlg only)

1

2

2

Enable flag Item type (7 bits) 1

2

Reserved 8

Reserved 4
Dialog Manager Reference 6-155

C H A P T E R 6

Dialog Manager

The compiled version of a help item consists of the following elements:

■ Reserved. The Dialog Manager uses the element for storage.

■ Reserved. This should be set to 0.

■ Enable flag. This specifies whether the item is enabled or disabled. For help items, this
bit should never be set, because the Dialog Manager cannot report to your application
when mouse-down events occur inside the item.

■ Item type. This is set to 1 (as specified in the Rez input file by the HelpItem constant).

■ Size. This specifies the number of bytes contained in the rest of this element. This is set
to 4 for an item identified by either the HMScanhdlg or HMScanhrct identifier, or it’s
set to 6 for an item identified by the HMScanAppendhdlg identifier.

■ HelpItem type. This specifies the type of help item defined in the resource.
n For an item identified by the HMScanhdlg identifier, this element contains the

value 1.
n For an item identified by the HMScanhrct identifier, this element contains the

value 2.
n For an item identified by the HMScanAppendhdlg identifier, this element contains

the value 8.

■ Resource ID. This is the resource ID of the resource containing the help messages for
this alert box or dialog box.
n For an item identified by either the HMScanhdlg or HMScanAppendhdlg

identifier, this is the ID of an 'hdlg' resource.
n For an item identified by the HMScanhrct identifier, this is the ID of an

'hrct' resource.

■ Item number. This is available only for an item identified by the HMScanAppendhdlg
identifier. This is the item number within the alert box or dialog box after which the
help messages specified in the 'hdlg' resource should be displayed. These help
messages relate to the items that are appended to the alert box or dialog box. (The
item list resource does not contain these 2 bytes for items identified by either the
HMScanhdlg or HMScanhrct identifier.)

The Dialog Color Table Resource 6

On color monitors, the Dialog Manager automatically adds color to your alert and dialog
boxes so that they match the colors of the windows, alert boxes, and dialog boxes used
by system software. These colors provide aesthetic consistency across all monitors, from
black-and-white displays to 8-bit color displays. On a color monitor, for example, the
racing stripes in the title bar of a modeless dialog box are gray, the close box and
window frame are in color, and the buttons and text are black.

When you create dialog resources, your application’s dialog boxes use the system’s
default colors. Typically, this is all you need to do to provide color for your dialog
boxes—with the following exceptions:

■ When you need to include a color version of an icon in a dialog box, you must create a
resource of type 'cicn' with the same resource ID as the black-and-white 'ICON'
resource specified in the item list resource. Plate 2 at the front of this book shows an
alert box that includes a color icon.
6-156 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
■ When you need to produce a blended gray color for outlining the inactive (that is,
dimmed) default button, you must create a dialog color table ('dctb') resource with
the same resource ID as the dialog resource.

“Using an Application-Defined Item to Draw the Bold Outline for a Default Button”
beginning on page 6-56 explains how to create a draw routine that outlines the default
button of a dialog box. If you deactivate a dialog box, you should dim its buttons and
use gray to draw the outline for the default button. Because GetNewDialog and
NewDialog supply black-and-white graphics ports for dialog boxes, you can create a
dialog color table resource for the dialog box to force the Dialog Manager to supply a
color graphics port. Then you can use a blended gray color for the outline for the default
button. (The NewColorDialog function supplies a color graphics port.)

Even when you create a dialog color table resource for drawing a gray outline, you
should not change the system’s default colors. If you feel absolutely compelled to use
nonstandard colors, you can use the Dialog Manager to specify colors other than the
default colors. Your application can specify its own colors for a dialog box by creating a
dialog color table ('dctb') resource with the same resource ID as the dialog resource
(described beginning on page 6-148). You don’t have to call any new routines to change
the colors used in dialog boxes. When you call the GetNewDialog function, for
example, the Dialog Manager automatically attempts to load a dialog color table
resource with the same resource ID as the dialog resource.

Be aware, however, that nonstandard colors in your dialog boxes may initially confuse
your users. Also be aware that despite any changes you may make, users can alter the
colors of dialog boxes anyway by changing settings in the Color control panel.

▲ W A R N I N G

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. ▲

A dialog color table resource has exactly the same format as a window color table (that
is, a resource of type 'wctb'), which is described in the chapter “Window Manager” of
this book.

If the dialog box’s content color isn’t white, specify the invisible constant in the
dialog resource. Use the Window Manager procedure ShowWindow to display the dialog
box when it’s the frontmost window. If the dialog box is a modeless dialog box that is
not in front, use the Window Manager procedure ShowHide to display it.

The Alert Color Table Resource 6

On color monitors, the Dialog Manager automatically adds color to your alert boxes so
that they match the colors of the windows and alerts used by system software. When
you create alert resources, your application’s alert boxes use the system’s default colors.
Typically, this is all you need to do to provide color for your alert boxes. (However, to
include a color version of an icon in an alert box, you must add a resource of type
'cicn' with the same resource ID as the black-and-white 'ICON' resource specified in
the item list resource.)
Dialog Manager Reference 6-157

C H A P T E R 6

Dialog Manager
If you feel absolutely compelled to use nonstandard colors, you can use the Dialog
Manager to specify colors other than the default colors. Your application can specify its
own colors for an alert box by creating an alert color table ('actb') resource with the
same resource ID as the alert resource (described beginning on page 6-150). You don’t
have to call any new routines to change the colors used in alert or dialog boxes. When
you call the Alert function, for example, the Dialog Manager automatically attempts to
load an alert color table resource with the same resource ID as the alert resource.

Be aware, however, that nonstandard colors in your alert boxes may initially confuse
your users. Also be aware that despite any changes you may make, users can alter the
colors of dialog boxes anyway by changing settings in the Color control panel.

▲ W A R N I N G

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. ▲

An alert color table resource has exactly the same format as a window color table
('wctb') resource, which is described in the chapter “Window Manager” of this book.

The Item Color Table Resource 6

On color monitors, the Dialog Manager automatically draws the items in your dialog
and alert boxes so that they match the colors of the items used by system software in its
dialog and alert boxes. The Dialog Manager also uses the default system font when it
draws the text in the static text and editable text items of your dialog and alert boxes.

If you feel absolutely compelled to use nonstandard fonts and colors, you can use the
Dialog Manager to specify your own colors, typeface, font style, and font size.

Note
The Dialog Manager displays the typeface, font style, and font size you
specify only on color monitors. ◆

Your application can specify these by creating an item color table ('ictb') resource
with the same resource ID as the dialog or alert box’s item list resource , and then
providing a dialog color table resource for a dialog box or an alert color table resource
for an alert box. You don’t have to call any new routines to change the colors, typefaces,
font styles, or font sizes used in dialog boxes. When you call the GetNewDialog
function, for example, the Dialog Manager automatically attempts to load an item color
table resource with the same resource ID as the item list resource.

Note
To make it easier to localize your application for other script
systems, you should not change the font. Do not use a smaller font,
such as 9-point Geneva; some script systems, such as KanjiTalk,
require 12-point fonts. ◆

Also, be aware that nonstandard colors for items in your dialog and alert boxes may
initially confuse your users.
6-158 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
▲ W A R N I N G

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. ▲

If you want to provide an item color table resource for an alert box or a dialog box, you
must create an alert color table resource or a dialog color table resource, even if the item
color table resource has no actual color information and describes only static text and
editable text style changes.

An item color table resource is a resource of type 'ictb'. All item color table resources
must have resource ID numbers greater than 128.

There is no Rez template available for creating item color table resources. When
you compile an item color table resource, it should follow the format illustrated in
Figure 6-49.

Figure 6-49 Structure of a compiled item color table resource

Item data

Item offset

2

2

'ictb' resource type Bytes

First font family

Last

control color table or

font style table

Last font family

(Variable)

(Variable)

(Variable)

(Variable)

First item

Item data

First

control color table or

text style table

Last item
Item offset

2

2

Dialog Manager Reference 6-159

C H A P T E R 6

Dialog Manager

You define an item color table resource for a dialog box or an alert box by specifying
these elements in a resource with the 'ictb' resource type:

■ Items. These consist of a variable number of items, corresponding to those in an item
list resource with the same resource ID as this item color table resource.

■ Control color tables and text style tables.
n A control color table defines the colors used in a control. Several controls can share

the same control color table.
n A text style table defines the font family, font style, font size, and color of text in an

editable text item or a static text item. Several editable text and static text items can
share the same text style table.

■ Optionally, a list of font families. If you use any text style tables, you generally
conclude the item color table resource with a list of text strings, each of which
specifies a font family. Although you may specify font numbers instead of font names,
it’s much more reliable to specify names, because system software may renumber
these fonts as they are installed and removed. For every editable text item and static
text item listed at the top of the item color table resource, specify a font family at the
bottom of the resource.

The information contained in an element depends on the type of item it describes:

■ Item data. This contains information about how this item is described in the rest of
this resource.
n For a control, this is the length (in bytes) of its control color table.
n For a static text item or an editable text item, the bits of this element determine

which elements of the text style table to use and are interpreted as follows:

■ Item offset. The number of bytes from the beginning of the resource to either the
control color table or the text style table that describes this item.

When both the item data and item offset elements are set to 0, then the control or text
item is drawn with the default colors, typeface, font size, and font style. Even if only the
first few items of the dialog box have color style information, there must be room for all
of the items actually in the box (with the item data and item offset elements of the
unused entries set to 0).

Bit Meaning

0 Change the font family.

1 Change the typeface.

2 Change the font size.

3 Change the font foreground color.

4 Add the font size.

13 Change the font background color.

14 Change the font mode.

15 The font element is an offset to the name.
6-160 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
For controls, the colors are described by a color table identical to a 'cctb' resource used
by the Control Manager. Multiple controls can use the same color table. If the resource
sets both the item data and the item offset element to 0, then the system’s default colors
are used for the control. The format of a control color table is illustrated in Figure 6-50.

Figure 6-50 Structure of a compiled control color table

A control color table consists of the following elements:

■ Reserved. This should always be set to a value of 0.

■ Reserved. Again, should always be set to a value of 0.

■ Number of control parts. For standard controls other than scroll bars, this should be
set to 3, because a standard control uses only three parts: frame, control body, and
text. For scroll bars, this should be set to 12; see the description of the control color
table resource in the chapter “Control Manager” for information on specifying the
colors for a scroll bar. To create a control that uses other parts, you must create a
custom 'CDEF' resource, as described in the chapter “Control Manager” in this book.

Reserved 4

Control color table Bytes

Number of control parts

First part identifier

Red component

Green component

Blue component

Last part identifier

Red component

Green component

Blue component

2

2

2

2

2

2

2

2

Reserved 2

2

Dialog Manager Reference 6-161

C H A P T E R 6

Dialog Manager

■ Part identifier. This is a value that identifies a part of the first control. The following
list shows the values and constants they represent for the standard controls other than
scroll bars. For information on the part identifiers for a scroll bar, see the description
of the control color table resource in the chapter “The Control Manager” in this book.
They can be listed in any order in the control color table.

■ Red component. This is an integer that represents the intensity of the red component
of the color to use when drawing this control part.

■ Green component. This is an integer that represents the intensity of the green
component of the color to use when drawing this control part.

■ Blue component. This is an integer that represents the intensity of the blue component
of the color to use when drawing this control part.

■ Part identifier, and the red, green, and blue color components for the next control part.
Specify color components for every part of this control whose color you want to
change. If a part is not listed in the control color table, the Dialog Manager draws it in
its default color.

Figure 6-51 shows the format of a text style table.

Figure 6-51 Structure of a compiled text style table

Constant Value Control part

cFrameColor 0 Frame

cBodyColor 1 Body

cTextColor 2 Text (such as titles)

2

2

2

2

2

2

2

2

2

2

Text style table Bytes

Typeface

Font style

Font size

Red component for text

Green component for text

Blue component for text

Red component for background

Green component for background

Blue component for background

Mode
6-162 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
The text style table must be 20 bytes long, as shown in Figure 6-51. Multiple editable text
and static text items can use the same text style record. To display text in the standard
typeface, color, font size, and font style, set the item data and item offset elements for the
item to 0. Allocate space for all fields in the text style table, even if they are not used.

A text style table consists of the following elements (see Inside Macintosh: Text for a
discussion of font families, font style, and point sizes):

■ Typeface. This is the name of the font family to use. If bit 15 in the item data element is
set to 1, then this element contains an offset (in bytes) to a font name element at the
end of the resource. If bit 0 in the item data element is set to 1, then this element
contains the number of a font family. If bit 0 in the item data element is set to 0, this
element is set to 0, and the system default font is used.

■ Font style. This is the font style to use. If bit 1 in the item data element is set to 1, then
this element uses the bits of the low-order byte to describe which styles to apply to the
text. If all bits in the low-order byte are set to 0, the plain font style is used. The bit
numbers and the styles they represent are

■ Font size. This is the point size of the font. If bit 2 in the item data element is set to 1,
this element contains a value representing a point size. If bit 4 in the item data element
is set to 1, this element contains a value to add to the current point size of the text. If
bit 0 in the item data element is set to 0, this element is set to 0, and the system font
size (12) is used.

■ Text red color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the red component of the color to use when
drawing the text.

■ Text green color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the green component of the color to use when
drawing the text.

■ Text blue color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the blue component of the color to use when
drawing the text.

■ Background red color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the red component of the color
to use when drawing the background behind the text.

Bit
value Style

0 Bold

1 Italic

2 Underline

3 Outline

4 Shadow

5 Condensed

6 Extended
Dialog Manager Reference 6-163

C H A P T E R 6

Dialog Manager
■ Background green color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the green component of the color
to use when drawing the background behind the text.

■ Background blue color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the blue component of the color
to use when drawing the background behind the text.

■ Mode. If bit 14 in the item data element is set to 1, this element contains an integer
that represents how characters are placed in the bit image. The values that the Dialog
Manager interprets and the constants that represent them are listed here. See Inside
Macintosh: Imaging for a discussion of source transfer modes.

Constant Value

scrOr 1

srcXor 2

srcBic 3
6-164 Dialog Manager Reference

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Summary of the Dialog Manager 6

Pascal Summary 6

Constants 6

CONST

{checking for AppendDITL, ShortenDITL, CountDITL using Gestalt function}

gestaltDITLExtAttr = 'ditl'; {Gestalt selector for AppendDITL, etc.}

gestaltDITLExtPresent = 0; {if this bit's set, then AppendDITL, }

{ ShortenDITL, & CountDITL are available}

{item types for GetDialogItem, SetDialogItem}

ctrlItem = 4; {add this constant to the next four constants}

btnCtrl = 0; {standard button control}

chkCtrl = 1; {standard checkbox control}

radCtrl = 2; {standard radio button}

resCtrl = 3; {control defined in a control resource}

helpItem = 1; {help balloons}

statText = 8; {static text}

editText = 16; {editable text}

iconItem = 32; {icon}

picItem = 64; {QuickDraw picture}

userItem = 0; {application-defined item}

itemDisable = 128; {add to any of the above to disable it}

{item numbers of OK and Cancel buttons in alert boxes}

ok = 1; {first button is OK button}

cancel = 2; {second button is Cancel button}

{resource IDs of alert box icons}

stopIcon = 0;

noteIcon = 1;

cautionIcon = 2;

{constants used for theMethod parameter in AppendDITL}

overlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}
Summary of the Dialog Manager 6-165

C H A P T E R 6

Dialog Manager
{constants for procID parameter of NewDialog, NewColorDialog}

dBoxProc = 1; {modal dialog box}

noGrowDocProc = 4; {modeless dialog box}

movableDBoxProc = 5; {movable modal dialog box}

Data Types 6

TYPE DialogPtr = WindowPtr;

ResumeProcPtr = ProcPtr;

SoundProcPtr = ProcPtr;

ModalFilterProcPtr = ProcPtr;

DialogPeek = ^DialogRecord;

DialogRecord =

RECORD

window: WindowRecord; {dialog window}

items: Handle; {item list resource}

textH: TEHandle; {current editable text item}

editField: Integer; {editable text item number minus 1}

editOpen: Integer; {used internally}

aDefItem: Integer; {default button item number}

END;

DITLMethod = Integer;

Dialog Manager Routines 6

Initializing the Dialog Manager
PROCEDURE InitDialogs (resumeProc: ResumeProcPtr);

PROCEDURE ErrorSound (soundProc: SoundProcPtr);

PROCEDURE SetDialogFont (fontNum: Integer); {also spelled SetDAFont}

Creating Alerts
{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

FUNCTION Alert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION StopAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION NoteAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION CautionAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION GetAlertStage : Integer;

PROCEDURE ResetAlertStage;
6-166 Summary of the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Creating and Disposing of Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

FUNCTION GetNewDialog (dialogID: Integer; dStorage: Ptr;
behind: WindowPtr): DialogPtr;

FUNCTION NewColorDialog (dStorage: Ptr; boundsRect: Rect; title:
Str255; visible: Boolean; procID: Integer;
behind: WindowPtr; goAwayFlag: Boolean;
refCon: LongInt; items: Handle): DialogPtr;

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect; title:
Str255; visible: Boolean; procID: Integer;
behind: WindowPtr; goAwayFlag: Boolean;
refCon: LongInt; items: Handle): DialogPtr;

PROCEDURE CloseDialog (theDialog: DialogPtr);

PROCEDURE DisposeDialog (theDialog: DialogPtr);

Manipulating Items in Alert and Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE GetDialogItem (theDialog: DialogPtr; itemNo: Integer;
VAR itemType: Integer; VAR item: Handle;
VAR box: Rect);

PROCEDURE SetDialogItem (theDialog: DialogPtr; itemNo: Integer;
itemType: Integer; item: Handle; box: Rect);

PROCEDURE HideDialogItem (theDialog: DialogPtr; itemNo: Integer);

PROCEDURE ShowDialogItem (theDialog: DialogPtr; itemNo: Integer);

FUNCTION FindDialogItem (theDialog: DialogPtr; thePt: Point): Integer;

PROCEDURE AppendDITL (theDialog: DialogPtr; theDITL: Handle;
theMethod: DITLMethod);

PROCEDURE ShortenDITL (theDialog: DialogPtr; numberItems: Integer);

FUNCTION CountDITL (theDialog: DialogPtr): Integer;

Handling Text in Alert and Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE ParamText (param0: Str255; param1: Str255;
param2: Str255; param3: Str255);

PROCEDURE GetDialogItemText (item: Handle; VAR text: Str255);

PROCEDURE SetDialogItemText (item: Handle; text: Str255);

PROCEDURE SelectDialogItemText
(theDialog: DialogPtr; itemNo: Integer;
strtSel: Integer; endSel: Integer);

PROCEDURE DialogCut (theDialog: DialogPtr);

PROCEDURE DialogCopy (theDialog: DialogPtr);
Summary of the Dialog Manager 6-167

C H A P T E R 6

Dialog Manager
PROCEDURE DialogPaste (theDialog: DialogPtr);

PROCEDURE DialogDelete (theDialog: DialogPtr);

Handling Events in Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE ModalDialog (filterProc: ModalFilterProcPtr; VAR itemHit:
Integer);

FUNCTION IsDialogEvent (theEvent: EventRecord): Boolean;

FUNCTION DialogSelect (theEvent: EventRecord; VAR theDialog:
DialogPtr; VAR itemHit: Integer): Boolean;

PROCEDURE DrawDialog (theDialog: DialogPtr);

PROCEDURE UpdateDialog (theDialog: DialogPtr; updateRgn: RgnHandle);

Application-Defined Routines 6

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: Integer);

PROCEDURE MyAlertSound (soundNo: Integer);

FUNCTION MyEventFilter (theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR itemHit: Integer): Boolean;

C Summary 6

Constants 6

enum {

/*checking for AppendDITL, ShortenDITL, CountDITL using Gestalt function*/

#define gestaltDITLExtAttr 'ditl' /*Gestalt selector*/

gestaltDITLExtPresent = 0 /*if this bit's set, then AppendDITL, */

/* ShortenDITL, & CountDITL are available*/

};

enum {

/*item types for GetDItem, SetDItem*/

ctrlItem = 4, /*add this constant to the next four constants*/

btnCtrl = 0, /*standard button control*/

chkCtrl = 1, /*standard checkbox control*/

radCtrl = 2, /*standard radio button*/

resCtrl = 3, /*control defined in a control resource*/

statText = 8, /*static text*/

editText = 16, /*editable text*/

iconItem = 32, /*icon*/
6-168 Summary of the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
picItem = 64, /*QuickDraw picture*/

userItem = 0, /*application-defined item*/

helpItem = 1, /*help balloons*/

itemDisable = 128,/*add to any of the above to disable it*/

/*item numbers of OK and Cancel buttons in alert boxes*/

ok = 1, /*first button is OK button*/

cancel = 2, /*second button is Cancel button*/

/*resource IDs of alert box icons*/

stopIcon = 0,

noteIcon = 1,

cautionIcon = 2

};

enum {

/*constants used for theMethod parameter in AppendDITL*/

overlayDITL = 0, /*overlay existing items*/

appendDITLRight = 1, /*append at right*/

appendDITLBottom = 2 /*append at bottom*/

};

enum {

/*constants for procID parameter of NewDialog, NewColorDialog*/

dBoxProc = 1, /*modal dialog box*/

noGrowDocProc = 4, /*modeless dialog box*/

movableDBoxProc = 5 /*movable modal dialog box*/

};

Data Types 6

typedef WindowPtr DialogPtr;

typedef struct DialogRecord DialogRecord;

typedef struct DialogRecord *DialogPeek;

struct DialogRecord{

WindowRecord window; /*dialog window*/

Handle items; /*item list resource*/

TEHandle textH; /*current editable text item*/

short editField; /*editable text item number minus 1*/

short editOpen; /*used internally*/

short aDefItem; /*default button item number*/

};
Summary of the Dialog Manager 6-169

C H A P T E R 6

Dialog Manager
typedef pascal void (*ResumeProcPtr)(void);

typedef pascal void (*SoundProcPtr)(void);

typedef pascal Boolean (*ModalFilterProcPtr)(DialogPtr theDialog,

EventRecord *theEvent, short *itemHit);

typedef short DITLMethod;

Dialog Manager Routines 6

Initializing the Dialog Manager

pascal void InitDialogs (ResumeProcPtr resumeProc);

pascal void ErrorSound (SoundProcPtr soundProc);

pascal void SetDialogFont (short fontNum); /*also spelled SetDAFont*/

Creating Alerts

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal short Alert (short alertID, ModalFilterProcPtr filterProc);

pascal short StopAlert (short alertID, ModalFilterProcPtr filterProc);

pascal short NoteAlert (short alertID, ModalFilterProcPtr filterProc);

pascal short CautionAlert (short alertID, ModalFilterProcPtr filterProc);

#define GetAlertStage() (* (short*) 0x0A9A);

pascal void ResetAlertStage (void);

Creating and Disposing of Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal DialogPtr GetNewDialog
(short dialogID, void *dStorage,
WindowPtr behind);

pascal DialogPtr NewColorDialog
(void *dStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short procID, WindowPtr behind,
Boolean goAwayFlag, long refCon, Handle items);

pascal DialogPtr NewDialog
(void *dStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short procID, WindowPtr behind,
Boolean goAwayFlag, long refCon,
Handle items);

pascal void CloseDialog (DialogPtr theDialog);

pascal void DisposeDialog (DialogPtr theDialog);
6-170 Summary of the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Manipulating Items in Alert and Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void GetDialogItem (DialogPtr theDialog, short itemNo,
short *itemType, Handle *item, Rect *box);

pascal void SetDialogItem (DialogPtr theDialog, short itemNo, short
itemType, Handle item, const Rect *box);

pascal void HideDialogItem (DialogPtr theDialog, short itemNo);

pascal void ShowDialogItem (DialogPtr theDialog, short itemNo);

pascal short FindDialogItem (DialogPtr theDialog, Point thePt);

pascal void AppendDITL (DialogPtr theDialog, Handle theDITL,
DITLMethod theMethod);

pascal void ShortenDITL (DialogPtr theDialog, short numberItems);

pascal short CountDITL (DialogPtr theDialog);

Handling Text in Alert and Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void ParamText (ConstStr255Param param0,
ConstStr255Param param1,
ConstStr255Param param2,
ConstStr255Param param3);

pascal void GetDialogItemText
(Handle item, Str255 text);

pascal void SetDialogItemText
(Handle item, ConstStr255Param text);

pascal void SelectDialogItemText
(DialogPtr theDialog, short itemNo,
short strtSel, short endSel);

pascal void DialogCut (DialogPtr theDialog);

pascal void DialogCopy (DialogPtr theDialog);

pascal void DialogPaste (DialogPtr theDialog);

pascal void DialogDelete (DialogPtr theDialog);

Handling Events in Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void ModalDialog (ModalFilterProcPtr filterProc, short *itemHit);

pascal Boolean IsDialogEvent (const EventRecord *theEvent);

pascal Boolean DialogSelect (const EventRecord *theEvent,
DialogPtr *theDialog, short *itemHit);

pascal void DrawDialog (DialogPtr theDialog);

pascal void UpdateDialog (DialogPtr theDialog, RgnHandle updateRgn);
Summary of the Dialog Manager 6-171

C H A P T E R 6

Dialog Manager
Application-Defined Routines 6

pascal void MyItem (WindowPtr theWindow, short itemNo);

pascal void MyAlertSound (short soundNo);

pascal Boolean MyEventFilter (DialogPtr theDialog, *EventRecord theEvent,
*short itemHit);

Assembly-Language Summary 6

Data Structures 6

DialogRecord Data Structure

Global Variables 6

0 dWindow 156 bytes window record for the alert box or dialog box
156 items long handle to the item list resource for the alert box or dialog box
160 teHandle long handle to the current editable text item
164 editField word current editable text item
166 editOpen word used internally
168 aDefItem word item number of the default button

DAStrings Handles to text strings specified with the ParamText procedure
DABeeper Address of current sound procedure
DlgFont Font number for text in dialog boxes and alert boxes
ACount Alert stage number (0 through 3) of the last alert
ANumber Resource ID of last alert
ResumeProc Address of resume procedure (should not be used in System 7)
6-172 Summary of the Dialog Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	Dialog Manager, Part 3 (Reference and Summary)
	Dialog Manager Reference
	Data Structure
	The Dialog Record

	Dialog Manager Routines
	Initializing the Dialog Manager
	Creating Alerts
	Creating and Disposing of Dialog Boxes
	Manipulating Items in Alert and Dialog Boxes
	Handling Text in Alert and Dialog Boxes
	Handling Events in Dialog Boxes

	Application-Defined Routines
	Resources
	The Dialog Resource
	The Alert Resource
	The Item List Resource
	The Dialog Color Table Resource
	The Alert Color Table Resource
	The Item Color Table Resource

	Summary of the Dialog Manager
	Pascal Summary
	Constants
	Data Types
	Dialog Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Dialog Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

