

C H A P T E R 4

4

W
indow

 M
anager

Window Manager 4

Data Structures 4
This section describes the Window Manager data structures: the window record, the
color window record, the state data record, the window color table record, the auxiliary
window record, and the window list.

A window record or color window record describes an individual window. It includes
the record for the graphics port in which the window is displayed.

The state data record stores two rectangles, known as the user state and the standard
state, which define the size and location of the window as specified by the user and by
your application. Your application switches between the two states when the user clicks
the zoom box.

A window color table defines the colors to be used for drawing the window’s frame and
highlighting selected text. Ordinarily, you use the default window color table, which
produces windows in the colors selected by the user through the Color control panel. If
your application has some unusual need to control the frame colors, you can set up your
own window color tables.

The Window Manager uses auxiliary window records to associate a window with its
window color table.

The Window Manager uses the window list to track all of the windows on the desktop.

The Color Window Record 4

The Window Manager maintains a window record or color window record for each
window on the desktop.

The Window Manager supplies routines that let you access the window record as
necessary. Your application seldom changes fields in the window record directly.

The CWindowRecord data type defines the window record for a color window. The
CWindowPeek data type is a pointer to a color window record. The first field in
the window record is in fact the record that describes the window’s graphics port. The
CWindowPtr data type is defined as a pointer to the window’s graphics port.

When Color QuickDraw is not available, you can create monochrome windows using
the parallel data types WindowRecord, WindowPeek, and WindowPtr, described in the
next section, “The Window Record.”

For compatibility, the WindowPtr and WindowPeek data types can point to either a
color window record or a monochrome window record. You use the WindowPtr data
type to specify a window in most Window Manager routines, and you can use it to
specify a graphics port in QuickDraw routines that take the GrafPtr data type. Note
that you can access only the fields of the window’s graphics port, not the rest of the
window record, through the WindowPtr and CWindowPtr data types. You use the
WindowPeek and CWindowPeek data types in low-level Window Manager routines
and in your own routines that access window record fields beyond the graphics port.
Window Manager Reference 4-65

C H A P T E R 4

Window Manager

The routines that manipulate color windows get color information from the window
color tables and the auxiliary window record described in the sections “The Window
Color Table Record” on page 4-71 and “The Auxiliary Window Record” on page 4-73.

TYPE CWindowPtr = ^CGrafPtr;

CWindowPeek = ^CWindowRecord;

TYPE CWindowRecord =

RECORD

port: CGrafPort; {window's graphics port}

windowKind: Integer; {class of the window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition }

{ function}

dataHandle: Handle; {handle to window state }

{ data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: CWindowPeek; {pointer to next window }

{ record in window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your }

{ application}

END;

Field descriptions

port The graphics port record that describes the graphics port in which
the window is drawn.
The graphics port record, which is documented in Inside Macintosh:
Imaging, defines the rectangle in which drawing can occur, the
window’s visible region, the window’s clipping region, and a
collection of current drawing characteristics such as fill pattern, pen
location, and pen size.

windowKind The class of window—that is, how the window was created.
The Window Manager fills in this field when it creates the window
record. It places a negative value in windowKind when the window
4-66 Window Manager Reference

C H A P T E R 4

Window Manager

4

W
indow

 M
anager

was created by a desk accessory. (The value is the reference ID of
the desk accessory.) This field can also contain one of two constants:

CONST

dialogKind = 2; {dialog or alert window}

userKind = 8; {window created by an }

{ application}

The value dialogKind identifies all dialog or alert box windows,
whether created by the system software or, indirectly through the
Dialog Manager, by your application. The Dialog Manager uses this
field to help it track dialog and alert box windows.
The value userKind represents a window created directly by your
application.

visible A Boolean value indicating whether or not the window is visible. If
the window is visible, the Window Manager sets this field to TRUE;
if not, FALSE. Visibility means only whether or not the window is to
be displayed, not necessarily whether you can see it on the screen.
(For example, a window that is completely covered by other
windows can still be visible, even if the user cannot see it on the
screen.)

hilited A Boolean value indicating whether the window is highlighted—
that is, drawn with stripes in the title bar. Only the active window is
ordinarily highlighted. When the window is highlighted, the
hilited field contains TRUE; when not, FALSE.

goAwayFlag A Boolean value indicating whether the window has a close box.
The Window Manager fills in this field when it creates the window
according to the information in the 'WIND' resource or the
parameters passed to the function that creates the window.
If the value of goAwayFlag is TRUE, and if the window type
supports a close box, the Window Manager draws a close box when
the window is highlighted.

spareFlag A Boolean value indicating whether the window type supports
zooming. The Window Manager sets this field to TRUE if the
window’s type is one that includes a zoom box (zoomDocProc,
zoomNoGrow, or even modalDBoxProc + zoomDocProc).

strucRgn A handle to the structure region, which is defined in global
coordinates. The structure region is the entire screen area covered
by the window—that is, both the window contents and the window
frame.

contRgn A handle to the content region, which is defined in global
coordinates. The content region is the part of the window that
contains the document, dialog, or other data; the window controls;
and the size box.

updateRgn A handle to the update region, which is defined in global
coordinates. The update region is the portion of the window that
must be redrawn. It is maintained jointly by the Window Manager
and your application. The update region excludes parts of the
window that are covered by other windows.
Window Manager Reference 4-67

C H A P T E R 4

Window Manager

windowDefProc A handle to the definition function that controls the window.
There’s no need for your application to access this field directly.
In Macintosh models that use only 24-bit addressing, this field
contains both a handle to the window’s definition function and the
window’s variation code. If you need to know the variation code,
regardless of the addressing mode, call the GetWVariant function.

dataHandle Usually a handle to a data area used by the window definition
function.
For zoomable windows, dataHandle contains a handle to the
WStateData record, which contains the user state and standard
state rectangles. The WStateData record is described in “The
Window State Data Record” beginning on page 4-70.
A window definition function that needs only 4 bytes of data can
use the dataHandle field directly, instead of storing a handle to the
data. The window definition function that handles rounded-corner
windows, for example, stores the diameters of curvature in the
dataHandle field.

titleHandle A handle to the string that defines the title of the window.
titleWidth The width, in pixels, of the window’s title.
controlList A handle to the window’s control list, which is used by the Control

Manager. (See the chapter “Control Manager” in this book for a
description of control lists.)

nextWindow A pointer to the next window in the window list, that is, the
window behind this window on the desktop. In the window record
for the last window on the desktop, the nextWindow field is set
to NIL.

windowPic A handle to a QuickDraw picture of the window’s contents. The
Window Manager initially sets the windowPic field to NIL. If
you’re using the window to display a stable image, you can use the
SetWindowPic procedure to place a handle to the picture in this
field. When the window’s contents need updating, the Window
Manager then redraws the contents itself instead of generating an
update event.

refCon The window’s reference value field, which is simply storage
space available to your application for any purpose. The sample
code in this chapter uses the refCon field to associate a window
with the data it displays by storing a window type constant in
the refCon field of alert and dialog window records and a handle
to a document record in the refCon field of a document
window record.

Note
The close box, drag region, zoom box, and size box are not included in
the window record because they don’t necessarily have the formal data
structure for regions as defined in QuickDraw. The window definition
function determines where these regions are. ◆
4-68 Window Manager Reference

C H A P T E R 4

Window Manager

4

W
indow

 M
anager

The Window Record 4

If Color QuickDraw is not available, you create windows with a parallel data structure,
the window record. The only difference between a color window record and a window
record is that a color window record points to a color graphics port, which allows full
use of Macintosh computers with color capability, and a window record points to a
monochrome graphics port

The data types that describe window records, WindowRecord, WindowPtr, and
WindowPeek, are parallel to the data types that describe color window records, and the
fields in the monochrome window record are identical to the fields in the color window
record. For a complete description, see “The Color Window Record” beginning on
page 4-65.

TYPE WindowPtr = ^GrafPtr;

WindowPeek = ^WindowRecord;

TYPE WindowRecord = {all fields have same use }

RECORD { as in color window record}

port: GrafPort; {window's graphics port}

windowKind: Integer; {class of the window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition }

{ function}

dataHandle: Handle; {handle to window state }

{ data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: WindowPeek; {pointer to next window }

{ record in window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your }

{ application}

END;
Window Manager Reference 4-69

C H A P T E R 4

Window Manager
The Window State Data Record 4

The zoom box allows the user to alternate quickly between two window positions and
sizes: the user state and the standard state. The Window Manager stores the user state
and your application stores the standard state in the window state data record, whose
handle appears in the dataHandle field of the window record.

The WStateData record data type defines the window state data record.

TYPE WStateDataPtr = ^WStateData;

WStateDataHandle = ^WStateDataPtr;

WStateData =

RECORD

userState: Rect; {size and location established by user}

stdState: Rect; {size and location established by app}

END;

Field descriptions

userState A rectangle that describes the window size and location established
by the user.
The Window Manager initializes the user state to the size and
location of the window when it is first displayed, and then updates
the userState field whenever the user resizes a window.
Although the user state specifies both the size and location of the
window, the Window Manager updates the state data record only
when the user resizes a window—not when the user merely moves
a window.

stdState The rectangle describing the window size and location that your
application considers the most convenient, considering the function
of the document, the screen space available, and the position of the
window in its user state. If your application does not define a
standard state, the Window Manager automatically sets the
standard state to the entire gray region on the main screen, minus a
three-pixel border on all sides. The user cannot change a window’s
standard state.
Your application typically calculates and sets the standard state
each time the user zooms to the standard state. In a word-
processing application, for example, a standard state window might
show a full page, if possible, or a page of full width and as much
length as fits on the screen. If the user changes the page size
through Page Setup, the application might adjust the standard state
to reflect the new page size. (See Macintosh Human Interface
Guidelines for a detailed description of how your application
determines where to open and zoom windows.)

The ZoomWindow procedure changes the size of a window according to the values in the
window state data record. The procedure changes the window to the user state when the
user zooms “in” and to the standard state when the user zooms “out.” For a detailed
4-70 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
description of zooming windows, see “Zooming a Window” beginning on page 4-53. For
descriptions of the routines you call when zooming windows, see “Zooming Windows”
beginning on page 4-101.

The Window Color Table Record 4

The user controls the colors used for the window frame and text highlighting through
the Color control panel. Ordinarily, your application doesn’t override the user’s color
choices, which are stored in a default window color table. If you have some extraordi-
nary need to control window colors, you can do so by defining window color tables for
your application’s windows.

The Window Manager maintains window color information tables in a data structure of
type WinCTab.

You can define your own window color table and apply it to an existing window
through the SetWinColor procedure.

To establish the window color table for a window when you create it, you provide
a window color table ('wctb') resource with the same resource ID as the 'WIND'
resource that defines the window.

The WCTabPtr data type is a pointer to a window color table record, and the
WTabHandle is a handle to a window color table record.

TYPE WCTabPtr = ^WinCTab;

WCTabHandle = ^WCTabPtr;

The WinCTab data type defines a window color table record.

TYPE WinCTab =

RECORD

wCSeed: LongInt; {reserved}

wCReserved: Integer; {reserved}

ctSize: Integer; {number of entries in table -1}

ctTable: ARRAY[0..4] OF ColorSpec;

{array of color specification }

{ records}

END;

Field descriptions

wCSeed Reserved.
wCReserved Reserved.
ctSize The number of entries in the table, minus 1. If you’re building a

color table for use with the standard window definition function,
the maximum value of this field is 12. Custom window definition
functions can use color tables of any size.
Window Manager Reference 4-71

C H A P T E R 4

Window Manager
ctTable An array of colorSpec records.
In a window color table, each colorSpec record specifies a
window part in the first word and an RGB value in the other
three words:

TYPE ColorSpec =

RECORD

value: Integer; {part identifier}

rgb: RGBColor; {RGB value}

END;

The value field of a colorSpec record specifies a constant that
defines which part of the window the color controls. For the
window color table used by the standard window definition
function, you can specify these values with these meanings:

CONST

wContentColor = 0; {content region background}

wFrameColor = 1; {window outline}

wTextColor = 2; {window title and button }

{ text}

wHiliteColor = 3; {reserved}

wTitleBarColor = 4; {reserved}

wHiliteColorLight = 5; {lightest stripes in }

{ title bar and lightest }

{ dimmed text}

wHiliteColorDark = 6; {darkest stripes in }

{ title bar and }

{ darkest dimmed }

{ text}

wTitleBarLight = 7; {lightest parts of }

{ title bar background}

wTitleBarDark = 8; {darkest parts of }

{ title bar background}

wDialogLight = 9; {lightest element }

{ of dialog box frame}

wDialogDark = 10; {darkest element of }

{ dialog box frame}

wTingeLight = 11; {lightest window tinging}

wTingeDark = 12; {darkest window tinging}

Note

The part codes in System 5 and System 6 are significantly different
from the part codes described here, which apply only to System 7. ◆

The window parts can appear in any order in the table.
The rgb field of a ColorSpec record contains three words of data
that specify the red, green, and blue values of the color to be used.
The RGBColor data type is defined in Inside Macintosh: Imaging.
4-72 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
When your application creates a window, the Window Manager first looks for a resource
of type 'wctb' with the same resource ID as the 'WIND' resource used for the window.
If it finds one, it creates a window color table for the window from the information in
that resource, and then displays the window in those colors. If it doesn’t find a window
color table resource with the same resource ID as your window resource, the Window
Manager uses the default system window color table, read into the heap during
application startup.

After creating a window, you can change the entries in a window’s window color table
with the SetWinColor procedure, described on page 4-114.

See “The Window Color Table Resource” on page 4-127 for a description of the window
color table resource.

The Auxiliary Window Record 4

The auxiliary window record specifies the color table used by a window and contains
reference information used by the Dialog Manager and the Window Manager.

The Window Manager creates and maintains the information in an auxiliary window
record; your application seldom, if ever, needs to access an auxiliary window record.

TYPE AuxWinPtr = ^AuxWinRec;

AuxWinHandle = ^AuxWinPtr;

AuxWinRec =

RECORD

awNext: AuxWinHandle; {handle to next record}

awOwner: WindowPtr; {pointer to window }

{ associated with this }

{ record}

awCTable: CTabHandle; {handle to color table}

dialogCItem: Handle; {storage used by }

{ Dialog Manager}

awFlags: LongInt; {reserved}

awReserved: CTabHandle; {reserved}

awRefCon: LongInt; {reference constant, }

{ for application's use}

END;

Field descriptions

awNext A handle to the next record in the auxiliary window list, used by
the Window Manager to maintain the auxiliary window list as a
linked list. If a window is using the default auxiliary window
record, this value is NIL.

awOwner A pointer to the window that uses this record. The awOwner field of
the default auxiliary window record is set to NIL.
Window Manager Reference 4-73

C H A P T E R 4

Window Manager
awCTable A handle to the window’s color table. Unless you specify otherwise,
this is a handle to the system window color table.

dialogCItem Private storage for use by the Dialog Manager.
awFlags Reserved.
awReserved Reserved.
awRefCon The reference constant, typically used by an application to associate

the auxiliary window record with a document record.

Except in unusual circumstances, your application doesn’t need to manipulate window
color tables or the auxiliary window record.

For compatibility with other applications in the shared environment, your application
should not manipulate system color tables directly but should go through the Palette
Manager, documented in Inside Macintosh: Imaging. If your application provides its own
window and control definition functions, these functions should apply the user’s
desktop color choices the same way the standard window and control definition
functions do.

The Window List 4

The Window Manager maintains information about the windows on the desktop in a
private structure called the window list. The window list contains pointers to all windows
on the desktop, both visible and invisible, and contains other information that the
Window Manager uses to maintain the desktop.

Your application should not directly access the information in a window list. The
structure of the window list is private to the Window Manager.

The global variable WindowList contains a pointer to the first window in the
window list.

Window Manager Routines 4
This section describes the complete set of routines for creating, displaying, and
managing windows.

Initializing the Window Manager 4

Before using any other other Window Manager routines, you must initialize the Window
Manager by calling the InitWindows procedure.

As part of initialization, InitWindows creates the Window Manager port, a graphics
port that occupies all of the main screen. The Window Manager port is named
WMgrCPort on Macintosh computers equipped with Color QuickDraw and WMgrPort
on computers with only QuickDraw.
4-74 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
Ordinarily, your application does not need to know about the Window Manager port.
If necessary, however, you can retrieve a pointer to it by calling the procedure
GetWMgrPort or GetCWMgrPort. Your application should not draw directly into
the Window Manager port, except through custom window definition functions.

The Window Manager draws your application’s windows into the Window Manager
port. The port rectangle of the Window Manager port is the bounding rectangle of the
main screen (screenBits.bounds). To accommodate systems with multiple monitors,
QuickDraw recognizes a port rectangle of screenBits.bounds as a special case and
allows drawing on all parts of the desktop.

InitWindows 4

The procedure InitWindows initializes the Window Manager for your application.
Before calling InitWindows, you must initialize QuickDraw and the Font Manager by
calling the InitGraf and InitFonts procedures, documented in Inside Macintosh:
Imaging and Inside Macintosh: Text.

PROCEDURE InitWindows;

DESCRIPTION

The InitWindows procedure initializes the Window Manager.

ASSEMBLY-LANGUAGE INFORMATION

When the desktop needs to be redrawn any time after initialization, the Window
Manager checks the global variable DeskHook, which can be used as a pointer to an
application-defined routine for drawing the desktop. This variable is ordinarily set to 0,
but not until after system startup. If you’re displaying windows in code that is to be
executed during startup, set DeskHook to 0. Note that the use of the Window Manager’s
global variables is not guaranteed to be compatible in system software versions later
than System 6.

Creating Windows 4

You can create windows in two ways:

■ from a window resource (a resource of type 'WIND'), with the GetNewCWindow and
GetNewWindow functions

■ from a collection of window characteristics passed as parameters to the NewCWindow
and NewWindow functions

Creating windows from resources allows you to localize your application for different
languages and to change the characteristics of your windows during application
development by changing only the window resources.
Window Manager Reference 4-75

C H A P T E R 4

Window Manager
All four functions, GetNewCWindow, GetNewWindow, NewCWindow, and NewWindow,
can allocate space in your application’s heap for the new window’s window record. For
more control over memory use, you can allocate the space yourself and pass a pointer
when creating a window. In either case, the Window Manager fills in the data structure
and returns a pointer to it.

GetNewCWindow 4

Use the GetNewCWindow function to create a color window with the properties defined
in the 'WIND' resource with a specified resource ID.

FUNCTION GetNewCWindow (windowID: Integer; wStorage: Ptr;

behind: WindowPtr): WindowPtr;

windowID The resource ID of the 'WIND' resource that defines the properties of
the window.

wStorage A pointer to memory space for the window record.

If you specify a value of NIL for wStorage, the GetNewCWindow
function allocates the window record as a nonrelocatable object in the
heap. You can reduce the chances of heap fragmentation by allocating the
memory your application needs for window records early in your
initialization code. Whenever you need to create a window, you can
allocate memory from your own block and pass a pointer to it in the
wStorage parameter.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1). When you place a window in front of
all others, GetNewCWindow removes the highlighting from the
previously active window, highlights the newly created window, and
generates the appropriate activate events. Note that if you create an
invisible window in front of all others on the desktop, the user sees no
active window until you make the new window visible (or make another
window active).

To place a new window behind all other windows, specify a value of NIL.

DESCRIPTION

The GetNewCWindow function creates a new color window from the specified window
resource and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
GetNewCWindow is unable to read the window or window definition function from the
resource file, it returns NIL.
4-76 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
The GetNewCWindow function looks for a 'wctb' resource with the same resource ID
as that of the 'WIND' resource. If it finds one, it uses the window color information in
the 'wctb' resource for coloring the window frame and highlighting selected text.

If the window’s definition function (specified in the window resource) is not already in
memory, GetNewCWindow reads it into memory and stores a handle to it in the window
record. It allocates space in the application heap for the structure and content regions of
the window and asks the window definition function to calculate those regions.

To create the window, GetNewCWindow retrieves the window characteristics from the
window resource and then calls the NewCWindow function, passing the characteristics
as parameters.

The GetNewCWindow function creates a window in a color graphics port. Before calling
GetNewCWindow, verify that Color QuickDraw is available. Your application typically
sets up its own global variables reflecting the system setup during initialization by
calling the Gestalt function. See Inside Macintosh: Overview for more information about
establishing the local configuration.

SPECIAL CONSIDERATIONS

Note that the GetNewCWindow function returns a value of type WindowPtr, not
CWindowPtr.

If you let the Window Manager create the window record in your application’s heap, call
DisposeWindow to dispose of the window’s window record. If you allocated the
memory for the window record yourself and passed a pointer to the storage to
GetNewCWindow, use the procedure CloseWindow to close the window and the
procedure DisposePtr, documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

See Listing 4-3 on page 4-28 for an example that calls GetNewCWindow to create a new
window from a window resource.

For more information about window characteristics and the window resource, see the
description of NewCWindow beginning on page 4-79 and the description of the 'WIND'
resource in the section “The Window Resource” beginning on page 4-124.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.
See Listing 4-17 on page 4-61 for an example of closing a document window.
Window Manager Reference 4-77

C H A P T E R 4

Window Manager
GetNewWindow 4

Use the GetNewWindow function to create a new window from a window resource
when Color QuickDraw is not available. The GetNewWindow function takes the same
parameters as GetNewCWindow and returns a value of type WindowPtr. The only
difference is that it creates a monochrome graphics port, not a color graphics port.
The window record and graphics port record that describe monochrome and color
graphics ports are the same size and can be used interchangeably in most Window
Manager routines.

FUNCTION GetNewWindow (windowID: Integer; wStorage: Ptr;

behind: WindowPtr): WindowPtr;

windowID The resource ID of the 'WIND' resource that defines the properties of the
window.

wStorage A pointer to memory space for the window record.

If you specify a value of NIL for wStorage, the GetNewWindow function
allocates the window record as a nonrelocatable object in the heap. You
can reduce the chances of heap fragmentation by allocating the memory
your application needs for window records early in your initialization
code. Whenever you need to create a window, you can allocate memory
from your own block and pass a pointer to it in the wStorage parameter.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1). When you place a window in front of
all others, GetNewWindow removes the highlighting from the previously
active window, highlights the newly created window, and generates the
appropriate activate events. Note that if you create an invisible window
in front of all others on the desktop, the user sees no active window until
you make the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL.

DESCRIPTION

Like GetNewCWindow, GetNewWindow creates a new window from a window resource,
but it creates a monochrome window. The GetNewWindow function creates a new
window from the specified window resource and returns a pointer to the newly created
window record. You can use the returned window pointer to refer to this window in
most Window Manager routines. If GetNewWindow is unable to read the window or
window definition function from the resource file, it returns NIL.

If the window’s definition function (specified in the window resource) is not already in
memory, GetNewWindow reads it into memory and stores a handle to it in the window
record. It allocates space in the application heap for the structure and content regions of
the window and asks the window definition function to calculate those regions.
4-78 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
To create the window, GetNewWindow retrieves the window characteristics from the
window resource and then calls the function NewWindow, passing the characteristics
as parameters.

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap, call
DisposeWindow to dispose of the window’s window record. If you allocated the
memory for the window record yourself and passed a pointer to GetNewWindow, use
the procedure CloseWindow to close the window and the procedure DisposePtr,
documented in Inside Macintosh: Memory, to dispose of the window record.

SEE ALSO

For more information about window characteristics and the window resource, see the
description of NewWindow beginning on page 4-82 and the description of the 'WIND'
resource in the section “The Window Resource” beginning on page 4-124.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

NewCWindow 4

You can use the NewCWindow function to create a window with a specified list of
characteristics.

FUNCTION NewCWindow (wStorage: Ptr; boundsRect: Rect;

title: Str255; visible: Boolean;

procID: Integer; behind: WindowPtr;

goAwayFlag: Boolean;

refCon: LongInt): WindowPtr;

wStorage A pointer to the window record. If you specify NIL as the value of
wStorage, NewCWindow allocates the window record as a nonrelocatable
object in the application heap. You can reduce the chances of heap
fragmentation by allocating memory from a block of memory reserved for
this purpose by your application and passing a pointer to it in the
wStorage parameter.

boundsRect A rectangle, in global coordinates, specifying the window’s initial size
and location. This parameter becomes the port rectangle of the window’s
graphics port. For the standard window types, the boundsRect field
defines the content region of the window. The NewCWindow function
places the origin of the local coordinate system at the upper-left corner of
the port rectangle.
Window Manager Reference 4-79

C H A P T E R 4

Window Manager
Note

The NewCWindow function actually calls the QuickDraw procedure
OpenCPort to create the graphics port. The bitmap, pen pattern,
and other characteristics of the window’s graphics port are the same
as the default values set by OpenCPort, except for the character font,
which is set to the application font instead of the system font. ◆

title A string that specifies the window’s title.

If the title is too long to fit in the title bar, the title is truncated. If the
window has a close box, characters are truncated at the end of the title; if
there’s no close box, the title is centered and truncated at both ends.

To suppress the title in a window with a title bar, pass an empty string,
not NIL, in the title parameter.

visible A Boolean value indicating visibility status: TRUE means that the Window
Manager displays the window; FALSE means it does not.

If the value of the visible parameter is TRUE, the Window Manager
draws a new window as soon as the window exists. The Window
Manager first calls the window definition function to draw the window
frame. If the value of the goAwayFlag parameter is also TRUE and the
window is frontmost (that is, if the value of the behind parameter is
Pointer(–1)), the Window Manager instructs the window definition
function to draw a close box in the window frame. After drawing the
frame, the Window Manager generates an update event to trigger your
application’s drawing of the content region.

When you create a window, you typically specify FALSE as the value of
the visible parameter. When you’re ready to display the window, you
call the ShowWindow procedure, described on page 4-88.

procID The window’s definition ID, which specifies both the window definition
function and the variation code within that definition function.

The Window Manager supports nine standard window types, which
are handled by two window definition functions. You can create windows
of the standard types by specifying one of the window definition ID
constants:

CONST

documentProc = 0; {standard document }

{ window, no zoom box}

dBoxProc = 1; {alert box or modal }

{ dialog box}

plainDBox = 2; {plain box}

altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, }

{ no size box or zoom box}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable }

{ window}

rDocProc = 16; {rounded-corner window}
4-80 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
For a description of the nine standard window types, see “Types of
Windows” beginning on page 4-8.

You can control the diameter of curvature of rounded-corner windows by
adding an integer to the rDocProc constant, as described in “The
Window Resource” beginning on page 4-124.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1). When you place a new window in front
of all others, NewCWindow removes highlighting from the previously
active window, highlights the newly created window, and generates
activate events that trigger your application’s updating of both windows.
Note that if you create an invisible window in front of all others on the
desktop, the user sees no active window until you make the new window
visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL.

goAwayFlag A Boolean value that determines whether the window has a close box. If
the value of goAwayFlag is TRUE and the window type supports a close
box, the Window Manager draws a close box in the title bar and
recognizes mouse clicks in the close region; if the value of goAwayFlag is
FALSE or the window type does not support a close box, it does not.

refCon The window’s reference constant, set and used only by your application.
(See “Managing Multiple Windows” beginning on page 4-23 for some
suggested ways to use the refCon parameter.)

DESCRIPTION

The NewCWindow function creates a window as specified by its parameters, adds it to
the window list, and returns a pointer to the newly created window record. You can use
the returned window pointer to refer to this window in most Window Manager routines.
If NewCWindow is unable to read the window definition function from the resource file, it
returns NIL.

The NewCWindow function looks for a 'wctb' resource with the same resource ID as the
'WIND' resource. If it finds one, it uses the window color information in the 'wctb'
resource for coloring the window frame and highlighting.

If the window’s definition function is not already in memory, NewCWindow reads it
into memory and stores a handle to it in the window record. It allocates space for the
structure and content regions of the window and asks the window definition function
to calculate those regions.

Storing the characteristics of your windows as resources, especially window titles and
window items, makes your application easier to localize.

The NewCWindow function creates a window in a color graphics port. Creating color
windows whenever possible ensures that your windows appear on color monitors with
whatever color options the user has selected. Before calling GetNewCWindow, verify that
Color QuickDraw is available. Your application typically sets up its own set of global
Window Manager Reference 4-81

C H A P T E R 4

Window Manager
variables reflecting the system setup during initialization by calling the Gestalt
function. See the chapter Inside Macintosh: Overview for more information about
establishing the local configuration.

Note that the function NewCWindow returns a value of type WindowPtr, not
CWindowPtr.

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap,
call the DisposeWindow procedure to close the window and dispose of its window
record. If you allocated the memory for the window record yourself and passed a
pointer to NewCWindow, use the CloseWindow procedure to close the window and
the DisposePtr procedure, documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

NewWindow 4

Use the NewWindow function to create a new window with the characteristics specified
by a list of parameters when Color QuickDraw is not available. The NewWindow
function takes the same parameters as NewCWindow and, like NewCWindow, returns a
WindowPtr as its function result. The only difference is that NewWindow creates a
window in a monochrome graphics port, not a color graphics port. The window record
and graphics port record that describe monochrome and color graphics ports are the
same size and can be used interchangeably in most Window Manager routines.

FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rect;

title: Str255; visible: Boolean;

theProc: Integer; behind: WindowPtr;

goAwayFlag: Boolean;

refCon: LongInt): WindowPtr;

wStorage A pointer to the window record. If you specify NIL as the value of
wStorage, NewWindow allocates the window record as a nonrelocatable
object in the heap. You can reduce the chances of heap fragmentation by
allocating the storage from a block of memory reserved for this purpose
by your application and passing a pointer to it in the wStorage
parameter.
4-82 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
boundsRect A rectangle, in global coordinates, specifying the window’s initial size
and location. This parameter becomes the port rectangle of the window’s
graphics port. For the standard window types, boundsRect defines
the content region of the window. The NewWindow function places
the origin of the local coordinate system at the upper-left corner of the
port rectangle.

Note

The NewWindow function actually calls the QuickDraw procedure
OpenPort to create the graphics port. The bitmap, pen pattern, and
other characteristics of the window’s graphics port are the same as
the default values set by OpenPort, except for the character font,
which is set to the application font instead of the system font. The
coordinates of the graphics port’s port boundaries and visible region
are changed along with its port rectangle. ◆

title A string that specifies the window’s title.

If the title is too long to fit in the title bar, the title is truncated. If the
window has a close box, characters at the end of the title are truncated; if
there’s no close box, the title is centered and truncated at both ends.

To suppress the title in a window with a title bar, pass an empty string,
not NIL.

visible A Boolean value indicating visibility status: TRUE means that the Window
Manager displays the window; FALSE means it does not.

If the value of the visible parameter is TRUE, the Window Manager
draws a new window as soon as the window exists. The Window
Manager first calls the window definition function to draw the window
frame. If the value of the goAwayFlag parameter (described below) is
also TRUE and the window is frontmost (that is, if the value of the
behind parameter is Pointer(–1)), the Window Manager instructs the
window definition function to draw a close box in the window frame.
After drawing the frame, the Window Manager generates an update
event to trigger your application’s drawing of the content region.

When you create a window, you typically specify FALSE as the value of
the visible parameter. When you’re ready to display the window, you
call the ShowWindow procedure, described on page 4-88.

theProc The window’s definition ID, which specifies both the window definition
function and the variation code for that definition function.

The Window Manager supports nine standard window types, which are
handled by two window definition functions. You can create windows of
the standard types by specifying one of the type constants:

CONST

documentProc = 0; {standard document }

{ window, no zoom box}

dBoxProc = 1; {alert box or modal }

{ dialog box}

plainDBox = 2; {plain box}
Window Manager Reference 4-83

C H A P T E R 4

Window Manager
altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, }

{ no size box or zoom box}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable }

{ window}

rDocProc = 16; {rounded-corner window}

You can control the diameter of curvature of rounded-corner windows by
adding an integer to the rDocProc constant, as described in “The
Window Resource” beginning on page 4-124.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1). When you place a new window in front
of all others, NewWindow removes highlighting from the previously active
window, highlights the newly created window, and generates activate
events that trigger your application’s updating of both windows. Note
that if you create an invisible window in front of all others on the
desktop, the user sees no active window until you make the new window
visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL.

goAwayFlag A Boolean value that determines whether or not the window has a close
box. If the value of goAwayFlag is TRUE and the window type supports
a close box, the Window Manager draws a close box in the title bar and
recognizes mouse clicks in the close region; if the value of goAwayFlag is
FALSE or the window type does not support a close box, it does not.

refCon The window’s reference constant, set and used only by your application.
(See “Managing Multiple Windows” beginning on page 4-23 for some
suggested ways to use the refCon parameter.)

DESCRIPTION

The NewWindow function creates a window as specified by its parameters, adds it to the
window list, and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
NewWindow is unable to read the window definition function from the resource file, it
returns NIL.

If the window’s definition function is not already in memory, NewWindow reads it into
memory and stores a handle to it in the window record. It allocates space for the
structure and content regions of the window and asks the window definition function to
calculate those regions.

Storing the characteristics of your windows as resources, especially window titles and
window items, makes your application easier to localize.
4-84 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap, call
the DisposeWindow procedure to close the window and dispose of its window record.
If you allocated the memory for the window record yourself and passed a pointer to
NewCWindow, use the CloseWindow procedure to close the window and the
DisposePtr procedure, documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

Naming Windows 4

This section describes the procedures that set and retrieve a window’s title.

SetWTitle 4

Use the SetWTitle procedure to change a window’s title.

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255);

theWindow A pointer to the window’s window record.

title The new window title.

DESCRIPTION

The SetWTitle procedure changes a window’s title to the specified string, both in the
window record and on the screen, and redraws the window’s frame as necessary.

When the user opens a previously saved document, you typically create a new (invisible)
window with the title “untitled” and then call SetWTitle to give the window the
document’s name before displaying it. You also call SetWTitle when the user saves a
document under a new name.

To suppress the title in a window with a title bar, pass an empty string, not NIL.

Always use SetWTitle instead of directly changing the title in a window’s
window record.
Window Manager Reference 4-85

C H A P T E R 4

Window Manager
GetWTitle 4

Use the GetWTitle procedure to retrieve a window’s title.

PROCEDURE GetWTitle (theWindow: WindowPtr; VAR title: Str255);

theWindow A pointer to the window record.

title The window title.

DESCRIPTION

The GetWTitle procedure returns the title of the window in the title parameter.

Your application seldom needs to determine a window’s title. It might need to do so,
however, when presenting user dialog boxes during operations that can affect multiple
files. A spell-checking command, for example, might display a dialog box that lets the
user select from all currently open documents.

When you need to retrieve a window’s title, you should always use GetWTitle instead
of reading the title from a window’s window record.

Displaying Windows 4

This section describes the Window Manager routines that change a window’s display
and position in the window list but not its size or location on the desktop. Note that the
Window Manager automatically draws all visible windows on the screen.

Your application typically uses only a few of the routines described in this section:
DrawGrowIcon, SelectWindow, ShowWindow, and, occasionally, HideWindow.

DrawGrowIcon 4

Use the DrawGrowIcon procedure to draw a window’s size box.

PROCEDURE DrawGrowIcon (theWindow: WindowPtr);

theWindow A pointer to the window record.

DESCRIPTION

The DrawGrowIcon procedure draws a window’s size box or, if the window can’t be
sized, whatever other image is appropriate. You call DrawGrowIcon when drawing the
content region of a window that contains a size box.

The exact appearance and location of the image depend on the window type and the
window’s active or inactive state. The DrawGrowIcon procedure automatically checks
the window’s type and state and draws the appropriate image.
4-86 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
In an active document window, DrawGrowIcon draws the grow image in the size box in
the lower-right corner of the window’s graphics port rectangle, along with the lines
delimiting the size box and scroll bar areas. To draw the size box but not the scroll bar
outline, set the clipRgn field in the window’s graphics port to be a 15-by-15 pixel
rectangle in the lower-right corner of the window.

The DrawGrowIcon procedure doesn’t erase the scroll bar areas. If you use
DrawGrowIcon to draw the size box and scroll bar outline, therefore, you should
erase those areas yourself when the window size changes, even if the window
doesn’t contain scroll bars.

In an inactive document window, DrawGrowIcon draws the lines delimiting the size
box and scroll bar areas and erases the size box.

SEE ALSO

See Listing 4-8 on page 4-39 for an example that draws a window’s content region,
including the size box. See Listing 4-11 on page 4-51 for an example that calls
DrawGrowIcon to remove the size-box icon when a window becomes inactive.

SelectWindow 4

Use the SelectWindow procedure to make a window active. The SelectWindow
procedure changes the active status of a window but does not affect its visibility.

PROCEDURE SelectWindow (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The SelectWindow procedure removes highlighting from the previously active
window, brings the specified window to the front, highlights it, and generates the
activate events to deactivate the previously active window and activate the specified
window. If the specified window is already active, SelectWindow has no effect.

Even if the specified window is invisible, SelectWindow brings the window to the
front, activates the window, and deactivates the previously active window. Note that in
this case, no active window is visible on the screen. If you do select an invisible window,
be sure to call ShowWindow immediately to make the window visible (and accessible to
the user).

Call SelectWindow when the user presses the mouse button while the cursor is in the
content region of an inactive window.
Window Manager Reference 4-87

C H A P T E R 4

Window Manager
SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls SelectWindow to change
the active window when the user presses the mouse button while the cursor is
in an inactive window.

See Listing 4-18 on page 4-64 for an example that uses SelectWindow and
ShowWindow together to restore a window’s active, visible status after it has
been made invisible with HideWindow.

ShowWindow 4

Use the ShowWindow procedure to make an invisible window visible.

PROCEDURE ShowWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window.

DESCRIPTION

The ShowWindow procedure makes an invisible window visible. If the specified window
is already visible, ShowWindow has no effect. Your application typically creates a new
window in an invisible state, performs any necessary setup of the content region, and
then calls ShowWindow to make the window visible.

When you display a previously invisible window by calling ShowWindow, the Window
Manager draws the window frame and then generates an update event to trigger your
application’s drawing of the content region.

If the newly visible window is the frontmost window, ShowWindow highlights it if
it’s not already highlighted and generates an activate event to make it active. The
ShowWindow procedure does not activate a window that is not frontmost on the desktop.

Note
Because ShowWindow does not change the front-to-back ordering of
windows, it is not the inverse of HideWindow. If you make the
frontmost window invisible with HideWindow, and HideWindow has
activated another window, you must call both ShowWindow and
SelectWindow to bring the original window back to the front. ◆

SEE ALSO

See Listing 4-16 on page 4-60 for an example that temporarily hides a dialog box
window when the user closes it. See Listing 4-18 on page 4-64 for the example that
calls ShowWindow to display the window again later.
4-88 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
HideWindow 4

Use the HideWindow procedure to make a window invisible.

PROCEDURE HideWindow (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The HideWindow procedure make a visible window invisible. If you hide the frontmost
window, HideWindow removes the highlighting, brings the window behind it to
the front, highlights the new frontmost window, and generates the appropriate
activate events.

To reverse the actions of HideWindow, you must call both ShowWindow, to make the
window visible, and SelectWindow, to select it.

SEE ALSO

See Listing 4-16 on page 4-60 for an example that calls HideWindow to temporarily
hide a dialog box window when the user closes it. See Listing 4-18 on page 4-64 for the
companion example that redisplays the window later.

ShowHide 4

Use the ShowHide procedure to set a window’s visibility status.

PROCEDURE ShowHide (theWindow: WindowPtr; showFlag: Boolean);

theWindow A pointer to the window’s window record.

showFlag A Boolean value that determines visibility status: TRUE makes a window
visible; FALSE makes it invisible.

DESCRIPTION

The ShowHide procedure sets a window’s visibility to the status specified by the
showFlag parameter. If the value of showFlag is TRUE, ShowHide makes the window
visible if it’s not already visible and has no effect if it’s already visible. If the value of
showFlag is FALSE, ShowHide makes the window invisible if it’s not already invisible
and has no effect if it’s already invisible.

The ShowHide procedure never changes the highlighting or front-to-back ordering of
windows and generates no activate events.
Window Manager Reference 4-89

C H A P T E R 4

Window Manager
▲ W A R N I N G

Use this procedure carefully and only in special circumstances where
you need more control than that provided by HideWindow and
ShowWindow. Do not, for example, use ShowHide to hide the active
window without making another window active. ▲

HiliteWindow 4

Use the HiliteWindow procedure to set a window’s highlighting status.

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: Boolean);

theWindow A pointer to the window’s window record.

fHilite A Boolean value that determines the highlighting status: TRUE highlights
a window; FALSE removes highlighting.

DESCRIPTION

The HiliteWindow procedure sets a window’s highlighting status to the specified state.
If the value of the fHilite parameter is TRUE, HiliteWindow highlights the specified
window; if the specified window is already highlighted, the procedure has no effect.
If the value of fHilite is FALSE, HiliteWindow removes highlighting from the
specified window; if the window is not already highlighted, the procedure has no effect.

Your application doesn’t normally need to call HiliteWindow. To make a window
active, you can call SelectWindow, which handles highlighting for you.

BringToFront 4

Use the BringToFront procedure to bring a window to the front.

PROCEDURE BringToFront (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The BringToFront procedure puts the specified window at the beginning of the
window list and redraws the window in front of all others on the screen. It does
not change the window’s highlighting or make it active.

Your application does not ordinarily call BringToFront. The user interface guidelines
specify that the frontmost window should be the active window. To bring a window to
the front and make it active, call the SelectWindow procedure.
4-90 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
SendBehind 4

Use the SendBehind procedure to move one window behind another.

PROCEDURE SendBehind (theWindow, behindWindow: WindowPtr);

theWindow A pointer to the window to be moved.

behindWindow
A pointer to the window that is to be in front of the moved window.

DESCRIPTION

The SendBehind procedure moves the window pointed to by the parameter
theWindow behind the window pointed to by the parameter behindWindow. If the
move exposes previously obscured windows or parts of windows, SendBehind
redraws the frames as necessary and generates the appropriate update events to
have any newly exposed content areas redrawn.

If the value of behindWindow is NIL, SendBehind sends the window to be moved
behind all other windows on the desktop. If the window to be moved is the active
window, SendBehind removes its highlighting, highlights the newly exposed frontmost
window, and generates the appropriate activate events.

Note
Do not use SendBehind to deactivate a window after you’ve made a
new window active with the SelectWindow procedure. The
SelectWindow procedure automatically deactivates the previously
active window. ◆

Retrieving Window Information 4

This section describes

■ the FindWindow function, which maps the cursor location of a mouse-down event to
parts of the screen or regions of a window

■ the FrontWindow function, which tells your application which window is active

FindWindow 4

When your application receives a mouse-down event, call the FindWindow function to
map the location of the cursor to a part of the screen or a region of a window.

FUNCTION FindWindow (thePoint: Point;

VAR theWindow: WindowPtr): Integer;
Window Manager Reference 4-91

C H A P T E R 4

Window Manager
thePoint The point, in global coordinates, where the mouse-down event occurred.
Your application retrieves this information from the where field of the
event record.

theWindow A parameter in which FindWindow returns a pointer to the window in
which the mouse-down event occurred, if it occurred in a window. If it
didn’t occur in a window, FindWindow sets theWindow to NIL.

DESCRIPTION

The FindWindow function returns an integer that specifies where the cursor was when
the user pressed the mouse button. You typically call FindWindow whenever you
receive a mouse-down event. The FindWindow function helps you dispatch the event by
reporting whether the cursor was in the menu bar or in a window when the mouse
button was pressed and, if it was in a window, which window and which region of the
window. If the mouse-down event occurred in a window, FindWindow places a pointer
to the window in the parameter theWindow.

The FindWindow function returns an integer that specifies one of nine regions:

CONST inDesk = 0; {none of the following}

inMenuBar = 1; {in menu bar}

inSysWindow = 2; {in desk accessory window}

inContent = 3; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

inDrag = 4; {in drag (title bar) region}

inGrow = 5; {in size box (active window only)}

inGoAway = 6; {in close box}

inZoomIn = 7; {in zoom box (window in standard state)}

inZoomOut = 8; {in zoom box (window in user state)}

The FindWindow function returns inDesk if the cursor is not in the menu bar, a desk
accessory window, or any window that belongs to your application. The FindWindow
function might return this value if, for example, the user presses the mouse button while
the cursor is on the window frame but not in the title bar, close box, or zoom box. When
FindWindow returns inDesk, your application doesn’t need to do anything. In System
7, when the user presses the mouse button while the cursor is on the desktop or in a
window that belongs to another application, the Event Manager sends your application
a suspend event and switches to the Finder or another application.

The FindWindow function returns inMenuBar when the user presses the mouse button
with the cursor in the menu bar. Your application typically adjusts its menus and then
calls the Menu Manager’s function MenuSelect to let the user choose menu items.

The FindWindow function returns inSysWindow when the user presses the mouse
button while the cursor is in a window belonging to a desk accessory that was launched
in your application’s partition. This situation seldom arises in System 7. When the user
4-92 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
clicks in a window belonging to a desk accessory launched independently, the Event
Manager sends your application a suspend event and switches to the desk accessory.

If FindWindow does return inSysWindow, your application calls the SystemClick
procedure, documented in the chapter “Event Manager” in this book. The
SystemClick procedure routes the event to the desk accessory. If the user presses
the mouse button with the cursor in the content region of an inactive desk
accessory window, SystemClick makes the window active by sending your applica-
tion and the desk accessory the appropriate activate events.

The FindWindow function returns inContent when the user presses the mouse button
with the cursor in the content area (excluding the size box in an active window) of one of
your application’s windows. Your application then calls its routine for handling clicks in
the content region.

The FindWindow function returns inDrag when the user presses the mouse button
with the cursor in the drag region of a window (that is, the title bar, excluding the close
box and zoom box). Your application then calls the Window Manager’s DragWindow
procedure to let the user drag the window to a new location.

The FindWindow function returns inGrow when the user presses the mouse button
with the cursor in an active window’s size box. Your application then calls its own
routine for resizing a window.

The FindWindow function returns inGoAway when the user presses the mouse
button with the cursor in an active window’s close box. Your application calls the
TrackGoAway function to track mouse activity while the button is down and then
calls its own routine for closing a window if the user releases the button while the
cursor is in the close box.

The FindWindow function returns inZoomIn or inZoomOut when the user presses the
mouse button with the cursor in an active window’s zoom box. Your application calls the
TrackBox function to track mouse activity while the button is down and then calls its
own routine for zooming a window if the user releases the button while the cursor is in
the zoom box.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls FindWindow to determine the
location of the cursor and then dispatches the mouse-down event depending on
the results.

FrontWindow 4

Use the FrontWindow function to find out which window is active.

FUNCTION FrontWindow: WindowPtr;
Window Manager Reference 4-93

C H A P T E R 4

Window Manager
DESCRIPTION

The FrontWindow function returns a pointer to the first visible window in the
window list (that is, the active window). If there are no visible windows, FrontWindow
returns NIL.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls FrontWindow to determine
whether an event occurred in the active window.

See Listing 4-12 on page 4-55 for an example that calls FrontWindow to determine
whether to display a window in front of other windows after changing its size.

See Listing 4-16 on page 4-60 and Listing 4-17 on page 4-61 for examples that call
FrontWindow to determine which window is affected by a user command directed
at the active window.

Moving Windows 4

This section describes the procedures that move windows on the desktop.

To move a window, your application ordinarily needs to call only the DragWindow
procedure, which itself calls the DragGrayRgn function, and the MoveWindow
procedure. The DragGrayRgn function drags a dotted outline of the window on the
screen, following the motion of the cursor, as long as the user holds down the mouse
button. The DragGrayRgn function itself calls the PinRect function to contain the
point where the cursor was when the mouse button was first pressed inside the
available desktop area. When the user releases the mouse button, DragWindow calls
MoveWindow, which moves the window to a new location.

DragWindow 4

When the user drags a window by its title bar, use the DragWindow procedure to move
the window on the screen.

PROCEDURE DragWindow (theWindow: WindowPtr;

startPt: Point; boundsRect: Rect);

theWindow A pointer to the window record of the window to be dragged.

startPt The location, in global coordinates, of the cursor at the time the user
pressed the mouse button. Your application retrieves this point from the
where field of the event record.
4-94 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
boundsRect A rectangle, in global coordinates, that limits the region to which a
window can be dragged. If the mouse button is released when the
cursor is outside the limits of boundsRect, DragWindow returns
without moving the window (or, if it was inactive, without making
it the active window).

Because the user cannot ordinarily move the cursor off the desktop,
you can safely set boundsRect to the largest available rectangle (the
bounding box of the desktop region pointed to by the global variable
GrayRgn) when you’re using DragWindow to track mouse movements.
Don’t set the bounding rectangle to the size of the immediate screen
(screenBits.bounds), because the user wouldn’t be able to move
the window to a different screen on a system equipped with
multiple monitors.

DESCRIPTION

The DragWindow procedure moves a dotted outline of the specified window around the
screen, following the movement of the cursor until the user releases the mouse button.
When the button is released, DragWindow calls MoveWindow to move the window to its
new location. If the specified window isn’t the active window (and the Command key
wasn’t down when the mouse button was pressed), DragWindow makes it the active
window by setting the front parameter to TRUE when calling MoveWindow. If the
Command key was down when the mouse button was pressed, DragWindow moves the
window without making it active.

SEE ALSO

The DragWindow procedure calls both MoveWindow and DragGrayRgn, which are
described in this section.

See Listing 4-9 on page 4-44 for an example that calls DragWindow when the user
presses the mouse button while the cursor is in the drag region.

MoveWindow 4

Use the MoveWindow procedure to move a window on the desktop.

PROCEDURE MoveWindow (theWindow: WindowPtr;

hGlobal, vGlobal: Integer;

front: Boolean);

theWindow A pointer to the window record of the window being moved.

hGlobal The new location, in global coordinates, of the left edge of the window’s
port rectangle.

vGlobal The new location, in global coordinates, of the top edge of the window’s
port rectangle.
Window Manager Reference 4-95

C H A P T E R 4

Window Manager
front A Boolean value specifying whether the window is to become the
frontmost, active window. If the value of the front parameter is FALSE,
MoveWindow does not change its plane or status. If the value of the front
parameter is TRUE and the window isn’t active, MoveWindow makes it
active by calling the SelectWindow procedure.

DESCRIPTION

The MoveWindow procedure moves the specified window to the location specified by the
hGlobal and vGlobal parameters, without changing the window’s size. The upper-left
corner of the window’s port rectangle is placed at the point (vGlobal,hGlobal). The
local coordinates of the upper-left corner are unaffected.

Your application doesn’t normally call MoveWindow. When the user drags a window by
dragging its title bar, you can call DragWindow, which in turn calls MoveWindow when
the user releases the mouse button.

DragGrayRgn 4

The DragWindow function calls the DragGrayRgn function to move an outline of a
window around the screen as the user drags a window.

FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point;

limitRect, slopRect: Rect; axis: Integer;

actionProc: ProcPtr): LongInt;

theRgn A handle to the region to be dragged.

startPt The location, in the local coordinates of the current graphics port, of the
cursor when the mouse button was pressed.

limitRect A rectangle, in the local coordinates of the current graphics port, that
limits where the region can be dragged. This parameter works in
conjunction with the slopRect parameter, as illustrated in Figure 4-23
on page 4-98.

slopRect A rectangle, in the local coordinates of the current graphics port, that
gives the user some leeway in moving the mouse without violating
the limits of the limitRect parameter, as illustrated in Figure 4-23 on
page 4-98. The slopRect rectangle should be larger than the limitRect
rectangle.

axis A constant that constrains the region’s motion. The axis parameter can
have one of these values:

CONST noConstraint = 0; {no constraints}

hAxisOnly = 1; {move on horizontal axis }

{ only}

vAxisOnly = 2; {move on vertical axis }

{ only}
4-96 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
If an axis constraint is in effect, the outline follows the cursor’s
movements along only the specified axis, ignoring motion along the other
axis. With or without an axis constraint, the outline appears only when
the mouse is inside the slopRect rectangle.

actionProc A pointer to a procedure that defines an action to be performed
repeatedly as long as the user holds down the mouse button. The
procedure can have no parameters. If the value of actionProc is NIL,
DragGrayRgn simply retains control until the mouse button is released.

DESCRIPTION

The DragGrayRgn function moves a gray outline of a region on the screen, following
the movements of the cursor, until the mouse button is released. It returns the difference
between the point where the mouse button was pressed and the offset point—that is, the
point in the region whose horizontal and vertical offsets from the upper-left corner of the
region’s enclosing rectangle are the same as the offsets of the starting point when the
user pressed the mouse button. The DragGrayRgn function stores the vertical difference
between the starting point and the offset point in the high-order word of the return value
and the horizontal difference in the low-order word.

The DragGrayRgn function limits the movement of the region according to the
constraints set by the limitRect and slopRect parameters:

■ As long as the cursor is inside the limitRect rectangle, the region’s outline follows
it normally. If the mouse button is released while the cursor is within this rectangle,
the return value reflects the simple distance that the cursor moved in each dimension.

■ When the cursor moves outside the limitRect rectangle, the offset point stops at the
edge of the limitRect rectangle. If the mouse button is released while the cursor
is outside the limitRect rectangle but inside the slopRect rectangle, the return
value reflects only the difference between the starting point and the offset point,
regardless of how far outside of the limitRect rectangle the cursor may have
moved. (Note that part of the region can fall outside the limitRect rectangle, but
not the offset point.)

■ When the cursor moves outside the slopRect rectangle, the region’s outline
disappears from the screen. The DragGrayRgn function continues to track the cursor,
however, and if the cursor moves back into the slopRect rectangle, the outline
reappears. If the mouse button is released while the cursor is outside the slopRect
rectangle, both words of the return value are set to $8000. In this case, the Window
Manager does not move the window from its original location.

Figure 4-23 on page 4-98 illustrates how the region stops moving when the offset point
reaches the edge of the limitRect rectangle. The cursor continues to move, but the
region does not.

If the mouse button is released while the cursor is anywhere inside the slopRect
rectangle, the Window Manager redraws the window in its new location, which is
calculated from the value returned by DragGrayRgn.
Window Manager Reference 4-97

C H A P T E R 4

Window Manager
Figure 4-23 Limiting rectangle used by DragGrayRgn

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined
by your application, which will be called by DragGrayRgn as long as the mouse
button is held down. (If there’s an actionProc procedure, it is called first.) If you
want DragGrayRgn to draw the region’s outline in a pattern other than gray, you
can store the pattern in the global variable DragPattern and then invoke the macro
_DragTheRgn. Note that the use of the Window Manager’s global variables is not
guaranteed to be compatible with system software versions later than System 6.

startPt
limitRect

slopRect
theRgn

The user presses the mouse button with the cursor at startPt.

Although the cursor continues to move, the region identified by

theRgn stops when the offset point reaches the edge of the

limitRect rectangle.

4-98 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
PinRect 4

The DragGrayRgn function uses the PinRect function to contain a point within a
specified rectangle.

FUNCTION PinRect (theRect: Rect; thePt: Point): LongInt;

theRect The rectangle in which the point is to be contained.

thePt The point to be contained.

DESCRIPTION

The PinRect function returns a point within the specified rectangle that is as close as
possible to the specified point. (The high-order word of the returned long integer is the
vertical coordinate; the low-order word is the horizontal coordinate.)

If the specified point is within the rectangle, PinRect returns the point itself. If not, then

■ if the horizontal position is to the left of the rectangle, PinRect returns the left edge
as the horizontal coordinate

■ if the horizontal position is to the right of the rectangle, PinRect returns the right
edge minus 1 as the horizontal coordinate

■ if the vertical position is above the rectangle, PinRect returns the top edge as the
vertical coordinate

■ if the vertical position is below the rectangle, PinRect returns the bottom edge minus
1 as the vertical coordinate

Note
The 1 is subtracted when the point is below or to the right of the
rectangle so that a pixel drawn at that point lies within the rectangle. If
the point is exactly on the bottom or the right edge of the rectangle,
however, 1 should be subtracted but isn’t. ◆

Resizing Windows 4

This section describes the procedures you can use to track the cursor while the user
resizes a window and to draw the window in a new size.

GrowWindow 4

Use the GrowWindow function to allow the user to change the size of a window. The
GrowWindow function displays an outline (grow image) of the window as the user
moves the cursor to make the window larger or smaller; it handles all user interaction
Window Manager Reference 4-99

C H A P T E R 4

Window Manager
until the user releases the mouse button. After calling GrowWindow, you call the
SizeWindow procedure to change the size of the window.

FUNCTION GrowWindow (theWindow: WindowPtr;

startPt: Point; sizeRect: Rect): LongInt;

theWindow A pointer to the window record of the window to drag.

startPt The location of the cursor at the time the mouse button was first pressed,
in global coordinates. Your application retrieves this point from the
where field of the event record.

sizeRect The limits on the vertical and horizontal measurements of the port
rectangle, in pixels.

Although the sizeRect parameter is in the form of the Rect data
type, the four numbers in the structure represent lengths, not
screen coordinates. The top, left, bottom, and right fields of the
sizeRect parameter specify the minimum vertical measurement
(top), the minimum horizontal measurement (left), the maximum
vertical measurement (bottom), and the maximum horizontal
measurement (right).

The minimum measurements must be large enough to allow a
manageable rectangle; 64 pixels on a side is typical. Because the user
cannot ordinarily move the cursor off the screen, you can safely set
the upper bounds to the largest possible length (65,535 pixels) when
you’re using GrowWindow to follow cursor movements.

DESCRIPTION

The GrowWindow function moves a dotted-line image of the window’s right and lower
edges around the screen, following the movements of the cursor until the mouse button
is released. It returns the new dimensions, in pixels, of the resulting window: the height
in the high-order word of the returned long-integer value and the width in the low-order
word. You can use the functions HiWord and LoWord to retrieve only the high-order and
low-order words, respectively.

A return value of 0 means that the new size is the same as the size of the current
port rectangle.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by GrowWindow as long as the mouse button is
held down. (If there’s an actionProc procedure, the actionProc procedure is called
first.) Note that the use of the Window Manager’s global variables is not guaranteed to
be compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that calls GrowWindow when the user
presses the mouse button while the cursor is in the size box.
4-100 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
SizeWindow 4

Use the SizeWindow procedure to set the size of a window.

PROCEDURE SizeWindow (theWindow: WindowPtr; w, h: Integer;

fUpdate: Boolean);

theWindow A pointer to the window record of the window to be sized.

w The new window width, in pixels.

h The new window height, in pixels.

fUpdate A Boolean value that specifies whether any newly created area of the
content region is to be accumulated into the update region (TRUE) or not
(FALSE). You ordinarily pass a value of TRUE to ensure that the area is
updated. If you pass FALSE, you’re responsible for maintaining the
update region yourself. For more information on adding rectangles to and
removing rectangles from the update region, see the description of
InvalRect on page 4-107 and ValidRect on page 4-108.

DESCRIPTION

The SizeWindow procedure changes the size of the window’s graphics port rectangle to
the dimensions specified by the w and h parameters, or does nothing if the values of w
and h are 0. The Window Manager redraws the window in the new size, recentering the
title and truncating it if necessary. Your application calls SizeWindow immediately after
calling GrowWindow, to adjust the window to any changes made by the user through the
size box.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that calls SizeWindow to resize a window
based on the return value of GrowWindow.

Zooming Windows 4

This section describes the procedures you can use to track mouse activity in the zoom
box and to zoom windows.

TrackBox 4

Use the TrackBox function to track the cursor when the user presses the mouse button
while the cursor is in the zoom box.

FUNCTION TrackBox (theWindow: WindowPtr; thePt: Point;

 partCode: Integer): Boolean;
Window Manager Reference 4-101

C H A P T E R 4

Window Manager
theWindow A pointer to the window record of the window in which the mouse
button was pressed.

thePt The location of the cursor when the mouse button was pressed. Your
application receives this point from the where field in the event record.

partCode The part code (either inZoomIn or inZoomOut) returned by the
FindWindow function.

DESCRIPTION

The TrackBox function tracks the cursor when the user presses the mouse button while
the cursor is in the zoom box, retaining control until the mouse button is released. While
the button is down, TrackBox highlights the zoom box while the cursor is in the zoom
region, as illustrated in Figure 4-20 on page 4-47.

When the mouse button is released, TrackBox removes the highlighting from the zoom
box and returns TRUE if the cursor is within the zoom region and FALSE if it is not.

Your application calls the TrackBox function when it receives a result code of either
inZoomIn or inZoomOut from the FindWindow function. If TrackBox returns TRUE,
your application calculates the standard state, if necessary, and calls the ZoomWindow
procedure to zoom the window. If TrackBox returns FALSE, your application
does nothing.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by TrackBox as long as the mouse button is held
down. (If there’s an actionProc procedure, the actionProc procedure is called first.)
Note that the use of the Window Manager’s global variables is not guaranteed to be
compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-12 on page 4-55 for an example that calls TrackBox to track cursor activity
when the user presses the mouse button while the cursor is in the zoom box.

ZoomWindow 4

Use the ZoomWindow procedure to zoom the window when the user has pressed and
released the mouse button with the cursor in the zoom box.

PROCEDURE ZoomWindow (theWindow: WindowPtr;

partCode: Integer; front: Boolean);

theWindow A pointer to the window record of the window to be zoomed.

partCode The result (either inZoomIn or inZoomOut) returned by the
FindWindow function.
4-102 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
front A Boolean value that determines whether the window is to be brought to
the front. If the value of front is TRUE, the window necessarily becomes
the frontmost, active window. If the value of front is FALSE, the
window’s position in the window list does not change. Note that if a
window was active before it was zoomed, it remains active even if the
value of front is FALSE.

DESCRIPTION

The ZoomWindow procedure zooms a window in or out, depending on the value of
the partCode parameter. Your application calls ZoomWindow, passing it the part
code returned by FindWindow, when it receives a result of TRUE from TrackBox.
The ZoomWindow procedure then changes the window’s port rectangle to either
the user state (if the part code is inZoomIn) or the standard state (if the part code is
inZoomOut), as stored in the window state data record, described in the section
“Zooming a Window” beginning on page 4-53.

If the part code is inZoomOut, your application ordinarily calculates and sets the
standard state before calling ZoomWindow.

For best results, call the QuickDraw procedure EraseRect, passing the window’s
graphics port as the port rectangle, before calling ZoomWindow.

SEE ALSO

See Listing 4-12 on page 4-55 for an example that calculates and sets the standard state
and then calls ZoomWindow to zoom a window.

Closing and Deallocating Windows 4

This section describes the procedures that track user activity in the close box and that
close and dispose of windows.

When you no longer need a window, call the CloseWindow procedure if you
allocated the memory for the window record or the DisposeWindow procedure if
you did not.

TrackGoAway 4

Use the TrackGoAway function to track the cursor when the user presses the mouse
button while the cursor is in the close box.

FUNCTION TrackGoAway (theWindow: WindowPtr;

thePt: Point): Boolean;

theWindow A pointer to the window record of the window in which the mouse-down
event occurred.

thePt The location of the cursor at the time the mouse button was pressed. Your
application receives this point from the where field of the event record.
Window Manager Reference 4-103

C H A P T E R 4

Window Manager
DESCRIPTION

The TrackGoAway function tracks cursor activity when the user presses the mouse
button while the cursor is in the close box, retaining control until the user releases the
mouse button. While the button is down, TrackGoAway highlights the close box as long
as the cursor is in the close region, as illustrated in Figure 4-19 on page 4-46.

When the mouse button is released, TrackGoAway removes the highlighting from the
close box and returns TRUE if the cursor is within the close region and FALSE if it is not.

Your application calls the TrackGoAway function when it receives a result code of
inGoAway from the FindWindow function. If TrackGoAway returns TRUE, your
application calls its own procedure for closing a window, which can call either the
CloseWindow procedure or the DisposeWindow procedure to remove the window
from the screen. (Before removing a document window, your application ordinarily
checks whether the document has changed since the associated file was last saved.
See the chapter “Introduction to File Management” in Inside Macintosh: Files for a
general discusion of handling files.) If TrackGoAway returns FALSE, your application
does nothing.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by TrackGoAway as long as the mouse button is
held down. (If there’s an actionProc procedure, the actionProc procedure is called
first.) Note that the use of the Window Manager’s global variables is not guaranteed to
be compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls TrackGoAway to track cursor
activity when the user presses the mouse button while the cursor is in the close box.

CloseWindow 4

Use the CloseWindow procedure to remove a window if you allocated memory yourself
for the window’s window record.

PROCEDURE CloseWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window to be closed.

DESCRIPTION

The CloseWindow procedure removes the specified window from the screen and
deletes it from the window list. It releases the memory occupied by all data structures
associated with the window except the window record itself.
4-104 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
If you allocated memory for the window record and passed a pointer to it as one of the
parameters to the functions that create windows, call CloseWindow when you’re done
with the window. You must then call the Memory Manager procedure DisposePtr to
release the memory occupied by the window record.

▲ W A R N I N G

If your application allocated any other memory for use with a window,
you must release it before calling CloseWindow. The Window Manager
releases only the data structures it created.

Also, CloseWindow assumes that any picture pointed to by the window
record field windowPic is data, not a resource, and it calls the
QuickDraw procedure KillPicture to delete it. If your application
uses a picture stored as a resource, you must release the memory it
occupies with the ReleaseResource procedure and set the
windowPic field to NIL before closing the window. ▲

Any pending update events for the window are discarded. If the window being removed
is the frontmost window, the window behind it, if any, becomes the active window.

SEE ALSO

See Listing 4-17 on page 4-61 for an example that calls CloseWindow to remove a
window from the screen.

See Listing 4-3 on page 4-28 for an example that calls CloseWindow to clean up memory
when an attempt to create a new window fails.

DisposeWindow 4

Use the DisposeWindow procedure to remove a window if you let the Window
Manager allocate memory for the window record.

PROCEDURE DisposeWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window to be closed.

DESCRIPTION

The DisposeWindow procedure removes a window from the screen, deletes it from the
window list, and releases the memory occupied by all structures associated with the
window, including the window record. (DisposeWindow calls CloseWindow and then
releases the memory occupied by the window record.)
Window Manager Reference 4-105

C H A P T E R 4

Window Manager
▲ W A R N I N G

If your application allocated any other memory for use with a window,
you must release it before calling DisposeWindow. The Window
Manager releases only the data structures it created.

The DisposeWindow procedure assumes that any picture pointed to by
the window record field windowPic is data, not a resource, and it calls
the QuickDraw procedure KillPicture to delete it. If your application
uses a picture stored as a resource, you must release the memory it
occupies with the ReleaseResource procedure and set the
windowPic field to NIL before closing the window. ▲

Any pending update events for the window are discarded. If the window being removed
is the frontmost window, the window behind it, if any, becomes the active window.

Maintaining the Update Region 4

This section describes the routines you use to update your windows and to maintain
window update regions.

BeginUpdate 4

Use the BeginUpdate procedure to start updating a window when you receive an
update event for that window.

PROCEDURE BeginUpdate (theWindow: WindowPtr);

theWindow A pointer to the window’s window record. Your application gets this
information from the message field in the update event record.

DESCRIPTION

The BeginUpdate procedure limits the visible region of the window’s graphics port to
the intersection of the visible region and the update region; it then sets the window’s
update region to an empty region. After calling BeginUpdate, your application redraws
either the entire content region or only the visible region. In either case, only the parts of
the window that require updating are actually redrawn on the screen.

Every call to BeginUpdate must be matched with a subsequent call to EndUpdate after
your application redraws the content region.

Note
In Pascal, BeginUpdate and EndUpdate can’t be nested. That is,
you must call EndUpdate before the next call to BeginUpdate.

You can nest BeginUpdate and EndUpdate calls in assembly
language if you save and restore the copy of the visRgn, a copy
of which is stored, in global coordinates, in the global variable
SaveVisRgn. ◆
4-106 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
SPECIAL CONSIDERATIONS

If you don’t clear the update region when you receive an update event, the Event
Manager continues to send update events until you do.

SEE ALSO

See Figure 4-21 on page 4-49 for an illustration of how BeginUpdate and EndUpdate
affect the visible region and update region. See Listing 4-10 on page 4-50 for an example
that updates a window.

EndUpdate 4

Use the EndUpdate procedure to finish updating a window.

PROCEDURE EndUpdate (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The EndUpdate procedure restores the normal visible region of a window’s graphics
port. When you receive an update event for a window, you call BeginUpdate, redraw
the update region, and then call EndUpdate. Each call to BeginUpdate must be
balanced by a subsequent call to EndUpdate.

SEE ALSO

See Figure 4-21 on page 4-49 for an illustration of how BeginUpdate and EndUpdate
affect the visible region and update region. See Listing 4-10 on page 4-50 for an example
that updates a window.

InvalRect 4

Use the InvalRect procedure to add a rectangle to a window’s update region.

PROCEDURE InvalRect (badRect: Rect);

badRect A rectangle, in local coordinates, that is to be added to a window’s
update region.
Window Manager Reference 4-107

C H A P T E R 4

Window Manager
DESCRIPTION

The InvalRect procedure adds a specified rectangle to the update region of the
window whose graphics port is the current port. Specify the rectangle in local
coordinates. The Window Manager clips it, if necessary, to fit in the window’s
content region.

Both your application and the Window Manager use the InvalRect procedure.
When the user enlarges a window, for example, the Window Manager uses InvalRect
to add the newly created content region to the update region. Your application uses
InvalRect to add the two rectangles formerly occupied by the scroll bars in the smaller
content area.

InvalRgn 4

Use the InvalRgn procedure to add a region to a window’s update region.

PROCEDURE InvalRgn (badRgn: RgnHandle);

badRgn The region, in local coordinates, that is to be added to a window’s
update region.

DESCRIPTION

The InvalRgn procedure adds a specified region to the update region of the window
whose graphics port is the current port. Specify the region in local coordinates. The
Window Manager clips it, if necessary, to fit in the window’s content region.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that uses InvalRgn to add part of the
window’s content region to the update region.

ValidRect 4

Use the ValidRect procedure to remove a rectangle from a window’s update region.

PROCEDURE ValidRect (goodRect: Rect);

goodRect A rectangle, in local coordinates, to be removed from a window’s
update region.
4-108 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
DESCRIPTION

The ValidRect procedure removes a specified rectangle from the update region of the
window whose graphics port is the current port. Specify the region in local coordinates.
The Window Manager clips it, if necessary, to fit in the window’s content region.

Your application uses ValidRect to tell the Window Manager that it has already drawn
a rectangle and to cancel any updates accumulated for that area. You can thereby
improve response time by reducing redundant redrawing.

Suppose, for example, that you’ve resized a window that contains a size box and
scroll bars. Depending on the dimensions of the newly sized window, the new size
box and scroll bar areas may or may not have been accumulated into the window’s
update region. After calling SizeWindow, you can redraw the size box or scroll bars
immediately and then call ValidRect for the areas they occupy. If they were in fact
accumulated into the update region, ValidRect removes them so that you do not have
to redraw them with the next update event.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that uses ValidRect to remove part of the
window’s content region from the update region.

ValidRgn 4

Use the ValidRgn procedure to remove a specified region from a window’s
update region.

PROCEDURE ValidRgn (goodRgn: RgnHandle);

goodRgn A region, in local coordinates, to be removed from a window’s
update region.

DESCRIPTION

The ValidRgn procedure removes a specified region from the update region of the
window whose graphics port is the current port. Specify the region in local coordinates.
The Window Manager clips it, if necessary, to fit in the window’s content region.

Setting and Retrieving Other Window Characteristics 4

This section describes the routines that let you set and retrieve less commonly used fields
in the window record.
Window Manager Reference 4-109

C H A P T E R 4

Window Manager
SetWindowPic 4

Use the SetWindowPic procedure to establish a picture that the Window Manager can
draw in a window’s content region.

PROCEDURE SetWindowPic (theWindow: WindowPtr;

Pic: PicHandle);

theWindow A pointer to a window’s window record.

Pic A handle to the picture to be drawn in the window.

DESCRIPTION

The SetWindowPic procedure stores in a window’s window record a handle to a
picture to be drawn in the window. When the window’s content region must be updated,
the Window Manager then draws the picture or part of the picture, as necessary, instead
of generating an update event.

Note
The CloseWindow and DisposeWindow procedures assume that any
picture pointed to by the window record field windowPic is stored as
data, not as a resource. If your application uses a picture stored as a
resource, you must release the memory it occupies by calling the
Resource Manager’s ReleaseResource procedure and set the
WindowPic field to NIL before you close the window. ◆

GetWindowPic 4

Use the GetWindowPic function to retrieve a handle to a window’s picture.

FUNCTION GetWindowPic (theWindow: WindowPtr): PicHandle;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWindowPic function returns a handle to the picture to be drawn in a specified
window’s content region. The handle must have been stored previously with the
SetWindowPic procedure.
4-110 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
SetWRefCon 4

Use the SetWRefCon procedure to set the refCon field of a window record.

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LongInt);

theWindow A pointer to the window’s window record.

data The data to be placed in the refCon field.

DESCRIPTION

The SetWRefCon procedure places the specified data in the refCon field of the
specified window record. The refCon field is available to your application for any
window-related data it needs to store.

SEE ALSO

See Listing 4-3 on page 4-28 for an example that sets the refCon field. See Listing 4-16
on page 4-60 for an example that uses the contents of the refCon field.

GetWRefCon 4

Use the GetWRefCon function to retrieve the reference constant from a window’s
window record.

FUNCTION GetWRefCon (theWindow: WindowPtr): LongInt;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWRefCon function returns the long integer data stored in the refCon field of the
specified window record.

SEE ALSO

See the section “Managing Multiple Windows” beginning on page 4-23 for suggested
ways to use the refCon field. See Listing 4-1 on page 4-25 for an example of an
application-defined routine that gets the refCon field.
Window Manager Reference 4-111

C H A P T E R 4

Window Manager
GetWVariant 4

Use the GetWVariant function to retrieve a window’s variation code.

FUNCTION GetWVariant (theWindow: WindowPtr): Integer;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWVariant function returns the variation code of the specified window.
Depending on the window’s window definition function, the result of GetWVariant
can represent one of the standard window types listed in the section “Creating a
Window” beginning on page 4-25 or a variation code defined by your own window
definition function.

SEE ALSO

See “Types of Windows” beginning on page 4-8 for a definition of variation codes. See
“The Window Definition Function” beginning on page 4-120 for a detailed description of
variation codes.

Manipulating the Desktop 4

This section describes the routines that let your application retrieve information about
the desktop and set the desktop pattern. Ordinarily, your application doesn’t need to
manipulate any part of the desktop outside of its own windows.

SetDeskCPat 4

Use the SetDeskCPat procedure to set the desktop pattern on a computer that supports
Color QuickDraw.

PROCEDURE SetDeskCPat (deskPixPat: PixPatHandle);

deskPixPat A handle to a pixel pattern.

DESCRIPTION

The SetDeskCPat procedure sets the desktop pattern to a specified pixel pattern, which
can be drawn in more than two colors. After a call to SetDeskCPat, the desktop is
automatically redrawn in the new pattern. If the specified pattern is a binary pattern
(with a pattern type of 0), it is drawn is the current foreground and background colors. If
the value of the deskPixPat parameter is NIL, SetDeskCPat uses the standard binary
desk pattern (that is, the 'ppat' resource with resource ID 16).
4-112 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
Note
For compatibility with other Macintosh applications and the
system software, applications should ordinarily not change the
desktop pattern. ◆

The Window Manager’s desktop-painting routines can paint the desktop either in the
binary pattern stored in the global variable DeskPattern or in a new pixel pattern. The
desktop pattern used at startup is determined by the value of the parameter-RAM bit
flag called pCDeskPat. If the value of pCDeskPat is 0, the Window Manager uses the
new pixel pattern; if not, it uses the binary pattern stored in DeskPattern. The user can
change the color pattern through the General Controls panel, which changes the value
of pCDeskPat.

GetGrayRgn 4

Use the GetGrayRgn function to retrieve a handle to the current desktop region.

FUNCTION GetGrayRgn: RgnHandle;

DESCRIPTION

The GetGrayRgn function returns a handle to the current desktop region from the
global variable GrayRgn.

The desktop region represents all available screen space, that is, the desktop area
displayed by all monitors attached to the computer. Ordinarily, your application
doesn’t need to access the desktop region directly.

When your application calls DragWindow to let the user drag a window, it can use
GetGrayRgn to set the limiting rectangle to the entire desktop area.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that uses GetGrayRgn to specify the
limiting rectangle when calling DragWindow to let the user move a window.

GetCWMgrPort 4

Use the GetCWMgrPort procedure to retrieve a pointer to the Window Manager port on
a system that supports Color QuickDraw.

PROCEDURE GetCWMgrPort (VAR wMgrCPort: CGrafPtr);

wMgrCPort A parameter in which GetCWMgrPort returns a pointer to the Window
Manager port.
Window Manager Reference 4-113

C H A P T E R 4

Window Manager
DESCRIPTION

The GetCWMgrPort procedure places a pointer to the color Window Manager port in
the parameter wMgrCPort. The GetCWMgrPort procedure is available only on
computers with Color QuickDraw.

The Window Manager port is a graphics port that occupies all of the main screen.
Ordinarily, your application doesn’t need to access the Window Manager port.

Note
Do not change any regions of the Window Manager port. If you do, the
Window Manager might not handle overlapping windows properly. ◆

GetWMgrPort 4

Use the GetWMgrPort procedure to retrieve a pointer to the Window Manager port on a
system with only the original monochrome QuickDraw.

PROCEDURE GetWMgrPort (VAR wPort: GrafPtr);

wPort A parameter in which GetWMgrPort returns a pointer to the Window
Manager port.

DESCRIPTION

The GetWMgrPort procedure places a pointer to the Window Manager port in the
parameter wPort.

The Window Manager port is a graphics port that occupies all of the main screen.
Ordinarily, your application doesn’t need to access the Window Manager port.

Note
Do not change any regions of the Window Manager port. If you do, the
Window Manager might not handle overlapping windows properly. ◆

Manipulating Window Color Information 4

This section describes the routines you use for setting and retrieving window color
information. Your application does not normally change window color information.

SetWinColor 4

Use the SetWinColor procedure to set a window’s window color table.

PROCEDURE SetWinColor (theWindow: WindowPtr;

newColorTable: WCTabHandle);
4-114 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
theWindow A pointer to the window’s window record.

newColorTable
A handle to a window color table record, which defines the colors for the
window’s new color table.

DESCRIPTION

The SetWinColor procedure sets a window’s color table. If the window has no
auxiliary window record, it creates a new one with the specified window color table and
adds it to the auxiliary window list. If the window already has an auxiliary record, its
window color table is replaced. The Window Manager then redraws the window frame
and highlighted text in the new colors and sets the window’s background color to the
new content color.

If the new color table has the same entries as the default color table, SetWinColor
changes the auxiliary window record so that it points to the default color table.

Window color table resources (resources of type 'wctb') should not be purgeable.

If you specify a value of NIL for the parameter theWindow, SetWinColor changes the
default color table in memory. Your application shouldn’t, however, change the default
color table.

SEE ALSO

For a description of a window color table, see “The Window Color Table Record” on
page 4-71. For a description of the auxiliary window record, see “The Auxiliary Window
Record” on page 4-73. For a description of the 'wctb' resource, see “The Window Color
Table Resource” on page 4-127.

GetAuxWin 4

Use the GetAuxWin function to retrieve a handle to a window’s auxiliary
window record.

FUNCTION GetAuxWin (theWindow: WindowPtr;

VAR awHndl: AuxWinHandle): Boolean;

theWindow A pointer to the window’s window record.

awHndl A handle to the window’s auxiliary window record.

DESCRIPTION

The GetAuxWin function returns a Boolean value that reports whether or not the
window has an auxiliary window record, and it sets the variable parameter awHndl
to the window’s auxiliary window record.

If the window has no auxiliary window record, GetAuxWin places the default window
color table in awHndl and returns a value of FALSE.
Window Manager Reference 4-115

C H A P T E R 4

Window Manager
SEE ALSO

For a description of the auxiliary window record, see “The Auxiliary Window Record”
on page 4-73.

Low-Level Routines 4

This section describes the low-level routines that are called by higher-level Window
Manager routines. Ordinarily, you won’t need to use these routines.

CheckUpdate 4

The Event Manager uses the CheckUpdate function to scan the window list for
windows that need updating.

FUNCTION CheckUpdate (VAR theEvent: EventRecord): Boolean;

theEvent An event record to be filled in if a window needs updating.

DESCRIPTION

The CheckUpdate function scans the window list from front to back, checking for a
visible window that needs updating (that is, a visible window whose update region is
not empty). If it finds one whose window record contains a picture handle, it redraws
the window itself and continues through the list. If it finds a window record whose
update region is not empty and whose window record does not contain a picture handle,
it stores an update event in the parameter theEvent and returns TRUE. If it finds no
such window, it returns FALSE.

The Event Manager is the only software that ordinarily calls CheckUpdate.

ClipAbove 4

The Window Manager uses the ClipAbove procedure to determine the clip region of
the Window Manager port for displaying a window.

PROCEDURE ClipAbove (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The ClipAbove procedure sets the clip region of the Window Manager port to
be the area of the desktop that intersects the current clip region, minus the
structure regions of all the windows in front of the specified window.
4-116 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
The ClipAbove procedure retrieves the desktop region from the global
variable GrayRgn.

SaveOld 4

The Window Manager uses the SaveOld procedure to save a window’s current
structure and content regions preparatory to updating the window.

PROCEDURE SaveOld (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The SaveOld procedure saves the specified window’s current structure region and
content region for the DrawNew procedure. Each call to SaveOld must be balanced
by a subsequent call to DrawNew.

DrawNew 4

The Window Manager uses the DrawNew procedure to erase and update changed
window regions.

PROCEDURE DrawNew (window: WindowPeek; update: Boolean);

window A pointer to the window’s complete window record.

update A Boolean value that determines whether the regions are updated.

DESCRIPTION

The DrawNew procedure erases the parts of a window’s structure and content regions
that are part of the window’s former state and part of its new state but not both. That is,

(OldStructure XOR NewStructure) UNION (OldContent XOR NewContent)

If the update parameter is set to TRUE, DrawNew also updates the erased regions.

▲ W A R N I N G

In Pascal, SaveOld and DrawNew are not nestable. ▲

ASSEMBLY-LANGUAGE INFORMATION

In assembly language, you can nest SaveOld and DrawNew if you save and restore the
values of the global variables OldStructure and OldContent.
Window Manager Reference 4-117

C H A P T E R 4

Window Manager
PaintOne 4

The Window Manager uses the PaintOne procedure to redraw the invalid, exposed
portions of one window on the desktop.

PROCEDURE PaintOne (window: WindowPeek; clobberedRgn: RgnHandle);

window A pointer to the window’s complete window record.

clobberedRgn
A handle to the region that has become invalid.

DESCRIPTION

The PaintOne procedure “paints” the invalid portion of the specified window and
all windows above it. It draws as much of the window frame as is in clobberedRgn
and, if some content region is exposed, erases the exposed area (paints it with the
background pattern) and adds it to the window’s update region. If the value of the
window parameter is NIL, the window is the desktop, and PaintOne paints it with
the desktop pattern.

ASSEMBLY-LANGUAGE INFORMATION

The global variables SaveUpdate and PaintWhite are flags used by PaintOne.
Normally both flags are set. Clearing SaveUpdate prevents clobberedRgn from being
added to the window’s update region. Clearing PaintWhite prevents clobberedRgn
from being erased before being added to the update region (this is useful, for example, if
the background pattern of the window isn’t the background pattern of the desktop). The
Window Manager sets both flags periodically, so you should clear the appropriate flags
each time you need them to be clear.

PaintBehind 4

The Window Manager uses the PaintBehind procedure to redraw a series of windows
in the window list.

PROCEDURE PaintBehind (startWindow: WindowPeek;

clobberedRgn: RgnHandle);

startWindow
A pointer to the window’s complete window record.

clobberedRgn
A handle to the region that has become invalid.
4-118 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
DESCRIPTION

The PaintBehind procedure calls PaintOne for startWindow and all the windows
behind startWindow, clipped to clobberedRgn.

ASSEMBLY-LANGUAGE INFORMATION

Because PaintBehind clears the global variable PaintWhite before calling
PaintOne, clobberedRgn isn’t erased. The PaintWhite global variable is reset
after the call to PaintOne.

CalcVis 4

The Window Manager uses the CalcVis procedure to calculate the visible region
of a window.

PROCEDURE CalcVis (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The CalcVis procedure calculates the visible region of the specified window by starting
with its content region and subtracting the structure region of each window in front of it.

CalcVisBehind 4

The Window Manager uses the CalcVisBehind procedure to calculate the visible
regions of a series of windows.

PROCEDURE CalcVisBehind (startWindow: WindowPeek;

clobberedRgn: RgnHandle);

startWindow
A pointer to a window’s window record.

clobberedRgn
A handle to the desktop region that has become invalid.

DESCRIPTION

The CalcVisBehind procedure calculates the visible regions of the window specified
by the startWindow parameter and all windows behind startWindow that intersect
clobberedRgn. It is called after PaintBehind.
Window Manager Reference 4-119

C H A P T E R 4

Window Manager
Application-Defined Routine 4
This section describes the window definition function. The Window Manager supplies
window definition functions that handle the standard window types described in “Types
of Windows” beginning on page 4-8.

The Window Definition Function 4

If your application defines its own window types, you must supply your own window
definition function to handle them. Store your definition function as a resource of type
'WDEF' with an ID from 128 through 4096. (Window definition function resource IDs 0
and 1 are the default window definition functions; resource IDs 2 through 127 are
reserved by Apple Computer, Inc.)

Your window definition function can support up to 16 variation codes, which are
identified by integers 0 through 15. To invoke your own window type, you specify the
window’s definition ID, which contains the resource ID of the window’s definition
function in the upper 12 bits and the variation code in the lower 4 bits. Thus, for a given
resource ID and variation code, the window definition ID is

(16 * resource ID) + (variation code)

When you create a window, the Window Manager calls the Resource Manager to access
the window definition function. The Resource Manager reads the window definition
function into memory and returns a handle to it. The Window Manager stores this
handle in the windowDefProc field of the window record. (If 24-bit addressing is in
effect, the Window Manager stores the variation code in the lower 4 bits of the
windowDefProc field; if 32-bit addressing is in effect, the Window Manager stores the
variation code elsewhere.) Later, when it needs to perform a type-dependent action on
the window, the Window Manager calls the window definition function and passes it the
variation code as a parameter.

MyWindow 4

The window definition function is responsible for drawing the window frame, reporting
the region where mouse-down events occur, calculating the window’s structure region
and content region, drawing the size box, resizing the window frame when the user
drags the size box, and performing any customized initialization or disposal tasks.

You can give your window definition function any name you wish. It takes four
parameters and returns a result code:

FUNCTION MyWindow (varCode: Integer; theWindow: WindowPtr;

message: Integer; param: LongInt): LongInt;

varCode The window’s variation code.

theWindow A pointer to the window’s window record.
4-120 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager

message A code for the task to be performed. The message parameter has one of
these values:

CONST

wDraw = 0; {draw window frame}

wHit = 1; {report where mouse-down event }

{ occurred}

wCalcRgns = 2; {calculate strucRgn and contRgn}

wNew = 3; {perform additional }

{ initialization}

wDispose = 4; {perform additional disposal }

{ tasks}

wGrow = 5; {draw grow image during resizing}

wDrawGIcon = 6; {draw size box and scroll bar }

{ outline}

The subsections that follow explain each of these tasks in detail.

param Data associated with the task specified by the message parameter. If the
task requires no data, this parameter is ignored.

Your window definition function performs whatever task is specified by the message
parameter and returns a function result if appropriate. If the task performed requires no
result code, return 0.

The function’s entry point must be at the beginning of the function.

You can set up the various tasks as subroutines inside the window definition function,
but you’re not required to do so.

Drawing the Window Frame 4

When you receive a wDraw message, draw the window frame in the current graphics
port, which is the Window Manager port.

You must make certain checks to determine exactly how to draw the frame. If the value
of the visible field in the window record is FALSE, you should do nothing; otherwise,
you should examine the param parameter and the status flags in the window record:

■ If the value of param is 0, draw the entire window frame.

■ If the value of param is 0 and the hilited field in the window record is TRUE,
highlight the frame to show that the window is active.
n If the value of the goAwayFlag field in the window record is also TRUE, draw a

close box in the window frame.
n If the value of the spareFlag field in the window record is also TRUE, draw a

zoom box in the window frame.

■ If the value of the param parameter is wInGoAway, add highlighting to, or remove
it from, the window’s close box. Figure 4-19 on page 4-46 illustrates the close box
with and without highlighting as drawn by the Window Manager’s window
definition function.
Window Manager Reference 4-121

C H A P T E R 4

Window Manager
■ If the value of the param parameter is wInZoom, add highlighting to, or remove it
from, the window’s zoom box. Figure 4-20 on page 4-47 illustrates the zoom box
with and without highlighting as drawn by the Window Manager’s window
definition function.

Note
When the Window Manager calls a window definition function
with a message of wDraw, it stores a value of type Integer in the
param parameter without clearing the high-order word. When
processing the wDraw message, use only the low-order word of the
param parameter. ◆

The window frame typically but not necessarily includes the window’s title, which
should be displayed in the system font and system font size. The Window Manager
port is already set to use the system font and system font size.

When designing a title bar that includes the window title, allow at least 16 pixels
vertically to support localization for script systems in which the system font can be no
smaller than 12 points.

Note
Nothing drawn outside the window’s structure region is visible. ◆

Returning the Region of a Mouse-Down Event 4

When you receive a wHit message, you must determine where the cursor was when the
mouse button was pressed. The wHit message is accompanied by the mouse location, in
global coordinates, in the param parameter. The vertical coordinate is in the high-order
word of the parameter, and the horizontal coordinate is in the low-order word. You
return one of these constants:

CONST

wNoHit = 0; {none of the following}

wInContent = 1; {in content region (except grow, if active)}

wInDrag = 2; {in drag region}

wInGrow = 3; {in grow region (active window only)}

wInGoAway = 4; {in go-away region (active window only)}

wInZoomIn = 5; {in zoom box for zooming in (active window }

{ only)}

wInZoomOut = 6; {in zoom box for zooming out (active window }

{ only)}

The return value wNoHit might mean (but not necessarily) that the point isn’t in the
window. The standard window definition functions, for example, return wNoHit if the
point is in the window frame but not in the title bar.

Return the constants wInGrow, wInGoAway, wInZoomIn, and wInZoomOut only if the
window is active—by convention, the size box, close box, and zoom box aren’t drawn if
the window is inactive. In an inactive document window, for example, a mouse-down
event in the part of the title bar that would contain the close box if the window were
active is reported as wInDrag.
4-122 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
Calculating Regions 4

When you receive the wCalcRgns message, you calculate the window’s structure and
content regions based on the current graphics port’s port rectangle. These regions, whose
handles are in the strucRgn and contRgn fields of the window record, are in global
coordinates. The Window Manager requests this operation only if the window is visible.

▲ W A R N I N G

When you calculate regions for your own type of window, do not alter
the clip region or the visible region of the window’s graphics port. The
Window Manager and QuickDraw take care of this for you. Altering the
clip region or visible region may damage other windows. ▲

Initializing a New Window 4

When you receive the wNew message, you can perform any type-specific initialization
that may be required. If the content region has an unusual shape, for example, you might
allocate memory for the region and store the region handle in the dataHandle field of
the window record. The initialization routine for a standard document window creates
the wStateData record for storing zooming data.

Disposing of a Window 4

When you receive the wDispose message, you can perform any additional tasks
necessary for disposing of a window. You might, for example, release memory that was
allocated by the initialization routine. The dispose routine for a standard document
window disposes of the wStateData record.

Resizing a Window 4

When you receive the wGrow message, draw a grow image of the window. With the
wGrow message you receive a pointer to a rectangle, in global coordinates, whose
upper-left corner is aligned with the port rectangle of the window’s graphics port. Your
grow image should fit inside the rectangle. As the user drags the mouse, the Window
Manager sends repeated wGrow messages, so that you can change your grow image to
match the changing mouse location.

Draw the grow image in the current graphics port, which is the Window Manager port,
in the current pen pattern and pen mode. These are set up (as gray and notPatXor) to
conform to the Macintosh user interface guidelines.

The grow routine for a standard document window draws a dotted (gray) outline of the
window and also the lines delimiting the title bar, size box, and scroll bar areas.

Drawing the Size Box 4

When you receive the wDrawGIcon message, you draw the size box in the content
region if the window is active—if the window is inactive, draw whatever is appropriate
to show that the window cannot currently be sized.
Window Manager Reference 4-123

C H A P T E R 4

Window Manager
Note
If the size box is located in the window frame instead of the content
region, do nothing in response to the wDrawGIcon message, instead
drawing the size box in response to the wDraw message. ◆

The routine that draws a size box for an active document window draws the size box in
the lower-right corner of the port rectangle of the window’s graphics port. It also draws
lines delimiting the size box and scroll bar areas. For an inactive document window, it
erases the size box and draws the delimiting lines.

Resources 4
This section describes the resources used by the Window Manager:

■ the 'WIND' resource, used for describing the characteristics of windows

■ the 'WDEF' resource, which holds a window definition function

■ the 'wctb' resource, which defines the colors to be used for a window’s frame
and highlighting

The Window Resource 4

You typically define a window resource for each type of window that your application
creates. Figure 4-24 illustrates a compiled 'WIND' resource.

Figure 4-24 Structure of a compiled window ('WIND') resource

Initial rectangle

Window definition ID

Visibility status

Presence of close box

Reference constant

Length (n) of window title

Window title

Positioning specfication

'WIND' resource

8

2

2

2

4

1

n

2

Bytes

4-124 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
A compiled version of a window resource contains the vollowing elements:

■ The upper-left and lower-right corners, in global coordinates, of a rectangle
that defines the initial size and placement of the window’s content region.
Your application can change this rectangle before displaying the window,
either programmatically or through an optional positioning code described
later in this section.

■ The window’s definition ID, which incorporates both the resource ID of the window
definition function that will handle the window and an optional variation code.
Together, the window definition function resource ID and the variation code define a
window type. Place the resource ID of the window definition function in the upper
12 bits of the definition ID. Window definition functions with IDs 0 through 127 are
reserved for use by Apple Computer, Inc. Place the optional variation code in the
lower 4 bits of the definition ID.
If you’re using one of the standard window types (described in “Types of Windows”
beginning on page 4-8), the definition ID is one of the window-type constants:

CONST

documentProc = 0; {movable, sizable window, }

{ no zoom box}

dBoxProc = 1; {alert box or modal dialog box}

plainDBox = 2; {plain box}

altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, no size box or }

{ zoom box}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable window}

rDocProc = 16; {rounded-corner window}

You can also add a zoom box to a movable modal dialog box by specifying the sum
of two constants: movableDBoxProc + zoomDocProc, but a zoom box is not
recommended on any dialog box.
You can control the angle of curvature on a rounded-corner window (window type
rDocProc) by adding one of these integers:

■ A specification that determines whether the window is visible or invisible. This
characteristic controls only whether the Window Manager displays the window, not
necessarily whether the window can be seen on the screen. (A visible window entirely
covered by other windows, for example, is “visible” even though the user cannot see
it.) You typically create a new window in an invisible state, build the content area of
the window, and then display the completed window.

Window definition ID
Diameters of
curvature

rDocProc 16, 16

rDocProc + 2 4, 4

rDocProc + 4 6, 6

rDocProc + 6 10, 10
Window Manager Reference 4-125

C H A P T E R 4

Window Manager
■ A specification that determines whether or not the window has a close box. The
Window Manager draws the close box when it draws the window frame. The window
type specified in the second field determines whether a window can support a close
box; this field determines whether the close box is present.

■ A reference constant, which your application can use for whatever data it needs to
store. When it builds a new window record, the Window Manager stores, in the
refCon field, whatever value you specify in the fifth element of the window resource.
You can also put a placeholder here and then set the refCon field yourself with the
SetWRefCon procedure.

■ A string that specifies the window title. The first byte of the string specifies the length
of the string (that is, the number of characters in the title plus 1 byte for the length),
in bytes.

■ An optional positioning specification that overrides the window position established
by the rectangle in the first field. The positioning value can be one of the integers
defined by the constants listed here. In these constant names, the terms have the
following meanings:

The seventh element of the resource can contain one of the values specified by
these constants:

CONST noAutoCenter = 0x0000;{use initial }

{ location}

centerMainScreen = 0x280A;{center on main }

{ screen}

alertPositionMainScreen = 0x300A;{place in alert }

{ position on main }

{ screen}

staggerMainScreen = 0x380A;{stagger on main }

{ screen}

centerParentWindow = 0xA80A;{center on parent }

{ window}

center Centered both horizontally and vertically, relative either to a
screen or to another window (if a window to be centered
relative to another window is wider than the window that
preceded it, it is pinned to the left edge; a narrower window
is centered)

stagger Located 10 pixels to the right and 10 pixels below the
upper-left corner of the last window (in the case of staggering
relative to a screen, the first window is placed just below
the menu bar at the left edge of the screen, and subsequent
windows are placed on that screen relative to the
first window)

alert position Centered horizontally and placed in the “alert position”
vertically, that is, with about one-fifth of the window or
screen above the new window and the rest below

parent window The window in which the user was last working
4-126 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
alertPositionParentWindow = 0xB00A;{place in alert }

{ position on }

{ parent window}

staggerParentWindow = 0xB80A;{stagger relative }

{ to parent window}

centerParentWindowScreen = 0x680A;{center on parent }

{ window screen}

alertPositionParentWindowScreen

= 0x700A;{place in alert }

{ position on }

{ parent window }

{ screen}

staggerParentWindowScreen = 0x780A;{stagger on parent }

{ window screen}

The positioning constants are convenient when the user is creating new documents or
when you are handling your own dialog boxes and alert boxes. When you are creating
a new window to display a previously saved document, however, you should display
the new window in the same rectangle as the previous window (that is, the window
the document occupied when it was last saved). For more information, see
“Positioning a Document Window on the Desktop” beginning on page 4-30.

Use the GetNewCWindow or GetNewWindow function to read a 'WIND' resource. Both
functions create a new window record and fill it in according to the values specified in a
'WIND' resource.

The Window Definition Function Resource 4

Window definition functions are stored as resources of type 'WDEF'. The 'WDEF'
resource is simply the executable code for the window definition function.

The two standard window definition functions supplied by the Window Manager use
resource IDs 0 and 1.

The Window Color Table Resource 4

You can specify your own window color tables as resources of type 'wctb'.

Ordinarily, you should not define your own window color tables, unless you have some
extraordinary need to control the color of a window’s frame or text highlighting. To
assign a table to a window when you create the window, provide a window color table
('wctb') resource with the same resource ID as the 'WIND' resource from which you
create the window.

The window color table resource is an exact image of the window color table data
structure. Figure 4-25 illustrates the contents of a compiled 'wctb' resource.
Window Manager Reference 4-127

C H A P T E R 4

Window Manager
Figure 4-25 Structure of a compiled window color table ('wctb') resource

A compiled version of a window resource contains the following elements:

■ An unused field 6 bytes long.

■ An integer that specifies the number of entries in the resource (that is, the number of
color specification records) minus 1.

■ A series of color specification records, each of which consists of a 2-byte part identifier
and three 2-byte color values. The part identifier is an integer specified by one of
these constants:

CONST wContentColor = 0; {content region background}

wFrameColor = 1; {window frame}

wTextColor = 2; {window title and button text}

wHiliteColor = 3; {reserved}

wTitleBarColor = 4; {reserved}

wHiliteColorLight = 5; {lightest stripes in title bar }

{ and lightest dimmed text}

wHiliteColorDark = 6; {darkest stripes in title bar }

{ and darkest dimmed text}

wTitleBarLight = 7; {lightest parts of title bar }

{ background}

Unused

Number of entries minus 1

Part identifier

Red value

Green value

Blue value

Part identifier

Red value

Green value

Blue value

'wctb' resource

6

2

2

2

2

2

2

2

2

2

Bytes
4-128 Window Manager Reference

C H A P T E R 4

Window Manager

4
W

indow
 M

anager
wTitleBarDark = 8; {darkest parts of title bar }

{ background}

wDialogLight = 9; {lightest element of dialog box }

{ frame}

wDialogDark = 10; {darkest element of dialog box }

{ frame}

wTingeLight = 11; {lightest window tinging}

wTingeDark = 12; {darkest window tinging}

The color values are simply the intensity of the red, green, and blue in each window
part (see Inside Macintosh: Imaging for a description of RGB color).
Window Manager Reference 4-129

	Window Manager
	Windo w Mana ger Refer ence
	Data Structures
	The Color Window Record
	The Window Record
	The Window State Data Record
	The Window Color Table Record
	The Auxiliary Window Record
	The Window List

	Window Manager Routines
	Initializing the Window Manager
	Creating Windows
	Naming Windows
	Displaying Windows
	Retrieving Window Information
	Moving Windows
	Resizing Windows
	Zooming Windows
	Closing and Deallocating Windows
	Maintaining the Update Region
	Setting and Retrieving Other Window Characteristic...
	Manipulating the Desktop
	Manipulating Window Color Information
	Low-Level Routines

	Application-Defined Routine
	The Window Definition Function

	Resources
	The Window Resource
	The Window Definition Function Resource
	The Window Color Table Resource

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

