CHAPTER 5

Control Manager

This chapter describes how your application can use the Control Manager to create

and manage controls. Controls are onscreen objects that the user can manipulate with
the mouse. By manipulating controls, the user can take an immediate action or change
settings to modify a future action. For example, a scroll bar control allows a user to
immediately change the portion of the document that your application displays, whereas
a pop-up menu control for baud rate might allow the user to change the rate by which
your application handles subsequent data transmissions.

Read this chapter to learn how and when to implement controls. Virtually all applica-
tions need to implement controls, at least in the form of scroll bars for document
windows. You use Control Manager routines, resources, and data structures to imple-
ment scroll bars in your application’s document windows.

The other standard Macintosh controls are buttons, checkboxes, radio buttons, and
pop-up menus. You can use the Control Manager to create and manage these controls,
too. Alternatively, you can use the Dialog Manager to implement these controls in alert
boxes and dialog boxes more easily. (You typically use an alert box to warn a user of
an unusual situation, and you typically use a dialog box to ask the user for information
necessary to carry out a command.) The chapter “Dialog Manager” in this book
describes in detail how to implement controls in alert and dialog boxes. However, in
certain situations—for instance, when you need to implement highly complex dialog
boxes—you may want to use Control Manager routines to manage these types of
controls directly; read this chapter for information on how to do so.

For scrolling lists of graphic or textual information (similar to the list of files that system
software presents after the user chooses the Open command from the File menu), your
application can use the List Manager to implement the scroll bars. See the chapter “List
Manager” in Inside Macintosh: More Macintosh Toolbox for more information.

The Control Manager offers routines for automatically handling user-generated
mouse events in controls and redrawing controls in response to update events. For
further information about events and event handling, see the chapter “Event Manager’
in this book.

7

You typically use a control resource—a resource of type ' CNTL' —to specify the type,
size, location, and other attributes of a control. See the chapter “Introduction to the
Macintosh Toolbox” in this book for general information about resources; detailed
information about the Resource Manager and its routines is provided in the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

Every control you create must be associated with a particular window. All of the controls
for a window are stored in a control list referenced by the window’s window record. See
the chapter “Window Manager” in this book for general information about windows.
(When you use the Dialog Manager to implement a control, the Dialog Manager
associates it with its respective dialog box or alert box, as described in the chapter
“Dialog Manager.”)

5-3

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

This chapter provides an introduction to the use of controls, and then discusses how
you can

create and display controls

determine whether mouse-down events have occurred in controls
respond to mouse-down events in controls

change the settings in controls

use scroll bars to move a document in a window

move and resize controls for a window

define your own control definition function to create nonstandard controls

Introduction to Controls

The Control Manager provides several standard controls. Figure 5-1 illustrates these
standard controls: buttons, checkboxes, radio buttons, pop-up menus, and scroll bars.
You can also design and implement your own custom controls.

Figure 5-1 Standard controls provided by the Control Manager

Button

[J1gnore Slang Terms Checkbox

@ Modem Port Radio buttons
3 Printer Port

Speed:[2400 bps +w | Pop-upmenu

Scroll bar

Buttons, checkboxes, and radio buttons are the simplest controls. They consist of only a
title and an outline shape, and they respond to only mouse clicks. A pop-up menu is

slightly more complex. This control has a menu attached to its title, and it must respond

when the user drags the cursor across the menu. A scroll bar, because it consists of

different parts that behave differently, is the most complex of the standard controls. Even

though a scroll bar has several parts, it is still only one control.

The Control Manager displays these standard controls in colors that provide aesthetic
consistency across all monitors, from black-and-white displays to 8-bit color displays.
To ensure consistency across applications, you generally shouldn’t change the default

Introduction to Controls

CHAPTER 5

Control Manager

colors of controls, although the Control Manager does allow you to do so with the
Set Cont r ol Col or procedure (described on page 5-101) or the control color table
resource (described on page 5-121).

Standard controls and common custom controls are described in the next
several sections.

Buttons

Buttons appear on the screen as rounded rectangles with a title centered inside. When
the user clicks a button, your application should perform the action described by the
button title. Typically, buttons allow the user to perform actions instantaneously—for
example, completing the operations defined by a dialog box or acknowledging an error
message in an alert box.

Make your buttons large enough to surround their titles. In every window or dialog box
in which you display buttons, you should designate one button as the default button by
drawing a thick black outline around it (as shown in Figure 5-2). Your application should
respond to key-down events involving the Enter and Return keys as if the user had
clicked the default button. (In your alert boxes, the Dialog Manager automatically
outlines the default button; you must outline the default button in your dialog boxes.)

Figure 5-2 A default button

You normally use buttons in alert boxes and dialog boxes. See the chapter “Dialog
Manager” for additional details about where to display buttons, what to title them, how
to respond to events involving them, and how to draw an outline around them.

-

Checkboxes

Checkboxes provide alternative choices. Typically you use checkboxes in dialog boxes so
that users can specify information necessary for completing a command. Checkboxes act
like toggle switches, turning a setting either off or on. Use checkboxes to indicate one or
more options that must be either off or on. A checkbox appears as a small square with a
title alongside it; use the Control Manager procedure Set Cont r ol Val ue to place an X
in the box when the user selects it by clicking it on and to remove the X when the user
deselects it by clicking it off. Figure 5-3 shows a selected checkbox.

Jabeuel [0nu0D

Figure 5-3 A selected checkbox

(] Ignore Slang Terms

Introduction to Controls 5-5

5-6

CHAPTER 5

Control Manager

When you design a dialog box, you can include any number of checkboxes—including
only one. Checkboxes are independent of each other, even when they offer related
options. Within a dialog box, it’s a good idea to group sets of related checkboxes and to
provide some visual demarcation between different groups.

Each checkbox has a title. It can be very difficult to title the option in an unambiguous
way. The title should reflect two clearly opposite states. For example, in a Finder’s Info
window, a checkbox provides the option to lock a file. The checkbox is titled simply
Locked. The clearly opposite state, when the option is off, is unlocked.

If you can’t devise a checkbox title that clearly implies an opposite state, you might be
better off using two radio buttons. With two radio buttons, you can use two titles,
thereby clarifying the states.

Checkboxes are frequently used in dialog boxes to set or modify future actions instead of
specifying actions to be taken immediately. See the chapter “Dialog Manager” in this
book for a detailed discussion of how and where to display checkboxes in dialog boxes.

Radio Buttons

Like checkboxes, radio buttons retain and display an on-or-off setting. You organize
radio buttons in a group to offer a choice among several alternatives—typically, inside a
dialog box. Radio buttons are small circles; when the user clicks a radio button to turn it
on, use the Control Manager procedure Set Cont r ol Val ue to fill the radio button with
a small black dot. The user can have only one radio button setting in effect at one time.
In other words, radio buttons are mutually exclusive. However, the Control Manager
cannot determine how your radio buttons are grouped; therefore, when the user turns on
one radio button, it is up to your application to use Set Cont r ol Val ue to turn off the
others in that group.

A set of radio buttons normally has two to seven items; each set must always have at
least two radio buttons. Each set of radio buttons must have a label that identifies the
kind of choices the group offers. Also, each button must have a title that identifies what
the radio button does. This title can be a few words or a phrase. A set of radio buttons is
never dynamic—that is, its contents should never change according to the context. (If you
need to display more than seven items, or if the items change as the context changes, you
should use a pop-up menu instead.)

Radio buttons represent choices that are related but not necessarily opposite. For
example, a pair of radio buttons may provide a choice between using the modem port or
the printer port, as shown in Figure 5-1 on page 5-4. If more than one set of radio buttons
is visible at one time, you need to demarcate the sets from one another. For example, you
can draw a dotted line around a set of radio buttons to separate it from other elements in
a dialog box.

Pop-Up Menus

Pop-up menus, introduced in the chapter “Menu Manager” in this book, provide the
user with a simple way to choose from among a list of choices without having to move
the cursor to the menu bar. As an alternative to a group of radio buttons, a pop-up menu

Introduction to Controls

CHAPTER 5

Control Manager

is particularly useful for specifying a group of settings or values that number five or
more, or whose settings or values might change. Like the items in a set of radio buttons,
the items in a pop-up menu are mutually exclusive—that is, only one choice from the
menu can be in effect at any time. Figure 5-8 on page 5-12 illustrates the choices available
in a pop-up menu that has been selected by the user.

Never use a pop-up menu as a way to provide the user with commands. Pop-up
menus should not list actions (that is, verbs); instead, they should list attributes (that
is, adjectives) or settings from which the user can choose one option.

Scroll Bars

Scroll bars change what portion of a document the user can view within the document’s
window. A scroll bar is a light gray rectangle with scroll arrows at each end. Inside the
scroll bar is a square called the scroll box. The rest of the scroll bar is called the gray
area. Windows can have a horizontal scroll bar, a vertical scroll bar, or both. A vertical
scroll bar lies along the right side of a window. A horizontal scroll bar runs along the
bottom of a window. Figure 5-4 shows the parts of a scroll bar.

Figure 5-4 A vertical scroll bar
4| — Scroll arrow
-
— Gray area
s
— Scroll box
-
+— Gray area
HHHH)
| —— Scroll arrow

If the user drags the scroll box, clicks a scroll arrow, or clicks anywhere in the gray area,
your application “moves” the document accordingly; use Control Manager routines as
appropriate to move the scroll box. Figure 5-5 illustrates, and the next few sections
explain, several key behaviors of a scroll bar.

A scroll bar represents the entire document in one dimension, top to bottom or right to
left. The scroll box shows the position, relative to the whole document, of the visible
portion of the document. If the scroll box is halfway between the top and bottom of the
scroll bar, then what the user sees should be about halfway through the document. Use
the Set Cont r ol Val ue or Set Cont r ol Maxi numprocedure to move the scroll box
whenever your application resizes a window and whenever it scrolls through a
document for any reason other than responding to the user dragging the scroll box.

Introduction to Controls 5-7

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

After the user drags the scroll box, the Control Manager redraws the scroll box in its new
position. You then use the Get Cont r ol Val ue function to determine the position of the
scroll box, and you display the appropriate portion of the document. By dragging the
scroll box, the user can move quickly through the document. For example, to see the
beginning of the document, the user drags the scroll box to the top of the scroll bar. Your
application then scrolls to the top of the document.

At either end of the scroll bar are scroll arrows that indicate the direction of movement
through the document. For instance, when the user clicks the top scroll arrow, your

application needs to move toward the beginning of the document. Thus, the document
moves down, seemingly in the opposite direction. By clicking the scroll arrow, the user
tells your application, “Show me more of the document that’s hidden in this direction.”

7

Your application uses the Set Cont r ol Val ue procedure to move the scroll box in the
direction of the arrow being clicked. In this way, the scroll box continues to represent
the approximate position of the visible part of the document in relation to the whole
document. For example, when the user clicks the top scroll arrow, you move the
document down to bring more of the top of the document into view, and you move the
scroll box up, as illustrated in Figure 5-5.

Figure 5-5 Using the scroll box and scroll arrows

5-8

Document
scroll direction
P2

Scroll box
direction

Scroll box
direction

Document
scroll direction

Introduction to Controls

CHAPTER 5

Control Manager

Each click of a scroll arrow should move the document a distance of one unit in the
chosen direction. Your application determines what one unit equals. For example, a
word processor should move one line of text for each click in the arrow. A spreadsheet
should move one row or one column, depending on the direction of the arrow. To ensure
smooth scrolling effects, it’s usually best to specify the same size units within a
document. When the user holds down the mouse button while the cursor is in a scroll
arrow, your application should continuously scroll through the document in the
indicated direction until the user releases the mouse button or your application has
scrolled as far as possible.

The rest of the area within the scroll bar—excluding the scroll box and the scroll arrows—
is called the gray area. When the user clicks the gray area of a scroll bar, your application
should move the displayed area of the document by an entire window of information
minus one scroll unit. For example, if the window displays 15 lines of text and the user
clicks the gray area below the scroll box, your application should move the document up
14 lines so that the bottom line of the previous view appears at the top of the new view.
(This retained line helps the user see the newly displayed material in context.) You must
also move the scroll box an appropriate distance in that direction. For example, when the
user clicks the gray area below the scroll box, move the document view by one window
toward the bottom of the document and use Set Cont r ol Val ue to move the scroll box
accordingly.

When your application scrolls through a document—for example, when the user
manipulates a scroll bar—your application must move the document’s coordinate space
in relation to the window’s coordinate space. Your application uses the scroll box to
indicate the location of the top of the displayed portion of the document relative to the
rest of the document.

For example, if a text window contains 15 lines of text and the user scrolls 30 lines from
the top of the document, the scroll box should be set to a value of 30. The window
displays all of the lines between line 30 and line 45, as shown in Figure 5-6 on the next
page. The scroll box always indicates the displacement between the beginning of the
document and the top of the displayed portion of the document.

To prevent the user from scrolling past the edge of the document and seeing a blank
window, you should—for a vertical scroll bar—allow the document to scroll no farther
than the length of the document minus the height of the window, excluding the
15-pixel-deep region for the horizontal scroll bar at the bottom edge of the window.
Likewise, for a horizontal scroll bar, you should allow the document to scroll no farther
than the width of the document minus the width of the window—here, too, excluding
the 15-pixel-wide region for the vertical scroll bar at the right edge of the window.

Introduction to Controls 5-9

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Figure 5-6 Spatial relations between a document and a window, and their representation by
a scroll bar
0
Document ——
space
Scroll bar
values
BN Title =E 0
30 5
Window [=l— Scroll box — = 30
space =
0]
g L] = [[
gl
Maximum 90
scrolling value |
I I
| |
I I
I I
| |
End of —— 105 L= -
document

For example, the document shown in Figure 5-6 is 105 lines long. So that the last 15 lines
will fill the window when the user scrolls to the end of the document, the application
does not scroll beyond 90 lines. Because the user has scrolled to line 30 of a maximum
90 lines, the scroll box appears a third of the way down the scroll bar.

“Scrolling Through a Document” beginning on page 5-43 describes in detail how to
scroll through a document in a window.

5-10 Introduction to Controls

CHAPTER 5

Control Manager

Other Controls

If you need controls other than the standard ones provided by the Control Manager,
you can design and implement your own. Typically, the only types of controls you
might need to implement are sliders or dials. Sliders and dials (which differ only in
appearance) are similar to scroll bars in that they graphically represent a range of
values that a user can set. Use an indicator—such as a sliding switch or a dial needle—
to indicate the current setting for the control and to let the user set its value. (For scroll
bars, the scroll box is the indicator.)

If you want to display a value not under the user’s direct control (for example, the
amount of free space remaining on a disk), you should use a status bar or other type
of graphic instead of a slider or dial.

Figure 5-7 illustrates several custom controls, which are used for purposes such as
setting the speaker volume, the gray-scale saturation level, and the relative position
of a slide within a presentation. As in this figure, be sure to include meaningful labels
that indicate the range and the direction of your control’s indicator.

Figure 5-7 Custom slider controls

olume

Loud

Low High
Medium

Soft
(Blink) -

First slide Last slide

A scroll bar is a slider representing the entire contents of a window, and the user uses the
scroll box to move to a specific location in that content. Don’t use scroll bars to represent

any other concept (for instance, changing a setting). Otherwise, your departure from the

consistent Macintosh interface might confuse the user.

Active and Inactive Controls

You can make a control become either active or inactive. Figure 5-8 on the next page
shows how the Tr ackCont r ol function (which you use in response to a mouse-down
event in a control) gives visual feedback when the user moves the cursor to an active
control and presses the mouse button. In particular, Tr ackCont r ol responds to mouse-
down events in active controls by

= displaying buttons in inverse video

= drawing checkboxes and radio buttons with heavier lines

» highlighting the titles of and displaying the items in pop-up menus
» highlighting scroll arrows

= moving outlines of scroll boxes when users drag them

Introduction to Controls 5-11

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Figure 5-8 Visual feedback for user selection of active controls

5-12

I_'*Ignure Slang Terms Checkbox

 Modem Port Radio buttons
CiPrinter Port

300 bps Pop-up menu
1200 bps
« 2400 bps

9600 bps
19200 bps

Scroll arrow

Scroll box

Your application, in turn, should respond appropriately to mouse events involving
active controls. Most often, your application waits until the user releases the mouse
button before taking any action; as long as the user holds down the mouse button when
the cursor is over a control, you typically let Tr ackCont r ol react to the mouse-down
event; TrackCont r ol then informs your application the moment the user releases the
mouse button when the cursor is over an active control.

As soon as the user releases the mouse button, your application should

perform the task identified by the button title when the cursor is over an active button

toggle the value of the checkbox when the cursor is over an active checkbox (The
Control Manager then draws or removes the checkmark, as appropriate.)

turn on the radio button and turn off all other radio buttons in the group when the
cursor is over an active radio button

use the new setting chosen by the user when the cursor is over an active pop-up menu

show more of the document in the direction of the scroll arrow when the cursor is
over the scroll arrow or gray area of an active scroll bar, and move the scroll box
accordingly

determine where the user has dragged the scroll box when the cursor is over the scroll
box and then display the corresponding portion of the document

Sometimes your application should respond even before the user releases the mouse
button—that is, your application should undertake some continuous action as long as

Introduction to Controls

CHAPTER 5

Control Manager

the user holds down the mouse button when the cursor is in an active control. Most
typically, when the user moves the cursor to a scroll arrow or gray area and then holds
down the mouse button, your application should continuously scroll through the
document until the user releases the mouse button or until the user can’t scroll any
farther. To perform this kind of action, you define an action procedure and specify it to
TrackControl ; TrackControl calls your action procedure as long as the user holds
down the mouse button.

Whenever it is inappropriate for your application to a respond to a mouse-down event in
a control, you should make it inactive. An inactive control is one that the user can’t use
because it has no meaning or effect in the current context—for example, the scroll bars

in an empty window. The Control Manager continues to display an inactive control so
that it remains visible, but in a manner that indicates its state to the user. As shown in
Figure 5-9, the Control Manager dims inactive buttons, checkboxes, radio buttons, and
pop-up menus, and it lightens the gray area and removes the scroll box from inactive
scroll bars.

Figure 5-9 Inactive controls

§ivnt Button
[tgnars Siang fsrms Checkbox

o rMnden Pord Radio buttons
) Printer Port

TR Pop-up menu

[X Scroll bar

You can use the H | i t eCont r ol procedure to make any control inactive and then
active again. Except for scroll bars (which you should hide using the H deCont r ol
procedure), you should use Hi | i t eCont r ol to make all other controls inactive when
their windows are not frontmost. You typically use controls other than scroll bars in
dialog boxes. See the chapter “Dialog Manager” in this book for a discussion of how to
make buttons, radio buttons, checkboxes, and pop-up menus inactive and active.

You make scroll bars inactive when the document is smaller than the window in which
you display it. To make a scroll bar inactive, you typically use the Set Cont r ol Maxi mum
procedure to make the scroll bar’s maximum value equal to its minimum value, in which
case the Control Manager automatically makes the scroll bar inactive. To make it active
again, you typically use Set Cont r ol Maxi mumto make its maximum value larger than
its minimum value.

Introduction to Controls 5-13

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

The Control Definition Function

A control definition function determines how a control generally looks and behaves.
Various Control Manager routines call a control definition function whenever they need
to perform some control-dependent action, such as drawing the control on the screen.

Control definition functions are stored as resources of type ' CDEF' . The System file
includes three standard control definition functions, stored with resource IDs of 0, 1,
and 63. The ' CDEF' resource with resource ID 0 defines the look and behavior of
buttons, checkboxes, and radio buttons; the ' CDEF' resource with resource ID 1 defines
the look and behavior of scroll bars; and the ' CDEF' resource with resource ID 63
defines the look and behavior of pop-up menus. (If you want to define nonstandard
controls, you'll have to write control definition functions for them, as described in
“Defining Your Own Control Definition Function” beginning on page 5-109.)

Just as a window definition function can describe variations of the same basic window, a
control definition function can use a variation code to describe variations of the same
basic control. You specify a particular control with a control definition ID. The control
definition ID is an integer that contains the resource ID of the control definition function
in its upper 12 bits and a variation code in its lower 4 bits. For a given resource ID and
variation code, the control definition ID is derived as follows:

control definition ID = 16 * (' CDEF' resource ID) + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control
definition function with resource ID 0; because they have variation codes of 0, 1,
and 2, respectively, their respective control definition IDs are 0, 1, and 2.

You can use these constants to define the controls provided by the standard control
definition functions:

Control
Constant definition ID Control
pushBut Proc 0 Button
checkBoxPr oc 1 Checkbox
radi oBut Proc 2 Radio button
scrol | Bar Proc 16 Scroll bar
popupMenuPr oc 1008 Pop-up menu

The control definition function for scroll bars figures out whether a scroll bar is vertical
or horizontal from a rectangle you specify when you create the control.

About the Control Manager

5-14

You can use the Control Manager to
= create and dispose of controls

= display, update, and hide controls

About the Control Manager

CHAPTER 5

Control Manager

= change the size, location, and appearance of controls
= monitor and respond to the user’s operation of a control
= determine and change the settings and other attributes of a control

Your application performs these actions by calling the appropriate Control Manager
routines. The Control Manager carries out the actual operations, but it’s up to you to
decide when, where, and how to carry these out.

Using the Control Manager

To implement a control, you generally
= use a control resource (that is, a resource of type ' CNTL') to describe the control
= create and display the control

= determine when the user presses, clicks, or holds down the mouse button while the
cursor is in the control

= respond as appropriate to events involving the control—for example, by displaying a
different portion of the document when the user manipulates a scroll bar

= respond as appropriate to other events in windows that include controls—for
example, by moving and resizing a scroll bar when the user resizes a window, or by
hiding one window’s scroll bars when the user makes a different window active

These tasks are explained in greater detail in the rest of this chapter.

Before using the Control Manager, you must initialize QuickDraw, the Font Manager,
and the Window Manager, in that order, by using the | ni t Gr af , | ni t Font s, and

I ni t Wndows procedures. (See Inside Macintosh: Imaging for information about

I ni t Graf and | ni t Font s; see the chapter “Window Manager” in this book for
information about | ni t W ndows.)

Creating and Displaying a Control

To create a control in one of your application’s windows, use the Get NewCont r ol or
NewCont r ol function. You should usually use Get NewCont r ol , which takes
information about the control from a control resource (that is, a 'CNTL' resource) in a
resource file. Like window resources, control resources isolate descriptive information
from your application code for ease of modification—especially for translation to other
languages. The rest of this section describes how to use Get NewCont r ol . Although it’s
generally not recommended, you can also use the NewCont r ol function and pass it the
necessary descriptive information in individual parameters instead of using a control
resource. The NewCont r ol function is described on page 5-82.

Jabeuel [0nu0D -

When you use Get NewCont r ol , you pass it the resource ID of the control resource, and
you pass it a pointer to a window. The function then creates a data structure (called a
control record) of type Cont r ol Recor d from the information in the control resource,
adds the control record to the control list for your window, and returns as its function

Using the Control Manager 5-15

5-16

CHAPTER 5

Control Manager

result a handle to the control. (You use a control’s handle when referring to the control in
most other Control Manager routines; when you create scroll bars or pop-up menus for a
window, you should store their handles in one of your application’s own data structures
for later reference.)

When you specify in the control resource that a control is initially visible and you use the
Cet NewCont r ol function, the Control Manager uses the control’s control definition
function to draw the control inside its window. The Control Manager draws the control
immediately, without using your window’s standard updating mechanism. If you
specify that a control is invisible, you can use the ShowCont r ol procedure when you
want to draw the control. Again, the Control Manager draws the control without using
your window’s standard updating mechanism. (Of course, even when the Control
Manager draws the control, it might be completely or partially obscured from the user
by overlapping windows or other objects.)

When your application receives an update event for a window that contains controls,
you use the Updat eCont r ol s procedure in your application’s standard window-
updating code to redraw all the controls in the update region of the window.

Note

When you use the Dialog Manager to implement buttons, radio buttons,
checkboxes, or pop-up menus in alert boxes and dialog boxes, Dialog
Manager routines automatically use Control Manager routines to create
and update these controls for you. If you implement any controls other
than buttons, radio buttons, checkboxes, and pop-up menus in alert or
dialog boxes—and whenever you implement any controls (scroll bars,
for example) in your application’s windows—you must explicitly use
either the Get NewCont r ol or the NewCont r ol function to create the
controls. You must always use the Updat eCont r ol s procedure to
update controls you put in your own windows. O

When you use the Window Manager procedure Di sposeW ndowor Cl oseW ndow to
remove a window, either procedure automatically removes all controls associated with
the window and releases the memory they occupy.

When you no longer need a control in a window that you want to keep, you can use the
Di sposeCont rol procedure, described on page 5-108, to remove it from the screen,
delete it from its window’s control list, and release the control record and all other
associated data structures from memory. You can use the Ki | | Cont r ol s procedure,
described on page 5-108, to dispose of all of a window’s controls at once.

The next section, “Creating a Button, Checkbox, or Radio Button,” provides a general
discussion of the control resource as well as a more detailed description of the use of the
control resource to specify buttons, checkboxes, and radio buttons in your application’s
windows. The two following sections, “Creating Scroll Bars” (beginning on page 5-21)
and “Creating a Pop-Up Menu” (beginning on page 5-25), describe those elements of the
control resource that differ from the control resources for buttons, checkboxes, and radio
buttons. “Updating a Control” beginning on page 5-29 then offers an example of how
you can use the Updat eCont r ol s procedure within your window-updating code.

Using the Control Manager

CHAPTER 5

Control Manager

Note

For the Control Manager to draw a control properly inside a window,
the window must have its upper-left corner at local coordinates (0,0). If
you use the QuickDraw procedure Set Or i gi n to change a window’s
local coordinate system, be sure to change it back—so that the upper-left
corner is again at (0,0)—before drawing any of its controls. Because
many Control Manager routines can (at least potentially) redraw a
control, the safest policy after changing a window’s local coordinate
system is to change the coordinate system back before calling any
Control Manager routine. O

Creating a Button, Checkbox, or Radio Button

Figure 5-10 shows a simple example of a button placed in a window of type

noGr owDoc Pr oc—which you normally use to create a modeless dialog box.
Although you usually use the Dialog Manager to create dialog boxes and their
buttons, sometimes you might use the Window Manager and the Control Manager
instead. The chapter “Dialog Manager” in this book explains why the use of the
Window and Control Managers is sometimes preferable for this purpose.

Figure 5-10 A button in a simple window

EO0=—— Flay Sounds

Listing 5-1 shows an application-defined routine, MyCr eat ePl ay SoundsW ndow that
uses the Get NewCont r ol function to create the button shown in Figure 5-10.

Listing 5-1 Creating a button for a window

FUNCTI ON MyCr eat ePl aySoundsW ndow. OSErr ;

VAR

nyW ndow. W ndowPtr;

BEG N

My Cr eat ePl aySoundsW ndow : = noErr;
nmyW ndow : = Get NewW ndow(r Pl aySoundsMbdel essW ndow, N L, PO NTER(-1));
| F nyW ndow <> NI L THEN

BEG N

{use the window s refCon to identify this w ndow}
Set WRef Con(myW ndow, Longl nt (kMyPl aySoundsW ndow)) ;

Using the Control Manager 5-17

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Set Port (myW ndow) ;

gM/Pl ayButt onCt | Handl e : = Get NewControl (rPl ayButton, nmyW ndow);

I F (gMyPl ayButtonCt| Handl e =
My Cr eat ePl aySoundsW ndow :

END
ELSE
My Cr eat ePl aySoundsW ndow : = kNoSoundW ndow,

END;

NI L) THEN
kControl Err;

The MyCr eat ePl ay SoundsW ndow routine begins by using the Window Manager
function Get NewW ndowto create a window; a pointer to that window is passed to

CGet NewCont r ol . Note that, as explained in the chapter “Dialog Manager” in this book,
you could create a modeless dialog box more easily by using the Dialog Manager
function Get NewDi al og and specifying its controls in an item list (' DI TL") resource.

For the resource ID of a control resource, the My Cr eat ePl ay SoundsW ndow routine
defines an r Pl ayBut t on constant, which it passes to the Get NewCont r ol function.
Listing 5-2 shows how this control resource appears in Rez input format.

Listing 5-2 Rez input for a control resource

5-18

resource 'CNTL' (rPlayButton, preload, purgeable) {
{87, 187, 107, 247}, /*rectangl e*/
0, /*initial setting*/
vi si bl e, / *make control visible*/
1, / *maxi num setting*/
o, /*m ni mum setting*/
pushBut Pr oc, /*control definition |ID*/
0, [*ref erence val ue*/
"Pl ay" [*title*/
1
You supply the following information in the control resource for a button, checkbox,
radio button, or scroll bar:

» arectangle, specified by coordinates local to the window, that determines the control’s
size and location

» the initial setting for the control

= a constant (either vi si bl e or i nvi si bl e) that specifies whether the control should
be drawn on the screen immediately

» the maximum setting for the control

s the minimum setting for the control

= the control definition ID

» a reference value, which your application may use for any purpose

= the title of the control; or, for scroll bars, an empty string

Using the Control Manager

CHAPTER 5

Control Manager

As explained in “Creating a Pop-Up Menu” beginning on page 5-25, the values you
supply in a control resource for a pop-up menu differ from those you specify for other
buttons, checkboxes, radio buttons, and scroll bars.

Buttons are drawn to fit the rectangle exactly. To allow for the tallest characters in
the system font, there should be at least a 20-point difference between the top and
bottom coordinates of the rectangle. Listing 5-2 uses a rectangle with coordinates
(87,187,107,247) to describe the size and location of the control within the window.
Remember that the Control Manager will not draw controls properly unless the
upper-left corner of the window coincides with the coordinates (0,0).

In Listing 5-2, the initial and minimum settings for the button are 0 and the maximum
setting is 1. In control resources for buttons, checkboxes, and radio buttons, supply these
values as the initial settings:

» For buttons, which don’t retain a setting, specify a value of 0 for the initial and
minimum settings and 1 for the maximum setting.

» For checkboxes and radio buttons, which retain an on-or-off setting, specify a value of
0 when you want to the control to be initially off. To turn a checkbox or radio button
on, assign it an initial setting of 1. In response, the Control Manager places an X in a
checkbox or a black dot in a radio button.

Because the vi si bl e identifier is specified in this example, the control is drawn
immediately in its window. If you use the i nvi si bl e identifier, your control is not
drawn until your application uses the ShowCont r ol procedure. When you want to
make a visible control invisible, you can use the H deCont r ol procedure.

In Listing 5-2, the maximum setting for the button is 1, which you, too, should specify in
your control resources as the maximum setting for buttons, checkboxes, and radio
buttons. In Listing 5-2, the minimum setting for the button is 0, which you, too, should
specify in your control resources as the minimum setting for buttons, checkboxes, and
radio buttons.

In Listing 5-2, the pushBut Pr oc constant is used to specify the control definition ID.
Use the checkBoxPr oc constant to specify a checkbox and the r adi oBut Pr oc
constant to specify a radio button.

Listing 5-2 specifies a reference value of 0. Your application can use this value for any
purpose (except when you add the popupUseAddResMenu variation code to the
popupMenuPr oc control definition function, as described in “Creating a Pop-Up Menu”
beginning on page 5-25).

Finally, the string " Pl ay" is specified as the title of the control. Buttons, checkboxes,
and radio buttons require a title that communicates their purpose to the user. (The
chapter “Dialog Manager” in this book offers extensive guidelines on appropriate titles
for buttons.)

When specifying a title, make sure it fits in the control’s rectangle; otherwise, the
Control Manager truncates the title. For example, it truncates the titles of checkboxes
and radio buttons on the right in Roman scripts, and it centers and truncates both ends
of button titles.

Using the Control Manager 5-19

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

If you localize your application for use with worldwide versions of system software, the
titles may become longer or shorter. Translated text is often 50 percent longer than U.S.
English text. You may need to resize your controls to accommodate the translated text.

By default, the Control Manager displays control titles in the system font. To make it
easier to localize your application for use with worldwide versions of system software,
you should not change the font. Do not use a smaller font, such as 9-point Geneva; some
script systems, such as KanjiTalk, require 12-point fonts. You can spare yourself future
localization effort by leaving all control titles in the system font.

Follow book-title style when you capitalize control titles. In general, capitalize one-word
titles and capitalize nouns, adjectives, verbs, and prepositions of four or more letters in
multiple-word titles. You usually don’t capitalize words such as in, an, or and. For
capitalization rules, see the Apple Publications Style Guide, available from APDA.

The Control Manager allows button, checkbox, and radio button titles of multiple lines.
When specifying a multiple-line title, end each line with the ASCII character code $0D
(carriage return). If the control is a button, each line is horizontally centered, and the
font leading is inserted between lines. (The height of each line is equal to the distance
from the ascent line to the descent line plus the leading of the font used. Be sure to make
the total height of the rectangle greater than the number of lines times this height.) If

the control is a checkbox or a radio button, the text is justified as appropriate for the
user’s current script system, and the checkbox or button is vertically centered within

its rectangle.

Figure 5-11 shows the Play Sounds window with four additional controls: radio buttons
titled Droplet, Quack, Simple Beep, and Wild Eep.

Figure 5-11 Radio buttons in a simple window

5-20

S[I=——— Play Sounds =

i Droplet

) Quack

1 Simple Beep
1 Wild Eep

Only one of these radio buttons can be on at a time. Listing 5-3 initially sets the Droplet
radio button to 1, turning it on by default. This listing also shows the control resources
for the other buttons, all initially set to 0 to turn them off.

For a checkbox or a radio button, always allow at least a 16-point difference between the
top and bottom coordinates of its rectangle to accommodate the tallest characters in the
system font.

Using the Control Manager

CHAPTER 5

Control Manager

Listing 5-3 Rez input for the control resources of radio buttons

resource 'CNTL' (cDroplet, preload, purgeable) {
{13, 23, 31, 142},/*rectangle of control*/

1, /*initial setting*/

vi si bl e, /*make control visible*/
1, [*maxi mum setting*/

0, /*m ni rum setting*/

r adi oBut Pr oc, /*control definition ID*/
0, /*reference val ue*/
"Droplet" /*control title*/

b

resource ' CNTL' (cQuack, preload, purgeable) {
{31, 23, 49, 142},/*rectangle of control*/
o, /*initial setting*/
visible, 1, 0, radioButProc, 0, "Quack"};

resource 'CNTL' (cSinpl eBeep, preload, purgeable) {
{49, 23, 67, 142},/*rectangle of control*/
0, /*initial setting*/
visible, 1, 0, radioButProc, 0, "Sinple Beep"};

resource 'CNTL' (cW /I dEep, preload, purgeable) {
{67, 23, 85, 142},/*rectangle of control*/
0, /*initial setting*/
visible, 1, 0, radioButProc, 0, "WId Eep"};

Creating Scroll Bars

When you define the control resource for a scroll bar, specify the scr ol | Bar Pr oc
constant for the control definition ID. Typically, you make the scroll bar invisible and
specify an initial value of 0, a minimum value of 0, and a maximum value of 0, and you
supply an empty string for the title.

After you create a window, use the Get NewCont r ol function to create the scroll bar
you’ve defined in the control resource and to attach that scroll bar to the window. Use
the MoveCont rol , Si zeCont r ol , Set Cont r ol Maxi num and Set Cont r ol Val ue
procedures to adjust the location, size, and settings of the scroll bars, and then use the
ShowCont r ol procedure to display the scroll bars.

In your window-handling code, make the maximum setting the maximum area you
want to allow the user to scroll. Most applications allow the user to drag the size box and
click the zoom box to change the size of windows, and they allow the user to add
information to and remove it from documents. To allow users to perform these actions,
your application needs to calculate a changing maximum setting based upon the
document’s current size and its window’s current size. For new documents that have no

Using the Control Manager 5-21

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

content to scroll to, assign an initial value of 0 as the maximum setting in the control
resource; the control definition function automatically makes a scroll bar inactive when
its minimum and maximum settings are identical. Thereafter, your window-handling
routines should set and maintain the maximum setting, as described in “Determining
and Changing Control Settings” beginning on page 5-37.

By convention, a scroll bar is 16 pixels wide, so there should be a 16-point difference
between the left and right coordinates of a vertical scroll bar’s rectangle and between the
top and bottom coordinates of a horizontal scroll bar’s rectangle. (If you don’t provide a
16-pixel width, the Control Manager scales the scroll bar to fit the width you specify.) A
standard scroll bar should be at least 48 pixels long, to allow room for the scroll arrows
and scroll box.

The Control Manager draws lines that are 1 pixel wide for the rectangle enclosing the
scroll bar. As shown in Figure 5-12, the outside lines of a scroll bar should overlap the
lines that the Window Manager draws for the window frame.

Figure 5-12 How a scroll bar should overlap the window frame

5-22

—— 1-pixel overlap

(0,300)

%'—)

16 pixels

1-pixel overlap

To determine the rectangle for a vertical scroll bar, perform the following calculations and
use their results in your control resource. (Do not include the area of the title bar in your
calculations.)

= top coordinate = combined height of any items above the scroll bar — 1

left coordinate = width of window — 15

bottom coordinate = height of window — 14

» right coordinate = width of window + 1

Using the Control Manager

CHAPTER 5

Control Manager

To determine the rectangle for a horizontal scroll bar, perform the following calculations
and use their results in your control resource.

= top coordinate = height of window — 15
= left coordinate = combined width of any items to the left of the scroll bar - 1
= bottom coordinate = height of window + 1

= right coordinate = width of window — 14

The top coordinate of a vertical scroll bar is -1, and the left coordinate of a horizontal
scroll bar is —1, unless your application uses part of the window’s typical scroll bar areas
(in particular, those areas opposite the size box) for displaying information or specifying
additional controls. For example, your application may choose to display the current
page number of a document in the lower-left corner of the window—that is, in a small
area to the left of its window’s horizontal scroll bar. See Macintosh Human Interface
Guidelines for a discussion of appropriate uses of a window’s scroll bar areas for
additional items and controls.

Just as the maximum settings of a window’s scroll bars change when the user resizes the
document’s window, so too do the scroll bars’ coordinate locations change when the user
resizes the window. Although you must specify an initial maximum setting and location
in the control resource for a scroll bar, your application must be able to change them
dynamically—typically, by storing handles to each scroll bar in a document record when
you create a window, and then by using Control Manager routines to change control
settings (as described in “Determining and Changing Control Settings” beginning on
page 5-37) and sizes and locations of controls (as described in “Moving and Resizing
Scroll Bars” beginning on page 5-65).

Listing 5-4 shows a window resource (described in the chapter “Window Manager” in
this book) for creating a window, and two control resources for creating the window’s
vertical and horizontal scroll bars. The rectangle for the initial size and shape of the
window is specified in global coordinates, of course, and the rectangles for the two scroll
bars are specified in coordinates local to the window.

Listing 5-4 Rez input for resources for a window and its scroll bars

[*initial w ndow/
resource 'WND (rDocW ndow, preload, purgeable) {
{64, 60, 314, 460}, /*initial rectangle for w ndow/
zoonmDocProc, invisible, goAway, 0x0, "untitled"
i
/*initial vertical scroll bar*/
resource 'CNTL' (rVScroll, preload, purgeable) {
{-1, 385, 236, 401}, /*initial rectangle for control*/
/*initial setting, visibility, max, min, ID, refcon, title*/
O, invisible, 0, 0, scrollBarProc, 0, ""

}s

Using the Control Manager 5-23

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

/*initial horizontal scroll bar*/
resource 'CNTL'" (rHScroll, preload, purgeable) {
{235, -1, 251, 386}, /*initial rectangle for control*/
/*initial setting, visibility, max, mn, ID refcon, title*/
0, invisible, 0, 0, scrollBarProc, 0, ""

b

Listing 5-5 shows an application-defined procedure called DoNew that uses the
Get NewW ndowand Get NewCont r ol functions to create a window and its scroll bars
from the resources in Listing 5-4.

Listing 5-5 Creating a document window with scroll bars

PROCEDURE DoNew (newDocument: Bool ean; VAR wi ndow. W ndowPtr);
VAR

good: Bool ean;

wi ndSt or age: Ptr;

nmyDat a: MyDocRecHnd;
BEG N

{use Get NewW ndow or Get NewCW ndow to create the w ndow here}
nyDat a : = MyDocRecHnd(NewHandl e(SI ZEOF(MyDocRec))); {create docunent rec}
{test for errors along the way; if there are none, create the scroll }
{ bars and save their handles in myData}
| F good THEN
BEA N {create the vertical scroll bar and save its handl e}
nmyDat a*”. vScrol | Bar : = Get NewControl (rVScroll, w ndow);
{create the horizontal scroll bar and save its handl e}
nyDat a*”. hScrol | Bar : = Get NewControl (rHScrol |, w ndow);
good := (vScrollBar <> NIL) AND (hScrollBar <> NL);

END;
| F good THEN
BEG N {adj ust size, location, settings, and visibility of scroll bars}

MyAdj ust Scr ol | Bar s(wi ndow, FALSE);
{performother initialization here}
I F NOT newDocument THEN
ShowW ndow(wi ndow) ;
END;
{cl ean up here}
END; {DoNew}

The DoNew routine uses Window Manager routines to create a window; its window
resource specifies that the window is invisible. The window resource specifies an initial
size and location for the window, but because the window is invisible, this window is
not drawn.

5-24 Using the Control Manager

CHAPTER 5

Control Manager

Then DoNew creates a document record and stores a handle to it in the nyDat a variable.
The SurfWriter sample application uses this document record to store the data that the
user creates in this window—as well as handles to the scroll bars that it creates. The
SurfWriter sample application later uses these control handles to handle scrolling
through the document and to move and resize the scroll bars when the user resizes the
window. (See the chapter “Window Manager” in this book for more information about
creating such a document record.)

To create scroll bars, DoNewuses Get NewCont r ol twice—once for the vertical scroll bar
and once for the horizontal scroll bar. The Get NewCont r ol function returns a control
handle; DoNew stores these handles in the vScr ol | Bar and hScr ol | Bar fields of its
document record for later reference.

Because the window and the scroll bars are invisible, nothing is drawn onscreen

yet for the user. Before drawing the window and its scroll bars, DoNew calls

another application-defined procedure, MyAdj ust Scr ol | Bar s. In turn,

MyAdj ust Scr ol | Bar s calls other application-defined routines that move and

resize the scroll bars to fit the window and then calculate the maximum settings of

these controls. (Listing 5-14 on page 5-39 shows the MyAdj ust Scr ol | Bar s procedure.)

After creating the window and its scroll bars, and then sizing and positioning them
appropriately, DONew uses the Window Manager procedure ShowW ndowto display the
window with its scroll bars.

Creating a Pop-Up Menu

The values you specify in a control resource for a pop-up menu differ from those you
specify for other controls. The control resource for a pop-up menu contains the
following information:

= arectangle, specified by coordinates local to the window, that determines the size and
location of the pop-up title and pop-up box

= the alignment of the pop-up title with the pop-up box

= a constant (either vi si bl e or i nvi si bl e) that specifies whether the control should
be drawn on the screen immediately

= the width of the pop-up title

» the resource ID of the ' MENU resource describing the pop-up menu items
= the control definition ID

» a reference value, which your application may use for any purpose

n the title of the control

Figure 5-13 on the next page shows a pop-up menu; Listing 5-6 shows the control
resource that creates this pop-up menu. (The chapter “Menu Manager” in this book
recommends typical uses of pop-up menus and describes the relation between pop-up
menus and menus you display in the menu bar.)

Using the Control Manager 5-25

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Figure 5-13 A pop-up menu

300 bps

Speed: 1200 bps .

Speed:| 1200 bps W

7t ‘) 2400 bps
Pop-up Pop-up box 9600 bps
title 19200 bps

Listing 5-6 Rez input for the control resource of a pop-up menu

resource ' CNTL' (kPopUpCNTL, preload, purgeable) {
{90, 18, 109, 198}, /*rectangle of control*/
popupTi tl eLeftJust, /*title position*/

vi si bl e, /*make control visible*/
50, /*pixel width of title*/
kPopUpMenu, /*'MENU resource |D*/
popupMenuCDEFPr oc, /*control definition |ID*/
0, [*ref erence val ue*/

" Speed: " /*control title*/

}s

Listing 5-6 specifies a rectangle with the coordinates (90,18,109,198). Figure 5-14
illustrates the rectangle for this pop-up menu.

Figure 5-14 Dimensions of a sample pop-up menu

5-26

(90,18) (Upper-left corner of enclosing rectangle)

50 pixels (109,198)
(Title width) (Lower-right corner of
enclosing rectangle)

Listing 5-6 uses the popupTi t | eLef t Just constant to specify the position of the
control title. Specify any combination of the following constants (or their values) to
inform the Control Manager where and how to draw the pop-up menu’s title:

Setting Constant Description

$0000 popupTi t| eLeft Just Place title left of the pop-up box
$0001 popupTi t| eCent er Just Center title over the pop-up box
$00FF popupTi t | eRi ght Just Place title right of the pop-up box
$0100 popupTi tl eBol d Use boldface font style

$0200 popupTitleltalic Use italic font style

Using the Control Manager

CHAPTER 5

Control Manager

Setting Constant Description

$0400 popupTi tl eUnderl i ne Use underline font style
$0800 popupTitl eCQutline Use outline font style
$1000 popupTi t | eShadow Use shadow font style
$2000 popupTi t | eCondense Use condensed characters
$4000 popupTi t| eExt end Use extended characters
$8000 popupTi tl eNoStyl e Use monostyle font

If Get NewCont r ol completes successfully, it sets the value of the cont r| Val ue field
of the control record by assigning to that field the item number of the first menu item.
When the user chooses a different menu item, the Control Manager changes the
contrl Val ue field to that item number.

When you create pop-up menus, your application should store the handles for them; for
example, in a record pointed to by the r ef Con field of a window record or a dialog
record. (See the chapters “Window Manager” and “Dialog Manager” in this book for
more information about the window record and the dialog record.) Storing these
handles, as shown in the following code fragment, allows your application to respond
later to users’ choices in pop-up menus:

nyDat a: MyDocRecHnd;
wi ndow. W ndowPtr ;

nmyDat a*”. popUpCont rol Handl e : = Get NewCont r ol (kPopUpCNTL, wi ndow);

Listing 5-6 specifies 50 pixels (in place of a maximum setting) as the width of the control
title. After it creates the control, the Control Manager sets the maximum value in the
pop-up menu'’s control record to the number of items in the pop-up menu. Figure 5-14
illustrates this title width for the pop-up menu.

Listing 5-6 uses a kPopUpMenu constant to specify the resource ID of a' MENU resource
(in place of a minimum setting for the control). (See the chapter “Menu Manager” in this
book for a description of the ' MENU' resource type.) After it creates the control, the

Control Manager assigns 1 as the minimum setting in the pop-up menu’s control record.

IMPORTANT

When using the ResEdit application, version 2.1.1, you must use the
same resource ID when specifying the menu resource and the control
resource that together define a pop-up menu. a

Jabeuel [0nu0D -

You can also specify a different control definition ID by adding any or all of the
following constants (or the variation codes they represent) to the popupMenuPr oc
constant:

CONST popupFi xedW dt h
popupUseAddResMenu
popupUseWFont

$0001; {use fixed-width control}
$0004; {use resource for nmenu itens}
$0008; {use wi ndow font}

Using the Control Manager 5-27

5-28

CHAPTER 5

Control Manager

Constant Description

popUpFi xedW dt h Uses a constant control width. If your application specifies
this value, the pop-up control definition function does not
resize the control horizontally to fit long menu items. The
width of the pop-up box is set to the width of the control,
minus the width of the pop-up title your application
specifies when it creates the control. If a menu item in a
pop-up box does not fit in the space provided, the text is
truncated to fit, and three ellipsis points (...) are appended
at the end. If you do not specify this variation code, the
pop-up control definition function may resize the control
horizontally.

popupUseAddResMenu Gets menu items from a resource other than the ' MENU
resource. If your application specifies this value when
creating a pop-up menu, the control definition function
interprets the value in the cont r | Rf Con field of the
control record as a value of type ResType. The control
definition function uses the Menu Manager procedure
AppendResMenu to add resources of that type to the menu.

popupUseWront Uses the font of the specified window. If your application
specifies this value, the pop-up control definition function
draws the pop-up menu title using the font and size of
the window containing the control instead of using the
system font.

The reference value that you specify in the control resource (and stored by the Control
Manager in the cont r | Rf Con field of the control record) is available for your
application’s use. However, if you specify popupUseAddResMenu as a variation code,
the Control Manager coerces the value in the cont r | Rf Con field of the control record
to the type ResType and then uses AppendResMenu to add items of that type to the
pop-up menu. For example, if you specify a reference value of Longl nt (' FONT') as
the reference value, the control definition function appends a list of the fonts installed
in the system to the menu associated with the pop-up menu. After the control has been
created, your application can use the control record’s cont r | Rf Con field for whatever
use it requires. You can determine which menu item is currently chosen by calling

CGet Cont r ol Val ue.

Whenever the pop-up menu is redrawn, its control definition function calls the Menu
Manager procedure Cal cMenuSi ze. This procedure recalculates the size of the

menu associated with the control (to allow for the addition or deletion of items in the
menu). The pop-up control definition function may also update the width of the pop-
up menu to the sum of the width of the pop-up title, the width of the longest item in the
menu, the width of the downward-pointing arrow, and a small amount of white space.
As previously described, your application can override this behavior by adding the
variation code popupFi xedW dt h to the pop-up control definition ID.

You should not use the Menu Manager function Get MenuHandl e to obtain a handle to
a menu associated with a pop-up control. If necessary, you can obtain the menu handle
(and the menu ID) of a pop-up menu by dereferencing the cont r | Dat a field of the
pop-up menu’s control record. The cont r | Dat a field of a control record is a handle to a

Using the Control Manager

CHAPTER 5

Control Manager

block of private information. For pop-up menu controls, this field is a handle to a pop-up
private data record, which is described on page 5-77.

Updating a Control

Your program should use the Updat eCont r ol s procedure upon receiving an update
event for a window that contains controls such as scroll bars. (Window Manager routines
such as Sel ect W ndow ShowW ndow and Br i ngToFr ont do not automatically

call Updat eCont r ol s to display the window’s controls. Instead, they merely add

the appropriate regions to the window’s update region. This in turn generates an

update event.)

Note

The Dialog Manager automatically updates the controls you use in alert
boxes and dialog boxes. O

When your application receives an update event for a window that contains controls, use
the Updat eCont r ol s procedure in your window-updating code to redraw all the
controls in the update region of the window. Call Updat eCont r ol s after using the
Window Manager procedure Begi nUpdat e and before using the Window Manager
procedure EndUpdat e.

When you call Updat eCont r ol s, you pass it parameters specifying the window to
be updated and the window area that needs updating. Use the visible region of

the window’s graphics port, as referenced in the port’s vi sRgn field, to specify the
window’s update region.

Listing 5-7 shows an application-defined routine, DoUpdat e, that responds to an update
event. The DoUpdat e routine calls the Window Manager procedure Begi nUpdat e. To
redraw this portion of the window, DoUpdat e then calls another of its own procedures,
My Dr awW ndow

Listing 5-7 Responding to an update event for a window

PROCEDURE DoUpdat e (w ndow. W ndowPtr);
VAR
wi ndowType: | nteger;
BEG N
wi ndowType : = MyGet W ndowType(w ndow) ;
CASE wi ndowType OF
kMyDocW ndow.
BEG N
Begi nUpdat e(w ndow) ;
My Dr awW ndow(wi ndow) ;
EndUpdat e(wi ndow) ;

END; {of updating docunment w ndows}
{handl e ot her wi ndow types—m+rodel ess di al ogs, etc.—here}
END; {of w ndowType CASE}

END; {of DoUpdat e}

Using the Control Manager 5-29

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Listing 5-8 illustrates how the SurfWriter sample application updates window controls
and other window contents by using its own application-defined routine,

MyDr awW ndow To draw only those controls in the window’s update region,

MyDr awW ndow calls Updat eCont r ol s. To draw the size box in the lower-right corner
of the window, My Dr awW ndow calls the Window Manager procedure Dr awG ow con.
Finally, MyDr awW ndowredraws the appropriate information contained in the user’s
document. Because the SurfWriter application uses TextEdit for all text editing in the
window contents, Listing 5-8 calls the TextEdit procedure TEUpdat e. (TextEdit is
described in detail in Inside Macintosh: Text.)

Listing 5-8 Redrawing the controls in the update region

5-30

PRCCEDURE MyDr awW ndow (w ndow. W ndowPtr);
VAR
nmyDat a: MyDocRecHnd;
BEG N {draw t he contents of the w ndow}
Set Port (wi ndow) ;
nyData : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
HLock(Handl e(nyDat a)) ;
W TH wi ndow* DO
BEG N
Er aseRect (port Rect) ;
Updat eCont r ol s(wi ndow, vi sRgn);
Dr awGr ow con(wi ndow) ;
TEUpdat e(port Rect, nyData””.editRec); {redraw text}
END;
HUnLock(Handl e(nyDat a)) ;
END; { MyDr awW ndow}

For more information about updating window contents, see the chapter “Window
Manager” in this book.

Responding to Mouse Events in a Control

The Control Manager provides several routines to help you detect and respond to mouse
events involving controls. For mouse events in controls, you generally perform the
following tasks:

1. In your event-handling code, use the Window Manager function Fi ndW ndowto
determine the window in which the mouse-down event occurred.

2. If the mouse-down event occurred in the content region of your application’s active
window, use the Fi ndCont r ol function to determine whether the mouse-down
event occurred in an active control and, if so, which control.

3. Call TrackCont r ol to handle user interaction for the control for as long as the user
holds the mouse button down. For scroll arrows and the gray areas of scroll bars, you

Using the Control Manager

CHAPTER 5

Control Manager

must define an action procedure for Tr ackCont r ol to use. This action procedure
should cause the document to scroll as long as the user holds down the mouse button.
For pop-up menus, you pass Poi nt er (- 1) in a parameter to Tr ackCont r ol to

use the action procedure defined in the pop-up control definition function. For the
scroll box in scroll bars and for the other standard controls, you pass NI L in a
parameter to Tr ackCont r ol to get the Control Manager’s standard response to
mouse-down events.

4. When Tr ackCont r ol reports that the user has released the mouse button with the
cursor in a control, respond appropriately. This may require you to use other Control
Manager routines, such as Get Cont r ol Val ue and Set Cont r ol Val ue, to determine
and change control settings.

These and other routines for responding to events involving controls are described in the
next several sections.

Note

The Dialog Manager procedure Mbdal Di al og automatically calls

Fi ndW ndow Fi ndCont r ol , and TrackCont r ol for mouse-down
events in the controls of alert and modal dialog boxes. You can use the
Dialog Manager function Di al ogSel ect, which automatically calls

Fi ndW ndow Fi ndControl, and Tr ackCont r ol , to help you handle
mouse events in your movable modal and modeless dialog boxes. O

Determining a Mouse-Down Event in a Control

When your application receives a mouse-down event, use the Window Manager
function Fi ndW ndowto determine the window in which the event occurred. If the
cursor was in the content region of your application’s active window when the user
pressed the mouse button, use the Fi ndCont r ol function to determine whether the
mouse-down event occurred in an active control and, if so, which control.

When the mouse-down event occurs in a visible, active control, Fi ndCont r ol returns a
handle to that control as well as a part code identifying the control’s part. (Note that
when the mouse-down event occurs in an invisible or inactive control, or when the
cursor is not in a control, Fi ndCont r ol sets the control handle to NI L and returns 0 as
its part code.)

A simple control such as a button or checkbox might have just one “part”; a more
complex control can have as many parts as are needed to define how the control
operates. A scroll bar has five parts: two scroll arrows, the scroll box, and the two gray
areas on either side of the scroll box. Figure 5-4 on page 5-7 shows the five parts of a
scroll bar.

A part code is an integer from 1 through 253 that identifies a part of a control. To allow
different parts of a multipart control to respond to mouse events in different ways, many
of the Control Manager routines accept a part code as a parameter or return one as

a result. Part codes are assigned to a control by its control definition function. The
standard control definition functions define the following part codes. Also listed are the
constants you can use to represent them.

Using the Control Manager 5-31

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Constant Part code Control part

i nBut t on 10 Button

i nCheckBox 11 Entire checkbox or radio button

i nUpBut t on 20 Up scroll arrow for a vertical scroll bar, left scroll
arrow for a horizontal scroll bar

i nDownBut t on 21 Down scroll arrow for a vertical scroll bar, right
scroll arrow for a horizontal scroll bar

i nPageUp 22 Gray area above scroll box for a vertical scroll
bar, gray area to left of scroll box for a horizontal
scroll bar

i nPageDown 23 Gray area below scroll box for a vertical scroll bar,
gray area to right of scroll box for a horizontal
scroll bar

i nThunb 129 Scroll box

The pop-up control definition function does not define part codes for pop-up menus.
Instead (as explained in “Creating a Pop-Up Menu” beginning on page 5-25), your
application should store the handles for your pop-up menus when you create them.
Your application should then test the handles you store against the handles returned

by Fi ndCont r ol before responding to users’ choices in pop-up menus; this is described
in more detail later in the next section.

Listing 5-9 illustrates an application-defined procedure, DoMouseDown, that an
application might call in response to a mouse-down event. The DoMbuseDown routine
first calls the Window Manager function Fi ndW ndow which returns two values: a
pointer to the window in which the mouse-down event occurred and a constant that
provides additional information about the location of that event. If Fi ndW ndowreturns
the i nCont ent constant, then the mouse-down event occurred in the content area of
one of the application’s windows.

Listing 5-9 Detecting mouse-down events in a window

PROCEDURE DoMbuseDown (event: Event Record);
VAR
part: I nt eger;
t hi sW ndow. W ndowPtr ;
BEA N {handl e nmouse-down event}
part := Fi ndW ndow event. where, thi sW ndow);
CASE part OF
i nMenuBar :
i {nouse-down in menu bar, respond appropriately here}
i nCont ent :
| F thi sWndow <> Front Wndow THEN
{mouse-down in an inactive wi ndow, use Sel ect Wndow }
{ to make it active here}

5-32 Using the Control Manager

CHAPTER 5

Control Manager

ELSE {nouse-down in the active w ndow}
DoCont ent C i ck(t hi sW ndow, event);
{handl e other cases here}
END; {of CASE statenent}
END; { DoMouseDown}

In Listing 5-9, when Fi ndW ndow reports a mouse-down event in the content region of a
window containing controls, DoMbuseDown calls another application-defined procedure,
DoCont ent O i ck, and passes it the window pointer returned by the Fi ndW ndow
function as well as the event record.

Listing 5-10 shows an application-defined procedure, DoCont ent O i ck, that uses this
information to determine whether the mouse-down event occurred in a control.

Listing 5-10 Detecting mouse-down events in a pop-up menu and a button

PROCEDURE DoContentd ick (wi ndow. WndowPtr; event: EventRecord);
VAR

nouse: Poi nt ;
control : Cont r ol Handl e;
part: I nt eger;
wi ndowType: | nteger;
BEG N
wi ndowType : = MyGet W ndowType(w ndow) ; {get wi ndow type}

CASE wi ndowType OF

kPl aySoundsModel essDi al ogBox:

BEG N
Set Port (wi ndow) ;
nouse : = event.where; {get the nouse | ocation}
A obal ToLocal (nouse) ; {convert to | ocal coordinates}
part := FindControl (mouse, w ndow, control);

| F control = gSpeedPopUpControl Handl e THEN
{ouse-down i n Modem Speed pop-up menu}
DoPopUpMenu(mouse, control);
CASE part OF
i nButton: {ouse-down in Play button}
DoPl ayBut t on(nobuse, control);
i nCheckBox: {nouse-down in checkbox}
DoDr unRol | CheckBox(mouse, control);
OTHERW SE

END;, {of CASE for control part codes}

Using the Control Manager 5-33

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

END;, {of kPl aySoundsModel essDi al ogBox case}
{handl e other w ndow types, such as docunment w ndows, here}
END; {of CASE for w ndow types}
END; {of DoContentd ick}

Figure 5-15 shows the Play Sounds window; DoCont ent O i ck uses the Fi ndCont r ol
function to determine whether the mouse-down event occurred in the pop-up menu, the
Play button, or the Add Drum Roll checkbox.

First, however, DoCont ent C i ck uses the event record to determine the cursor
location, which is specified in global coordinates. Because the Fi ndCont r ol function
expects the cursor location in coordinates local to the window, DoCont ent O i ck uses
the QuickDraw procedure G obal ToLocal to convert the point stored in the wher e
field of the event record to coordinates local to the current window. The

d obal ToLocal procedure takes one parameter, a point in global coordinates—where
the upper-left corner of the entire bit image is coordinate (0,0). See Inside Macintosh:
Imaging for more information about the G obal ToLocal procedure.

Figure 5-15 Three controls in a window

5-34

E[I=——— Play Sounds

Speed:| 300 bps -

[JAdd Drum Roll

When it calls Fi ndCont r ol , DoCont ent O i ck passes the cursor location in the
window’s local coordinates as well as the pointer returned earlier by the Fi ndW ndow
function (shown in Listing 5-9 on page 5-32).

If the cursor is in a control, Fi ndCont r ol returns a handle to the control and a part code
indicating the control part. Because the pop-up control definition function does

not define control parts, DoCont ent O i ck tests the control handle returned by

Fi ndCont r ol against a pop-up menu’s control handle that the application stores

in its own global variable. If these are handles to the same control, DoCont ent O i ck
calls another application-defined routine, DoPopUpMenu.

After checking whether Fi ndCont r ol returns a control handle to a pop-up menu,
DoCont ent O i ck uses the part code that Fi ndCont r ol returns to determine whether
the cursor is in one of the other two controls. If Fi ndCont r ol returns the i nBut t on
constant, DoCont ent O i ck calls another application-defined routine, DoPl ayBut t on.
If Fi ndCont r ol returns the i nCheckBox constant, DoCont ent O i ck calls another
application-defined routine, DoDr unRol | CheckBox.

Using the Control Manager

CHAPTER 5

Control Manager

As described in the next section, all three of these application-defined routines—
DoPopUpMenu, DoPl ayBut t on, and DoDr unRol | Check Box—in turn use the
TrackCont rol function to follow and respond to the user’s mouse movements in
the control reported by Fi ndCont r ol .

Tracking the Cursor in a Control

After using the Fi ndCont r ol function to determine that the user pressed the mouse
button when the cursor was in a control, use the Tr ackCont r ol function first to follow
and respond to the user’s mouse movements, and then to determine which control part
contains the cursor when the user releases the mouse button.

Generally, you use Tr ackCont r ol after using the Fi ndCont r ol function to determine
that the mouse-down event occurred in a control. You pass to Tr ackCont r ol the
control handle returned by the Fi ndCont r ol function, and you also pass to
TrackControl the same point you passed to Fi ndCont r ol (that is, a point in
coordinates local to the window).

The Tr ackCont r ol function follows the movements of the cursor in a control and
provides visual feedback until the user releases the mouse button. The visual feedback
given by Tr ackCont r ol depends on the control part in which the mouse-down event
occurred. When highlighting the control is appropriate—in a button, for example—
TrackCont rol highlights the control part (and removes the highlighting when the user
releases the mouse button). When the user presses the mouse button while the cursor is
in an indicator (such as the scroll box of a scroll bar) and then moves the mouse,
TrackCont r ol responds by dragging a dotted outline of the indicator. Figure 5-8 on
page 5-12 illustrates how Tr ackCont r ol provides visual feedback.

You can also use an action procedure to undertake additional actions as long as the user
holds down the mouse button. For example, if the user is working in a text document
and holds down the mouse button while the cursor is in a scroll arrow, your action
procedure should continuously scroll through the document one line (or some
equivalent measure) at a time until the user releases the button or reaches the end of the
document. You pass a pointer to this procedure to Tr ackCont r ol . (“Scrolling in
Response to Events in Scroll Arrows and Gray Areas” beginning on page 5-57 describes
how to do this.)

The Tr ackCont r ol function returns the control’s part code if the user releases

the mouse button while the cursor is inside the control part, or 0 if the user releases the
mouse button while the cursor is outside the control part. Unless Tr ackCont r ol
returns 0 as its function result, your application should then respond as appropriate to
a mouse-up event in that control part. When Tr ackCont r ol returns 0 as its function
result, your application should do nothing.

Listing 5-11 on the next page shows an application-defined procedure, DoPl ayBut t on,
that uses TrackCont r ol to track mouse-down events in the Play button shown in
Figure 5-15. The DoPI ayBut t on routine passes, to Tr ackCont r ol , the control handle
returned by Fi ndCont r ol . The DoPl ayBut t on routine also passes to Tr ackCont r ol
the same cursor location it passed to Fi ndCont r ol (thatis, a point in local coordinates).
Because buttons don’t need an action procedure, NI L is passed as the final parameter

to TrackControl .

Using the Control Manager 5-35

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Listing 5-11 Using the Tr ackCont r ol function with a button

PROCEDURE DoPl ayButt on (nouse: Point; control: Control Handl e);

BEG N
| F TrackControl (control, nmouse, NIL) <> 0 THEN {user clicks Play}

END;

5-36

| F gPlayDrunRoll = TRUE THEN {user clicked Play Drum Roll checkbox }
DoPl ayDr unRol | ; { so play a drumroll first}
SysBeep(30); {al ways play systemal ert sound when user clicks Play}

When the user presses the mouse button when the cursor is in the Play button,
TrackCont r ol inverts the Play button. If the user releases the mouse button after
moving the cursor outside the control part, Tr ackCont r ol stops inverting the
button and returns the value 0, in which case DoPl ayBut t on does nothing.

If, however, the user releases the mouse button with the cursor in the Play button,
TrackCont rol stops inverting the Play button and returns the value for the i nBut t on
constant. Then DoPl ayBut t on calls the Sound Manager procedure SysBeep to play the
system alert sound (which is described in the chapter “Dialog Manager” in this book).
Before releasing the mouse button, the user can move the cursor away from the control
part and then return to it, and Tr ackCont r ol will still return the part code when the
user releases the mouse button.

For buttons, checkboxes, radio buttons, and the scroll box in a scroll bar, your application
typically passes NI L to Tr ackCont r ol to use no action procedure. However,
TrackCont rol still responds visually to mouse events in active controls. That is, when
the user presses the mouse button with the cursor over a control whose action procedure
issetto NI L, TrackCont r ol changes the control’s display appropriately until the user
releases the mouse button.

For scroll arrows and for the gray areas of a scroll box, you need to define your own
action procedures. You pass a pointer to the action procedure as one of the parameters to
TrackCont r ol , as described in “Scrolling in Response to Events in Scroll Arrows and
Gray Areas” beginning on page 5-57.

For a pop-up menu, you must pass Poi nt er (- 1) to TrackCont r ol for its action
procedure; this causes Tr ackCont r ol to use the action procedure defined in the pop-up
control definition function.

Listing 5-10 on page 5-33 calls an application-defined routine, DoPopUpMenu, when

Fi ndCont r ol reports a mouse-down event in a pop-up menu. Listing 5-12 shows how
DoPopUpMenu uses Tr ackCont r ol to handle user interaction in the pop-up menu. By
passing Poi nt er (- 1) to TrackCont r ol , DoPopUpMenu uses the action procedure
defined in the pop-up control definition function.

Using the Control Manager

CHAPTER 5

Control Manager

Listing 5-12 Using Tr ackCont r ol with a pop-up menu

PROCEDURE DoPopUpMenu (nouse: Point; control: Control Handl e) ;
VAR

menul t em I nt eger;
part: I nt eger;
BEG N
part := TrackControl (control, mouse, Pointer(-1));
menultem : = Get Control Val ue(control);
| F menultem <> gCurrentltem THEN
BEG N

gCurrentlitem : = nenultem
Set MyConmruni cat i onSpeed; {use speed stored in gCurrentltent
END;
END; {of DoPopUpMenu}

The action procedure for pop-up menus highlights the pop-up menu title, displays the
pop-up menu, and handles all user interaction while the user drags up and down the
menu. When the user releases the mouse button, the action procedure closes the pop-up
box, draws the user’s choice in the pop-up box (or restores the previous item if the user
doesn’t make a new choice), and removes the highlighting of the pop-up title. The
pop-up control definition function then changes the value of the cont r | Val ue field of
the control record to the number of the menu item chosen by the user.

Because buttons do not retain settings, responding to them is very straightforward: when
the user clicks a button, your application should immediately undertake the action
described by the button’s title. For pop-up menus and other types of controls, you must
determine their current settings before responding to the user’s action. For example,
before responding, you need to know which item the user has chosen in a pop-up menu,
whether a checkbox is checked, or how far the user has moved the scroll box. The action
you take may, in turn, involve changing other control settings. Determining and
changing control settings are described in the next section.

After learning how to determine and change control settings, see “Scrolling Through a
Document” beginning on page 5-43 for a detailed discussion of how to respond to mouse
events in scroll bars.

Determining and Changing Control Settings

Using either the control resource or the parameters to the NewCont r ol function, your
application specifies a control’s various default values—such as its current setting and
minimum and maximum settings—when it creates the control.

When the user clicks a control, however, your application often needs to determine

the current setting and other possible values of that control. When the user clicks a
checkbox, for example, your application must determine whether the box is checked
before your application can decide whether to clear or draw a checkmark inside the
checkbox. When the user moves the scroll box, your application needs to determine what
part of the document to display.

Using the Control Manager 5-37

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Applications must adjust some controls in response to events other than mouse events in
the controls themselves. For example, when the user resizes a window, your application
must use the Control Manager procedures MoveCont r ol and Si zeCont r ol to move
and resize the scroll bars appropriately.

Your application can use the Get Cont r ol Val ue function to determine the current
setting of a control, and it can use the Get Cont r ol Maxi mumfunction to determine a
control’s maximum setting.

You can use the Set Cont r ol Val ue procedure to change the control’s setting and
redraw the control accordingly. You can use the Set Cont r ol Maxi mumprocedure to
change a control’s maximum setting and to redraw the indicator or scroll box to reflect
the new setting.

In response to user action involving a control, your application often needs to change the
setting and possibly redraw the control. When the user clicks a checkbox, for example,
your application must determine whether the checkbox is currently selected or not, and
then switch its setting. When you use Set Cont r ol Val ue to switch a checkbox setting,
the Control Manager either draws or removes the X inside the checkbox, as appropriate.
When the user clicks a radio button, your application must determine whether the radio
button is already on and, if not, turn the previously selected radio button off and turn
the newly selected radio button on.

Figure 5-15 on page 5-34 shows a checkbox in the Play Sounds window. When the user
clicks the checkbox to turn it on, the application adds a drum roll to the sound it plays
whenever the user clicks the Play button.

Listing 5-13 shows the application-defined routine DoDr unRol | CheckBox, which
responds to a click in a checkbox. This routine uses the Get Cont r ol Val ue function to
determine the last value of the checkbox and then uses the Set Cont r ol Val ue
procedure to change it. The Get Cont r ol Val ue function returns a control’s current
setting, which is stored in the cont r | Val ue field of the control record. The

Set Cont r ol Val ue procedure sets the cont r | Val ue field to the specified value and
redraws the control to reflect the new setting. (For checkboxes and radio buttons, the
value 1 fills the control with the appropriate mark, and the value 0 removes the mark.
For scroll bars, Set Cont r ol Val ue redraws the scroll box at the appropriate position
along the scroll bar. For a pop-up menu, Set Cont r ol Val ue displays in its pop-up box
the name of the menu item corresponding to the specified value.)

Listing 5-13 Responding to a click in a checkbox

PROCEDURE DoDr unRol | CheckBox (mouse: Point; control: Control Handl e);
VAR
checkbox: I nt eger;
BEG N
| F TrackControl (control, npbuse, NIL) <> 0 THEN {user clicks checkbox}
BEG N
checkbox :
checkbox :

CGet Control Val ue(control); {get |last value of checkbox}
1 - checkbox; {toggl e val ue of checkbox}

5-38 Using the Control Manager

CHAPTER 5

Control Manager

Set Cont rol Val ue(control, checkbox); {set checkbox to new val ue}
| F checkbox = 1 THEN {the checkbox is checked}
gPl ayDrunRol | := TRUE {play a drumroll next tinme user clicks Play}
ELSE
gPl ayDrunRol | : = FALSE;
END;

END;

The DoDr unRol | CheckBox routine uses Tr ackCont r ol to determine which control
the user selects. When Tr ackCont r ol reports that the user clicks the checkbox,

DoDr unRol | CheckBox uses Get Cont r ol Val ue to determine whether the user last
selected the checkbox (that is, whether the control has a current setting of 1) or
deselected it (in which case, the control has a current setting of 0). By subtracting the
control’s current setting from 1, DoDr unRol | CheckBox toggles to a new setting

and then uses Set Cont r ol Val ue to assign this new setting to the checkbox. The

Set Cont r ol Val ue procedure changes the current setting of the checkbox and redraws
it appropriately, by either drawing an X in the box if the new setting of the control is 1 or
removing the X if the new setting of the control is 0.

Listing 5-4 on page 5-23 shows the control resources that specify a window’s scroll bars,
and Listing 5-5 on page 5-24 shows an application’s DoNew routine for creating a
document window with these scroll bars. This routine uses the Get NewCont r ol
function to create the scroll bars and then calls an application-defined routine,

MyAdj ust Scrol | Bar s. Listing 5-14 shows MyAdj ust Scr ol | Bar s, which in turn
calls other application-defined routines that determine the proper sizes, locations,

and maximum settings of the scroll bars.

Listing 5-14 Adjusting scroll bar settings and locations

PROCEDURE MyAdj ust Scrol | Bars (wi ndow. W ndowPtr ;
resi zeScrol | Bars: Bool ean);

VAR

nyDat a: MyDocRecHnd;
BEG N

nyData : = MyDocRecHnd(Get WRef Con(wi ndow)) ;

HLock(Handl e(nyDat a)) ;

W TH nyDat a®” DO

BEG N
Hi deControl (vScrol | Bar); {hide the vertical scroll bar}
Hi deControl (hScrol | Bar); {hide the horizontal scroll bar}

| F resizeScroll Bars THEN {nmove and size if needed}
MyAdj ust Scrol | Si zes(wi ndow) ;
MyAdj ust Scrol | Val ues(wi ndow, NOT resizeScroll Bars);

ShowCont rol (vScrol | Bar) ; {show t he vertical scroll bar}
ShowCont r ol (hScrol | Bar) ; {show t he horizontal scroll bar}
END;

HUnLock(Handl e(nyDat a)) ;
END; {of MyAdj ust Scrol | bar s}

Using the Control Manager 5-39

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

When calling the DoOpen routine to open an existing document in a window,
SurfWriter also uses this MyAdj ust Scr ol | Bar s procedure to size and adjust the
scroll bars. When the user changes the window’s size, the SurfWriter application
uses MyAdj ust Scr ol | Bar s again.

The MyAdj ust Scr ol | Bar s routine begins by getting a handle to the window’s
document record, which stores handles to the scroll bars as well as other relevant data
about the document. (See the chapter “Window Manager” in this book for information
about creating your application’s own document record for a window.)

Before making any adjustments to the scroll bars, MyAdj ust Scr ol | Bar s passes the
handles to these controls to the Control Manager procedure Hi deCont r ol , which
makes the controls invisible. The MyAdj ust Scr ol | Bar s routine then calls another
application-defined procedure, MyAdj ust Scr ol | Si zes (shown in Listing 5-24 on
page 5-67), to move and resize the scroll bars appropriately. After calling yet another
application-defined procedure, MyAdj ust Scr ol | Val ues, to set appropriate current
and maximum settings for the scroll bars, MyAdj ust Scr ol | Bar s uses the Control
Manager procedure ShowCont r ol to display the scroll bars in their new locations.

Listing 5-15 shows how the MyAdj ust Scr ol | Val ues procedure calls another
application-defined routine, My Adj ust HV, which uses Control Manager routines to
assign appropriate settings to the scroll bars.

Listing 5-15 Assigning settings to scroll bars

5-40

PROCEDURE MyAdj ust Scrol | Val ues (w ndow. W ndowPtr);
VAR
nmyDat a: MyDocRecHnd;
BEG N
myDat a : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
HLock(Handl e(nyDat a)) ;
W TH nyDat a®" DO
BEG N
MyAdj ust HV(TRUE, vScrol | Bar, editRec);
MyAdj ust HV(FALSE, hScrol | Bar, editRec);
END;
HUnLock(Handl e(nyDat a)) ;
END; {of MyAdj ust Scroll Val ues}

To prevent the user from scrolling past the edge of the document and seeing a blank
window, you should limit the scroll bars’ maximum settings, as illustrated in Figure 5-6
on page 5-10. If the window is larger than the document (which can easily happen with
small documents on large monitors), your application should make the maximum scroll
bar settings identical to their minimum settings. In this case, the Control Manager then
makes the scroll bars inactive, which is appropriate when all the information fits in

the window.

Using the Control Manager

CHAPTER 5

Control Manager

Listing 5-16 shows the application-defined MyAdj ust HV procedure, used for adjusting
the current and maximum settings for a scroll bar. When passed TRUE in the i sVer t
parameter, MyAdj ust HV calculates and adjusts the maximum and current settings for
the vertical scroll bar; when passed FALSE, it calculates and adjusts those settings for the
horizontal scroll bar.

In this example, the document consists of monostyled text stored in a TextEdit edit
record. The vi ewRect field of a TextEdit edit record specifies the rectangle where the
text is visible; because vi ewRect already excludes the scroll bar regions, MyAdj ust HV
does not need to subtract the scroll bar regions from the window height or width when
calculating the maximum settings for these scroll bars. (For more information about
TextEdit in general and the edit record in particular, see Inside Macintosh: Text.)

Listing 5-16 Adjusting the maximum and current settings for a scroll bar

PROCEDURE MyAdj ust HV (isVert: Bool ean; control: Control Handl e;
edi t Rec: TEHandl e);

VAR
ol dval ue, ol dMax, wi dth: I nt eger;
mex, |ines, value: I nt eger;
BEG N

{cal cul ate new nmaxi mum and current settings for the vertical or }
{ horizontal scroll bar}
ol dvax : = GCet Contr ol Maxi mun{control);
ol dval ue : = Get Control Val ue(control);
My Get DocW dt h(wi dt h);
IF isVert THEN {adjust max setting for the vertical scroll bar}
BEG N
lines := editRec”™”. nLi nes;
{since nLines isn't right if the last character is a carriage }
{ return, check for that case}
IF Ptr(ORD(editRec™. hText”) + editRec™.telLength - 1)~ = kCRChar THEN

lines :=lines + 1;
max := lines - ((editRec”". viewRect.bottom- editRec . viewRect.top)
DIV edi t Rec*. |l ineHei ght);
END
ELSE {adj ust max setting for the horizontal scroll bar}

max = width - (editRec”. viewRect.right - editRec”. viewRect.left);
IF max < 0 THEN
max := O; {check for negative settings}
Set Cont r ol Maxi mun{control, max); {set the max val ue of the control}
IF isVert THEN {adjust current setting for vertical scroll bar}
val ue : = (editRec™.viewRect.top - editRec”"”. destRect.top)
DIV edi t Rec**. | i neHei ght

Using the Control Manager 5-41

Jabeuel [0nu0D -

ELSE
val ue
| F val ue
val ue
ELSE | F
val ue

Set Contr

CHAPTER 5

Control Manager

{adj ust current setting for the horizontal scroll bar}
= editRec™.viewRect.l eft - editRec™".destRect.left;
< 0 THEN
=0
val ue > nmax THEN
= max; {don't allow current setting to be greater than the }
{ maxi mum setting}
ol Val ue(control, value);

END; {of MyAdj ust HV}

5-42

The MyAdj ust HV routine first uses the Get Cont r ol Maxi mumand Get Cont r ol Val ue
functions to determine the maximum and current settings for the scroll bar
being adjusted.

Then MyAdj ust HV calculates a new maximum setting for the case of a vertical scroll bar.
Because the window displays a text-only document, MyAdj ust HV uses the nLi nes field
of the edit record to determine the total number of lines in—and hence, the length of—
the document. Then MyAdj ust HV subtracts the calculated height of the window from
the length of the document, and makes this value the maximum setting for the vertical
scroll bar.

To calculate the total height in pixels of the window, MyAdj ust HV begins by subtracting
the top coordinate of the view rectangle from its bottom coordinate. (The upper-left
corner of a window is normally at point [0,0]; therefore the vertical coordinate of a

point at the bottom of a rectangle has a larger value than a point at the top of the
rectangle.) Then MyAdj ust HV divides the pixel height of the window by the value of
the edit record’s | i neHei ght field, which for monostyled text specifies the document’s
line height in pixels. By dividing the window height by the line height of the text,

MyAdj ust HV determines the window’s height in terms of lines of text.

The MyAdj ust HV routine uses another application-defined routine, MyGet DocW dt h,
to determine the width of the document. To calculate the width of the window,

My Adj ust HV subtracts the left coordinate of the view rectangle from its right coordinate.
By subtracting the window width from the document width, MyAdj ust HV derives the
maximum setting for the horizontal scroll bar.

For both vertical and horizontal scroll bars, M/Adj ust HV assigns a maximum setting of
0 whenever the window is larger than the document—for instance, when a window is
created for a new document that contains no data yet. In this case, MyAdj ust HV assigns
the same value, 0, to both the maximum and current settings for the scroll bar. The
standard control definition function for scroll bars automatically makes a scroll bar
inactive when its minimum and maximum settings are identical. This is entirely
appropriate, because whenever the user has nowhere to scroll, the scroll bar should be
inactive. When you make the maximum setting exceed the minimum, the control
definition function makes the scroll bar active again.

The MyAdj ust HV routine then uses the Control Manager procedure

Set Cont r ol Maxi mumto assign the newly calculated maximum settings to either
scroll bar. The Set Cont r ol Maxi mumprocedure revises the control to reflect the new
maximum setting; for example, if the user deletes a large portion of the document,

Using the Control Manager

CHAPTER 5

Control Manager

thereby reducing the maximum setting, Set Cont r ol Maxi mummoves the scroll box
to indicate the new position relative to the smaller document.

When the user adds information to or removes information from a document or adjusts
its window size, your application may need to adjust the current setting of the scroll bar
as well. The MyAdj ust HV routine calculates a new current setting for the control and
then uses Set Cont r ol Val ue to assign that setting to the control as well as to reposition
the scroll box accordingly.

The destination rectangle, specified in the dest Rect field of the edit record, is the
rectangle in which the text is drawn, whereas the view rectangle is the rectangle in which
the text is actually visible. By subtracting the top coordinate of the destination rectangle
from the top coordinate of the view rectangle, and dividing the result by the line height,
MyAdj ust HV derives the number of the line currently displayed at the top of the
window. This is the line number My Adj ust HV uses for the current setting of the vertical
scroll bar.

To derive the current setting of the horizontal scroll bar in terms of pixels, MyAdj ust HV
subtracts the left coordinate of the destination rectangle from the left coordinate of the
view rectangle.

Scrolling Through a Document

Earlier sections of this chapter explain how to create scroll bars, determine when a
mouse-down event occurs in a scroll bar, track user actions in a scroll bar, and determine
and change scroll bar settings. This section discusses how your application actually
scrolls through documents in response to users” mouse activity in the scroll bars. For
example, your application scrolls toward the bottom of the document under the
following conditions:

s When the user drags the scroll box to the bottom of the vertical scroll bar, your
application should display the end of the user’s document.

= When the user clicks the gray area below the scroll box, your application should move
the document up to display the next window of information toward the bottom of the
document, and it should use Set Cont r ol Val ue to move the scroll box.

= When the user clicks the down scroll arrow, your application should move the
document up by one line (or by some similar measure) and bring more of the bottom
of the document into view, and it should use Set Cont r ol Val ue to move the
scroll box.

As a first step, your application must determine the distance by which to scroll. When
the user drags a scroll box to a new location on the scroll bar, you scroll a corresponding
distance to a new location in the document.

When the user clicks a scroll arrow, your application determines an appropriate amount
to scroll. In general, a word processor scrolls vertically by one line of text and horizon-
tally by the average character width, and a database or spreadsheet scrolls by one field.
Graphics applications should scroll to display an entire object when possible. (Typically,
applications convert these distances to pixels when using Control Manager, QuickDraw,
and TextEdit routines.)

Using the Control Manager 5-43

Jabeuel [0nu0D -

5-44

CHAPTER 5

Control Manager

When the user clicks a gray area of a scroll bar, your application should scroll by a
distance of just less than the height or width of the window. To determine this height
and width, you can use the cont r | Oaner field of the scroll bar’s control record. This
field contains a pointer to the window record. When you scroll by a distance of one
window, it is best to retain part of the previous window. This retained portion helps the
user place the material in context. For example, if the user scrolls down by a distance of
one window in a text document, the line at the top of the window should be the one that
previously appeared at the bottom of the window.

The scrolling direction is determined by whether the scrolling distance is expressed as a
positive or negative number. When the user scrolls down or to the right, the scrolling
distance is a negative number; when the user scrolls up or to the left, the scrolling

distance is a positive number. For example, when the user scrolls from the beginning of a
document to a line located 200 pixels down, the scrolling distance is —200 pixels on the
vertical scroll bar. When the user scrolls from there back to the start of the document, the
scrolling distance is 200 pixels.

Determining the scrolling distance is only the first step. In brief, your application should
take the following steps to scroll through a document in response to the user’s
manipulation of a scroll bar.

1.

8.

Use the Fi ndCont r ol , Get Cont r ol Val ue, and Tr ackCont r ol functions to help
calculate the scrolling distance.

. If you are scrolling for any reason other than the user dragging the scroll box, use the

Set Cont r ol Val ue procedure to move the scroll box a corresponding amount.

. Use a routine—such as the QuickDraw procedure Scr ol | Rect or the TextEdit

procedure TEPi nScr ol | —to move the bits displayed in the window by the
calculated scrolling distance. Then either use a call that generates an update event
or else directly call your application’s DoUpdat e routine, which should perform
the rest of these steps.

. Use the Updat eCont r ol s procedure to update the scroll bars and then call the

Window Manager procedure Dr awG ow con to redraw the size box.

. Use the QuickDraw procedure Set Ori gi n to change the window origin by an

amount equal to the scroll bar settings so that the upper-left corner of the document
lies at (0,0) in the window’s local coordinate system. (You perform this step so that
your application’s document-drawing routines can draw in the correct area of the
window.)

. Call your application’s routines for redrawing the document inside the window.

. Use the Set Ori gi n procedure to reset the window origin to (0,0) so that future

Window Manager and Control Manager routines draw in the correct area of the
window.

Return to your event loop.

These steps are explained in greater detail in the rest of this section.

Using the Control Manager

CHAPTER 5

Control Manager

Note

It is not necessary to use Set Or i gi n as described in the rest of this
chapter. This procedure merely helps you to offset the window origin
by the scroll bars’ current settings when you update the window, so
that you can locate objects in a document using a coordinate system
where the upper-left corner of the document is always at (0,0). As an
alternative to this approach, your application can leave the upper-left
corner of the window (called the window origin) located at (0,0) and
instead offset the items in your document by an amount equal to the
scroll bars’ settings. The QuickDraw procedures Of f set Rect,

O f set Rgn, SubPt , and AddPt , which are described in Inside
Macintosh: Imaging, are useful if you pursue this alternate approach. O

When the user saves a document, your application should store the data in your own
application-defined data structures. (For example, the sample code in this chapter
stores a handle to a TextEdit edit record in a document record. The edit record contains
information about the text, such as it length and its own local coordinate system, and
a handle to the text itself.) You typically store information about the objects your
application displays onscreen by using coordinates local to the document, where the
upper-left corner of the document is located at (0,0).

The left side of Figure 5-16 on the next page illustrates a case in which the user has just
opened an existing document, and the SurfWriter sample application displays the top of
the document. In this example, the document consists of 35 lines of monostyled text, and
the line height throughout is 10 pixels. Therefore, the document is 350 pixels long. When
the user first opens the document, the window origin is identical to the upper-left point
of the document’s space: both are at (0,0).

In this example, the window displays 15 lines of text, which amount to 150 pixels.
Hence, the maximum setting for the scroll bar is 200 because the vertical scroll bar’s
maximum setting is the length of the document minus the height of its window.

Imagine that the user drags the scroll box halfway down the vertical scroll bar. Because
the user wishes to scroll down, the SurfWriter application must move the text of the
document up so that more of the bottom of the document shows. Moving a document up
in response to a user request to scroll down requires a scrolling distance with a negative
value. (Likewise, moving a document down in response to a user request to scroll up
requires a scrolling distance with a positive value.)

Using Fi ndCont r ol , TrackCont r ol , and CGet Cont r ol Val ue, the SurfWriter
application determines that it must move the document up by 100 pixels—that is,
by a scrolling distance of =100 pixels. (Using Fi ndCont r ol , TrackCont r ol , and
Cet Cont r ol Val ue to determine the scrolling distance is explained in detail in
“Scrolling in Response to Events in the Scroll Box” beginning on page 5-53.)

Using the Control Manager 5-45

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Figure 5-16 Moving a document relative to its window

When the user first opens a document After the application moves the document
vertically by —100 pixels
(-100,0)
= Title I = Title 81
0.0)- = (0.0) s
Update
region
= =
(150,0)~ (g7 BE (150,0) g 7 BE
(250,0)
(350,0)—

5-46

The SurfWriter application then uses the QuickDraw procedure Scr ol | Rect to shift
the bits displayed in the window by a distance of —100 pixels. The Scr ol | Rect
procedure moves the document upward by 100 pixels (that is, by 10 lines); 5 lines from
the bottom of the previous window display now appear at the top of the window,

and the SurfWriter application adds the rest of the window to an update region for
later updating.

The Scr ol | Rect procedure doesn’t change the coordinate system of the window;
instead it moves the bits in the window to new coordinates that are still in the window’s
local coordinate system. For purposes of updating the window, you can think of this

as changing the coordinates of the entire document, as illustrated in the right side of
Figure 5-16.

The Scr ol | Rect procedure takes four parameters: a rectangle to scroll, a horizontal
distance to scroll, a vertical distance to scroll, and a region handle. Typically, when
specifying the rectangle to scroll, your application passes a value representing the
content region minus the scroll bar regions, as shown in Listing 5-17.

Using the Control Manager

CHAPTER 5

Control Manager

Listing 5-17 Using Scr ol | Rect to scroll the bits displayed in the window

PROCEDURE DoGr aphi csScrol |l (wi ndow. W ndowPtr ;
hDi st ance, vDi stance: |nteger);
VAR
myScrol | Rect: Rect;
updat eRegi on: RgnHandl e;
BEG N
{initially, use the window s portRect as the rectangle to scroll}
nmyScrol | Rect : = w ndow*. port Rect;
{subtract vertical and horizontal scroll bars fromrectangl e}

myScrol | Rect.right := nyScroll Rect.right - 15;
nyScrol | Rect. bottom : = nyScrol |l Rect. bottom - 15;
updat eRegi on : = NewRgn; {always initialize the update region}

Scrol I Rect (nmyScrol | Rect, hDi stance, vDi stance, updateRegion);
I nval Rgn(updat eRegi on) ;
Di sposeRgn(updat eRegi on) ;

END; {of DoGraphicsScroll}

IMPORTANT

You must first pass a horizontal distance as a parameter to Scr ol | Rect
and then pass a vertical distance. Notice that when you specify a point
in the QuickDraw coordinate system, the opposite is true: you name the
vertical coordinate first and the horizontal coordinate second. a

Although each scroll bar is 16 pixels along its shorter dimension, the

DoG aphi csScrol | procedure shown in Listing 5-17 subtracts only 15 pixels
because the edge of the scroll bar overlaps the edge of the window frame, leaving
only 15 pixels of the scroll bar in the content region of the window.

The bits that Scr ol | Rect shifts outside of the rectangle specified by myScr ol | Rect
are not drawn on the screen, and they are not saved—it is your application’s
responsibility to keep track of this data.

The Scr ol | Rect procedure shifts the bits a distance of hDi st ance pixels horizontally
and vDi st ance pixels vertically; when DoG aphi csScr ol | passes positive values in
these parameters, Scr ol | Rect shifts the bits in the myScr ol | Rect parameter to the
right and down, respectively. This is appropriate when the user intends to scroll left or
up, because when the SurfWriter application finishes updating the window, the user sees
more of the left and top of the document, respectively. (Remember: to scroll up or left,
move the document down or right, both of which are in the positive direction.)

When DoGr aphi csScr ol | passes negative values in these parameters, Scr ol | Rect
shifts the bits in the myScr ol | Rect parameter to the left or up. This is appropriate
when the user intends to scroll right or down, because when the SurfWriter application
finishes updating the window, the user sees more of the right and the bottom of the
document. (Remember: to scroll down or right, move the document up or left, both of
which are in the negative direction.)

Using the Control Manager 5-47

Jabeuel [0nu0D -

5-48

CHAPTER 5

Control Manager

In Figure 5-16, the SurfWriter application determines a vertical scrolling distance of —100,
which it passes in the vDi st ance parameter as shown here:

Scrol | Rect (myScrol | Rect, 0, —-100, updat eRegi on);

If, however, the user were to move the scroll box back to the beginning of the document
at this point, the SurfWriter application would determine that it has a distance of

100 pixels to scroll up, and it would therefore pass a positive value of 100 in the

vDi st ance parameter.

After using Scr ol | Rect to move the bits that already exist in the window, the
SurfWriter application should draw the bits in the update region of the window by using
its standard window-updating code.

As previously explained, Scr ol | Rect in effect changes the coordinates of the document
relative to the local coordinates of the window. In terms of the window’s local coordinate
system, the upper-left corner of the document is now at (=100, 0), as shown on the right
side of Figure 5-16. To facilitate updating the window, the SurfWriter application uses
the QuickDraw procedure Set Or i gi n to change the local coordinate system of the
window so that the SurfWriter application can treat the upper-left corner of the
document as again lying at (0,0).

The Set Ori gi n procedure takes two parameters: the first is a new horizontal coordinate
for the window origin, and the second is a new vertical coordinate for the window origin.

IMPORTANT

Like Scr ol | Rect, Set Ori gi n requires you to pass a horizontal
coordinate and then a vertical coordinate. Notice that when you
specify a point in the QuickDraw coordinate system, the opposite
is true: you name the vertical coordinate first and the horizontal
coordinate second. a

Any time you are ready to update a window (such as after scrolling it), you can use
Get Cont r ol Val ue to determine the current setting of the horizontal scroll bar and
pass this value as the new horizontal coordinate for the window origin. Then use

Cet Cont r ol Val ue to determine the current setting of the vertical scroll bar and pass
this value as the new vertical coordinate for the window origin. Using Set Or i gi n in
this fashion shifts the window’s local coordinate system so that the upper-left corner of
the document is always at (0,0) when you redraw the document within its window.

For example, after the user manipulates the vertical scroll bar to move (either up or
down) to a location 100 pixels from the top of the document, the SurfWriter application
makes the following call:

SetOrigin(0, 100);

Although the scrolling distance was —100, which is relative, the current setting for the
scroll bar is now at 100. (Because you specify a point in the QuickDraw coordinate
system by its vertical coordinate first and then its horizontal coordinate, the order of
parameters to Set Or i gi n may be initially confusing.)

Using the Control Manager

CHAPTER 5

Control Manager

The left side of Figure 5-17 shows how the SurfWriter application uses the Set Ori gi n
procedure to move the window origin to the point (100,0) so that the upper-left corner of
the document is now at (0,0) in the window’s local coordinate system. This restores the
document’s original coordinate space and makes it easier for the application to draw in
the update region of the window.

Figure 5-17 Updating the contents of a scrolled window

After the application restores the document's After the application updates the window's
original coordinates contents
(0,0- 0,0)-
= i mE = i miE
(100,0)— =0 Title 9: (100,0) =0 Title 9:
Update
region
(250,0) =z 7 M (250,0)~ [z] i
(350,0)— (350,0)—

After restoring the document'’s original coordinates, the SurfWriter application updates
the window, as shown on right side of Figure 5-17. The application draws lines 16
through 24, which it stores in its document record as beginning at (160,0) and ending
at (250,0).

To review what has happened up to this point: the user has dragged the scroll box
one-half of the distance down the vertical scroll bar; the SurfWriter application
determines that this distance amounts to a scroll distance of —100 pixels; the SurfWriter
application passes this distance to Scr ol | Rect , which shifts the bits in the window
100 pixels upward and creates an update region for the rest of the window; the
SurfWriter application passes the vertical scroll bar’s current setting (100 pixels) in a
parameter to Set Ori gi n so that the document’s local coordinates are used when the
update region of the window is redrawn; and, finally, the SurfWriter application draws
the text in the update region of the window.

However, the window origin cannot be left at (100,0); instead, the SurfWriter application
must use Set Ori gi n to reset it to (0,0) after performing its own drawing, because the

Using the Control Manager 5-49

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Window and Control Managers always assume the window’s upper-left point is at (0,0)
when they draw in a window. Figure 5-18 shows how the application uses Set Ori gi n
to set the window origin back to (0,0) at the conclusion of its window-updating routine.
After the update, the application begins processing events in its event loop again.

Figure 5-18 Restoring the window origin to (0,0)

5-50

After the application restores the window
origin to (0,0)
(-100,0)—
=0 Title mIE
— =
(150,0)~ [z B
(250,0)—

The left side of Figure 5-19 illustrates what happens when the user scrolls all the way

to the end of the document—a distance of another 10 lines, or 100 pixels. After the
SurfWriter application calls Scr ol | Rect, the bottom 5 lines from the previous window
display appear at the top of the new window and the bottom of the window becomes

a new update region. Because the user has scrolled a total distance of 200 pixels, the
application uses Set Ori gi n to change the window origin to (200,0), as shown on the
right side of Figure 5-19.

The left side of Figure 5-20 shows the SurfWriter application drawing in the update
region of the window; the right side of the figure shows the SurfWriter application
restoring the window origin to (0,0).

Using the Control Manager

CHAPTER 5

Control Manager

Figure 5-19

Scrolling to the end of a document

After the application moves the document
vertically by another —100 pixels

After the application restores the document's

original coordinates

(-200,0)— (0,0)-
= i 0]: = i Oz
0.0)— =0 Title 9: (200,0) =0 Title 9:
Update Update
region region
(150.0)~[g 7 D5 (350,0)~ [z 7 BE
Figure 5-20 Updating a window’s contents and returning the window origin to (0,0)

After the application updates the window's

After the application restores the window

contents origin to (0,0)
(0,0) (-200,0)—
E i Oz E i Oz
(200,0) =0 Title 9: (0.0) =0 Title 9:
(350.0) a7 B (150.0)~ [Be
Using the Control Manager 5-51

Jabeuel [0nu0D -

5-52

CHAPTER 5

Control Manager

How your application determines a scrolling distance and how it then moves the bits in
the window by this distance are explained in greater detail in the next two sections,
“Scrolling in Response to Events in the Scroll Box” and “Scrolling in Response to Events
in Scroll Arrows and Gray Areas.” “Drawing a Scrolled Document Inside a Window,”
which follows these two sections, describes what your application should do in its
window-updating code to draw in a window that has been scrolled. You can find more
detailed information about the Set Ori gi n and Scr ol | Rect procedures in Inside
Macintosh: Imaging.

So far, this discussion has assumed that you are scrolling in response to the user’s
manipulation of a scroll bar. Most of the time, the user decides when and where to scroll.
However, in addition to user manipulation of scroll bars, there are four cases in which
your application must scroll through the document. Your application design must take
these cases into account.

= When your application performs an operation whose side effect is to make a new
selection or move the insertion point, you should scroll to show the new selection. For
example, when the user invokes a search operation, your application locates the
desired text. If this text appears in a part of the document that isn’t currently visible,
you should scroll to show the selection. Such scrolling might also be necessary after
the user invokes a paste operation. If the insertion point appears after the end of
whatever was pasted, scroll until the selection and the new insertion point are visible.

= When the user enters information from the keyboard at the edge of a window, you
should scroll to incorporate and display the new information. The user’s focus will be
on the new information, so it doesn’t make sense to maintain the document’s position
and record the new information out of the user’s view. In general, a word processor
scrolls one line of text, and a database or spreadsheet scrolls one field. Graphics
applications should scroll to display an entire object when possible. Otherwise,
determine how quickly your application can redraw the window contents during
scrolling and adjust the scrolling to minimize blinking and redrawing. Try to ensure
that the scrolling is sufficiently fast so as not to annoy users but not so fast as to
confuse them.

= When the user moves the cursor past the edge of the window while holding down the
mouse button to make an extended selection, you should scroll the window in the
direction of cursor movement. The rate of scrolling can be the same as if the user were
holding down the mouse button on the corresponding scroll arrow. In some cases it
makes sense to vary the scrolling speed so that it is faster as the user moves the cursor
farther away from the edge of the window.

= Sometimes the user selects something, scrolls to a new location, and then tries to
perform an operation on the selection. In this case, you should scroll so that the
selection is showing before your application performs the operation. Showing the
selection makes it clear to the user what is being changed.

When designing the document-scrolling routines for your application, also try to keep
the following user interface guidelines in mind:

= Whenever your application scrolls automatically, avoid unnecessary scrolling. Users
want to control the position of documents, so your application should move a
document only as much as necessary. Thus, if part of a selection is already showing in
a window, don’t scroll at all. One exception to this rule is when the hidden part of the

Using the Control Manager

CHAPTER 5

Control Manager

selection is more important than the visible part; then scroll to show the important
part. For example, suppose a user selects a large block of text and only the bottom is
currently visible. If the user then types a character, your application must scroll to the
location of the newly typed characters so that they are visible.

» If your application can scroll in one orientation to reveal the selection, don’t scroll in
both orientations. That is, if you can scroll vertically to show the selection, don’t also
scroll horizontally.

= When you can show context on either side of a selection, it’s useful to do so. It's
also better to position a selection somewhere near the middle of a window than
against a corner. When the selection is too large to fit in the window, it’s helpful to
display unselected information at either the beginning or the end of the selection
to provide context.

Scrolling in Response to Events in the Scroll Box

“Responding to Mouse Events in a Control” beginning on page 5-30 describes in
general how to use Fi ndCont r ol and TrackContr ol in your event-handling code.
Listing 5-18 shows how to use these routines to respond in particular to mouse events
in a scroll bar.

Listing 5-18 Responding to mouse events in a scroll bar

PROCEDURE DoContentd ick (w ndow. W ndowPtr; event: EventRecord);
VAR

nouse: Poi nt ;
control : Cont r ol Handl e;
part: I nt eger;
nmyDat a: MyDocRecHnd;
ol dSetti ng: I nt eger;
scrol | Di stance: I nt eger;
wi ndowType: I nt eger;
BEG N

wi ndowType : = MyGet W ndowType(w ndow) ;
CASE wi ndowType OF
kMyDocW ndow:.
BEG N
nyData : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
HLock(Handl e(nyDat a)) ;

nouse : = event. where;
d obal ToLocal (nouse) ; {convert to | ocal coordinates}
part := FindControl (nmouse, w ndow, control);

CASE part OF
{handl e all other parts first; handle scroll bar parts |ast}
i NnThunb: {nouse-down in scroll box}

Using the Control Manager 5-53

Jabeuel [0nu0D -

5-54

CHAPTER 5

Control Manager

BEA N {get scroll bar setting}
ol dSetting := GetControl Val ue(control);
{let user drag scroll box around}
part := TrackControl (control, mouse, NL);
{until wuser rel eases nmouse button}
IF part = inThunb THEN
BEA N {get new di stance to scroll}
scrol | Distance := ol dSetting - GetControl Val ue(control);
| F scrol | Di stance <> 0 THEN
| F control = nyData””.vScrollBar THEN
TEPi nScrol | (0, scrollDi stance *
nmyDat a*”. edi t Rec”™. | i neHei ght,
nyDat a*”. edi t Rec) ;
ELSE
TEPi nScrol | (scrol | Di stance, 0, mnyData””. editRec);
END; {of handling nobuse-up in scroll box}
END; {of handling nmouse-down in scroll box}
i nUpBut ton, inDownButton, inPageUp, in PageDown:
{nouse-down in scroll arrows or gray areas}
I F control = nyData””.vScrollBar THEN
{handl e vertical scroll}

part := TrackControl (control, mouse, @fVertical Acti onProc)
ELSE {handl e horizontal scroll}
part := TrackControl (control, nouse, @wHorzntl Acti onProc);
OTHERW SE

END; {of CASE part}
HUnLock(Handl e(nyDat a)) ;

END; {of kMyDocW ndowType}
{handl e other w ndow types here}
END; {of CASE w ndowType}
END;

When the user presses the mouse button while the cursor is in a visible, active scroll box,
Fi ndCont r ol returns as its result the part code for a scroll box. That part code and the
constant you can use to represent it are listed here:

Constant Part code Control part
i NThunb 129 Scroll box

As shown in Listing 5-18, when Fi ndCont r ol returns the value for i nThunb, your
application should immediately call Get Cont r ol Val ue to determine the current
setting of the scroll bar. If the user drags the scroll box, you subtract from this setting the
new current setting that becomes available when the user releases the mouse button, and
you use this result for your scrolling distance.

Using the Control Manager

CHAPTER 5

Control Manager

After using Get Cont r ol Val ue to determine the current setting of the scroll bar, use
TrackCont r ol to follow the movements of the cursor inside the scroll box and to drag
a dotted outline of the scroll box in response to the user’s movements.

When the user releases the mouse button, Tr ackCont r ol returnsi nThunb if the cursor
is still in the scroll box or 0 if the cursor is outside the scroll box. When Tr ackCont r ol
returns 0, your application does nothing. Otherwise, your application again uses

Get Cont r ol Val ue to calculate the distance to scroll.

Calculate the distance to scroll by calling Get Cont r ol Val ue and subtracting the new
current setting of the scroll bar from its previous setting, which you determine by calling
Get Cont r ol Val ue before the user releases the mouse button. If this distance is not 0,
you should move the bits in the window by this distance and update the contents of the
rest of the window.

Before scrolling, you must determine if the scroll bar is a vertical scroll bar or a horizon-
tal scroll bar. As previously explained in this chapter, you should store handles to your
scroll bars in a document record, one of which you create for every document. By
comparing the field containing the vertical scroll bar handle, you can determine whether
the control handle returned by Fi ndCont r ol is the handle to the vertical scroll bar. If
s0, the user has moved the scroll box of the vertical scroll box. If not, the user has moved
the scroll box of the horizontal scroll bar.

After determining which scroll bar contains the scroll box that the user has dragged, you
move the document contents of the window by the appropriate scrolling distance. That
is, for a positive scrolling distance in the vertical scroll bar, move the bits in the window
down by that distance. When you update the window, this displays more lines from the
top of the document—which is appropriate when the user moves the scroll box up. For a
positive scrolling distance in the horizontal scroll bar, move the bits in the window to the
right by that distance. When you update the window, this displays more lines from the
left side of the document—which is appropriate when the user moves the scroll box to
the left. (Remember: to scroll up or left, move the document down or right, both of which
are in the positive direction.)

For a negative scrolling distance in the vertical scroll bar (such as that shown in

Figure 5-16 on page 5-46), move the bits in the window up by that distance. When you
update the window, this displays more lines from the bottom of the document—which
is appropriate when the user moves the scroll box down. For a negative scrolling distance
in the horizontal scroll bar, move the bits in the window to the left by that distance.
When you update the window, this displays more lines from the right side of the
document—which is appropriate when the user moves the scroll box to the right.
(Remember: to scroll down or right, move the document up or left, both of which are in
the negative direction.)

The previous examples in this chapter have shown an application that uses a TextEdit
edit record to store monostyled text created by the user. For simple text-handling
needs, TextEdit provides many routines that simplify your work; for example, the

TEPi nScr ol | procedure scrolls through the text in the view rectangle of an edit record
by the number of pixels specified by your application; TEPi nScr ol | stops scrolling
when the last line scrolls into the view rectangle.

Using the Control Manager 5-55

Jabeuel [0nu0D -

5-56

CHAPTER 5

Control Manager

The TEPi nScr ol | procedure takes three parameters: the number of pixels to move the
text horizontally, the number of pixels to move the text vertically, and a handle to an edit
record. Positive values in the first two parameters move the text right and down,
respectively, and negative values move the text left and up.

The DoCont ent C i ck procedure, illustrated in Listing 5-18 on page 5-53, passes the
scrolling distance in the second parameter of TEPi nScr ol | for a vertical scroll bar, and
it passes the scrolling distance in the first parameter for a horizontal scroll bar.

Listing 5-16 on page 5-41 shows an application-defined routine, MyAdj ust HV, called by
the SurfWriter sample application whenever it creates, opens, or resizes a window. This
routine defines the current and maximum settings for a vertical scroll bar in terms of
lines of text.

The DoCont ent O i ck procedure on page 5-53 uses Get Cont r ol Val ue to determine
the control’s current setting—which for the vertical scroll bar DoCont ent O i ck
calculates as some number of lines. When determining the vertical scroll bar’s scrolling
distance, DoCont ent O i ck again calculates a value representing some number of lines.

However, TEPi nScr ol | expects pixels, not lines, to be passed in its parameters. There-
fore, DoCont ent O i ck multiplies the scrolling distance (which it calculates as some
number of lines of text) by the line height (which is maintained in the edit record for
monostyled text as some number of pixels). In this way, DoCont ent O i ck passes a
scrolling distance—in terms of pixels—to TEPi nScr ol | , as shown in this code fragment.

I F control = nyData””.vScrol |l Bar THEN
TEPi nScrol | (0, scrollDistance * nyData”*”. edi t Rec””. | i neHei ght,
nyDat a*”. edi t Rec) ;

Figure 5-16 on page 5-46 illustrates a scrolling distance of —10 lines. If the line height
is 10 pixels, the SurfWriter application passes —100 as the second parameter to
TEPi nScrol I .

The TEPi nScr ol | procedure adds the scrolled-away area to the update region and
generates an update event so that the text in the edit record’s view rectangle can be
updated. In its code that handles update events for windows, the SurfWriter sample
application then uses the TEUpdat e procedure—as described in “Drawing a Scrolled
Document Inside a Window” beginning on page 5-62— for its windows that include
TextEdit edit records.

To learn more about TEPi nScr ol |, the TextEdit edit record, and other facilities offered
by TextEdit, see Inside Macintosh: Text.

The QuickDraw procedure Scr ol | Rect is a more general-purpose routine for moving
bits in a window when scrolling. If you use Scr ol | Rect to scroll the bits displayed

in the window, you should define a routine like DoGr aphi csScr ol | , shown in
Listing 5-17 on page 5-47, and use it instead of TEPi nScr ol | , which is used in

Listing 5-18 on page 5-53.

The Scr ol | Rect procedure returns in the updat eRegi on parameter the area that
needs to be updated. The DoGr aphi csScrol | procedure shown in Listing 5-17 on
page 5-47 then uses the QuickDraw procedure | nval Rgn to add this area to the update

Using the Control Manager

CHAPTER 5

Control Manager

region, forcing an update event. In your code for handling update events, you draw in
the area of the window from which Scr ol | Rect has moved the bits, as described in
“Drawing a Scrolled Document Inside a Window” beginning on page 5-62.

When a mouse-down event occurs in the scroll arrows or gray areas of the vertical
scroll bar, the DoCont ent O i ck routine in Listing 5-18 on page 5-53 calls
TrackCont r ol and passes it a pointer to an application-defined action procedure
called MyVer ti cal Act i onPr oc. For the horizontal scroll bar, DoCont ent O i ck
calls Tr ackCont r ol and passes it a pointer to an action procedure called

MyHor znt | Acti onPr oc. These action procedures are described in the next section.

Scrolling in Response to Events in Scroll Arrows and Gray Areas

With each click in a scroll arrow, your application should scroll by a distance of one
unit (that is, by a single line, character, cell, or whatever your application deems
appropriate) in the chosen direction. When the user holds the mouse button down
while the cursor is in a scroll arrow, your application should scroll continuously by
single units until the user releases the mouse button or until your application has
scrolled as far as possible in the document.

With each click in a gray area, your application should scroll in the appropriate direction
by a distance of just less than the height or width of one window to show part of the
previous window (thus placing the newly displayed material in context). When the user
holds the mouse button down while the cursor is in a gray area, your application should
scroll continuously in units of this distance until the user releases the mouse button or
until your application has scrolled as far as possible in the document.

When your application finishes scrolling, it should use Set Cont r ol Val ue to move the
scroll box accordingly.

As previously described in this chapter, you use Fi ndCont r ol to determine when a
mouse-down event has occurred in a control in one of your windows, and you use
TrackCont r ol to follow the movements of the cursor inside the control, to give the
user visual feedback, and then to inform your application when the user releases the
mouse button.

When a mouse-down event occurs in the scroll arrows or the gray areas of an active
scroll bar, Fi ndCont r ol returns as its result the appropriate part code. The part codes
for the scroll arrows and gray areas, and the constants you can use to represent them, are
listed here:

Constant Part code Control part

i nUpButt on 20 Up scroll arrow for a vertical scroll bar, left scroll arrow
for a horizontal scroll bar

i nDownButton 21 Down scroll arrow for a vertical scroll bar, right scroll
arrow for a horizontal scroll bar

i nPageUp 22 Gray area above scroll box for a vertical scroll bar, gray
area to left of scroll box for a horizontal scroll bar

i nPageDown 23 Gray area below scroll box for a vertical scroll bar, gray
area to right of scroll box for a horizontal scroll bar

Using the Control Manager 5-57

Jabeuel [0nu0D -

5-58

CHAPTER 5

Control Manager

When Fi ndCont r ol returns one of these part codes, your application should
immediately call TrackCont r ol . As long as the user holds down the mouse button
while the cursor is in a scroll arrow, Tr ackCont r ol highlights the scroll arrow,

as shown in Figure 5-8 on page 5-12. When the user releases the mouse button,
TrackCont rol removes the highlighting.

For all of the other standard controls, as well as for the scroll box in a scroll bar, your
application doesn’t respond until Tr ackCont r ol reports a mouse-up event in the same
control part where the mouse-down event initially occurred. However, for scroll arrows
and gray areas, your application must respond by scrolling the document before
TrackCont r ol reports that the user has released the mouse button. When you call
TrackCont r ol for scroll arrows and gray areas, you must define an action procedure
that scrolls appropriately until Tr ackCont r ol reports that the user has released the
mouse button.

When the user releases the mouse button or moves the cursor away from the scroll
arrow or gray area, Tr ackCont r ol returns as its result one of the previously listed
values that represent the control part. As shown in Listing 5-18 on page 5-53, the
DoCont ent O i ck procedure tests for the part codes i nUpBut t on, i nDownBut t on,
i nPageUp, and i nPageDown to determine when a mouse-down event occurs in a
scroll arrow or a gray area.

When the user presses or holds down the mouse button while the cursor is in either
the scroll arrow or the gray area of the vertical scroll bar, DoCont ent O i ck calls
TrackCont rol and passes it a pointer to an application-defined action procedure
called MyVer ti cal Acti onPr oc. For the horizontal scroll bar, DoCont ent T i ck
calls TrackCont r ol and passes it a pointer to an action procedure called

MyVer tical Acti onProc. Inturn, TrackContr ol calls these action procedures to
scroll continuously until the user releases the mouse button.

Note

As an alternative to passing a pointer to your action procedure

in a parameter to Tr ackCont r ol , you can use the

Set Cont r ol Act i on procedure to store a pointer to the action
procedure in the cont r | Act i on field in the control record. When
you pass Poi nt er (—1) instead of a procedure pointer to
TrackControl , TrackCont r ol uses the action procedure
pointed to in the control record. O

Listing 5-19 shows two sample action procedures: MyVer ti cal Act i onPr oc—which
responds to mouse events in the scroll arrows and gray areas of a vertical scroll bar—
and MyHor znt | Act i onPr oc—which responds to those same events in a horizontal
scroll bar. When Tr ackCont r ol calls these action procedures, it passes a control handle
and an integer representing the part of the control in which the mouse event occurred.
Both MyVer ti cal Acti onProc and MyHor znt | Act i onPr oc use the constants

i nUpBut t on, i nDownBut t on, i nPageUp, and i nPageDown to test for the control part
passed by TrackCont r ol .

Using the Control Manager

CHAPTER 5

Control Manager

Listing 5-19 Action procedures for scrolling through a text document

PROCEDURE MyVertical Acti onProc (control: Control Handl e; part: Integer);
VAR

scrol | Di st ance: I nt eger;
wi ndow: W ndowPt r;
nmyDat a: MyDocRecHnd;
BEG N
IF part <> 0 THEN
BEG N
Wi ndow : = control . contrl Omer; {get the control's w ndow}
myDat a : = MyDocRecHnd(Get WRef Con(w ndow)) ;
HLock(Handl e(nyDat a)) ;
CASE part OF
i nUpButton, inDownButton: {get one |line to scroll}
scrol | Di stance := 1;
i nPageUp, i nPageDown: {get the wi ndow s hei ght}
BEG N
scrol | Di stance : = (nyData””. edit Rec”". vi ewRect . bottom -

nyDat a*”. edi t Rec™”. vi ewRect . t op)
DI V nmyDat a”. edi t Rec*. | i neHei ght ;
{subtract 1 line so user sees part of previous w ndow}

scrol | Di stance := scroll D stance - 1;
END;
END; {of part CASE}
IF (part = inDownButton) OR (part = inPageDown) THEN
scrol | Di stance := -scroll Di stance;

MyMoveScr ol | Box(control, scroll D stance);
| F scroll Distance <> 0 THEN {scroll by line or by w ndow}
TEPi nScrol | (0, scrollDi stance * myData™”. edi t Rec*. | i neHei ght,
nmyDat a*”. edi t Rec) ;
HUnLock(Handl e(nyDat a)) ;
END;
END; {of MyVertical Acti onProc}

PROCEDURE MyHor znt | ActionProc (control: Control Handl e; part: Integer);
VAR

scrol | Di st ance: I nt eger;
wi ndow: W ndowPt r;
nmyDat a: MyDocRecHnd;
BEG N
IF part <> 0 THEN
BEG N
Wi ndow : = control . contrl Omer; {get the control's w ndow}

Using the Control Manager

5-59

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

nyData : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
HLock(Handl e(nyDat a)) ;

CASE part OF
i nUpButton, inDownButton: {get a few pixels}
scrol | D stance : = kButtonScroll;

i nPageUp, i nPageDown: {get a wi ndow s wi dth}
scrol | Di stance : = nyDat a®”. edi t Rec". vi ewRect . ri ght -
myDat a*”. edi t Rec™”. vi ewRect . | ef t

END; {of part CASE}
I F (part = inDownButton) OR (part = inPageDown) THEN

scrol | Di stance : = -scroll D stance;
MyMoveScr ol | Box(control, scroll D stance);
| F scrol | Di stance <> 0 THEN

TEPi nScrol | (scrol | Di stance, 0, nyData””.editRec);
HUnLock(Handl e(nyDat a)) ;

END;

END; {of MHorzntl Acti onProc}

5-60

Each action procedure begins by determining an appropriate scrolling distance. For
the scroll arrows in a vertical scroll bar, MyVer t i cal Acti onPr oc defines the
scrolling distance as one line. For the gray areas in a vertical scroll bar,

MyVer ti cal Acti onProc determines the scrolling distance in lines by dividing the
window height by the line height; the window height is determined by subtracting
the bottom coordinate of the view rectangle (defined in the edit record) from its top
coordinate. Then MyVer ti cal Act i onPr oc subtracts 1 from this distance so that
when the user presses the mouse button while the cursor is in a gray area,

MyVer ti cal Acti onPr oc scrolls one line less than the total number of lines in

the window.

The MyVer ti cal Acti onPr oc procedure later multiplies these line distances by the
line height to derive pixel distances to pass in parameters to TEPi nScr ol | . Also,
MyVerti cal Acti onProc turns these distances into negative values when the
mouse-down event occurs in the lower scroll arrow or in the gray area below the
scroll box.

For the scrolling distance of the scroll arrows in horizontal scroll bars,

MyHor znt | Acti onPr oc uses a predetermined pixel distance—roughly the
document’s average character width. For the scrolling distance of the gray areas
MyHor znt | Act i onPr oc uses the window width (which is derived by
subtracting the left coordinate of the view rectangle from its right coordinate). The
MyHor znt | Act i onPr oc routine turns these distances into negative values when
the mouse-down event occurs in the right scroll arrow or in the gray area to the
right of the scroll box.

After calling MyMoveScr ol | Box, an application-defined routine that moves the scroll
box, both action procedures use TEPi nScrol | to move the text displayed in the
window by the scrolling distance. (In this example, the SurfWriter application is

Using the Control Manager

CHAPTER 5

Control Manager

scrolling a simple monostyled text document stored as a TextEdit edit record. For

a discussion of using the more general-purpose QuickDraw scrolling routine

Scr ol | Rect, see the previous section, “Scrolling in Response to Events in the Scroll
Box” beginning on page 5-53.)

The TEPi nScrol | procedure automatically creates an update region and invokes an
update event. In its window-updating code, the SurfWriter application uses the
TEUpdat e procedure to draw the text in the update region, as shown in Listing 5-23 on
page 5-65.

The action procedures continue moving the text by the specified distances over and over
until the user releases the mouse button and Tr ackCont r ol completes. If there is no
more area to scroll through, TEPi nScr ol | automatically stops scrolling, as your
application should if you implement your own scrolling routine.

Listing 5-20 shows how the application-defined procedure MyMoveScr ol | Box uses

Get Cont r ol Val ue, Get Cont r ol Maxi mum and Set Cont r ol Val ue to move the scroll

box an appropriate distance while the action procedures scroll through the document.
The MyMoveScr ol | Box procedure uses Cet Cont r ol Maxi mumto determine the
maximum scrolling distance, Get Cont r ol Val ue to determine the current setting for
the scroll box, and Set Cont r ol Val ue to assign the new setting and move the scroll
box. Use of the Set Cont r ol Maxi mumand Set Cont r ol Val ue routines is described in
“Determining and Changing Control Settings” beginning on page 5-37;

Get Cont r ol Maxi mumis described in detail on page 5-104.

Listing 5-20 Moving the scroll box from the action procedures

PROCEDURE MyMoveScrol | Box (control: Control Handl e;
scrol | Di stance: |nteger);

VAR
ol dSetting, setting, max: |nteger;
BEG N
ol dSetting := GetControl Val ue(control); {get last setting}
max : = Get Control Maxi mum(control); {get maxi mum setting}
{subtract action procs' scroll amount fromlast setting to get new setting}
setting := oldSetting - scroll D stance;

IF setting < 0 THEN
setting := 0
ELSE | F setting > nax THEN
setting : = max;
Set Control Val ue(control, setting); {assign new current setting}
END; {of MyMoveScr ol | Box}

The previous two sections have described how to move the bits displayed in the
window; the next section describes how to draw into the update region.

Using the Control Manager 5-61

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Drawing a Scrolled Document Inside a Window

The previous two sections have described how to use the QuickDraw procedure

Scrol | Rect and the TextEdit procedure TEPi nScr ol | in response to the user
manipulating any of the five parts of a scroll bar. After using these or your own routines
for moving the bits in your window, your application must draw into the update region.
Typically, you use your own window-updating code for this purpose.

Both I nval Rect and TEPi nScr ol |, which are used in the examples shown earlier in
this chapter, create update regions that cause update events. As described in the chapters
“Window Manager” and “Event Manager” in this book, your application should draw in
the update regions of your windows when it receives update events. If you create your
own scrolling routine to use instead of Scr ol | Rect or TEPi nScr ol |, you should
guarantee that it generates an update event or that it explicitly calls your own
window-updating routine.

Listing 5-21 shows an application-defined routine, DoUpdat e, that the SurfWriter
application calls whenever it receives an update event. In this procedure, the application
tests for two different types of windows: windows containing graphics objects and
windows containing text created with TextEdit routines.

Listing 5-21 An application-defined update routine

5-62

PROCEDURE DoUpdat e (w ndow. W ndowPtr);
VAR
wi ndowType: | nteger;
BEG N
wi ndowType : = MyGet W ndowType(w ndow) ;
CASE wi ndowType OF
kMyGr aphi csW ndow: {w ndow cont ai ni ng graphi cs obj ects}
BEG N
Begi nUpdat e(w ndow) ;
MyDr awGr aphi csW ndow(wi ndow) ;
EndUpdat e(wi ndow) ;

END; {of updating graphics w ndows}
kMyDocW ndow:. {wi ndow containing TextEdit text}

BEG N

Begi nUpdat e(w ndow) ;
My Dr awW ndow(wi ndow) ;
EndUpdat e(wi ndow) ;

END; {of updating TextEdit document w ndows}
{handl e ot her wi ndow types—m+odel ess di al ogs, etc.—here}
END; {of w ndowType CASE}

END; {of DoUpdat e}

Using the Control Manager

CHAPTER 5

Control Manager

In this example, when the window requiring updating is of type KMy G- aphi csW ndow
DoUpdat e uses another application-defined routine called My Dr awG aphi csW ndow
When the window requiring updating is of type kMyDocW ndow DoUpdat e uses
another application-defined routine—namely, My Dr awW ndow Listing 5-22 shows

the MyDr awGr aphi csW ndowroutine and Listing 5-23 on page 5-65 shows the

My Dr awW ndow routine.

Before drawing into the scrolled-away portion of the window, both of these routines
use the QuickDraw, Window Manager, and Control Manager routines necessary for
updating windows. (“Updating a Control” beginning on page 5-29 describes the
Updat eCont r ol s procedure; see the chapter “Window Manager” in this book for a
detailed description of how to use the rest of these routines to update a window.)

Listing 5-22 Redrawing a window containing graphics objects

PROCEDURE MyDr awGr aphi csW ndow (w ndow. W ndowPtr);
VAR
nmyData: MyDocRecHnd;
i I nt eger;
BEG N
Set Por t (wi ndow) ;
nyData : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
HLock(Handl e(nyDat a)) ;
W TH wi ndow® DO
BEG N
Er aseRect (port Rect) ;
Updat eCont r ol s(wi ndow, Vi sRgn);
Dr awGr owl con(wi ndow) ;
Set Ori gi n(Get Contr ol Val ue(nyDat a*”. hScr ol | Bar),
Get Cont r ol Val ue(nyDat a®”. vScrol | Bar));
=1
VWH LE i <= nyDat a®”*. numbbj ects DO
Dr awmyhj ect s(port Rect, myDat a™”. numObj ects[i]);
=0+ 1
END; {of WHI LE}
SetOrigin(0, 0);
END;
HUnLock(Handl e(nyDat a)) ;
END; {of MyDrawG aphi csW ndow}

The MyDr awG aphi csW ndow routine uses the QuickDraw procedure Set Ori gi n to
change the window origin by an amount equal to the scroll bar settings, so that the
upper-left corner of the document lies at (0,0) in the window’s local coordinate system.
The SurfWriter sample application performs this step so that its own drawing routines
can draw into the correct area of the window.

Using the Control Manager 5-63

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Notice that MyDr awG aphi csW ndowcalls Set Or i gi n only after calling the necessary
Window Manager and Control Manager routines, because the Window Manager and
Control Manager always expect the window origin to be at (0,0).

By using Set Ori gi n to change the window origin, MyDr awG aphi csW ndow can treat
the objects in its document as being located in a coordinate system where the upper-left
corner of the document is always at (0,0). Then MyDr awGr aphi csW ndow calls another
of its own routines, Dr amy Cbj ect s, to draw the objects it has stored in its document
record for the window.

After performing all its own drawing in the window, MyDr awGr aphi csW ndowagain
uses Set Or i gi n—this time to reset the window origin to (0,0) so that future Window
Manager and Control Manager routines will draw into the correct area of the window.

Figure 5-16 through Figure 5-20 earlier in this chapter help to illustrate how to use

Set Ori gi n to offset the window’s coordinate system so that you can treat the objects
in your document as fixed in the document’s own coordinate space. However, it is not
necessary for your application to use Set Or i gi n. Your application can leave the
window’s coordinate system fixed and instead offset the items in your document by the
amount equal to the scroll bar settings. The QuickDraw procedures Of f set Rect,

O f set Rgn, SubPt, and AddPt , which are described in Inside Macintosh: Imaging,

are useful if you pursue this approach.

Note

The Set Ori gi n procedure does not move the window’s clipping
region. If you use clipping regions in your windows, use the QuickDraw
procedure Get d i p to store your clipping region immediately after
your first call to Set Or i gi n. Before calling your own window-drawing
routine, use the QuickDraw procedure Cl i pRect to define a new
clipping region—to avoid drawing over your scroll bars, for example.
After calling your own window-drawing routine, use the QuickDraw
procedure Ol i pRect to restore the original clipping region. You

can then call Set Or i gi n again to restore the window origin to (0,0)
with your original clipping region intact. See Inside Macintosh:

Imaging for detailed descriptions of clipping regions and of these
QuickDraw routines. O

The previous examples in this chapter have shown an application that uses a TextEdit
edit record to store the information created by the user. For simple text-handling
needs, TextEdit provides many routines that simplify your work; for example, the

TEPi nScr ol | procedure (used in Listing 5-18 on page 5-53 and Listing 5-19 on

page 5-59) resets the view rectangle of text stored in an edit record by the amount of
pixels specified by the application. The TEPi nScr ol | procedure then generates an
update event for the window. The TextEdit procedure TEUpdat e should then be called
in an application’s update routine to draw the update region of the scrolled window.

Listing 5-23 shows an application-defined procedure, MyDr awW ndow that uses
TEUpdat e to update the text in windows of type kMyDocW ndow The TEUpdat e
procedure manages all necessary shifting of coordinates during window updating, so
My Dr awW ndow does not have to call Set Ori gi n as it does when it uses Scr ol | Rect .

5-64 Using the Control Manager

CHAPTER 5

Control Manager

Listing 5-23 Redrawing a window after scrolling a TextEdit edit record

PROCEDURE MyDr awW ndow (w ndow. W ndowPtr);
VAR
nmyDat a: MyDocRecHnd;
BEG N
Set Port (wi ndow) ;
nyData : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
HLock(Handl e(nyDat a)) ;
W TH wi ndow* DO
BEG N
Er aseRect (port Rect) ;
Updat eCont r ol s(wi ndow, vi sRgn);
Dr anGr owl con(wi ndow) ;
TEUpdat e(port Rect, nyDat a””. edit Rec);
END;
HUnLock(Handl e(nyDat a)) ;
END, {of MyDrawW ndow}

Moving and Resizing Scroll Bars

As described earlier in “Creating Scroll Bars” beginning on page 5-21, your application
initially defines the location of a scroll bar within a window—and the size of the scroll

bar—by specifying a rectangle in a control resource or in a parameter to NewCont r ol .

However, your application must be able to size and move the scroll bar dynamically in
response to the user’s resizing of your windows.

The chapter “Window Manager” in this book describes how to size windows when
your application opens them and how to resize them—for example, in response to

the user dragging the size box or clicking the zoom box. This section describes how to
move and resize your scroll bars so that they fit properly on the right and bottom edges
of your windows.

When resizing your windows, your application should perform the following steps to
adjust each scroll bar.

1. Resize the window.
2. Use the Hi deCont r ol procedure to make each scroll bar invisible.

3. Use the MoveCont r ol procedure to move the vertical scroll bar to the right edge of
the window, and use the MoveCont r ol procedure to move the horizontal scroll bar
to the bottom edge of the window.

4. Use the Si zeControl procedure to lengthen or shorten each scroll bar, so that each
extends to the size box in the lower-right corner of the window.

5. Recalculate the maximum settings for the scroll bars and use Set Cont r ol Maxi mum
to update the settings and to redraw the scroll boxes appropriately. (Remember, you
derive a scroll bar’s maximum setting by subtracting the length or width of its
window from the length or width of the document.)

Using the Control Manager 5-65

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

6. Use the ShowCont r ol procedure to make each scroll bar visible in its new location.

Figure 5-21 illustrates how to move and resize scroll bars in a resized window; if your
application neglected to use the Hi deCont r ol procedure, the user would see each of
these steps as it took place.

Figure 5-21 Moving and resizing scroll bars

=N Title [5]E A window before the user resizes it
o)
=
<l BE
=0 Title miE] A window after the application
& uses Si zeW ndow
=
<L T [D]
=0 Title Oz A window after the application
calls MoveCont r ol twice
T 2]
=N Title OF A window after the application
k5| calls Si zeCont r ol and Set Cont r ol Maxi mum
| 1 for each scroll bar, then calls its update routine
Q] BE

5-66 Using the Control Manager

CHAPTER 5

Control Manager

Listing 5-14 on page 5-39 shows an application-defined routine, MyAdj ust Scr ol | Bar s,
that is called when the user opens a new window, opens an existing document in a
window, or resizes a window.

When it creates a window, MyAdj ust Scr ol | Bar s stores handles to each scroll bar

in a document record. By dereferencing the proper fields of the document record,

MyAdj ust Scr ol | Bar s passes handles for the vertical and horizontal scroll bars to

the Hi deCont r ol procedure, which makes the scroll bars invisible. By making the scroll
bars invisible until it has finished manipulating them, MyAdj ust Scr ol | Bar s ensures
that the user won’t see the scroll bars blinking in different locations onscreen.

When MyAdj ust Scr ol | Bar s needs to adjust the size or location of either of the scroll
bars, it calls another application-defined routine, MyAdj ust Scr ol | Si zes, which is
shown in Listing 5-24.

Listing 5-24 Changing the size and location of a window's scroll bars

CONST
kScrol | barWdth = 16; {conventi onal w dth}
kScrol | bar Adj ust = kScrol |l barWdth - 1; {to align with w ndow frane}
kScrol | Tweek = 2; {to align scroll bars with size box}

PROCEDURE MyAdj ust Scrol | Si zes (wi ndow. W ndowPtr);

VAR
teRect: Rect ;
nmyDat a: MyDocRecHnd;
teTop, teRight, teBottomteLeft: Integer;

BEG N

MyGet TERect (wi ndow, teRect); {calculate the teRect based on the }
{ portRect, adjusted for the scroll bars}

myDat a : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
HLock(Handl e(nyDat a)) ;
W TH wi ndow*. port Rect DO
BEG N

teTop : = top;

teRight := right;

teBottom : = bottom

teLeft := left;

END;

W TH nyDat a®** DO

BEG N
edi t RecM. vi ewRect : = teRect; {set the viewRect}
MyAdj ust Vi ewRect (edi t Rec) ; {snap to nearest |ine}

{nove the controls to match the new w ndow si ze}
MoveControl (vScrol | Bar, teRi ght - kScroll barAdjust, -1);

Using the Control Manager 5-67

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Si zeControl (vScrol | Bar, kScrollbarWdth, (teBottom- teTop) -

(kScrol | bar Adj ust - kScrol | Tweek));

MoveControl (hScrol | Bar, -1, teBottom - kScroll barAdj ust);
Si zeControl (hScrol | Bar, (teRight - teLeft) -

(kScrol | bar Adj ust - kScrol | Tweek), kScroll barWdth);

HUnLock(Handl e(nyData)) ;

END; {of MAdjustScroll Sizes}

5-68

The MyAdj ust Scrol | Si zes routine uses the boundary rectangle of the window’s
content region—which is stored in the por t Rect field of the window record—to
determine the size of the window. To move the scroll bars to the edges of the window,
MyAdj ust Scrol | Si zes uses the MoveCont r ol procedure.

The MoveCont r ol procedure takes three parameters: a handle to the control being
moved, the horizontal coordinate (local to the control’s window) for the new location of
the upper-left corner of the control’s rectangle, and the vertical coordinate for that new
location. The MoveCont r ol procedure moves the control to this new location and
changes the rectangle specified in the cont r ol Rect field of the control’s control record.

In Listing 5-24, MyAdj ust Scr ol | Si zes passes to MoveCont r ol the handles to the
scroll bars. (The SurfWriter sample application stores the handle in its document record
for the window.)

Figure 5-22 illustrates the location of a vertical scroll bar before it is moved to a new
location within its resized window.

To determine a new horizontal (that is, left) coordinate of the upper-left corner of the
vertical scroll bar, MyAdj ust Scr ol | Si zes subtracts 15 from the right coordinate of
the window. As shown in Figure 5-23, this puts the right edge of the 16-pixel-wide scroll
bar directly over the 1-pixel-wide window frame on the right side of the window.

In Listing 5-24 on page 5-67, MyAdj ust Scr ol | Si zes specifies -1 as the vertical (that is,
top) coordinate of the upper-left corner of the vertical scroll bar. As shown in Figure 5-23,
this places the top edge of the scroll bar directly over the 1-pixel-wide line at the bottom
of the title bar. (The bottom line of the title bar has a vertical value of -1 in the window’s
local coordinate system.)

The MyAdj ust Scrol | Si zes routine specifies -1 as the horizontal coordinate of the
upper-left corner of the horizontal scroll bar; this puts the left edge of the horizontal
scroll bar directly over the 1-pixel-wide window frame. (The left edge of the window
frame has a horizontal value of -1 in the window’s local coordinate system.)

To fit your scroll bars inside the window frame properly, you should set the top
coordinate of a vertical scroll bar at -1 and the left coordinate of a horizontal scroll bar
at -1, unless your application uses part of the window’s scroll regions opposite the size
box for displaying information or additional controls. For example, you may choose to
display the current page number of the document in the lower-left corner of a window.
In this case, specify a left coordinate so that the horizontal scroll bar doesn’t obscure
this area.

Using the Control Manager

CHAPTER 5

Control Manager

Figure 5-22

A vertical scroll bar before the application moves it within a resized window

(~1,285)

%'—)

16 pixels

Figure 5-23

A vertical scroll bar after the application moves its upper-left point

— 1-pixel overlap

(0,300)

16 pixels

1-pixel overlap

Using the Control Manager

5-69

Jabeuel [0nu0D -

5-70

CHAPTER 5

Control Manager

See Macintosh Human Interface Guidelines for a discussion of appropriate uses of a
window’s scroll areas for items other than scroll bars.

To determine a new vertical coordinate for the upper-left corner of the horizontal scroll
bar, MyAdj ust Scr ol | Si zes subtracts 15 from the bottom coordinate of the window;
this puts the bottom edge of the scroll bar directly over the window frame at the bottom
of the window.

The MoveCont r ol procedure moves the upper-left corner of a scroll bar so that it’s in
the proper location within its window frame. To make the vertical scroll bar fit the height
of the window, and to make the horizontal scroll bar fit the width of the window,

MyAdj ust Scrol | Si zes then uses the Si zeCont r ol procedure.

The Si zeCont r ol procedure takes three parameters: a handle to the control being
sized, a width in pixels for the control, and a height in pixels for the control. When
resizing a vertical scroll bar, you adjust its height; when resizing a horizontal scroll bar,
you adjust its width.

When using Si zeCont r ol to adjust the vertical scroll bar, MyAdj ust Scrol | Si zes
passes a constant representing 16 pixels for the vertical scroll bar’s width, which is the
conventional size.

To determine the proper height for this scroll bar, MyAdj ust Scr ol | Si zes first derives
the height of the window by subtracting the top coordinate of the window’s rectangle
from its bottom coordinate. Then MyAdj ust Scr ol | Si zes subtracts 13 pixels from this
window height and passes the result to Si zeCont r ol as the height of the vertical scroll
bar. The MyAdj ust Scr ol | Si zes routine subtracts 13 pixels from the window height to
leave room for the 16-pixel-high size box (at the bottom of the window) minus three
1-pixel overlaps: one at the top of the window frame, one at the top of the size box, and
one at the bottom of the size box.

When using Si zeCont r ol to adjust the horizontal scroll bar, MyAdj ust Scr ol | Si zes
passes a constant representing 16 pixels—the conventional height of the horizontal scroll
bar. To determine the proper width of this scroll bar, MyAdj ust Scrol | Si zes first
derives the width of the window by subtracting the left coordinate of the window’s
rectangle from its right coordinate. From this window width, MyAdj ust Scr ol | Si zes
then subtracts 13 pixels to allow for the size box (just as it does when determining the
height of the vertical scroll bar).

When MyAdj ust Scr ol | Si zes completes, it returns to MyAdj ust Scrol | Bar s,
which then uses another of its own routines, MyAdj ust Scr ol | Val ues. In

turn, MyAdj ust Scr ol | Val ues calls MyAdj ust HV (shown in Listing 5-16 on
page 5-41), which recalculates the maximum settings for the scroll bars and uses
Set Cont r ol Maxi mumto update the maximum settings and redraw the scroll
boxes appropriately.

When MyAdj ust HV completes, it eventually returns to the SurfWriter application’s
MyAdj ust Scr ol | Bar s procedure, which then uses the ShowCont r ol procedure
to make the newly adjusted scroll bars visible again.

Using the Control Manager

CHAPTER 5

Control Manager

Defining Your Own Control Definition Function

The Control Manager allows you to implement controls other than the standard ones
(buttons, checkboxes, radio buttons, pop-up menus, and scroll bars). To implement
nonstandard controls, you must define your own control definition functions. Typically,
the only types of controls you might need to implement are sliders or dials, which are
similar to scroll bars in that they graphically represent a range of values the user can set.
As scroll bars have scroll boxes, your sliders and dials should have indicators for setting
values and indicating current settings.

Dials and sliders display the value, magnitude, or position of something, typically in
some pseudo-analog form—for instance, the position of a sliding switch, the reading on
a scale, or the angle of a needle on a gauge; the setting may be displayed digitally as
well. The user should be able to change the control’s setting by dragging its indicator.

Figure 5-24 illustrates a control supported by an application-defined control definition
function. This control might be used to play back a sound or a QuickTime movie. The
application might wish to define the control so that it plays the sound or movie at
normal speed when the user clicks the control part on the left. The application might
use the indicator along the slider to show what portion of the entire sound or movie
sequence is currently playing. The application also allows the user to move quickly
forward and backward through the sequence by dragging the indicator. Finally, the
application might wish to define the two control parts on the far right so that they play
backward (that is, “rewind”) and play forward quickly (that is, “fast forward”),
respectively, when the user clicks them.

Figure 5-24 A custom control

Play Rewind | Fast Forward

Note
When you design a dial or slider, be sure to include meaningful labels
that indicate to users the range and the direction of the indicator. O

Rather than create such a control yourself, you might be tempted to use a scroll bar for
this purpose. Do not do so. Using a scroll bar for any purpose other than scrolling
through a window compromises the consistency of the Macintosh interface.

To define your own nonstandard control, you must write a control definition function,
compile it as a resource of type ' CDEF' , and include it in your resource file. (For more
information about creating resources, see the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.)

Using the Control Manager 5-71

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

When you use Control Manager routines, they in turn call your control definition
function as necessary. For example, for the control in Figure 5-24 to work properly, its
control definition function must be able to

s draw the control—including repositioning its indicator, making it inactive or active,
and highlighting its control parts appropriately when mouse events occur in them

s determine when a mouse-down event occurs in a control part
» calculate the region of the control and its indicator
= move the indicator and update the control record with a new setting

You can also use your control definition function to modify or expand certain Control
Manager behaviors; for example, you can implement your own manner of dragging an
indicator, and you can perform your own type of control initialization.

For details about writing a control definition function, see “Defining Your Own Control
Definition Function” beginning on page 5-109.

Control Manager Reference

This section describes the data structures, routines, and resources that are specific to the
Control Manager.

The “Data Structures” section shows the data structures for the control record, the
auxiliary control record, the pop-up menu private data record, and the control color table
record. The “Control Manager Routines” section describes Control Manager routines for
creating controls, drawing controls, handling mouse events in controls, changing control
settings and display, determining control settings, and removing controls. The
“Application-Defined Routines” section describes the control definition function, which
you need to provide when defining your own controls. The “Application-Defined
Routines” section also describes the action procedure, which defines an action to be
performed repeatedly as long as the user holds down the mouse button while the cursor
is in a control. The “Resources” section describes the control resource and the control
color table resource.

Data Structures

5-72

This section describes the control record, the auxiliary control record, the pop-up menu
private data record, and the control color table record.

Your application doesn’t specifically create the control record, the auxiliary control
record, or the pop-up menu private data record; rather, your application simply
creates any necessary resources and uses the appropriate Control Manager routines.
The Control Manager creates these records as necessary.

Control Manager Reference

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	Control Manager, Part 1 (Introduction, About, and Using)
	Introduction to Controls
	Buttons
	Checkboxes
	Radio Buttons
	Pop-Up Menus
	Scroll Bars
	Other Controls
	Active and Inactive Controls
	The Control Definition Function

	About the Control Manager
	Using the Control Manager
	Creating and Displaying a Control
	Creating a Button, Checkbox, or Radio Button
	Creating Scroll Bars
	Creating a Pop-Up Menu
	Updating a Control

	Responding to Mouse Events in a Control
	Determining a Mouse-Down Event in a Control
	Tracking the Cursor in a Control

	Determining and Changing Control Settings
	Scrolling Through a Document
	Scrolling in Response to Events in the Scroll Box
	Scrolling in Response to Events in Scroll Arrows a...
	Drawing a Scrolled Document Inside a Window

	Moving and Resizing Scroll Bars
	Defining Your Own Control Definition Function

	Control Manager Reference
	Data Structures

	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

