

C H A P T E R 6

6

D
ialog M

anager

Dialog Manager 6

This chapter describes how your application can use the Dialog Manager to alert users to
unusual situations and to solicit information from users. For example, in some situations
your application might not be able to carry out a command normally, and in other
situations the user must specify multiple parameters before your application can execute
a command. For circumstances like these, the Macintosh user interface includes these
two features:

■ alerts—including alert sounds and alert boxes—which warn the user whenever an
unusual or potentially undesirable situation occurs within your application

■ dialog boxes, which allow the user to provide additional information or to modify
settings before your application carries out a command

Read this chapter to learn how and when to implement alerts and dialog boxes. For
example, your application can use the Dialog Manager to ask the user whether to save
new or altered documents before quitting and, if the situation arises, to inform the user
that there is insufficient disk space to save the file.

Virtually all applications need to implement alerts and dialog boxes. To avoid needless
development effort, use the Dialog Manager to implement alerts and to create most
dialog boxes. It is possible, however—and sometimes desirable—to bypass the Dialog
Manager and instead use Window Manager, Control Manager, QuickDraw, and Event
Manager routines to create or respond to events in complex dialog boxes. Even if you
decide not to use the Dialog Manager, read this chapter for information about effective
human interface design and localization issues regarding dialog boxes.

To use this chapter, you should be familiar with resources, the Event Manager, the
Window Manager, and the Control Manager.

You typically use resources to specify the items you wish to display in alert boxes and
dialog boxes; for example, you specify the size, location, and appearance of a dialog
box in a dialog resource—a resource of type 'DLOG'. See the chapter “Introduction to
the Macintosh Toolbox” in this book for general information about resources; detailed
information about the Resource Manager and its routines is provided in the chapter
“Resource Manager” of Inside Macintosh: More Macintosh Toolbox.

The Dialog Manager offers routines that handle most of the events relating to alerts
and dialog boxes, but your application still needs to handle a few additional events
as described in “Writing an Event Filter Function for Alert and Modal Dialog Boxes”
beginning on page 6-86. See the chapter “Event Manager” in this book for general
information about events and event handling.

The Dialog Manager uses the Window Manager to display your alert boxes and dialog
boxes. Although the Dialog Manager uses most of the Window Manager routines
necessary to activate and update your alert and dialog boxes, your application needs
to use Window Manager routines if it creates certain types of dialog boxes—such as
modeless dialog boxes—as explained in this chapter. See the chapter “Window
Manager” in this book for general information about windows.

The Dialog Manager uses the Control Manager to create and display buttons, radio
buttons, checkboxes, and pop-up menus and to handle events in them. Generally, you
shouldn’t use any other controls—such as scroll bars—in your dialog boxes. If you need
6-5

C H A P T E R 6

Dialog Manager

to implement a more complex control, see the chapter “Control Manager” in this book.
Buttons are the only controls you should use in alert boxes.

If you include editable text items in your dialog boxes, the Dialog Manager uses TextEdit
to handle associated editing tasks. For general information on TextEdit, see the chapter
“TextEdit” in Inside Macintosh: Text.

This chapter provides a brief introduction to the concepts and functions of alerts and
dialog boxes, and then it discusses how you can

■ create and display alerts and dialog boxes

■ include controls, informative text, editable text fields, and similar items in your alert
boxes and dialog boxes

■ respond to events in your alert boxes and dialog boxes

Introduction to Alerts and Dialog Boxes 6

The behaviors and uses of alerts differ from those of dialog boxes. Important distinctions
also exist between different types of alerts and between different types of dialog boxes.
You choose among these according to the user’s current situation.

Your application should give an alert to report an error or to issue a warning to the
user. An alert can simply play a sound (called an alert sound) for the user, it can display
an alert box that contains a message and requires an acknowledgment from the user,
or it can play an alert sound and simultaneously display an alert box. Alert boxes are
special windows that contain informative text, buttons, and, generally, icons. They
may also contain pictures. As shown in Figure 6-1, an alert box typically consists of
text describing why the alert appears and buttons requiring the user to acknowledge
or rectify the problem.

Figure 6-1 An alert box used by the Finder

By requiring the user to click a button, an alert box obliges the user to acknowledge the
alert box before proceeding. To assist the user who isn’t sure how to respond when an
alert box appears, your application specifies a preferred button—which invokes a
preferred action—for every alert box. The Dialog Manager draws a bold outline around
the preferred button so that it stands out from the other buttons in the alert box. The
outlined button is also the alert box’s default button; if the user presses the Return key
6-6 Introduction to Alerts and Dialog Boxes

C H A P T E R 6

Dialog Manager

6

D
ialog M

anager

or the Enter key, the Dialog Manager acts as if the user had clicked this preferred button.
For example, if the user presses the Return or Enter key in response to the alert box
shown in Figure 6-1, the Dialog Manager inverts the OK button for 8 ticks and informs
the Finder that the OK button has been selected; then the Finder responds by deleting
the item contained in the Trash.

Use a dialog box when your application needs more information to carry out a com-
mand. Commands in menus normally act on only one object. If the user chooses a
command that your application cannot perform until the user supplies more informa-
tion, use a dialog box to elicit the information from the user. If a command brings up
a dialog box, indicate this to your user by placing three ellipsis points (...) after the
command’s name in the menu.

A dialog box is a special window that typically resembles a form on which the user
checks boxes and fills in blanks. Figure 6-2 shows a typical dialog box.

Figure 6-2 A typical dialog box

Although an alert typically requires only an acknowledgment to proceed from the user, a
dialog box ordinarily requires the user to supply information—for instance, by entering
text or by clicking a checkbox—necessary for completing the command. When you
create a dialog box that carries out a command, you normally provide OK and Cancel
buttons. When the user clicks the OK button, your application should perform the
command according to the information that the user supplied in the dialog box. When
the user clicks the Cancel button, your application should revoke the command and
retract all of its actions as though the user had never given the command. Instead of
using an OK button, you might use a button that describes the action to be performed;
for example, you might use a Search button in a Search command’s dialog box or a
Remove button in a Remove command’s dialog box. For simplicity, this chapter refers to
the button that performs the action described in the dialog box as the OK button. You
may even provide more than one button that performs the command, each in a slightly
different way. For example, in a Change command’s dialog box, you might include a
Change Selection button to replace only the current selection and a Change All button to
replace all occurrences throughout the entire document.

You can use any or all of the following elements in the dialog boxes you create:

■ informative or instructional text

■ rectangles in which text may be entered (initially blank or containing default text that
can be edited)
Introduction to Alerts and Dialog Boxes 6-7

C H A P T E R 6

Dialog Manager

■ controls

■ graphics (icons or QuickDraw pictures)

■ other items as defined by your application

Types of Alerts 6
Every user of every application is liable to do something that the application won’t
understand or can’t cope with in a normal manner. Alerts give your application a way
to respond to these situations in a consistent manner. There are two major categories
of alerts: alert sounds and alert boxes.

The system alert sound is a sound resource stored in the System file. This sound is
played whenever system software or your application uses the Sound Manager
procedure SysBeep. The Sound control panel allows the user to select which sound
is played as the system alert sound. You can also provide your own alert sound to use
in place of the system alert sound.

Use an alert sound for errors that are both minor and immediately obvious. For example,
if the user tries to backspace past the left boundary of a text field, your application might
play the alert sound instead of displaying an alert box. Your application can base its
response on the number of consecutive times an alert condition recurs; the first time,
your application might simply play a sound, and thereafter it might present an alert box.
Your application can define different responses for each one of four alert stages.

An alert box is primarily a one-way communication from your application to the user;
the only way the user can respond is by clicking buttons. Therefore, your alert boxes
should contain buttons, but usually they should not contain editable text fields, radio
buttons, or checkboxes—items that are typically displayed in dialog boxes.

There are three standard kinds of alert boxes: note alerts, caution alerts, and stop alerts.
They are distinguished by the icons displayed in their upper-left corners.

Use a note alert to inform users of a situation that won’t have any disastrous
consequences if left as is. Usually this type of alert simply offers information, and the
user responds by clicking the OK button. Occasionally, as shown in Figure 6-3, a note
alert may ask a simple question and provide a choice of responses.

Figure 6-3 A note alert
6-8 Introduction to Alerts and Dialog Boxes

C H A P T E R 6

Dialog Manager

6

D
ialog M

anager

Use a caution alert to alert the user to an operation that may have undesirable results if
it’s allowed to continue. As shown in Figure 6-4, you should give the user the choice of
whether to continue the action (by clicking the OK button) or to stop the action (by
clicking the Cancel button).

Figure 6-4 A caution alert

Use a stop alert to inform the user that a problem or situation is so serious that the
action cannot be completed. Stop alerts, as illustrated in Figure 6-5, typically have only
a single button (OK), because all the user can do is acknowledge that the action cannot
be completed.

Figure 6-5 A stop alert

You can also create custom alert boxes containing in the upper-left corners either your
own icons or blank spaces. Plate 2 at the front of this book illustrates an alert box that
the SurfWriter application displays when the user chooses the About command from the
Apple menu. After reading the information in this alert box, the user clicks the OK
button to dismiss it.

Types of Dialog Boxes 6
Dialog boxes should always require information from the user as well as communicate
information to the user. That is, the purpose of a dialog box is to carry on a dialog
between the user and your application—typically, in preparation for the execution of
a command. Your dialog boxes can include editable text fields and controls such as
checkboxes and radio buttons. With these, the user supplies the information your
application needs to carry out the command. There are three types of dialog boxes:
modal dialog boxes, movable modal dialog boxes, and modeless dialog boxes. These
are described in the next three sections.
Introduction to Alerts and Dialog Boxes 6-9

C H A P T E R 6

Dialog Manager

Modal Dialog Boxes 6

Before allowing the user to proceed with any other work, many dialog boxes require the
user to click a button. The only response a user receives when clicking outside the dialog
box is an alert sound. This type is called a modal dialog box because it puts the user in
the state or “mode” of being able to work only inside the dialog box. Also called a
fixed-position modal dialog box (to differentiate it from a movable modal dialog box),
this type of dialog box looks like an alert box that includes other types of controls in
addition to buttons. Figure 6-6 shows the modal dialog box that SurfWriter displays after
the user chooses the Spell Check command.

Figure 6-6 A modal dialog box

IMPORTANT

Because the user must explicitly dismiss a modal dialog box before
doing anything else, you should use a modal dialog box only when it’s
essential for the user to complete an operation before performing any
other work. Fixed-position modal dialog boxes restrict the user’s
freedom of action; therefore, use them sparingly. As a rule of thumb,
use a modeless dialog box whenever possible, use a movable modal
dialog box whenever you can’t use a modeless dialog box, and use a
fixed-position modal dialog box only when you can’t implement the
dialog box as modeless or movable. ▲

A modal dialog box usually has at least two buttons: OK and Cancel. When the user
clicks the OK button, your application should perform the command according to the
information provided by the user and then remove the modal dialog box. You can give
the OK button a more descriptive title if you wish. When the user clicks the Cancel
button, your application should revoke any actions it took since displaying the modal
dialog box, and then it should remove the modal dialog box. Always label this button
“Cancel.” Your dialog boxes can have additional buttons as well; these may or may not
dismiss the dialog box.

Every dialog box you create should have a default button—that is, one whose action is
invoked when the user presses the Return or Enter key. Unless you provide your own
event filter function, the Dialog Manager treats the first item you specify in a description
of a dialog box as the default button (that is, so long as the first item is a button). You use
6-10 Introduction to Alerts and Dialog Boxes

C H A P T E R 6

Dialog Manager

6

D
ialog M

anager

an event filter function, described in “Writing an Event Filter Function for Alert and
Modal Dialog Boxes” beginning on page 6-86, to supplement the Dialog Manager’s
ability to handle events; for example, an event filter function can also test for disk-
inserted events and can allow background applications to receive update events. If you
provide your own event filter function, it should test for key-down events involving the
Return and Enter keys and respond as if the default button were clicked. The default
button should invoke the preferred action, and you should try to design the preferred
action to be safe—that is, so that it doesn’t cause loss of data.

Although the Dialog Manager draws bold outlines around default buttons in alert
boxes, it does not draw bold outlines around those in dialog boxes. To indicate the
preferred action, your application should outline the default button. “Using an
Application-Defined Item to Draw the Bold Outline for a Default Button” beginning on
page 6-56 shows a method you can use to outline a button. If you don’t outline a
button in a dialog box, none should be the default button, and you must ensure in your
event filter function that pressing the Return or Enter key has no effect.

Movable Modal Dialog Boxes 6

The user sometimes needs to see windows obscured by an overlying modal dialog box.
In this case, you should use a movable modal dialog box instead of a fixed-position
modal dialog box. The movable modal dialog box is a modal dialog box that has a title
bar so that the user can move the box by dragging its title bar.

The movable modal dialog box contains no close box and should contain no zoom box.
These visual clues indicate that the user can move the dialog box, but that the dialog
box is modal—that is, the user must respond to the dialog box before performing any
other work in your application. If the user clicks another window belonging to your
application, it should play the system alert sound. Your application removes a movable
modal dialog box only after the user clicks one of its buttons. Unlike regular modal
dialog boxes, however, this type of dialog box allows the user to bring another
application to the front by clicking one of its windows or by choosing the application
name from the Application or Apple menu.

Figure 6-7 shows the movable modal dialog box that the Finder displays after the user
chooses the Find command from the File menu.

Figure 6-7 A movable modal dialog box
Introduction to Alerts and Dialog Boxes 6-11

C H A P T E R 6

Dialog Manager

It’s important to consider whether you can use a modeless dialog box instead of a modal
or a movable modal dialog box—especially to preserve the user’s ability to perform any
task in any order.

Movable modal dialog boxes should generally respond like modal dialog boxes. Note,
however, that users should be able to switch between your application and another
application (thereby sending your application to the background) when you display a
movable modal dialog box—an action users cannot perform with modal dialog boxes.
For example, Macintosh system software uses several movable modal dialog boxes to
show that the Finder is busy with a time-consuming operation (such as file copying), yet
a user can still switch the Finder to the background.

Modeless Dialog Boxes 6

Other dialog boxes do not require the user to respond before doing anything else; these
are called modeless dialog boxes. Whenever possible, you should try to implement your
dialog boxes as modeless. As shown in Figure 6-8, a modeless dialog box looks like a
document window. The user should be able to move it, make it inactive and active again,
and close it like any document window. Unlike a document window, it consists mostly
of buttons and other controls instead of text, and it contains no scroll bars and no size
box. (A modeless dialog box should not have a size box or scroll bars; if you need these
features, use the Window Manager to create a window.)

Figure 6-8 A modeless dialog box

When you display a modeless dialog box, you must allow the user to perform other
operations—such as working in document windows—without dismissing the dialog
box. When a user clicks a button in a modeless dialog box, your application should not
remove it; instead, the dialog box should remain on the desktop so that the user can
perform the command again. Because of the difficulty in revoking the last action invoked
from a modeless dialog box, it typically does not have a Cancel button, although it may
have a Stop button. A Stop button in a modeless dialog box is useful for halting long
printing or searching operations, for example.

When finished with a modeless dialog box, the user can click its close box or choose
Close from the File menu (when the dialog box is the active window). Your application
should then remove the modeless dialog box. A modeless dialog box is also dismissed
implicitly when the user chooses Quit. It’s usually helpful to the user for your
application to remember the contents of the dialog box after it’s dismissed. This way,
when the user invokes the dialog box again, even after the user closes and reopens your
application, you can restore the dialog box exactly as it was.
6-12 Introduction to Alerts and Dialog Boxes

C H A P T E R 6

Dialog Manager

6

D
ialog M

anager

Items in Alert and Dialog Boxes 6
All dialog boxes and alert boxes contain items—such as icons, text, controls, and
QuickDraw pictures. You use resources called item lists to specify which items you want
to appear in your alert boxes and dialog boxes. You can even define your own items—
for example, a picture whose appearance changes. Figure 6-9 illustrates most of these
item types.

Figure 6-9 Typical items in a dialog box

Your application enables or disables the items it includes in its dialog and alert boxes. An
enabled item is one for which the Dialog Manager reports user events involving that
item; for example, the Dialog Manager reports to the application when a user clicks the
enabled Cancel button shown in Figure 6-9. A disabled item is one for which the Dialog
Manager does not report events. For example, the Dialog Manager does not report to the
application when the user clicks or drags the static text item “Save this document as” in
Figure 6-9 because that item is disabled.

Don’t confuse a disabled item with an inactive control. When you don’t want the
Control Manager to display visual responses to mouse events in a control, you make
it inactive by using the Control Manager procedure HiliteControl. For example,
until the user types a filename, the Save button in Figure 6-9 is inactive. The Control
Manager displays an inactive control in a way (such as by dimming it) that shows it’s
inactive. The Dialog Manager makes no visual distinction between a disabled item and
an enabled item; the Dialog Manager simply doesn’t inform your application when the
user clicks a disabled item.

You should use HiliteControl to dim a control in dialog box whenever the user can’t
use that control. For example, Figure 6-8 shows a modeless dialog box with a dimmed

Pop-up control Application-defined (list)

Button

IconRadio

Button

Editable text

Static

text
Introduction to Alerts and Dialog Boxes 6-13

C H A P T E R 6

Dialog Manager

Stop button. The Stop button is dimmed because it has no effect until the user clicks the
Search button. When the user initiates the search operation by clicking the Search button,
the Stop button becomes active, and the Search button is dimmed.

You should use the Control Manager procedure HiliteControl to make the buttons
and other controls inactive in a modeless or movable modal dialog box when you
deactivate it. The HiliteControl procedure dims inactive buttons, radio buttons,
checkboxes, and pop-up menus to indicate to the user that clicking these items has no
effect while the dialog box is in the background. When you activate the dialog box again,
use HiliteControl to make the controls active again.

You store information about all dialog or alert box items in an item list resource. When
you use Dialog Manager routines to invoke alert boxes or create dialog boxes, the
Dialog Manager gets most of the descriptive information about them from resources.
The Dialog Manager calls the Resource Manager to read into memory what it needs
from the resource file.

Events in Alert and Dialog Boxes 6
Handling events in an alert box is very simple: after you invoke an alert box, the Dialog
Manager handles most events for you by automatically calling the ModalDialog
procedure.

To handle events in a modal dialog box, your application must explicitly call the
ModalDialog procedure after displaying the dialog box.

In either case, when an enabled item is clicked, the Dialog Manager returns the
item number. You’ll then do whatever is appropriate in response to that click. For
mouse-down events outside the alert box or modal dialog box, the ModalDialog
procedure plays the system alert sound and gets the next event.

The Dialog Manager automatically removes an alert box when the user clicks any
enabled item. For a modal dialog box, your application should continue calling
ModalDialog until the user selects the OK or Cancel button, and then—after
responding appropriately to the user’s selection—your application should remove
the dialog box.

When it receives an event, ModalDialog passes the event to an event filter function
before handling the event itself. You should provide an event filter function as a
secondary event-handling loop for events that ModalDialog doesn’t handle. For both
alert and modal dialog boxes, you should provide a simple event filter function that
performs the following tasks:

■ return TRUE and the item number for the default button if the user presses the Return
or Enter key

■ return TRUE and the item number for the Cancel button if the user presses the Esc
key or the Command-period key combination

■ update your windows in response to update events (this also allows background
applications to receive update events) and return FALSE

■ return FALSE for all events that your event filter function doesn’t handle
6-14 Introduction to Alerts and Dialog Boxes

C H A P T E R 6

Dialog Manager

6

D
ialog M

anager

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor within an
application-defined item.

For your application’s modeless and movable modal dialog boxes, you can pass events
to the IsDialogEvent function, or you can use your own event-handling code to
learn whether the events need to be handled as part of a dialog box. If they do, call
the DialogSelect function to assist you in handling them instead of calling the
ModalDialog procedure. Your application should not remove a modeless dialog box
unless the user clicks its close box or chooses Close from the File menu when the
modeless dialog box is the active window. Your application should remove a movable
modal dialog box only after the user clicks one of its enabled buttons.

Instead of using the IsDialogEvent or DialogSelect function to handle events
within modeless and movable modal dialog boxes, you can use Control Manager,
Window Manager, and TextEdit routines (such as FindWindow, BeginUpdate,
EndUpdate, FindControl, TrackControl, and TEClick) to handle these events
without the aid of the Dialog Manager.

Alert Boxes, Dialog Boxes, and the Window Manager 6
The Dialog Manager uses the Window Manager to draw your alert boxes and dialog
boxes. You can use Window Manager or QuickDraw routines to manipulate an alert
box or a dialog box just like any other window—showing it, hiding it, moving it, and
resizing it.

The Dialog Manager gets most of the descriptive information about alerts and dialog
boxes from resources in a resource file. An alert resource is a resource that describes an
alert, and a dialog resource is a resource that describes a dialog box. Both are analogous
to a window resource. (In addition to providing information that the Dialog Manager
passes to the Window Manager, you also include in your alert resources and dialog
resources additional information that the Dialog Manager alone uses. These resources
are described more fully in “Creating Alert Sounds and Alert Boxes” beginning on
page 6-18 and “Creating Dialog Boxes” beginning on page 6-23.)

When you create an alert box, the Dialog Manager always passes to the Window
Manager the dBoxProc window definition ID for the alert box; this is so that all alert
boxes have the same standard appearance and behavior. The Window Manager always
displays an alert box in front of all other windows. Because an alert box requires the user
to respond before doing anything else, and the response dismisses the alert box, your
application typically won’t need to use any Window Manager or QuickDraw routines to
manipulate an alert box.

The GetNewDialog function for creating dialog boxes is similar to the Window
Manager function GetNewWindow. When you call GetNewDialog to create a
dialog box, you supply the same information as when you create a window with
GetNewWindow. For example, you use a resource to specify the window definition ID,
which determines how the dialog box looks and behaves, and a rectangle that defines
the dimensions of the dialog box’s graphics port. As for any window, you specify the
Introduction to Alerts and Dialog Boxes 6-15

C H A P T E R 6

Dialog Manager
plane of the dialog box (which, by convention, should initially be frontmost), and you
specify whether it is initially visible or invisible. If you create a dialog box that is initially
invisible—for example, if you need to set a control’s value before displaying it—you use
the Window Manager procedure ShowWindow to display the dialog box.

The Dialog Manager creates the dialog window by calling the Window Manager
function NewCWindow and then setting the window class in the window record to
indicate that it’s a dialog box. The Dialog Manager procedures for disposing of a dialog
box, CloseDialog and DisposeDialog, are analogous to the Window Manager
procedures CloseWindow and DisposeWindow.

When you create a dialog box (as described in “Creating Dialog Boxes” beginning on
page 6-23), use the window definition ID of dBoxProc for modal dialog boxes. Use
the noGrowDocProc window definition ID for modeless dialog boxes. (If your dialog
box absolutely needs a size box or scroll bars, you should use the Window Manager
to create the window instead of using the Dialog Manager.) And finally, use the
movableDBoxProc window definition ID to create movable modal dialog boxes.

The Dialog Manager provides routines for handling most events in alert boxes and
dialog boxes. For example, your application does not need to use such routines as the
Window Manager function FindWindow and the Control Manager function
TrackControl to determine when and where a mouse-down event occurs within an
alert box’s buttons. The Dialog Manager tells you which button the user clicks, and your
application needs only to respond appropriately to the click. The Dialog Manager also
automatically handles update and activate events for your alert boxes and dialog boxes.
“Handling Events in Alert and Dialog Boxes” beginning on page 6-77 describes in detail
how to use the Dialog Manager to help your application handle events.

About the Dialog Manager 6
The Dialog Manager greatly simplifies the task of creating alert boxes and simple modal
dialog boxes. Whenever you need to create an alert box, you’ll save yourself much effort
by relying on the Dialog Manager. (If you need only to play the system alert sound
without ever displaying an alert box for an error condition, you can use the Sound
Manager procedure SysBeep instead of using the Dialog Manager. See Inside Macintosh:
Sound for more information about the SysBeep procedure.)

You may find, however, that the advantages of using the Dialog Manager begin to
diminish for dialog boxes if you make them very complex. For complex modal dialog
boxes (particularly those containing multipart controls or multiple application-defined
items) and for many movable modal and modeless dialog boxes, you may find it more
convenient to implement your own dialog boxes using the Window Manager to create
standard windows and using the Control Manager, QuickDraw, and the Event Manager
to handle the tasks assumed by the Dialog Manager.

There are two main issues to consider when deciding whether to use the Dialog Manager:

■ whether to use the Window Manager and the Control Manager instead of the Dialog
Manager to create a dialog box
6-16 Introduction to Alerts and Dialog Boxes

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
■ whether to use the Event Manager, Window Manager, Control Manager, and TextEdit
instead of the Dialog Manager to handle events

You may, for example, want to create complex dialog boxes by using the Dialog
Manager, but then use the Event Manager, Window Manager, Control Manager, and
TextEdit to handle events inside your normal event loop. With regard to movable modal
and modeless dialog boxes, the sample code in this chapter illustrates such a hybrid
approach: it uses the Dialog Manager to create the dialog boxes, but it uses normal
event-handling code to determine an appropriate action according to which type of
window is frontmost. When a modeless or movable modal dialog box is in front, this
chapter illustrates how to take actions specific to that dialog box.

If you draw your own dialog box in a standard window without using the Dialog
Manager, you won’t be able to use Dialog Manager routines to help handle events,
but in return you’ll be able to update the window more quickly and extend its event
handling more easily. Here are some situations that tend to diminish the advantages
of using the Dialog Manager to create dialog boxes or handle events involving them:

■ The dialog box contains more than 20 items.

■ You need a multipart control, such as a scroll bar.

■ You need to move items offscreen and onscreen.

■ You need to display a moving indicator, such as a progress indicator.

■ You need to display a list in the dialog box. (For more information on lists, see the
chapter “List Manager” in Inside Macintosh: More Macintosh Toolbox.)

■ You need to display text in a font other than the system font.

■ Your application must respond to events other than mouse-down events, key-down
events inside editable text items, and a few key-down events for keyboard equivalents
when your application displays the dialog box.

If none of these situations applies to the dialog box you want to create, then you should
definitely use the Dialog Manager. If only one situation applies, you should probably use
the Dialog Manager. If two or more of these situations apply, you may find that it is
better to create and manage a standard window that operates like a dialog box instead of
using the Dialog Manager to create or manage it.

Using the Dialog Manager 6

You can use the Dialog Manager to

■ alert users to critical situations

■ carry on a dialog with users when your application needs their input

With Dialog Manager routines, you invoke alert boxes or create dialog boxes in windows
whose contents are, in turn, managed by the Dialog Manager. The Dialog Manager
automatically handles update events, activate events, cursor tracking, and most
text-editing tasks for your alert and dialog boxes.
Using the Dialog Manager 6-17

C H A P T E R 6

Dialog Manager
To implement alerts and dialog boxes, you generally

■ create an alert resource or a dialog resource in a resource file

■ create another resource to specify a list of items—such as controls, informative text,
and pictures—to be displayed in the alert box or dialog box

■ create and display the alert box or dialog box

■ respond as appropriate to events relating to your alert or dialog box

■ close the dialog box when you are finished with it (for alert boxes, the Dialog
Manager automatically performs this for you)

These tasks are explained in greater detail in the rest of this chapter.

Before using the Dialog Manager, you must initialize QuickDraw, the Font Manager, the
Window Manager, the Menu Manager, and TextEdit, in that order. Then initialize the
Dialog Manager by using the InitDialogs procedure.

The Dialog Manager uses the system alert sound for signaling the user during various
alert stages. If you want to use alert sounds other than the system alert sound, write
your own sound procedure (as illustrated in Listing 6-3 on page 6-22) and call the
ErrorSound procedure to make it the current sound procedure.

If you want to display static text or editable text in a font other than the system font, you
can use the SetDialogFont procedure. However, there are a number of caveats
regarding this procedure. For descriptions of these caveats, see “Special Considerations”
in the description of SetDialogFont on page 6-105.

System 7 and earlier versions of the Communications Toolbox add several new routines
(namely, AppendDITL, ShortenDITL, and CountDITL) that make it easier for you
to add items to, remove items from, and count the number of items in a dialog box.
Before calling these routines, you should make sure that they are available by using the
Gestalt function with the gestaltDITLExtAttr selector. Test the bit field indicated
by the gestaltDITLExtPresent constant in the response parameter. If the bit is set,
then AppendDITL, ShortenDITL, and CountDITL are available.

CONST gestaltDITLExtPresent= 0; {if this bit is set, then }

{ AppendDITL, ShortenDITL, }

{ & CountDITL are available}

The Gestalt function is described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities.

Creating Alert Sounds and Alert Boxes 6
To create an alert, use one of these functions: NoteAlert, CautionAlert, StopAlert,
and Alert. Icons associated with the first three functions appear in the upper-left corner
of the alert boxes, as previously shown in Figure 6-3, Figure 6-4, and Figure 6-5. The
Alert function allows you to display your own icon or to have no icon at all in the
upper-left corner of the alert box.
6-18 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
These functions take descriptive information about the alert from an alert resource that
you provide. An alert resource has the resource type 'ALRT'. When you call one of these
functions, you pass it the resource ID of the alert resource and a pointer to an event filter
function. These functions create and display an alert box. When the user clicks a button
in an alert box, these functions return the button’s item number and close the alert box,
at which time you respond appropriately to the user’s click, as described in “Responding
to Events in Alert Boxes” beginning on page 6-81.

Here’s an example of how to create the caution alert shown in Figure 6-10.

VAR

myAlertItem: Integer;

myAlertItem := CautionAlert(kSaveAlertID, @MyEventFilter);

Figure 6-10 An alert box to save changes to a document

You should specify a pointer to an event filter function when you call the Alert,
StopAlert, CautionAlert, and NoteAlert functions. You should provide an event
filter function as a secondary event-handling loop for events that ModalDialog doesn’t
handle. In this example, a pointer to MyEventFilter is specified for the event filter
function. You can use the standard event filter function by passing NIL in this parameter.
The standard event filter function allows users to press the Return or Enter key in lieu of
clicking the default button. As described in “Writing an Event Filter Function for Alert
and Modal Dialog Boxes” beginning on page 6-86, your application should provide a
simple event filter function that also allows background applications to receive update
events. You can use the same event filter function in most or all of your alert boxes and
modal dialog boxes.

Continuing with the previous example, an application-defined constant
(kSaveAlertID) specifies the resource ID of an alert resource in a parameter to
the CautionAlert function. Listing 6-1 shows how this alert resource appears
in Rez input format. (Rez is the resource compiler provided with Apple’s Macintosh
Programmer’s Workshop [MPW], available from APDA.)

Listing 6-1 Rez input for an alert resource

resource 'ALRT' (kSaveAlertID, purgeable) { /*alert resource*/

{94, 80, 183, 438}, /*rectangle for alert box*/

kSaveAlertDITL, /*use the 'DITL' with res ID 200*/
Using the Dialog Manager 6-19

C H A P T E R 6

Dialog Manager
{ /*alert stages, starting with #4; at each */

/* stage, make OK the default, display the */

/* alert box, & play the system alert sound*/

OK, visible, sound1, /*4th consecutive error*/

OK, visible, sound1, /*3rd consecutive error*/

OK, visible, sound1, /*2nd consecutive error*/

OK, visible, sound1, /*1st error*/

},

alertPositionParentWindow /*place over document window*/

};

An alert resource contains the following information:

■ a rectangle, given in global coordinates, that determines the alert box’s dimensions
and, optionally, its position; these coordinates specify the upper-left and lower-right
corners of the alert box

■ the resource ID of the item list for the alert box

■ the actions to be taken at each of four alert stages

■ as an option, a constant (either alertPositionParentWindow,
alertPositionMainScreen, or alertPositionParentWindowScreen)
that tells the Dialog Manager where to position the alert box (available only to
applications running in System 7)

In Listing 6-1, the coordinates (94,80,183,438) specify the dimensions of the alert box, and
the alertPositionParentWindow constant causes the Dialog Manager to place the
alert box just below the title bar of the user’s document window. If you don’t supply a
positioning constant, the Dialog Manager places the alert box at the global coordinates
you specify for the alert box’s rectangle. The positioning constants for alert boxes are
explained in “Positioning Alert and Dialog Boxes” beginning on page 6-62.

In Listing 6-1, the application-defined constant kSaveAlertDITL represents the
resource ID for the item list resource. “Providing Items for Alert and Dialog Boxes”
beginning on page 6-26 describes how to create an item list resource.

Your application can base its response on the number of consecutive times an alert
condition recurs. In Listing 6-1, the alert resource specifies that each consecutive time
the user repeats the action that invokes this caution alert, the Dialog Manager should
perform the following: outline the OK button and treat it as the default button, display
the alert box (that is, make it “visible”), and play a single system alert sound.

Your application can define different responses for each of four stages of an alert. This is
most appropriate for stop alerts—those that signify that an action cannot be completed—
especially when that action has a high probability of being accidental (for example, when
the user chooses the Cut command when no text is selected). Under such a circumstance,
your application might simply play the system alert sound the first two times the user
makes the mistake, and for subsequent mistakes it might also present an alert box. Every
consecutive occurrence of the mistake after the fourth alert stage is treated as a
fourth-stage alert.
6-20 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
For example, a user might try to paste a graphic outside the page margins of a simple
page-layout program; the first time the user tries this, the application—using the Dialog
Manager—may simply play the system alert sound for the user. If the user repeats the
mistake, the application may play the system alert sound again. But when the user
repeats the error for the third consecutive time, the application may display an alert box
like the one shown in Figure 6-11. If the user makes the same mistake immediately after
dismissing this alert box, the alert box reappears, and it continues doing so until the user
corrects or abandons the improper action.

Figure 6-11 An alert box displayed only during the third and fourth alert stages

Listing 6-2 shows the alert resource used to specify the stop alert displayed in
Figure 6-11. Notice that the fourth alert stage is listed first, and the first alert stage is
listed last. At the third alert stage, the application displays an alert box but does not
play the system alert sound. If the user repeats the mistake a fourth consecutive time,
the application plays the system alert sound and displays the alert box as well.

Listing 6-2 Specifying different alert responses according to alert stage

resource 'ALRT' (kStopAlertID, purgeable) { /*alert resource*/

{40, 40, 127, 353}, /*rectangle for alert box*/

kStopAlertDITL, /*use the 'DITL' with res ID 300*/

{ /*alert stages, starting with #4*/

OK, visible, sound1, /*4th err: show alert box, play alert sound*/

OK, visible, silent, /*3rd err: show alert box, don't play sound*/

OK, invisible, sound1, /*2nd err: play sound, don't show alert box*/

OK, invisible, sound1, /*1st err: play sound, don't show alert box*/

},

alertPositionParentWindow /*place over document window*/

};

The actions for each alert stage are specified by the following three pieces of information:

■ Which button is the default button—the OK button (that is, the first item in the item
list resource) or the Cancel button (that is, the second item in the item list resource).
The Dialog Manager automatically draws a bold outline around the default button,
and when the user presses the Return or Enter key, the Dialog Manager treats—or
your event filter function should treat—that keyboard event as a click in the default
Using the Dialog Manager 6-21

C H A P T E R 6

Dialog Manager
button. The OK and Cancel buttons are described in detail in “Providing Items for
Alert and Dialog Boxes” beginning on page 6-26. At each alert stage, you can change
the default button, although it’s difficult to imagine a scenario where changing the
default button would be helpful to the user. In the previous example, the OK button is
the default.

■ Whether the alert box is to be displayed. If you specify the visible constant for
an alert stage, the alert box is displayed; if you specify the invisible constant, it is
not. In Listing 6-2, the alert box is not displayed the first two consecutive times the
user repeats the mistake, but it is displayed for all subsequent consecutive times.

■ Which of four possible sounds (if any) should be emitted at this stage of the alert. In
the previous example, the first, second, and fourth alert stages play a single system
alert sound, but the third stage plays no sound.

By default, the Dialog Manager uses the system alert sound. The sound1 constant, used
in Listing 6-2, tells the Dialog Manager to play the system alert sound once; you can also
specify the sound2 and sound3 constants, which cause the Dialog Manager to play the
system alert sound two and three times, respectively, each time at the same pitch and
with the same duration. The volume of the sound depends on the current speaker
volume setting, which the user can adjust in the Sound control panel. If the user has set
the speaker volume to 0, the menu bar blinks once in place of each sound that the user
would otherwise hear.

If you want the Dialog Manager to play sounds other than the system alert sound, write
your own sound procedure and then call ErrorSound and pass it a pointer to your
sound procedure. The ErrorSound procedure (described on page 6-104) makes your
sound procedure the current sound procedure. For example, you might create a sound
procedure named MyAlertSound, as shown in Listing 6-3.

Listing 6-3 Creating your own sound procedure for alerts

PROCEDURE MyAlertSound (soundNo: Integer);

BEGIN

CASE soundNo OF

0: PlayMyWhisperAlert; {sound for silent constant in alert resources}

1: PlayMyBellAlert; {sound for sound1 constant in alert resources}

2: PlayMyDrumAlert; {sound for sound2 constant in alert resources}

3: PlayMyTrumpetAlert; {sound for sound3 constant in alert resources}

OTHERWISE ;

END; {of CASE}

END;

For each of the four alert stages that can be reported in the soundNo parameter, your
procedure can emit any sound that you define.
6-22 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
As previously explained, the dimensions of the rectangle you specify in the alert
resource determine the dimensions of the alert box. You can also let the rectangle
coordinates serve as global coordinates that position the alert box, or you can let the
Dialog Manager automatically locate it for you according to three standard positions.
Listing 6-2 on page 6-21, for example, uses the alertPositionParentWindow
constant to position the alert box over the document window where the user is working.
For details about these standard positions, see “Positioning Alert and Dialog Boxes”
beginning on page 6-62.

Creating Dialog Boxes 6
To create a dialog box, use the GetNewDialog or NewDialog function. You should
usually use GetNewDialog, which takes information about the dialog box from a
dialog ('DLOG') resource in a resource file. Like window resources, dialog resources
isolate descriptive information from your application code for ease of modification
or translation to other languages. The rest of this section describes how to use
GetNewDialog. Although it’s generally not recommended, you can also use the
NewDialog or NewColorDialog function and pass it the necessary descriptive
information in individual parameters instead of using a dialog resource. See page 6-118
for a description of NewDialog and page 6-115 for a description of NewColorDialog.

The GetNewDialog function creates a data structure (called a dialog record) of type
DialogRecord from the information in the dialog resource and returns a pointer to it.
A dialog record includes a window record. When you use GetNewDialog, the Dialog
Manager sets the windowKind field in the window record to dialogKind. As
explained in “Displaying Alert and Dialog Boxes” beginning on page 6-61, you can use
this pointer with Window Manager or QuickDraw routines to display and manipulate
the dialog box.

When you use GetNewDialog, you pass it the resource ID of the dialog resource, an
optional pointer to the memory to use for the dialog record, and the window pointer
Pointer(-1), which causes the Window Manager to display the dialog box in front of
all other windows.

If you pass NIL for the memory pointer, the dialog record is allocated in your
application’s heap. Passing NIL is appropriate for modal dialog boxes and movable
modal dialog boxes, but—if you are creating a modeless dialog box—this can cause your
heap to become fragmented. In the case of modeless dialog boxes, therefore, you should
allocate your own memory as you would for a window; allocating window memory is
described in the chapter “Window Manager” in this book.

Here’s an example of how to create the dialog box shown in Figure 6-12.

VAR

theDialog: DialogPtr;

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));
Using the Dialog Manager 6-23

C H A P T E R 6

Dialog Manager
Figure 6-12 A simple modal dialog box

This example uses an application-supplied constant (kSpellCheckID) to specify the
resource ID number of a dialog resource. Listing 6-4 shows how this dialog resource
appears in Rez input format.

Listing 6-4 Rez input for a dialog resource

resource 'DLOG' (kSpellCheckID, purgeable) { /*dialog resource*/

{62, 184, 216, 448}, /*rectangle for dialog box*/

dBoxProc, /*window definition ID for modal dialog box*/

visible, /*display this dialog box immediately*/

noGoAway, /*don't draw a close box*/

0x0, /*initial refCon value of 0*/

kSpellCheckDITL, /*use item list with res ID 400*/

"Spellcheck Options", /*title if this were a modeless dialog box*/

alertPositionParentWindow /*place over document window*/

};

The dialog resource contains the following information:

■ a rectangle, given in global coordinates, that determines the dialog box’s
dimensions and, optionally, position; these coordinates specify the upper-left
and lower-right corners

■ the window definition ID, which specifies the window definition function and
variation code for the type of dialog box

■ a constant (either visible or invisible) that specifies whether the dialog box
should be drawn on the screen immediately

■ a constant (either noGoAway or goAway); use goAway only to specify a close box in
the title bar of a modeless dialog box

■ a reference value of type LongInt, which your application may use for any purpose

■ the resource ID of the item list resource for the dialog box
6-24 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
■ a text string used for the title of a modeless or movable modal dialog box

■ as an option, a constant (either alertPositionParentWindow,
alertPositionMainScreen, or alertPositionParentWindowScreen) that
tells the Dialog Manager how to position the dialog box (available only to applications
running in System 7)

In the example, a rectangle with coordinates (62,184,216,448) specifies the dimensions of
the dialog box, and the alertPositionParentWindow constant causes the Dialog
Manager to place the dialog box just below the title bar of the user’s document window.
If you don’t supply a positioning constant, the Dialog Manager places the dialog box at
the global coordinates you specify for the dialog box’s rectangle. Positioning constants
for dialog boxes are explained in “Positioning Alert and Dialog Boxes” beginning on
page 6-62.

In the example, the dBoxProc window definition ID is used. Use the following window
definition IDs for specifying dialog box types:

In each case, the Dialog Manager uses the Window Manager to draw the appropriate
window frame. Figure 6-6 on page 6-10 shows an example of a modal dialog box drawn
with the dBoxProc window definition ID, Figure 6-7 on page 6-11 shows an example of
a movable modal dialog box drawn with the movableDBoxProc window definition ID,
and Figure 6-8 on page 6-12 illustrates a modeless dialog box drawn with the
noGrowDocProc window definition ID.

Listing 6-4 specifies the visible constant so that the dialog box is drawn immediately.
If you use the invisible constant, the dialog box is not drawn until your application
uses the Window Manager procedure ShowWindow to display the dialog box.

Use the goAway constant only with modeless dialog boxes. For modal dialog boxes and
movable modal dialog boxes, use the noGoAway constant, as shown in the example.

Notice that because the example does not make use of the reference constant, 0 (0x0) is
provided as a filler. However, you may wish to make use of this constant. For example,
your application can store a number that represents a dialog box type, or it can store
a handle to a record that maintains state information about the dialog box or other
window types, as explained in the chapter “Window Manager” in this book. You can use
the Window Manager procedure SetWRefCon at any time to change this value in the
dialog record for a dialog box, and you can use the GetWRefCon function to determine
its current value.

Listing 6-4 uses an application-defined constant that specifies the resource ID for the
item list. The next section, “Providing Items for Alert and Dialog Boxes,” describes how
to create an item list.

Window definition ID Dialog box type

dBoxProc Modal dialog box

movableDBoxProc Movable modal dialog box

noGrowDocProc Modeless dialog box
Using the Dialog Manager 6-25

C H A P T E R 6

Dialog Manager
Supply a text string in your dialog resource when you want a modeless dialog box or a
movable modal dialog box to have a title. You can specify an empty string for a title bar
that contains no text. The example specifies the string “Spellcheck Options” for code
readability but, because the example creates a modal dialog box, no title bar is displayed.

You can let the Dialog Manager automatically locate the dialog box according
to three standard positions. Listing 6-4 on page 6-24, for example, specifies the
alertPositionParentWindow constant to position the dialog box over the
document window where the user is working. For details on these standard positions,
see “Positioning Alert and Dialog Boxes” beginning on page 6-62.

Providing Items for Alert and Dialog Boxes 6
You use an item list ('DITL') resource to store information about all the items (text,
controls, icons, or pictures) in an alert or dialog box. As described in “Creating Alert
Sounds and Alert Boxes” beginning on page 6-18 and “Creating Dialog Boxes”
beginning on page 6-23, you specify the resource ID of the item list resource in the alert
('ALRT') resource or dialog ('DLOG') resource.

Within an item list resource for an alert box or a dialog box, you specify its static text,
buttons, and the resource IDs of icons and QuickDraw pictures. In addition, you can
specify checkboxes, radio buttons, editable text, and the resource IDs of other types of
controls (such as pop-up menus) in an item list resource for a dialog box.

Figure 6-13 shows an example of an alert box displayed by the SurfWriter application
when the user chooses the About command from the Apple menu. To display its own
icon in the upper-left corner of the alert box, the application uses the Alert function. An
alert resource with resource ID 128 is passed in a parameter to the Alert function.
The alert resource in turn specifies an item list resource with resource ID 128. The item
list resource specifies an OK button, some static text, and an icon, whose resource ID is
128. (It’s customary to assign the same resource ID to the item list resource and to either
its alert resource or dialog resource, but it’s not necessary to do so.)

In this example, when the user chooses the About command, the SurfWriter application
uses the Alert function to display the alert.

itemHit := Alert(kAboutBoxID, @MyEventFilter);

The Alert function in this example displays the alert box defined by the alert resource
represented by the kAboutBoxID resource ID. As explained in “Responding to Events in
Alert Boxes” beginning on page 6-81, the Alert function handles most user actions
while the alert box is displayed. When the user clicks any button in an alert box, Alert
removes the alert box and returns to your application the item number of the selected
button. The application-defined function MyEventFilter that is pointed to in this
example allows background applications to receive update events for their windows.

Listing 6-5 shows the resources, in Rez input format, that the Alert function uses to
display the alert box shown in Figure 6-13.
6-26 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Figure 6-13 Relationship of various resources to an alert box

Listing 6-5 Rez input for providing an alert box with items

define kAboutBoxID 128 /*resource ID for About SurfWriter alert box*/

define kAboutBoxDITL 128 /*resource ID for item list*/

define kSurfWriterIconID 128 /*resource ID for 'ICON' resource*/

define kSurfWriterColorIconID 128 /*resource ID for 'cicn' resource*/

define kAboutBoxHelp 128 /*resource ID for 'hdlg' resource*/

resource 'ALRT' (kAboutBoxID, purgeable) { /*About SurfWriter alert box*/

{40, 40, 156, 309}, /*rectangle for alert box*/

kAboutBoxDITL, /*use item list resource with ID 128*/

{ /*identical alert stage responses*/

OK, visible, silent,

OK, visible, silent,

OK, visible, silent,

OK, visible, silent,

},

alertPositionMainScreen /*display on the main screen*/

};

'ALRT' 128

Uses 'DITL' 128
'DITL' 128

OK button

Static text

'cicn' 128

Icon

(Uses 'ICON' 128)

Alert resource

Item list resource

Icon and color icon resources

'ICON' 128
Using the Dialog Manager 6-27

C H A P T E R 6

Dialog Manager
resource 'DITL' (kAboutBoxDITL, purgeable) { /*items for About SW alert box*/

/*ITEM NO. 1*/

{ {86, 201, 106, 259}, /*display rectangle for item*/

Button { /*the item is a button*/

enabled, /*enable item to return click*/

"OK" /*title for button is "OK"*/

},

/*ITEM NO. 2*/

{10, 20, 42, 52}, /*display rectangle for item*/

Icon { /*the item is an icon*/

disabled, /*don't return clicks on this item*/

kSurfWriterIconID /*use 'ICON' & 'cicn' resources */

/* with resource IDs of 128*/

},

/*ITEM NO. 3*/

{10, 78, 74, 259}, /*display rectangle for the item*/

StaticText { /*the item is static text*/

disabled, /*don't return clicks on this item*/

"SurfWriter 3.0\n"/*text string to display*/

"A Swell Text Processor \n\n "

"©My Company, Inc. 1992"

},

/*ITEM NO. 4*/

{0, 0, 0, 0}, /*help items get an empty rectangle*/

HelpItem { /*invisible item for reading in help balloons*/

disabled, /*don't return clicks on this item*/

HMScanhdlg /*scan resource type 'hdlg' for help balloons*/

{kAboutBoxHelp} /*get 'hdlg' with resource ID 128*/

}

}

};

data 'ICON' (kSurfWriterIconID, purgeable) {

/*icon data for black-and-white icon for About SurfWriter goes here*/

};

data 'cicn' (kSurfWriterColorIconID, purgeable) {

/*icon data for color icon for About SurfWriter goes here*/

};

Items are usually referred to by their positions in the item list resource. For example, the
Alert function returns 1 when the user clicks the OK button in the alert box created in
Listing 6-5. The Dialog Manager returns 1 because the OK button is the first item in the
list. (Responding to the item numbers returned by Alert and other Dialog Manager
functions is explained in “Handling Events in Alert and Dialog Boxes” beginning on
page 6-77.) Similarly, when you use a Dialog Manager routine to manipulate an item,
you specify it by its item number, an integer that corresponds to an item’s position in its
item list resource.
6-28 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
IMPORTANT

Item list resources should always be marked as purgeable. ▲

The Dialog Manager also calls the Resource Manager to read in any individual items
as necessary.

When you create a dialog box or an alert box, the Dialog Manager creates a dialog record.
The Dialog Manager then reads in the item list resource and stores a handle to it in the
items field of the dialog record. Because the Dialog Manager always makes a copy of
the item list resource and uses that copy, several independent dialog boxes may share
the same item list resource. As explained in “Adding Items to an Existing Dialog Box”
beginning on page 6-51, you can use the AppendDITL and ShortenDITL procedures
to modify or customize copies of a shared item list resource for use in individual
dialog boxes.

As an alternative to using a dialog resource, you can read in a dialog’s item list resource
directly and then pass a handle to it along with other information to NewDialog, which
creates the dialog box. Remember, however, that it is easier to localize your application if
you use a dialog resource and the GetNewDialog function.

An item list resource contains the following information for each item:

■ a display rectangle

■ the type of item (as described in the next section)

■ a constant (either enabled or disabled) that instructs the Dialog Manager whether
to report events for that item

■ either a text string or a resource ID, as appropriate for the type of item

The display rectangle determines the size and location of the item. Specify the display
rectangle in coordinates local to the alert or dialog box. For example, in Listing 6-5 the
first item is displayed in a rectangle specified by the coordinates (86,201,106,259), which
place the item in the lower-right corner of this alert box. More information about display
rectangles and their placement is provided in “Display Rectangles” beginning on
page 6-32.

In an item list resource, you can specify controls, text, icons, pictures, and other items
that you define. In Listing 6-5, the first item’s type is specified by the Button constant.
Item types and their constants are described in the next section.

For each item in the item list resource, you must also instruct the Dialog Manager
whether to report to your application when the item is clicked. In Listing 6-5, the first
item is enabled, because the enabled constant is specified. “Enabled and Disabled
Items” on page 6-36 explains when and how to enable items.

Depending on the type of item in the list, you usually provide a text string or a resource
ID for the item. In Listing 6-5, the string OK is specified as the button title for the first
item. “Resource IDs for Items” beginning on page 6-36 explains what titles and resources
are appropriate for the various item types.

The information that you provide in an item list resource is described more fully in the
next several sections.
Using the Dialog Manager 6-29

C H A P T E R 6

Dialog Manager
Item Types 6

The following list shows the types of items you can include in alert and dialog boxes and
the constants for specifying them in a Rez input file.

The chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox describes how
to create and use items of type HelpItem to provide help balloons for your alert and
dialog boxes. When you specify a help item, make it the last item in the list, as shown in
Listing 6-5 on page 6-27.

The chapter “Finder Interface” in this book describes icon ('ICON') resources and color
icon ('cicn') resources. Inside Macintosh: Imaging describes 'PICT' resources.

The chapter “Control Manager” in this book describes how to create a control with
a 'CNTL' resource. Pop-up menus are easily implemented as controls. “Pop-Up Menus
as Items” beginning on page 6-42 illustrates how to include pop-up menus in your
dialog boxes.

Be aware that alert boxes should contain only buttons (which the user clicks to dismiss
the alert box), static text, icons, and pictures. If you need to present other items, you
should create a dialog box.

The first item in an alert box’s item list resource should be the OK button; if a Cancel
button is necessary, it should be the second item. The Dialog Manager provides these
constants for the first two item numbers:

CONST ok = 1;

cancel = 2;

As described in “Creating Alert Sounds and Alert Boxes” beginning on page 6-18, you
define within the alert resource whether the OK or the Cancel button is the default
button for each alert stage. The Dialog Manager automatically draws a bold outline
around the button that you specify and, if the user presses the Return key or Enter key,

Constant Description

Button A button control

CheckBox A checkbox control (use in dialog boxes only)

Control A control defined in a 'CNTL' resource file (use in dialog
boxes only)

EditText An editable text item (use in dialog boxes only)

HelpItem An invisible item that makes the Help Manager associate help
balloons with the other items defined in the item list resource

Icon An icon whose black-and-white version is stored in an 'ICON'
resource and whose color version is stored in a 'cicn' resource
with the same resource ID as the 'ICON' resource

Picture A QuickDraw picture stored in a 'PICT' resource

RadioButton A radio button control (use in dialog boxes only)

StaticText Static text; that is, text that cannot be edited

UserItem An application-defined item (use in dialog boxes only)
6-30 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
the Dialog Manager responds—or your event filter function should respond—as if the
default button were clicked. (“Writing an Event Filter Function for Alert and Modal
Dialog Boxes” beginning on page 6-86 describes event filter functions.)

The Dialog Manager does not draw a bold outline around the default button for dialog
boxes. “Using an Application-Defined Item to Draw the Bold Outline for a Default
Button” beginning on page 6-56 shows how your application can outline the default
button in a dialog box. You should normally give every dialog box a default button—
that is, one whose action is invoked when the user presses the Return or Enter key.
“Writing an Event Filter Function for Alert and Modal Dialog Boxes” beginning on
page 6-86 shows how to test for these key-down events and respond as if the user had
clicked the default button. If you don’t provide your own event filter function, the
Dialog Manager treats the first item in an item list resource as the default button. That is,
although the Dialog Manager doesn’t draw a bold outline around the button in a dialog
box, the Dialog Manager does return its item number to your application when the user
presses the Return or Enter key.

Don’t set a default button to perform a dangerous action—for example, one that causes
a loss of user data. If none of the possible actions is safe, don’t display a default border
around any button and provide an event filter function that ignores the Return and Enter
keys. This protects users from accidentally damaging their work by pressing Return or
Enter out of habit. However, you should try to design a safe action that the user can
invoke with a default button, such as a Save button. Figure 6-14 illustrates an alert box
that provides a default button for a safe action.

Figure 6-14 A safe default button in an alert box

Provide a Cancel button whenever you can, and in your event filter function, map the
Command-period key combination and the Esc (Escape) key to the Cancel button.

Don’t display a bold outline around any button if you use the Return key in editable text
items, because using the same key for two different purposes confuses users and makes
the interface less predictable.

A button that

causes data loss

Buttons that are safe

for data
Using the Dialog Manager 6-31

C H A P T E R 6

Dialog Manager
Display Rectangles 6

As previously mentioned, the display rectangle determines the location of an item
within an alert box or a dialog box. Use the alert or dialog box’s local coordinates to
specify the display rectangle.

For controls, the display rectangle becomes the control’s enclosing rectangle. To match
a control’s enclosing rectangle to its display rectangle, specify an enclosing rectangle
in the control resource that is identical to the one you specify for the display rectangle in
the item list resource. (The control resource is described in the chapter “Control
Manager” in this book.)

Note
Note that, when an item is a control defined in a control ('CNTL')
resource, the rectangle added to the update region is the rectangle
defined in the control resource, not the display rectangle defined in
the item list resource. ◆

For an editable text item, the display rectangle becomes the TextEdit destination
rectangle and its view rectangle. Word wrapping occurs within display rectangles that
are large enough to contain multiple lines of text, and the text is clipped if there’s more
than will fit in the rectangle. The Dialog Manager uses the QuickDraw procedure
FrameRect to draw a rectangle three pixels outside the display rectangle. For more
detailed information about TextEdit, see the chapter “TextEdit” in Inside Macintosh: Text.

For a static text item, the Dialog Manager draws the text within the display rectangle just
as it draws editable text items, except that the Dialog Manager doesn’t draw a frame
rectangle outside the display rectangle.

For an icon or a QuickDraw picture larger than its display rectangle, the Dialog Manager
scales the icon or picture to fit the display rectangle.

Although the procedure for an application-defined item can draw outside the item’s
display rectangle, this is not recommended, because if the Dialog Manager receives
an update event involving an area outside the display rectangle but inside the area
where you draw your application-defined item, the Dialog Manager won’t call your
draw procedure.

Note
A click anywhere in the display rectangle is considered a click in that
item. If display rectangles overlap, a click in the overlapping area
is considered a click in whichever item appears first in the item list
resource. ◆

You should display items in functional and consistent locations, both within your
application and across all applications that you develop. In alert boxes and in most
dialog boxes, place the OK button in the lower-right corner and place the Cancel
button to its left. Figure 6-15 shows the recommended location of buttons and text
in an alert box.
6-32 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Figure 6-15 The consistent spacing of buttons and text in an alert box

Generally, you should use distances of 13 and 23 white pixels to separate the items in
dialog boxes and alert boxes. (When separating the default button from the window
edges and other items, don’t count the pixels that make up its bold outline.) However, be
aware that the Window Manager adds 3 white pixels inside the window frame when it
draws alert boxes and modal dialog boxes. Therefore, specify display rectangle locations
as follows when you use tools like Rez and ResEdit:

■ Place the display rectangle for the lower-right button 10 pixels from the right edge
and 10 pixels from the bottom edge of the alert or modal dialog box; align the display
rectangles for other bottommost and rightmost items with this button.

■ Place the display rectangle for the upper-left icon (or similar item) 10 pixels from the
top edge and 20 pixels from the left of the alert or modal dialog box; align the display
rectangles for other topmost and leftmost items with this item. The Dialog Manager
automatically places the caution, note, and stop alert icons in this position when you
use the CautionAlert, NoteAlert, and StopAlert functions. When you use the
Alert function, you must specify the icon and the location.

■ Place the other elements in the alert or modal dialog box 13 or 23 pixels apart, as
shown in Figure 6-15.

For example, the rectangle for the alert box in Figure 6-15 has a specified height of
85 pixels. The display rectangle for the Save button has a bottom coordinate of 75, and
the display rectangle for the static text item has a top coordinate of 10. The Window
Manager adds 3 white pixels at the top of the alert box and 3 pixels at the bottom, so
the alert box contains 13 white pixels below the Save button and 13 white pixels above
the static text display rectangle. Listing 6-6 shows how the locations for these display
rectangles are specified in a Rez input file.

23

pixels

13 pixels

13

pixels

13 pixels

13 pixels

23

pixels

13

pixels

Using the Dialog Manager 6-33

C H A P T E R 6

Dialog Manager
Listing 6-6 Rez input for consistent spacing of display rectangles

resource 'DITL' (200, purgeable) {

{ {55, 288, 75, 348}, Button {enabled, "Save"},

{55, 215, 75, 275}, Button {enabled, "Cancel"},

{55, 72, 75, 156}, Button {enabled, "Don't Save"},

{10, 75, 42, 348}, StaticText {disabled,

"Save changes to the SurfWriter document “^0” before"

" closing?"}

}

};

When specifying display rectangle locations for items in movable modal and modeless
dialog boxes, use the full distance of either 13 or 23 pixels to separate items from the
window edges. For example, if the items in Figure 6-15 were placed in a modeless dialog
box, the top coordinate of the Save button’s display rectangle should be 52 instead of 55,
and its bottom coordinate would be 72 instead of 75.

As explained in the previous section, the default button can be any button; its assign-
ment is secondary to the consistent placement of buttons. This rule keeps the OK button
and the Cancel button consistently placed. Otherwise, the buttons would keep changing
location depending on the default choice.

The Western reader’s eye tends to move from the upper-left area of the alert or dialog
box to the lower-right area. For Western versions of your software, use the upper-left
area for elements (such as the alert icon) that convey the initial impression that you want
to make. Place the buttons that a user clicks in the lower-right area.

The alignment of the items in an alert box or a dialog box may vary with localization.
Although in Roman script systems these items are generally aligned left to right, items
in Arabic or Hebrew script systems should generally be aligned right to left, because
Arabic and Hebrew are written from right to left. The TextEdit procedure TESetJust,
described in the chapter “TextEdit” in Inside Macintosh: Text, controls the alignment of
interface elements.

When line alignment is right to left, as in Hebrew and Arabic, the Control Manager
transposes checkboxes—and radio buttons—and their titles. That is, checkboxes and
radio buttons appear to the right of the text instead of to the left, as in Roman script
systems. Therefore, when you create checkboxes, radio buttons, and static text items
that need to align, make sure that their display rectangles are the same size.

The dialog box at the top of Figure 6-16 shows several checkboxes and radio buttons
with display rectangles of different sizes. The next dialog box in the figure illustrates
what happens to the alignment of these items after the Control Manager transposes
the controls with their titles.

The bottom two dialog boxes in Figure 6-16 illustrate how the Control Manager displays
properly sized items when transposing the controls with their titles.
6-34 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Figure 6-16 Incorrectly and correctly sized display rectangles for alternate script systems

A dialog box containing
display rectangles of
different sizes

The same dialog box
after the Control
Manager transposes
checkboxes and radio
buttons with their titles

A dialog box containing
display rectangles of the
same sizes

The same dialog box
after the Control
Manager transposes
checkboxes and radio
buttons with their titles
Using the Dialog Manager 6-35

C H A P T E R 6

Dialog Manager
Enabled and Disabled Items 6

For each item in an item list resource, include one of these two constants to specify in a
Rez input file whether the Dialog Manager should inform your application of events
involving that item:

Generally, you should enable only controls. In particular, you should enable buttons,
radio buttons, and checkboxes so that your application knows when they’ve been
clicked. You typically disable editable text and static text items. You normally disable
editable text items because you use the Dialog Manager function GetDialogItemText
to read the information in the items only after the user clicks the OK button. (Listing 6-12
on page 6-49 illustrates how to use the GetDialogItemText function for this purpose.)
You should use static text items only for providing information; users don’t expect to
click them. Likewise, you typically disable icons and pictures that merely provide
information; if you use an icon or a picture as a buttonlike control to receive input,
however, you must enable it. If you create an application-defined item such as a moving
indicator to display information, you typically disable it. If you create an application-
defined item such as a buttonlike control to receive input, you must enable it.

Don’t confuse disabling an item with using the Control Manager procedure
HiliteControl to make a control inactive. When you don’t want the Control Manager
to respond to clicks in a control, you make it inactive; when you don’t want the Dialog
Manager to report clicks in a control, you make it disabled.

The Control Manager displays an inactive control in a way (dimmed, for example) that
shows it’s inactive, whereas the Dialog Manager makes no visual distinction between a
disabled item and an enabled item. Figure 6-17 shows the difference between an inactive
and an active control. The Control Manager procedure HiliteControl has been used
to dim the inactive Eject button. If a user clicks this button, the Control Manager does
not respond. However, when a user clicks the active Desktop button, the Control
Manager inverts the button for 8 ticks.

Buttons and other controls are generally enabled, and disabling them does not alter their
appearance; the enabled radio button in Figure 6-17 would appear the same if it were
disabled. Because the static text reading “Save this document as” in Figure 6-17 is not
a control, the application doesn’t need to respond clicks in the text. Therefore, the
application has disabled it; however, the static text would have the same appearance
if the application were to enable it.

Resource IDs for Items 6

The final element for an item in an item list resource is usually either a text string or a
resource ID. The choice depends on the type of item.

Constant Description

enabled Informs your application about events involving this item

disabled Doesn’t inform your application about events involving this item
6-36 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Figure 6-17 Inactive controls and disabled items

Provide a resource ID for icons, QuickDraw pictures, and controls other than buttons,
checkboxes, and radio buttons. For an icon, provide the ID of an 'ICON' resource; for
a QuickDraw picture, the ID of a 'PICT' resource; and for a control (including a pop-
up menu), the ID of a 'CNTL' resource. In Listing 6-5 on page 6-27, the resource ID of
128 specifies which 'ICON' (and 'cicn') resources to use for the second item in the
item list resource.

For a button, checkbox, radio button, static text item, and editable text item, supply a text
string as the final element for the item in its item list resource. The next several sections
provide guidelines for the text that you should provide.

For your own application-defined items, supply neither a title nor a resource ID.
Listing 6-15 on page 6-57 shows an item list resource that includes an application-
defined item.

Titles for Buttons, Checkboxes, and Radio Buttons 6

For a button, checkbox, or radio button, provide a text string for the control’s title as the
final element for the item when you specify it in the item list. In Listing 6-5 on page 6-27,
the string OK specifies the button title for the first item in the item list resource.

Use book-title capitalization for these items. In general, this means that you capitalize
one-word titles and, in multiple-word titles, words of four or more letters. Usually you
don’t capitalize words such as in, an, or and. The rules for capitalization of titles appear
in the Apple Publications Style Guide, which is available from APDA.

As explained in the chapter “Control Manager” in this book, the title of a checkbox
should reflect two clearly opposite states, because a checkbox should allow the user to
turn a particular setting either on or off. The opposites should be expressed in an equal
sense in either state. If you can’t devise a checkbox title that clearly implies its opposite
state, you might be better off using radio buttons. With radio buttons, you can use two

Disabled item

Enabled item

Active control

Inactive control
Using the Dialog Manager 6-37

C H A P T E R 6

Dialog Manager
titles, thereby clarifying the states. Radio buttons should represent related, but not
necessarily opposite, choices. Give each radio button a title consisting of a word or a
phrase that identifies what the button does. Remember that, as described in the chapter
“Control Manager” in this book, the radio buttons in a group are mutually exclusive:
only one button in that group can be on at one time.

Whenever possible, title a button with a verb describing the action that the button
performs. A user typically reads the text in an alert box or a dialog box until it becomes
familiar and then relies on visual cues, such as button titles or positions, to respond.
Buttons such as Save, Quit, or Erase Disk allow users to identify and click the correct
button quickly. These titles are often more clear and precise than OK, Yes, and No. If the
action can’t be condensed into a word or two, OK and Cancel or Yes and No may serve
the purpose. If you use these generic titles, be sure to phrase the wording in the dialog
box so that the action the button initiates is clear. Figure 6-18 shows a dialog box with
appropriate OK and Cancel buttons.

Figure 6-18 A dialog box with OK and Cancel buttons

Cancel means “dismiss this operation with no side effects.” It does not mean “I’ve read
this dialog box” or “stop what you’re doing regardless.” When users click the Cancel
button in your alert boxes, modal dialog boxes, and movable modal dialog boxes, your
application should revoke any actions it took since displaying the alert or dialog box and
then remove the box.

Your application should not remove a modeless dialog box when the user clicks a
button; rather, you should remove the dialog box when the user clicks its close box or
chooses Close from the File menu while the modeless dialog box is active.

When it is impossible to return to the state that existed before an operation began, don’t
use a Cancel button. You can use Stop or OK, which are useful in different situations. A
Stop button may leave the results of a partially complete task intact, whereas a Cancel
button always returns the application and its documents to their previous state. Use OK
for a button that closes the alert box, modal dialog box, or movable modal dialog box
and accepts any changes made while the dialog box was displayed.

Because of the difficulty in revoking the last action invoked from a modeless dialog box,
these dialog boxes typically don’t have Cancel buttons, although they may have Stop
buttons. For example, the movable modal dialog box shown in Figure 6-19 uses a Stop
6-38 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
button; clicking the button halts the current file copy operation but leaves intact the
copies that were previously made.

Figure 6-19 A movable modal dialog box with a Stop button

In an alert box that requires confirmation, use a button title that describes the result of
accepting the message in the alert box. For example, if an alert box asks “Revert to the
last saved version of the document,” use a Revert button rather than an OK button. Try
to use a verb in the button title; as in the Revert button in Figure 6-20, use the same verb
that you use in your alert message.

Figure 6-20 An alert box with a Revert button

If the alert box presents the user with a situation in which no alternative actions are
available, give the box a single button that’s titled OK. You should interpret the user’s
clicking this button to mean “I’ve read the alert box.”

A modal dialog box usually cuts the user off from the task. That is, when making choices
in a modal dialog box, the user can’t see the area of the document that changes. The user
sees the changes only after dismissing the dialog box. If the changes aren’t appropriate,
then the user has to repeat the entire operation. To provide better feedback to the user,
you need to give the user a way to see what the changes will be. Therefore, any selection
made in a modal dialog box should immediately update the document contents, or you
should provide a sample area in the dialog box that reflects how the user’s selections
will change the document. In the case of immediate document updating, the OK button
means “accept this change” and the Cancel button means “undo all changes made
through this dialog box.”

The Dialog Manager displays button titles (as well as all other control titles) in the
system font. To make it easier to localize your application, you should not change
the font.
Using the Dialog Manager 6-39

C H A P T E R 6

Dialog Manager
Text Strings for Static Text and Editable Text Items 6

For an editable text item, if you want the item to display only a blinking cursor, specify
an empty string as the item’s final element in the item list resource or specify a string if
you want to display some default text.

For a static text item, supply a text string as its final element when you specify it in the
item list resource. In the third item in Listing 6-5, the text string SurfWriter 3.0
\nA Swell Text Processor \n\n©My Company, Inc. 1992 specifies the alert
box’s message.

Whenever you provide static text items in alert and dialog boxes, ensure that the
messages make sense to the user. Use simple, nontechnical language and don’t provide
system-oriented information to which the user can’t respond.

Whenever applicable, state the name of the document or application in your alert or
dialog box. For example, the alert box in Figure 6-20 on page 6-39 shows both the name
of the application (SurfWriter) and the name of the document (My Window). This kind
of message helps users who are working with several documents or applications at once
to make decisions about each one individually. “Changing Static Text” beginning on
page 6-46 describes how to use the ParamText procedure to supply the names of
document windows to your alert and dialog boxes dynamically.

Use icons and pictures whenever possible. Images can describe some error situations
better than words, and familiar icons help users distinguish their alternatives better.
However, because experience has shown that it is nearly impossible to create icons that
are comprehensible or inoffensive across all international markets, you should be
prepared to localize any icons or pictures you use. See the chapter “Icons” in Macintosh
Human Interface Guidelines for more information about creating appropriate icons.

For your static text items, it’s generally better to be polite than abrupt, even if it
means lengthening your message. Your message should be helpful, and it may offer
constructive suggestions, but it should not appear to give orders. Its focus should be
to help the user perform the task, not to give an interesting but academic description
of the task itself.

When you localize your application for use with other languages, the text may become
longer or shorter. Translated text is often 50 percent longer than U.S. English text. You
may need to resize your display rectangles and your alert and dialog boxes to
accommodate the translated text.

By default, the Dialog Manager displays static text items in the system font. To make it
easier to localize your application, you should not change the font. Do not use a smaller
font, such as 9-point Geneva; some script systems such as KanjiTalk require 12-point
fonts. You will save yourself future localization effort by leaving all the text in your alert
and dialog boxes in the system script.

In alert boxes, try to include information that tells the user how to resolve the problem at
hand. Never refer the user to external documentation for further clarification.

Stop alerts typically report errors to the user. A good error message explains what
went wrong, why it went wrong, and what the user can do about it. Express this
information in the user’s vocabulary, not in your programming vocabulary.
6-40 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Figure 6-21 shows an example of a very poor alert message—the information is
expressed in the programmer’s vocabulary, and the user is offered no clue about
how to remedy the problem.

Figure 6-21 An obscure and useless alert message

Figure 6-22 shows a somewhat better alert message. Although the vocabulary is less
technical, no remedy to the problem is offered.

Figure 6-22 A less obscure alert message

Figure 6-23 illustrates a good alert message. The message is specific, it’s expressed in
nontechnical terms, it explains why the error occurred, and it suggests a solution to
the problem.

Figure 6-23 A clear and helpful alert message

The best way to make an alert message understandable is to think carefully through the
error condition itself. Can the application handle this without an error? Is the message
specific enough so that the user can fix the situation? What are the recommended
solutions?
Using the Dialog Manager 6-41

C H A P T E R 6

Dialog Manager
Pop-Up Menus as Items 6

You can use pop-up menus to present the user with a list of mutually exclusive choices
in a dialog box. Figure 6-24 illustrates a typical use of pop-up menus in a dialog box. As
explained in the chapter “Control Manager” in this book, pop-up menus are especially
useful as an alternative to radio buttons when the user must make one choice from a list
of many or set a specific value, or when you must present a variable list of choices. The
pop-up menu in Figure 6-24 allows the application to present a choice of modem speeds
that vary according to the modem type in the user’s computer.

Figure 6-24 A pop-up menu in a dialog box

In System 7, pop-up menus are implemented as controls. To display a pop-up menu in a
dialog box, you

■ define specific features of the pop-up menu in a control that uses the standard pop-up
control definition function (described in the chapter “Control Manager” in this book)

■ define the menu items of a pop-up menu just as you define items in other menus
(using GetMenu or NewMenu, as described in the chapter “Menu Manager” in
this book)

■ specify the pop-up menu in the dialog box’s item list resource

Using the pop-up control definition function, the Dialog Manager automatically draws
the pop-up box and its drop shadow, inserts the text into the pop-up box, draws a
downward-pointing triangle, and draws the pop-up menu’s title. When the user moves
the cursor to a pop-up menu and presses the mouse button, the pop-up control
definition function highlights the pop-up menu title, displays the pop-up menu, and
handles all user interaction until the user releases the mouse button. When the user
releases the mouse button, the pop-up control definition function closes the pop-up box,
draws the user’s choice in the pop-up box (or restores the previous item if the user
doesn’t make a new choice), and removes the highlighting from the pop-up menu title.
The control definition function then sets the value of the control to the item selected by
the user. Your application can use the Control Manager function GetControlValue
to get the number of the currently selected item.
6-42 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
The modal dialog box shown in Figure 6-24 is created by defining a dialog resource that
describes the dialog box and by defining an item list resource that describes the dialog
items, including a control whose 'CNTL' resource uses the standard pop-up control
definition function. Listing 6-7 shows the dialog resource and item list resource for this
modal dialog box.

Listing 6-7 Rez input for a dialog resource and an item list resource for a dialog box that
includes a pop-up menu

resource 'DLOG' (kModemDialog, purgeable) {

{62, 184, 216, 416}, dBoxProc, visible, noGoAway, 0x0,

kModemDialogDITL, "", alertPositionMainScreen

};

resource 'DITL' (kModemDialogDITL, purgeable) {

{ {123, 152, 144, 222}, Button {enabled, "OK"},

{123, 69, 144, 139}, Button {enabled, "Cancel"},

{13, 70, 33, 204}, StaticText {enabled, "Modem Setup"},

{41, 23, 61, 64}, StaticText {enabled, "Port:"},

{41, 67, 59, 186}, RadioButton {enabled, "Modem Port"},

{59, 67, 77, 186}, RadioButton {enabled, "Printer Port"},

{90,18,109,198}, Control {disabled, kPopUpCNTL},

{123, 152, 144, 222}, UserItem {disabled} /*outline OK button*/

{0,0,0,0}, HelpItem {disabled, HMScanhdlg{kModemHelp}}

/*Balloon Help*/

}

};

Listing 6-8 shows the 'CNTL' and 'MENU' resources for the Speed pop-up menu shown
in Figure 6-24. Notice that the display rectangle specified for the control in the item list
resource is the same as the enclosing rectangle specified in the control resource. See the
chapter “Control Manager” in this book for a complete description of how to specify
values for a pop-up menu’s control resource.

Listing 6-8 Rez input for a control resource and a menu resource for a pop-up menu

resource 'CNTL' (kPopUpCNTL, preload, purgeable) {

{90, 18, 109, 198}, /*enclosing rectangle of control*/

popupTitleLeftJust, /*title position*/

visible, /*make control visible*/

50, /*pixel width of title*/

kPopUpMenu, /*'MENU' resource ID*/

popupMenuCDEFProc, /*pop-up control definition ID*/

0, /*reference value*/

"Speed:" /*control title*/

};
Using the Dialog Manager 6-43

C H A P T E R 6

Dialog Manager
resource 'MENU' (kPopUpMenu, preload, purgeable) {

mPopUp, textMenuProc,

0b1111111111111111111111111111111,

enabled, "Speed",

{

"300 bps", noicon, nokey, nomark, plain;

"1200 bps", noicon, nokey, nomark, plain;

"2400 bps", noicon, nokey, nomark, plain;

"9600 bps", noicon, nokey, nomark, plain;

"19200 bps", noicon, nokey, nomark, plain

}

};

Keyboard Navigation Among Items 6

Your dialog boxes may have several items, such as editable text items and scrolling lists,
that can accept input from the keyboard. You need to give users a visual cue indicating
which item is currently accepting input from the keyboard. Each item type has its own
distinct indicator. The Dialog Manager automatically displays a blinking cursor in an
editable text item to indicate that it is accepting keyboard input. You can also use the
SelectDialogItemText procedure (explained on page 6-131) to indicate a selected
text range within an editable text item.

When a scrolling list is accepting keyboard input, you should indicate it by a rectangular
border of two black pixels, separated from the list by one pixel of white space. In
Figure 6-25, the AppleTalk Zones scrolling list is the item currently accepting keyboard
input in the Chooser dialog box. See the chapter “List Manager” in Inside Macintosh:
More Macintosh Toolbox for details about creating lists in dialog boxes.

Because all typing goes to the active window, there should be only one active area and
only one indicator at any time. If only one element in a dialog box can accept keyboard
input and that element is a scrolling list, it’s not necessary to place a border around it.

The Dialog Manager automatically handles mouse-down events and keyboard events
for the Tab key. Thus, the user can select any item that accepts keyboard input by
clicking the desired item or by pressing the Tab key to cycle through the available items.
When the user presses the Tab key, the Dialog Manager accepts the changes made to the
current item and selects the next item—as listed in the item list—that accepts keyboard
input. When the user clicks another item, the Dialog Manager accepts the changes made
to the current item and selects the newly clicked item.

Manipulating Items 6
In many cases, you won’t have to make any changes to alerts or dialog boxes after you
define them in your resource file. However, if you should want to modify an item, you
can use several Dialog Manager routines to do so.
6-44 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Figure 6-25 A selected scrolling list

For example, you can use the ParamText procedure to supply text strings (such as
document titles) to alert and dialog boxes dynamically. For most other types of item
manipulation, you must first call the GetDialogItem procedure to get the information
about the item. You then use other routines to manipulate that item. For example, you
can use the SetDialogItem procedure to change the item, or—to get a text string that
the user has entered in an editable text item after clicking the OK button—you can use
the GetDialogItemText procedure.

The Dialog Manager routines for manipulating items are summarized in the
following list.

Routine Description

AppendDITL Adds items to a dialog box.

CountDITL Counts the number of items in a dialog box.

FindDialogItem Finds an item that contains a specified point within a
dialog box.

GetAlertStage Returns the stage of the last occurrence of an alert.

GetDialogItem Returns the item type, the display rectangle, and the
control handle or application-defined procedure of a
given item in a dialog box.

GetDialogItemText Returns the text of a given editable text or static
text item.

HideDialogItem Hides the given item.

ParamText Substitutes up to four different text strings in static
text items.

ResetAlertStage Resets the stage of the last occurrence of an alert.
Using the Dialog Manager 6-45

C H A P T E R 6

Dialog Manager
The next several sections describe the most frequently used of these routines. The next
section, “Changing Static Text,” explains the use of the ParamText procedure to
manipulate the text in static text items. “Getting Text From Editable Text Items”
beginning on page 6-48 describes how to use the GetDialogItemText procedure
to determine what the user types in an editable text item. Using the AppendDITL
procedure is explained in “Adding Items to an Existing Dialog Box” beginning on
page 6-51. “Using an Application-Defined Item to Draw the Bold Outline for a Default
Button” beginning on page 6-56 describes how to use SetDialogItem to install
application-defined items. For additional information about all of the previously listed
routines, see “Manipulating Items in Alert and Dialog Boxes” beginning on page 6-120
and “Handling Text in Alert and Dialog Boxes” beginning on page 6-129.

Changing Static Text 6

As previously explained, it is often useful to state the name of a document in an alert box
or a dialog box. For example, Figure 6-26 shows an alert box that an application might
display when the user closes a window that contains unsaved changes.

Figure 6-26 An alert box that displays a document name

You can use the ParamText procedure to supply the names of document windows to
your alert and dialog boxes dynamically, as illustrated in the application-defined routine
MyCloseDocument shown in Listing 6-9.

SelectDialogItemText Selects the text of an editable text item.

SetDialogItem Sets the item type and the display rectangle of an item,
or (for application-defined items) the draw procedure
of an item.

ShortenDITL Removes items from a dialog box.

ShowDialogItem Redisplays the item previously hidden by
HideDialogItem.

Routine Description
6-46 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Listing 6-9 Using the ParamText procedure to substitute text strings

PROCEDURE MyCloseDocument (myData: MyDocRecHnd);

VAR

title: Str255;

item: Integer;

docWindow: WindowPtr;

event: EventRecord; {dummy parameter for calling DialogSelect}

myErr: OSErr;

BEGIN

docWindow := FrontWindow; {point to active window}

IF (myData^^.windowDirty) THEN {document has been changed}

BEGIN

GetWTitle(docWindow, title); {get title of window}

MyStringCheck(title);

ParamText(title, '', '', ''); {pass the title in 1st parameter}

DoActivate(docWindow, FALSE, event); {deactivate the active window}

item := CautionAlert(kSaveAlertID, @MyEventFilter); {display alert box}

IF item = kCancel THEN

Exit(MyCloseDocument);

IF item = kSave THEN

DoSaveCmd; {save the document}

myErr := DoCloseFile(myData); {close the file}

END; {let click in Don't Save fall through}

CloseWindow(docWindow);

DisposPtr(Ptr(docWindow));

END;

In this example, the Window Manager function FrontWindow returns a pointer to
the active window. Another Window Manager function, GetWTitle, returns the title
of that window. The MyCloseDocument routine passes this string to the ParamText
procedure, which takes four text strings as parameters. In this example, only one string
is needed (the window title), which is passed in the first parameter; empty strings are
passed for the remaining three parameters.

You can use ParamText to supply up to four text strings for a single alert or dialog box.
In the item list resource for the alert or dialog box, specify where each of these strings
should go by inserting the special characters ^0 through ^3 in any of the items where
you can specify text. The ParamText procedure dynamically replaces ^0 with the string
you pass in its first parameter, ^1 with the string in the second parameter, and so forth,
when you display the alert or dialog box.
Using the Dialog Manager 6-47

C H A P T E R 6

Dialog Manager
IMPORTANT

To avoid recursion problems in versions of system sofware earlier than
7.1, you have to ensure that you do not include the characters ^0
through ^3 in any strings you pass to ParamText. This is why
MyCloseDocument uses another application-defined routine,
MyStringCheck, to filter these characters out of the window titles
passed to ParamText. ▲

Listing 6-10 shows a portion of an item list resource. When the application calls
CautionAlert, the Dialog Manager uses the first parameter passed previously to the
ParamText procedure to replace the characters ^0 in the static text with the title of the
document window.

Listing 6-10 Specifying where ParamText should substitute text in an alert box message

resource 'DITL' (kSaveAlertID, purgeable) {

{ /*Save button information goes here*/

/*Cancel button information goes here*/

/*Don't Save button information goes here*/

{10, 75, 42, 348},

StaticText { /*ask the user to save changes to the document--*/

disabled, /* filename inserted with ParamText*/

"Save changes to the SurfWriter document “^0” before closing?"

},

/*help item information goes here*/

}

};

Getting Text From Editable Text Items 6

The application displaying the modeless dialog box shown in Figure 6-27 uses the
GetDialogItem and GetDialogItemText procedures after the user clicks the
Change button.

Figure 6-27 Two editable text items in a modeless dialog box
6-48 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
This dialog box prompts the user for two text strings: one to search for and another
to take the place of the first string. Listing 6-11 shows the item list resource for this
dialog box. The fifth item in the list is the editable text item where the user enters the text
string being sought; the sixth item is the item where the user enters the replacement
text string.

Listing 6-11 Specifying editable text items in an item list

resource 'DITL' (kGlobalChangesDITL, purgeable) {

{ /*ITEM NO. 1*/

{70, 213, 90, 271}, Button {enabled,"Change"},

/*ITEM NO. 2*/

{70, 142, 90, 200}, Button {enabled,"Stop"},

/*ITEM NO. 3*/

{10, 23, 27, 98}, StaticText {disabled, "Find What:"},

/*ITEM NO. 4*/

{40, 23, 57, 98}, StaticText {disabled,"Change To:"},

/*ITEM NO. 5*/

{10, 117, 27, 271}, EditText {disabled, ""},

/*ITEM NO. 6*/

{40, 117, 57, 271}, EditText {disabled, ""}

/*ITEM NO. 7: for drawing outline around Change button*/

{63, 205, 97, 278}, UserItem {disabled, },

/*ITEM NO. 8: help item goes here*/

}

};

Listing 6-12 shows how the application handles a click in the Change button.
(Subsequent sections of this chapter explain how to handle events in a modeless
dialog box.)

Listing 6-12 Getting the text entered by the user in an editable text item

PROCEDURE MyHandleModelessDialogs(theEvent: EventRecord);

VAR

myDialog: DialogPtr;

itemHit, itemType: Integer;

searchStringHandle: Handle;

replaceStringHandle: Handle;

searchString: Str255;

replaceString: Str255;

itemRect: Rect;
Using the Dialog Manager 6-49

C H A P T E R 6

Dialog Manager
BEGIN

{use DialogSelect, then determine whether the event occurred }

{ in the Global Changes dialog box; if so, respond to mouse }

{ clicks as follows}

CASE itemHit OF

kChange: {user clicked the Change button}

BEGIN

GetDialogItem(myDialog, kFind, itemType,

 searchStringHandle, itemRect);

GetDialogItemText(searchStringHandle, searchString);

GetDialogItem(myDialog, kReplace, itemType,

 replaceStringHandle, itemRect);

GetDialogItemText(replaceStringHandle, replaceString);

{get a handle to the Stop button}

GetDialogItem(myDialog, kStop, itemType,

 itemHandle, itemRect);

{make the Stop button active during the operation}

HiliteControl(ControlHandle(itemHandle), 0);

{get a handle to the Change button}

GetDialogItem(myDialog, kChange, itemType,

 itemHandle, itemRect);

{make the Change button inactive during the operation}

HiliteControl(ControlHandle(itemHandle), 255);

DoReplace(searchString, replaceString);

{when the operation is complete, dim Stop and make }

{ Change active here}

END;

kStop: {user clicked the Stop button}

BEGIN

{cancel operation, then make Stop button }

{ inactive and Change button active again}

END;

END;

END;

In Listing 6-12, when the user clicks the Change button, the GetDialogItem procedure
returns a handle to the item containing the search string. Because this is a handle to an
editable text item, the application can pass the handle to the GetDialogItemText
procedure, which then returns the item’s text string in its second parameter. These two
procedures are then used to get the string in the item containing the replacement string.
These two strings are then passed to an application-defined routine that replaces all
6-50 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
instances of the first string with the characters of the second string. Note that when the
user clicks Change, the Control Manager procedure HiliteControl is used to make
the Stop button active and to make the Change button inactive—that is, dimmed. This
indicates that the user can use the Stop button but not the Change button while the
change operation is taking place.

Adding Items to an Existing Dialog Box 6

You can dynamically add items to and remove items from a dialog box by using the
AppendDITL and ShortenDITL procedures. When you create a dialog box, the Dialog
Manager creates a dialog record. The Dialog Manager then reads in the item list resource
and stores a handle to it in the items field of the dialog record. Because every dialog
box you create has its own dialog record, you can define dialog boxes whose items are
defined by the same item list resource. The AppendDITL and ShortenDITL procedures
are especially useful if several dialog boxes share the same item list resource and you
want to add or remove items as appropriate for individual dialog boxes.

When you call the AppendDITL procedure, you specify a dialog box, and you specify a
new item list resource to append to the dialog box’s existing item list resource. You also
specify where the Dialog Manager should display the new items. You can use one of
these constants to designate where AppendDITL should display the appended items:

CONST overlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}

TYPE DITLMethod = Integer;

Figure 6-28 illustrates an existing dialog box and a pair of items to be appended.

Figure 6-28 An existing dialog box and items to append

Initial dialog box
 Items to be appended

(0,0)

(90,0)

(0,0)

(90,0)

(0,200)
 (0,120)

Using the Dialog Manager 6-51

C H A P T E R 6

Dialog Manager
If you specify the overlayDITL constant, AppendDITL superimposes the appended
items over the dialog box. That is, AppendDITL interprets the coordinates of the display
rectangles for the appended items (as specified in their item list resource) as local
coordinates within the dialog box. Figure 6-29 shows the result of overlaying the items
upon the dialog box illustrated in Figure 6-28.

Figure 6-29 The dialog box after items are overlaid

If you specify the appendDITLRight constant, AppendDITL appends the items to the
right side of the dialog box, as illustrated in Figure 6-30, by positioning the display
rectangles of the appended items relative to the upper-right coordinate of the dialog box.
The AppendDITL procedure automatically expands the dialog box to accommodate the
new dialog items.

Figure 6-30 The dialog box after items are appended to the right

If you specify the appendDITLBottom constant, AppendDITL appends the items to the
bottom of the dialog box, as illustrated in Figure 6-31, by positioning the display
rectangles of the appended items relative to the lower-left coordinate of the dialog box.
The AppendDITL procedure automatically expands the dialog box to accommodate the
new dialog items.

(0,0)

(90,0)

(0,120)
 (0,200)

(0,0)

(90,0)

(0,200)
 (0,320)

6-52 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Figure 6-31 The dialog box after items are appended to the bottom

As an alternative to passing the overlayDITL, appendDITLRight, or
appendDITLBottom constant, you can pass a negative number to AppendDITL, which
appends the items relative to an existing item in the dialog box. The absolute value of
this number is interpreted as the item in the dialog box relative to which the new items
are to be positioned. For example, if you pass –2 to AppendDITL, the display rectangles
of the appended items are offset from the upper-left corner of item number 2 in the
dialog box. Figure 6-12 on page 6-24 shows a simple dialog box with two checkboxes.
Figure 6-32 shows the same dialog box after an additional item is appended relative to
the first checkbox, so that the new item appears between the two existing checkboxes.

Figure 6-32 A dialog box with an item appended relative to an existing item

The application-defined routine called DoSpellBoxWithSpanish, which is shown in
Listing 6-13 on the next page, illustrates the use of the AppendDITL procedure to add
the new item.

(0,0)

(90,0)

(180,0)

(0,120)
 (0,200)

Using the Dialog Manager 6-53

C H A P T E R 6

Dialog Manager
Listing 6-13 Appending an item to an existing dialog box

FUNCTION DoSpellBoxWithSpanish: OSErr;

VAR

theDialog: DialogPtr;

myNewItem: Handle;

docWindow: WindowPtr;

event: EventRecord;

BEGIN

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

IF theDialog <> NIL THEN

BEGIN

myNewItem := GetResource('DITL', kSpanishDITL);

IF myNewItem <> NIL THEN

BEGIN

AppendDITL(theDialog, myNewItem, kAppendItem); {kAppendItem = -3}

ReleaseResource(myNewItem);

docWindow := FrontWindow; {get the front window}

{if there's a front window, deactivate it}

IF docWindow <> NIL THEN

DoActivate(docWindow, FALSE, event);

ShowWindow(theDialog); {show dialog box with appended item}

MyAdjustMenus; {adjust menus as needed}

REPEAT

ModalDialog(@MyEventFilter, itemHit);

{handle clicks in checkboxes here}

UNTIL ((itemHit = kSpellCheck) OR (itemHit = kCancel));

{handle clicks in buttons here}

DisposeDialog(theDialog);

DoSpellBoxWithSpanish := kSuccess;

END

ELSE

DoSpellBoxWithSpanish := kFailed;

END

ELSE DoSpellBoxWithSpanish := kFailed;

END;

The DoSpellBoxWithSpanish routine uses GetNewDialog to create a dialog box.
As you’ll see in Listing 6-14, the dialog resource passed to GetNewDialog has a
resource ID of 402, and this dialog resource in turn specifies an item list resource with
resource ID 402. The DoSpellBoxWithSpanish routine then uses the Resource
Manager function GetResource to obtain a handle to a second item list resource; this
item list resource contains the “Include Spanish Dictionary” checkbox. By setting a value
of –3 in the last parameter of AppendDITL, the DoSpellBoxWithSpanish routine
6-54 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
appends the items in the second item list resource relative to item number 3 (the “Ignore
Words in All Caps” checkbox) in the dialog box. Listing 6-14 shows the dialog resource
for the dialog box, its regular item list resource, and the item list resource that
AppendDITL adds to it.

Listing 6-14 Rez input for a dialog box and the item appended to it

define kSpellCheckID 402 /*resource ID for Spell Check dialog box*/

define kSpellCheckDITL 402 /*resource ID for item list resource*/

define kSpanishDITL 257 /*resource ID for item list resource to append*/

define kAppendHelp 257 /*resource ID for 'hdlg' for appended item*/

resource 'DLOG' (kSpellCheckID, purgeable) {/*Spell Check dialog box*/

{62, 184, 216, 448},

dBoxProc, /*make it modal*/

invisible, /*make it initially invisible*/

noGoAway, 0x0, kSpellCheckDITL, "Spellcheck Options",

alertPositionParentWindow /*place over the document window*/

};

resource 'DITL' (kSpellCheckDITL, purgeable) {

/*items for Spell Check dialog box*/

/*ITEM NO. 1, the "Spell Check" button, goes here*/

/*ITEM NO. 2, the "Cancel" button, goes here*/

/*ITEM NO. 3*/

{48, 23, 67, 202}, CheckBox {enabled, "Ignore Words in All Caps"},

/*ITEM NO. 4*/

{83, 23, 101, 196}, CheckBox {enabled, "Ignore Slang Terms"},

/*static text, help item, etc. go here*/

};

/*add this item list resource to Spell Check dialog box only when */

/* Spanish language dictionary is installed*/

resource 'DITL' (kSpanishDITL, purgeable) {

{ {18, 0, 36, 209},CheckBox {enabled,"Include Spanish Dictionary"},

{0,0,0,0}, HelpItem {disabled, HMScanAppendhdlg{kAppendHelp}} /*help*/

}

};

The dialog resource specifies that the dialog box is invisible so that the application
can add the new item to the dialog box before displaying it. In Listing 6-13, the
DoSpellBoxWithSpanish routine uses the Window Manager procedure
ShowWindow to display the dialog box after its new item has been appended.
(“Displaying Alert and Dialog Boxes” beginning on page 6-61 describes more fully
how to display dialog boxes.)
Using the Dialog Manager 6-55

C H A P T E R 6

Dialog Manager
The appended item list resource includes a help item that causes the Help Manager to
use the help resource associated with that item list resource in addition to the help
resource originally associated with the dialog box. See the chapter “Help Manager” in
Inside Macintosh: More Macintosh Toolbox for information about using the
HMScanAppendhdlg identifier in a help item.

Listing 6-13 uses the Resource Manager procedure ReleaseResource. The
AppendDITL procedure modifies the contents of the dialog box (for instance, by
enlarging it). To use an unmodified version of the dialog box at a later time, your
application needs to use ReleaseResource to release the memory occupied by the
appended item list. Otherwise, if your application calls AppendDITL to add items to
that dialog box again, the dialog box will remain modified by your previous call—for
example, it will still be longer at the bottom if you previously used the
appendDITLBottom constant.

When you can call the ShortenDITL procedure to remove items from the end of a
dialog item list, you specify a pointer to the dialog box and the number of items to
remove from the end of the item list. Note that ShortenDITL does not automatically
resize the dialog box; you can use the Window Manager procedure SizeWindow if you
need to resize the dialog box. You can use the CountDITL function to determine the
number of items in the item list resource for a dialog box.

Using an Application-Defined Item to Draw the Bold Outline
for a Default Button 6
You can define your own type of item for dialog boxes. You might wish, for example,
to display a clock with the current time in a dialog box. You can also use application-
defined items to draw a bold outline around the default button in a dialog box.

You should not use application-defined items in an alert box because they add
unnecessary programming complications. If you need an application-defined item,
use a dialog box instead.

To define your own item, include an item of type UserItem in your item list resource;
it should have a display rectangle, but no text and no resource ID associated with
it. The dialog resource that uses this item list resource must specify the invisible
constant. This makes the dialog box invisible while you install a draw procedure for
your application-defined item. After installing the procedure that draws the application-
defined item, you display the dialog box by using the Window Manager procedure
ShowWindow.

For example, Figure 6-32 on page 6-53 illustrates a dialog box that outlines the default
button (Spell Check). To outline the button, the application must add an item of type
UserItem to the item list resource for that dialog box.

So that an application-defined drawing procedure can draw a border around the Spell
Check button, the item list resource in Listing 6-15 specifies a larger display rectangle for
the application-defined item than for the Spell Check button.
6-56 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Listing 6-15 Rez input for an application-defined item in an item list

resource 'DITL' (kSpellCheckDITL, purgeable) {

/*ITEM NO. 1: OK button--the default*/

{ {123, 170, 144, 254}, Button {enabled,"Spell Check"},

/*ITEMs 2-5 go here: Cancel button, two checkboxes, and static text*/

/*ITEM NO. 6: application-defined item*/

{115, 164, 152, 260}, /*6th item*/

UserItem { /*draw procedure for item draws an outline*/

disabled, /*1st item lies inside this--1st is enabled*/

}

}

};

The application-defined item is disabled because the Spell Check button, which lies
within the application-defined item, is enabled. Because the Spell Check button is listed
before the application-defined item in this item list resource, the Dialog Manager reports
when the user clicks the Spell Check button. However, note that when application-
defined items are enabled, the Dialog Manager reports their item numbers when the
user clicks them.

Note
Although the draw procedure for an application-defined item can draw
outside the item’s display rectangle, this is not recommended because
if the Dialog Manager receives an update event involving an area
outside the display rectangle but inside the area where you draw
your application-defined item, the Dialog Manager won’t call your
draw procedure. ◆

Listing 6-14 on page 6-55 shows the dialog resource for the dialog box. Notice that the
invisible constant in the dialog resource specifies that the dialog box should initially
be invisible.

You must provide a procedure that draws your application-defined item. Your draw
procedure must have two parameters: a dialog pointer and an item number from the
dialog box’s item list resource. For example, this is how you should declare the draw
procedure if you were to name it MyDrawDefaultButtonOutline:

PROCEDURE MyDrawDefaultButtonOutline (theDialog: DialogPtr;

 theItem: Integer);

The parameter theDialog is a pointer to the dialog box containing the application-
defined item. (If your procedure draws in more than one dialog box, this parameter tells
your procedure which dialog box to draw in.) The parameter theItem is a number
corresponding to the position of an item in the item list resource for the dialog box. (In
case the procedure draws more than one item, this parameter tells the procedure which
one to draw.)
Using the Dialog Manager 6-57

C H A P T E R 6

Dialog Manager
To install this draw procedure, use the GetDialogItem and SetDialogItem
procedures. Use GetDialogItem to return a handle to the application-defined item
specified in the item list resource. Then use SetDialogItem to replace this handle
with a pointer to your draw procedure. When calling your draw procedure, the Dialog
Manager sets the current port to the dialog box’s graphics port. The Dialog Manager
then calls your procedure to draw the application-defined item as necessary—for
instance, when you display the dialog box and whenever the Dialog Manager receives
an update event for the dialog box.

Listing 6-16 illustrates how to install the procedure that draws a bold outline. In this
listing, GetDialogItem gets a handle to the application-defined item (which is
the sixth item in the item list resource from Listing 6-15). The procedure pointer
@MyDrawDefaultButtonOutline, which is coerced to a handle, is then passed
to SetDialogItem, which sets the draw procedure into the dialog record.

Listing 6-16 Installing the draw procedure for an application-defined item

FUNCTION DisplayMyDialog (VAR theDialog: DialogPtr): OSErr;

VAR

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

docWindow: WindowPtr;

event: EventRecord;

BEGIN

{begin by creating an invisible dialog box}

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

IF theDialog <> NIL THEN

BEGIN

{get a handle to the application-defined item (i.e., userItem)}

GetDialogItem(theDialog, kUserItem, itemType, itemHandle, itemRect);

{install the drawing procedure for the application-defined item}

SetDialogItem(theDialog, kUserItem, itemType,

 Handle(@MyDrawDefaultButtonOutline), itemRect);

docWindow := FrontWindow; {get the front window}

{if there's a front window, deactivate it}

IF docWindow <> NIL THEN

DoActivate(docWindow, FALSE, event);

ShowWindow(theDialog); {display the dialog box}

MyAdjustMenus; {adjust menus as needed}

DisplayMyDialog := kSuccess;

END

ELSE DisplayMyDialog := kFailed;

{call ModalDialog and handle events in dialog box here}

END;
6-58 Using the Dialog Manager

C H A P T E R 6

Dialog Manager

6
D

ialog M
anager
Use the Window Manager procedure ShowWindow to display the previously invisible
dialog box. When ShowWindow is called in this example, a bold outline is drawn inside
the application-defined item and around the Spell Check button.

Listing 6-17 shows a procedure that draws a bold outline around a button of any size
and shape. This procedure can be used to draw the outline around the Spell Check
button from the previous example.

Listing 6-17 Creating a draw procedure that draws a bold outline around the default button

PROCEDURE MyDrawDefaultButtonOutline(theDialog: DialogPtr; theItem: Integer);

CONST

kButtonFrameInset = -4;

kButtonFrameSize = 3;

kCntrActivate = 0;

VAR

itemType: Integer; {returned item type}

itemRect: Rect; {returned display rectangle}

itemHandle: Handle; {returned item handle}

curPen: PenState;

buttonOval: Integer;

fgSaveColor: RGBColor;

bgColor: RGBColor;

newfgColor: RGBColor;

newGray: Boolean;

oldPort: WindowPtr;

isColor: Boolean;

targetDevice: GDHandle;

BEGIN

{get the default button & draw a bold border around it}

GetDialogItem(theDialog, kDefaultButton, itemType, itemHandle, itemRect);

GetPort(oldPort);

SetPort(ControlHandle(itemHandle)^^.contrlOwner);

GetPenState(curPen);

PenNormal;

InsetRect(itemRect, kButtonFrameInset, kButtonFrameInset);

FrameRoundRect(itemRect, 16, 16);

buttonOval := (itemRect.bottom - itemRect.top) DIV 2 + 2;

IF ((CGrafPtr(ControlHandle(itemHandle)^^.contrlOwner)^.portVersion) =

 kIsColorPort) THEN

isColor := TRUE

ELSE

isColor := FALSE;

IF (ControlHandle(itemHandle)^^.contrlHilite <> kCntrlActivate) THEN
Using the Dialog Manager 6-59

C H A P T E R 6

Dialog Manager
BEGIN {control is dimmed, so draw gray default button outline}

newGray := FALSE;

IF isColor THEN

BEGIN

GetBackColor(bgColor);

GetForeColor(fgSaveColor);

newfgColor := fgSaveColor;

{get the device on which this dialog box is displayed}

targetDevice :=

 MyGetDeviceFromRect(ControlHandle(itemHandle)^^.contrlRect);

{use the gray defined by the display device}

newGray := GetGray(targetDevice, bgColor, newfgColor);

END;

IF newGray THEN

RGBForeColor(newfgColor)

ELSE

PenPat(gray);

PenSize(kButtonFrameSize, kButtonFrameSize);

FrameRoundRect(itemRect, buttonOval, buttonOval);

IF isColor THEN

RGBForeColor(fgSaveColor);

END

ELSE {control is active, so draw default button outline in black}

BEGIN

PenPat(black);

PenSize(kButtonFrameSize, kButtonFrameSize);

FrameRoundRect(itemRect, buttonOval, buttonOval);

END;

SetPenState(curPen);

SetPort(oldPort);

END;

Listing 6-17 uses GetDialogItem to get the Spell Check button and then uses
several QuickDraw routines to draw a black outline around that button’s display
rectangle when the button is active. If the button is inactive (that is, dimmed),
MyDrawDefaultButtonOutline draws a gray outline.

Before drawing a gray outline, MyDrawDefaultButtonOutline determines whether
the dialog box uses a color graphics port. As explained in “Including Color in Your Alert
and Dialog Boxes” beginning on page 6-75, you can supply a dialog box with a color
graphics port by creating a dialog color table ('dctb') resource with the same resource
ID as the dialog resource. If the dialog box uses a color graphics port,
MyDrawDefaultButtonOutline uses the Color QuickDraw function GetGray to
return a blended gray based on the foreground and background colors. Then
6-60 Using the Dialog Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	Dialog Manager, Part 1 (Introduction and About)
	Introduction to Alerts and Dialog Boxes
	Types of Alerts
	Types of Dialog Boxes
	Modal Dialog Boxes
	Movable Modal Dialog Boxes
	Modeless Dialog Boxes

	Items in Alert and Dialog Boxes
	Events in Alert and Dialog Boxes
	Alert Boxes, Dialog Boxes, and the Window Manager
	About the Dialog Manager

	Using the Dialog Manager
	Creating Alert Sounds and Alert Boxes
	Creating Dialog Boxes
	Providing Items for Alert and Dialog Boxes
	Item Types
	Display Rectangles
	Enabled and Disabled Items
	Resource IDs for Items
	Titles for Buttons, Checkboxes, and Radio Buttons
	Text Strings for Static Text and Editable Text Ite...
	Pop-Up Menus as Items
	Keyboard Navigation Among Items

	Manipulating Items
	Changing Static Text
	Getting Text From Editable Text Items
	Adding Items to an Existing Dialog Box

	Using an Application-Defined Item to Draw the Bold...

	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

