CHAPTER 4

Window Manager

This chapter describes how your application can use the Window Manager to create and
manage windows.

A Macintosh application uses windows for most communication with the user, from
discrete interactions like presenting and acknowledging alert boxes to open-ended
interactions like creating and editing documents. Users generally type words and
formulas, draw pictures, or otherwise enter data in a window on the screen. Your
application typically lets the user save this data in a file, open saved files, and view
the saved data in a window. See the chapter “Introduction to File Management” in
Inside Macintosh: Files for more information about handling files.

A window can be any size or shape, and the user can display any number of windows,
within the limits of available memory, on the screen at once.

The Window Manager defines a set of standard windows and provides a set of routines
for managing them. The Window Manager helps your application display windows that
are consistent with the Macintosh user interface. See Macintosh Human Interface Guidelines
for a detailed description of windows and their behavior.

You typically store information about your windows in resources. This chapter describes
the standard window resources. For general information on resources, see the chapter
“Introduction to the Macintosh Toolbox” in this book. For information on Resource
Manager routines, see the chapter “Resource Manager” in Inside Macintosh: More
Macintosh Toolbox.

The Window Manager itself depends on QuickDraw, the part of the Macintosh system
software that handles quick manipulation of graphics. QuickDraw supports drawing
into graphics ports, which are individual and complete drawing environments with
independent coordinate systems. Each window represents a graphics port, which is
described in Inside Macintosh: Imaging.

To maintain its windows, your application needs to know what actions the user is taking
on the desktop. It receives this information through events, which are messages that
describe user actions and report on the processing status of your application. This
chapter describes the events that affect window display and considers mouse-down and
keyboard events as they relate to windows. For a complete description of events and
how your application handles them, see the chapter “Event Manager” in this book.

Most document windows contain controls, which are screen images the user
manipulates to control the display or the behavior of the application. This chapter
illustrates the controls most commonly used in windows. For more information on
creating and responding to controls, see the chapter “Control Manager” in this book.

You use the Window Manager to create and display a new window when the user
creates a new document or opens an existing document. When the user clicks or holds
down the mouse button while the cursor is in a window created by your application,
you use the Window Manager to determine the location of the mouse action and to
alter the window display as appropriate. When the user closes a window, you use the
Window Manager to remove the window from the screen.

4-3

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

This chapter describes how the Window Manager supports windows and then explains
how you can use the Window Manager to

» create and display windows

= handle events in windows

= change the display when the user moves or resizes windows

= remove windows

Introduction to Windows

A window is a user interface element, an area on the screen in which the user can enter
or view information.

The user can have multiple windows on the desktop at once, from a number of different
applications. The user can change the size and location of most windows and can place

windows entirely or partially in front of other windows. Figure 4-1 shows a few
windows on the desktop.

Figure 4-1 Multiple windows
loma prieta
32 items 244 1 MEin disk 139.2 MB availa
” [

,j A
SUStEﬂEDE Window | ————=
E thiswindow: windowP1ir;

2 [BEGIM

E part ;= Findwindowi(event where, thisWwind
CASE part OF

Te admin

inMenuBar; fmouse dowt
BEGIM
MyAdjustMenus; ifirst make
DoMenuCommand{MenuSel ectievent
EMND;
ihSyswindow: imouse dow

SystemClickievent, thiswindow);

BRI

Your application typically creates document windows that allow the user to enter and
display text, graphics, or other information. For an illustration of a document window in
full color, see Plate 1 at the beginning of this book.

Introduction to Windows

CHAPTER 4

Window Manager

A document window is a view into the document—if the document is larger than the
window, the window is a view of a portion of the document. Your application can put
one or more windows on the screen, each window showing a view of a document or of
auxiliary information used to process the document.

The Window Manager defines and supports a set of standard window elements through
which the user can manipulate windows. It’s important that your application follow the
standard conventions for drawing, moving, resizing, and closing windows. By
presenting the standard interface, you make experienced users instantly familiar with
many aspects of your application, allowing them to focus on learning its unique features.

Figure 4-2 illustrates a standard document window and its elements.

Figure 4-2 A document window
Close box Title bar Zoom box
| | |
] 0
=1 Window 1 =———=—1%
JEES— L Scroll arrow
Scroll box
| Scroll bar
—— Scroll arrow
— Size box

The title bar displays the name of the window and indicates whether it’s active or not.
The Window Manager displays the title of the window in the center of the title bar, in the
system font and system font size. If the system font is in the Roman script system, the
title bar is 20 pixels high.

When the user creates a new document, you ordinarily display a new document window
with the title “untitled”, spelled in lowercase letters. If the user creates a second new
document window without saving the first, you title the second window “untitled 2”,
with a space between the word and the number. Continue to add 1 to the number in the
title as long as the user continues to create new windows without saving previously
numbered, untitled windows.

When the user opens a saved document, you assign the document’s filename to the
window in which it is displayed.

The user expects to move a window by dragging it by its title bar. You can support
moving the window by calling the Window Manager’s Dr agW ndow procedure, as
described in “Moving a Window” on page 4-53.

Introduction to Windows 4-5

Jabeue\ mopuipn -

4-6

CHAPTER 4

Window Manager

The close box offers the user a quick way to close a window. You can use the

Tr ackGoAway function to track mouse activity in the close box and the Cl oseW ndow
and Di sposeW ndow procedures to close windows. Closing windows is described in
“Closing a Window” beginning on page 4-60.

The zoom box offers the user a quick way to switch between two different window sizes.
You use the Tr ackBox function to track mouse activity in the zoom box and the

ZoomW ndow procedure to zoom windows. Zooming windows is described in
“Zooming a Window” beginning on page 4-53.

The size box lets the user change the size and dimensions of the window. You use the
G owW ndow function to track mouse activity in the size box and the Si zeW ndow
procedure to resize windows. Sizing windows is described in “Resizing a Window”
beginning on page 4-57.

The scroll bars let the user see different parts of a document that contains more
information than can be displayed at once in the window. Although the Macintosh user
interface guidelines specify that you place scroll bars on the right and lower edges of a
window that needs them, scroll bars are not part of the window structure. You create and
control the scroll bars through the Control Manager, described in the chapter “Control
Manager” in this book.

The content region is the part of the window in which your application displays the
contents of a document, the size box, and the window controls.

The window frame is the part of the window drawn automatically by the Window
Manager—the title bar, including the close box and zoom box, and the window’s outline.

The structure region is the entire screen area occupied by a window, including the frame
and content region. (See Figure 4-10 on page 4-12.)

Active and Inactive Windows

The window in which the user is currently working is the active window. The active
window is the frontmost window on the desktop. It is identified visually by the “racing
stripes” in its title bar.

The active window is the target of keyboard activity. It often contains a blinking
insertion point (also called the caret) marking the place where new text or graphics will
appear. When the user selects text in an active window, your application should
highlight the text with inverse video; if the window becomes inactive, you remove the
highlighting. You can use a secondary selection technique, such as an outline, to mark a
selection in an inactive window. You display scroll bars only in the active window.
Figure 4-3 illustrates a sample document window in active and inactive states.

Except for the active window, all document windows on the desktop, whether they
belong to your application or another, are inactive. Your application can process
documents in inactive windows, but only the active window interacts with the user.
For example, if the user chooses Save from the File menu, your application saves
only the document in the active window.

Introduction to Windows

CHAPTER 4

Window Manager

Figure 4-3 Active and inactive document windows
EO=——— DoZoomlWindow.p =———P DoZoomlWindow.p

DoZoormwWindow (thisWwindow:
windowPtr; zoomInOrOut: Integer);
WAR
gdMthDevice, gdZoomOnThisDevice:
GDHandle;
savePort: GrafPtr;
windRect, zoomRect, theSect: Rect;
sectAres, greatestAres: sl
wTitleHeight: Integer;
sectFlag: Boolean;
BEGIM
GetPorti{savePort);
SetPort{thiswWindow);
EraseRect({thiswindow " portRect);
IF zoomInOrOut = inZoomOut THEM
BEGIM

DoZoomWindow(thisWindow:
windowPtr; zoomindrout: Integer);
YR
gdithDevice, gdZoomOnThisDevice:
GDOHandle;
savePort: GrafPtr;
windFect, zoomREect, theSect: Rect;
sectarea, greatestaArea: Longint;
wTitleHeight: Integer;
sectFlag: Boolean,
BEGIM
GetPort({savePort);
SetPortithiswindow);
EraseRect(thiswindow portRect);
IF zoomInQrout = inZoomOut THEN
BEGIM

Active document window Inactive document window

To make a window active, the user clicks anywhere in its contents or frame. When
the user activates one of your windows, you call the Window Manager to highlight
the window frame and title bar; you activate the controls and window contents.

As a window becomes active, it appears to the user to move forward, in front of all
other windows.

When the user clicks in an inactive document window, you should make the window
active but not make any selections in the window in response to the click. To make a
selection in the window, the user must click again. This behavior protects the user from
losing an existing selection unintentionally when activating a window.

Note

The Finder makes selections in response to the first click in an inactive
window, because this action is more natural for the way Finder
windows are used. You might find that users expect the first click to
cause a selection in some other special-purpose windows created by
your application. This behavior is seldom appropriate in document
windows. O

When a window that belongs to your application becomes inactive, the Window
Manager redraws the frame, removing the highlighting from the title bar and hiding
the close and zoom boxes. Your application hides the controls and the size box and
removes highlighting from application-controlled elements.

When the user reactivates a window, reinstate the window as it was before it was
deactivated. Draw the scroll box in the same position and restore the insertion point or
highlight the previous selection.

Introduction to Windows 4-7

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Types of Windows

Because windows have so many uses, their appearances vary. The Window Manager
defines a number of window types that meet the basic needs of most applications. A
window type is the general description of how a window looks and behaves. Some
windows have title bars and others don't, for example, and windows can have almost
any combination of the window-manipulation elements: close box, zoom box, and
size box.

This section describes the nine basic window types supported by the Window Manager
and their uses. You can create windows of these types by specifying one of the window
type constants: zoonDocPr oc, dBoxPr oc, al t DBoxPr oc, pl ai nDBoxPr oc,

novabl eDBoxPr oc, noG owDocPr oc, docunent Pr oc, zoomNoG ow, and r DocPr oc.
For instructions for creating windows, see “Creating a Window” beginning on page 4-25.

To give the user maximum flexibility and control, you can use the zoonDocPr oc
window type for your document windows. A zoonDocPr oc window supports all of the
window-manipulation elements shown in Figure 4-2 on page 4-5: title bar, close box,
zoom box, and size box. The Window Manager does not necessarily draw the close box
and size box, however. You must call the Window Manager’s Dr awGr owl con procedure
to draw the size box, and you can optionally suppress the close box when you create the
window. For more information on defining a window’s characteristics, see “Creating a
Window” beginning on page 4-25.

Figure 4-4 illustrates a window of type zoonDocPr oc with a close box, as drawn by the
Window Manager before you add the size box and scroll bars.

Figure 4-4 A window of type zoonmDocPr oc

4-8

=0 untitled EIE

zoonDocPr oc

In most cases, a window of type zoonDocPr oc should contain both a close box and a
size box. When the related document contains more data than fits in the window, you
activate the scroll bars and adjust them to show where in the document the user is
working. Figure 4-5 illustrates a window of type zoonmDocPr oc with a size box and
scroll bars.

Introduction to Windows

CHAPTER 4

Window Manager

Figure 4-5 A window of type zoonDoc Pr oc, with size box and inactive scroll bars
ggz untitled §g§|

]
= ||

You also use windows to display alert boxes and dialog boxes. This section describes the
window types used for alert boxes and dialog boxes. For more thorough descriptions of
the different kinds of alert boxes and dialog boxes, see the chapter “Dialog Manager” in
this book.

Alert boxes and fixed-position modal dialog boxes contain no window-manipulation
elements. The user cannot move, resize, zoom, or close them manually. An alert box or a
modal dialog box remains on the screen as the active window until the Dialog Manager
or your application removes it—usually when the user completes the interaction by
clicking one of the buttons. Figure 4-6 illustrates the three window types available for
alert boxes and fixed-position modal dialog boxes.

Figure 4-6 Window types for alert boxes and fixed-position modal dialog boxes

dBoxPr oc

al t DBoxPr oc pl ai nDBoxPr oc

When you want to let the user move a modal dialog box window—in order, for example,
to see text that might be obscured by the window—you can implement a movable modal
dialog box. A movable modal dialog box cannot be resized, closed, or zoomed, but it can
be moved. Figure 4-7 on the next page illustrates the novabl eDBoxPr oc window type.
Like a fixed-position modal dialog box, the movable modal dialog box remains active
until the user completes the dialog.

Introduction to Windows 4-9

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Figure 4-7 A window of type novabl eDBoxPr oc

untitied

novabl eDBoxPr oc

Whenever possible, avoid modal dialog boxes and instead use modeless dialog boxes,
which allow the user to perform other tasks without dismissing the dialog box.
Windows of type noGr owDocPr oc, used for displaying modeless dialog boxes, can be
moved or closed but not resized or zoomed. You can implement modeless dialog boxes
with other window types if necessary, but it’s easier to conform to the user interface
guidelines if you keep your dialog box windows as simple as possible. Figure 4-8
illustrates the modeless dialog box window.

Figure 4-8 A window of type noGr owDocPr oc

4-10

=L

untitled

noG owDocPr oc

The Window Manager also supports a few window types that are seldom used. The
docunent Pr oc window type, for example, has a title bar and supports a close box and
size box but no zoom box. The zoomNoG ow window type is virtually never appropriate:
zoomNoGr owsupports a close box and a zoom box, but not a size box. The r DocPr oc
window type is a rounded-corner window with a title bar and a close box; it is used by
desk accessories. Figure 4-9 illustrates these three seldom-used window types.

The window definition function defines the general appearance and behavior of a
window. The system software and various Window Manager routines call a window’s
window definition function when they need to perform certain window-dependent
actions, such as drawing or resizing a window’s frame.

Introduction to Windows

CHAPTER 4

Window Manager

Figure 4-9 Seldom-used window types

=0

untitled =—"——| O

untitled

EElD niied

L A

docunent Pr oc

zoomNoGr ow r DocPr oc

The Window Manager supplies two standard window definition functions that handle
the nine standard window types. A window definition function draws the window’s
frame, draws the close box and window title (if any), determines which region the cursor
is in within the window, calculates the window’s structure and content regions, draws
the window’s zoom box (if any), draws the window’s size box (if any), and performs any
special initialization or disposal tasks.

A single window definition function can support up to 16 different window types. The
window definition function defines a variation code, an integer from 0 through 15, for
each window type it supports.

A window definition ID is a single value incorporating both the window’s definition
function and its variation code. (The resource ID of the window definition function

is stored in the upper 12 bits of the integer, and the variation code is stored in the
lower 4 bits.) The window-type constants described in this section are in fact window
definition IDs.

Window
Constant definition ID Description
docunent Pr oc 0 movable, sizable window, no zoom box
dBoxPr oc 1 alert box or modal dialog box
pl ai nDBox 2 plain box
al t DBoxPr oc 3 plain box with shadow
noG owDocPr oc 4 movable window, no size box or zoom box
movabl eDBoxPr oc 5 movable modal dialog box
zoonmDocPr oc 8 standard document window
zoomNoGr ow 12 zoomable, nonresizable window
r DocPr oc 16 rounded-corner window

You can provide your own window definition function if you need a window with
unusual characteristics, as described in “The Window Definition Function” beginning
on page 4-120. Always be careful to conform window behavior to the guidelines in
Macintosh Human Interface Guidelines.

Introduction to Windows 4-11

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Window Regions

The Window Manager recognizes a number of different special-purpose window
regions, which are defined by either the Window Manager or the window definition
functions.

The most obvious window regions are the parts of the visible window that the user
manipulates to control the display. These window regions correspond to the standard
window parts. The drag region is the area occupied by the title bar, except for the close
box and zoom box. (The user moves the window by dragging it by its title bar.) The size
region, close region, and zoom region are the areas occupied by the size box, close box,
and zoom box, respectively.

When the user presses the mouse button while the cursor is in one of your windows, you
use the Window Manager function Fi ndW ndowto determine the region in which the
mouse-down event occurred. (The Fi ndW ndow function calls the window’s window
definition function, which defines and interprets the window-manipulation regions.)
Depending on the result, you then call the appropriate Window Manager routine or your
own routine for handling the event. For more information about determining where the
cursor is when the user presses the mouse button, see “Handling Mouse Events in
Windows” on page 4-42. For discussions of how to use the Window Manager routines
for moving, sizing, closing, and zooming windows, see “Moving a Window” beginning
on page 4-53 and the sections that follow it.

The Window Manager also makes a broad distinction between the parts of the window
it draws automatically and the parts drawn by your application. The Window Manager
draws the window frame—the title bar, including the close box and zoom box, and

the window’s outline. (The Window Manager also draws the size box, but only when
your application calls the Dr awGr ow con procedure.) Your application is responsible for
drawing the content region—that is, the part of the window in which the contents

of a document, the size box, and the window controls (including the scroll bars)

are displayed.

The entire screen area occupied by a window, including the window outline, title bar,
and content region, is the structure region. Figure 4-10 illustrates the frame, content
region, and structure region of a window.

Figure 4-10 Window frame, content region, and structure region

Frame + Content region = Structure region

4-12 Introduction to Windows

CHAPTER 4

Window Manager

The drawing region of a graphics port associated with a window encompasses only the
window’s content region.

As the user creates, moves, resizes, and closes windows on the desktop, portions of
windows may be obscured and uncovered. The Window Manager keeps track of these
changes, accumulating a dynamic region known as the update region for each window.
The update region contains all areas of a window’s content region that need updating.
The Event Manager periodically scans the update regions of all windows on the desktop,
generating update events for windows whose update regions are not empty. When your
application receives an update event, it redraws the update region. Both your application
and the Window Manager can manipulate a window’s update region. The sections
“Updating the Content Region” on page 4-40 and “Maintaining the Update Region” on
page 4-41 describe how the Window Manager and your application track and use the
update region.

Dialog Boxes and Alert Boxes

Macintosh applications use alert boxes and dialog boxes to give the user messages and
to solicit information. A text-processing application, for example, might display an

alert box telling the user that a newly inserted graphic does not fit within the page
boundaries. It might display a dialog box in which the user can specify margins, tabs,
and other formatting information. (The chapter “Dialog Manager” in this book explains
how to use the various kinds of alert boxes and dialog boxes.)

Alert boxes and dialog boxes are merely special-purpose windows. You can handle all
alert boxes and most modal dialog boxes through the Dialog Manager, which itself calls
the Window Manager. You supply the Dialog Manager with lists of the items in your
alert boxes and dialog boxes, and the Dialog Manager displays the windows, tells you
which items the user is manipulating, and disposes of the windows when the user is
done. Your application provides the code that responds to the user’s selections in the
alert and dialog boxes.

Although you can specify any window type for your alert boxes and modal dialog
boxes, the Dialog Manager functions that handle alert boxes and modal dialog boxes do
not support window manipulation. You should therefore use one of the window types
without a title bar or size box, most typically the dBoxPr oc window type, for alert boxes
and modal dialog boxes. (When the user is responding to a modal dialog box,
mouse-down events outside the menu bar or the content region of the dialog box result
only in the sounding of the system alert. Note that the Process Manager does not
perform major switching while the Modal Di al og procedure is handling events.)

You use the novabl eDBox window type for movable modal dialog boxes. As described
in the chapter “Dialog Manager” in this book, your application can use the Dialog
Manager to help handle events in a movable modal dialog box. Your application,
however, must handle window-manipulation events—ordinarily only the moving of the
movable modal dialog box window.

Introduction to Windows 4-13

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Use the noGr owDocPr oc window type for modeless dialog boxes. You typically use
the Dialog Manager to handle events in a modeless dialog box, much like events in

a movable modal dialog box. Your application handles window-manipulation events in
modeless dialog boxes just as it handles them in document windows.

If you use complex dialog boxes, you might find it’s more efficient to use the Window
Manager and other parts of the Toolbox, instead of the Dialog Manager, to create and
manage your own dialog box windows. Again, see the chapter “Dialog Manager” in this
book for a list of characteristics to consider when evaluating the complexity of a dialog
box and for examples of customized dialog boxes.

Controls

Most windows contain controls, which are screen images that the user manipulates to
control the display or the behavior of the application. The most common control in a
document window is the scroll bar, illustrated in Figure 4-11.

Figure 4-11 Scroll bars

4-14

=0 Window 1

J

||l:{>ﬁ

= e enomEe = .
e = Scroll box
— Scroll bar
Scroll arrow

t 1

‘ Scroll box Scroll arrow
Gray area Gray area

You use scroll bars to show the relative position, within the entire document, of the
portion of the document displayed in the window. You should allow the user to drag the
scroll box or click in the gray areas or the scroll arrows to move parts of the document
into and out of the window. You activate scroll bars in a window any time there is more
data than can be shown at one time in the space available.

You use the Control Manager to create, display, and manipulate the scroll bars and any
other controls in your windows. Each control “belongs” to a window and is displayed
within the graphics port that represents that window. For each window your application
creates, the Window Manager maintains a control list, a series of entries pointing to the
descriptions of the controls associated with the window.

Introduction to Windows

CHAPTER 4

Window Manager

Most alert boxes and dialog boxes contain buttons, rounded rectangles that cause

an immediate or continuous action when clicked, and most dialog boxes contain
additional screen images, like radio buttons, that display and retain settings. Figure 4-12
illustrates a dialog box with buttons, radio buttons, and a number of other controls and
dialog items.

Figure 4-12 Controls in a dialog box

Pop-up control |[Z] Loma Prieta ¥ | (2] Loma Prieta
e -
Desktop
defined (list)
s l Save = Button
Static text Save this document as: L,
Editable text H | ® -
Radio Icon

button

Buttons ordinarily appear only in alert boxes and dialog boxes. Most of the other
elements illustrated in Figure 4-12 appear only in dialog boxes. If you use the Dialog
Manager to create your alert boxes and dialog boxes, it draws your controls for you and
lets you know when the user has clicked one of them. You can, however, call the Control
Manager yourself to display and track buttons and other controls in any windows your
application creates. You can also write your own control definition functions to create
and control other kinds of controls. For a complete description of how to create and
support controls, see the chapter “Control Manager” in this book.

Jabeue\ mopuipn -

Windows on the Desktop

Multiple windows, from different applications, can appear simultaneously on the
desktop. The Window Manager tracks all windows, using its own private data structure
called the window list. Entries appear in the window list in their order on the desktop,
beginning with the frontmost, active window. When the user changes the ordering of
windows on the desktop, the Window Manager generates events telling your application
to activate, deactivate, and redraw windows as necessary. The Window Manager
prevents you from drawing accidentally in the windows of other applications.

Introduction to Windows 4-15

CHAPTER 4

Window Manager

The user can interact with only one application at a time. The application with which the
user is interacting (that is, the application that owns the window in which the user is
working) is the active application, or foreground process, and the others are inactive
applications, or background processes. One way the user can switch applications is by
clicking in a window that belongs to a background process. The Process Manager then
generates events telling the previously active application that it’s about to be suspended
and telling the newly active application that it can resume processing. (For more infor-
mation about the workings of foreground and background processes and about the
events that support simultaneous running of multiple applications, see the chapter
“Event Manager” in this book.)

Your application is likely to have multiple windows on the desktop at once: one or more
document windows, possibly one or more dialog box windows, and possibly some other
special-purpose windows. The section “Managing Multiple Windows” beginning on
page 4-23 suggests a technique for keeping track of multiple windows.

On the original Macintosh computer, the desktop area was limited to a single screen of
known dimensions. Contemporary systems, however, can support multiple monitors of
various sizes and capabilities. To place its windows in the appropriate place on the
desktop, your application must pay attention to what screen space is available and
where the user is working. For the rules governing window placement, see Macintosh
Human Interface Guidelines. For techniques for managing windows on multiple screens,
see “Positioning a Document Window on the Desktop” beginning on page 4-30.

The entire area of the desktop—that is, the screen area that is not occupied by the menu
bar—is known as the gray region. The Window Manager maintains a pointer to the gray
region in a global variable named G- ay Rgn; you can retrieve a pointer to the gray region
with the Window Manager function Get Gr ayRgn.

About the Window Manager

4-16

The Window Manager provides a complete set of routines for creating, moving, resizing,
and otherwise manipulating windows. It also provides lower-level support by managing
the layering of windows on the desktop and by alerting your application to desktop
changes that affect its windows. Your application and the Window Manager work
together to provide the user with a consistent window interface.

When, for example, the user presses the mouse button while the cursor is in the drag
region of a window’s title bar, you can call the Dr agW ndow procedure, which moves a
dotted outline of the window around the screen in response to mouse movements. When
the user releases the mouse button, Dr agW ndow calls the MoveW ndow procedure,
which redraws the window in its new location. If part or all of an inactive window
belonging to your application is exposed by the move, the Window Manager triggers an
update event that tells your application to redraw the exposed region.

Similarly, if the user clicks in an inactive window, you can call the Sel ect W ndow
procedure. Sel ect W ndow adjusts the window highlighting and layering and

About the Window Manager

CHAPTER 4

Window Manager

also generates activate events that tell your application which windows to activate
and deactivate.

The Window Manager has built-in support for the nine basic window types described in
“Types of Windows” beginning on page 4-8. When you are using one of these window
types, the Window Manager draws the window’s frame, determines what region of the
window the cursor is in, calculates the window’s structure and content regions, draws
the window’s size box, draws the window’s close box and zoom box, and performs any
special initialization or disposal tasks. If necessary, you can write your own window
definition function to handle other types of windows.

Graphics Ports

Each window represents a QuickDraw graphics port, which is a drawing environment
with its own coordinate system. (See Inside Macintosh: Imaging for a complete description
of graphics ports and coordinate systems.) When you create a window, the Window
Manager creates a graphics port in which the window’s contents are displayed.

The location of a window on the screen is defined in global coordinates—that is,
coordinates that reflect the entire potential drawing space. QuickDraw and Color
QuickDraw recognize a coordinate plane whose origin is the upper-left corner of the
main screen, whose positive x-axis extends rightward, and whose positive y-axis extends
downward. In QuickDraw, the horizontal offset is ordinarily labeled h, and the vertical
offset v. Figure 4-13 illustrates the QuickDraw global coordinate system.

Figure 4-13 The QuickDraw global coordinate plane

Jabeue\ mopuipn -

-+ -6
-+ -5
+ -4
-+ -3
+ -2
6 -5-4-3-2-1] " x=h
————1— ————1—
11 1 23 4 5 86
P
3L
4
51
6+ y=v

About the Window Manager 4-17

4-18

CHAPTER 4

Window Manager

Note
The orientation of the vertical axis, while convenient for computer
graphics, differs from mathematical convention. Also, the coordinate

plane is bounded by the limits of QuickDraw coordinates, which range
from -32,768 to 32,767.

QuickDraw stores points and rectangles in its own data structures of

type Poi nt and Rect . In these structures, the vertical coordinate (v)

appears first, followed by the horizontal coordinate (h). Most, but not
all, QuickDraw routines that handle points require you to specify the
coordinates in this order. O

When QuickDraw creates a new graphics port (usually because you've created a new
window through the Window Manager), it defines a bounding rectangle for the port, in
global coordinates. Ordinarily, the bounding rectangle represents the entire area of the
screen on which the window appears. The bounding rectangle is stored in the graphics
port data structure, in the bounds field of a structure called a pixel map in Color
QuickDraw and a bitmap in QuickDraw.

The graphics port data structure also includes a field called por t Rect, which defines
a rectangle to be used for drawing. In a graphics port that represents a window, the
port Rect rectangle represents the window’s content region.

Note

When you place a window on the screen, you specify the location of its
content region, in global coordinates. Remember to allow space for

the window’s title bar. On the main screen, remember to leave space for
the menu bar. In the Roman script system, both the standard document
title bar and the menu bar are 20 pixels high. You can determine the
height of the menu bar with the Menu Manager Get MBar Hei ght
function. You can calculate the height of the title bar by comparing the
top of the window’s structure region with the top of the window’s
content region. See Listing 4-12 on page 4-55 for a sample procedure that
considers the menu bar and title bar when placing a window on the
screen. [

Within the port rectangle, the drawing area is described in local coordinates—that is, in
the coordinate system defined by the port rectangle. You draw into a window in local
coordinates, without regard to the window’s location on the screen (which is described
in global coordinates). Figure 4-14 illustrates the local and global coordinate systems for
a sample window 180 pixels high by 300 pixels wide, placed with its content region

70 pixels down and 60 pixels to the right of the upper-left corner of the screen.

When the Window Manager creates a window, it places the origin of the local coordinate
system at the upper-left corner of the window’s port rectangle. You can redefine

the coordinates of the port rectangle’s upper-left corner with the QuickDraw

procedure Set Ori gi n.

The Event Manager describes mouse events in global coordinates, and you do most of
your window manipulation in global coordinates. You generally display user data and
manipulate your controls in local coordinates. When you need to convert between the
two, you can call the QuickDraw functions G obal ToLocal and Local Tod obal ,
described in Inside Macintosh: Imaging.

About the Window Manager

CHAPTER 4

Window Manager

Figure 4-14 A window’s local and global coordinate systems

(0,0) in global coordinates

h = File Edit Tools Colors
v) (70,60) in global coordinates

“—(0,0) in local coordinates &
v (90,60) in global coordinates

&

= =

(180,300) in local cordinates
(270,360) in global cordinates

Window Records

Each window has a number of descriptive characteristics such as a title, control list, and
visibility status. The Window Manager stores this information in a window record,
which is a data structure of type W ndowRecor d.

The window record includes
= the window’s graphics port data structure

= the window’s class, which specifies whether it was created directly through the
Window Manager or indirectly through the Dialog Manager

s the window title

= aseries of flags that specify whether the window is visible, whether it’s highlighted,
whether it has a zoom box, and whether it has a close box

= pointers to the structure, content, and update regions

= a handle to the window’s definition function

= a handle to the window’s control list

= an optional handle to a picture of the window’s contents

= areference constant field that your application can use as needed

The window record is described in detail in “The Color Window Record” beginning on
page 4-65.

The first field in the window record is the window’s graphics port. The W ndowPt r data
type is therefore defined as a pointer to a graphics port.

TYPE W ndowPtr = Gafbtr;

About the Window Manager 4-19

Jabeue\ mopuipn -

4-20

CHAPTER 4

Window Manager

You draw into a window by drawing into its graphics port, passing a window pointer to
the QuickDraw drawing routines. You also pass window pointers to most Window
Manager routines.

You don’t usually need to access or directly modify fields in a window record. When you
do, however, you can refer to them through the W ndowPeek data type, which is a
pointer to a window record.

TYPE W ndowPeek = "W ndowRecor d;

The close box, drag region, zoom box, and size box are not included in the window
record because they don’t necessarily have the formal data structure for regions

as defined in QuickDraw. The window definition function determines where these
regions are.

Your application seldom accesses a window record directly; the Window Manager
automatically updates the window record when you make any changes to the window,
such as changing its title. The Window Manager also supplies routines for changing and
reading some parts of the window record.

Color Windows

Since the introduction of Color QuickDraw, the Window Manager has supported color
windows. Color windows are displayed in color graphics ports, as described in Inside
Macintosh: Imaging. The color window record is exactly like the window record described
in “Window Records” on page 4-19, except that it contains a color graphics port instead
of a monochrome graphics port.

Whether or not your application uses color explicitly, and whether or not a color monitor
is currently installed, your application should work with color windows whenever Color
QuickDraw is available. Once you have created a window, you can use the window
record and window pointer for a color window interchangeably with the window record
and window pointer for a monochrome window.

On a monitor that is set to display 4-bit color or greater, the Window Manager
automatically displays the window title and parts of the frame and controls in color (or
gray scale, depending on the capabilities of the monitor). The user can adjust these colors
through the Color control panel. Except in unusual circumstances, your application
should not try to change the colors of the window frame. On a monitor that’s set to
display 1-bit color, the Window Manager draws the window title, frame, and controls in
black and white.

Various elements of a window’s colors are controlled by the window color table, which
contains a series of part codes for different window elements and the RGB values
associated with each part.

Because the user can select window display colors for the entire desktop, and because
the Window Manager performs some complex display calculations automatically if you
don’t override it, your application typically uses the default system window color table.

About the Window Manager

CHAPTER 4

Window Manager

If your application explicitly controls the colors used in a window, however, you can
define your own window color tables.

You define a window color table for a window by providing a window color table
resource (that is, a resource of type ' wet b') with the same resource ID as the window’s
"W ND resource. The Window Manager creates a window color table when it creates
the window record. The Window Manager maintains its own linked list, using auxiliary
window records, which associates your application’s windows with their corresponding
window color tables. The window color table and the auxiliary window record are
described in “The Window Color Table Record” beginning on page 4-71 and “The
Auxiliary Window Record” beginning on page 4-73.

Except in unusual circumstances, your application doesn’t need to manipulate window
color tables or the auxiliary window record.

For compatibility with other applications in the shared environment, your application
should not manipulate system color tables directly but should use the Palette Manager,
as described in Inside Macintosh: Imaging. If your application provides its own window
and control definition functions, they should apply the user’s desktop color choices just
as the default definition functions do.

Events in Windows

Events are messages that describe user actions and report on the processing status of
your application. The Window Manager generates two kinds of events: activate

events and update events. Activate events tell your application that a specified
window is becoming active or inactive. Update events tell your application that it
must redraw part or all of a window’s content region. The section “Handling Events in
Windows” beginning on page 4-41 describes when these events occur and how your
application responds.

One of the basic functions of the Window Manager is to report where the cursor is
when your application receives a mouse-down event. The Window Manager function
Fi ndW ndowtells your application whether the cursor is in a window and, if it’s in

a window, which window it’s in and where in that window (that is, the title bar, the
drag region, and so on). You can use the Fi ndW ndow function as a first filter for
mouse-down events, separating events that merely affect the window display from
events that manipulate user data.

The Window Manager also provides a set of routines that help you implement the
standard window-manipulation conventions:

User action Application response

Dragging the title bar Moves the window

Dragging the size box Resizes the window

Clicking the zoom box Toggles the window between two sizes and locations,

known as the user state and the standard state

Clicking the close box Closes the window

About the Window Manager 4-21

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

The next section, “Using the Window Manager,” describes how you can use the Window
Manager to move, resize, zoom, and close windows.

You can call the Control Manager to handle events in window controls, as described in
the chapter “Control Manager” in this book. If you use the Dialog Manager for your alert
boxes and modal dialog boxes, the Dialog Manager handles keyboard activity and
mouse events in these windows. You can also use the Dialog Manager to handle
keyboard activity and mouse events in the content region of movable modal dialog
boxes and modeless dialog boxes. Your application, however, must handle mouse events
in the title bar and close box of a movable modal or modeless dialog box.

When your application is active, a mouse-down event in a window belonging to any
other application, including the Finder, switches your application to the background
(unless there’s an alert box or a modal dialog box pending, in which case the Dialog

Manager merely sounds the system alert).

Using the Window Manager

4-22

Virtually every Macintosh application uses the Window Manager, both to simplify
the display and management of windows and to retrieve basic information about
user activities.

Your application works in conjunction with the Window Manager to present the
standard user interface for windows. When the user clicks in an inactive window
belonging to your application, for example, you can call the procedure Sel ect W ndow
which highlights the newly active window, removes the highlighting from the
previously active window, and generates the activate events that trigger the activation
and deactivation of the two affected windows.

Your application can also use Window Manager routines to handle direct window
manipulation. For example, if the user presses the mouse button when the cursor is in
the title bar of a window, you can call the Dr agW ndow procedure to track the mouse
and drag an outline of the window on the screen until the user releases the mouse button.

You typically create windows from window resources, which are resources of type

"W ND . The Window Manager supports the nine types of windows described in “Types
of Windows” beginning on page 4-8. (You can also write your own window definition
functions to support your own window types. Window definition functions are stored as
resources of type ' WDEF' .) Alert box windows and dialog box windows use alert

(" ALRT"), dialog (' DLOG), and item list (' DI TL') resources; the chapter “Dialog
Manager” describes how to create these resources. Most windows contain controls,
which are defined through control (' CNTL") resources; the chapter “Control Manager”
describes how to create control resources.

Using the Window Manager

CHAPTER 4

Window Manager

Your application typically uses the Window Manager in conjunction with both the
Control Manager and the Dialog Manager. You use the Control Manager to define, draw,
and manipulate controls in your windows. If your window includes scroll bars, for
example, you can use the Tr ackCont r ol function to track the mouse while the user
drags the scroll box. You can use the Dialog Manager to create, display, and track events
in alert boxes and dialog boxes.

System 7 provides help balloons for the window frame—that is, the title bar, zoom box,
and close box—of a window created with one of the standard window definition
functions. You should provide help balloons for your window content region—that is,
the size box, controls, and data area—and for the window frames of any window types
you define. See the chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox
for a description of how to use help balloons.

Before using the Window Manager, you must call the procedure | ni t G af to initialize
QuickDraw, the procedure | ni t Font s to initialize the Font Manager, and finally the
procedure | ni t W ndows to initialize the Window Manager.

Managing Multiple Windows

Your application is likely to have multiple windows on the desktop at once: one or more
document windows, possibly one or more dialog boxes, and possibly some special-
purpose windows of your own. Only one window is active at a time, however.

When your application receives an event, it responds according to what kind of window
is currently active and where the event occurred. When it receives a mouse-down event
in the content region of an active document window, your application follows its own
conventions: inserting text, making a selection, or adding graphics, for example. When it
receives a mouse-down event in the menu bar, your application enables and disables
menu items as appropriate—which again depends on what kind of window is active and
what is selected in that window. If the user has the insertion point in an editable text
field in a modal dialog box, for example, the only menu item available might be Paste in
the Edit menu—and then only if there is something in the scrap to be pasted.

You can use various strategies for keeping track of different kinds of windows. The
r ef Con field in the window record is set aside specifically for use by applications.
You can use the r ef Con field to store different kinds of data, such as a number that
represents a window type or a handle to a record that describes the window.

The sample code in this chapter—excerpts from the SurfWriter application used
throughout this book—uses a hybrid strategy:

s For document windows, the r ef Con field holds a handle to a document record.

= For modeless or movable modal dialog boxes, the r ef Con field holds a number that
represents a type of dialog box.

You may well find other approaches more practical.

Using the Window Manager 4-23

Jabeue\ mopuipn -

4-24

CHAPTER 4

Window Manager

The SurfWriter application stores document information about the user’s data, the
window display, and the file, if any, associated with the data in a document record. The
document record takes this form:

TYPE MyDocRec =

RECORD
edi t Rec: TEHandl e; {handl e to text being edited}
vScrol | Bar: Control Handl e; {control handle to the }

{ vertical scroll bars}
hScrol | Bar: Control Handl e; {control handle to the }

{ horizontal scroll bars}
fil eRef Num I nt eger; {reference number for file}
fil eFSSpec: FSSpec; {FSSpec record for file}
wi ndowDi rty: Bool ean; {whet her data has changed }

{ since | ast save}

END;
MyDocRecPt r = "MyDocRec;
MyDocRecHnd = "MyDocRecPtr;

The SurfWriter application creates a document record every time it creates a document
window, and it stores a handle to the document record in the r ef Con field of the
window record. (See the chapter “Introduction to File Management” in Inside Macintosh:
Files for a more complete illustration of how to use document records.)

When SurfWriter creates a modeless dialog box or a movable modal dialog box, it stores
a constant that represents that dialog box (that is, it specifies the constant in the dialog
resource, and the Window Manager sets the r ef Con field to that value when it creates
the window record). For example, a r ef Con value of 20 might specify a modeless dialog
box that accepts input for the Find command, and a value of 21 might specify a modeless
dialog box that accepts input for the spelling checker.

When SurfWriter receives notification of an event in one of its windows, it first
determines the function of the window and then dispatches the event as appropriate.
Listing 4-1 illustrates an application-defined routine My Get W ndowTy pe that
determines the window’s type.

Note

The MyGet W ndowTy pe function determines the type of a window from
among a set of application-defined window types, which reflect the
different kinds of windows the application creates. These window types
are different from the standard window types defined by the definition
functions, which determine how windows look and behave. To find out
which one of the standard window types a window is, call the Window
Manager function Get W/ari ant. O

The sample code later in this chapter calls the MyGet W ndowType function as part of its
event-handling procedure, described in the section “Handling Events in Windows”
beginning on page 4-41.

Using the Window Manager

CHAPTER 4

Window Manager

Listing 4-1 Determining the window type

FUNCTI ON My Get W ndowType (thi sWndow. W ndowPtr): Integer;
VAR
nyW ndowType: | nteger;

BEG N
| F thi sWndow <> NIL THEN
BEG N
myW ndowType : = W ndowPeek(t hi sWndow) . wi ndowKi nd;
| F myW ndowType < 0 THEN {wi ndow bel ongs to }
My Get W ndowType : = kDAW ndow { a desk accessory}
ELSE
| F myW ndowType = user Ki nd THEN {docunent w ndow}
My Get W ndowType : = kMyDocW ndow
ELSE {di al og wi ndow}
My Get W ndowType : = Get WRef Con(w ndow) ; {get dial og ID}
END
ELSE
My Get W ndowType := KNi | ;
END;

Notice that MyGet W ndowTy pe checks whether the window belongs to a desk accessory.
This step ensures compatibility with older versions of system software. When your
application is running in System 7, it should receive events only for its own windows
and for windows belonging to desk accessories that were launched in its partition. See
Inside Macintosh: Memory for information about partitions and Inside Macintosh: Processes
for information about launching applications and desk accessories.

Creating a Window

You typically specify the characteristics of your windows—such as their initial size,
location, title, and type—in window (" W ND') resources. Once you have defined your
window resources, you can call the function Get NewCW ndow (or Get NewW ndow) to
create windows.

Defining a Window Resource

You typically define a window resource for each type of window that your application
creates. If, for example, your application creates both document windows and
special-purpose windows, you would probably define two window resources. Defining
your windows in window resources lets you localize your window titles for different
languages by changing only the window resources. (You specify the characteristics of
alert boxes and dialog boxes with the alert and dialog resources, described in the chapter
“Dialog Manager” in this book.)

Using the Window Manager 4-25

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Listing 4-2 shows a window resource, in Rez input format, that an application might use
to create a document window. The resource specifies the attributes for windows created
from the resource of type ' W ND' with resource ID 128. The system software loads the
resource into memory immediately after opening the resource file, and the Memory
Manager can purge the memory occupied by the resource.

Listing 4-2 Rez input for a window (* W ND') resource for a document window

4-26

#defi ne r DocW ndow 128

resource 'WND (rDocW ndow, preload, purgeable) {
{64, 60, 314, 460}, /*initial w ndow size and |location*/
zoonDocPr oc, /*w ndow definition ID: */
/* incorporates definition function */
/* and variation code*/

i nvi si bl e, /*window is initially invisible*/
goAway, /*wi ndow has cl ose box*/

0x0, /*reference constant*/
"untitled", /*wi ndow title*/

st agger Par ent W ndowScr een
/*optional positioning specification*/

b

The four numbers in the first element of this resource specify the upper-left and lower-
right corners, in global coordinates, of a rectangle that defines the initial size and
placement of the window’s content region. Your application can change this rectangle
before displaying the window, either programmatically or through an optional
positioning code described later in this section. When specifying a window’s position on
the desktop, remember to leave room for the window’s frame and, on the main screen,
for the menu bar.

The second element contains the window’s definition ID, which specifies both the
window definition function that will handle the window and an optional variation code
that defines a window type. If you are using one of the standard window types
(described in “Types of Windows” beginning on page 4-8), you need to specify only one
of the window-type constants listed in “The Window Resource” beginning on page 4-124.

The third element in the window resource specifies whether the window is initially
visible or invisible. This element determines only whether the Window Manager
displays the window when it first creates it, not whether the window can be seen on the
screen. (A window entirely covered by other windows, for example, might be “visible,”
even though the user cannot see it.) You typically create new windows in an invisible
state, build the content area of the window, and then display the completed window by
calling ShowW ndow to make it visible.

Using the Window Manager

CHAPTER 4

Window Manager

The fourth element in the window resource specifies whether the window has a close
box. Only some of the standard window types (zoonDocPr oc, noG owbocPr oc,
docurent Proc, zoomNoGr ow and r DocPr oc) support close boxes. The close-box
element has no effect if the second field of the resource specifies a window type that does
not support a close box. The Window Manager draws the close box when it draws the
window frame.

The fifth element in the window resource is a reference constant, in which your
application can store whatever data it needs. When it builds a new window record, the
Window Manager stores in the r ef Con field whatever value you specify here. You can
also put a placeholder here (such as 0x0, in this example) and then set the r ef Con field
yourself by calling the Set WRef Con procedure.

The sixth element in the window resource is a string that specifies the window title.

The optional seventh element in the window resource specifies a positioning rule that
overrides the window position specified by the rectangle in the first element. In the
window resource for a document window, you typically specify the positioning constant
st agger Par ent W ndowScr een. For a complete list of the positioning constants and
their effects, see “The Window Resource” beginning on page 4-124.

The positioning constants are convenient when the user is creating a new document or
when you’re handling your own dialog boxes and alert boxes. When you're creating a
new window to display a previously saved document, however, the new window
should appear, if possible, in the same rectangle as the previous window (that is, the
window used during the last save). For the rules of window placement, see “Positioning
a Document Window on the Desktop” beginning on page 4-30.

Use the function Get NewCW ndowor Get NewW ndowto create a window from a
"W ND' resource.

Creating a Window From a Resource

You typically create a new window every time the user creates a new document, opens a
previously saved document, or issues a command that triggers a dialog box.

You create document windows from a window resource using the function

Get NewCW ndowor Get NewW ndow (Whenever Color QuickDraw is available, use
CGet NewCW ndow to create color windows, whether or not a color monitor is currently
installed. A color window record is the same size as a window record, and

Get NewCW ndowreturns a pointer of type W ndowPt r, so most code can handle color
windows and monochrome windows identically.)

You can allow Get NewCW ndow to allocate the memory for your window record. You
can maintain more control over memory use, however, by allocating the memory
yourself from a block allocated for such purposes during your own initialization routine,
and then passing the pointer to Get NewCW ndow

You typically create the scroll bars from control (' CNTL') resources at the time that you
create a document window and then display them when you make the window visible.

Using the Window Manager 4-27

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Listing 4-3 illustrates an application-defined procedure, DoNewCnd, which SurfWriter
calls when the user chooses New from the File menu. Windows are typically invisible
when created and displayed only after all elements are in place.

Listing 4-3 Creating a new window

PROCEDURE DoNewCnd (newDocunent: Bool ean; VAR wi ndow. W ndowPtr);
VAR

my Dat a: MyDocRecHnd; {the docunent's data record}
wi ndSt or age: Ptr; {menory for w ndow record}
dest Rect, {rectangles for creating }
Vi ewRect : Rect ; { TextEdit edit record}
good: Bool ean; {success fl ag}

BEG N
wi ndow : = NIL; {no wi ndow created yet}
good : = FALSE; {no success yet}

{all ocate nenory for wi ndow record from previously allocated bl ock}
wi ndSt orage : = MyPtrAll ocati onProc;
| F wi ndStorage <> NIL THEN {menory all ocati on succeeded}
BEA N {create wi ndow}
| F gCol or QQAvai | abl e THEN
wi ndow : = Get NewCW ndow(r DocW ndow, wi ndSt orage, W ndowPtr(-1))
ELSE
wi ndow : = Get NewW ndow(r DocW ndow, w ndSt orage, W ndowPtr(-1));
END;
{create document record}
nyDat a : = MyDocRecHnd(NewHandl e(SI ZEOF(MyDocRec))) ;
I F (window <> NIL) AND (nyData <> NIL) THEN {wi ndow record and docunent }

BEG N { record both all ocated}
Set Port (w ndow) ; {set current port}
HLock(Handl e(myDat a)) ; {l ock handle to doc record}
Set WRef Con(wi ndow, Longlnt (nyData)); {l'ink docunent record to w ndow}
W TH wi ndow*, myDat a®* DO {fill in docunent record}
BEG N
MyGet TERect (Wi ndow, viewRect); {set up a viewRect for TextEdit}
dest Rect : = vi ewRect;

dest Rect.right := destRect.left + kMaxDocW dt h;
edi t Rec : = TENew(dest Rect, viewRect);

IF editRec <> NIL THEN {it's a good edit record}
BEG N
good : = TRUE; {set success fl ag}
My Adj ust Vi ewRect (edi t Rec) ; {set up edit record}
TEAut oVi ew(TRUE, editRec);
END

4-28 Using the Window Manager

CHAPTER 4

Window Manager

ELSE
good : = FALSE; {cl ear success fl ag}
| F good THEN
BEG N {create scroll bars}
vScrol | Bar := Get NewControl (rVScroll, w ndow);

hScrol I Bar := Get NewControl (rHScrol |, wi ndow);
good := (vScrollBar <> NIL) AND (hScrollBar <> NL);

END;
| F good THEN {it's a good docunent}
BEG N
MyAdj ust Scrol | Bar s(wi ndow, FALSE); {adjust scroll bars}
fileRef Num:= O; {no file yet}
wi ndowDirty : = FALSE; {no changes yet}
| F newDocurent THEN {if it's a new (enpty) docunent, }
ShowW ndow(wi ndow) ; { make it visible}
END;
END; {end of WTH statenent}
HUnl ock(Handl e(nyDat a)) ; {unl ock docunent record}
END; {end of IF (window <> NIL) AND (nmyData <> NL)}
| F NOT good THEN

BEG N
| F wi ndStorage <> NIL THEN {nenory for w ndow record was all ocat ed}
Di sposePtr(w ndSt orage); {dispose of it}
|F nyData <> NIL THEN {menmory for document record was all ocat ed}
BEG N
| F nyData”™.editRec <> NIL THEN {edit record was all ocat ed}
TED spose(nyDat a®*. editRec); {dispose of it}
Di sposeHandl e(Handl e(nyDat a)) ; {di spose of docunent record}

END;
| F wi ndow <> NIL THEN {wi ndow pointer exists, but it's invalid}
G oseW ndow(wi ndow) ; {cl ean up w ndow pointer}
wi ndow : = NIL; {set windowto NIL to indicate failure}
END;

END; { DoNewCid}

The DoNewCnd procedure first sets the window pointer and success flags to show
that a valid window doesn’t yet exist. Then it calls the application-defined function
M/Ptr Al l ocat i onPr oc, which allocates memory for a window record from a block
set aside during program initialization for that purpose. If MyPt r Al | ocat i onPr oc
successfully allocates memory and returns a valid pointer, DoONewCd creates a window,
specifying the ' W ND' resource with resource ID 128, as specified by the constant

r DocW ndow Using this window resource (defined in Listing 4-2 on page 4-26), the
Window Manager creates an invisible window of type zoonDocPr oc. Because

the behi nd parameter to Get NewCW ndow or Get NewW ndowhas the value

W ndowpt r (—1) , the Window Manager places the new window in front of all others
on the desktop.

Using the Window Manager 4-29

Jabeue\ mopuipn -

4-30

CHAPTER 4

Window Manager

The DoNewCnd procedure then creates a document record. It locks the document record
in memory while manipulating it, sets the r ef Con field in the window record so that it
points to the document record, and fills in the document record. While filling in the
document record, DoNewCnd sets up a TextEdit record to hold the user’s data. If that
succeeds, DoNewCnd sets up horizontal and vertical scroll bars. If that succeeds,
DoNewCnd adjusts the scroll bars (see the chapter “Control Manager” in this book for the
application-defined procedure MyAdj ust Scr ol | bar s) and fills in the remaining parts
of the document record. If the window is being created to display a new document, that
is, if no user data needs to be read from a disk, DoNewCnd calls the ShowW ndow
procedure to make the window visible immediately.

If your window resource specifies that a new window is visible, Get NewCW ndow
displays the window immediately. If you're creating a document window, however,
you're more likely to create the window in an invisible state and then make it visible
when you're ready to display it.

= If you're creating a window because the user is creating a new document, you can
display the window immediately by calling the procedure ShowW ndow to make the
window frame visible. This change in visibility adds to the update region and triggers
an update event. Your application then invokes its own procedure for drawing the
content region in response to the update event.

= If you're creating a new window to display a saved document, you must retrieve the
user’s data before displaying it. (See Inside Macintosh: Files for information about
reading saved files.) If possible, the size and location of the window that displays the
document should be the same as when the document was last saved. (See the next
section, “Positioning a Document Window on the Desktop,” for a discussion of
window placement.) Once you have positioned the window and set up its content
region, you can make the window visible by calling ShowW ndow which triggers an
update event. Your application then invokes its own procedure for drawing the
content region.

Positioning a Document Window on the Desktop

Your goal in positioning a window on the desktop is to place it where the user expects it.
For a new document, this usually means just below and to the right of the last document
window in which the user was working. For a saved document, it usually means the
location of the document window when the document was last saved (if it was saved on
a computer with the same screen configuration). This section describes the placement of
document windows. The chapter “Dialog Manager” in this book describes the placement
of alert boxes and dialog boxes. See Macintosh Human Interface Guidelines for a complete
description of window placement.

On Macintosh computers with a single screen of known size, positioning windows

is fairly straightforward. You position the first new document window on the upper-left
corner of the desktop. Open each additional new document window with its upper-

left corner slightly below and to the right of the upper-left corner of its predecessor.
Figure 4-15 illustrates how to position multiple documents on a single screen.

Using the Window Manager

CHAPTER 4

Window Manager

Figure 4-15 Document window positions on a single screen

If the user closes one or more document windows, display subsequent windows in the
“empty” positions before adding more positions below and to the right. Figure 4-16
illustrates how you fill in an empty position when the user opens a new document after
closing one created earlier.

Figure 4-16 “Filling in” an empty document window position

Using the Window Manager 4-31

Jabeue\ mopuipn -

4-32

CHAPTER 4

Window Manager

On computers with multiple monitors, window placement depends on a number
of factors:

= the number of screens available and their dimensions
» the location of the main screen—that is, the screen that contains the menu bar
= the location of the screen on which the user was most recently working

In general, you place the first new document window on the main screen, and you place
subsequent document windows on the screen that contains the largest portion of the
most recently active document window. That is, if you display a blank document
window when the user starts up your application, you place the window on the main
screen. If the user moves the window to another screen and then creates another new
document, you place the new document window on the other screen. Although the user
is free to place windows so that they cross screen boundaries, you should never display a
new window that spans multiple screens.

When the user opens a saved document, you replicate the size and location of the
window in which the document was last saved, if possible.

The Window Manager recognizes a set of positioning constants in the window
resource that let you position new windows automatically. You typically use the
constant st agger Par ent W ndowScr een for positioning document windows. The
st agger Par ent W ndowScr een constant specifies the basic guidelines for document
window placement: When creating windows from a template that includes

st agger Par ent W ndowScr een, the Window Manager places the first window in
the upper-left corner of the main screen. It places subsequent windows with their
upper-left corners 20 pixels to the right and 20 pixels below the upper-left corner

of the last window in which the user was working. Figure 4-17 illustrates how

the Window Manager positions a new document window when the

st agger Par ent W ndowScr een specification is in effect and the user has been
working in a window off the main screen.

If the user moves or closes a window that occupies one of the interim positions, and the
window template specifies st agger Par ent W ndowScr een, the Window Manager
uses the “empty” slot for the next new window created before moving further down and
to the right.

For a complete list of the positioning constants and their effects, see “The Window
Resource” beginning on page 4-124.

You can usually use the st agger Par ent W ndowScr een positioning constant when
creating a window that is to display a new document. You must perform your own
window-placement calculations, however, when opening saved documents and when
zooming windows.

When the user saves a document, the document window can be in one of two states: the
user state or the standard state.

Using the Window Manager

CHAPTER 4

Window Manager

Figure 4-17 Document window positions on multiple screens

Atticus
untitied

The user state is the last size and location the user established for the window.

The standard state is what your application determines is the most convenient size for
the window, considering the function of the document and the screen space available.
For a more complete description of the standard state, see “Zooming a Window”
beginning on page 4-53. Your application typically calculates the standard state each
time the user zooms to that state.

The user and standard states are stored in the state data record, whose handle appears in
the dat aHandl e field of the window record.

TYPE W6t at eData =

RECORD
user State: Rect; {size and location established by user}
stdSt at e: Rect ; {size and |l ocation established by }
{ application}
END;

When the user saves a document, you must save the user state rectangle and the state of
the window (that is, whether the window is in the user state or the standard state). Then,
when the user opens the document again later, you can replicate the window’s status.
You typically store the state data as a resource in the resource fork of the document file.

Using the Window Manager 4-33

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Listing 4-4 illustrates an application-defined data structure for storing the window’s user
rectangle and state.

Listing 4-4 Application-defined data structure for storing a window’s state data

TYPE MYW ndowSt ate =

RECORD
user St at eRect: Rect; {user state rectangl e}
zoontt at e: Bool ean; {w ndow state: TRUE = standard; }
{ FALSE = user}
END;

MyW ndowSt at ePt r
MyW ndowSt at eHnd

"MyW ndowst at e;
AMyW ndowSt at ePt r;

This structure translates into an application-defined resource that is stored in the
resource fork of the document when the user saves the document.

Listing 4-5 shows an application-defined routine for saving a document’s state data. The
SurfWriter application calls the procedure My SaveW ndowPosi t i on when the user
saves a document.

Listing 4-5 Saving a document window’s position

PROCEDURE MySaveW ndowPosi tion (nyW ndow. W ndowPtr ;
nyResFi | eRef Num | nteger);

VAR
| ast WndowSt ate: MyW ndowSt at e;
nmy St at eHandl e: MyW ndowSt at eHnd;
cur ResRef Num I nt eger;

BEG N

{Set user state provisionally and determ ne whet her wi ndow i s zooned.}
| ast W ndowSt at e. user St at eRect : = W ndowPeek(myW ndow) *. cont Rgn™*. r gnBBox;
| ast W ndowSt at e. zoontt at e : = Equal Rect (| ast W ndowSt at e. user St at eRect

My Get W ndowSt dSt at e(myW ndow)) ;
{if windowis in standard state, then set the wi ndow s user state from}
{ the userState field in the state data record}

| F | ast W ndowSt at e. zoontt at e THEN {wi ndow was in standard state}
| ast W ndowSt at e. user St at eRect : = MyGet W ndowUser St at e(myW ndow) ;
cur ResRef Num : = Cur ResFi | e; {save the ref Num of current resource file}

UseResFi |l e(nmyResFi | eRef Num); {set the current resource file}
mySt at eHandl e : = MyW ndowSt at eHnd(Get 1Resource(rW nSt at e,
kLast WnSt atel D)) ;

4-34 Using the Window Manager

CHAPTER 4

Window Manager

| F nyStat eHandl e <> NI L THEN {a state data resource al ready exists}
BEG N {update it}

ny St at eHandl e = | ast W ndowSt at e;

ChangedResour ce(Handl e(nySt at eHandl e)) ;
END
ELSE {no state data has yet been saved}
BEA N {add state data resource}

mySt at eHandl e : = MyYW ndowSt at eHnd(NewHand! e(Si zeOf (MyW ndowSt ate))) ;
| F nyStateHandl e <> NIL THEN
BEG N
my St at eHandl e : = | ast W ndowSt at e;
AddResour ce(Handl e(nySt at eHandl e), rWnState, kLast W nStatel D,
"l ast wi ndow state');
END;
END;
| F nyStat eHandl e <> NI L THEN
BEG N
Updat eResFi | e(myResFi | eRef Num ;
Rel easeResour ce(Handl e(nySt at eHandl e)) ;
END;
UseResFi | e(cur ResRef Num ;
END;

The MySaveW ndowPosi t i on procedure first determines whether the window is in the
user state or the standard state by setting its own user state field from the bounding
rectangle of the window’s content region and comparing that rectangle with the user
state stored in the state data record. (If the two match, the window is in the user state; if
not, the standard state.) If the window is in the standard state, the procedure replaces its
own user state data with the rectangle stored in the user St at e field of the state data
record. The rest of the procedure saves the application-defined state data record in the
resource fork of the document.

When creating a new window to display a saved document, SurfWriter restores the
saved user state data and recalculates the standard state. Before using the saved
rectangle, however, SurfWriter verifies that the location is reachable on the desktop. (If
the user saves a document on a computer equipped with multiple monitors and then
opens it later on a system with only one monitor, for example, the saved window
location could be entirely or partially off the screen.)

Listing 4-6 on the next page shows MySet W ndowPosi t i on, the application-
defined routine that SurfWriter calls when the user opens a saved document. The
My Set W ndowPosi t i on procedure retrieves the document’s saved state data and
then calls another application- defined routine, MyVer i f yPosi ti on, to verify
that the saved location is practical.

Using the Window Manager 4-35

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Listing 4-6 Positioning the window when the user opens a saved document

PROCEDURE MySet W ndowPosi tion (myW ndow. W ndowPtr);

VAR
nyDat a: MyDocRecHnd;
| ast User St at eRect : Rect ;
st dSt at eRect : Rect ;
cur St at eRect : Rect ;
myRef Num I nt eger;
ny St at eHandl e: MyW ndowSt at eHnd;
resour ceGood: Bool ean;
savePort: GafPtr;
myErr: CSErr;
BEG N
myDat a : = MyDocRecHnd(Get WRef Con(myW ndow)) ; {get docunent record}
HLock(Handl e(myDat a)) ; {lock the record while manipulating it}

4-36

{open the resource fork and get its file reference nunber}
myRef Num : = FSpQpenResFi | e(myDat a*”. fi |l eFSSpec, fsRAW Pernj;
myErr := ResError;
IF nyErr <> noErr THEN

Exi t (MySet W ndowPosi ti on) ;
{get handle to rectangle that describes docunent's |ast w ndow position}
nySt at eHandl e : = MyW ndowSt at eHnd(Get 1Resour ce(r W nSt at e,

kLast WnStatel D)) ;

| F nmyStateHandl e <> NIL THEN {handl e to data succeeded}
BEA N {retrieve the saved user state}
| ast User St at eRect : = nySt at eHandl e*”. user St at eRect ;
resour ceGood : = TRUE;
END
ELSE
BEG N
| ast User StateRect.top : = O; {force MyVerifyPosition to calcul ate }
resourceGood : = FALSE; { the default position}
END;

{verify that user state is practical and cal cul ate new standard stat e}
MyVeri fyPosi ti on(nyW ndow, | ast User St at eRect, stdStateRect);

| F resourceGood THEN {docurent had state resource}
| F nySt at eHandl e, zoonState THEN {if window was in standard state }
cur St at eRect : = stdStat eRect { when saved, display it in}
{ newy calcul ated standard stat e}
ELSE {otherwi se, current state is the user state}
cur StateRect : = | astUser St at eRect
ELSE {docurment had no state resource}

curStateRect := lastUserStateRect; {use default user state}

Using the Window Manager

CHAPTER 4

Window Manager

{nove wi ndow}

MoveW ndow(nyW ndow, cur St ateRect.left, curStateRect.top, FALSE);

{Convert to local coordinates and resize w ndow. }

Get Port (savePort);

Set Port (myW ndow) ;

G obal ToLocal (cur St at eRect . t opLeft);

d obal ToLocal (cur St at eRect . bot Ri ght) ;

Si zeW ndow(myW ndow, cur StateRect.right, curStateRect.bottom TRUE);

| F resourceGood THEN {reset user state and standard }

BEA N { state--Si zeWndow may have changed t hen}
My Set W ndowUser St at e(myW ndow, | ast User St at eRect) ;
My Set W ndowSt dSt at e(myW ndow, st dSt at eRect) ;

END;

Rel easeResour ce(Handl e(my St at eHandl e)) ; {cl ean up}

Cl oseResFi | e(myRef Nunj ;

HUnLock(Handl e(nyData)) ;

END;

The MyVer i f yPosi ti on routine, not shown here, compares the saved location against
available screen space. (See Listing 4-12 on page 4-55 for a strategy for comparing the
saved rectangle with the available screen space.) MyVer i f yPosi t i on alters the user
state rectangle, if necessary (using the same size, if possible, but placing it on available
screen space) and calculates a new standard state for displaying the window on the
screen containing the user state.

After determining valid user and standard state rectangles, the procedure

My Set W ndowPosi t i on sets a temporary positioning rectangle to the appropriate
size and location, based on the state of the document’s window when the document
was saved. The MySet W ndowPosi t i on procedure then calls the Window Manager
procedures MoveW ndowand Si zeW ndow to establish the window’s location and
size before cleaning up.

The SurfWriter application calls My Set W ndowPosi t i on from its routine for opening
saved documents, after reading the document’s data from its data fork. Listing 4-7 shows
the application-defined DoQpenFi | e function that SurfWriter calls when the user opens
a saved document.

Listing 4-7 Opening a saved document

FUNCTI ON DoQpenFil e (nySpec: FSSpec): OSErr;

VAR
nmyW ndow. W ndowPt r ;
nyDat a: MyDocRecHnd;
myFi | eRef Num | nteger;
myErr: CSErr;

Using the Window Manager 4-37

Jabeue\ mopuipn -

4-38

CHAPTER 4

Window Manager

BEG N
DoNewCd(FALSE, mnmyW ndow) ; {FALSE tells DoNewCrd not to }
{ show the w ndow}
| F nyWndow = NIL THEN
BEG N
DoOpenFil e : = kOpenFi |l eError;
Exi t (DoOpenFil e);
END;
Set WIi t | e(myW ndow, nySpec. nane);
{open the file's data fork, passing the file spec-- }
{ FSpOpenDF returns a file reference nunber}
nyErr := FSpOpenDF(nySpec, fsRdW Perm nyFil eRef Num;
IF (myErr <> noErr) AND (nmyErr <> opWErr) THEN {open fail ed}
BEG N {cl ean up}
Di sposeW ndow(myW ndow) ;
DoOpenFile := nyErr;
Exi t (DoOpenFil e);
END;
{get a handle to the wi ndow s docunent record}
myDat a : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
nyDat a**. fil eRef Num : = nyFi | eRef Num {save file ref nun}
nyDat a*”. fi |l eFSSpec : = nySpec; {save fsspec}
myErr : = DoReadFi | e(nyW ndow) ; {read file's data}
{retrieve saved state data and establish valid position}
My Set W ndowPosi ti on(myW ndow) ;
{M/Resi zeW ndow i nval i dates the whol e port Rgn, guaranteeing }
{ an update event--the wi ndow s contents are redrawn then}
My/Resi zeW ndow(nyW ndow) ;
ShowW ndow(nyW ndow) ; {show wi ndow}
DoOpenFile := nyErr;
END;

DoQpenFi | e first calls the application-defined procedure DoNewCnrd to create a new
window, suppressing the immediate display of the window. (Listing 4-3 on page
page 4-28 illustrates the procedure DoNewCnd.) Then DoQpenFi | e sets the window
title to the name of the document file and reads in the data. Then it calls
M/ Set W ndowPosi t i on to determine where to place the new window. After
establishing a valid position, DoOpenFi | e calls the application-defined routine
My/Resi zeW ndow (shown in Listing 4-14 on page 4-59) to set up the content region
in the new dimensions, and then it finally makes the window visible.

Using the Window Manager

CHAPTER 4

Window Manager

Drawing the Window Contents

Your application and the Window Manager work together to display windows on the
screen. Once you have created a window and made it visible, the Window Manager
automatically draws the window frame in the appropriate location. As the user makes
changes to the desktop, moving and resizing different windows, the Window Manager
alters the window frames as necessary. The window frame includes the window outline,
the title bar, and the close and zoom boxes.

Your application is responsible for drawing the window’s content region. It typically
uses the Control Manager to draw the window controls, uses the Window Manager to
draw the size box, and draws the user data itself. The sample code in this chapter uses
the simple model of a content region that contains only controls, the size box, and a
TextEdit record. (See Inside Macintosh: Text for a description of TextEdit.)

Listing 4-8 illustrates an application-defined procedure that draws the content region of
a window.

Listing 4-8 Drawing a window

PRCCEDURE MyDr awW ndow (w ndow. W ndowPtr);
VAR
nmyDat a: MyDocRecHnd;
BEG N
Set Port (wi ndow) ;
nyData : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
HLock(Handl e(nyDat a)) ;
W TH wi ndow* DO
BEG N
Er aseRect (port Rect) ; {erase content area}
Updat eControl s(wi ndow, visRgn); {draw wi ndow control s}
Dr awGr ow con(wi ndow) ; {draw si ze box}
{update wi ndow contents as appropriate to your }
{ application (in this case use TextEdit)}
TEUpdat e(port Rect, nyData””. editRec);
END;
HUnLock(Handl e(nyDat a)) ;
END;

The MyDr awW ndow procedure first sets the current port to the window’s port and gets a
handle to the window’s document record. Using the data in the document record, the
procedure first erases the content region, draws the controls, and draws the size box.
Finally, it draws the user’s data, in this case the contents of a TextEdit edit record.

Using the Window Manager 4-39

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

If your application creates a window that contains a static display, you can let the
Window Manager take care of drawing and updating the content region by placing a
handle to a picture in the wi ndowPi ¢ field of the window record. See the description

of the Set W ndowPi ¢ procedure on page 4-110.

Updating the Content Region

The Window Manager helps your application keep the window display current by
maintaining an update region, which represents the parts of your content region

that have been affected by changes to the desktop. If a user exposes part of an inactive
window by dragging an active window to a new location, for example, the Window
Manager adds the newly exposed area of the inactive window to that window’s
update region.

Figure 4-18 illustrates how the Window Manager adds part of a window’s content region
to its update region when the user exposes additional content area.

Figure 4-18 Moving one window and adding to another window’s update region

4-40

indow 2

<T [T

g

HISTORY OF THE HRSE

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE
INCLUDING A THOROUGH STUDY OF THE BREEDS

Window 1
Update region

Window 2

< I

q

HISTORY OF THE HORSE

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE
INCLUDING A THOROUGH STUDY OF THE BREEDS

Using the Window Manager

CHAPTER 4

Window Manager

The Event Manager periodically scans the update regions of all windows on the desktop.
If it finds one whose update region is not empty, it generates an update event for that
window. When your application receives an update event, it redraws as much of the
content area as necessary, as described in the section “Handling Update Events”
beginning on page 4-48.

As the user makes changes to a document, your application must update both the
document data and the document display in the content area of its window. You can
use one of two strategies for updating the display:

= If your application doesn’t require continuous scrolling or rapid response, you can
add changed areas of the content region to the window’s update region. The Event
Manager then sends your application an update event, and your application invokes
its standard update procedure.

= For continuous scrolling and a faster response time, you can draw directly into the
content area of the window.

In either case, your application ultimately draws in the graphics port that represents
the window. You draw controls through the Control Manager, and you draw text

and graphics with the routines described in Inside Macintosh: Text and Inside Macintosh:
Imaging.

Maintaining the Update Region

Your application can force and suppress update events by manipulating the update
region, using Window Manager routines provided for this purpose.

Your application usually manipulates the update region, for example, when the user
resizes a window that contains a size box and scroll bars. If the user enlarges the
window, the Window Manager adds the newly exposed area to the window’s update
region but does not add the area formerly occupied by the scroll bars. Before calling the
Si zeW ndow procedure to resize the window, your application can call the | nval Rect
procedure twice to add the scroll bar and size box areas to the update region. The next
time it receives an update event, your application erases the scroll bars and draws
whatever parts of the document content might be visible at that location.

Similarly, you can remove an area from the update region when you know that it is in
fact valid. Limiting the size of the update region decreases time spent redrawing. Listing
4-13 on page 4-58, for example, uses the Val i dRect procedure to remove the unaffected
text area from the update region of a window that is being resized.

Handling Events in Windows

Your application must be prepared to handle two kinds of window-related events:

= mouse and keyboard events in your application’s windows, which are reported by the
Event Manager in direct response to user actions

= activate and update events, which are generated by the Window Manager and the
Event Manager as an indirect result of user actions

Using the Window Manager 4-41

Jabeue\ mopuipn -

4-42

CHAPTER 4

Window Manager

In System 7 your application receives mouse-down events if it is the foreground process
and the user clicks in the menu bar, a window belonging to your application, or a
window belonging to a desk accessory that was launched in your application’s partition.
(If the user clicks in a window belonging to another application, the Event Manager
sends your application a suspend event and performs a major switch to the other
application—unless the frontmost window is an alert box or a modal dialog box, in
which case the Dialog Manager merely sounds the system alert, and the Process
Manager retains your application as the foreground process.) When it receives a
mouse-down event, your application first calls the Fi ndW ndow function to map the
cursor location to a window region, and then it branches to one of its own routines, as
described in the next section, “Handling Mouse Events in Windows.”

The Event Manager sends your application an update event when changes on the
desktop or in a window require that part or all of a window’s content region be updated.
The Window Manager and your application can both trigger update events by adding
regions that need updating to the update region, as described in the section “Handling
Update Events” beginning on page 4-48.

Your application receives activate events when an inactive window becomes active or an
active window becomes inactive. Activate events are an example of the close cooperation
between your application and the Window Manager. When you receive a mouse-down
event in one of your application’s inactive windows, you can call the Sel ect W ndow
procedure, which removes the highlighting from the previously active window and adds
highlighting to the newly active window. It also generates two activate events: one
telling your application to deactivate the previously active window and one to activate
the newly active window. Your application then activates and deactivates the content
regions, as described in the section “Handling Activate Events” beginning on page 4-50.

When the user first clicks in an inactive window, most applications do not make a
selection or otherwise change the window or document, beyond making the window
active. When your application receives a resume event because the user clicked in one of
its windows, you might not even want to receive the mouse-down event that caused
your application to become the foreground process. You control whether or not you
receive this event through the ' S| ZE' resource, described in the chapter “Event
Manager” earlier in this book.

Handling Mouse Events in Windows

When your application is active, it receives notice of all keyboard activity and
mouse-down events in the menu bar, in one of its windows, or in any windows
belonging to desk accessories that were launched in its partition.

When it receives a mouse-down event, your application calls the Fi ndW ndow function
to map the cursor location to a window region.

The function specifies the region by returning one of these constants:
CONST i nDesk = 0; {none of the follow ng}

i nMenuBar 1; {in nmenu bar}
i nSysWndow = 2; {in desk accessory w ndow}

Using the Window Manager

CHAPTER 4

Window Manager

i nCont ent = 3; {anywhere in content region except size }
{ box if windowis active, }
{ anywhere including size box if w ndow }
{ is inactive}

i nDrag = 4; {indrag (title bar) region}

i nGr ow = 5; {in size box (active w ndow only)}

i nGoAway 6; {in close box}

i nZoom n = 7; {in zoombox (w ndow in standard state)}

i nZoontut = 8; {in zoombox (w ndow in user state)}

When the user presses the mouse button while the cursor is in a window, Fi ndW ndow
not only returns a constant that identifies the window region but also sets a variable
parameter that points to the window.

In System 7, if Fi ndW ndowreturns i nDesk, the cursor is somewhere other than in the
menu bar, one of your windows, or a window created by a desk accessory launched in
your application’s partition. The function may return i nDesk if, for example, the cursor
is in the window frame but not in the drag region, close box, or zoom box. Fi ndW ndow
seldom returns the value i nDesk, and you can generally ignore the rare instances of this
function result.

If the user presses the mouse button with the cursor in the menu bar (i nMenuBar),
you call your own routines for displaying menus and allowing the user to choose
menu items.

The Fi ndW ndow function returns the value i nSysW ndow only when the user presses
the mouse button with the cursor in a window that belongs to a desk accessory launched
in your application’s partition. You can then call the Syst entCl i ck procedure, passing it
the event record and window pointer. The Syst en i ck procedure, documented in the
chapter “Event Manager” in this book, makes sure that the event is handled by the
appropriate desk accessory.

The Fi ndW ndow function returns one of the other values when the user presses
the mouse button while the cursor is in one of your application’s windows. Your
response depends on whether the cursor is in the active window and, if not, what
kind of window is active.

When you receive a mouse-down event in the active window, you route the event to the
appropriate routine for changing the window display or the document contents. When
the user presses the mouse button while the cursor is in the zoom box, for example, you
call the Window Manager function Tr ackBox to highlight the zoom box and track the
mouse until the button is released.

When you receive a mouse-down event in an inactive window, your response depends
on what kind of window is active:

» If the active window is a movable modal dialog box, you should sound the system
alert and take no other action. (If the active window is a modal dialog box handled by
the Modal Di al og procedure, the Dialog Manager doesn’t pass the event to your
application but sounds the system alert itself.)

Using the Window Manager 4-43

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

s If the active window is a document window or a modeless dialog box, you can call
Sel ect W ndow passing it the window pointer. The Sel ect W ndow procedure
removes highlighting from the previously active window, brings the newly activated
window to the front, highlights it, and generates the activate and update events
necessary to tell all affected applications which windows must be redrawn.

Listing 4-9 illustrates an application-defined procedure that handles mouse-down events.

Listing 4-9 Handling mouse-down events

PROCEDURE DoMbuseDown (event: Event Record);
VAR
part: | nt eger;
t hi sW ndow. W ndowfPtr ;
BEG N
part := Fi ndW ndow(event.where, thisWndow); {find out where cursor is}
CASE part OF
i nMenuBar : {cursor is in nenu bar}
BEG N
{nmake sure nenu itens are properly enabl ed/ di sabl ed}
MyAdj ust Menus;
{l et user choose a nenu comand}
DoMenuConmand(MenuSel ect (event . where));
END;
i NSysW ndow:. {cursor is in a desk accessory w ndow}
SystenCl i ck(event, thisWndow);
i nCont ent : {cursor is in the content region of one }
{ of your application's w ndows}
I F thi sWndow <> Front Wndow THEN {cursor is not in front w ndow}
BEG N
| F Myl sMovabl eModal (Front W ndow) THEN {front windowis }
SysBeep(30) { novabl e nodal }
ELSE {front wi ndow is not novabl e nodal }
Sel ect W ndow(t hi sWndow); {make thi sWndow active}
END
ELSE {cursor is in content region of active w ndow}
DoContent C i ck(t hi sWndow, event); {handle event in content region}
i nDr ag: {cursor is in drag area}
{if a novable nodal is active, ignore click in an inactive title bar}
| F (thi sWndow <> Front Wndow) AND Myl sMbvabl eModal (Fr ont W ndow) THEN
SysBeep(30)
ELSE
{l et Wndow Manager drag w ndow}
Dr agW ndow(t hi sW ndow, event.where, Get GrayRgn™”".rgnBBox);
i NG ow: {cursor is in size box}
DoG owW ndow(t hi sW ndow, event); {change wi ndow si ze}

4-44 Using the Window Manager

CHAPTER 4

Window Manager

i nGoAway': {cursor is in close box}
{call TrackGoAway to handl e nouse until button is rel eased}
| F TrackGoAway(t hi sW ndow, event.where) THEN
Dod oseCnd; {handl e cl ose wi ndow}
i nZoon n, inZoontut: {cursor is in zoom box}
{call TrackBox to handle nouse until button is rel eased}

| F TrackBox(thi sWndow, event.where, part) THEN
DoZoomWN ndow(t hi sW ndow, part); {handle zoom wi ndow}
END, {end of CASE statenent}
END; {end of DoMouseDownEvent}

The DoMouseDown procedure first calls Fi ndW ndow to map the location of the cursor
to a part of the screen or a region of a window.

If the cursor is in the menu bar, DoMbuseDown calls other application-defined
procedures for adjusting and displaying menus and accepting menu choices.

If the cursor is in a window created by a desk accessory, DoMouseDown calls the
Syst enCl i ck procedure, which handles mouse-down events for desk accessories from
within applications.

If the cursor is in the content area of a window, DoMbuseDown first checks to see
whether the cursor is in the currently active window by comparing the window pointer
returned by Fi ndW ndow with the result returned by the function Fr ont W ndow If
the cursor is in an inactive window, DoMouseDown checks to see if the active window
is a movable modal dialog box. (If the front window is an alert box or a fixed-position
modal dialog box, an application does not receive mouse-down events in other
windows.) If the active window is a movable modal dialog box and the cursor is in
another window, DoMouseDown simply sounds the system alert and waits for another
event. If the active window is not a movable modal dialog box, DoMouseDown

calls Sel ect W ndowto activate the window in which the cursor is located. The

Sel ect W ndow procedure relayers the windows as necessary, adjusts the highlighting,
and sends the application a pair of activate events to deactivate the previously active
window and activate the newly active window. DoMbuseDown merely activates

the window in which the cursor is located; it does not make a selection in the newly
activated window in response to the first click in that window.

If the cursor is in the content area of the active window, the DoMouseDown procedure
calls another application-defined procedure (DoCont ent O i ck) that handles mouse
events in the content area.

If the cursor is in the drag region of a window, DoMouseDown first checks whether the
drag region is in an inactive window while a movable modal dialog box is active. In

that case, DoMbuseDown merely sounds the system alert and waits for another event. In
any other case, DoMbuseDown calls the Window Manager procedure Dr agW ndow
which displays an outline of the window, moves the outline as long as the user continues
to drag the window, and calls MoveW ndowto draw the window in its new location
when the user releases the mouse button. After the window is drawn in its new location,
it is the active window, whether or not it was active before.

Using the Window Manager 4-45

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

If the cursor is in the size box, DoMbuseDown calls another application-defined routine
(DoG owW ndow shown in Listing 4-13 on page 4-58) that resizes the window.

If the mouse press occurs in the close box, DoMbuseDown calls the Tr ackGoAway
function, which highlights the close box and tracks all mouse activity until the user
releases the mouse button. As long as the user holds down the mouse button and leaves
the cursor in the close box, Tr ackGoAway leaves the close box highlighted, as illustrated
in Figure 4-19. If the user moves the cursor out of the close box, Tr ackGoAway removes

the highlighting.

Figure 4-19 The close box with and without highlighting

4-46

Close box Close box
with highlighting without highlighting
=f=—r= 1l

When the user releases the mouse button, Tr ackGoAway returns TRUE if the
cursor is still in the close box and FALSE if it is not. If Tr ackGoAway returns TRUE,
DoMouseDown calls the application-defined procedure DoCl oseCnd to close the
window. Listing 4-16 on page 4-60 shows the DoCl oseCnd procedure.

If the mouse press occurs in the zoom box, the DoMbuseDown procedure first calls

Tr ackBox, which highlights the zoom box and tracks all mouse activity until the user
releases the mouse button. As long as the user holds down the mouse button and leaves
the cursor in the zoom box, Tr ackBox leaves the zoom box highlighted, as illustrated in
Figure 4-20. If the user moves the cursor out of the zoom box, Tr ackBox removes the

highlighting.

When the user releases the mouse button, Tr ackBox returns TRUE if the cursor is still in
the zoom box and FALSE if it is not. If Tr ackBox returns TRUE, DoMouseDown calls the
application-defined procedure DoZoomA ndowto zoom the window. Listing 4-12 on
page 4-55 shows the DoZoom\ ndow procedure.

Using the Window Manager

CHAPTER 4

Window Manager

Figure 4-20 The zoom box with and without highlighting

Zoom box Zoom box
with highlighting without highlighting

Handling Keyboard Events in Windows

Whenever your application is the foreground process, it receives key-down events

for all keyboard activity, except for the three standard Command-Shift-number key
sequences and any other Command-Shift-number key combinations the user has
installed. (Command-Shift-1 and Command-Shift-2 eject disks, and Command-Shift-3
stores a snapshot of the screen in a TeachText document on the startup volume. Your
application never receives these key combinations, which are handled by the Event
Manager. For more information, see the chapter “Event Manager” in this book.)

In general, the active window is the target of keyboard activity.

When the user presses a key or a combination of keys, your application responds by
inserting data into the document, changing the display, or taking other actions as defined
by your application. To ensure consistent use of and response to keyboard events, follow
the guidelines in Macintosh Human Interface Guidelines. Your application should, for
example, allow the user to choose frequently used menu items by pressing a keyboard
equivalent—usually a combination of the Command key and another key.

When you receive a key-down event, you first check whether the user is holding down
a modifier key (Command, Shift, Control, Caps Lock, and Option, on a standard
keyboard) and another key at the same time. If the Command key and a character key
are held down simultaneously, for example, you adjust your menus, enabling and
disabling items as appropriate, and allow the user to choose the menu item associated
with the Command-key combination.

Typically, your application provides feedback for standard keystrokes by drawing the
character on the screen. It should also recognize arrow keys for moving the cursor within
a text display, and it might add support for function keys or other special keys available
on nonstandard keyboards.

For an example of an application-defined routine for handling keyboard events, see the
chapter “Event Manager” in this book.

Using the Window Manager 4-47

Jabeue\ mopuipn -

4-48

CHAPTER 4

Window Manager

Handling Update Events

The Event Manager sends your application an update event when part or all of your
window’s content region needs to be redrawn. Specifically, the Event Manager checks
each window’s update region every time your application calls Wai t Next Event or
Event Avai | (or Get Next Event) and generates an update event for every window
whose update region is not empty.

The Window Manager typically triggers update events when the moving and relayering
of windows on the screen require that one or more windows be redrawn. If the user
moves a window that covers part of an inactive window, for example, the Window
Manager first calls the window definition function of the inactive window, requesting
that it draw the window frame. It then adds the newly exposed area to the window’s
update region, which triggers an update event asking your application to update the
content region. Your application can also trigger update events itself by manipulating the
update region.

Your application can receive update events when it is in either the foreground or
the background.

The Window Manager ensures that you do not accidentally draw in other windows by
clipping all screen drawing to the visible region of a window’s graphics port. The visible
region is the part of the graphics port that’s actually visible on the screen—that is, the
part that’s not covered by other windows. The Window Manager stores a handle to the
visible region in the vi sRgn field of the graphics port data structure, which itself is in
the window record.

In response to an update event, your application calls the Begi nUpdat e procedure,
draws the window’s contents, and then calls the EndUpdat e procedure. As illustrated
in Figure 4-21, Begi nUpdat e limits the visible region to the intersection of the visible
region and the update region. Your application can then update either the visible region
or the entire content region—because QuickDraw limits drawing to the visible region,
only the parts of the window that actually need updating are drawn. The Begi nUpdat e
procedure also clears the update region. After you've updated the window, you call
EndUpdat e to restore the visible region in the graphics port to the full visible region.

See Inside Macintosh: Imaging for more information about graphics ports and
visible regions.

Using the Window Manager

CHAPTER 4

Window Manager

Figure 4-21 The effects of Begi nUpdat e and EndUpdat e on the visible region and

update region

Appearance Before screen Before After After
on screen change Begi nUpdat e Begi nUpdat e EndUpdat e
Window 2
Window
7]
B EBE
Bl B i \¢>; & \¢>;
Window 2’s
visible region
Visible region limited
to intersection of update
region and visible region
Window 2's
update region
Update region Update region Update region
empty empty empty

Using the Window Manager 4-49

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Listing 4-10 illustrates an application-defined procedure, DoUpdat e, that handles
an update event.

Listing 4-10 Handling update events

4-50

PROCEDURE DoUpdat e (w ndow. W ndowPtr);
VAR
wi ndowType: Longl nt;
BEG N
{determ ne type of wi ndow as defined by this application}
Wi ndowType : = MyGet W ndowType(w ndow) ;
CASE wi ndowType OF
kMyDocW ndow. {docurment w ndow}
BEG N
Begi nUpdat e(w ndow) ;
My Dr awW ndow(wi ndow) ;
EndUpdat e(w ndow) ;
END;
OTHERW SE {alert or dialog box}
DoUpdat eMyDi al og(wi ndow) ;
END; {of CASE}
END;

The DoUpdat e procedure first determines whether the window being updated is a
document window or some other application-defined window by calling the
application-defined procedure My Get W ndowType (shown in Listing 4-1 on

page 4-25). If the window is a document window, DoUpdat e calls Begi nUpdat e
to establish the temporary visible region, calls the application-defined procedure
My Dr awW ndow (shown in Listing 4-8 on page 4-39) to redraw the content region,
and then calls EndUpdat e to restore the visible region.

If the window is an alert box or a dialog box, DoUpdat e calls the application-defined
procedure DoUpdat eMyDi al 0g, which is not shown here.

Handling Activate Events

Your application activates and deactivates windows in response to activate events,
which are generated by the Window Manager to inform your application that a window
is becoming active or inactive. Each activate event specifies the window to be changed
and the direction of the change (that is, whether it is to be activated or deactivated).

Your application often triggers activate events itself by calling the Sel ect W ndow
procedure. When it receives a mouse-down event in an inactive window, for example,
your application calls Sel ect W ndow which brings the selected window to the front,
removes the highlighting from the previously active window, and adds highlighting to
the selected window. The Sel ect W ndow procedure then generates two activate events:
the first one tells your application to deactivate the previously active window; the
second, to activate the newly active window.

Using the Window Manager

CHAPTER 4

Window Manager

When you receive the event for the previously active window, you

= hide the controls and size box
= remove or alter any highlighting of selections in the window

When you receive the event for the newly active window, you

s draw the controls and size box

= restore the content area as necessary, adding the insertion point in its former location
or highlighting any previously highlighted selections

If the newly activated window also needs updating, your application also receives an
update event, as described in the previous section, “Handling Update Events.”

Note

A switch to one of your application’s windows from a different

application is handled through suspend and resume events, not activate

events. See the chapter “Event Manager” in this book for a description

of how your application can share processing time. O

Listing 4-11 illustrates the application-defined procedure DoAct i vat e, which handles
activate events.

Listing 4-11 Handling activate events

PROCEDURE DoActivate (wi ndow. WndowPtr; activate: Bool ean;
event: Event Record);

VAR
Wi ndowType: I nt eger;
my Dat a: MyDocRecHnd;
gr owRect : Rect ;

BEG N

{determ ne type of wi ndow as defined by this application}
wi ndowType : = MyGet W ndowType(w ndow) ;
CASE wi ndowType OF
kMyFi ndModel essDi al ogBox: {nodel ess Fi nd dial og box}
DoAct i vat eFi ndDBox(w ndow, event);
{nodel ess Check Spelling dialog box}
kMyCheckSpel | i ngModel essDi al ogBox:
DoAct i vat eCheckSpel | DBox(w ndow, event);
kMyDocW ndow:. {docurment wi ndow}
BEG N
nyData : = MyDocRecHnd(Get WRef Con(wi ndow)); {get docunent record}
HLock(Handl e(nyData)); {lock docunent record}
W TH nyDat a®** DO
| F activate THEN {wi ndow i s becomi ng active}

Using the Window Manager 4-51

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

BEG N

{restore selections and insert caret--if using }

{ TextEdit, for exanmple, call TEActivate}

TEAct i vate(edit Rec);

MyAdj ust Menus; {adj ust nenus for w ndow}
{handl e the control s}

docVScrol | A . contrl Vis := kControl Visible;

docHScrol | " .contrl Vis := kControl Vi si bl e;

I nval Rect (docVScrol | . contrl Rect);

I nval Rect (docHScrol | *. contrl Rect);

growRect : = wi ndow". portRect;
W TH gr owRect DO {handl e the size box}
BEA N {adj ust for the scroll bars}
top := bottom- kScroll barAdj ust;
left :=right - kScroll barAdjust;
END;
I nval Rect (growRect) ;
END
ELSE {wi ndow i s becom ng inactive}
BEG N
TEDeact i vat e(edi t Rec) ; {call TextEdit to deactivate data}

Hi deControl (docVScrol l); {hide the scroll bars}
H deCont r ol (docHScrol I);
Dr awG owl con(w ndow) ; {draw t he size box}
END;
HUnLock(Handl e(nyDat a)) ; {unl ock docunent record}
END; {of kMyDocW ndow st at enent}
END; {of CASE statenent}

END;

4-52

The DoAct i vat e procedure first determines the general type of the window; that is,

it calls an application-defined function that returns a constant identifying the type

of the window: a Find dialog box, a Check Spelling dialog box, or a document window.
Listing 4-1 on page 4-25 shows the My Get W ndowType function.

If the target of the activate event is a dialog box window, DoAct i vat e calls other
application-defined routines for activating and deactivating those dialog boxes. The
DoAct i vat eFi ndDBox and DoAct i vat eCheckSpel | DBox routines are not shown
here. (The DoAct i vat e procedure does not check for alert boxes and modal dialog
boxes, because the Dialog Manager’s Modal Di al og procedure automatically handles
activate events.)

Using the Window Manager

CHAPTER 4

Window Manager

If the target is a document window and the activate event specifies that the window is
becoming active, DoAct i vat e highlights any user selections in the window and draws
the insertion point where appropriate. It then makes the controls visible, adds the area
occupied by the scroll bars to the update region, and adds the area occupied by the size
box to the update region. (Placing window area in the update region guarantees an
update event. When the application receives the update event, it calls the application-
defined procedure DoUpdat e to draw the update region, which in this case includes the
size box and scroll bars.)

If the target is a document window, and the activate event specifies that the window

is becoming inactive, the DoAct i vat e procedure calls the TextEdit procedure
TEDeact i vat e to remove highlighting from user selections, calls the Control Manager
procedure Hi deCont r ol to hide the scroll bars, and calls the Window Manager
procedure Dr awG ow con to draw the size box and the outline of the scroll bar area.

Moving a Window

When the user drags a window by the title bar (except for the close and zoom box
regions), the window should move, following the cursor as it moves on the
desktop. Your application can easily let the user move the window by calling the
Dr agW ndow procedure.

The Dr agW ndow procedure draws an outline of the window on the screen and
moves the outline as the user moves the mouse. When the user releases the mouse
button, Dr agW ndow calls the MoveW ndow function, which redraws the window in
its new location.

For an example of moving a window, see the i nDr ag case in Listing 4-9 on page 4-44.

Jabeue\ mopuipn -

Zooming a Window

The zoom box allows the user to alternate quickly between two window positions and
sizes: the user state and the standard state.

The user state is the window size and location established by the user. If your
application does not supply an initial user state, the user state is simply the size and
location of the window when it was created, until the user resizes it.

The standard state is the window size and location that your application considers most
convenient, considering the function of the document and the screen space available. In
a word-processing application, for example, a standard-state window might show a

full page, if possible, or a page of full width and as much length as fits on the screen.

If the user changes the page size through Page Setup, the application might adjust the
standard state to reflect the new page size. If your application does not define a standard
state, the Window Manager automatically sets the standard state to the entire gray
region on the main screen, minus a three-pixel border on all sides. (See Macintosh Human
Interface Guidelines for a detailed description of how your application determines where
to open and zoom windows.) The user cannot change a window’s standard state.

Using the Window Manager 4-53

4-54

CHAPTER 4

Window Manager

The user and standard states are stored in a record whose handle appears in the
dat aHandl e field of the window record.

TYPE W6t at eData =

RECORD
userState: Rect; {size and location established by user}
stdSt at e: Rect ; {size and | ocati on established by }
{ application}
END;

The Window Manager sets the initial values of the user St at e and st dSt at e fields

when it fills in the window record, and it updates the user St at e field whenever the
user resizes the window. You typically compute the standard state every time the user
zooms to the standard state, to ensure that you're zooming to an appropriate location.

When the user presses the mouse button with the cursor in the zoom box, the

Fi ndW ndow function specifies whether the window is in the user state or the standard
state: when the window is in the standard state, Fi ndW ndowreturns i nZoomnl n
(meaning that the window is to be zoomed “in” to the user state); when the window is in
the user state, Fi ndW ndowreturns i nZoonQut (meaning that the window is to be
zoomed “out” to the standard state).

When Fi ndW ndowreturns either i nZooml n or i nZoomQut, your application can call
the Tr ackBox function to handle the highlighting of the zoom box and to determine
whether the cursor is inside or outside the box when the button is released. If Tr ackBox
returns TRUE, your application can call the ZoomW ndow procedure to resize the
window (after computing a new standard state). If Tr ackBox returns FALSE, your
application doesn’t need to do anything. Listing 4-9 on page 4-44 illustrates the use of
Tr ackBox in an event-handling routine.

Listing 4-12 illustrates an application-defined procedure, DoZoomW ndow which an
application might call when Tr ackBox returns TRUE after Fi ndW ndow returns either
i nZoom n or i nZoonQut . Because the user might have moved the window to a
different screen since it was last zoomed, the procedure first determines which screen
contains the largest area of the window and then calculates the ideal window size for
that screen before zooming the window.

The screen calculations in the DoZoomW ndow procedure depend on the routines for
handling graphics devices that were introduced at the same time as Color QuickDraw.
Therefore, DoZoomA ndow checks for the presence of Color QuickDraw before
comparing the window to be zoomed with the graphics devices in the device list. If
Color QuickDraw is not available, DoZoomW ndow assumes that it’s running on a
computer with a single screen.

Using the Window Manager

CHAPTER 4

Window Manager

Listing 4-12 Zooming a window

PROCEDURE DoZoonmW ndow (t hi sWndow. wi ndowPtr; zoom nOrQut: Integer);

VAR
gdNt hDevi ce, gdZoomOnThi sDevi ce: GDHandl e;
savePort: Gafbtr;
wi ndRect, zoonRect, theSect: Rect ;
sect Area, (greatestArea: Longl nt;
wTi t | eHei ght : I nt eger;
sect Fl ag: Bool ean;

BEG N

Cet Port (savePort);
Set Por t (t hi sW ndow) ;

Er aseRect (t hi sW ndow". port Rect) ; {erase to avoid flicker}
I F zoom nOr Qut = i nZoomQut THEN {zoom ng to standard st ate}
BEG N
| F NOT gCol or QDAvai | abl e THEN {assunme a single screen and }
BEG N { set standard state to full screen}
zoonRect : = screenBits. bounds;

| nset Rect (zoonRect, 4, 4);
WEt at eDat aHandl e(W ndowPeek(t hi sW ndow) ~. dat aHandl e) . st dSt at e

.= zoonRect ;
END
ELSE {l ocate wi ndow on avail abl e graphi cs devi ces}
BEG N
wi ndRect : = thi sWndow". port Rect;
Local Tod obal (w ndRect . topLeft); {convert to gl obal coordinates}

Local Tod obal (w ndRect . bot Ri ght);
{cal cul ate height of windows title bar}
wTitl eHeight := windRect.top - 1 -
W ndowPeek(t hi sW ndow) ~. st rucRgn”*”. r gnBBox. t op;
wi ndRect.top := wi ndRect.top - writl eHeight;
gdNt hDevi ce : = Get Devi celi st
greatestArea : = 0; {initialize to 0}
{check w ndow agai nst all gdRects in gDevice |ist and renenber }
{ which gdRect contains |argest area of w ndow}
VWHI LE gdNt hDevi ce <> NIL DO
| F Test Devi ceAttri bute(gdNt hDevi ce, screenDevice) THEN
| F Test Devi ceAttri bute(gdNt hDevi ce, screenActive) THEN
BEG N
{The SectRect routine calculates the intersection }
{ of the w ndow rectangle and this gDevice }
{ rectangle and returns TRUE if the rectangles intersect, }
{ FALSE if they don't.}

Using the Window Manager 4-55

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

sect Flag : = Sect Rect (wi ndRect, gdNt hDevi ce””. gdRect,

t heSect);
{determ ne which screen hol ds greatest w ndow area}
{first, calculate area of rectangle on current device}
W TH t heSect DO

sectArea := Longlnt(right - left) * (bottom- top);
| F sect Area > greatestArea THEN
BEG N

greatest Area : = sectArea; {set greatest area so far}

gdZoomOnThi sDevi ce : = gdNt hDevi ce; {set zoom devi ce}
END;

gdNt hDevi ce : = Get Next Devi ce(gdNt hDevi ce) ;

END; {of WHI LE}
{if gdZoomOnThi sDevice is on nmain device, allow for nenu bar height}
| F gdZoonOnThi sDevi ce = Cet Mai nDevi ce THEN

wTi t| eHei ght : = wTitl eHei ght + Get MBar Hei ght ;
W TH gdZoomOnThi sDevi ce””. gdRect DO {create the zoom rectangl e}
BEG N

{set the zoomrectangle to the full screen, mnus windowtitle }

{ height (and nenu bar height if necessary), inset by 3 pixels}

Set Rect (zoonRect, left + 3, top + wlitleHeight + 3,

right - 3, bottom- 3);

{1f your application has a different "nost useful” standard }

{ state, then size the zoom w ndow accordingly.}

{set up the WstateData record for this w ndow}

WEt at eDat aHandl e(W ndowPeek(t hi sW ndow) ~. dat aHandl e) . st dSt at e

: = zoonRect ;
END;
END;
END; {of inZoonCut}
{if zoom nOrQut = inZoomn, just |let ZoomN ndow zoomto user state}

{zoom t he wi ndow frane}

ZoomWN ndow(t hi sW ndow, zoom nOrQut, (thisWndow = Front W ndow));

MyResi zeW ndow(t hi sW ndow) ; {application-defined wi ndow sizing routine}
Set Port (savePort);

END; (of DoZoomA ndow)

4-56

If the user is zooming the window to the standard state, DoZoomW ndow calculates a
new standard size and location based on the application’s own considerations, the
current location of the window, and the available screens. The DoZoomW ndow
procedure always places the standard state on the screen where the window is currently
displayed or, if the window spans screens, on the screen containing the largest area

of the window.

Using the Window Manager

CHAPTER 4

Window Manager

The bulk of the code in Listing 4-12 is devoted to determining which screen should
display the window in the standard state. The sample code shown here establishes

a standard state that simply occupies the gray area on the chosen screen, minus

three pixels on all sides. Your application should establish a standard state appropriate
to its own documents. When calculating the standard state, move the window as little
as possible from the user state. If possible, anchor one corner of the standard state
rectangle to one corner of the user state rectangle.

If the user is zooming the window to the user state, DoZoomW ndow doesn’t have to
perform any calculations, because the user state rectangle stored in the state data record
should represent a valid screen location.

After calculating the standard state, if necessary, DoZoomW ndow calls the ZoomW ndow
procedure to redraw the window frame in the new size and location and then calls the
application-defined procedure MyResi zeW ndowto redraw the window’s content
region. Listing 4-14 on page 4-59 shows the MyResi zeW ndow procedure.

Resizing a Window

The size box, in the lower-right corner of a window’s content region, allows the user to
change a window’s size.

When the user positions the cursor in the size box and presses the mouse button, your
application can call the Window Manager’s G owW ndow function. This function
displays a grow image—a gray outline of the window’s frame and scroll bar areas,
which expands or contracts as the user drags the size box. The grow image indicates
where the window edges would be if the user released the mouse button at any

given moment.

To avoid unmanageably large or small windows, you supply lower and upper size limits
when you call G owW ndow The si zeRect parameter to G- owW ndow specifies both
the lower and upper size limits in a single structure of type Rect . The values in the

si zeRect structure represent window dimensions, not screen coordinates:

= You supply the minimum vertical measurement in si zeRect . t op.
= You supply the minimum horizontal measurement in si zeRect . | ef t.
= You supply the maximum vertical measurement in Si zeRect . bott om

= You supply the maximum horizontal measurement in si zeRect . ri ght.

Most applications specify a minimum size big enough to include all parts of the structure
area and the scroll bars. Because the user cannot move the cursor beyond the edges of
the screen, you can safely set the maximum size to the largest possible rectangle.

When the user releases the mouse button, G owW ndowreturns a long integer that
describes the window’s new height (in the high-order word) and width (in the low-order
word). A value of 0 means that the window’s size did not change. When Gr owW ndow
returns any value other than 0, you call Si zeW ndowto resize the window.

Using the Window Manager 4-57

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Note
Use the utility functions H Wor d and LoWbr d to retrieve the high-order
and low-order words, respectively. O

When you change a window’s size, you must erase and redraw the window’s scroll bars.

Listing 4-13 illustrates the application-defined procedure DoG- owWW ndow for tracking
mouse activity in the size box and resizing the window.

Listing 4-13 Resizing a window

4-58

PROCEDURE DoGr owW ndow ('t hi sSW ndow. wi ndowPtr;
event: EventRecord);

VAR

gr owsi ze: Longl nt;

[imtRect: Rect ;

ol dVi ewRect : Rect ;

| ocUpdat eRgn: RgnHandl e;

t heResul t : Bool ean;

my Dat a: MyDocRecHnd;
BEG N

{set up the liniting rectangle: kM nDocSize 64 }
{ kMaxDocSi ze = 65535}
SetRect (limtRect, kM nDocSize, kM nDocSi ze, kiMaxDocSi ze,
kMaxDocSi ze) ;

{call Wndow Manager to |l et user drag size box}
growSi ze : = G owW ndow(t hi sWndow, event.where, limtRect);
| F growSi ze <> 0 THEN {if user changed size, }
BEG N { then resize w ndow}

nyDat a : = MyDocRecHnd(Get WRef Con('t hi sW ndow)) ;

ol dVi ewRect := nyData””. edi t Rec"*. vi ewRect ;

| ocUpdat eRgn : = NewRgn;

{save update region in |ocal coordinates}

MyGet Local Updat eRgn(t hi sW ndow, | ocUpdat eRgn);

{resize the w ndow}

Si zeW ndow(t hi sW ndow, LoWbrd(growSi ze), H Word(growsi ze),

TRUE) ;

MyResi zeW ndow(t hi sW ndow) ;

{find intersection of old viewRect and new vi ewRect}

t heResult := SectRect (ol dVi ewRect,

myDat a*”. edi t Rec™”". vi ewRect ,
ol dVi ewRect) ;
{validate the intersection (don't update)}
Val i dRect (ol dVi ewRect) ;

Using the Window Manager

CHAPTER 4

Window Manager

{invalidate any prior update region}
I nval Rgn(| ocUpdat eRgn) ;
Di sposeRgn(| ocUpdat eRgn) ;
END;
END;

When the user presses the mouse button while the cursor is in the size box, the
procedure that handles mouse-down events (DoMbuseDown, shown on page 4-44) calls
the application-defined DoG owW ndow procedure. The DoG- owW ndow procedure

calls the Window Manager function G owW ndow which tracks mouse movement as
long as the button is held down. If the user drags the size box before releasing the mouse
button, G- owW ndowreturns a nonzero value, and DoG owW ndow prepares to resize
the window. First DoGr owW ndowsaves the current view rectangle in the variable

ol dVi ewRect . It will use this information later, when redrawing the content region of
the window in its new size. The G- owW ndow procedure also saves the current update
region, in local coordinates, in the region LocUpdat eRgn, so that it can restore the
update region after doing its own update-region maintenance. (This step is necessary
only if an application allows user input to accumulate into the update region, drawing in
response to update events instead of drawing into the window immediately.)

After saving the current view rectangle and the current update region, DoGr owW ndow
calls the Window Manager procedure Si zeW ndow to draw the window in its new
size. The DoGr owW ndow procedure then calls the application-defined procedure
M/Resi zeW ndow which adjusts the window scroll bars and window contents to the
new size. Listing 4-14 illustrates the application-defined MyResi zeW ndow procedure.

After calling Si zeW ndow DoGr owW ndow calculates the intersection of the old view
rectangle and the new view rectangle. It uses this area to revalidate unchanged portions
of the window (that is, to remove them from the update region), because the

My/Resi zeW ndow procedure invalidates the entire window (that is, places the entire
window in the update region). This way, only the changed parts of the content area are
redrawn when the application receives its next update event.

Listing 4-14 Adjusting scroll bars and content region when resizing a window

PROCEDURE MyResi zeW ndow (w ndow. W ndowPtr);
BEG N
W TH wi ndow* DO
BEG N
{adj ust scroll bars and contents-- }
{ see the chapter “Control Manager” for inplenentation}
MyAdj ust Scr ol | bar s(w ndow, TRUE);
My Adj ust TE(w ndow) ;
{invalidate content region, forcing an update}
I nval Rect (port Rect);
END;
END; { MyResi zeW ndow}

Using the Window Manager 4-59

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Listing 4-15 illustrates the application-defined procedure MyGet Local Updat eRgn,
which supplies a window’s update region in local coordinates. The

MyGet Local Updat eRgn procedure uses the QuickDraw routines CopyRgn and

O f set Rgn, documented in Inside Macintosh: Imaging.

Listing 4-15 Converting a window region to local coordinates

PROCEDURE MyGCet Local Updat eRgn (wi ndow. W ndowPtr;
| ocal Rgn: RgnHandl e) ;

BEG N

{save ol d update region}

CopyRgn(W ndowPeek(w ndow) ~. updat eRgn, | ocal Rgn);

W TH wi ndow*. portBi ts. bounds DO

O fsetRgn(l ocal Rgn, left, top); {convert to |local coords}

END; {MyGet Local Updat eRgn}

Closing a Window

The user closes a window either by clicking the close box, in the upper-left corner of the
window, or by choosing Close from the File menu.

When the user presses the mouse button while the cursor is in the close box, your
application calls the Tr ackGoAway function to track the mouse until the user releases
the button, as illustrated in Listing 4-9 on page 4-44. If the user releases the button while
the cursor is outside the close box, Tr ackGoAway returns FALSE, and your application
does nothing. If Tr ackGoAway returns TRUE, your application invokes its own
procedure for closing a window.

The specific steps you take when closing a window depend on what kind of information
the window contains and whether the contents need to be saved. The sample code in this
chapter recognizes four kinds of windows: the modeless dialog box containing the Find
dialog, the modeless dialog box containing the Spell Check dialog, a standard document
window, and a window associated with a desk accessory that was launched in the
application’s partition.

Listing 4-16 illustrates an application-defined procedure, DoCl oseCnd, that determines
what kind of window is being closed and follows the appropriate strategy. The
application calls DoCl oseCrd when the user clicks a window’s close box or chooses
Close from the File menu.

Listing 4-16 Handling a close command

4-60

PROCEDURE DoC oseCnd;

VAR
nmyW ndow. W ndowPt r; {pointer to window s record}
nyDat a: MyDocRecHnd; {handl e to a docunent record}
wi ndowType: | nteger; {application-defined wi ndow type}

Using the Window Manager

CHAPTER 4

Window Manager

BEG N
myW ndow : = Front W ndow,
wi ndowType : = MyGet W ndowType(nyW ndow) ;
CASE wi ndowType OF

kMyFi ndMbdel essDi al og: {for nodel ess di al og boxes, }
H deW ndow(nyW ndow) ; { hide w ndow}

kMySpel | Model essDi al og: {for nodel ess di al og boxes, }
H deW ndow(nyW ndow) ; { hide w ndow}

k DAW ndow: {for desk accessories, close the DA}
Cl oseDeskAcc(W ndowPeek(myW ndow) . wi ndowKi nd) ;

kMyDocW ndow: {for documents, handle file first}
BEG N

nyData : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
MyCl oseDocunent (nyDat a) ;
END;
END; {of CASE}
END;

The DoCl oseCnd procedure first determines which window is the active window
and then calls the application-defined function MyGet W ndowType to identify the
window’s type, as defined by the application. If the window is a modeless dialog box,
MyCl oseCnd merely hides the window, leaving the data structures in memory. For

a sample routine that displays a hidden window, see Listing 4-18 on page 4-64.

If the window is associated with a desk accessory, the DoCl oseCnd procedure calls
the Cl oseDeskAcc procedure to close the desk accessory. This case is included
only for compatibility; in System 7 desk accessories are seldom launched in an
application’s partition.

Jabeue\ mopuipn -

If the window is associated with a document, DoCl oseCnd reads the document
record and then calls the application-defined procedure MyCl oseDocunent to handle
the closing of a document window. Listing 4-17 illustrates the MyCl oseDocunent
procedure.

Listing 4-17 Closing a document

PROCEDURE MyCd oseDocunent (myData: MyDocRecHnd);

VAR
title: Str 255; {w ndow docunent title}
item I nt eger; {itemin Save Alert dialog box}
docW ndow. W ndowPtr ; {pointer to w ndow record}
event : Event Recor d; {dumry record for DoActivate}
nyErr: CSErr; {variabl e for error-checking}
BEG N
docW ndow : = Front W ndow,

| F (nmyDat a®®. wi ndowbDirty) THEN {changed since | ast save}

Using the Window Manager 4-61

4-62

CHAPTER 4

Window Manager

BEG N
Get WIi t | e(docW ndow, title); {get windowtitle}
Par amrext (title, "', "', ""); {set up dialog text}

{deactivat e wi ndow before displaying Save di al og}
DoAct i vat e(docW ndow, FALSE, event);

{put up Save dialog and retrieve user response}
item:= CautionAl ert(kSaveAlertl D, @#EventFilter);

I F item = kCancel THEN {user clicked Cancel}
Exit (Myd oseDocunent); {exit wi thout closing}

IF item = kSave THEN {user clicked Save}
DoSaveCnd; {save the docunent}

{otherwi se user clicked Don't Save-- }

{ close docunment in either case}

nyErr := DoCl oseFil e(nyData); {cl ose docunent}
{Add your own error handling.}

END;

{cl ose wi ndow whet her or not user saved}

Cl oseW ndow(docW ndow) ; {cl ose w ndow}

Di sposePtr (Ptr(docW ndow)) ; {di spose of w ndow record}
END;

The MyCl oseDocunent procedure checks the wi ndowDi rt y field in the document
record (described in “Managing Multiple Windows” beginning on page 4-23). If the
value of wi ndowDi rty is TRUE, MyCl oseDocunent displays a dialog box giving the
user a chance to save the document before closing the window. The dialog box gives
the user the choices of canceling the close, saving the document before closing

the window, or closing the window without saving the document. If the user

cancels, MyCl oseDocumnent merely exits. If the user opts to save the document,

MyCl oseDocumnent calls the application-defined routine DoSaveCnd, which is

not shown here. (For a description of how to save and close a file, see the chapter
“Introduction to File Management” in Inside Macintosh: Files.) Whether or not the

user saves the document before closing the window, MyCl oseDocunent closes the
document and finally removes the window from the screen and diposes of the memory
allocated to the window record.

Hiding and Showing a Window

Whenever the user clicks a window’s close box, you remove the window from the
screen. Sometimes, however, you might find it’s more efficient to merely hide the
window, instead of removing its data structures.

If your application includes a Find modeless dialog box that searches for a string, for
example, you might want to keep the structures in memory as long as the user is
working. When the user closes the dialog box by clicking the close box, you simply hide
the window by calling the Hi deW ndow procedure. The next time the user chooses the
Find command, your dialog box window is already available, in the same location and
with the same text selected as when it was last used.

Using the Window Manager

CHAPTER 4

Window Manager

To reverse the Hi deW ndow procedure, you must call both ShowW ndow which makes
the window visible, and Sel ect W ndow which makes it the active window. Figure 4-22

illustrates how the three procedures affect the window’s status on the screen.

Figure 4-22

The cumulative effects of H deW ndow, ShowW ndow, and Sel ect W ndow

Window 2

Window 1

Global Changes

!

Before H deW ndow

Window 2

Window 1

=

After H deW ndow

Window 2

Window 1

Ll

]

After ShowW ndow

Window 2

Window 1

Global Changes

—H

After Sel ect W ndow

Using the Window Manager

4-63

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

The application-defined procedure for closing a window—DoCl oseCnt, described
on page 4-60—hides the Find and Spell Check dialog box windows when the

user closes them. Listing 4-18 illustrates a sample application-defined procedure,
DoShowiVbdel essFi ndDi al ogBox, for redisplaying the Find dialog box when the
user next chooses the Find command.

Listing 4-18 Showing a hidden dialog box

PROCEDURE DoShowibdel essFi ndDi al ogBox;
BEG N
| F gFindDialog = NIL THEN {no Find dial og box exists yet}
BEG N
{create Find dial og box}
gFi ndDi al og : = Get NewDi al og(r Fi ndvbdel essDi al og, NL,
Pointer(-1));
| F gFindDi al og = NIL THEN {creation fail ed}
Exi t (DoShowModel essFi ndDi al ogBox) ; {exit}
{store value that identifies dbox in w ndow refCon field}
Set WRef Con(gFi ndDi al og, Longl nt (kMyFi ndModel essDi al og))

ShowW ndow(gFi ndDi al og) ; {make di al og box vi si bl e}
END
ELSE {di al og box al ready exi sts}
BEG N
ShowwW ndow(gFi ndDi al og) ; {nmake it visible}
Sel ect W ndow(gFi ndDi al og) ; {select it}
END;

END;

The DoShowivbdel essFi ndDi al ogBox procedure first checks whether the Find

dialog box already exists. If it doesn’t, then DoShowivbdel essFi ndDi al ogBox creates
a new dialog box through the Dialog Manager. It stores the constant that represents

the Find dialog box in the r ef Con field of the new window record, makes the window
visible, and draws the dialog box contents. If the Find dialog box already exists,
DoShowivbdel essFi ndDi al ogBox makes the dialog box window visible and selects it.
When the Window Manager then generates an activate event, the application calls its
own procedure to draw the contents.

Window Manager Reference

4-64

This section describes the Window Manager’s data structures and routines. It also lists
the resources used by the Window Manager and describes the window (" W ND') and
window color table (* wet b') resources.

Window Manager Reference

	Window Manager
	Introduction to Windows
	Active and Inactive Windows
	Types of Windows
	Window Regions
	Dialog Boxes and Alert Boxes
	Controls
	Windows on the Desktop

	About the Window Manager
	Graphics Ports
	Window Records
	Color Windows
	Events in Windows

	Using the Window Manager
	Managing Multiple Windows
	Creating a Window
	Defining a Window Resource
	Creating a Window From a Resource
	Positioning a Document Window on the Desktop

	Drawing the Window Contents
	Updating the Content Region
	Maintaining the Update Region
	Handling Events in Windows
	Handling Mouse Events in Windows
	Handling Keyboard Events in Windows
	Handling Update Events
	Handling Activate Events

	Moving a Window
	Zooming a Window
	Resizing a Window
	Closing a Window
	Hiding and Showing a Window

	Window Manager Reference

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

