

C H A P T E R 3

3

M
enu M

anager

Menu Manager 3

You can use the Menu Manager to create and manage the menus in your application.
Menus allow the user to view or choose from a list of choices and commands that your
application provides.

All Macintosh applications should provide these standard menus: the Apple menu, the
File menu, and the Edit menu. If you include an Apple menu as a menu of your
application, the Menu Manager automatically adds the Help and Application menus to
your application’s menu bar; it adds the Keyboard menu if more than one keyboard
layout or input method is installed.

Menus are typically stored as resources. This chapter describes the menu-related
resources. See the chapter “Introduction to the Macintosh Toolbox” in this book for
general information on resources and see the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox for information on Resource Manager routines.
See Macintosh Human Interface Guidelines for additional examples of menus that
incorporate many principles of user interface design. Inside Macintosh: Text contains
further information on localizing your application for worldwide markets.

You can choose to provide help balloons for your application’s menus. See the chapter
“Help Manager” in Inside Macintosh: More Macintosh Toolbox for additional details on
providing help balloons for your application’s menus.

You often present a dialog box to the user as a result of the user’s choice of a menu
command that requires additional information before you can perform the command.
See the chapter “Dialog Manager” later in this book for information on creating dialog
boxes in your application.

For additional information on processing events, see the chapter “Event Manager”
earlier in this book.

This chapter provides an introduction to menus and the menu bar, and it then describes

■ various types of menus your application can use

■ standard menus

■ how to store menus as resources

■ how to create menus

■ how to create a menu bar

■ how to change characteristics of menu items

■ how to add items to a menu

Introduction to Menus 3

A menu is a user interface element you can use in your application to allow the user to
view or choose an item from a list of choices and commands that your application
provides. Menus can appear in several different forms: pull-down menus, hierarchical
menus, and pop-up menus.
Introduction to Menus 3-5

C H A P T E R 3

Menu Manager

A pull-down menu is identified by a menu title (a word or an icon) in the menu bar.
Your application can use pull-down menus in the menu bar to allow users to choose a
command or perform an action on a selected object. A pop-up menu is a menu that does
not appear in the menu bar, but appears elsewhere on the screen when the user presses
the mouse button while the cursor is in a particular place. Pop-up menus are most often
accessed from a dialog box. Your application can use pop-up menus to let the user select
one choice from a list of many or to set a specific value. A submenu refers to a menu that
is attached to another menu. A menu to which a submenu is attached is referred to as a
hierarchical menu.

Figure 3-1 shows examples of a pull-down menu, a submenu, and a pop-up menu.

Figure 3-1 A pull-down menu, a submenu, and a pop-up menu

The standard menu bar extends across the top of the startup screen and contains the title
of each available pull-down menu. Your application’s menu bar should always provide
at least the Apple menu, the File menu, and the Edit menu. When you insert the Apple
menu in your application’s menu bar, the Menu Manager automatically adds the Help
and Application menus to your application’s menu bar. It also adds the Keyboard menu
if multiple script systems are installed or if a certain bit is set in the 'itlc' resource.
Your application can include as many other menus as fit on the smallest screen on which
your application runs, and you should create only as many items as are essential to your
application.

If your application uses a menu bar, you should make it always visible and available for
use. If you do not always wish to display the menu bar (for example, if your application
allows the user to view a screen presentation), you can give the user the option of
viewing the presentation on the entire screen without the menu bar showing. However,
you must provide a way, such as a keyboard equivalent for a command, for the user to
access the menu bar or to make the menu bar reappear.

Using menus in your application allows the user to explore many possible choices and
options without having to choose any particular one. By providing help balloons for

Pull-down menu Submenu Pop-up
men
3-6 Introduction to Menus

C H A P T E R 3

Menu Manager

3

M
enu M

anager

your menus, you further allow users to learn about the possible actions or consequences
of a particular menu choice without having to choose the menu command to find out
what happens.

Figure 3-2 shows the SurfWriter application’s menu bar with the Edit menu displayed.
This application supports the standard Apple, File, and Edit menus; the Help and
Application menus; and in addition supports two other application-specific menus.

Figure 3-2 The SurfWriter application’s menu bar with the Edit menu displayed

Each menu has a menu title and one or more menu items associated with it. You should
name each menu so that the title describes or relates to the actions the user can perform
from that menu. For example, the Edit menu of a typical application contains commands
that let the user edit the contents of a document.

Your application can disable any menu. The Menu Manager indicates that a menu is
disabled by dimming its menu title. (In Figure 3-2, the Colors menu is disabled.) The
Menu Manager dims all menu items of a disabled menu. The user can still pull down and
examine the items in a disabled menu, but cannot choose any of the items.

Your application can also disable individual menu items. The Menu Manager dims the
appearance of a disabled item and does not highlight it when the user rests the cursor on
that item. If the user releases the mouse button while the cursor is over a disabled menu
item, the Menu Manager reports that the user did not choose a menu command. (You can
determine if this happened, however, by using the MenuChoice function.)

In Figure 3-2, the Paste command is disabled; the SurfWriter application disables the
Paste command if the Clipboard is empty. SurfWriter also disables the Publisher Options
command when the current selection does not contain a publisher or a subscriber. As
explained in the chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox,
your application should provide help balloons for disabled items that describe what the
item normally does and explain why the item is not available at this time.

Menu titles Menu titles

Menu

bar
Introduction to Menus 3-7

C H A P T E R 3

Menu Manager

Note
Although enabled and disabled are the constants you use in a
resource file to display or to dim menus and menu items, you shouldn’t
use these terms in your help balloons or user documentation. Instead
use the terms menus, menu commands, and menu items for those that are
enabled, and use the terms not available and dimmed to distinguish those
that have been disabled. ◆

The Menu Manager highlights an enabled menu item when the cursor is over it.
Enabled items do not have a dim appearance and can be chosen by the user.

Your application specifies whether menu items are enabled or disabled when it first
defines and creates a menu. You can also disable or enable menu items at any time after
creating a menu. You should enable a menu item whenever your application allows the
user to choose the action associated with that item, and you should disable an item
whenever the user cannot choose that item. For example, if the user selects text and then
presses the mouse button while the cursor is in the menu bar, you should enable the
Copy command in the Edit menu. You should disable the Copy command in the Edit
menu if the user has not selected anything to copy.

Your application can also specify other characteristics of menu items, such as whether
the item has a marking character next to its text (for example, a checkmark) or whether
the item has a keyboard equivalent (for example, Command-C for the Copy command).
“Menu Items” beginning on page 3-12 describes the characteristics of individual menu
items in more detail.

The user typically chooses commands by moving the cursor to the menu bar and
pressing the mouse button while the cursor is over a menu title. When the user presses
the mouse button while the cursor is in the menu bar, your application should call the
MenuSelect function. The MenuSelect function tracks the mouse, displays and
removes menus as the user drags the cursor through the menu bar, highlights menu
titles as the user drags the cursor over them, displays the menu items associated with a
selected menu, highlights enabled menu items as the user drags through a menu, and
handles all user activity until the user releases the mouse button.

The user chooses a menu item by releasing the mouse button while the cursor is over a
particular enabled menu item. When the user chooses a menu item, the Menu Manager
briefly blinks the chosen menu item (to confirm the choice) and then removes the menu
from the display. The Menu Manager leaves the title of the chosen menu highlighted to
provide feedback to the user.

The MenuSelect function returns information that allows your application to
determine which menu item was chosen. Your application then typically responds by
performing the desired command. When your application completes the requested
action, your application should unhighlight the menu title, indicating to the user that the
action is complete.

The user can move the cursor out of the menu (or menu bar) at any time; the Menu
Manager displays any currently visible menu as long as the mouse button is pressed. (If
the cursor is outside of the menu, the Menu Manager removes any highlighting of the
menu item.) If the user releases the mouse button outside of a menu, the MenuSelect
3-8 Introduction to Menus

C H A P T E R 3

Menu Manager

3

M
enu M

anager

function reports that the user did not choose a menu item, and the Menu Manager
removes any currently visible menu. Your application should not take any action if the
user does not choose a menu item.

Menu and Menu Bar Definition Routines 3
The menu definition procedure and menu bar definition function define the general
appearance and behavior of menus. The Menu Manager uses these routines to display
and perform basic operations on menus and the menu bar.

A menu definition procedure performs all the drawing of menu items within a menu.
When you define a menu, you specify its menu definition procedure. The Menu
Manager uses the specified menu definition procedure to draw the menu items in a
menu, determine which item the user chose from a menu, insert scrolling indicators as
items in a menu, and calculate the menu’s dimensions.

A menu bar definition function draws the menu bar and performs most of the drawing
activities related to the display of menus when the user moves the cursor between them.
Unless you specify otherwise, the Menu Manager uses the standard menu bar definition
function to manage your application’s menu bar. The Menu Manager uses the standard
menu bar definition function to draw the menu bar, clear the menu bar, determine
whether the cursor is in the menu bar or any currently displayed menu, calculate the left
edges of menu titles, highlight a menu title, invert the entire menu bar, erase the
background color of a menu and draw the menu’s structure (shadow), and save or
restore the bits behind a menu.

Apple provides a standard menu definition procedure and standard menu bar definition
function. These definition routines are stored as resources in the System file. The
standard menu definition procedure is the 'MDEF' resource with resource ID 0. The
standard menu bar definition function is the 'MBDF' resource with resource ID 0.

When you define your menus and menu bar, you specify the definition routines that the
Menu Manager should use when managing them. You’ll usually want to use the
standard definition routines for your application. However, if you need a feature not
provided by the standard menu definition procedure (for example, if you want to
include more graphics in your menus), you can choose to write your own menu
definition procedure. See “Writing Your Own Menu Definition Procedure” beginning on
page 3-87 for more information. While the Menu Manager does allow you to specify
your own menu bar definition function, Apple recommends that you use the standard
menu bar definition function.

The Menu Bar 3
Each application has its own menu bar. The menu bar of an application applies to only
that application. You usually define a menu bar for your application by providing a
menu bar ('MBAR') resource that lists the order and resource ID of each menu that
appears in your menu bar. You define the menu title and the individual characteristics of
menu items that appear in a menu by providing a menu ('MENU') resource for each
Introduction to Menus 3-9

C H A P T E R 3

Menu Manager

menu that appears in your menu bar. You use Menu Manager routines to create the
menus and menu bar based on these resource definitions.

Your application can change the enabled state of a menu, add menus to or remove
menus from its menu bar, or change the characteristics of any menu items. Whenever
your application changes the enabled state of a menu or the number of menus in its
menu bar, your application must call the DrawMenuBar procedure to update the menu
bar’s appearance.

The menu bar (as defined by the standard menu bar definition function) is white, with a
height that is tall enough to display menu titles in the height of the system font and
system font size, and with a black lower border that is one pixel tall. The menu bar is as
wide as the screen and always appears on the monitor designated by the user as the
startup screen. (The user selects a startup screen using the Monitors control panel.) The
menu bar appears at the top of the screen, and nothing except the cursor can appear in
front of it. Figure 3-3 shows the menu bar of the SurfWriter application.

Figure 3-3 The menu bar of the SurfWriter application

The menu bar helps to indicate the active application. The active application is the one
whose menu bar is currently showing and whose icon appears as the menu title of the
Application menu.

The titles of menus appear in the menu bar. A menu title is a text string (except for the
Apple, Help, Keyboard, and Application menus, the titles of which contain a small icon).
Menu titles always appear in the system font and system font size (for Roman scripts,
the system font is Chicago and the system font size is 12).

You can insert any number of menu titles in the menu bar; however, less than 10 is
usually optimum. Keep in mind that not all users have the same size monitor. Design
your menu bar so that all titles can fit in the menu bar of the smallest screen on which
your application can run. You should also consider localization issues when designing
the number of menus that fit in your menu bar—not all menu titles might fit in the menu
bar once the menu titles are translated. For example, English text often grows 50 percent
larger when translated to other languages.

Figure 3-4 shows the SurfWriter application’s menu bar with menu titles that have been
localized for another script system.

Figure 3-4 The SurfWriter application’s menu bar localized for another script system
3-10 Introduction to Menus

C H A P T E R 3

Menu Manager

3

M
enu M

anager

Menus 3
A menu (as defined by the standard menu definition procedure) is a list of menu items
arranged vertically and contained in a rectangle. The rectangle is shaded and can extend
vertically for the length of the screen. If a menu has more items than will fit on the
screen, the standard menu definition procedure adds a downward-pointing triangular
indicator to the last item on the screen, and it automatically scrolls through the
additional items when the user moves the cursor past the last menu item currently
showing on the screen. When the user begins to scroll through the menu, the standard
menu definition procedure adds an upward-pointing triangular indicator to the top item
on the screen to indicate that the user can scroll the menu back to its original position.

Each menu can have color information associated with it. If you do not define the colors
for your menus in your application’s menu color information table, the Menu Manager
uses the default colors for your menus and menu bar. The default colors are black text on
a white background. In most cases the default colors should meet the needs of your
application. “The Menu Color Information Table Record” on page 3-98 and “The Menu
Color Information Table Resource” on page 3-155 give information on how you can
define colors for your application’s menus.

Your application’s menus can contain any number of menu items. “Menu Items”
(the next section) describes the visual variations that you can use when defining your
menu items.

You typically define the order and resource IDs of the menus in your application’s menu
bar in an 'MBAR' resource. You should define your 'MBAR' resource such that the Apple
menu is the first menu in the menu bar. You should define the next two menus as the File
and Edit menus, followed by any other menus that your application uses. You do not
need to define the Keyboard, Help, or Application menus in your 'MBAR' resource; the
Menu Manager automatically adds them to your application’s menu bar if your
application calls the GetNewMBar function and your menu bar includes an Apple menu
or if your application inserts the Apple menu into the current menu list using the
InsertMenu procedure.

You define the menu title and characteristics of each individual menu item in a 'MENU'
resource. “Creating a Menu Resource” on page 3-43 describes the 'MENU' resource in
more detail.

Pop-up menus do not appear in the menu bar but appear elsewhere on the screen. You
often use pop-up menus in a dialog box when you want the user to be able to make a
selection from a large list of choices. For example, rather than displaying the choices
as a number of radio buttons, you can use a pop-up menu to display the choices at the
user’s convenience.

A hierarchical menu refers to either a pull-down or pop-up menu that has a submenu
attached to it. (However, you should avoid attaching a submenu to a pop-up menu
whenever possible, as this can make the interface more complex and less intuitive to
the user.)
Introduction to Menus 3-11

C H A P T E R 3

Menu Manager

“Creating a Pop-Up Menu” on page 3-56 gives additional information about pop-up
menus, and “Creating a Hierarchical Menu” on page 3-53 describes hierarchical menus
in more detail.

Menu Items 3

A menu item can contain text or can be a line (a divider) separating groups of choices. A
divider is always dimmed, and it has no other characteristics associated with it.

Each menu item (other than dividers) can have a number of visual characteristics:

■ An icon to the left of the menu item’s text. If you define an icon for a menu item, use
an icon that gives a symbolic representation of the menu item’s meaning or effect. You
can specify an icon, a small icon, a reduced icon, or a color icon as the icon for a menu
item; however, items with small or reduced icons cannot have submenus and cannot
be drawn in a script other than the current system script.

■ A checkmark or other marking character to the left of the menu item’s text (and to the
left of the item’s icon, if any). Use such a mark if you need to denote the status of the
menu item or the mode it controls. A menu item can have a mark or a submenu, but
not both.

■ The symbol for the Command key () and another 1-byte character to the right of the
menu item’s text (referred to as the keyboard equivalent of a command). Use this if your
application allows the user to invoke the menu command from the keyboard by
pressing the Command key and one or more other keys in combination, just as if the
user had chosen the command from the menu. An item that has a keyboard
equivalent cannot have a submenu, a small icon, or a reduced icon and cannot be
drawn in a script other than the current system script.

■ A triangular indicator to the right of the menu item’s text to indicate that the item has
a submenu. A menu item that has a submenu cannot have a keyboard equivalent, a
marking character, a small icon, or a reduced icon and cannot be drawn in a script
other than the current system script.

■ A font style—either plain or one of various other styles—for the menu item’s text. You
can set the menu item’s style to bold, italic, underline, outline, shadow, or any
combination of these.

■ The text of the menu item. Choose words for menu items that declare the action that
occurs when the user chooses the command (usually verbs, such as Print or Save). You
can also use adjectives if the command changes the attribute of a selected object (for
example, Bold or Italic). Unless you specify otherwise, the text of menu items appears
in the script of the system font and system font size (for Roman scripts, the system
font is Chicago and the system font size is 12 points). If you want a menu item’s text
to appear in a script other than the current system script, you can specify a script code
for the text. The Menu Manager draws the item’s text in the script identified by the
script code if the script for the specified script system is installed. A menu item that is
drawn in another script cannot have a submenu, small icon, or reduced icon.

■ Three ellipsis points (...) as the last character in the text of the menu item. Use ellipses
in the text of menu items to indicate that your application displays a dialog box that
requests more information from the user before executing the command. Do not use
3-12 Introduction to Menus

C H A P T E R 3

Menu Manager

3

M
enu M

anager

ellipses in menu items that display informational dialog boxes that do not require
additional information from the user. In addition, you should not use ellipses if your
application displays a confirmation alert after the user chooses a menu command. For
example, if the user makes changes to a document, then chooses the Close command,
your application can display a confirmation alert box, asking the user whether the
document should be saved before closing. This type of command should not contain
ellipses in its text.
If your application displays a dialog box requesting more information in response to
the choice of a menu command, do include ellipses in the menu item’s text. For
example, the Open command includes ellipses in its text because the user must
provide additional information: the name of the file to open. When you request more
information from the user in a dialog box, you should provide an OK button or its
equivalent in the dialog box that the user can select to perform the command. The
dialog box should also include a Cancel button or its equivalent so that the user can
cancel the command. See the chapter “Dialog Manager” in this book for information
on creating dialog boxes.

■ A dimmed appearance. When your application disables a menu item, the Menu
Manager dims the menu item to indicate that the user can’t choose it. Note that the
Menu Manager dims the entire menu item, including any mark or icon, the menu text,
and any keyboard equivalent symbol. Divider lines always have a dimmed
appearance, regardless of whether your application enables them or not. When your
application disables an entire menu, the Menu Manager dims the menu title and all
menu items in that menu.

Figure 3-5 shows two menus with menu items that illustrate many of the characteristics
that you can use when defining your menu items.

Figure 3-5 Two menus with various characteristics

When the primary line direction is right to left (as is the case for non-Roman script
systems such as Arabic) the Menu Manager reverses the order of elements in menu
items. For example, any marking character appears to the far right and any keyboard
equivalent appears to the far left of the menu item’s text.

Divider

Disabled

command

Plain text styleMark
Icon

Italic text style

Keyboard

equivalent
Introduction to Menus 3-13

C H A P T E R 3

Menu Manager

On a monitor that is set to display only black and white, the Menu Manager displays
dividers as dotted lines. In all other cases, the Menu Manager displays dividers as
appropriate, based on the current color table. For example, on a monitor set to display
4-bit color or greater, the Menu Manager typically displays dividers as gray lines.

Your menu can contain as many menu items as you wish. However, only the first
31 menu items can be individually disabled (all menu items past 31 are always enabled
if the menu is enabled and always disabled if the menu is disabled). If your menu items
exceed the length of the screen, the user must scroll to view the additional items. Keep
in mind that the fewer the menu items in a menu, the simpler and clearer the menu is
for the user.

Groups of Menu Items 3

The menu items in a particular menu should be logically related to the title of the menu
and grouped to provide greater ease of use and understanding to the user. You should
separate groups with dividers.

A menu can contain both commands that perform actions and commands that set
attributes. You should use a verb or verb phrase to name commands that perform actions
(for example, Cut, Copy, Paste). You should use an adjective to name commands that set
attributes of a selected object (for example, Bold, Italic, Underline). You should group
menu items by their type: verbs (actions) or adjectives (attributes). Create groups within
each type according to the guidelines described here.

Group action commands that are logically related but independent; this makes your
menus easier to read. For example, the Cut, Copy, Paste, Clear, and Select All commands
in the Edit menu are grouped together; the Create Publisher, Subscribe To, and Publisher
Options commands are grouped together; and the Show Clipboard command is set
off by itself. (Figure 3-5 on page 3-13 shows these commands in the Edit menu of a
typical application.)

Group attribute commands that are interdependent. You typically group a set
of commands that set attributes into either a mutually exclusive group or an
accumulating group.

Group a set of attribute commands together if only one attribute in the group can be in
effect at any one time (a mutually exclusive group). Place a checkmark next to the item
that is currently in effect. If the user chooses a different attribute in the group, move the
checkmark to the newly chosen attribute. For example, Figure 3-6 shows a Colors menu
from the SurfWriter application. The colors listed in the Colors menu form a mutually
exclusive group because only one color can be in effect at any one time. In this example,
green is the color currently in effect. If the user chooses a different color, such as blue, the
SurfWriter application uses the SetItemMark procedure to remove the checkmark from
the Green command and to place a checkmark next to the Blue command.
3-14 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-6 Menu items in a mutually exclusive group

You can also group a set of attribute commands together if a number of the attributes in
the group can be in effect at any one time (an accumulating group). In an accumulating
group, use checkmarks to indicate that multiple attributes are in effect. In this type
of group, you also need to provide a command that cancels all the other attributes. For
example, a Style menu that lets the user choose any combination of font styles should
also include a Plain Text command that cancels all the other attributes. Figure 3-7 shows
a Style menu; in this example, the Bold and Outline attributes are both in effect.

Figure 3-7 Menu items in an accumulating group

You can also use a combination of checkmarks and dashes to help indicate the state of
the user’s content. For example, in a menu that reflects the state of a selection, place a
checkmark next to an item if the attribute applies to the entire selection; place a dash
next to an item if the attribute applies to only part of the selection. Figure 3-8 shows a
Style menu that indicates that the selection contains more than one style. In this figure,
the Bold attribute applies to the entire selection; the Underline attribute applies to only
part of the selection.

Figure 3-8 Use of a checkmark and dash in an accumulating group
Introduction to Menus 3-15

C H A P T E R 3

Menu Manager
Your application should adjust its menus appropriately before displaying its menus.
For example, you should add checkmarks or dashes to items that are attributes as
necessary, based on the state of the user’s document and according to the type of
window that is in the front. See “Adjusting the Menus of an Application” on page 3-73
for more information.

Another way to show the presence or absence of an attribute is to use a toggled
command. Use a toggled command if the attribute has two states and you want to allow
the user to move between the two states using a single menu command. For example,
your application could provide a Show Borders command when the borders
surrounding publishers and subscribers are not showing in a document. When the user
chooses the Show Borders command, your application should show the borders and
change the menu item to Hide Borders. When the user chooses the Hide Borders
command, your application should hide the borders surrounding any publishers or
subscribers and change the menu item to Show Borders. Use a toggled command only
when the wording of the two versions of the command is not confusing to the user.
Choose a verb phrase as the text of a toggled command; the text should clearly indicate
the action your application performs when the user chooses the item. See “Changing the
Text of an Item” on page 3-59 for further information on providing a toggled command.

Keyboard Equivalents for Menu Commands 3

A menu command can have a keyboard equivalent. The term keyboard equivalent
refers to a keyboard combination, such as Command-C (-C) or any other combination
of the Command key, another key, and one or more modifier keys, that invokes a
corresponding menu command when pressed by the user. For example, if your
application supports the New command in the File menu, your application should
perform the same action when the user presses Command-N as when the user chooses
New from the File menu.

The term Command-key equivalent refers specifically to a keyboard equivalent that the
user invokes by holding down the Command key and pressing another key (other than a
modifier key) at the same time. This generates a keyboard event that specifies a 1-byte
character that your application should pass as a parameter to the MenuKey function. The
MenuKey function maps the given 1-byte character to the menu item (if any) with that
Command-key equivalent.

The Menu Manager provides support for Command-key equivalents. If you define a
Command-key equivalent for a menu item, the standard menu definition procedure
draws the Command symbol and the specified 1-byte character to the right of the menu
item’s text (or to the left of the item’s text if the primary line direction is right to left).

You detect a Command-key equivalent of a command by examining the modifiers
field of the event record for a keyboard event. This allows you to determine whether
the Command key was pressed at the same time as the keyboard event. If so, your
application typically calls the MenuKey function, passing as a parameter the character
code that represents the key pressed by the user. The MenuKey function determines if the
1-byte character matches any of the keyboard equivalents defined for your menu items;
if so, MenuKey returns this information to your application. Your application can then
3-16 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
perform the associated menu command, if any. See the chapter “Event Manager” in this
book for additional information about the modifiers field of the event record.

The keyboard layout ('KCHR') resource of some keyboards masks or cancels the effect of
the Shift key when the Command key is also pressed. For example, with a U.S. keyboard
layout, when a user presses Command-S, the character code in the message field of the
event record is $73 (the character code for “s”); when a user presses Command-Shift-S,
the character code in the message field of the event record is also $73. However, not all
'KCHR' resources mask the Shift key in this way.

Furthermore, when your application uses the MenuKey function to process Command-
key equivalents, MenuKey does not distinguish between uppercase and lowercase
letters. The MenuKey function takes the 1-byte character passed to it and calls the
UpperText procedure (which provides localizable uppercase conversion of the
character). Thus, MenuKey translates any lowercase character to uppercase when
comparing a keyboard event to keyboard equivalents. If your application must
distinguish between lowercase and uppercase characters for keyboard equivalents, you
need to provide your own method for handling such keyboard equivalents.

The key you specify for a Command-key equivalent must be a 1-byte character and is
usually a letter (although you can specify 1-byte characters other than letters). For
consistency and to provide greater support for localizing your application, you should
always specify any letters for keyboard equivalents in uppercase when you define your
application’s menu commands.

If you wish to provide other types of keyboard equivalents in addition to Command-key
equivalents, your application must take additional steps to support them. If your
application allows the user to hold down more than one modifier key to invoke a
keyboard equivalent, your application must provide in the menu item a visual indication
that represents this keyboard combination. In most cases your application must use its
own method (other than MenuKey) for mapping the keyboard equivalent to the
corresponding menu item.

If you specify a key other than a letter for a Command-key equivalent or use more than
one modifier key for a keyboard equivalent, you should choose keys and keyboard
combinations that can be easily localized for other regions.

If your application uses other keyboard equivalents, you can examine the state of the
modifier keys and use the KeyTranslate function, if necessary, to help map the
keyboard equivalent to a particular menu item. See the chapter “Event Manager” in this
book for information on the KeyTranslate function, and see the discussion of 'KCHR'
resources in Inside Macintosh: Text for information on how various keyboard
combinations map to specific character codes.

One command that isn’t listed in a menu but can be invoked from the keyboard is the
Command-period (-.) or Cancel command. You detect a Command-period command
in a method similar to the method for detecting other keyboard equivalents—you
examine the modifiers field of a keyboard event to determine whether the Command
key was pressed. In this case, however, if the user pressed the period key in addition to
the Command key, rather than invoking a menu command your application should
cancel the current operation.
Introduction to Menus 3-17

C H A P T E R 3

Menu Manager
You typically define the Command-key equivalents for your application’s menu
commands when you define the menu commands in a 'MENU' resource. The Menu
Manager displays the Command-key equivalent for a menu command (if it has one)
to the right of the menu item’s text (or to the left of the item’s text for right-to-left
script systems).

Apple reserves several keyboard equivalents for common commands. You should use
these keyboard equivalents for commands in the File and Edit menus of your application.

Table 3-1 show the keyboard equivalents for standard commands.

Table 3-1 Reserved keyboard equivalents for all systems

Note
You should use the keyboard equivalents Z, X, C, and V for the editing
commands Undo, Cut, Copy, and Paste in order to provide support for
editing in desk accessories and dialog boxes. ◆

Apple also reserves several keyboard equivalents for use with worldwide versions of
system software, localized keyboards, and keyboard layouts. Table 3-2 shows these
keyboard equivalents. Your application should not use the keyboard equivalents listed in
Table 3-2 for its own menu commands.

See Inside Macintosh: Text for more discussion of handling keyboard equivalents in other
script systems.

The key combinations listed in Table 3-1 and Table 3-2 are reserved across all
applications. Even if your application doesn’t support one of these menu commands, it
shouldn’t use these keyboard equivalents for another command. This guideline is for the
user’s benefit. Reserving these key combinations provides guaranteed, predictable
behavior across all applications.

Keys Command Menu

-A Select All Edit

-C Copy Edit

-N New File

-O Open… File

-P Print… File

-Q Quit File

-S Save File

-V Paste Edit

-W Close File

-X Cut Edit

-Z Undo Edit
3-18 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Table 3-2 Reserved keyboard equivalents for worldwide systems

Table 3-3 shows other common keyboard equivalents. These keyboard equivalents are
secondary to the standard keyboard equivalents listed in Table 3-1 and Table 3-2. If your
application doesn’t support one of the functions in Table 3-3, then you can use the
equivalent as you wish.

Table 3-3 Other common keyboard equivalents

You shouldn’t assign keyboard equivalents to infrequently used menu commands. Only
add keyboard equivalents for the commands that your users employ most frequently.

Menus Added Automatically by the Menu Manager 3

In System 7, the Menu Manager may add as many as three additional menus to your
application’s menu bar: the Help menu, the Keyboard menu, and the Application menu.
These menus provide access to system features such as Balloon Help, keyboard layouts,
and application switching. All three of these menus have icons as titles and are
positioned at the right side of the menu bar. (These menus are sometimes referred to as
the system-handled menus.)

The Menu Manager automatically inserts these additional menus in your application’s
current menu list when your application inserts an Apple menu into its menu bar. In this
case, the Menu Manager always displays the Application menu, displays the Help menu
if space is available, and displays the Keyboard menu if multiple script systems are
installed and space is available. The Menu Manager also displays the Keyboard menu if
the smfShowIcon bit is set in the flags byte of the 'itlc' resource.

Keys Action

–Space bar Rotate through enabled script systems

–Option–Space bar Rotate through keyboard layouts or input methods
within the active script system

–modifier key–Space bar Reserved

–Right arrow Change keyboard layout to the current keyboard
layout of the Roman script

–Left arrow Change keyboard layout to the current keyboard
layout of the system script

Keys Command Menu

-B Bold Style

-F Find File

-G Find Again File

-I Italic Style

-T Plain Text Style

-U Underline Style
Introduction to Menus 3-19

C H A P T E R 3

Menu Manager
The Help menu icon or both the Help menu icon and the Keyboard menu icon disappear
from the menu bar if your application inserts a menu whose title extends into the space
occupied by one or both of those icons. This allows your application to reclaim any space
in the menu bar that would have been occupied by one or both of those two menu icons,
if necessary. However, if your application inserts a menu whose title is long enough to
overlap space occupied by the Application menu icon, the overlapping portion of that
title disappears behind the Application menu icon. The Application menu icon is always
displayed in the menu bar.

Because the Menu Manager inserts the Help, Keyboard, and Application menus into
your application’s current menu bar, you should not make any assumptions about the
last menu (or menus) in your menu bar. Apple also reserves the right to add other
system-handled menus to your application’s menu bar; for compatibility you should
define your menu bar such that there is room for the Help, Keyboard, and Application
menus and at least one additional system-handled menu.

Your application does not need to take any action if the user chooses an item from the
Keyboard or Application menu; the Menu Manager performs any appropriate actions for
these two menus. If the user chooses an item that your application added to the Help
menu, your application should perform the corresponding action.

The following sections describe the Help, Keyboard, and Application menus in more
detail, and they also describe other menus in a typical application, including the Apple,
File, and Edit menus.

The Apple Menu 3

You should define the Apple menu as the first menu in your application. The title of the
Apple menu is the Apple icon. The Apple menu of an application typically provides an
About command as the first menu item, followed by a divider, which is followed by a
list of all desktop objects contained in the Apple Menu Items folder. (The phrase desktop
objects refers to applications, desk accessories, documents, folders, and any other item
that can reside in the Apple Menu Items folder.) The items following the divider in the
Apple menu are listed in alphabetical order. Each item below the divider lists a desktop
object and the small icon for that object.

Figure 3-9 shows the Apple menu for the SurfWriter application as it might appear on a
particular user’s system.

To create the items in your application’s Apple menu, define the Apple menu title, the
characteristics of your application’s About command, and the divider following it in a
'MENU' resource.

To insert the items contained in the Apple Menu Items folder into your application’s
Apple menu, use the AppendResMenu or InsertResMenu procedure and specify
'DRVR' as the resource type to add in the parameter theType. If you do this, these
procedures automatically add all items in the Apple Menu Items folder in alphabetical
order to the specified menu.
3-20 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-9 The Apple menu for the SurfWriter application

Note
The Apple Menu Items folder is available in System 7 and later. In System 6,
the AppendResMenu and InsertResMenu procedures add only the desk
accessories in the System file to the specified menu when you specify
'DRVR' as the resource type to add in the parameter theType. ◆

The user can place any desktop object in the Apple Menu Items folder. When the user
places an item in this folder, the system software automatically adds it to the list of items
in the Apple menu of all open applications.

When the user chooses an item other than your application’s About command from
the Apple menu, your application should call the OpenDeskAcc function. The
OpenDeskAcc function prepares to open the desktop object chosen by the user; for
example, if the user chooses the Alarm Clock desk accessory, the OpenDeskAcc function
prepares to open the Alarm Clock. The OpenDeskAcc function schedules the Alarm
Clock desk accessory for execution and returns to your application. On your
application’s next call to WaitNextEvent, it receives a suspend event, and then
the Alarm Clock desk accessory becomes the foreground process.

If the user chooses a desktop object other than a desk accessory or an application, the
OpenDeskAcc function also takes the appropriate action. For example, as shown in
Figure 3-9, if the user chooses a document called MyTideReport created by the
SurfWriter application, the OpenDeskAcc function prepares to open the SurfWriter
application (if it isn’t already open) and schedules the SurfWriter application for
execution. The SurfWriter application is instructed to open the MyTideReport document
when it becomes the foreground process.

When the user chooses your application’s About command, your application can
display a dialog box or an alert box that contains your application’s name, version
number, copyright information, or other information as necessary. Your application
should provide an OK button in the dialog box; the user clicks the OK button to close
the dialog box.
Introduction to Menus 3-21

C H A P T E R 3

Menu Manager
Figure 3-10 shows the alert box that the SurfWriter application displays when the user
chooses the About command from the application’s Apple menu.

Figure 3-10 Choosing the About command of the SurfWriter application

If your application provides any application-specific Help commands, place these in the
Help menu, not the Apple menu.

The File Menu 3

The standard File menu contains commands related to managing documents. For
example, the user can open, close, save, or print documents from this menu. The user
should also be able to quit your application by choosing Quit from the File menu.

Your application should support the menu commands of the standard File menu. If you
add other commands to your application’s File menu, they should pertain to managing
a document.

Figure 3-11 shows the standard File menu for applications.

Figure 3-11 The standard File menu for an application
3-22 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Table 3-4 describes the standard commands in the File menu and the actions your
application should take when a user chooses them.

Table 3-4 Actions for standard File menu commands

See Macintosh Human Interface Guidelines for additional commands that you can provide
in the File menu. See the chapter “Introduction to File Management” in Inside Macintosh:
Files for information on how to perform the actions associated with the commands in the
File menu. See the chapter “Standard File Package” in Inside Macintosh: Files for
information on the standard file dialog boxes. See the chapter “Printing Manager” in
Inside Macintosh: Imaging for information on displaying the Page Setup and Print job
dialog boxes.

Command Action

New Open a new, untitled document.

Open... Display the Open dialog box using the Standard File Package.

Close Close the active window (which may be a document window,
modeless dialog box, or other type of window). If the active window
is a document and the document has been changed since the last
save, display a dialog box asking the user if the document should be
saved before closing.

Save Save the active document to a disk, including any changes made to
that document since the last time it was saved. If the user chooses
Save for a new untitled document (one that the user hasn’t named
yet), display the Save dialog box using the Standard File Package.

Save As... Save a copy of the active document under a new name provided by
the user. Display the Save dialog box using the Standard File
Package. After your application saves the document, the document
should remain open and active.

Page Setup... Display the Page Setup dialog box to let the user specify printing
parameters such as the paper size and printing orientation. Your
application can provide other printing options as appropriate. Your
application should save the user’s Page Setup printing preferences
for the document when the user saves the document.

Print... Display the Print job dialog box to let the user specify various
parameters, such as print quality and number of copies. Print the
document if the user clicks the Print button. The options specified in
the Print dialog box apply to only the current printing operation, and
your application should not save these settings with the document or
restore the settings when the user chooses Print again.

Quit Quit your application after performing any necessary cleanup
operations. If any open documents have been changed since the user
last saved them, display the Save dialog box once for each open
document that requires saving. If any background or lengthy
operation is still in progress, notify the user, giving the user the
option to continue and not quit the application.
Introduction to Menus 3-23

C H A P T E R 3

Menu Manager
The New, Open, Close, Save, Print, and Quit commands have the keyboard equivalents
shown in Figure 3-11 on page 3-22. These keyboard equivalents are reserved for these
menu commands; do not assign these keyboard equivalents to any menu command
other than the ones shown in Figure 3-11.

The Edit Menu 3

The standard Edit menu provides commands that let users change or edit the contents of
their documents. It also provides commands that allow users to share data within and
between documents created by different applications using editions or the Clipboard. All
Macintosh applications should support the Undo, Cut, Copy, Paste, and Clear
commands. Use these commands to provide standard text-editing abilities in your
application.

Figure 3-12 shows the standard Edit menu supported by Macintosh applications.

Figure 3-12 The standard Edit menu for an application

The standard editing commands (Undo, Cut, Copy, Paste, and Clear) in your
application’s Edit menu should appear in the order shown in Figure 3-12. Whenever
possible, you should add an additional word or phrase to clarify what action your
application will reverse when the user chooses the Undo command. For example,
Figure 3-12 shows an application’s Edit menu that uses the phrase Undo Typing when
typing was the last action performed by the user. If your application can’t undo the last
operation, you should change the text of the Undo command to Can’t Undo and disable
the menu item. See “Changing the Text of an Item” on page 3-59 for an example of how
to change the text of a menu item.

You can include other commands in your application’s Edit menu if they’re related to
editing or changing the content of your application’s documents. If you add commands
to the Edit menu, add them after the standard menu commands. For example, if
appropriate, your application should support a Select All command. If your application
supports both the Clear and Select All commands, they should appear in the order
shown in Figure 3-12.
3-24 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Table 3-5 describes the standard commands in the Edit menu and the actions your
application should take when a user chooses them.

Table 3-5 Actions for standard Edit menu commands

The Undo, Cut, Copy, Paste, and Select All commands have the keyboard equivalents
shown in Figure 3-12 on page 3-24. These keyboard equivalents are reserved for these
menu commands; do not assign these keyboard equivalents to any menu command
other than the ones shown in Figure 3-12. See the chapter “Scrap Manager” in Inside
Macintosh: More Macintosh Toolbox for information on copying data to and from the scrap.

Command Action

Undo Reverse the effect of the previous operation. You should add the
name of the last operation to the Undo command. For example,
change the item to read Undo Typing if the user just finished
entering some text in a document. If your application cannot
undo the previous operation, disable this menu item and
change the phrase to Can’t Undo.

Cut Remove the data in the current selection, if any. Store the cut
selection in the scrap (on the Clipboard). This replaces the
previous contents of the scrap.

Copy Copy the data in the current selection, if any. Copy the selection
to the scrap (the Clipboard). This replaces the previous contents
of the scrap.

Paste Paste the data from the scrap at the insertion point; this replaces
any current selection.

Clear Remove the data in the highlighted selection; do not copy the
data to the scrap (Clipboard).

Select All Highlight all data in the document.

Create Publisher... Display the Create Publisher dialog box (using the Edition
Manager). Create an edition based on the selected data if the
user clicks the Publish button.

Subscribe To... Display the Subscribe To dialog box (using the Edition
Manager). Allow the user to insert data from an edition if the
user clicks the Subscribe button.

Publisher Options... Display the Publisher Options dialog box (using the Edition
Manager) and allow the user to set or change options associated
with the publisher. Change this menu item to Subscriber
Options if the current selection includes a subscriber. When the
user chooses the Subscriber Options command, display the
Subscriber Options dialog box.

Show Clipboard Display the contents of the Clipboard in a window. Change
this item to Hide Clipboard when the Clipboard window is
showing. When the user chooses Hide Clipboard, hide the
window displaying the Clipboard contents and change the
menu item to Show Clipboard.
Introduction to Menus 3-25

C H A P T E R 3

Menu Manager
See the chapter “Edition Manager” in Inside Macintosh: Interapplication Communication for
information on supporting the Create Publisher, Subscribe To, and Publisher Options
commands in your application.

The Font Menu 3

You can provide a Font menu to allow the user to choose text fonts. A font is a complete
set of characters created in one typeface and font style. The characters in a font can
appear in many different point sizes, but all have the same design elements.

You should list the names of all currently available fonts in your application’s Font
menu. The currently available fonts are those fonts residing in the Fonts folder of the
user’s System Folder (or in earlier versions of system software, in the user’s System file).

You add fonts to the Font menu using the AppendResMenu or InsertResMenu
procedure. These two procedures add items to the specified menu in alphabetical order.

The user can install a large number of fonts and thereby create a very large Font menu.
Therefore, you should never include other items in the Font menu. Use separate menus
to accommodate lists of attributes such as style and size choices. You can also provide a
Size menu to allow the user to choose a specific point size of a font; the next section
describes the Size menu.

Figure 3-13 shows a typical Font menu. Your application should indicate which typeface
is in use by adding a checkmark to the left of the name of the current font. In Figure 3-13,
the application has placed a checkmark next to Palatino to indicate that Palatino® is the
current font. When the user starts entering text at the insertion point, your application
should display text in the current font.

Figure 3-13 A typical Font menu

In the Font menu, you can use dashes to indicate that the selection contains more than
one font. (Place a checkmark next to an item if the entire selection contains only one
font.) If the current selection contains more than one font, place a dash next to the name
of each font that the selection contains. See “Changing the Mark of Menu Items” on
page 3-61 for information on adding dashes and checkmarks to a menu item.
3-26 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-14 shows the use of dashes to indicate that a selection contains more than one
font. In this figure, part of the selection contains a Helvetica® font and part of the
selection contains a Palatino font.

Figure 3-14 A Font menu showing a selection containing more than one font

The AppendResMenu and InsertResMenu procedures can recognize when an added
font resource is associated with a script other than the current system script (non-Roman
fonts have font numbers greater than $4000). The Menu Manager displays a font name in
its corresponding script if the script system for that font is installed.

You can choose to provide a Size menu and a Style menu in addition to a Font menu.
If you do so, these three menus typically appear in the order Font, Size, Style in
most applications.

The Size Menu 3

Your application can provide a Size menu to allow the user to choose sizes for fonts. Font
sizes are measured in points. A point is a typographical unit of measure equivalent (on
Macintosh computers) to 1/72 of an inch.

Your application should indicate the current point size by adding a checkmark to the
menu item of the current size. You can use dashes if the selection contains more than one
point size.

System 7 supports both bitmapped and TrueType fonts. TrueType fonts can be displayed
in a wider range of point sizes, for example, 12 points, 51 points, 156 points, 578 points,
or greater. Your application should not provide an upper limit for font sizes.

In the Size menu, your application should outline font sizes to indicate which sizes are
directly provided by the current font. If the user chooses a TrueType font, outline all sizes
of that font in the Size menu. If the user chooses a bitmapped font, outline only those
sizes that appear in the Fonts folder. Use plain type for all other font sizes. See the
chapter “Font Manager” in Inside Macintosh: Text for additional information on
supporting fonts in your application.
Introduction to Menus 3-27

C H A P T E R 3

Menu Manager
Figure 3-15 shows a typical Size menu of an application.

Figure 3-15 A typical Size menu

Your application should also provide a method that allows users to choose any point
size. You can add an Other command to the end of the Size menu for this purpose. When
the user chooses this command, display a dialog box that allows the user to choose any
available font size. You can include an editable text item in which the user can type the
desired font size. Figure 3-16 shows a dialog box an application might display when the
user chooses the Other command from the Size menu.

Figure 3-16 A dialog box to select a new point size for a font

Figure 3-17 shows the Other dialog box after the user has entered a new font size
of 31.
3-28 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-17 Entering a new point size for a font

If the user enters a font size not currently in the menu, your application should add a
checkmark to the Other menu command and include the font size as part of the text of
the Other command. You should show the font size in parentheses after the text Other,
as shown in Figure 3-18.

Figure 3-18 The Other command with a font size added to it

If a selection contains more than one nonstandard size, you should include the text
Mixed in parentheses following the word Other. In this case leave the editable text field
of the Other dialog box blank when the user chooses the Other (Mixed) command.

See “Handling a Size Menu” on page 3-82 for more information on how to respond to
the user’s choice of a command from the Size menu. See the chapter “Dialog Manager”
for information on creating a dialog box.

The Help Menu 3

The Help menu is specific to each application, just as the Apple, File, and Edit menus
are. The Help menu items defined by the Help Manager are common to all applications
and give the user access to Balloon Help.

You can add menu items to your application’s Help menu to give your users access
to any online help that your application supplies in addition to help balloons. If you
currently provide your users with help information when they choose the About
Introduction to Menus 3-29

C H A P T E R 3

Menu Manager
command from the Apple menu, you should instead append a command for your own
help to the Help menu. This gives users one consistent place to obtain help information.

When adding your own items to the Help menu, include the name of your application in
the command so that users can easily determine which application the help relates to.

Figure 3-19 shows the Help menu for the SurfWriter application. This application
appends one item to the end of the standard Help menu: SurfWriter Help. When the
user chooses this item, the application provides access to any application-specific
help information.

Figure 3-19 The Help menu of the SurfWriter application

You add items to the Help menu by using the HMGetHelpMenuHandle function and the
AppendMenu procedure. Apple reserves the right to change the number of standard
items in the Help menu. You should always append any additional items to the end. See
“Adding Items to the Help Menu” on page 3-67 for specific examples.

The user turns Balloon Help on or off by choosing Show Balloons or Hide Balloons from
the Help menu. The Help Manager automatically enables or disables Balloon Help when
the user chooses Show Balloons or Hide Balloons from the Help menu. The setting of
help is global and affects all applications.

When the user turns on Balloon Help, the Help Manager displays small help balloons as
the user moves the cursor over areas such as scroll bars, buttons, menus, or rectangular
areas in windows or dialog boxes that have help information associated with them.
Help balloons are rounded-rectangle windows that contain explanatory information for
the user.

The Help Manager provides help balloons for the menu titles of the Apple, Help,
Application, and Keyboard menus. The Help Manager also provides help balloons for
menu items in the Application and Keyboard menus, for any item from the Apple Menu
Items folder in the Apple menu, and for the standard items in the Help menu. The Help
Manager provides these help balloons only if your application uses the standard menu
definition procedure.

Your application should provide the content of help balloons for all other menu items
and menus in your application.

Figure 3-20 shows the default help balloons for the Apple menu title and Application
menu title.
3-30 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-20 Default help balloons for the Apple menu and Application menu

Figure 3-21 shows help balloons for an application’s Cut command when it is enabled
and when it is disabled.

Figure 3-21 Help balloons for different states of the Cut command

Your application can provide the content for help balloons for your menus and menu
items. You define the help balloons for your application using 'hmmu' resources.

For information on how to define the help balloons for your application’s menus
in 'hmmu' resources, see the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox.
Introduction to Menus 3-31

C H A P T E R 3

Menu Manager
The Keyboard Menu 3

The Keyboard menu displays a list of all the keyboard layouts and input methods that
are available for each enabled script system. Each script system has at least one keyboard
layout or input method associated with it. If only the Roman script system and the U.S.
keyboard layout are available, the Menu Manager does not add the Keyboard menu
(unless the smfShowIcon bit is set in the flags byte of the 'itlc' resource). If the
user’s system includes an additional script system or includes additional keyboard
layouts for the Roman script system and the smfShowIcon bit is set in the 'itlc'
resource, the Menu Manager adds the Keyboard menu to your application’s menu
bar as long as your application’s menu bar includes an Apple menu. The Menu
Manager adds the Keyboard menu to the right of the Help menu and to the left of the
Application menu.

Figure 3-22 shows a Keyboard menu as it might appear on a particular user’s system.
System software groups the items in the Keyboard menu by their script systems. For
example, in Figure 3-22 seven script systems are shown: Arabic, Roman, Cyrillic,
Hebrew, Thai, Japanese, and Korean. Two keyboard layouts are available in the user’s
system for the Arabic script system, two keyboard layouts for the Roman script system,
one keyboard layout for the Cyrillic script system, two keyboard layouts for the Hebrew
script system, three keyboard layouts for the Thai script system, two input methods for
the Japanese script system, and one input method for the Korean script system.

Figure 3-22 Accessing the Keyboard menu from an application

Active keyboard layout

or input method

Active keyboard layout
Script

boundary
3-32 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
When the user chooses an item from the Keyboard menu, the Menu Manager handles it
appropriately. For example, if the user chooses a different keyboard layout in a different
script, the Menu Manager changes the current keyboard layout and script system to the
item chosen by the user. See Inside Macintosh: Text for further information on supporting
text and handling text in multiple scripts in your application.

The Application Menu 3

The Application menu is the menu farthest to the right in the menu bar; the Application
menu contains the icon of the active application or desk accessory for its menu title.

The Menu Manager automatically appends the Application menu to your application’s
menu bar if your menu bar includes an Apple menu.

When the user chooses an item from the Application menu, the Menu Manager handles
the event as appropriate. For example, if the user chooses the Hide Others command, the
Menu Manager hides the windows of all other open applications. If the user chooses
another application from the Application menu, the Menu Manager sends your
application a suspend event. Your application receives the suspend event the next time it
calls WaitNextEvent, and your application is switched out after handling the suspend
event. (See the chapter “Event Manager” in this book for information about responding
to suspend and resume events.)

Figure 3-23 shows the Application menu for the SurfWriter application as it appears
when both SurfWriter and TeachText are open and the user is currently interacting with
SurfWriter. The checkmark next to the menu item showing SurfWriter’s icon indicates
that SurfWriter is the active application.

Figure 3-23 SurfWriter’s Application menu

Pop-Up Menus 3

You can use pop-up menus to present the user with a list of choices in a dialog box or
window. Pop-up menus are especially useful in dialog boxes that require the user to
select one choice from a list of many or to set a specific value.

In System 7, the standard pop-up menu is implemented by a control definition function.
This section explains how the standard pop-up control definition function provides
support for pop-up menus. The chapter “Control Manager” in this book explains
controls in detail.
Introduction to Menus 3-33

C H A P T E R 3

Menu Manager
A pop-up menu appears as a rectangle with a one-pixel border and a one-pixel drop
shadow. Pop-up menus are identified by a downward-pointing triangle that appears
in the pop-up box. The title of the pop-up menu appears next to the pop-up box.
Figure 3-24 shows a pop-up menu.

Figure 3-24 A pop-up menu

To display a pop-up menu, the user presses the mouse button while the cursor is over
the pop-up title or pop-up box. If the pop-up menu is in a dialog box and your
application uses the Dialog Manager, the Dialog Manager uses the pop-up control
definition function to display the pop-up menu and to handle all user interaction in the
pop-up menu. If the pop-up menu is in one of your application’s windows, your
application needs to determine which control the cursor was in when the user pressed
the mouse button. Your application can then use the Control Manager routines to display
the pop-up menu and to handle user interaction in the control.

Just like MenuSelect, the pop-up control definition function highlights the pop-up
menu title and highlights menu items appropriately as the user drags the cursor through
the menu items. The pop-up control definition function also highlights the default
(current) menu item when the pop-up menu is first displayed and adds the checkmark to
the menu item. Once the user releases the mouse button, the pop-up control definition
function causes the chosen item (if any) to blink, unhighlights the menu title, changes the
text in the pop-up box, and stores the item number of the chosen item as the value of the
control. Your application can use the Control Manager function GetControlValue to
get the menu item chosen by the user.

Figure 3-25 shows a pop-up menu in its closed state (as it appears initially to the user)
and its open state (as it appears when the user presses the mouse button while the cursor
is in the pop-up menu).

Figure 3-25 A pop-up menu in its closed and open states

If you don’t provide a title for a pop-up menu, the current menu item serves as the title.
In most cases you should create pop-up menus that have titles. Choose a title that reflects
the contents of the menu or indicates the purpose of the menu.

Pop-up

title

Pop-up

box
3-34 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-26 shows the process of a user making a selection from a pop-up menu.

Figure 3-26 Making a selection from a pop-up menu

In step 1 in Figure 3-26, the user presses the mouse button while the cursor is over the
pop-up box. When this occurs, your application can use the Dialog Manager or Control
Manager to call the pop-up control definition function. In step 2, the pop-up control
definition function highlights the title of the pop-up menu, removes the downward-
pointing triangle from the pop-up box, adds a checkmark to the current item, highlights
the current item, and displays the contents of the pop-up menu. In step 3, the pop-up
control definition function handles all user interaction, highlighting and unhighlighting
menu items, until the user releases the mouse button. When the user releases the mouse
button, the pop-up control definition function closes the pop-up menu, unhighlights the
pop-up menu title, sets the text of the pop-up box to the item chosen by the user, and
stores the item number of the chosen item as the value of the control. Step 4 shows the
appearance of the closed pop-up menu after the pop-up control definition function
performs these actions.

If your application does not use the standard pop-up control definition function, you
can create your own control definition function and you can choose to use the
PopUpMenuSelect function to help your application handle pop-up menus. In this
case, when the user presses the mouse button when the cursor is in a pop-up menu,
your application should call the PopUpMenuSelect function. Your application must

1. 2.

3. 4.
Introduction to Menus 3-35

C H A P T E R 3

Menu Manager
highlight the pop-up title before calling PopUpMenuSelect and unhighlight it
afterward. The PopUpMenuSelect function displays the pop-up menu and highlights
menu items appropriately as the user drags the cursor through the menu items. Once the
user releases the mouse button, PopUpMenuSelect flashes the chosen item, if any, and
returns information indicating which menu item was chosen to your application. Your
application is responsible for highlighting and unhighlighting the menu title, updating
the text in the pop-up box, and storing any changes to the settings of the menu items if
you use the PopUpMenuSelect function.

Pop-up menus work well when your application needs to present several choices to the
user. Note that pop-up menus hide these choices from the user until the user chooses to
display the pop-up menu. Use pop-up menus when the user doesn’t need to see all the
choices all the time. For example, Figure 3-27 shows a dialog box that uses a pop-up
menu to allow the user to choose one color from a list of many.

Figure 3-27 Choosing one attribute from a list of many

If you need to show only a few choices, you may find that using checkboxes or radio
buttons is more appropriate for your application. For example, in Figure 3-27 the
selection of columns is implemented with radio buttons rather than a pop-up menu.
Whenever possible, you should show all available choices to the user. Note that in this
example the amount of space occupied by the radio buttons is about the same as the
amount of space required for a corresponding pop-up menu.

Use pop-up menus to allow the user to choose one option from a set of many choices.
Don’t use a pop-up menu for multiple-choice lists where the user can make more than
one selection. If you do, the text in the menu box will not fully describe the selections in
effect. For example, don’t use a pop-up menu for font style selections. In a dialog box,
font style selections are more appropriately implemented as checkboxes. Figure 3-28
shows a dialog box that uses checkboxes instead of a pop-up menu to allow the user to
select more than one font style. The Size and Font choices are implemented as pop-up
menus in this example, since the user can choose only one size and one font from a list
of many.
3-36 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-28 A dialog box with checkboxes and pop-up menus

Never use a pop-up menu as a way to provide more commands. Pop-up menus should
not contain actions (verbs) but can contain attributes (adjectives) or settings that allow
the user to choose one from many. For these reasons, you should not use Command-key
equivalents for pop-up menu items.

Your application can also use type-in pop-up menus when appropriate. Use a type-in
pop-up menu to give the user a list of choices and to allow the user to type in an
additional choice. The standard pop-up control definition function that implements
pop-up menus does not provide specific support for type-in menus. You can create your
own control definition function to handle type-in pop-up menus. If you do so, your
type-in pop-up menu should adhere to the guidelines described here. Figure 3-29 shows
a typical type-in pop-up menu in its closed and open states.

Figure 3-29 A type-in pop-up menu in its closed and open states

Your application is responsible for drawing and highlighting the type-in field of the
pop-up menu. Your application does not need to highlight the title of a type-in pop-up
menu; your application should highlight the type-in field instead.

If the user types in a value that is already in the menu, make that item the current item. If
the user types a value that does not match any of the items in the pop-up menu, add the
item to the top of the menu and add a divider below the item to separate it from the rest
of the standard items. Figure 3-30 on the next page shows a type-in pop-up menu with a
user’s choice added to it.
Introduction to Menus 3-37

C H A P T E R 3

Menu Manager
Figure 3-30 A type-in pop-up menu with a user’s choice added

A type-in pop-up menu should allow the user to type in a single additional choice. That
is, a standard type-in pop-up menu does not accumulate the user’s choices in the menu.
For example, if the user types in a value of 13, then types in a new choice, such as 43, the
menu should appear as shown in Figure 3-30, except that the type-in field and menu
item that previously contained 13 is replaced by 43.

A type-in pop-up menu should also allow the user to type in any of the standard values
in the menu or choose any of the standard items in the pop-up menu. If the user types in
or chooses any of the standard items, you should remove any user-specified item
previously added to the menu. For example, as shown in Figure 3-30, the user specified a
nonstandard size of 13. If the user then types in or selects 9, your application should
return the pop-up menu to its standard state, as shown in Figure 3-29 on page 3-37.

Hierarchical Menus 3

A hierarchical menu is a menu that has a submenu attached to it. Hierarchical menus can
be useful when your application needs to offer additional choices to the user without
taking up extra space in the menu bar. If you use a hierarchical menu in your
application, use it to give the user additional choices or to choose attributes, not to
choose additional commands.

In a hierarchical menu, a menu item serves as the title of a submenu; this menu item
contains a triangle to identify that the item has a submenu. The triangle appears in the
location of the keyboard equivalent. The title of a submenu should represent the choices
it contains. Figure 3-31 shows a menu with a submenu whose menu title is Label Style.

When a user drags the cursor through a hierarchical menu and rests the cursor on a
menu item that has a submenu, the Menu Manager displays the submenu after a brief
delay. The title of the submenu remains highlighted while the user browses through the
submenu; the Menu Manager unhighlights the menu title of the submenu when the user
releases the mouse button.

Hierarchical menus are useful for providing lists of related items, such as font sizes and
font styles. Never use more than one level of hierarchical menus (in other words, don’t
attach a submenu to another submenu). You can assign keyboard equivalents to the
menu items of a submenu; however, if you do so, you make it harder for the user to
quickly scan all menus for their keyboard equivalents.
3-38 Introduction to Menus

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-31 A hierarchical menu item and its submenu

About the Menu Manager 3

The Menu Manager, together with the menu definition procedure and menu bar
definition function, provides your application with a convenient way to manage the
menus in your application. The Menu Manager uses two data structures, menu records
and menu lists, to manage menus. The next two sections describe how the Menu
Manager uses these two data structures. “Using the Menu Manager,” which begins on
page 3-41, shows how you can use the Menu Manager to

■ define a menu using a 'MENU' resource

■ define a menu bar using an 'MBAR' resource

■ install your application’s menu bar

■ change the appearance of menu items

■ add menu items to a menu

■ respond to the user when the user chooses a menu item

■ handle the Apple and Help menus

■ create a pop-up menu

■ create a hierarchical menu

■ handle access to menus when your application displays a dialog box

■ write your own menu definition procedure
About the Menu Manager 3-39

C H A P T E R 3

Menu Manager
How the Menu Manager Maintains Information About Menus 3
The Menu Manager maintains information about menus in menu records. Each menu
record includes certain information about a specific menu, including

■ the menu ID of the menu

■ the horizontal and vertical dimensions of the menu (in pixels)

■ a handle to the menu definition procedure of the menu

■ flags indicating whether each item (for the first 31 items) is enabled or disabled and
whether the menu title is enabled or disabled

■ the contents of the menu, including the menu title and other data that defines the
menu items

You typically specify most of this information in a menu resource, that is, a resource of
type 'MENU'. When you create a menu, the Menu Manager stores this information in a
menu record. A menu record is a data structure of type MenuInfo. You usually never
need to access the information in the menu record directly; the Menu Manager
automatically updates the menu record when you make any changes to the menu, such
as adding a menu item. See “The Menu Record” beginning on page 3-95 if you need to
access the fields of the menu record directly.

The Menu Manager identifies every menu by a number referred to as a menu ID. You
must assign a menu ID to each menu in your application. Each menu in your application
must have a menu ID that is unique from that of any other menu in your application.
You can use any number greater than 0 for a menu ID of a pull-down or pop-up menu;
submenus of an application can use only menu IDs from 1 through 235; submenus of a
desk accessory must use menu IDs from 236 through 255.

When you create a menu, the Menu Manager creates a menu record for the menu and
returns a handle to that menu record. To refer to a menu, you usually use either the
menu’s menu ID or a handle to the menu’s menu record.

To refer to a menu item, use the menu item’s item number. Item numbers identify items
in menus; items are assigned item numbers starting with 1 for the first menu item in the
menu, 2 for the second menu item in the menu, and so on, up to the number of the last
menu item in the menu.

How the Menu Manager Maintains Information About an
Application’s Menu Bar 3
A menu list contains handles to the menu records of one or more menus (although a
menu list can be empty). The end of a menu list can contain handles to the menu
records of submenus and pop-up menus; the phrase submenu portion of the menu list
refers to this portion of the menu list, which contains information about submenus
and pop-up menus.

When your application initializes the Menu Manager, the Menu Manager allocates the
current menu list, which is initially empty. The contents of the current menu list change
as your application adds menus to or removes menus from it.
3-40 About the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
The current menu list contains handles to the menu records of all menus in the current
menu bar and the menu records of any submenus or pop-up menus that you have
inserted into the current menu list. Your application typically creates a menu list using
GetNewMBar, and it then sets the current menu list to its newly created menu list using
SetMenuBar. You can insert other menus in the current menu list using the GetMenu
function and InsertMenu procedure.

The Menu Manager displays the menu bar and the titles of all pull-down menus that
are defined in the current menu list when your application calls the DrawMenuBar
procedure. The Menu Manager displays the menus in the menu bar in the same order
that they appear in the current menu list.

The Menu Manager provides routines for adding menus to and removing menus from
the current menu list; your application should never access a menu list directly. To refer
to a menu list, use the handle returned by GetNewMBar or GetMenuBar.

The Menu Manager inserts the Help menu, the Keyboard menu if necessary, and the
Application menu into your application’s menu list if your application calls the
GetNewMBar function and your menu bar includes an Apple menu; your application
then uses SetMenuBar to set the current menu list to the newly created menu list. The
Menu Manager also inserts these menus into your application’s current menu list if your
application inserts the Apple menu into the current menu list using the InsertMenu
procedure. Therefore, you should not make any assumptions about the last menu (or
menus) in your application’s current menu list.

When your application inserts a submenu into the current menu list, the Menu Manager
stores a handle to the menu record of the submenu in the submenu portion of the current
menu list. Similarly, when your application inserts a pop-up menu into the current menu
list, the Menu Manager stores a handle to the menu record of the pop-up menu in the
submenu portion of the current menu list.

Using the Menu Manager 3

You can define your application’s menus and menu bar as resources and use Menu
Manager routines to create and manage them. For example, whenever the user presses
the mouse button while the cursor is in the menu bar, your application should call the
MenuSelect function, allowing the user to choose a command from any menu. The
MenuSelect function handles all user activity until the user releases the mouse button.
The MenuSelect function displays and removes menus as the user drags the cursor
through the menu bar, and it highlights enabled menu items as the user drags through
a menu.

You should provide help balloons for each menu title and menu item of your applica-
tion. You store information and text for help balloons in resources. See the chapter
“Help Manager” in Inside Macintosh: More Macintosh Toolbox for complete and specific
information on how to provide help balloons for the menus of your application. The
BalloonWriter application, available from APDA, can also help you create help balloons
for the menus of your application.
Using the Menu Manager 3-41

C H A P T E R 3

Menu Manager
Your application needs to initialize QuickDraw, the Font Manager, and the Window
Manager before using the Menu Manager. Your application can accomplish this using
the InitGraf, InitFonts, and InitWindows procedures. To initialize the Menu
Manager, use the InitMenus procedure.

If your application uses pop-up menus, use the Gestalt function with the
gestaltPopUpAttr selector to determine if the control definition function for
pop-up menus is available. See Inside Macintosh: Operating System Utilities for
information about the Gestalt function.

To create the pull-down menus in your application’s menu bar, you need to

■ create descriptions of each pull-down menu in 'MENU' resources

■ create an 'MBAR' resource that lists the order and resource ID of each menu

■ use the GetNewMBar function and SetMenuBar procedure to set up your menu bar
and use the DrawMenuBar procedure to draw your menu bar

The next section, “Creating a Menu,” explains these steps in detail.

After creating your application’s menu bar, you can enable or disable your menu items,
add marks such as checkmarks or dashes to menu items, or add items to any of your
menus as needed. See “Enabling and Disabling Menu Items” on page 3-58, “Changing
the Mark of Menu Items” on page 3-61, and “Adding Items to a Menu” beginning on
page 3-64 for information on these topics.

“Handling User Choice of a Menu Command,” beginning on page 3-70, shows how to
handle mouse-down events in the menu bar, adjust the menus of your application, and
determine if the user chose a keyboard equivalent of a command.

“Responding When the User Chooses a Menu Item,” beginning on page 3-78, describes
how your application should respond once the user chooses an item and also shows how
to handle the user’s choice of a command from the Apple and Help menus.

If your application displays dialog boxes, see “Accessing Menus From a Dialog Box”
beginning on page 3-84.

Finally, if your application needs to create submenus or pop-up menus, see “Creating a
Hierarchical Menu” on page 3-53 and “Creating a Pop-Up Menu” on page 3-56.

Creating a Menu 3
You use various Menu Manager routines to set up the menus and the menu bar
for your application. You can use any of these methods to create pull-down menus for
your application:

■ You can create descriptions of your application’s menus in 'MENU' resources and
describe your application’s menu bar in an 'MBAR' resource. You use the
GetNewMBar function to read in descriptions of your menu bar and menus and create
a new menu list, use the SetMenuBar procedure to set the current menu list to your
application’s menu list, and use the DrawMenuBar procedure to update the menu bar.

■ You can create descriptions of your application’s menus in 'MENU' resources, read
them in using GetMenu, add them to the current menu list using InsertMenu, and
update the menu bar using DrawMenuBar.
3-42 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
■ You can use NewMenu to create new empty menus; use AppendMenu,
InsertMenuItem, InsertResMenu, or AppendResMenu to fill the menus with
menu items; add the menus to the current menu list using InsertMenu; and update
the menu bar using DrawMenuBar.

Whenever possible you should define your menus in menu ('MENU') resources and
your menu bar in a menu bar ('MBAR') resource to make your application easier
to localize.

To create a hierarchical menu, you need to create descriptions of the submenu and the
menu to which the submenu is attached. Usually you create the description of both
menus in 'MENU' resources. You typically read in the description of the hierarchical
menu using GetNewMBar (if you also provide an 'MBAR' resource). To read in the
description of the submenu and insert it in the current menu list, use the GetMenu
function and InsertMenu procedure.

To create a pop-up menu, create descriptions of the pop-up menu and its menu items,
create a control that uses the pop-up control definition function, and associate the control
with a window or dialog box. You can display and manage the pop-up menu using the
Dialog Manager or Control Manager routines.

Once the Menu Manager creates a menu for your application, if necessary you can add
additional menu items to the menu using AppendMenu, InsertMenuItem,
InsertResMenu, or AppendResMenu. You can use various Menu Manager routines to
change the appearance of menu items.

The next sections describe how to create 'MENU' and 'MBAR' resources. “Creating a
Hierarchical Menu” on page 3-53 describes how to create a menu that has a submenu,
and “Creating a Pop-Up Menu” on page 3-56 describes how to create pop-up menus.

Creating a Menu Resource 3

Usually you should define your menus in menu ('MENU') resources so that you can
easily localize the menu titles and menu items for other languages, cultures, or regions.
A 'MENU' resource defines the menu title of a menu and the characteristics of menu
items in a menu. Listing 3-1 shows a sample 'MENU' resource in Rez format for an
application’s Apple menu. (Rez is a resource compiler available with MPW. You can also
define menus using a resource utility, such as ResEdit, available from APDA.)

Listing 3-1 Rez input for a 'MENU' resource for the Apple menu

#define mApple 128

resource 'MENU' (mApple, preload) { /*resource ID, preload resource*/

mApple, /*menu ID*/

textMenuProc, /*uses standard menu definition */

/* procedure*/

0b1111111111111111111111111111101, /*enable About item, */

/* disable divider, */

/* enable all other items*/
Using the Menu Manager 3-43

C H A P T E R 3

Menu Manager
enabled, /*enable menu title*/

 apple, /*menu title*/

{

/*first menu item*/

"About SurfWriter…", /*text of menu item */

/* (includes ellipsis)*/

/*item characteristics follow*/

noicon, /*icon number (if any) or */

/* script code (if any)*/

nokey, /*keyboard equivalent (if any) */

/* or submenu (if any) or */

/* small or reduced icon (if any)*/

nomark, /*marking character (if any) or */

/* menu ID of submenu (if any)*/

plain; /*style of menu item text*/

/*second menu item*/

"-", /*item text (divider)*/

noicon, nokey, nomark, plain /*item characteristics*/

}

};

You should also define help balloons for each of your application’s menu items and each
menu title when you create your menus. (Figure 3-21 on page 3-31 shows help balloons
for an application’s Cut command.) You define the help balloons for your application’s
menus in 'hmmu' resources. See the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox for examples of how to create 'hmmu' resources.

Listing 3-1 defines the resource ID of the Apple menu as 128. You can use any number
equal to or greater than 128 as a resource ID for a menu. By convention, many
applications use 128 as the resource ID of the first menu in the application’s menu bar
(the Apple menu) and use sequential numbers for the resource IDs of following menus.

Listing 3-1 also defines the menu ID of the Apple menu as 128. Once your application
creates the menu, the Menu Manager uses the defined menu ID to refer to this menu.
The number you define for the menu ID of a menu does not have to match the resource
ID of the menu, but it is usually more convenient to use the same number. You can use
any number greater than 0 for the menu ID of a pull-down or pop-up menu; submenus
of an application can only use menu IDs from 1 through 235; submenus of a desk
accessory must use menu IDs from 236 through 255.

The listing specifies that this menu uses the standard menu definition procedure. If you
choose to create your own menu definition procedure, list its resource ID instead of the
textMenuProc constant.
3-44 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
After the resource ID of the menu definition procedure is a 32-bit number (expressed as
a 31-bit field followed by a Boolean field), where bits 1–31 indicate if the correspond-
ing menu item is disabled or enabled, and bit 0 indicates whether the menu is enabled
or disabled.

The listing specifies in the 31-bit field that the first menu item should be enabled, that the
second menu item should be disabled, and that the following menu items (item numbers
3 through 31) should be enabled when the menu is first created. After creating a menu,
your application can enable or disable menu items using the EnableItem or
DisableItem procedure. If a menu contains more than 31 items, the Menu Manager
automatically enables all items following the 31st item when the menu is enabled. Your
application cannot disable any individual items following the 31st item. However, you
can disable all items, including items after the 31st item, by disabling the entire menu.

Listing 3-1 specifies that the menu title should be enabled when it is first created.
Your application can also disable or enable the menu title using the DisableItem or
EnableItem procedure. When you disable a menu using the DisableItem procedure,
the Menu Manager disables all menu items in the menu (including any items following
the 31st item) and dims the title of the menu.

The resource listing identifies the title of the menu using the constant apple. If you
specify the apple constant as the title, the Menu Manager uses a small Apple icon as the
title of the menu. The Menu Manager uses a color Apple icon if the monitor is set to
display colors. The listing then defines the characteristics of each menu item in the
menu. For each menu item, you need to define the text and any other characteristics of
the menu item. For example, Listing 3-1 defines the first item in the Apple menu as the
About command; note that the text of this menu item specifies three ellipsis points (...).
Specify three ellipsis points following the text of a menu command if your application
displays a dialog box requesting information from the user before performing the
command. In general, you should not use ellipses if your application displays a
confirmation alert after the user chooses a menu command; the About command is an
exception to this guideline.

Listing 3-1 defines other characteristics of the About command—it doesn’t have an
icon to the left of the menu item text, it doesn’t have a keyboard equivalent, it doesn’t
have any mark to the left of the menu item text, and the font style of the menu item
text is plain.

By specifying various combinations of values in the icon field and keyboard equivalent
field, you can define an icon (normal, small, reduced, or color), a keyboard equivalent, a
submenu, or the script code of a menu item. Note that some characteristics are mutually
exclusive (for example, an item can have a keyboard equivalent or submenu, but not
both), as described in the following paragraphs. Table 3-6 on page 3-46 summarizes how
the Menu Manager interprets these item characteristics.
Using the Menu Manager 3-45

C H A P T E R 3

Menu Manager
Table 3-6 Specifying submenus, script codes, reduced icons, small icons, and color icons of
a menu item in a menu resource

To assign an icon to a menu item, specify an icon number in place of the noicon
constant. The icon number you specify should be a number from 1 through 255 (or from
1 through 254 for small icons and reduced icons); add 256 to your icon number and use
the result for the resource ID of the color icon ('cicn') resource, icon ('ICON')
resource, or small icon ('SICN') resource that describes the icons for the menu item. You
must define the icon for a menu item in a 'cicn', an 'ICON', or an 'SICN' resource;
the Menu Manager uses only these types of resources for icons you define for your menu
items. The Menu Manager first looks for a 'cicn' resource with the calculated resource
ID and uses that icon if it finds it. If it doesn’t find a 'cicn' resource (or if the computer
doesn’t have Color QuickDraw) and the keyboard equivalent field specifies $1E, the
Menu Manager looks for an 'SICN' resource with the calculated resource ID.
Otherwise, the Menu Manager looks for an 'ICON' resource and plots it in a 32-by-32
bit rectangle, unless the keyboard equivalent field contains $1D. If the keyboard
equivalent field contains $1D, the Menu Manager reduces the icon to fit in a 16-by-16
bit rectangle.

If you provide an 'ICON' resource and specify the nokey constant or a value greater
than $20 as the keyboard equivalent, the Menu Manager enlarges the rectangle of the
entire menu item to fit the 32-by-32 bit 'ICON' resource. If you specify a value of $1D as
the keyboard equivalent of the menu item, the Menu Manager reduces the 'ICON'
resource to fit in a 16-by-16 bit rectangle. If you provide an 'SICN' resource and specify
a value of $1E as the keyboard equivalent of a menu item, the Menu Manager plots the
small icon in a 16-by-16 bit rectangle. If you provide a 'cicn' resource, the Menu
Manager automatically enlarges the enclosing rectangle of the menu item according to
the rectangle specified in the 'cicn' resource. (For the Apple and Application menus,

Keyboard
equivalent
field Icon field

Marking
character field Description

$1B Menu ID of
submenu

Indicates the item has a submenu. The
marking character field specifies the
menu ID of the submenu.

$1C Script code of
item text

Indicates the item text uses the script
defined by the script code specified in the
icon field.

$1D Icon number of
'ICON'resource

Indicates the item has an icon defined by an
'ICON' resource and that it should be
reduced to fit in a 16-by-16 bit rectangle.

$1E Icon number
of 'SICN'
resource

Indicates the item has an icon defined by an
'SICN' resource.

$00 or >$20 Icon number of
'ICON' or
'cicn' resource

Indicates the item has an icon defined
by an 'ICON' or a 'cicn'resource.
(A value greater than $20 in the
keyboard equivalent field specifies the
item’s keyboard equivalent.)
3-46 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
the Menu Manager automatically reduces the icon to fit within the enclosing rectangle of
a menu item or uses the appropriate icon from the application’s icon family, such as an
'ics8' resource, if one is available.) See the chapter “Finder Interface” in this book for
details on how to create icons for your application.

To assign a keyboard equivalent to a menu item, specify the 1-byte character that the
user types in addition to the Command key in place of the nokey constant in your
resource definition for the menu item. If your application attaches a submenu to a menu
item, then specify the hierarchicalMenu constant in place of the nokey constant. A
menu item can have either a keyboard equivalent or submenu defined for it, but not
both. To indicate that a menu item has an icon that is defined in an 'SICN' resource,
specify $1E in place of the nokey constant. To indicate that a menu item has an icon that
is defined in an 'ICON' resource and that the Menu Manager should reduce this icon to
a 16-by-16 bit rectangle, specify $1D in place of the nokey constant. Menu items that
have small icons or reduced icons cannot have keyboard equivalents.

To set the script code of a menu item’s text, specify $1C in place of the nokey constant
and define the desired script code in place of the noicon constant. If an item contains
$1C in its keyboard equivalent field and a script code in its icon field, the Menu Manager
draws the item’s text in the script identified by the script code value if the corresponding
script system is installed. If you do not specify a script code for a menu item, the Menu
Manager displays the menu item’s text in the system font of the current system script.
For Roman scripts, the system font is Chicago and the system font size is 12.

To assign a mark that appears to the left of the menu item text and to the left of any
icon, specify the marking character in place of the nomark constant in your resource
definition. If the menu item has a submenu, then specify the menu ID of the submenu in
place of the nomark constant. Submenus of an application must use menu IDs from
1 through 235; submenus of a desk accessory must use menu IDs from 236 through 255.
Note that defining the menu ID of a submenu in a 'MENU' resource does not attach the
submenu to its menu. You must use the GetMenu function and InsertMenu procedure
to do this. “Creating a Hierarchical Menu,” which begins on page 3-53, gives information
on attaching a submenu to its menu.

To assign a font style to a menu item, in your 'MENU' resource use the constants bold,
italic, plain, outline, and shadow to get their corresponding styles.

Listing 3-1 defines the second menu item as a divider. When you use a hyphen as the
first character in the string that defines the text of a menu item, the Menu Manager
creates a divider that extends across the entire width of the menu item. You cannot
assign any other characteristics to a divider.

The 'MENU' resource for the Apple menu does not list any other menu items. Use the
AppendResMenu procedure to add the desktop items to the Apple menu after your
application creates the menu. See “Adding Items to the Apple Menu” on page 3-68 for
more information.

Once you create a menu, you can append additional items to it using the AppendMenu,
InsertMenuItem, InsertResMenu, or AppendResMenu procedure. You can also
change the characteristics of individual menu items using Menu Manager routines. See
“Changing the Appearance of Items in a Menu” on page 3-57 for more information.
Using the Menu Manager 3-47

C H A P T E R 3

Menu Manager
Figure 3-12 on page 3-24 shows a typical Edit menu for an application. Listing 3-2 shows
a 'MENU' resource for this Edit menu.

Listing 3-2 Rez input for a 'MENU' resource for an Edit menu

#define mEdit 130

resource 'MENU' (mEdit, preload) { /*resource ID, preload resource*/

mEdit, /*menu ID*/

textMenuProc, /*uses standard menu definition */

/* procedure*/

0b0000000000000000001001000000000, /*enable/disable first 31 menu */

 /* items as appropriate*/

enabled, /*enable title*/

"Edit", /*text of menu title*/

 { /*menu items*/

"Undo", noicon, "Z", nomark, plain; /*keyboard equivalent Command-Z*/

"-", noicon, nokey, nomark, plain;

"Cut", noicon, "X", nomark, plain; /*keyboard equivalent Command-X*/

"Copy", noicon, "C", nomark, plain; /*keyboard equivalent Command-C*/

"Paste", noicon, "V", nomark, plain; /*keyboard equivalent Command-V*/

"Clear", noicon, nokey, nomark, plain;

"Select All",

noicon, "A", nomark, plain; /*keyboard equivalent Command-A*/

"-", noicon, nokey, nomark, plain;

"Create Publisher…",

noicon, nokey, nomark, plain;

"Subscribe To…",

noicon, nokey, nomark, plain;

"Publisher Options…",

noicon, nokey, nomark, plain;

"-", noicon, nokey, nomark, plain;

"Show Clipboard",

noicon, nokey, nomark, plain

}

};

Listing 3-2 defines the resource ID of the Edit menu as 130, defines the menu ID of the
Edit menu as 130, and specifies that this menu uses the standard menu definition
procedure. The listing defines the initial enabled state of the first 31 menu items and
also specifies that the menu title should be enabled when it is first created.

The resource listing defines the title of the menu, Edit. It then defines the characteristics
of each menu item in the menu. For each menu item, you need to specify the text of the
menu item and any other characteristics of the menu item. For example, Listing 3-2
3-48 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
defines the first item in the Edit menu as the Undo command with these characteristics:
there is no icon to the left of the menu item text, the menu item has a keyboard
equivalent of Command-Z, it does not have any mark to the left of the menu item text,
and the style of the menu item text is plain. The listing defines the second menu item as
a divider line. It defines the Cut, Copy, and Paste commands; specifies keyboard
equivalents for each of them; and defines the rest of the items in the menu.

Listing 3-3 shows another example of a resource description of a menu, the File menu of
a typical application.

Listing 3-3 Rez input for a 'MENU' resource for a File menu

resource 'MENU' (mFile, preload) {

mFile, textMenuProc,

0b0000000000000000000010000000000,

enabled,

"File",

{

"New", noicon, "N", nomark, plain;

"Open…", noicon, "O", nomark, plain;

"-", noicon, nokey, nomark, plain;

"Close", noicon, "W", nomark, plain;

"Save", noicon, "S", nomark, plain;

"Save As…", noicon, nokey, nomark, plain;

"-", noicon, nokey, nomark, plain;

"Page Setup…", noicon, nokey, nomark, plain;

"Print…", noicon, "P", nomark, plain;

"-", noicon, nokey, nomark, plain;

"Quit", noicon, "Q", nomark, plain

}

};

Creating a Menu Bar Resource 3

You typically define your application’s menu bar using a menu bar ('MBAR') resource.
Listing 3-4 shows an 'MBAR' resource, in Rez format, for a sample application.

Listing 3-4 Rez input for an 'MBAR' resource

#define rMenuBar 128

#define mApple 128

#define mFile 129

#define mEdit 130
Using the Menu Manager 3-49

C H A P T E R 3

Menu Manager
resource 'MBAR' (rMenuBar, preload) {/*resource ID, preload*/

/*menus appear in the order listed here*/

 { mApple, mFile, mEdit }; /*resource IDs for menus in */

/* this menu bar*/

};

Listing 3-4 defines the 'MBAR' resource with resource ID 128. This 'MBAR' resource
defines the order and resource IDs of the menus contained in it; it defines its first
three menus as the menus with resource IDs 128, 129, and 130. The Menu Manager
uses the assigned resource IDs to read in the menus when it creates a menu bar from
an 'MBAR' resource.

Setting Up Your Application’s Menu Bar 3

To create a menu list as defined in an 'MBAR' resource, use the GetNewMBar function.
For each menu defined by the 'MBAR' resource, the GetNewMBar function creates a
menu record for the menu, creates each menu according to its resource definition in its
corresponding 'MENU' resource, and inserts each menu into the new menu list. The
GetNewMBar function returns a handle to the created menu list. For example, this code
creates a menu list for the menu bar defined by the 'MBAR' resource with resource ID
128 (defined by the constant rMenuBar):

CONST

rMenuBar = 128;

VAR

 menuBar: Handle;

 menuBar := GetNewMBar(rMenuBar); {read menus and menu bar }

 { descriptions,create & return }

 { a handle to a new menu list}

Use the SetMenuBar procedure to set the current menu list to the menu list created
by your application and the DrawMenuBar procedure to update the menu bar’s
appearance. For example, Listing 3-5 uses these two routines to set up the application’s
menu bar.

Listing 3-5 Setting up an application’s menus and menu bar

PROCEDURE MyMakeMenus;

VAR

menuBar: Handle;

 BEGIN

{first use the GetNewMBar function to read menus in & create a }

{ new menu list. If you define an Apple menu, the Menu Manager }

{ inserts the Help and Application menus (and Keyboard menu if }

{ necessary) into the newly created menu list}
3-50 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
menuBar := GetNewMBar(rMenuBar);

IF menuBar = NIL THEN

EXIT(MyMakeMenus);

 SetMenuBar(menuBar); {insert menus into the current menu list}

 DisposHandle(menuBar);

{add desktop items in Apple Menu Items }

{ folder to Apple menu}

 AppendResMenu(GetMenuHandle(mApple), 'DRVR');

 MyAdjustMenus; {adjust items and enabled state of menus}

 DrawMenuBar; {draw the menu bar}

 END;

The code in Listing 3-5 creates the application’s menu bar by reading in the definition
from the 'MBAR' resource with resource ID 128, and it uses SetMenuBar to set the
current menu list to the newly created menu list. The code then adds the desktop
items in the Apple Menu Items folder to the Apple menu using the AppendResMenu
procedure.

You can use the GetMenuHandle function to get a handle to the menu record of
any menu in the current menu list. You supply the menu ID of the desired menu as a
parameter to GetMenuHandle, and GetMenuHandle returns a handle to the menu’s
menu record. Most Menu Manager routines require either a menu ID or a handle to
a menu record as a parameter.

After creating the menu bar and adding any other menus or items as necessary, the code
calls the MyAdjustMenus procedure to adjust the application’s menus—for example,
this procedure sets the enabled and disabled states of menu items in accordance with the
current state of the application. (Listing 3-19 on page 3-74 shows the application-defined
MyAdjustMenus procedure used in Listing 3-5.) After adjusting the menus, the code in
Listing 3-5 uses DrawMenuBar to draw the menus in the menu bar according to their
current enabled state and as they are defined in the current menu list.

Usually you’ll define the menus of your application and its menu bar using 'MENU'
resources and an 'MBAR' resource and using the GetNewMBar function to read the
resource definitions. However, you can choose to read in a 'MENU' resource using the
GetMenu function or to create a new empty menu using NewMenu. You can then insert
a menu into the current menu list using the InsertMenu procedure. See “Creating
Menus” on page 3-105 and “Adding Menus to and Removing Menus From the Current
Menu List” on page 3-108 for information on forming your menus using these routines.

If your application uses a submenu, you need to use the GetMenu function and
InsertMenu procedure to make these menus available to your application. See
“Creating a Hierarchical Menu” on page 3-53 for information on creating submenus.
If your application uses a pop-up menu, you can use the pop-up control definition
function and Dialog Manager or Control Manager routines to create and display
the pop-up menu. See “Creating a Pop-Up Menu” on page 3-56 for information on
creating pop-up menus.
Using the Menu Manager 3-51

C H A P T E R 3

Menu Manager
The Menu Manager creates and initializes your application’s menu color information
table when your application calls GetNewMBar. You can add entries to your
application’s menu color information table if you want to use colors other than the
default colors in your menus and menu bar. You can add entries to this table by
providing menu color information table ('mctb') resources or by using the
SetMCEntries procedure. Usually you should use the default colors to help maintain
a consistent user interface.

If you add menu color entries to your application’s menu color information table and
your application uses more than one menu bar, you need to save a copy of your
application’s menu color information table before changing menu bars. Use the
GetMCInfo function before calling GetNewMBar and call SetMCInfo afterward to
restore the menu color information table. Listing 3-6 shows a routine that saves and
then restores the menu color information table when creating a new menu bar.

Listing 3-6 Saving and restoring menu color information

PROCEDURE MyChangeMenuBarAndSaveColorInfo;

CONST

rMenuBar2 = 129;

VAR

 menu: MenuHandle;

 menuBar: Handle;

 currentMCTable: MCTableHandle;

 newMCTable: MCTableHandle;

 BEGIN

 currentMCTable := GetMCInfo; {save menu color info table}

IF currentMCTable = NIL THEN

 EXIT(MyChangeMenuBarAndSaveColorInfo);

menuBar := GetNewMBar(rMenuBar2);{read menus in & create new menu list}

 IF menuBar = NIL THEN

EXIT(MyChangeMenuBarAndSaveColorInfo);

 newMCTable := GetMCInfo; {get new menu color info table}

IF newMCTable = NIL THEN

 EXIT(MyChangeMenuBarAndSaveColorInfo);

 SetMCInfo(currentMCTable); {restore previous menu color info table}

 SetMenuBar(menuBar); {insert menus into the current menu list}

 DisposHandle(menuBar);

 AppendResMenu(GetMenuHandle(m2Apple), 'DRVR'); {add desktop items from }

{ Apple Menu Items folder to Apple menu}

 MyAdjustMenus; {adjust menu items}

 DrawMenuBar; {draw the menu bar}

 END;
3-52 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Creating a Hierarchical Menu 3
A hierarchical menu is a menu that has a submenu attached to one or more of its menu
items. Submenus can be useful when your application needs to offer additional choices
to the user without taking up extra space in the menu bar. If you use a submenu in your
application, use it to give the user additional choices or to choose attributes, not
additional commands.

A menu item of a pull-down menu is the title of the attached submenu. A menu item
that has a triangle facing right in the location of the keyboard equivalent identifies
that a submenu is attached to the menu item. The title of a submenu should represent
the choices it contains. Figure 3-32 shows a menu with a submenu whose menu title is
Label Style.

Figure 3-32 A menu item with a submenu

When a user drags the cursor through a menu and rests it on a menu item with a
submenu attached to it, the Menu Manager displays the submenu after a brief delay.
The title of the submenu remains highlighted while the user browses through the
submenu; the Menu Manager unhighlights the menu title of the submenu when the
user releases the mouse button.

Your application is responsible for placing any marks next to the current choice or
attribute of the submenu. For example, in Figure 3-32 the application placed the
checkmark next to the Numeric menu item to indicate the current choice. If the user
makes a new choice from the menu, your application should update the menu items
accordingly.

You can specify that a particular menu item has a submenu by identifying this
characteristic (using the hierarchicalMenu constant) when you define the menu item
in its 'MENU' resource. You cannot assign keyboard equivalents to a menu item that has
a submenu. (You can define keyboard equivalents for the menu items in the submenu,
but this is not recommended.) You identify the menu ID of the submenu in place of the
marking character in the menu item’s resource description. Thus, a menu item that has a
submenu cannot have a marking character and cannot have a keyboard equivalent.
Using the Menu Manager 3-53

C H A P T E R 3

Menu Manager
To insert a submenu into the current menu list, you must use the InsertMenu
procedure. The GetNewMBar function does not read in the resource descriptions of
any submenus.

Listing 3-7 shows the 'MENU' resource for an application-defined menu called Outline.
The Outline menu contains a number of menu items, including the Label Style menu
item. The description of this menu item contains the constant hierarchicalMenu,
which indicates that the item has a submenu. This menu item description also contains
the menu ID of the submenu (defined by the mSubMenu constant). The menu ID of a
submenu of an application must be from 1 through 235; the menu ID of a submenu of a
desk accessory must be from 236 through 255.

The submenu is defined by the menu with the menu ID specified by the Label Style
menu item. You define the menu items of a submenu in the same way as you would a
pull-down menu (except you shouldn’t define keyboard equivalents for items in a
submenu, and you shouldn’t attach a submenu to another submenu).

Listing 3-7 Rez input for a description of a hierarchical menu with a submenu

#define mOutline 135

#define mSubMenu 181

resource 'MENU' (mOutline, preload) {

mOutline , /*menu ID*/

textMenuProc,

0b0000000000000000000000000010000,

enabled,

"Outline", /*menu title*/

 { /*menu items*/

"Expand", noicon, "E", nomark, plain;

"Expand To…", noicon, nokey, nomark, plain;

"Expand All", noicon, nokey, nomark, plain;

"Collapse", noicon, nokey, nomark, plain;

"-", noicon, nokey, nomark, plain;

/*the Label Style item has a submenu with menu ID mSubMenu*/

"Label Style", noicon, hierarchicalMenu, mSubMenu, plain;

"-", noicon, nokey, nomark, plain;

"Move Left", noicon, "L", nomark, plain;

"Move Right", noicon, "R", nomark, plain;

"Move Up", noicon, "U", nomark, plain;

"Move Down", noicon, "D", nomark, plain

}

};
3-54 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
resource 'MENU' (mSubMenu , preload) {

mSubMenu , /*menu ID*/

textMenuProc,

0b0000000000000000000000001111111,

enabled,

"Label Style", /*menu title (ignored--defined */

/* by parent menu item text)*/

 { /*menu items*/

"Alphabetic", noicon, nokey, nomark, plain;

"Bullet", noicon, nokey, nomark, plain;

"Chicago", noicon, nokey, nomark, plain;

"Harvard", noicon, nokey, nomark, plain;

"Legal", noicon, nokey, nomark, plain;

"Numeric", noicon, nokey, nomark, plain;

"Roman", noicon, nokey, nomark, plain

}

};

When you use GetNewMBar to read in menu descriptions and create a new menu list,
GetNewMBar records the menu ID of any submenu in the menu record but does not read
in the description of the submenu. To read a description of a submenu, use the GetMenu
function. To actually insert a submenu into the current menu list, you must use the
InsertMenu procedure.

When needed, your application can use the GetMenu function to read a description of
the characteristics of a menu from a 'MENU' resource. The GetMenu function creates a
menu record for the menu, allocating space for the menu record in your application’s
heap. The GetMenu function creates the menu and menu items (and fills in the menu
record) according to its 'MENU' resource. The GetMenu function does not insert the
menu into a menu list. When you’re ready to add it to the current menu list, use the
InsertMenu procedure.

Listing 3-8 uses the GetMenu function to read the description of a submenu and uses the
InsertMenu procedure to insert the menu into the current menu list.

Listing 3-8 Creating a hierarchical menu

PROCEDURE MyMakeSubMenu (subMenuResID: Integer);

VAR

subMenu: MenuHandle;

BEGIN

subMenu := GetMenu(subMenuResID);

InsertMenu(subMenu, -1);

END;
Using the Menu Manager 3-55

C H A P T E R 3

Menu Manager
To insert a submenu into the current menu list using the InsertMenu procedure,
specify –1 in the second parameter to insert the menu into the submenu portion of the
menu list. As the user traverses menu items, if a menu item has a submenu the
MenuSelect function looks in the submenu portion of the menu list for the submenu; it
searches for a menu with a defined menu ID that matches the menu ID specified by the
hierarchical menu item. If it finds a menu with a matching menu ID, it attaches the
submenu to the menu item and allows the user to browse through the submenu.

Creating a Pop-Up Menu 3
In System 7, pop-up menus are implemented as controls. You define the menu items of a
pop-up menu in the same way as in other menus (using a 'MENU' resource), and you
define specific features of the pop-up menu itself (such as the location of the pop-up
menu) in a control that uses the standard pop-up control definition function. Pop-up
menus provide the user with a simple way to select from among a list of choices without
having to move up to the menu bar. They are particularly useful in a dialog box that
requires the user to specify a number of settings or values. Figure 3-33 shows an example
of a pop-up menu in a dialog box.

Figure 3-33 A pop-up menu in a dialog box

To create a pop-up menu, create a control that uses the pop-up control definition
function, define the pop-up menu and its menu items, and associate the control with a
window or dialog box. You can use Dialog Manager or Control Manager routines to
display pop-up menus.

For example, if you define a modal dialog box that contains a pop-up control and use the
Dialog Manager to display and help handle events in the dialog box, the Dialog Manager
automatically uses the pop-up control definition function to draw the control and also to
handle user interaction when the user presses the mouse button while the cursor is over
a pop-up control.

If your application defines a control in one of your application’s windows, you can use
TrackControl and other Control Manager routines to handle the pop-up menu.

The pop-up control definition function draws a box around the pop-up box, draws the
drop shadow, inserts the text into the pop-up box, draws the downward-pointing
triangle, and draws the pop-up title. When a dialog box contains a control that uses the
3-56 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
pop-up control definition function and the user presses the mouse button while the
cursor is in the pop-up control, the pop-up control definition function highlights the
pop-up menu title, displays the pop-up menu, and handles all user interaction until the
user releases the mouse button. When the user releases the mouse button, the pop-up
control definition function closes the pop-up box, draws the user’s choice in the pop-up
box (or restores the previous item if the user did not make a new choice), stores the
user’s choice as the value of the control, and unhighlights the pop-up menu title. Your
application can use the Control Manager function GetControlValue to get the value
of the control and to determine the currently selected item in the pop-up menu.

To create a pop-up control, create a control and specify that the control uses the pop-up
control definition function by specifying the popupMenuProc constant:

CONST popupMenuProc = 1008; {pop-up menu control}

If you specify popupMenuProc (plus any appropriate variation code) as the procID
field of the resource description of a control, when your application creates the control
(by using the Dialog Manager or by using GetNewControl) the Control Manager
creates the pop-up control, which includes the pop-up title and the pop-up box with a
one-pixel drop shadow. The appearance of the pop-up title and the values in the menu
are controlled by other values stored in the resource (or other parameters passed to
NewControl). See the chapter “Control Manager” in this book for information on
the NewControl function.

If your application does not use the standard pop-up control definition function, you
can create your own control definition function to implement pop-up menus. In this
case you can use the PopUpMenuSelect function to draw the pop-up menu and track
the cursor within the menu. Your application is responsible for highlighting the title of
the pop-up menu before calling PopUpMenuSelect and unhighlighting the title
afterward (to duplicate the behavior of menu titles in the menu bar). Your application
must also set the mark of the items in the pop-up menu as appropriate if you use the
PopUpMenuSelect function.

For more information on creating controls, see the chapter “Control Manager” in this
book. For listings that define the dialog box shown in Figure 3-33, see the chapter
“Dialog Manager” in this book.

Changing the Appearance of Items in a Menu 3
You can change the appearance of an item in a menu using Menu Manager routines. For
example, you can change the font style, text, or other characteristics of menu items. You
can also enable or disable a menu item.

Most of the Menu Manager routines that get or set characteristics of a particular menu
item require three parameters:

■ a handle to the menu record of the menu containing the desired menu item

■ the number of the menu item

■ a variable that either specifies the data to set or identifies where to return information
about that item
Using the Menu Manager 3-57

C H A P T E R 3

Menu Manager
Enabling and Disabling Menu Items 3

Using the EnableItem and DisableItem procedures, you can enable and disable
specific menu items or an entire menu. You pass as parameters to these two procedures a
handle to the menu record that identifies the desired menu and either an item number
that identifies the particular menu item to enable or disable or a value of 0 to indicate
that the entire menu should be enabled or disabled.

Your application should always enable and disable any menu items as appropriate—
according to the user’s content—before calling MenuSelect or MenuKey. For example,
you should enable the Paste command when the scrap contains data that the user can
paste. (Listing 3-19 on page 3-74 shows code that adjusts an application’s menus.)

When you disable or enable an entire menu, call DrawMenuBar to update the menu bar.
The DrawMenuBar procedure draws the menus in the menu bar according to their
current enabled state and as they are defined in the current menu list.

If you disable an entire menu, the Menu Manager dims the menu title at your
application’s next call to DrawMenuBar and dims all items in the menu when it displays
the menu. If you enable an entire menu, the Menu Manager enables only the menu title
and any items that you did not previously disable individually; the Menu Manager does
not enable any item that your application previously disabled by calling DisableItem
with that menu item’s item number. For example, if all items in your application’s Edit
menu are enabled, you can disable the Cut and Copy commands individually using
DisableItem. If you choose to disable the entire menu by passing 0 as the menu item
parameter to DisableItem, the menu and all its items are disabled. If you then enable
the entire menu by passing 0 as the menu item parameter to EnableItem, the menu and
its items are enabled, except for the Cut and Copy commands, which remain disabled. In
this case, to enable the Cut and Copy commands, you must enable each one individually
using EnableItem.

You can use DisableItem to disable items that aren’t appropriate at a given time. For
example, you can disable the Cut and Copy commands when the user has not selected
anything to cut or copy and disable the Paste command when the scrap is empty.

This code enables the File menu, disables the Cut and Copy commands in the Edit menu,
and disables the application-defined menu Colors.

VAR

menu: MenuHandle;

menu := GetMenuHandle(mFile); {get a handle to the File menu}

EnableItem(menu, 0); {enable File menu and any items }

 { not individually disabled}

DrawMenuBar; {update menu bar's appearance}

menu := GetMenuHandle(mEdit); {get a handle to the Edit menu}

DisableItem(menu, iCut); {disable the Cut command}

DisableItem(menu, iCopy); {disable the Copy command}
3-58 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
menu := GetMenuHandle(mColors);{get a handle to Colors menu}
DisableItem(menu, 0); {disable Colors menu & all }

{ items in it}
DrawMenuBar; {update menu bar's appearance}

If you disable or enable an entire menu, call DrawMenuBar when you need to update the
menu bar’s appearance. If you do not need to update the menu bar immediately, you can
use the InvalMenuBar procedure instead of DrawMenuBar, thus reducing flickering in
the menu bar. Rather than drawing the menu bar twice as in the previous example, you
can use InvalMenuBar instead of DrawMenuBar, causing the Event Manager to redraw
the menu bar the next time it scans for update events. The InvalMenuBar procedure is
available in System 7 and later. See page 3-114 for additional details on the
InvalMenuBar procedure.

Changing the Text of an Item 3

You can get or set the text of a menu item using Menu Manager routines.

To get the text of a menu item, use the GetMenuItemText procedure. For example, you
can use the GetMenuItemText procedure to get the text of a menu item that you added
to a menu using InsertResMenu or AppendResMenu.

To set the text of a menu item, use the SetMenuItemText procedure. You can use
the SetMenuItemText procedure as a convenient way to change the text of a menu
command that allows the user to toggle between two states. For example, if your
application has a menu command that allows the user to either show or hide the
Clipboard window, depending on whether the window is currently showing, you can
change the text of the menu item at the appropriate time using the SetMenuItemText
procedure.

Listing 3-9 changes the text of a menu item from Hide Clipboard to Show Clipboard or
vice versa, based on the state of an application-defined global variable (gToggleState)
that holds the state information.

Listing 3-9 Changing the text of a menu item

PROCEDURE MyToggleHideShow;
VAR

myMenu: MenuHandle;
item: Integer;
itemString: Str255;

BEGIN
myMenu := GetMenuHandle(mEdit);
item := iToggleHideShow;
IF gToggleState = kShow THEN
BEGIN

GetIndString(itemString, kMyStrings, kShowClipboard);
gToggleState := kHide;

END
Using the Menu Manager 3-59

C H A P T E R 3

Menu Manager
ELSE
BEGIN

GetIndString(itemString, kMyStrings, kHideClipboard);
gToggleState := kShow;

END;
SetMenuItemText(myMenu, item, itemString);

END;

Note that if you use the SetMenuItemText procedure, you should define the text of the
menu item in a string resource or string list resource (for example, using an 'STR ' or
'STR#' resource). This makes your application easier to localize.

Changing the Font Style of Menu Items 3

You can change or get the font style of a menu item using the SetItemStyle or
GetItemStyle procedure. To set the style of a menu item, specify a handle to the menu
record of the menu containing the menu item whose style you want to set, specify the
number of the menu item to set, and specify the desired style.

You specify the style using values from the set defined by the Style data type:

TYPE
StyleItem = (bold, italic, underline, outline, shadow,

 condense, extend);
Style = SET OF StyleItem;

You can set the style of a menu item to zero, one, or more than one of the styles defined
by the StyleItem data type. You can set the style of a menu item to the empty set to
obtain the plain font style.

Listing 3-10 shows code that sets the style of menu items listed in an application’s
Style menu.

Listing 3-10 Setting the font style of menu items

VAR
menu: MenuHandle;
itemStyle: Style;

menu := GetMenuHandle(mStyle); {get a handle to the Style menu}
itemStyle := [italic];
SetItemStyle(menu, iItalic, itemStyle);{set to italic style}
itemStyle := [bold];
SetItemStyle(menu, iBold, itemStyle);{set item to bold style}
itemStyle := [bold, Italic];
SetItemStyle(menu, iBoldItal, itemStyle);{bold & italic style}
itemStyle := [];
SetItemStyle(menu, iPlain, itemStyle);{set item to plain style}

To get the style of a menu item, you can use the GetItemStyle procedure.
3-60 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Changing the Mark of Menu Items 3

You can change or get the mark of a menu item using the SetItemMark or
GetItemMark procedure. To set the mark of a menu item to a checkmark, you
can use either the CheckItem or the SetItemMark procedure.

To set the mark of a menu item, specify a handle to the menu record of the menu
containing the item whose mark you want to set, specify the number of the menu
item to set, and specify the mark to use as the marking character of the menu item.

You typically use checkmarks and dashes in menus that contain commands that set
attributes and that you have grouped in accumulating groups. For example, you use a
combination of checkmarks and dashes in the Style menu to indicate whether the
selection contains more than one style. Figure 3-8 on page 3-15 shows an example of
using checkmarks and dashes in a menu. “Groups of Menu Items” beginning on
page 3-14 gives guidelines for determining how to group your menu items.

You specify the mark of the menu item by passing a character as one of the parameters to
the SetItemMark procedure. You should use only the standard marking characters,
such as the checkmark, diamond, or dash, in your menu items; avoid using other marks
that might confuse the user. You can use the constants listed here to specify that the item
has no mark or to set the marking character to a checkmark or diamond:

CONST noMark = 0; {no marking character}

checkMark = $12; {checkmark}

diamondMark = $13; {diamond symbol}

As another example of the use of marks in menus, Listing 3-11 shows code that sets the
mark of items in an application-defined Directory menu. It sets the marking character of
the menu item of the last directory accessed to a checkmark, sets the marking character
of the second-last directory accessed to the diamond mark, and removes the mark from
the third-last directory accessed.

Listing 3-11 Adding marks to and removing marks from menu items

VAR

menu: MenuHandle;

itemMark: Char;

{get handle to Directory menu}

menu := GetMenuHandle(mDirectory);

itemMark := CHR(checkMark);

SetItemMark(menu, gLastDir, itemMark); {set mark to checkmark}

itemMark := CHR(diamondMark);

SetItemMark(menu, gOldLastDir, itemMark); {set mark to diamond}

itemMark := CHR(noMark);

SetItemMark(menu, gSecondLastDir, itemMark);{remove any mark}
Using the Menu Manager 3-61

C H A P T E R 3

Menu Manager
You can also set the mark of a menu item to a checkmark using the CheckItem
procedure:

VAR
menu: MenuHandle;

{get handle to Directory menu}
menu := GetMenuHandle(mDirectory);
CheckItem(menu, gLastDir, TRUE); {set to checkmark}
CheckItem(menu, gSecondLastDir, FALSE);{remove checkmark or }

{ any other mark}

Changing the Icon or Script Code of Menu Items 3

You can change or get the icon of a menu item using the SetItemIcon or
GetItemIcon procedure. You can also use these procedures to get or set the
script code of a menu item’s text.

To set the script code of a menu item using the SetItemIcon procedure, you need to

■ specify a handle to the menu record of the menu containing the item whose script
code you want to set

■ specify the number of the menu item to set

■ specify the script code

To set a menu item’s script code, you must also define the keyboard equivalent field of
the item to $1C. If an item contains $1C in its keyboard equivalent field and a script code
in its icon field, the Menu Manager draws the item in the script identified by the script
code value if the corresponding script system is installed.

To set the icon of a menu item using the SetItemIcon procedure, you need to

■ specify a handle to the menu record of the menu containing the item whose icon you
want to set

■ specify the number of the menu item to set

■ specify the icon number (the Menu Manager uses the icon number to generate the
resource ID of the icon)

The icon number that you specify to SetItemIcon must be a value from 1 through 255
for color icons or icons, from 1 through 254 for small icons and reduced icons, or 0 to
specify that the item doesn’t have an icon. The Menu Manager adds 256 to the number
you specify and uses this calculated number as the icon’s resource ID. For example, if
you specify the icon number as 5, the Menu Manager uses the Resource Manager to find
the icon with resource ID 261. The Menu Manager first looks for an icon resource of type
'cicn'; if it can’t find one with the calculated resource ID number (or if the computer
doesn’t have Color QuickDraw), it looks for a resource of type 'SICN' if the keyboard
equivalent field contains $1E; otherwise, it looks for an 'ICON' resource.

Use either an 'ICON' or 'SICN' resource if you want to provide only a black-and-white
icon. In addition, provide a 'cicn' resource if you want the Menu Manager to use a
color icon when Color QuickDraw is available. Figure 3-34 shows examples of icons in a
menu item generated from icon resources: an 'SICN' resource, an 'ICON' resource, an
'ICON' resource reduced to fit in a 16-by-16 bit rectangle, and a 'cicn' resource.
3-62 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-34 Icons in menu items

The Menu Manager automatically fits the icon in the menu item according to your
specifications. If the Menu Manager uses a 'cicn' resource, it automatically enlarges
the enclosing rectangle of the menu item according to the rectangle specified in the
'cicn' resource. If the Menu Manager uses an 'ICON' resource and the item specifies
the nokey constant as the keyboard equivalent, the Menu Manager enlarges the
rectangle of the menu item to fit the 32-by-32 bit 'ICON' resource. You can request that
the Menu Manager reduce an 'ICON' resource to the size of a 16-by-16 bit small icon by
specifying a value of $1D as the item’s keyboard equivalent. To request that the Menu
Manager use an 'SICN' resource instead of an 'ICON' resource, specify a value of $1E
as the item’s keyboard equivalent.

This code sets the icon of a menu item to a specified icon.

VAR

menu: MenuHandle;

itemIcon: Byte;

itemIcon := 5;
menu := GetMenuHandle(mWeather);
{set the icon for this item in the Weather menu}
SetItemIcon(menu, iBeachWeather, itemIcon);

Listing 3-12 shows the Rez description of three menu items, each of which contains
icons. The first menu item has an icon with resource ID 261 (5 plus 256) and is defined by
a resource type of either 'cicn' or 'ICON'. The second menu item has an icon with
resource ID 262 (6 plus 256) and is identified by either a 'cicn' resource or an 'ICON'
resource; however, in this case, the value of $1D requests the Menu Manager to reduce
the 'ICON' resource to a small icon. The third menu item has an icon with resource ID
263 (7 plus 256) and is defined by either a 'cicn' resource or an 'SICN' resource.

Listing 3-12 Specifying icons for menu items

#define mWeather 138

resource 'MENU' (mWeather, preload) {

mWeather,

textMenuProc,
Using the Menu Manager 3-63

C H A P T E R 3

Menu Manager
0b0000000000000000001011101100111,

enabled, “Weather",

 {

"Beach Weather", /*item has icon or color icon */

/* with icon number 5*/

5, nokey, nomark, plain;

"Ski Weather", /*item has reduced icon or color */

/* icon with icon number 6*/

6, $1D, nomark, plain;

"Kite-Flying Weather",/*item has small icon or */

 /* color icon with icon number 7*/

7, $1E, nomark, plain

}

};

See the chapter “Finder Interface” in this book for details on how to create icons.

Adding Items to a Menu 3
Usually you define a menu and all its items in a 'MENU' resource. Occasionally you
might need to add items to a menu after you’ve created it. After creating a menu (using
NewMenu, GetMenu, or GetNewMBar), you can add items to it using the AppendMenu,
InsertMenuItem, AppendResMenu, or InsertResMenu procedure.

You can use AppendResMenu or InsertResMenu to add items that consist of resource
names to a menu. For example, you can use the AppendResMenu procedure to add fonts
to your application’s Font menu or to add all of the desktop items from the Apple Menu
Items folder to your application’s Apple menu. These are common instances when you’ll
need to add items not already defined in a 'MENU' resource to a menu. See “Adding
Fonts to a Menu” on page 3-69 and “Adding Items to the Apple Menu” on page 3-68 for
information on adding names of resources to menus.

If you add items to your application’s Help menu, you’ll need to use AppendMenu or
InsertMenuItem to add the additional items. This section discusses how to add items
using the AppendMenu and InsertMenuItem procedures, and “Adding Items to the
Help Menu” on page 3-67 shows a specific example of adding items to the Help menu.

If you need to add items other than the names of resources to a previously created menu,
you can use the AppendMenu or InsertMenuItem procedure. You can use
AppendMenu to add items to the end of a menu; note that you can add items to only the
end of the menu when using AppendMenu. Use InsertMenuItem to add items after
any given item in a menu. When you add items to a menu using AppendMenu or
InsertMenuItem, you can specify the same characteristics for menu items that are
available to you when defining 'MENU' resources.
3-64 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
You specify a handle to the menu record of the menu to which you want to add the item
or items, and you specify a string describing the items to add as parameters to the
AppendMenu or InsertMenuItem procedure. The string you pass to these procedures
should consist of the text and any characteristics of the menu items. You can specify a
hyphen as the menu item text to create a divider line. You can also use various
metacharacters in the text string to separate menu items and to specify certain
characteristics of the menu items. The metacharacters aren’t displayed in the menu.

Here is a list of the metacharacters you can use in the text string that you specify to the
AppendMenu or InsertMenuItem procedure:

You can specify any, all, or none of these metacharacters in the text string to define the
characteristics of a menu item. Note that the metacharacters that you specify aren’t
displayed in the menu item. (To use any of these metacharacters in the text of a menu
item, first use AppendMenu or InsertMenuItem, specifying at least one character as
the item’s text. Then use the SetMenuItemText procedure to set the item’s text to the
desired string.)

Note
If you add menu items using the AppendMenu or InsertMenuItem
procedure, you should define the text and any marks or keyboard
equivalents in resources for easier localization. ◆

Listing 3-13 shows a string list ('STR#') resource that stores the text of the menu items
used in the next examples.

Metacharacter Description

; or Return Separates menu items.

^ When followed by an icon number, defines the icon for the item. If the
keyboard equivalent field contains $1C, this number is interpreted as
a script code.

! When followed by a character, defines the mark for the item. If the
keyboard equivalent field contains $1B, this value is interpreted as
the menu ID of a submenu of this menu item.

< When followed by one or more of the characters B, I, U, O, and S,
defines the character style of the item to Bold, Italic, Underline,
Outline, or Shadow, respectively.

/ When followed by a character, defines the keyboard equivalent for
the item. When followed by $1B, specifies that this menu item has a
submenu. To specify that the menu item has a script code, small icon,
or reduced icon, use the SetItemCmd procedure to set the keyboard
equivalent field to $1C, $1D, or $1E, respectively.

(Defines the menu item as disabled.
Using the Menu Manager 3-65

C H A P T E R 3

Menu Manager
Listing 3-13 Rez input for text of menu items

resource 'STR#' (300, "Text for appended menu items") {

{

/*[1]*/

"Just Text";

/*[2]*/

"Pick a Color…";

/*[3]*/

"(^2!=Everything<B/E";

}

);

Here’s code that uses the AppendMenu procedure to append a menu item with no
specific characteristics other than its text to the menu identified by the menu handle in
the myMenu variable. The text for the menu item is “Just Text” as stored in the 'STR#'
resource with resource ID 300.

VAR

myMenu: MenuHandle;

itemString: Str255;

myMenu := GetMenuHandle(mLibrary);

GetIndString(itemString, 300, 1);

AppendMenu(myMenu, itemString);

To insert an item after a given menu item, use the InsertMenuItem procedure. For
example, this code inserts the menu item Pick a Color after the menu item with the item
number specified by the iRed constant. The text for the new menu item consists of the
string “Pick a Color…” as stored in the 'STR#' resource with resource ID 300.

VAR

myMenu: MenuHandle;

itemString: Str255;

myMenu := GetMenuHandle(mColors);

GetIndString(itemString, 300, 2);

InsertMenuItem(myMenu, itemString, iRed);

If you do not explicitly specify a value for an item characteristic in the text string that
you pass to AppendMenu or InsertMenuItem, the procedure assigns the default value
for that characteristic. The Menu Manager defines the default item characteristics as no
icon, no marking character, no keyboard equivalent, and plain text style. AppendMenu
and InsertMenuItem enable the added menu items unless you specify otherwise.

This code appends a menu item with the text “Everything” to the menu identified by the
menu handle in the myMenu variable. The text and other characteristics of this menu
item are stored in the 'STR#' resource shown in Listing 3-13. It also specifies that this
3-66 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
menu item is disabled, has an icon with resource ID 258 (2 + 256), and has the “=”
character as a marking character; the style of the text is Bold; and the menu item has a
keyboard equivalent of Command-E.

VAR

myMenu: MenuHandle;

itemString: Str255;

myMenu := GetMenuHandle(mLibrary);

GetIndString(itemString, 300, 3);

AppendMenu(myMenu, itemString);

This code appends multiple items to the Edit menu using AppendMenu:

VAR

myMenu: MenuHandle;

myMenu := GetMenuHandle(mEdit);

AppendMenu(myMenu, 'Undo/Z;-;Cut/X;Copy/C;Paste/V');

The InsertMenuItem procedure differs from AppendMenu in how it handles the given
text string when the text string specifies multiple items. The InsertMenuItem
procedure inserts the items in the reverse of their order in the text string. For example,
this code inserts menu items into the Edit menu using InsertMenuItem and is
equivalent to the previous example:

VAR

myMenu: MenuHandle;

myMenu := GetMenuHandle(mEdit);

InsertMenuItem(myMenu, 'Paste/V';Copy/C;Cut/X;-;Undo/Z',0);

Once you’ve added a menu item to a menu, you can change any of its characteristics
using Menu Manager routines, as described in “Changing the Appearance of Items in a
Menu” on page 3-57.

Adding Items to the Help Menu 3

You add items to the Help menu by using the HMGetHelpMenuHandle function and
either the AppendMenu or InsertMenuItem procedure.

The HMGetHelpMenuHandle function returns a copy of the handle to the menu record
of your application’s Help menu. Do not use the GetMenuHandle function to get a
handle to the Help menu, because GetMenuHandle returns a handle to the global Help
menu, not the Help menu that is specific to your application. Once you have a handle to
the Help menu that is specific to your application, you can add items to it using the
AppendMenu procedure or other Menu Manager routines. For example, Listing 3-14
adds the menu item displayed in Figure 3-19 on page 3-30.
Using the Menu Manager 3-67

C H A P T E R 3

Menu Manager
Listing 3-14 Adding an item to the Help menu

PROCEDURE MyAddHelpItem;

VAR

myMenu: MenuHandle;

myErr: OSErr;

itemString: Str255;

BEGIN

myErr := HMGetHelpMenuHandle(myMenu);

IF myErr = noErr THEN

IF myMenu <> NIL THEN

BEGIN

{get the string (with index kSurfHelp) from the 'STR#' }

{ resource with resource ID kMyStrings}

GetIndString(itemString, kMyStrings, kSurfHelp);

AppendMenu(myMenu, itemString);

END;

END;

When you add items to the Help menu, the Help Manager automatically adds a divider
between the end of the standard Help menu items and your items.

Be sure to use an 'hmnu' resource and specify the kHMHelpMenuID constant as the
resource ID to provide help balloons for items you’ve added to the Help menu. (The
Help Manager automatically creates the help balloons for the Help menu title and the
standard Help menu items.) See the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox for specific information on the 'hmnu' resource.

The Help Manager automatically processes the event when a user chooses any of the
standard menu items in the Help menu. The Help Manager automatically enables and
disables help when the user chooses Show Balloons or Hide Balloons from the Help
menu. The setting of Balloon Help is global and affects all applications. See “Handling
the Help Menu” on page 3-81 for information on responding to the user when the user
chooses one of your appended items.

Adding Items to the Apple Menu 3

To insert the items contained in the Apple Menu Items folder into your application’s
Apple menu, use the AppendResMenu or InsertResMenu procedure and specify
'DRVR' as the resource type. Doing so causes this procedure to automatically add all
items in the Apple Menu Items folder to the specified menu.

The user can place any desktop object in the Apple Menu Items folder. When the user
places an item in this folder, the system software automatically adds it to the list of items
in the Apple menu of all open applications.
3-68 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
After inserting the Apple menu into your application’s menu bar (by using GetNewMBar
or GetMenu and InsertMenu), your application can add items to it. Listing 3-15 shows
code that uses GetMenuHandle to get a handle to the application’s Apple menu. The
code then uses the AppendResMenu procedure, specifying that AppendResMenu should
add all desktop items in the Apple Menu Items folder to the application’s Apple menu.

Listing 3-15 Adding menu items to the Apple menu

VAR

 myMenu: MenuHandle;

 myMenu := GetMenuHandle(mApple);

IF myMenu <> NIL THEN

AppendResMenu(myMenu, 'DRVR');{add desktop items in the }

{ Apple Menu Items folder }

{ to the Apple menu}

Listing 3-16 on page 3-70 shows a complete sample that sets up an application’s menu
bar, adds items to the Apple menu, adds items to the Font menu, and then updates the
appearance of the menu bar.

Adding Fonts to a Menu 3

If your application provides a Font menu, you typically include the description of the
menu in a 'MENU' resource, include a description of your menu bar in an 'MBAR'
resource, and use GetNewMBar to create your menu bar and all menus in the menu bar.
Once you’ve created the menu, you can use AppendResMenu to add the names of all
font resources in the Fonts folder of the System Folder (or in system software versions
earlier than 7.1, in the System file) as menu items in your application’s Font menu. (You
can also use InsertResMenu to insert the fonts into your menu.)

Listing 3-16 on the next page shows how to add names of font resources in the Fonts
folder to an application’s Font menu. The AppendResMenu procedure adds all resources
of the specified type to a given menu. If you specify the resource type 'FONT' or
'FOND', the Menu Manager adds all resources of type 'FOND' and 'FONT' to the
menu. ('NFNT' and 'sfnt' resources are specified through 'FOND' resources.)

The AppendResMenu and InsertResMenu procedures perform special processing for
any font resources they find that have font numbers greater than $4000. The Menu
Manager automatically sets the keyboard equivalent field of the menu item to $1C and
stores the script code in the icon field of the menu item for any such 'FOND' resource.
The Menu Manager displays a font name in its corresponding script if the script system
for that font is installed.
Using the Menu Manager 3-69

C H A P T E R 3

Menu Manager
Listing 3-16 Adding font names to a menu

PROCEDURE MyMakeAllMenus;

VAR

 menu: MenuHandle;

 menuBar: Handle;

 BEGIN

{read menus in & create new menu list}

menuBar := GetNewMBar(rMenuBar);

IF menuBar = NIL THEN

EXIT(MyMakeAllMenus);

 SetMenuBar(menuBar); {insert menus into the current menu list}

 DisposHandle(menuBar);

myMenu := GetMenuHandle(mApple);

IF myMenu <> NIL THEN {add desktop items in }

AppendResMenu(myMenu, 'DRVR'); { Apple Menu Items }

{ folder to Apple menu}

myMenu := GetMenuHandle(mFont);

IF myMenu <> NIL THEN

AppendResMenu(myMenu, 'FONT'); {add font names to the }

{ Font menu--this adds all bitmapped and TrueType fonts }

{ in the Fonts folder to the Font menu}

MyAddHelpItem; {add app-specific item to Help menu}

MyAdjustMenus; {adjust menu items}

 DrawMenuBar; {draw the menu bar}

 END;

Your application should indicate the current font to the user by placing the appropriate
mark next to the text of the menu item that lists the font name. (“Changing the Mark of
Menu Items” on page 3-61 explains how to add marks to and remove marks from menu
items; Figure 3-13 on page 3-26 and Figure 3-14 on page 3-27 show examples of typical
Font menus.)

If your application allows the user to change the font style or font size of text, you
should provide separate Size and Style menus. See “Handling a Size Menu” beginning
on page 3-82 for information on providing a Size menu in your application.

Handling User Choice of a Menu Command 3
If the user presses the mouse button while the cursor is in the menu bar, your application
should first adjust its menus (enable or disable menu items and add marks to or remove
marks from any items as appropriate to the user’s context) and then call the
MenuSelect function to allow the user to choose a menu command. The MenuSelect
function handles all user interaction until the user releases the mouse button and returns
a value as its function result that indicates which (if any) menu item the user chose.
3-70 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
For a command with a keyboard equivalent, your application should allow the user to
choose the command by pressing the keys that correspond to the keyboard equivalent
of that menu command. If the user presses the Command key and another key, your
application should adjust its menus and then call the MenuKey function to map this
combination to a keyboard equivalent. The MenuKey function returns as its function
result a value that indicates the corresponding menu and menu item of the keyboard
equivalent.

When the user chooses a menu command, your application should perform the action
associated with that command. The MenuSelect and MenuKey functions highlight the
menu title of the menu containing the chosen menu command. After your application
performs any operation associated with the menu command chosen by the user, your
application should unhighlight the menu title by using the HiliteMenu procedure.

However, if in response to a menu command your application displays a window that
contains editable text (such as a modal dialog box), you should unhighlight the menu
title immediately so that the user can access the Edit menu or other appropriate menus.
In other words, any time the user can use a menu, make sure that the menu title is
not highlighted.

When the user chooses a menu command that involves an operation that takes a long
time, display the animated wristwatch cursor or display a status dialog box to give the
user feedback that the operation is in progress.

If you want the users of your application to be able to record their actions (such as menu
commands, text input, or any sequence of actions) for later playback, your application
should send itself Apple events whenever a user performs a significant action. To do this
for menu commands, your application typically sends itself an Apple event to perform
the action associated with the chosen menu command. For example, when a user
chooses the New command from the File menu, your application can choose to send
itself a Create Element event. Your application then creates the new document in
response to this event. For information on sending Apple events in response to menu
commands, see Inside Macintosh: Interapplication Communication.

The next sections show how your application can

■ determine if the user pressed the mouse button while the cursor was in the menu bar

■ adjust its menus—enabling and disabling commands according to the current state of
the document—before displaying menus or before responding to the user’s choice of a
keyboard equivalent of a command

■ determine if the user chose the keyboard equivalent of a menu command

■ respond to the user when the user chooses a menu command

The next sections also show how your application should respond when the user
chooses an item from the Apple or Help menu.
Using the Menu Manager 3-71

C H A P T E R 3

Menu Manager
Handling Mouse-Down Events in the Menu Bar 3

You can determine when the user has pressed the mouse button while the cursor is in the
menu bar by examining the event record for a mouse-down event. You can use the
Window Manager function FindWindow to map the mouse location at the time of the
mouse-down event to a corresponding area of the screen. If the cursor was in the menu
bar, your application should call the MenuSelect function, allowing the user to choose
a menu command.

Listing 3-17 shows an application-defined procedure, DoEvent, that determines whether
a mouse-down event occurred and, if so, calls another application-defined procedure to
handle the mouse-down event. (For a complete discussion of how to handle events, see
the “Event Manager” chapter in this book.)

Listing 3-17 Determining whether a mouse-down event occurred

PROCEDURE DoEvent (event: EventRecord);

BEGIN

CASE event.what OF

mouseDown: {handle mouse-down event}

DoMouseDown(event);

{handle other events appropriately}

END; {of CASE}

END;

Listing 3-18 shows an application-defined procedure, DoMouseDown, that handles
mouse-down events. The DoMouseDown procedure determines where the cursor was
when the mouse button was pressed and then responds appropriately.

Listing 3-18 Determining when the cursor is in the menu bar

PROCEDURE DoMouseDown (event: EventRecord);

VAR

part: Integer;

thisWindow: WindowPtr;

BEGIN

part := FindWindow(event.where, thisWindow);

CASE part OF

inMenuBar:{mouse down in menu bar, respond appropriately}

BEGIN

{adjust marks and enabled state of menu items}

MyAdjustMenus;

{let user choose a menu command if desired}

DoMenuCommand(MenuSelect(event.where));

END;
3-72 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
{handle other mouse-down events appropriately}

END; {of CASE}

END;

You can use the FindWindow function to map the mouse location at the time the
user pressed the mouse button to general areas of the screen. If the mouse location
is in the menu bar, the FindWindow function returns the constant inMenuBar. In
Listing 3-18, if the mouse location associated with the mouse-down event is in the
menu bar, the DoMouseDown procedure first calls another application-defined
procedure, MyAdjustMenus, to adjust the menus. Listing 3-19 shows the
MyAdjustMenus procedure.

The DoMouseDown procedure then calls an application-defined procedure,
DoMenuCommand. The DoMouseDown procedure passes as a parameter to
the DoMenuCommand procedure the value returned from the MenuSelect function.

The MenuSelect function displays menus and handles all user interaction until the user
releases the mouse button. The MenuSelect function returns a long integer indicating
whether the user chose a menu command, and if so, it indicates which menu and which
command the user chose.

Listing 3-24 on page 3-79 shows the DoMenuCommand procedure.

Adjusting the Menus of an Application 3

Your application should always adjust its menus before calling MenuSelect or
MenuKey. For example, you should enable and disable any menu items as necessary
and add checkmarks or dashes to items that are attributes. When you adjust your
application’s menus, you should enable and disable menu items according to the type
of window that is in the front. For example, when a document window is the frontmost
window, you should enable items as appropriate for that document window. When
a modeless dialog box or modal dialog box is the frontmost window, enable those
items as appropriate to that particular dialog box. Listing 3-19 shows an application-
defined routine, MyAdjustMenus, that adjusts the menus of the SurfWriter
application appropriately.

The MyAdjustMenus procedure first determines what kind of window is in front
and then adjusts the application’s menus appropriately. The application-defined
MyGetWindowType procedure returns a value that indicates whether the window
is a document window, a dialog window, or a window belonging to a desk accessory.
It also returns the constant kNil if there isn’t a front window. (See the chapter
“Window Manager” in this book for a listing of the MyGetWindowType procedure.)
The MyAdjustMenus procedure calls other application-defined routines to adjust the
menus as appropriate for the given window type.
Using the Menu Manager 3-73

C H A P T E R 3

Menu Manager
Listing 3-19 Adjusting an application’s menus

PROCEDURE MyAdjustMenus;

VAR

window: WindowPtr;

windowType: Integer;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN {document window is in front, adjust items appropriately}

MyAdjustFileMenuForDocWindow;

MyAdjustEditMenuForDocWindow;

{adjust other menus as needed}

END; {of adjusting menus for a document window}

kMyDialogWindow:

{adjust menus accordingly for any dialog box}

MyAdjustMenusForDialogs;

kDAWindow:{adjust menus accordingly for a DA window}

MyAdjustMenusForDA;

kNil:{adjust menus accordingly when there isn't a front window}

MyAdjustMenusNoWindows;

END; {of CASE}

DrawMenuBar;

END;

Listing 3-20 shows the application-defined procedure
MyAdjustFileMenuForDocWindow. This procedure enables and disables the File
menu for the application’s document window, according to the state of the document.
For example, this application always allows the user to create a new document or open
a file, so the code enables the New and Open menu items. The code also enables the
Close, Save As, Page Setup, Print, and Quit menu items. If the user has modified the
file since last saving it, the code enables the Save command; otherwise, it disables the
Save command.

Listing 3-20 Adjusting the File menu for a document window

PROCEDURE MyAdjustFileMenuForDocWindow;

VAR

window: WindowPtr;

menu: MenuHandle;

myData: MyDocRecHnd;
3-74 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
BEGIN

window := FrontWindow;

menu := GetMenuHandle(mFile); {get a handle to the File menu}

IF menu = NIL THEN {add your own error handling}

EXIT (MyAdjustFileMenuForDocWindow);

EnableItem(menu, iNew);

EnableItem(menu, iOpen);

EnableItem(menu, iClose);

myData := MyDocRecHnd(GetWRefCon(window));

IF myData^^.windowDirty THEN

EnableItem(menu, iSave)

ELSE

DisableItem(menu, iSave);

EnableItem(menu, iSaveAs);

EnableItem(menu, iPageSetup);

EnableItem(menu, iPrint);

EnableItem(menu, iQuit);

END;

Listing 3-21 shows the application-defined MyAdjustEditMenuForDocWindow
procedure.

Listing 3-21 Adjusting the Edit menu for a document window

PROCEDURE MyAdjustEditMenuForDocWindow;

VAR

window: WindowPtr;

menu: MenuHandle;

selection, undo: Boolean;

isSubscriber: Boolean;

undoText: Str255;

offset: LongInt;

BEGIN

window := FrontWindow;

menu := GetMenuHandle(mEdit); {get a handle to the Edit menu}

IF menu = NIL THEN {add your own error handling}

EXIT (MyAdjustEditMenuForDocWindow);

undo := MyIsLastActionUndoable(undoText);

IF undo THEN {if action can be undone}

BEGIN

SetMenuItemText(menu, iUndo, undoText);

EnableItem(menu, iUndo);

END
Using the Menu Manager 3-75

C H A P T E R 3

Menu Manager
ELSE {if action can't be undone}

BEGIN

SetMenuItemText(menu, iUndo, gCantUndo);

DisableItem(menu, iUndo);

END;

selection := MySelection(window);

IF selection THEN

BEGIN {enable editing items if there's a selection}

EnableItem(menu, iCut);

EnableItem(menu, iCopy);

EnableItem(menu, iCreatePublisher);

END

ELSE

BEGIN {disable editing items if there isn't a selection}

DisableItem(menu, iCut);

DisableItem(menu, iCopy);

DisableItem(menu, iCreatePublisher);

END;

IF GetScrap(NIL, 'TEXT', offset) > 0 THEN

EnableItem(menu, iPaste) {enable if something to paste}

ELSE

DisableItem(menu, iPaste); {disable if nothing to paste}

EnableItem(menu, iSelectAll);

EnableItem(menu, iSubscribeTo);

IF MySelectionContainsSubscriberOrPublisher(isSubcriber) THEN

BEGIN {selection contains a single subscriber or publisher}

IF isSubscriber THEN {selection contains a subscriber}

SetMenuItemText(menu, iPubSubOptions, gSubOptText)

ELSE {selection contains a publisher}

SetMenuItemText(menu, iPubSubOptions, gPubOptText);

EnableItem(menu, iPubSubOptions);

END

ELSE {selection contains either no subscribers or publishers }

 { or contains at least one subscriber and one publisher}

DisableItem(menu, iPubSubOptions);

IF (gPubCount > 0) OR (gSubCount > 0) THEN

EnableItem(menu, iShowHideBorders)

ELSE

DisableItem(menu, iShowHideBorders);

END;

The procedure in Listing 3-21 adjusts the items in the Edit menu as appropriate for a
document window of the application. The code enables the Undo command if the
application can undo the last command, enables the Cut and Copy commands if there’s a
selection that can be cut or copied, enables the Paste command if there’s text data in the
3-76 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
scrap, and enables the menu items relating to publishers and subscribers appropriately,
according to whether the current selection contains a publisher or subscriber. The
application-defined MySelectionContainsSubscriberOrPublisher function
returns TRUE if the current selection contains a single subscriber or a single publisher and
returns FALSE otherwise. If the MySelectionContainsSubscriberOrPublisher
function returns TRUE, the code sets the text for the Publisher Options (or Subscriber
Options) command and enables the menu item. If the function returns FALSE, the code
disables the Publisher Options (or Subscriber Options) command.

Determining if the User Chose a Keyboard Equivalent 3

Keyboard equivalents of commands allow the user to invoke a menu command from the
keyboard. You can determine if the user chose the keyboard equivalent of a menu
command by examining the event record for a key-down event. If the user pressed the
Command key in combination with another 1-byte character, you can determine if this
combination maps to a Command-key equivalent by using the MenuKey function.

If your application supports keyboard equivalents that use other modifier keys in
addition to the Command key, your application should examine the modifiers
field and take any appropriate action; depending on the modifier keys you use,
your application may or may not be able to use MenuKey to map the key to the
menu command.

Listing 3-22 shows an application-defined procedure, DoEvent, that determines whether
a key-down event occurred and, if so, calls an application-defined routine to handle the
key-down event.

Listing 3-22 Determining when a key is pressed

PROCEDURE DoEvent (event: EventRecord);

BEGIN

CASE event.what OF

keyDown, autoKey: {handle keyboard events}

DoKeyDown(event);

{handle other events appropriately}

END; {of CASE}

END;

If your application determines that the user pressed a key, you need to determine
whether the user chose the keyboard equivalent of a menu command. You can do this by
examining the modifiers field of the event record describing the key-down event. If
the Command key was also pressed, then your application should call the MenuKey
function. The MenuKey function scans the current menu list for a menu item that has a
matching keyboard equivalent and returns the menu and menu item, if any. Although
you should not define the same keyboard equivalent for more than one command, the
MenuKey function scans the menus from right to left, scanning the items from top to
bottom, and returns the first matching keyboard equivalent that it finds.
Using the Menu Manager 3-77

C H A P T E R 3

Menu Manager
If your application uses other keyboard equivalents in addition to Command-key
equivalents, you can examine the state of the modifier keys and use the Event Manager
function KeyTranslate, if necessary, to help map the keyboard equivalent to a
particular menu item. See the discussion of 'KCHR' resources in Inside Macintosh: Text
for information on how various keyboard combinations map to specific character codes.

Listing 3-23 shows an application’s DoKeyDown procedure that handles key-down
events and determines if a keyboard equivalent was pressed.

Listing 3-23 Checking a key-down event for a keyboard equivalent

PROCEDURE DoKeyDown (event: EventRecord);

VAR

key: Char;

BEGIN

key := CHR(BAnd(event.message, charCodeMask));

IF BAnd(event.modifiers, cmdKey) <> 0 THEN

BEGIN {Command key down}

IF event.what = keyDown THEN

BEGIN {first enable/disable/check }

MyAdjustMenus; { menu items properly}

DoMenuCommand(MenuKey(key));{handle the menu command}

END;

END

ELSE

MyHandleKeyDown(event);

END;

Listing 3-23 extracts the pressed key from the message field of the event record and
then examines the modifiers field to determine if the Command key was also pressed.
If so, the application first adjusts its menus and then calls an application-defined
procedure, DoMenuCommand. The DoKeyDown procedure passes as a parameter to
the DoMenuCommand procedure the value returned from the MenuKey function.

Listing 3-24 shows the DoMenuCommand procedure.

Responding When the User Chooses a Menu Item 3
Your application can use the MenuSelect function to determine when the user chooses
a menu command, and your application can use the MenuKey function to determine
when the user presses the keyboard equivalent for a menu command. Both MenuSelect
and MenuKey return a long integer value that indicates which menu and menu item the
user chose.

The MenuSelect and MenuKey functions return the menu ID of the menu in the high
word and the menu item number in the low word of their function result. If the user did
not choose a menu command or if the user pressed a keyboard combination that does
3-78 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
not map to any keyboard equivalent in your application’s menus, the functions return 0
in the high word and the value of the low word is undefined. The MenuSelect function
also returns 0 in the high word when the user selects an item in the Application or
Keyboard menu. The MenuSelect function (and MenuKey function, if the command
has a keyboard equivalent) returns the kHMHelpMenuID constant in the high word and
the menu item in the low word when the user selects an item that your application
appended to the Help menu.

Listing 3-24 shows an application-defined procedure, DoMenuCommand. This procedure
takes the appropriate action based on which menu command the user chose.

The DoMenuCommand procedure is called by the application after the application
determines that either the user pressed the mouse button while the cursor was in the
menu bar (in which case the application calls MenuSelect to allow the user to choose
a command) or the user pressed the Command key and another key (in which case the
application calls the MenuKey function). In either case, the application passes the
function result returned by MenuSelect or MenuKey as a parameter to the
DoMenuCommand procedure.

Listing 3-24 Responding to the user’s choice of a menu command

PROCEDURE DoMenuCommand (menuResult: LongInt);

VAR

menuID, menuItem: Integer;

BEGIN

menuID := HiWord(menuResult); {get menu ID of menu}

menuItem := LoWord(menuResult); {get menu item number}

CASE menuID OF

 mApple:

MyHandleAppleCommand(menuItem);

mFile:

 MyHandleFileCommand(menuItem);

 mEdit:

MyHandleEditCommand(menuItem);

 mFont:

MyHandleFontCommand(menuItem);

 mSize:

MyHandleSizeCommand(menuItem);

 kHMHelpMenuID:

MyHandleHelpCommand(menuItem);

 mOutline:

MyHandleOutlineCommand(menuItem);

 mSubMenu: {user chose item from submenu}

MyHandleSubLabelStyleCommand(menuItem);

END; {end of CASE menuID}

HiliteMenu(0); {unhighlight what MenuSelect or MenuKey hilited}

END;
Using the Menu Manager 3-79

C H A P T E R 3

Menu Manager
The DoMenuCommand procedure calls other application-defined routines to perform the
requested action. After performing the action associated with the chosen menu item,
your application should use the HiliteMenu procedure to unhighlight the menu title to
indicate that the requested action is complete.

Handling the Apple Menu 3

When the user chooses an item from the Apple menu, the MenuSelect function returns
the menu ID of your application’s Apple menu in the high word and returns the chosen
menu item in the low word of its function result.

If your application provides an About command as the first menu item in the Apple
menu and the user chose this item, you should display your application’s About box.
Otherwise your application should use the GetMenuItemText procedure to get the
menu item text and then call the OpenDeskAcc function, passing the text of the chosen
menu item as a parameter.

Listing 3-25 shows an application-defined procedure, MyHandleAppleCommand, that
the application calls in response to the user’s choice of an item from the Apple menu.

Listing 3-25 Responding to the user’s choice of an item from the Apple menu

PROCEDURE MyHandleAppleCommand (menuItem: Integer);

VAR

itemName: Str255;

daRefNum: Integer;

BEGIN

CASE menuItem OF

iAbout: {bring up alert for About}

 DisplayMyAboutBox;

OTHERWISE

 BEGIN {all non-About items in this menu are desktop items, }

{ for example, DA's, other apps, documents, etc.}

GetMenuItemText(GetMenuHandle(mApple), menuItem,

 itemName);

daRefNum := OpenDeskAcc(itemName);

 END;

 END; {of CASE}

END;

When the user chooses an item other than your application’s About command from
the Apple menu, your application should call the OpenDeskAcc function. The
OpenDeskAcc function prepares to open the desktop object chosen by the user; for
example, if the user chose a document created by the TeachText application, the
OpenDeskAcc function schedules the TeachText application for execution (or prepares
to open it if it isn’t already open) and returns to your application. On your application’s
next call to WaitNextEvent, your application receives a suspend event, and then
3-80 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
the Process Manager makes TeachText the foreground application and instructs
TeachText to open the chosen document.

Handling the Help Menu 3

Both the MenuSelect and MenuKey functions return the kHMHelpMenuID constant
(–16490) in the high word when the user chooses an appended item from the Help
menu. The item number of the appended menu item is returned in the low word of the
function result.

The DoMenuCommand procedure shown in Listing 3-24 determines which menu
command was chosen by the user. If the user chose a command from the Help menu,
the DoMenuCommand procedure calls the application-defined procedure
MyHandleHelpCommand. Listing 3-26 shows the application-defined procedure
MyHandleHelpCommand. This procedure illustrates how the SurfWriter application
responds to the user’s choice of an item from the application’s Help menu. Note that
you should use the HMGetHelpMenuHandle function, not the GetMenuHandle
function, to get a handle to your application’s Help menu.

Listing 3-26 Responding to the user’s choice of a command from the Help menu

PROCEDURE MyHandleHelpCommand (menuItem: Integer);

VAR

myHelpMenuHdl: MenuHandle;

origHelpItems, numItems: Integer;

myErr: OSErr;

BEGIN

{get handle to your application's Help menu}

myErr := HMGetHelpMenuHandle(myHelpMenuHdl);

IF myErr <> noErr THEN

EXIT(MyHandleHelpCommand);

{count the number of items in the Help menu}

numItems := CountMItems(myHelpMenuHdl);

origHelpItems := numItems - kNumMyHelpItems;

IF menuItem > origHelpItems THEN

BEGIN {user chose an item added by this application}

{adjust this application's global variables that hold item }

{ numbers of the menu items that this application appended}

gMyHelpItem1 := origHelpItems +1;

gMyHelpItem2 := origHelpItems +2;

MyHelp(menuItem);

END;

END;

Apple reserves the right to change the number of standard items in the Help menu. To
determine the number of items in the Help menu, call the CountMItems function.
Using the Menu Manager 3-81

C H A P T E R 3

Menu Manager
Handling a Size Menu 3

Your application can provide a Size menu to let the user choose various sizes of a font.
Your Size menu should also provide the user with a method for specifying a size that
isn’t currently listed in the menu. For example, you can choose to provide an Other
command that displays a dialog box allowing the user to choose a different font size. If
the user chooses a font size not already in the menu, add a checkmark to the Other menu
command and add the chosen size in parentheses to the text of the Other command.

Your application should outline font sizes to indicate which sizes are directly provided
by the current font. For bitmapped fonts, outline only those sizes that actually exist in
the Fonts folder. For TrueType fonts, outline all sizes that the TrueType font supports.

Your application should indicate the current font size to the user by placing a checkmark
next to the text of the menu item that lists the current font size. If the current selection
contains more than one font size, place a dash next to the name of each font size that the
selection contains. (“Changing the Mark of Menu Items” on page 3-61 explains how to
add marks to and remove marks from menu items.)

Figure 3-35 shows a Size menu as it appears after the user chooses a new font size of 31
by using the Other command. In Figure 3-35 the sizes 9, 10, 12, 18, 24, and 36 are the
standard sizes provided by the application. Your application should place a checkmark
next to the Other command to indicate that the current font size is a size other than a
standard size. If the selection contains only one nonstandard size, include the size of the
font in parentheses following the text Other. In Figure 3-35 the current selection contains
a nonstandard size of 31, so the application places the checkmark next to the Other
command and includes 31 in parentheses following the Other text. If the selection
contains multiple nonstandard sizes, include the text Mixed in parentheses following
the word Other. If the selection contains one or more standard sizes and only one
nonstandard size, place a dash next to each standard size that the selection contains
and place a dash next to the Other command with the nonstandard size included in
paretheses in the text of the Other command.

Figure 3-35 A Size menu with user-specified size added
3-82 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
When the user chooses the Other command, you should display the current font size in a
dialog box and allow the user to choose a new size. Figure 3-16 on page 3-28 shows a
sample dialog box an application might display in response to the user’s choice of the
Other command.

You should always specify the text of the Other command in the plain font style (as
shown in Figure 3-35) and never outlined, regardless of whether the current font is a
TrueType font that supports that size or a bitmapped font that exists at that size in the
Fonts folder.

Listing 3-27 shows an application-defined procedure that handles the user’s choice of an
item in the Size menu shown in Figure 3-35.

Listing 3-27 Handling the Size menu

PROCEDURE MyHandleSizeCommand (menuItem: Integer);

VAR

numItems: Integer;

addItem: Boolean;

itemString: Str255;

itemStyle: Style;

sizeChosen: LongInt;

BEGIN

numItems := CountMItems(GetMenuHandle(mSize));

IF menuItem = numItems THEN

BEGIN {user chose Other command}

{display a dialog box to allow the user to choose any }

{ size. If the user-specified size is not in the menu, }

{ add a checkmark to the Other command and add the }

{ new font size to the text of the Other command}

MyDisplayOtherBox(sizeChosen);

END

ELSE

BEGIN

IF (menuItem = (numItems -2)) OR

(menuItem = (numItems -3)) THEN

DoMakeLargerOrSmaller(menuItem, sizeChosen)

ELSE

BEGIN {user chose size displayed in the menu}

{remove checkmark or dashes from menu items showing }

{ previous size}

MyRemoveMarksFromSizeMenu;

{add checkmark to menu item of new current size}

CheckItem(GetMenuHandle(mSize), menuItem, TRUE);

sizeChosen := MyItemToSize(menuItem);

END;

END;
Using the Menu Manager 3-83

C H A P T E R 3

Menu Manager
{update the document's state or the user's selection as needed}

MyResizeSelection(sizeChosen);

END;

If the user chooses an item from the Size menu, the MyHandleSizeCommand procedure
first counts the current number of items in the menu. If the user chooses the last item in
the menu (the Other command), the procedure displays a dialog box like the one shown
in Figure 3-16 on page 3-28 to let the user choose a size other than the ones currently
shown in the menu. The application-defined function MyDisplayOtherBox also adds a
checkmark to the Other command if the user chose a new size, adds the new size to the
text of the Other command, and returns the chosen size in the sizeChosen variable.

If the user chose the Larger or Smaller command from the Size menu, the code calls an
application-defined routine, DoMakeLargerOrSmaller, to perform the requested
action. The DoMakeLargerOrSmaller procedure also adds a checkmark and adds the
new size to the text of the Other command if the new size does not match any size in
the menu. The procedure returns the chosen size in the sizeChosen variable.

If the user chose any size currently displayed in the menu, the MyHandleSizeCommand
procedure adjusts the marking character of the menu items appropriately. The code
removes the checkmark from the previous menu item and adds a checkmark to the
menu item representing the new size chosen by the user. The code uses an
application-defined function, MyItemToSize, to map the item number of the chosen
menu item to a given size and returns this size in the sizeChosen variable.

The code then uses the application-defined procedure MyResizeSelection to update
the document’s state and resize the user’s selection, if any, to the chosen size.

Accessing Menus From a Dialog Box 3
In System 7, the Menu Manager or your application can allow the user to access selected
menus in the menu bar while interacting with an alert box or a modal dialog box. This
allows users to make menu selections while your application is displaying an alert box
or a modal dialog box. For example, a user might want to turn on Balloon Help for
assistance in figuring out how to respond to an alert box. Similarly, if the modal dialog
box contains several editable text fields, the user might find it simpler to copy text
from one text field and paste it into another. Figure 3-36 shows a modal dialog box
with an editable text field. Note that only the Edit and Help menus are enabled and all
other menus are disabled. This gives the user access to editing commands and also to
Balloon Help.

Note
In System 6, user access to menus in the menu bar is prohibited from an
alert box or a modal dialog box unless your application specifically
allows it. For example, in System 6, your application must provide a
filter procedure to replace the standard filter procedure if you want to
support the keyboard equivalents of the standard Edit menu commands
in a modal dialog box. In System 7, you can let the Menu Manager
enable these commands for you. ◆
3-84 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-36 Menu access from a modal dialog box

When your application displays a modeless or movable modal dialog box, your
application should adjust its menus as appropriate for that dialog box. For example,
when a movable modal dialog box is the frontmost window, your application should
enable the Apple menu, enable the Edit menu if your dialog box contains an editable text
item, enable or disable any other menus as needed, and disable any items it added to the
Help menu if the user can’t perform those actions while the dialog box is displayed.

When your application displays an alert box, system software automatically disables all
of your application’s menus except for the Help menu (in which all items are disabled
except for the Show Balloons/Hide Balloons command).

When your application displays a modal dialog box, your application should also enable
and disable its menus as appropriate. For example, you should enable the Edit menu if
your dialog box contains an editable text item and disable any items it added to the Help
menu if the user can’t perform those actions while the dialog box is displayed. If your
application handles access to the menu bar from a modal dialog box, it should disable
the Apple menu or the first item in the Apple menu.

If your application does not specifically handle access to the menu bar from an alert box
or a modal dialog box, in some cases the Menu Manager automatically disables the
appropriate menus for you, as described in the following paragraphs.

When your application displays an alert box or a modal dialog box (that is, a window of
type dBoxProc), the Menu Manager (in conjunction with the Dialog Manager) always
appropriately adjusts the system-handled menus and performs these actions:

1. Disables all menu items in the Help menu except the Show Balloons (or Hide
Balloons) command, which it enables.

2. Disables all menu items in the Application menu.

3. Enables the Keyboard menu if it appears in the menu bar, except for the About
Keyboards command, which it disables.
Using the Menu Manager 3-85

C H A P T E R 3

Menu Manager
In addition, if your application then calls the ModalDialog procedure, the Menu
Manager (in conjunction with the Dialog Manager) performs two other actions:

4. Disables all of your application’s menus.

5. Enables commands with the standard keyboard equivalents Command-X,
Command-C, and Command-V if the modal dialog box contains a visible and active
editable text field. The user can then use either the menu commands or their keyboard
equivalents to cut, copy, and paste text. (The menu item having keyboard equivalent
Command-X must be one of the first five menu items.)

When the user dismisses the modal dialog box, the Menu Manager restores all menus to
the state they were in prior to the appearance of the modal dialog box.

In some cases actions 4 and 5 do not occur when you call ModalDialog. The enabling
and disabling described in steps 4 and 5 do not occur if any of these conditions is true:

■ Your application does not have an Apple menu.

■ Your application has an Apple menu, but the menu is disabled when the modal dialog
box is displayed.

■ Your application has an Apple menu, but the first item in that menu is disabled when
the dialog box is displayed.

Note
If your application already handles access to the menu bar from a
modal dialog box and you do not want the automatic menu enabling
and disabling provided by System 7 to occur, you should ensure that
one or more of those conditions is true when you display a modal
dialog box. ◆

When your application displays alert boxes or modal dialog boxes with no editable
text items, your application can allow system software to handle menu bar access. In
all other cases, your application should handle its own menu bar access.

System software always leaves the Help, Keyboard, and Application menus and their
commands available when you display movable modal dialog boxes and modeless
dialog boxes. For these types of dialog boxes, you must disable menus as appropriate
and handle menu bar access as appropriate given their contents.

When your application displays a movable modal dialog box (a window of type
movableDBoxProc), your application does not need to adjust the system-handled
menus but should disable all its other menus except the Apple menu and—if your
movable modal dialog box contains editable text items—the Edit menu. Leave the
Apple menu enabled so that the user can use it to open other applications, and leave the
Edit menu enabled so that the user can use the Cut, Copy, and Paste commands within
the editable text item. (You can also leave your Undo and Clear commands enabled;
otherwise, disable all other commands in the Edit menu.)

When your application removes a movable modal dialog box, modeless dialog box, or
modal dialog box with editable text items, your application must restore to their
previous states any menus that it disabled prior to displaying the dialog box. See the
chapter “Dialog Manager” in this book for additional information on dialog boxes.
3-86 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Writing Your Own Menu Definition Procedure 3
The Menu Manager uses the menu definition procedure and menu bar definition
function to display and perform basic operations on menus and the menu bar. The
menu definition procedure performs all the drawing of menu items within a menu
and performs all the actions that might differ between one type of menu and another.
The menu bar definition function draws the menu bar and performs most of the
drawing activities related to the display of menus when the user moves the cursor
between menus.

Apple provides a standard menu bar definition function, stored as a resource in the
System file. The standard menu bar definition procedure is the 'MBDF' resource with
resource ID 0. When you create your menus and menu bar, by default the Menu
Manager uses the standard menu bar definition function to manage them. Although the
Menu Manager lets you provide your own menu bar definition function, Apple
recommends that you always use the standard menu bar definition function.

The Menu Manager uses the standard menu bar definition function to

■ draw the menu bar

■ clear the menu bar

■ determine if the cursor is in the menu bar or any currently displayed menus

■ calculate the left edges of menu titles

■ highlight a menu title

■ invert the entire menu bar

■ erase the background color of a menu and draw the menu’s structure (shadow)

■ save or restore the bits behind a menu

Apple provides a standard menu definition procedure, stored as a resource in the System
file. The standard menu definition procedure is the 'MDEF' resource with resource ID 0.
The standard menu definition procedure handles three types of menus: pull-down,
pop-up, and hierarchical; it also implements scrolling in menus. When you define your
menus, you specify the menu definition procedure that the Menu Manager should use
when managing them. You’ll usually want to use the standard definition procedure for
your application. However, if you need a feature not provided by the standard menu
definition procedure (for example, if you want to include more graphics in your menus),
you can write your own menu definition procedure.

The Menu Manager uses the standard menu definition procedure to

■ calculate a menu’s dimensions

■ draw the menu items in a menu

■ highlight and unhighlight menu items as the user moves the cursor between them

■ determine which item the user chose from a menu
Using the Menu Manager 3-87

C H A P T E R 3

Menu Manager
If you provide your own menu definition procedure, it should also perform these tasks.
Your menu definition procedure should also support scrolling in menus and color in
menus and provide support for Balloon Help.

If you provide your own menu definition procedure, store it in a resource of type
'MDEF' and include its resource ID in the description of each menu that uses your own
menu definition procedure. If you create a menu using GetMenu (or GetNewMBar), the
Menu Manager reads the menu definition procedure into memory and stores a handle to
it in the menuProc field of the menu’s menu record.

When your application uses GetMenu (or GetNewMBar) to create a new menu that uses
your menu definition procedure, the Menu Manager creates a menu record for the menu
and fills in the menuID, menuProc, enableFlags, and menuData fields according to
the menu’s resource description. The Menu Manager also reads in the data for each
menu item and stores it as variable data at the end of the menu record. The menu
definition procedure is responsible for interpreting the contents of the data. For example,
the standard menu definition procedure interprets this data as described in “The Menu
Resource” beginning on page 3-151. After reading in a resource description of a menu,
the Menu Manager requests the menu definition procedure to calculate the size of
the menu and to store these values in the menuWidth and menuHeight fields of the
menu’s menu record.

Note that when drawing a menu, the Menu Manager first requests your menu definition
procedure to calculate the dimensions (the menu rectangle) of the menu. Next the Menu
Manager requests the menu bar definition function to draw the structure (shadow) of the
menu and erase the contents of the menu to its background color. Then the Menu
Manager requests your menu definition procedure to draw the items in the menu. As the
user moves the cursor into and out of menu items, the Menu Manager requests your
menu definition procedure to highlight and unhighlight items appropriately. Your menu
definition procedure should also determine when to add scrolling indicators to a menu
and scroll the menu appropriately when the cursor is in a scrolling item. Your menu
definition is responsible for showing and removing any help balloons associated with a
menu item.

When the Menu Manager requests your menu definition procedure to perform an action
on a menu, it provides your procedure with a handle to its menu record. This allows
your procedure to access the data in the menu record and to use any data in the variable
data portion of the menu record to appropriately handle the menu items. However, your
menu definition procedure should not assume that the A5 register is properly set up, so
your procedure can’t refer to any of the QuickDraw global variables.

The Menu Manager passes a value to your menu definition procedure in the message
parameter that indicates the action your menu definition procedure should perform. The
Menu Manager always passes a handle to the menu record of the menu that the
operation should affect in the parameter theMenu. Depending on the requested action,
the Menu Manager passes additional information in other parameters.
3-88 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Listing 3-28 shows how you might declare a menu definition procedure.

Listing 3-28 A sample menu definition procedure

PROCEDURE MyMDEF (message: Integer; theMenu: MenuHandle;

VAR menuRect: Rect; hitPt: Point;

VAR whichItem: Integer);

{any support routines used by the main program of your MDEF }

{ go here}

BEGIN

CASE message OF

mDrawMsg:

MyDrawMenu(theMenu, menuRect);

mChooseMsg:

MyChooseItem(theMenu, menuRect, hitPt, whichItem);

mSizeMsg:

MySizeTheMenu(theMenu);

mPopUpMsg:

MyCalcMenuRectForOpenPopUpBox(theMenu, hitPt, menuRect);

END;

END;

The next sections describe in more detail how your menu definition procedure should
respond when it receives the mDrawMsg, mChooseMsg, or mSizeMsg constant in the
message parameter. For a complete description of the menu definition procedure and
the parameters passed to your procedure by the Menu Manager, see “The Menu
Definition Procedure” beginning on page 3-148.

Calculating the Dimensions of a Menu 3

Whenever the Menu Manager creates a menu or needs to calculate the size of a menu
that is managed by your menu definition procedure, the Menu Manager calls your
procedure and specifies the mSizeMsg constant in the message parameter, requesting
that your procedure calculate the size of the menu.

Listing 3-29 on page 3-90 shows an application-defined support routine,
MySizeTheMenu, used by the application’s menu definition procedure. After
calculating the height and width of the menu’s rectangle, the menu definition
procedure stores the values in the menuWidth and menuHeight fields of the
menu’s menu record.
Using the Menu Manager 3-89

C H A P T E R 3

Menu Manager
Listing 3-29 Calculating the size of a menu

PROCEDURE MySizeTheMenu(theMenu: MenuHandle);

VAR

itemDataPtr: Ptr;

numItems: Integer;

BEGIN

HLock(Handle(theMenu));

WITH theMenu^^ DO

BEGIN {menuData points to title of menu and additional item data}

itemDataPtr := @menuData;

{skip past the menu title}

itemDataPtr := POINTER(ORD4(itemDataPtr)+ itemDataPtr^ +1);

END;

numItems := CountMItems(theMenu);

{calculate the height of the menu--each item's height can vary }

{ according to whether the item has an icon or a script code defined. }

{ The height of the menu should not exceed the height of the }

{ screen minus the menu bar height. }

{ Store the height in the menu's menu record}

theMenu^^.menuHeight := MyCalcMenuHeight(itemDataPtr, numItems);

{calculate the width of the menu (the width of the longest item): }

{ for each item calculate the width as }

{ width = iconWidth + markWidth + textWidth + subMenuWidth }

{ + cmdKeyComboWidth }

{ If an item doesn't have a characteristic, use 0 as the width of }

{ that characteristic. }

{ To calculate the width of item's text, must consider script code and }

{ width of the font. }

{ The width of the menu should not exceed the right or left }

{ boundaries of the screen. }

{ Store the width in the menu's menu record}

theMenu^^.menuWidth := MyCalcMenuWidth(itemDataPtr, numItems);

HUnLock(Handle(theMenu));

END;

Drawing Menu Items in a Menu 3

Whenever the user presses the mouse button while the cursor is in the menu title of a
menu managed by your menu definition procedure, the Menu Manager calls the menu
bar definition function to highlight the menu title, draw the structure of the menu, and
erase the contents of the menu to its background color. The Menu Manager then calls
your menu definition procedure and specifies the mDrawMsg constant in the message
3-90 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
parameter, requesting that your procedure draw the menu items. When your menu
definition procedure receives this constant, it should draw the menu items of the menu
specified by the parameter theMenu inside the rectangle specified by the menuRect
parameter. The Menu Manager sets the current graphics port to the Window Manager
port before calling your menu definition procedure. Your menu definition procedure can
determine how to draw the menu items by examining the data in the menu record.

If your menu definition procedure supports color menus, your procedure should
check the application’s menu color information table for the colors to use to draw
each item. If the application’s menu color information table contains a color entry for
an item, draw the item using that color. If the table does not contain an item entry for
a particular item, use the default item color defined in the menu title entry. If a menu title
entry doesn’t exist, use the default item color defined in the menu bar entry. If the menu
bar entry doesn’t exist, draw the item using black on white.

If your menu definition procedure supports scrolling menus, it should insert scrolling
indicators if necessary when drawing the menu items.

Listing 3-30 shows an application-defined support routine, MyDrawMenu, used by the
application’s menu definition procedure. The MyDrawMenu procedure draws each item
in the menu, according to the item’s defined characteristics. Disabled items should be
drawn using the colors returned by the GetGray function. Pass the RGB color of the
item’s background in the bkgnd parameter to the GetGray function; pass the RGB color
of the item’s enabled text in the fgnd parameter. The GetGray function returns TRUE if
there’s an available color between the two specified colors and returns in the fgnd
parameter the color in which you should draw the item.

Listing 3-30 Drawing menu items

PROCEDURE MyDrawMenu(theMenu: MenuHandle; menuRect: Rect);

VAR

numItems: Integer;

itemRect: Rect;

item: Integer;

currentOffset: LongInt;

nextOffset: LongInt;

BEGIN

numItems := CountMItems(theMenu);

currentOffset := 0;

nextOffset := 0;

FOR item := 1 TO numItems DO

BEGIN

{calculate the enclosing rectangle for this item}

itemRect := MyCalcItemRect(item, menuRect, currentOffset, nextOffset);

{draw the item--index into the item-specific data from the menu record }

{ to get the characteristics of this menu item and draw the item }
Using the Menu Manager 3-91

C H A P T E R 3

Menu Manager
{ according to its defined characteristics. For example, draw the item's }

{ text in its defined style & font of its defined script, draw any icon, }

{ mark, submenu indication, or keyboard equivalent, and draw each }

{ characteristic of the item according to its color entry in the menu's }

{ menu color information table. }

{ Draw disabled items in gray--use the GetGray function to return the }

{ appropriate color. Also draw dividers using the gray color }

{ returned by GetGray}

MyDrawTheItem(item, itemRect, menuRect, currentOffset);

END;

{if your menu supports scrolling, insert scrolling indicators if needed}

MyInsertScrollingArrows(menuRect);

END;

Determining Whether the Cursor Is in an Enabled Menu Item 3

Whenever the user drags the cursor into or out of a menu item of a displayed menu
managed by your menu definition procedure, the Menu Manager calls your procedure
and specifies the mChooseMsg constant in the message parameter, requesting that
your procedure determine whether the cursor is in a menu item and that your procedure
highlight or unhighlight the menu item as appropriate. When your menu definition
procedure receives this constant, it should use the menu rectangle specified in the
menuRect parameter, the mouse location specified in the hitPt parameter, and the
item number specified in the whichItem parameter to determine the proper action
to take.

To see whether the user chose an enabled item, your menu definition procedure should
determine whether the specified mouse location is inside the rectangle specified by the
menuRect parameter, and, if so, it should check whether the menu is enabled. If the
menu is enabled, your menu definition procedure should determine whether the mouse
location specified in the hitPt parameter is in an enabled menu item.

If the mouse location is in an enabled menu item, your menu definition procedure
should unhighlight the item specified by the whichItem parameter, highlight the new
item, and return the new item number in whichItem.

If the mouse location isn’t in an enabled menu item, your menu definition procedure
should unhighlight the item specified by the whichItem parameter and return 0 in
the whichItem parameter.

When your menu definition procedure draws a menu item in its highlighted state in a
color menu, it should reverse the background color and the item color and then draw the
menu item. When your menu definition procedure needs to return a menu item to its
normal (unhighlighted) state, it should reset the background color and item color of that
menu item and draw the menu item.

If your menu definition procedure supports scrolling menus, it should scroll the menu
when the user moves the cursor into the area of the indicator, or when the cursor is
directly above or below the menu. If the user can scroll the menu up (by dragging the
3-92 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
cursor past the last item to view more items), place a downward-pointing triangular
indicator in place of the last item in the menu. If the user can scroll the menu down
(by dragging the cursor past the first item to view the items originally at the top of
the menu), place an upward-pointing triangular indicator in place of the first item
in the menu.

For all menus, your menu definition procedure should set the global variable
MenuDisable appropriately each time a new item is highlighted. Set MenuDisable to
the menu ID and item number of the last menu item chosen, whether or not it’s disabled.
The MenuChoice function uses the value in MenuDisable to determine if a chosen
menu item is disabled.

Listing 3-31 shows an application-defined support routine, MyChooseItem, used by the
application’s menu definition procedure. This routine determines which item, if any, the
point specified by the hitPt parameter is in. If the item is in an enabled menu item that
is different from the previous item, the MyChooseItem procedure unhighlights the old
item and highlights the new item. However, the MyChooseItem procedure does not
highlight the new item if the item is in a divider or disabled item.

The procedure also removes any help balloons as appropriate and, if Balloon Help is
turned on, displays any help balloon of the new item (for any item other than a divider
or scrolling indicator). The MyChooseItem procedure returns the item number of the
new item in the whichItem parameter or returns 0 if no item is chosen. Although not
shown in the listing, if the item is a disabled item, the procedure returns 0 in the
whichItem parameter and sets the MenuDisable global variable to the menu ID and
item number of the disabled item.

Listing 3-31 Choosing menu items

PROCEDURE MyChooseItem (theMenu: MenuHandle; menuRect: Rect; hitPt: Point;

VAR whichItem: Integer);

VAR

oldWhichItem: Integer;

MenuChoicePtr: ^LongInt;

numItems, item, max: Integer;

itemChosen: Integer;

inScroll: Integer;

currentOffset: LongInt;

nextOffset: LongInt;

BEGIN

oldWhichItem := whichItem;

whichItem := 0;

itemChosen := 0;

MenuChoicePtr := POINTER(kLowMemMenuDisable);

numItems := CountMItems(theMenu);

{find out whether the hitPt is in an item's rectangle, and if so, }

{ determine which item}
Using the Menu Manager 3-93

C H A P T E R 3

Menu Manager
item := 1;

max := numItems + 1;

currentOffset := 0;

nextOffset := 0;

REPEAT

itemRect := MyCalcItemRect(item, menuRect, currentOffset, nextOffset);

IF PtInRect(hitPt, itemRect) THEN {hitPt is in this item}

itemChosen := item;

item := item + 1;

UNTIL (item = MAX) OR (itemChosen <> 0);

IF itemChosen = 0 THEN

BEGIN {the mouse isn't in any item of this menu;unhighlight previous item}

MyNotInMenu(menuRect, oldWhichItem);

END

ELSE

BEGIN {the mouse is in this menu item. }

{ First see if a previous item was highlighted}

IF ((oldWhichItem <> 0) AND (oldWhichItem <> itemChosen)) THEN

BEGIN

{a previous item was highlighted--unhighlight it}

itemRect := MyCalcOldItemRect(oldWhichItem, menuRect);

IF HMGetBalloons THEN {if Balloon Help is on then }

HMRemoveBalloon;{ remove any balloon that might be showing}

MyHighlightItem(itemRect, oldWhichItem, FALSE);

END;

IF HMGetBalloons and MyIsItemDivider(itemChosen) THEN

{Balloon Help is on and item is divider}

HMRemoveBalloon;{remove any balloon that might be showing}

IF MyIsItemEnabled(itemChosen) THEN

BEGIN

{the item is enabled, so highlight the item the cursor is in}

itemRect := MyCalcNewItemRect(itemChosen, menuRect, currentOffset);

{the highlighting routine must also support scrolling correctly }

{ (if the cursor is in a scrolling item, don't highlight the item)}

inScroll := MyIsScrollItem(itemChosen);

MyHighlightItem(itemRect, itemChosen, inScroll);

IF HMGetBalloons AND inScroll THEN

HMRemoveBalloon {remove any balloon that might be showing}

ELSE

BEGIN {display help balloon for this item, if any}

IF HMGetBalloons THEN
3-94 Using the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
BEGIN

IF StillDown THEN {mouse button is still down in this item}

{this routine sets up the needed parameters and then }

{ calls HMShowMenuBalloon}

MyShowMenuBalloon(itemChosen, itemRect);

END;

END;

END;

END;

END;

Menu Manager Reference 3

This section describes the data structures and routines of the Menu Manager. It also
describes various resources, including the resources you can use to create your menus
and menu bar, the 'MBAR' and 'MENU' resources.

Data Structures 3
This section describes the menu record, menu list, and menu color information table. The
Menu Manager maintains information about the menus in your application in menu
records. The Menu Manager maintains information about all the menus in a menu bar in
a data structure called the menu list.

The Menu Manager stores color information about your application’s menus in a menu
color information table. You can add entries to your application’s menu color
information table if you want to use colors other than the default colors for your menu
bar or menus. You can add entries to this table by using the SetMCEntries procedure
or by providing 'mctb' resources.

The Menu Record 3

A menu record contains information about a single menu. Your application should never
manipulate or access the fields of a menu record; instead your application should use
Menu Manager routines to create and manage the menus in your application. To refer to
a menu, use a handle to the menu’s menu record.

The MenuInfo data type defines the menu record. The MenuHandle data type is a
handle to a menu record.

TYPE MenuPtr = ^MenuInfo; {pointer to a menu record}

MenuHandle = ^MenuPtr; {handle to a menu record}
Menu Manager Reference 3-95

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	Menu Manager, Part 1 (Introduction, About, and Using)
	Introduction to Menus
	Menu and Menu Bar Definition Routines
	The Menu Bar
	Menus
	Menu Items
	Groups of Menu Items
	Keyboard Equivalents for Menu Commands
	Menus Added Automatically by the Menu Manager
	The Apple Menu
	The File Menu
	The Edit Menu
	The Font Menu
	The Size Menu
	The Help Menu
	The Keyboard Menu
	The Application Menu
	Pop-Up Menus
	Hierarchical Menus

	About the Menu Manager
	How the Menu Manager Maintains Information About M...
	How the Menu Manager Maintains Information About a...

	Using the Menu Manager
	Creating a Menu
	Creating a Menu Resource
	Creating a Menu Bar Resource
	Setting Up Your Application’s Menu Bar

	Creating a Hierarchical Menu
	Creating a Pop-Up Menu
	Changing the Appearance of Items in a Menu
	Enabling and Disabling Menu Items
	Changing the Text of an Item
	Changing the Font Style of Menu Items
	Changing the Mark of Menu Items
	Changing the Icon or Script Code of Menu Items

	Adding Items to a Menu
	Adding Items to the Help Menu
	Adding Items to the Apple Menu
	Adding Fonts to a Menu

	Handling User Choice of a Menu Command
	Handling Mouse-Down Events in the Menu Bar
	Adjusting the Menus of an Application
	Determining if the User Chose a Keyboard Equivalen...

	Responding When the User Chooses a Menu Item
	Handling the Apple Menu
	Handling the Help Menu
	Handling a Size Menu

	Accessing Menus From a Dialog Box
	Writing Your Own Menu Definition Procedure
	Calculating the Dimensions of a Menu
	Drawing Menu Items in a Menu
	Determining Whether the Cursor Is in an Enabled Me...

	Menu Manager Reference
	Data Structures
	The Menu Record

	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

