CHAPTER 4

Window Manager

Data Structures

This section describes the Window Manager data structures: the window record, the
color window record, the state data record, the window color table record, the auxiliary
window record, and the window list.

A window record or color window record describes an individual window. It includes
the record for the graphics port in which the window is displayed.

The state data record stores two rectangles, known as the user state and the standard
state, which define the size and location of the window as specified by the user and by
your application. Your application switches between the two states when the user clicks
the zoom box.

A window color table defines the colors to be used for drawing the window’s frame and
highlighting selected text. Ordinarily, you use the default window color table, which
produces windows in the colors selected by the user through the Color control panel. If
your application has some unusual need to control the frame colors, you can set up your
own window color tables.

The Window Manager uses auxiliary window records to associate a window with its
window color table.

The Window Manager uses the window list to track all of the windows on the desktop.

The Color Window Record

The Window Manager maintains a window record or color window record for each
window on the desktop.

The Window Manager supplies routines that let you access the window record as
necessary. Your application seldom changes fields in the window record directly.

Jabeue\ mopuipn -

The CW ndowRecor d data type defines the window record for a color window. The
CW ndowPeek data type is a pointer to a color window record. The first field in

the window record is in fact the record that describes the window’s graphics port. The
CW ndowPt r data type is defined as a pointer to the window’s graphics port.

When Color QuickDraw is not available, you can create monochrome windows using
the parallel data types W ndowRecor d, W ndowPeek, and W ndowPt r, described in the
next section, “The Window Record.”

For compatibility, the W ndowPt r and W ndowPeek data types can point to either a
color window record or a monochrome window record. You use the W ndowPt r data
type to specify a window in most Window Manager routines, and you can use it to
specify a graphics port in QuickDraw routines that take the Gr af Pt r data type. Note
that you can access only the fields of the window’s graphics port, not the rest of the
window record, through the W ndowPt r and CW ndowPt r data types. You use the
W ndowPeek and CW ndowPeek data types in low-level Window Manager routines
and in your own routines that access window record fields beyond the graphics port.

Window Manager Reference 4-65

4-66

CHAPTER 4

Window Manager

The routines that manipulate color windows get color information from the window
color tables and the auxiliary window record described in the sections “The Window
Color Table Record” on page 4-71 and “The Auxiliary Window Record” on page 4-73.

TYPE CWndowPtr = ~"CGafPtr;
CW ndowPeek = "CW ndowRecor d;

TYPE CW ndowRecord =

RECORD
port: CG af Port; {wi ndow s graphics port}
wi ndowKi nd: I nt eger; {class of the w ndow}
vi si bl e: Bool ean; {visibility}
hilited: Bool ean; {hi ghli ghting}
goAwayFl ag: Bool ean; {presence of close box}
spar eFl ag: Bool ean; {presence of zoom box}
st rucRgn: RgnHandl e; {handl e to structure region}
cont Rgn: RgnHandl e; {handl e to content region}
updat eRgn: RgnHandl e; {handl e to update region}
wi ndowDef Proc: Handl e; {handl e to wi ndow definition }
{ function}
dat aHandl e: Handl e; {handl e to wi ndow state }

{ data record}
titl eHandl e: StringHandl e; {handle to windowtitle}

titl ewdth: I nt eger; {title width in pixels}
control Li st: Control Handl e; {handle to control I|ist}
next W ndow. CW ndowPeek; {pointer to next w ndow }

{ record in w ndow |ist}
Wi ndowPi c: Pi cHandl e; {handl e to optional picture}
r ef Con: Longl nt ; {storage available to your }

{ application}
END;

Field descriptions

port The graphics port record that describes the graphics port in which
the window is drawn.
The graphics port record, which is documented in Inside Macintosh:
Imaging, defines the rectangle in which drawing can occur, the
window’s visible region, the window’s clipping region, and a
collection of current drawing characteristics such as fill pattern, pen
location, and pen size.

w ndowKi nd The class of window—that is, how the window was created.

The Window Manager fills in this field when it creates the window
record. It places a negative value in Wi ndowKi nd when the window

Window Manager Reference

CHAPTER 4

Window Manager

vi sible

hilited

goAwayFl ag

spar eFl ag

strucRgn

cont Rgn

updat eRgn

was created by a desk accessory. (The value is the reference ID of
the desk accessory.) This field can also contain one of two constants:

CONST
di al ogKind = 2; {dialog or alert w ndow}
user Ki nd = 8; {wi ndow created by an }

{ application}

The value di al ogKi nd identifies all dialog or alert box windows,
whether created by the system software or, indirectly through the
Dialog Manager, by your application. The Dialog Manager uses this
field to help it track dialog and alert box windows.

The value user Ki nd represents a window created directly by your
application.

A Boolean value indicating whether or not the window is visible. If
the window is visible, the Window Manager sets this field to TRUE;
if not, FALSE. Visibility means only whether or not the window is to
be displayed, not necessarily whether you can see it on the screen.
(For example, a window that is completely covered by other
windows can still be visible, even if the user cannot see it on the
screen.)

A Boolean value indicating whether the window is highlighted—
that is, drawn with stripes in the title bar. Only the active window is
ordinarily highlighted. When the window is highlighted, the

hi | it ed field contains TRUE; when not, FALSE.

A Boolean value indicating whether the window has a close box.

The Window Manager fills in this field when it creates the window
according to the information in the ' W ND' resource or the
parameters passed to the function that creates the window.

If the value of goAwayFl ag is TRUE, and if the window type
supports a close box, the Window Manager draws a close box when
the window is highlighted.

A Boolean value indicating whether the window type supports
zooming. The Window Manager sets this field to TRUE if the
window’s type is one that includes a zoom box (zoonDocPr oc,
zoomNoG ow or even nodal DBoxProc + zoonmDocPr oc).

A handle to the structure region, which is defined in global
coordinates. The structure region is the entire screen area covered
by the window—that is, both the window contents and the window
frame.

Jabeue\ mopuipn -

A handle to the content region, which is defined in global
coordinates. The content region is the part of the window that
contains the document, dialog, or other data; the window controls;
and the size box.

A handle to the update region, which is defined in global
coordinates. The update region is the portion of the window that
must be redrawn. It is maintained jointly by the Window Manager
and your application. The update region excludes parts of the
window that are covered by other windows.

Window Manager Reference 4-67

4-68

CHAPTER 4

Window Manager

wi ndowDef Pr oc

dat aHandl e

titleHandl e
titlewdth
control Li st

next W ndow

wi ndowPi ¢

r ef Con

Note

A handle to the definition function that controls the window.
There’s no need for your application to access this field directly.

In Macintosh models that use only 24-bit addressing, this field
contains both a handle to the window’s definition function and the
window’s variation code. If you need to know the variation code,
regardless of the addressing mode, call the Get W/ar i ant function.

Usually a handle to a data area used by the window definition
function.

For zoomable windows, dat aHand| e contains a handle to the
W6t at eDat a record, which contains the user state and standard
state rectangles. The W5t at eDat a record is described in “The
Window State Data Record” beginning on page 4-70.

A window definition function that needs only 4 bytes of data can
use the dat aHand| e field directly, instead of storing a handle to the
data. The window definition function that handles rounded-corner
windows, for example, stores the diameters of curvature in the

dat aHandl e field.

A handle to the string that defines the title of the window.
The width, in pixels, of the window’s title.

A handle to the window’s control list, which is used by the Control
Manager. (See the chapter “Control Manager” in this book for a
description of control lists.)

A pointer to the next window in the window list, that is, the
window behind this window on the desktop. In the window record
for the last window on the desktop, the next W ndow field is set

to NI L.

Ahandle to a QuickDraw picture of the window’s contents. The
Window Manager initially sets the wi ndowPi ¢ field to NI L. If
you're using the window to display a stable image, you can use the
Set W ndowPi ¢ procedure to place a handle to the picture in this
field. When the window’s contents need updating, the Window
Manager then redraws the contents itself instead of generating an
update event.

The window’s reference value field, which is simply storage

space available to your application for any purpose. The sample
code in this chapter uses the r ef Con field to associate a window
with the data it displays by storing a window type constant in

the r ef Con field of alert and dialog window records and a handle
to a document record in the r ef Con field of a document

window record.

The close box, drag region, zoom box, and size box are not included in
the window record because they don’t necessarily have the formal data
structure for regions as defined in QuickDraw. The window definition
function determines where these regions are. O

Window Manager Reference

CHAPTER 4

Window Manager

The Window Record

If Color QuickDraw is not available, you create windows with a parallel data structure,
the window record. The only difference between a color window record and a window
record is that a color window record points to a color graphics port, which allows full
use of Macintosh computers with color capability, and a window record points to a

monochrome graphics port

The data types that describe window records, W ndowRecor d, W ndowPt r, and

W ndowPeek, are parallel to the data types that describe color window records, and the
fields in the monochrome window record are identical to the fields in the color window
record. For a complete description, see “The Color Window Record” beginning on

page 4-65.

TYPE W ndowPt r =
W ndowPeek

TYPE W ndowRecord =
RECORD

port:
wi ndowKi nd:
Vi si bl e:
hilited:
goAwayFl ag:
spar eFl ag:
strucRgn:
cont Rgn:
updat eRgn:
wi ndowDef Proc:

dat aHandl e:
titl eHandl e:
titl eWdth:
control Li st:

next W ndow:.

w ndowPi c:
r ef Con:

END;

Window Manager Reference

NG afPtr;
AW ndowRecor d;

G af Port;

I nt eger;
Bool ean;
Bool ean;
Bool ean;
Bool ean;
RgnHandl e;
RgnHandl e;
RgnHandl e;
Handl e;

Handl e;

Stri ngHandl e;
I nt eger;

Cont r ol Handl e;
W ndowPeek;

Pi cHandl e;
Longl nt;

{all fields have sane use }
{ as in color wi ndow record}
{wi ndow s graphics port}
{class of the wi ndow}
{visibility}

{hi ghlighting}

{presence of close box}
{presence of zoom box}
{handl e to structure region}
{handl e to content region}
{handl e to update region}
{handl e to wi ndow definition }
{ function}

{handl e to wi ndow state }

{ data record}

{handl e to wi ndow title}
{title width in pixels}
{handle to control list}
{pointer to next w ndow }

{ record in window |ist}
{handl e to optional picture}
{storage available to your }
{ application}

4-69

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

The Window State Data Record

4-70

The zoom box allows the user to alternate quickly between two window positions and
sizes: the user state and the standard state. The Window Manager stores the user state
and your application stores the standard state in the window state data record, whose
handle appears in the dat aHandl e field of the window record.

The WGt at eDat a record data type defines the window state data record.

TYPE W6t at eDat aPtr = "W6t at eDat a;
W6t at eDat aHandl e = "Wt at eDat aPtr;

W5t at eData =
RECORD
userState: Rect; {size and |ocation established by user}
stdSt at e: Rect; {size and | ocation established by app}
END;

Field descriptions

user St at e A rectangle that describes the window size and location established
by the user.

The Window Manager initializes the user state to the size and
location of the window when it is first displayed, and then updates
the user St at e field whenever the user resizes a window.
Although the user state specifies both the size and location of the
window, the Window Manager updates the state data record only
when the user resizes a window—not when the user merely moves
a window.

stdState The rectangle describing the window size and location that your
application considers the most convenient, considering the function
of the document, the screen space available, and the position of the
window in its user state. If your application does not define a
standard state, the Window Manager automatically sets the
standard state to the entire gray region on the main screen, minus a
three-pixel border on all sides. The user cannot change a window’s
standard state.

Your application typically calculates and sets the standard state
each time the user zooms to the standard state. In a word-
processing application, for example, a standard state window might
show a full page, if possible, or a page of full width and as much
length as fits on the screen. If the user changes the page size
through Page Setup, the application might adjust the standard state
to reflect the new page size. (See Macintosh Human Interface
Guidelines for a detailed description of how your application
determines where to open and zoom windows.)

The ZoomW ndow procedure changes the size of a window according to the values in the
window state data record. The procedure changes the window to the user state when the
user zooms “in” and to the standard state when the user zooms “out.” For a detailed

Window Manager Reference

CHAPTER 4

Window Manager

description of zooming windows, see “Zooming a Window” beginning on page 4-53. For
descriptions of the routines you call when zooming windows, see “Zooming Windows”
beginning on page 4-101.

The Window Color Table Record

The user controls the colors used for the window frame and text highlighting through
the Color control panel. Ordinarily, your application doesn’t override the user’s color
choices, which are stored in a default window color table. If you have some extraordi-
nary need to control window colors, you can do so by defining window color tables for
your application’s windows.

The Window Manager maintains window color information tables in a data structure of
type W nCTab.

You can define your own window color table and apply it to an existing window
through the Set W nCol or procedure.

To establish the window color table for a window when you create it, you provide
a window color table (' wct b') resource with the same resource ID as the ' W ND'
resource that defines the window.

The WCTabPt r data type is a pointer to a window color table record, and the
WrabHandl e is a handle to a window color table record.

TYPE WCTabPtr = "W nCTab;
WCTabHandl e = "WCTabPtr ;

The W nCTab data type defines a window color table record.

TYPE WnCTab =

RECORD
wCSeed: Longl nt; {reserved}
wCReserved: | nteger; {reserved}
ctSize: I nt eger; {nunber of entries in table -1}
ct Tabl e: ARRAY[0. . 4] OF Col or Spec;
{array of col or specification }
{ records}
END;
Field descriptions
wCSeed Reserved.
wCReser ved Reserved.
ctSize The number of entries in the table, minus 1. If you're building a

color table for use with the standard window definition function,
the maximum value of this field is 12. Custom window definition
functions can use color tables of any size.

Window Manager Reference 4-71

Jabeue\ mopuipn -

4-72

CHAPTER 4

Window Manager

ct Tabl e

An array of col or Spec records.

In a window color table, each col or Spec record specifies a
window part in the first word and an RGB value in the other
three words:

TYPE Col or Spec =

RECORD
val ue: I nt eger; {part identifier}
rgb: RGBCol or; {RGB val ue}

END;

The val ue field of a col or Spec record specifies a constant that
defines which part of the window the color controls. For the
window color table used by the standard window definition
function, you can specify these values with these meanings:

CONST

wCont ent Col or = 0; {content regi on background}
wFr aneCol or = 1; {w ndow outline}
wText Col or = 2; {windowtitle and button }
{ text}
wHi | i t eCol or = 3; {reserved}
wTi t | eBar Col or = 4; {reserved}
wHi [iteCol orLight = 5; {lightest stripes in }
{ title bar and |ightest }
{ dinmed text}
wH | iteColorDark = 6; {darkest stripes in}
{ title bar and }
{ darkest dimred }
{ text}
wTi t | eBar Li ght =7; {lightest parts of }
{ title bar background}
wTi t | eBar Dar k = 8; {darkest parts of }
{ title bar background}
wDi al ogLi ght = 9; {lightest elenment }
{ of dialog box frane}
wDi al ogDar k = 10; {darkest el enment of }
{ dialog box frane}
wTi ngelLi ght = 11; {lightest w ndow tingi ng}
wTi ngeDar k = 12; {darkest w ndow ti ngi ng}
Note

The part codes in System 5 and System 6 are significantly different
from the part codes described here, which apply only to System 7. O

The window parts can appear in any order in the table.

The r gb field of a Col or Spec record contains three words of data
that specify the red, green, and blue values of the color to be used.
The RGBCol or data type is defined in Inside Macintosh: Imaging.

Window Manager Reference

CHAPTER 4

Window Manager

When your application creates a window, the Window Manager first looks for a resource
of type ' wet b’ with the same resource ID as the ' W ND' resource used for the window.
If it finds one, it creates a window color table for the window from the information in
that resource, and then displays the window in those colors. If it doesn’t find a window
color table resource with the same resource ID as your window resource, the Window
Manager uses the default system window color table, read into the heap during
application startup.

After creating a window, you can change the entries in a window’s window color table
with the Set W nCol or procedure, described on page 4-114.

See “The Window Color Table Resource” on page 4-127 for a description of the window
color table resource.

The Auxiliary Window Record

The auxiliary window record specifies the color table used by a window and contains
reference information used by the Dialog Manager and the Window Manager.

The Window Manager creates and maintains the information in an auxiliary window
record; your application seldom, if ever, needs to access an auxiliary window record.

TYPE AuxW nPtr = NAuxW nRec;
AuxW nHandl e = MAuxWnPtr;
AuxW nRec =
RECORD
awNext : AuxW nHandl e; {handl e to next record}
awoaner : W ndowPt r; {pointer to w ndow }
{ associated with this }
{ record}
awCTabl e: CTabHandl e; {handl e to col or table}
di al ogCl tem Handl e; {storage used by }
{ Dial og Manager}
awFl ags: Longl nt; {reserved}
awReser ved: CTabHandl e; {reserved}
awRef Con: Longl nt ; {reference constant, }
{ for application's use}
END;

Field descriptions

awNext Ahandle to the next record in the auxiliary window list, used by
the Window Manager to maintain the auxiliary window list as a
linked list. If a window is using the default auxiliary window
record, this value is NI L.

awowner A pointer to the window that uses this record. The awOaner field of
the default auxiliary window record is set to NI L.

Window Manager Reference 4-73

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

awCTabl e Ahandle to the window’s color table. Unless you specify otherwise,
this is a handle to the system window color table.

di al ogCl t em Private storage for use by the Dialog Manager.

awFl ags Reserved.
awReser ved Reserved.
awRef Con The reference constant, typically used by an application to associate

the auxiliary window record with a document record.

Except in unusual circumstances, your application doesn’t need to manipulate window
color tables or the auxiliary window record.

For compatibility with other applications in the shared environment, your application
should not manipulate system color tables directly but should go through the Palette
Manager, documented in Inside Macintosh: Imaging. If your application provides its own
window and control definition functions, these functions should apply the user’s
desktop color choices the same way the standard window and control definition
functions do.

The Window List

The Window Manager maintains information about the windows on the desktop in a
private structure called the window list. The window list contains pointers to all windows
on the desktop, both visible and invisible, and contains other information that the
Window Manager uses to maintain the desktop.

Your application should not directly access the information in a window list. The
structure of the window list is private to the Window Manager.

The global variable W ndowLi st contains a pointer to the first window in the
window list.

Window Manager Routines

This section describes the complete set of routines for creating, displaying, and
managing windows.

Initializing the Window Manager

4-74

Before using any other other Window Manager routines, you must initialize the Window
Manager by calling the | ni t W ndows procedure.

As part of initialization, | ni t W ndows creates the Window Manager port, a graphics
port that occupies all of the main screen. The Window Manager port is named

WWpr CPor t on Macintosh computers equipped with Color QuickDraw and WWgr Por t
on computers with only QuickDraw.

Window Manager Reference

CHAPTER 4

Window Manager

Ordinarily, your application does not need to know about the Window Manager port.
If necessary, however, you can retrieve a pointer to it by calling the procedure

Get WMgr Por t or Get CWMgr Por t . Your application should not draw directly into
the Window Manager port, except through custom window definition functions.

The Window Manager draws your application’s windows into the Window Manager
port. The port rectangle of the Window Manager port is the bounding rectangle of the
main screen (scr eenBi t s. bounds). To accommodate systems with multiple monitors,
QuickDraw recognizes a port rectangle of scr eenBi t s. bounds as a special case and
allows drawing on all parts of the desktop.

InitWindows

DESCRIPTION

The procedure | ni t W ndows initializes the Window Manager for your application.
Before calling | ni t W ndows, you must initialize QuickDraw and the Font Manager by
calling the I ni t Graf and | ni t Font s procedures, documented in Inside Macintosh:
Imaging and Inside Macintosh: Text.

PROCEDURE | ni t W ndows;

The I ni t W ndows procedure initializes the Window Manager.

ASSEMBLY-LANGUAGE INFORMATION

When the desktop needs to be redrawn any time after initialization, the Window
Manager checks the global variable DeskHook, which can be used as a pointer to an
application-defined routine for drawing the desktop. This variable is ordinarily set to 0,
but not until after system startup. If you're displaying windows in code that is to be
executed during startup, set DeskHook to 0. Note that the use of the Window Manager’s
global variables is not guaranteed to be compatible in system software versions later
than System 6.

Creating Windows

You can create windows in two ways:

» from a window resource (a resource of type ' W ND'), with the Get NewCW ndowand
Get NewW ndow functions

» from a collection of window characteristics passed as parameters to the NewCW ndow
and NewW ndow functions

Creating windows from resources allows you to localize your application for different
languages and to change the characteristics of your windows during application
development by changing only the window resources.

Window Manager Reference 4-75

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

All four functions, Get NewCW ndow Get NewW ndow NewCW ndow and NewW ndow
can allocate space in your application’s heap for the new window’s window record. For
more control over memory use, you can allocate the space yourself and pass a pointer
when creating a window. In either case, the Window Manager fills in the data structure
and returns a pointer to it.

GetNewCWindow

DESCRIPTION

4-76

Use the Get NewCW ndow function to create a color window with the properties defined
inthe' WND' resource with a specified resource ID.

FUNCTI ON Get NewCW ndow (wi ndowl D: | nteger; wStorage: Ptr;
behi nd: W ndowPtr): W ndowPtr;

wi ndowl D The resource ID of the ' W ND' resource that defines the properties of
the window.

WSt orage A pointer to memory space for the window record.

If you specify a value of NI L for wSt or age, the Get NewCW ndow
function allocates the window record as a nonrelocatable object in the
heap. You can reduce the chances of heap fragmentation by allocating the
memory your application needs for window records early in your
initialization code. Whenever you need to create a window, you can
allocate memory from your own block and pass a pointer to it in the

WSt or age parameter.

behi nd A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Poi nt er (—1) . When you place a window in front of
all others, Get NewCW ndowremoves the highlighting from the
previously active window, highlights the newly created window, and
generates the appropriate activate events. Note that if you create an
invisible window in front of all others on the desktop, the user sees no
active window until you make the new window visible (or make another
window active).

To place a new window behind all other windows, specify a value of NI L.

The Get NewCW ndow function creates a new color window from the specified window
resource and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
Cet NewCW ndowis unable to read the window or window definition function from the
resource file, it returns NI L.

Window Manager Reference

CHAPTER 4

Window Manager

The Get NewCW ndow function looks for a' wct b' resource with the same resource ID
as that of the' W ND' resource. If it finds one, it uses the window color information in
the ' wet b' resource for coloring the window frame and highlighting selected text.

If the window’s definition function (specified in the window resource) is not already in
memory, Get NewCW ndowreads it into memory and stores a handle to it in the window
record. It allocates space in the application heap for the structure and content regions of
the window and asks the window definition function to calculate those regions.

To create the window, Get NewCW ndow retrieves the window characteristics from the
window resource and then calls the NewCW ndow function, passing the characteristics
as parameters.

The Get NewCW ndow function creates a window in a color graphics port. Before calling
CGet NewCW ndow verify that Color QuickDraw is available. Your application typically
sets up its own global variables reflecting the system setup during initialization by
calling the Gest al t function. See Inside Macintosh: Overview for more information about
establishing the local configuration.

SPECIAL CONSIDERATIONS

SEE ALSO

Note that the Get NewCW ndow function returns a value of type W ndowPt r, not
CW ndowPt r.

If you let the Window Manager create the window record in your application’s heap, call
Di sposeW ndowto dispose of the window’s window record. If you allocated the
memory for the window record yourself and passed a pointer to the storage to

Get NewCW ndow use the procedure Cl oseW ndowto close the window and the
procedure Di sposePt r, documented in Inside Macintosh: Memory, to dispose of the
window record.

See Listing 4-3 on page 4-28 for an example that calls Get NewCW ndow to create a new
window from a window resource.

For more information about window characteristics and the window resource, see the
description of NewCW ndowbeginning on page 4-79 and the description of the' W ND
resource in the section “The Window Resource” beginning on page 4-124.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the Di sposeW ndow procedure on page 4-105, the Cl oseW ndow
procedure on page 4-104, and the Di sposePt r procedure in Inside Macintosh: Memory.
See Listing 4-17 on page 4-61 for an example of closing a document window.

Window Manager Reference 4-77

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

GetNewWindow

DESCRIPTION

4-78

Use the Get NewW ndow function to create a new window from a window resource
when Color QuickDraw is not available. The Get NewW ndow function takes the same
parameters as Get NewCW ndow and returns a value of type W ndowPt r. The only
difference is that it creates a monochrome graphics port, not a color graphics port.
The window record and graphics port record that describe monochrome and color

graphics ports

are the same size and can be used interchangeably in most Window

Manager routines.

FUNCTI ON Ge

wi ndow D

wSt or age

behi nd

t NewW ndow (wi ndowl D: | nteger; wStorage: Ptr;
behi nd: W ndowPtr): W ndowPtr;

The resource ID of the ' W ND' resource that defines the properties of the
window.

A pointer to memory space for the window record.

If you specify a value of NI L for wSt or age, the Get NewW ndow function
allocates the window record as a nonrelocatable object in the heap. You
can reduce the chances of heap fragmentation by allocating the memory
your application needs for window records early in your initialization
code. Whenever you need to create a window, you can allocate memory
from your own block and pass a pointer to it in the wSt or age parameter.

A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Poi nt er (—1) . When you place a window in front of
all others, Get NewW ndowremoves the highlighting from the previously
active window, highlights the newly created window, and generates the
appropriate activate events. Note that if you create an invisible window
in front of all others on the desktop, the user sees no active window until
you make the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of NI L.

Like Get NewCW ndow Get NewW ndow creates a new window from a window resource,

but it creates a

monochrome window. The Get NewW ndow function creates a new

window from the specified window resource and returns a pointer to the newly created

window record. You can use the returned window pointer to refer to this window in
most Window Manager routines. If Get NewW ndowis unable to read the window or
window definition function from the resource file, it returns NI L.

If the window’s definition function (specified in the window resource) is not already in

memory, Get NewW ndowreads it into memory and stores a handle to it in the window

record. It allocates space in the application heap for the structure and content regions of
the window and asks the window definition function to calculate those regions.

Window Manager Reference

CHAPTER 4

Window Manager

To create the window, Get NewW ndow retrieves the window characteristics from the
window resource and then calls the function NewW ndow passing the characteristics
as parameters.

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap, call
Di sposeW ndowto dispose of the window’s window record. If you allocated the
memory for the window record yourself and passed a pointer to Get NewW ndow use
the procedure C oseW ndowto close the window and the procedure Di sposePtr,
documented in Inside Macintosh: Memory, to dispose of the window record.

SEE ALSO

For more information about window characteristics and the window resource, see the
description of NewW ndowbeginning on page 4-82 and the description of the ' W ND
resource in the section “The Window Resource” beginning on page 4-124.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the Di sposeW ndow procedure on page 4-105, the Cl oseW ndow
procedure on page 4-104, and the Di sposePt r procedure in Inside Macintosh: Memory.

NewCWindow

You can use the NewCW ndow function to create a window with a specified list of
characteristics.

FUNCTI ON NewCW ndow (wSt orage: Ptr; boundsRect: Rect;
title: Str255; visible: Bool ean;
procl D: Integer; behind: WndowPtr;
goAwayFl ag: Bool ean;
ref Con: Longlnt): WndowPtr;

WSt orage A pointer to the window record. If you specify NI L as the value of
WSt or age, NewCW ndowallocates the window record as a nonrelocatable
object in the application heap. You can reduce the chances of heap
fragmentation by allocating memory from a block of memory reserved for
this purpose by your application and passing a pointer to it in the
WSt or age parameter.

boundsRect A rectangle, in global coordinates, specifying the window’s initial size
and location. This parameter becomes the port rectangle of the window’s
graphics port. For the standard window types, the boundsRect field
defines the content region of the window. The NewCW ndow function
places the origin of the local coordinate system at the upper-left corner of
the port rectangle.

Window Manager Reference 4-79

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Note

The NewCW ndow function actually calls the QuickDraw procedure
OpenCPor t to create the graphics port. The bitmap, pen pattern,

and other characteristics of the window’s graphics port are the same
as the default values set by OpenCPor t , except for the character font,
which is set to the application font instead of the system font. O

title A string that specifies the window’s title.

If the title is too long to fit in the title bar, the title is truncated. If the
window has a close box, characters are truncated at the end of the title; if
there’s no close box, the title is centered and truncated at both ends.

To suppress the title in a window with a title bar, pass an empty string,
not NI L, in theti t| e parameter.

visible A Boolean value indicating visibility status: TRUE means that the Window
Manager displays the window; FALSE means it does not.

If the value of the vi si bl e parameter is TRUE, the Window Manager
draws a new window as soon as the window exists. The Window
Manager first calls the window definition function to draw the window
frame. If the value of the goAwayFl ag parameter is also TRUE and the
window is frontmost (that is, if the value of the behi nd parameter is
Poi nt er (-1)), the Window Manager instructs the window definition
function to draw a close box in the window frame. After drawing the
frame, the Window Manager generates an update event to trigger your
application’s drawing of the content region.

When you create a window, you typically specify FALSE as the value of
the vi si bl e parameter. When you're ready to display the window, you
call the ShowW ndow procedure, described on page 4-88.

procl D The window’s definition ID, which specifies both the window definition
function and the variation code within that definition function.

The Window Manager supports nine standard window types, which
are handled by two window definition functions. You can create windows
of the standard types by specifying one of the window definition ID

constants:
CONST
docunent Proc = 0; {standard docunent }

{ window, no zoom box}
dBoxPr oc = 1, {alert box or nodal }

{ dial og box}
pl ai nDBox = 2; {plain box}
al t DBoxPr oc = 3; {plain box with shadow}
noG owDocPr oc = 4; {novabl e w ndow, }

{ no size box or zoom box}
novabl eDBoxPr oc = 5; {novabl e nodal dial og box}
zoonmDocPr oc = 8; {standard docunent w ndow}
zoomNoGr ow = 12; {zoomabl e, nonresizable }

{ wi ndow}

r DocProc = 16; {rounded-corner w ndow}

4-80 Window Manager Reference

DESCRIPTION

CHAPTER 4

Window Manager

For a description of the nine standard window types, see “Types of
Windows” beginning on page 4-8.

You can control the diameter of curvature of rounded-corner windows by
adding an integer to the r DocPr oc constant, as described in “The
Window Resource” beginning on page 4-124.

behi nd A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Poi nt er (—1) . When you place a new window in front
of all others, NewCW ndowremoves highlighting from the previously
active window;, highlights the newly created window, and generates
activate events that trigger your application’s updating of both windows.
Note that if you create an invisible window in front of all others on the
desktop, the user sees no active window until you make the new window
visible (or make another window active).

To place a new window behind all other windows, specify a value of NI L.

goAwayFl ag A Boolean value that determines whether the window has a close box. If
the value of goAwayFl ag is TRUE and the window type supports a close
box, the Window Manager draws a close box in the title bar and
recognizes mouse clicks in the close region; if the value of goAwayFl ag is
FALSE or the window type does not support a close box, it does not.

r ef Con The window’s reference constant, set and used only by your application.
(See “Managing Multiple Windows” beginning on page 4-23 for some
suggested ways to use the r ef Con parameter.)

The NewCW ndow function creates a window as specified by its parameters, adds it to
the window list, and returns a pointer to the newly created window record. You can use
the returned window pointer to refer to this window in most Window Manager routines.
If NewCW ndowis unable to read the window definition function from the resource file, it
returns NI L.

The NewCW ndow function looks for a' wct b' resource with the same resource ID as the
"W ND resource. If it finds one, it uses the window color information in the ' wct b’
resource for coloring the window frame and highlighting.

If the window’s definition function is not already in memory, NewCW ndow reads it
into memory and stores a handle to it in the window record. It allocates space for the
structure and content regions of the window and asks the window definition function
to calculate those regions.

Storing the characteristics of your windows as resources, especially window titles and
window items, makes your application easier to localize.

The NewCW ndow function creates a window in a color graphics port. Creating color
windows whenever possible ensures that your windows appear on color monitors with
whatever color options the user has selected. Before calling Get NewCW ndow verify that
Color QuickDraw is available. Your application typically sets up its own set of global

Window Manager Reference 4-81

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

variables reflecting the system setup during initialization by calling the Gest al t
function. See the chapter Inside Macintosh: Overview for more information about
establishing the local configuration.

Note that the function NewCW ndow returns a value of type W ndowPt r, not
CW ndowpt r.

SPECIAL CONSIDERATIONS

SEE ALSO

If you let the Window Manager create the window record in your application’s heap,
call the Di sposeW ndow procedure to close the window and dispose of its window
record. If you allocated the memory for the window record yourself and passed a
pointer to NewCW ndow use the Cl oseW ndow procedure to close the window and
the Di sposePt r procedure, documented in Inside Macintosh: Memory, to dispose of the
window record.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the Di sposeW ndow procedure on page 4-105, the Cl oseW ndow
procedure on page 4-104, and the Di sposePt r procedure in Inside Macintosh: Memory.

NewWindow

4-82

Use the NewW ndow function to create a new window with the characteristics specified
by a list of parameters when Color QuickDraw is not available. The NewW ndow
function takes the same parameters as NewCW ndowand, like NewCW ndow returns a
W ndowPt r as its function result. The only difference is that NewW ndow creates a
window in a monochrome graphics port, not a color graphics port. The window record
and graphics port record that describe monochrome and color graphics ports are the
same size and can be used interchangeably in most Window Manager routines.

FUNCTI ON NewW ndow (wSt orage: Ptr; boundsRect: Rect;
title: Str255; visible: Bool ean;
t heProc: Integer; behind: WndowPtr;
goAwayFl ag: Bool ean;
ref Con: Longlnt): WndowPtr;

WSt orage A pointer to the window record. If you specify NI L as the value of
WSt or age, NewW ndowallocates the window record as a nonrelocatable
object in the heap. You can reduce the chances of heap fragmentation by
allocating the storage from a block of memory reserved for this purpose
by your application and passing a pointer to it in the wSt or age
parameter.

Window Manager Reference

CHAPTER 4

Window Manager

boundsRect

title

visible

t hePr oc

A rectangle, in global coordinates, specifying the window’s initial size
and location. This parameter becomes the port rectangle of the window’s
graphics port. For the standard window types, boundsRect defines

the content region of the window. The NewW ndow function places

the origin of the local coordinate system at the upper-left corner of the
port rectangle.

Note

The NewW ndow function actually calls the QuickDraw procedure
OpenPort to create the graphics port. The bitmap, pen pattern, and
other characteristics of the window’s graphics port are the same as
the default values set by OpenPor t , except for the character font,
which is set to the application font instead of the system font. The
coordinates of the graphics port’s port boundaries and visible region
are changed along with its port rectangle. O

A string that specifies the window’s title.

If the title is too long to fit in the title bar, the title is truncated. If the
window has a close box, characters at the end of the title are truncated; if
there’s no close box, the title is centered and truncated at both ends.

To suppress the title in a window with a title bar, pass an empty string,
not NI L.

A Boolean value indicating visibility status: TRUE means that the Window
Manager displays the window; FALSE means it does not.

If the value of the vi si bl e parameter is TRUE, the Window Manager
draws a new window as soon as the window exists. The Window
Manager first calls the window definition function to draw the window
frame. If the value of the goAwayFl ag parameter (described below) is
also TRUE and the window is frontmost (that is, if the value of the

behi nd parameter is Poi nt er (1)), the Window Manager instructs the
window definition function to draw a close box in the window frame.
After drawing the frame, the Window Manager generates an update
event to trigger your application’s drawing of the content region.

When you create a window, you typically specify FALSE as the value of
the vi si bl e parameter. When you're ready to display the window, you
call the ShowW ndow procedure, described on page 4-88.

The window’s definition ID, which specifies both the window definition
function and the variation code for that definition function.

The Window Manager supports nine standard window types, which are
handled by two window definition functions. You can create windows of
the standard types by specifying one of the type constants:

CONST
docunent Pr oc = 0; {standard document }
{ window, no zoom box}
dBoxPr oc = 1; {alert box or nodal }
{ dial og box}
pl ai nDBox = 2; {plain box}

Window Manager Reference 4-83

Jabeue\ mopuipn -

DESCRIPTION

4-84

CHAPTER 4

Window Manager

al t DBoxPr oc = 3; {plain box with shadow}
noGr owbDocPr oc {movabl e wi ndow, }
{ no size box or zoom box}

1
e

novabl eDBoxPr oc = 5; {novabl e nodal dial og box}

zoonDocPr oc = 8; {standard docunent w ndow}

zoomNoGr ow = 12; {zoomabl e, nonresizable }
{ w ndow}

r DocProc = 16; {rounded-corner w ndow}

You can control the diameter of curvature of rounded-corner windows by
adding an integer to the r DocPr oc constant, as described in “The
Window Resource” beginning on page 4-124.

behi nd A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Poi nt er (—1) . When you place a new window in front
of all others, NewW ndow removes highlighting from the previously active
window, highlights the newly created window, and generates activate
events that trigger your application’s updating of both windows. Note
that if you create an invisible window in front of all others on the
desktop, the user sees no active window until you make the new window
visible (or make another window active).

To place a new window behind all other windows, specify a value of NI L.

goAwayFl ag A Boolean value that determines whether or not the window has a close
box. If the value of goAway Fl ag is TRUE and the window type supports
a close box, the Window Manager draws a close box in the title bar and
recognizes mouse clicks in the close region; if the value of goAwayFl ag is
FALSE or the window type does not support a close box, it does not.

ref Con The window’s reference constant, set and used only by your application.
(See “Managing Multiple Windows” beginning on page 4-23 for some
suggested ways to use the r ef Con parameter.)

The NewW ndow function creates a window as specified by its parameters, adds it to the
window list, and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
NewW ndowis unable to read the window definition function from the resource file, it
returns NI L.

If the window’s definition function is not already in memory, NewW ndowreads it into
memory and stores a handle to it in the window record. It allocates space for the
structure and content regions of the window and asks the window definition function to
calculate those regions.

Storing the characteristics of your windows as resources, especially window titles and
window items, makes your application easier to localize.

Window Manager Reference

CHAPTER 4

Window Manager

SPECIAL CONSIDERATIONS

SEE ALSO

If you let the Window Manager create the window record in your application’s heap, call
the Di sposeW ndow procedure to close the window and dispose of its window record.
If you allocated the memory for the window record yourself and passed a pointer to
NewCW ndow use the CI oseW ndow procedure to close the window and the

Di sposePt r procedure, documented in Inside Macintosh: Memory, to dispose of the
window record.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the Di sposeW ndow procedure on page 4-105, the Gl oseW ndow
procedure on page 4-104, and the Di sposePtr procedure in Inside Macintosh: Memory.

Naming Windows

This section describes the procedures that set and retrieve a window’s title.

SetWTitle
Use the Set Wi t | e procedure to change a window’s title.
PROCEDURE SetWlitle (theWndow. WndowPtr; title: Str255);
t heW ndow A pointer to the window’s window record.
title The new window title.
DESCRIPTION

The Set WIi t | e procedure changes a window's title to the specified string, both in the
window record and on the screen, and redraws the window’s frame as necessary.

When the user opens a previously saved document, you typically create a new (invisible)
window with the title “untitled” and then call Set Wi t | e to give the window the
document’s name before displaying it. You also call Set WI'i t | e when the user saves a
document under a new name.

To suppress the title in a window with a title bar, pass an empty string, not NI L.

Always use Set WTi t | e instead of directly changing the title in a window’s
window record.

Window Manager Reference 4-85

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

GetWTitle
Use the Get WIi t | e procedure to retrieve a window’s title.
PROCEDURE GetWlitle (theWndow WndowPtr; VAR title: Str255);
t heW ndow A pointer to the window record.
title The window title.
DESCRIPTION
The Get WIi t | e procedure returns the title of the window in the ti t | e parameter.
Your application seldom needs to determine a window’s title. It might need to do so,
however, when presenting user dialog boxes during operations that can affect multiple
files. A spell-checking command, for example, might display a dialog box that lets the
user select from all currently open documents.
When you need to retrieve a window’s title, you should always use Get WIi t | e instead
of reading the title from a window’s window record.
Displaying Windows
This section describes the Window Manager routines that change a window’s display
and position in the window list but not its size or location on the desktop. Note that the
Window Manager automatically draws all visible windows on the screen.
Your application typically uses only a few of the routines described in this section:
Dr awGr ow con, Sel ect W ndow ShowwW ndow and, occasionally, H deW ndow
DrawGrowlcon
Use the Dr awG owl con procedure to draw a window’s size box.
PROCEDURE Dr awGr owl con (t heW ndow. W ndowPtr);
t heW ndow A pointer to the window record.
DESCRIPTION
The Dr awGr ow con procedure draws a window’s size box or, if the window can’t be
sized, whatever other image is appropriate. You call Dr awG ow con when drawing the
content region of a window that contains a size box.
The exact appearance and location of the image depend on the window type and the
window’s active or inactive state. The Dr awGr ow con procedure automatically checks
the window’s type and state and draws the appropriate image.
4-86 Window Manager Reference

SEE ALSO

CHAPTER 4

Window Manager

In an active document window, Dr awGr oW con draws the grow image in the size box in
the lower-right corner of the window’s graphics port rectangle, along with the lines
delimiting the size box and scroll bar areas. To draw the size box but not the scroll bar
outline, set the cl i pRgn field in the window’s graphics port to be a 15-by-15 pixel
rectangle in the lower-right corner of the window.

The Dr awGr ow con procedure doesn’t erase the scroll bar areas. If you use

Dr awGr ow con to draw the size box and scroll bar outline, therefore, you should
erase those areas yourself when the window size changes, even if the window
doesn’t contain scroll bars.

In an inactive document window, Dr awGr owl con draws the lines delimiting the size
box and scroll bar areas and erases the size box.

See Listing 4-8 on page 4-39 for an example that draws a window’s content region,
including the size box. See Listing 4-11 on page 4-51 for an example that calls
Dr awGr ow con to remove the size-box icon when a window becomes inactive.

SelectWindow

DESCRIPTION

Use the Sel ect W ndow procedure to make a window active. The Sel ect W ndow
procedure changes the active status of a window but does not affect its visibility.

PROCEDURE Sel ect W ndow (t heW ndow. W ndowPtr);

t heW ndow A pointer to the window’s window record.

The Sel ect W ndow procedure removes highlighting from the previously active
window, brings the specified window to the front, highlights it, and generates the
activate events to deactivate the previously active window and activate the specified
window. If the specified window is already active, Sel ect W ndowhas no effect.

Even if the specified window is invisible, Sel ect W ndowbrings the window to the
front, activates the window, and deactivates the previously active window. Note that in
this case, no active window is visible on the screen. If you do select an invisible window,
be sure to call ShowW ndowimmediately to make the window visible (and accessible to
the user).

Call Sel ect W ndow when the user presses the mouse button while the cursor is in the
content region of an inactive window.

Window Manager Reference 4-87

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

SEE ALSO
See Listing 4-9 on page 4-44 for an example that calls Sel ect W ndow to change
the active window when the user presses the mouse button while the cursor is
in an inactive window.
See Listing 4-18 on page 4-64 for an example that uses Sel ect W ndowand
ShowW ndow together to restore a window’s active, visible status after it has
been made invisible with Hi deW ndow

ShowWindow
Use the ShowW ndow procedure to make an invisible window visible.
PROCEDURE ShowW ndow (t heW ndow. W ndowPtr) ;
t heW ndow A pointer to the window record of the window.

DESCRIPTION
The ShowW ndow procedure makes an invisible window visible. If the specified window
is already visible, ShowW ndowhas no effect. Your application typically creates a new
window in an invisible state, performs any necessary setup of the content region, and
then calls ShowW ndow to make the window visible.
When you display a previously invisible window by calling ShowW ndow the Window
Manager draws the window frame and then generates an update event to trigger your
application’s drawing of the content region.
If the newly visible window is the frontmost window, ShowW ndowhighlights it if
it's not already highlighted and generates an activate event to make it active. The
ShowW ndow procedure does not activate a window that is not frontmost on the desktop.
Note
Because ShowW ndow does not change the front-to-back ordering of
windows, it is not the inverse of H deW ndow If you make the
frontmost window invisible with H deW ndow and Hi deW ndowhas
activated another window, you must call both ShowW ndowand
Sel ect W ndow to bring the original window back to the front. O

SEE ALSO
See Listing 4-16 on page 4-60 for an example that temporarily hides a dialog box
window when the user closes it. See Listing 4-18 on page 4-64 for the example that
calls ShowwW ndowto display the window again later.

4-88 Window Manager Reference

CHAPTER 4

Window Manager

HideWindow

DESCRIPTION

SEE ALSO

ShowHide

Use the H deW ndow procedure to make a window invisible.
PROCEDURE H deW ndow (t heW ndow. W ndowPtr);

t heW ndow A pointer to the window’s window record.

The H deW ndow procedure make a visible window invisible. If you hide the frontmost
window, H deW ndowremoves the highlighting, brings the window behind it to

the front, highlights the new frontmost window, and generates the appropriate

activate events.

To reverse the actions of H deW ndow you must call both ShowW ndow to make the
window visible, and Sel ect W ndow to select it.

See Listing 4-16 on page 4-60 for an example that calls Hi deW ndow to temporarily
hide a dialog box window when the user closes it. See Listing 4-18 on page 4-64 for the
companion example that redisplays the window later.

DESCRIPTION

Use the ShowHi de procedure to set a window’s visibility status.
PROCEDURE ShowHi de (t heW ndow. W ndowPtr; showkl ag: Bool ean);

t heW ndow A pointer to the window’s window record.

showFl ag A Boolean value that determines visibility status: TRUE makes a window
visible; FALSE makes it invisible.

The ShowHi de procedure sets a window’s visibility to the status specified by the
showFl ag parameter. If the value of showFl ag is TRUE, ShowHi de makes the window
visible if it’s not already visible and has no effect if it’s already visible. If the value of
showFl ag is FALSE, ShowHi de makes the window invisible if it’s not already invisible
and has no effect if it’s already invisible.

The ShowHi de procedure never changes the highlighting or front-to-back ordering of
windows and generates no activate events.

Window Manager Reference 4-89

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

WARNING

Use this procedure carefully and only in special circumstances where
you need more control than that provided by H deW ndowand
ShowW ndow Do not, for example, use ShowHi de to hide the active
window without making another window active. a

HiliteWindow

DESCRIPTION

Use the Hi | i t eW ndow procedure to set a window’s highlighting status.
PROCEDURE Hi | i teW ndow (t heW ndow. WndowPtr; fHilite: Bool ean);

t heW ndow A pointer to the window’s window record.

fHilite A Boolean value that determines the highlighting status: TRUE highlights
a window; FALSE removes highlighting.

The Hi | i t eW ndowprocedure sets a window’s highlighting status to the specified state.
If the value of the f Hi | i t e parameter is TRUE, Hi | i t eW ndowhighlights the specified
window; if the specified window is already highlighted, the procedure has no effect.

If the value of f Hi | i t e is FALSE, Hi | i t eW ndowremoves highlighting from the
specified window; if the window is not already highlighted, the procedure has no effect.

Your application doesn’t normally need to call Hi | i t eW ndow To make a window
active, you can call Sel ect W ndow which handles highlighting for you.

BringToFront

DESCRIPTION

4-90

Use the Bri ngToFr ont procedure to bring a window to the front.
PROCEDURE Bri ngToFront (theW ndow. W ndowPtr);

t heW ndow A pointer to the window’s window record.

The Bri ngToFr ont procedure puts the specified window at the beginning of the
window list and redraws the window in front of all others on the screen. It does
not change the window’s highlighting or make it active.

Your application does not ordinarily call Bri ngToFr ont . The user interface guidelines
specify that the frontmost window should be the active window. To bring a window to
the front and make it active, call the Sel ect W ndow procedure.

Window Manager Reference

CHAPTER 4

Window Manager

SendBehind

DESCRIPTION

Use the SendBehi nd procedure to move one window behind another.
PROCEDURE SendBehi nd (t heW ndow, behi ndW ndow. W ndowPtr);

t heW ndow A pointer to the window to be moved.

behi ndW ndow
Apointer to the window that is to be in front of the moved window.

The SendBehi nd procedure moves the window pointed to by the parameter

t heW ndowbehind the window pointed to by the parameter behi ndW ndow If the
move exposes previously obscured windows or parts of windows, SendBehi nd
redraws the frames as necessary and generates the appropriate update events to
have any newly exposed content areas redrawn.

If the value of behi ndW ndowis NI L, SendBehi nd sends the window to be moved
behind all other windows on the desktop. If the window to be moved is the active
window, SendBehi nd removes its highlighting, highlights the newly exposed frontmost
window, and generates the appropriate activate events.

Note

Do not use SendBehi nd to deactivate a window after you’ve made a
new window active with the Sel ect W ndow procedure. The

Sel ect W ndow procedure automatically deactivates the previously
active window. O

Jabeue\ mopuipn -

Retrieving Window Information

This section describes

= the Fi ndW ndow function, which maps the cursor location of a mouse-down event to
parts of the screen or regions of a window

= the Fr ont W ndow function, which tells your application which window is active

FindWindow

When your application receives a mouse-down event, call the Fi ndW ndow function to
map the location of the cursor to a part of the screen or a region of a window.

FUNCTI ON Fi ndW ndow (t hePoi nt: Point;
VAR t heW ndow. W ndowPtr): Integer;

Window Manager Reference 4-91

DESCRIPTION

4-92

CHAPTER 4

Window Manager

t hePoi nt The point, in global coordinates, where the mouse-down event occurred.
Your application retrieves this information from the wher e field of the
event record.

t heW ndow A parameter in which Fi ndW ndowreturns a pointer to the window in
which the mouse-down event occurred, if it occurred in a window. If it
didn’t occur in a window, Fi ndW ndowsets t heW ndowto NI L.

The Fi ndW ndow function returns an integer that specifies where the cursor was when
the user pressed the mouse button. You typically call Fi ndW ndow whenever you
receive a mouse-down event. The Fi ndW ndow function helps you dispatch the event by
reporting whether the cursor was in the menu bar or in a window when the mouse
button was pressed and, if it was in a window, which window and which region of the
window. If the mouse-down event occurred in a window, Fi ndW ndow places a pointer
to the window in the parameter t heW ndow

The Fi ndW ndow function returns an integer that specifies one of nine regions:

CONST i nDesk = 0; {none of the follow ng}

i nMenuBar =1; {in nmenu bar}

i nSysWndow = 2; {in desk accessory w ndow}

i nCont ent = 3; {anywhere in content region except size }
{ box if windowis active, }
{ anywhere including size box if w ndow }
{ is inactive}

i nDrag = 4; {indrag (title bar) region}

i nGr ow = 5; {in size box (active w ndow only)}

i nGoAway = 6; {in close box}

i nZoom n = 7; {in zoombox (w ndow in standard state)}

i nZoontut = 8; {in zoombox (w ndow in user state)}

The Fi ndW ndow function returns i nDesk if the cursor is not in the menu bar, a desk
accessory window, or any window that belongs to your application. The Fi ndW ndow
function might return this value if, for example, the user presses the mouse button while
the cursor is on the window frame but not in the title bar, close box, or zoom box. When
Fi ndW ndowreturns i nDesk, your application doesn’t need to do anything. In System
7, when the user presses the mouse button while the cursor is on the desktop orin a
window that belongs to another application, the Event Manager sends your application
a suspend event and switches to the Finder or another application.

The Fi ndW ndow function returns i nMenuBar when the user presses the mouse button
with the cursor in the menu bar. Your application typically adjusts its menus and then
calls the Menu Manager’s function MenuSel ect to let the user choose menu items.

The FindWindow function returns i nSysW ndow when the user presses the mouse
button while the cursor is in a window belonging to a desk accessory that was launched
in your application’s partition. This situation seldom arises in System 7. When the user

Window Manager Reference

CHAPTER 4

Window Manager

clicks in a window belonging to a desk accessory launched independently, the Event
Manager sends your application a suspend event and switches to the desk accessory.

If Fi ndW ndowdoes return i nSysW ndow your application calls the Syst enCl i ck
procedure, documented in the chapter “Event Manager” in this book. The

Syst en i ck procedure routes the event to the desk accessory. If the user presses
the mouse button with the cursor in the content region of an inactive desk

accessory window, Syst en i ck makes the window active by sending your applica-
tion and the desk accessory the appropriate activate events.

The Fi ndW ndow function returns i nCont ent when the user presses the mouse button
with the cursor in the content area (excluding the size box in an active window) of one of
your application’s windows. Your application then calls its routine for handling clicks in
the content region.

The Fi ndW ndow function returns i nDr ag when the user presses the mouse button
with the cursor in the drag region of a window (that is, the title bar, excluding the close
box and zoom box). Your application then calls the Window Manager’s Dr agW ndow
procedure to let the user drag the window to a new location.

The Fi ndW ndow function returns i NGr owwhen the user presses the mouse button
with the cursor in an active window’s size box. Your application then calls its own
routine for resizing a window.

The Fi ndW ndow function returns i nGoAway when the user presses the mouse
button with the cursor in an active window’s close box. Your application calls the
Tr ackGoAway function to track mouse activity while the button is down and then
calls its own routine for closing a window if the user releases the button while the
cursor is in the close box.

The Fi ndW ndow function returns i nZoomnl n or i nZoonmQut when the user presses the
mouse button with the cursor in an active window’s zoom box. Your application calls the
Tr ackBox function to track mouse activity while the button is down and then calls its
own routine for zooming a window if the user releases the button while the cursor is in
the zoom box.

Jabeue\ mopuipn -

SEE ALSO
See Listing 4-9 on page 4-44 for an example that calls Fi ndW ndow to determine the
location of the cursor and then dispatches the mouse-down event depending on
the results.

FrontWindow

Use the Fr ont W ndow function to find out which window is active.

FUNCTI ON Fr ont W ndow. W ndowPtr ;

Window Manager Reference 4-93

DESCRIPTION

SEE ALSO

CHAPTER 4

Window Manager

The Fr ont W ndow function returns a pointer to the first visible window in the
window list (that is, the active window). If there are no visible windows, Fr ont W ndow
returns NI L.

See Listing 4-9 on page 4-44 for an example that calls Fr ont W ndow to determine
whether an event occurred in the active window.

See Listing 4-12 on page 4-55 for an example that calls Fr ont W ndow to determine
whether to display a window in front of other windows after changing its size.

See Listing 4-16 on page 4-60 and Listing 4-17 on page 4-61 for examples that call
Fr ont W ndowto determine which window is affected by a user command directed
at the active window.

Moving Windows

This section describes the procedures that move windows on the desktop.

To move a window, your application ordinarily needs to call only the Dr agW ndow
procedure, which itself calls the Dr agG ay Rgn function, and the MoveW ndow
procedure. The Dr agG ayRgn function drags a dotted outline of the window on the
screen, following the motion of the cursor, as long as the user holds down the mouse
button. The Dr agG ayRgn function itself calls the Pi nRect function to contain the
point where the cursor was when the mouse button was first pressed inside the
available desktop area. When the user releases the mouse button, Dr agW ndow calls
MoveW ndow which moves the window to a new location.

DragWindow

4-94

When the user drags a window by its title bar, use the Dr agW ndow procedure to move
the window on the screen.

PROCEDURE Dr agW ndow (t heW ndow. W ndowPtr ;
startPt: Point; boundsRect: Rect);

t heW ndow A pointer to the window record of the window to be dragged.

start Pt The location, in global coordinates, of the cursor at the time the user
pressed the mouse button. Your application retrieves this point from the
wher e field of the event record.

Window Manager Reference

DESCRIPTION

SEE ALSO

CHAPTER 4

Window Manager

boundsRect A rectangle, in global coordinates, that limits the region to which a
window can be dragged. If the mouse button is released when the
cursor is outside the limits of boundsRect , Dr agW ndow returns
without moving the window (or, if it was inactive, without making
it the active window).

Because the user cannot ordinarily move the cursor off the desktop,
you can safely set boundsRect to the largest available rectangle (the
bounding box of the desktop region pointed to by the global variable

G ayRgn) when you're using Dr agW ndow to track mouse movements.
Don’t set the bounding rectangle to the size of the immediate screen
(screenBi ts. bounds), because the user wouldn’t be able to move
the window to a different screen on a system equipped with

multiple monitors.

The Dr agW ndow procedure moves a dotted outline of the specified window around the
screen, following the movement of the cursor until the user releases the mouse button.
When the button is released, Dr agW ndow calls MoveW ndow to move the window to its
new location. If the specified window isn’t the active window (and the Command key
wasn’t down when the mouse button was pressed), Dr agW ndowmakes it the active
window by setting the f r ont parameter to TRUE when calling MoveW ndow If the
Command key was down when the mouse button was pressed, Dr agW ndowmoves the
window without making it active.

The Dr agW ndow procedure calls both MoveW ndowand Dr agGr ayRgn, which are
described in this section.

Jabeue\ mopuipn -

See Listing 4-9 on page 4-44 for an example that calls Dr agW ndowwhen the user
presses the mouse button while the cursor is in the drag region.

MoveWindow

Use the MoveW ndow procedure to move a window on the desktop.

PROCEDURE MoveW ndow (t heW ndow. W ndowPtr ;
hG obal , vd obal : I nteger;
front: Bool ean);

t heW ndow A pointer to the window record of the window being moved.

hd obal The new location, in global coordinates, of the left edge of the window’s
port rectangle.

vd obal The new location, in global coordinates, of the top edge of the window’s
port rectangle.

Window Manager Reference 4-95

CHAPTER 4

Window Manager

front A Boolean value specifying whether the window is to become the
frontmost, active window. If the value of the front parameter is FALSE,
MoveW ndow does not change its plane or status. If the value of the front
parameter is TRUE and the window isn’t active, MoveW ndow makes it
active by calling the Sel ect W ndow procedure.

DESCRIPTION

The MoveW ndow procedure moves the specified window to the location specified by the

hd obal and v@ obal parameters, without changing the window’s size. The upper-left

corner of the window’s port rectangle is placed at the point (vG obal ,hd obal). The
local coordinates of the upper-left corner are unaffected.

Your application doesn’t normally call MoveW ndow When the user drags a window by

dragging its title bar, you can call Dr agW ndow which in turn calls MoveW ndow when

the user releases the mouse button.
DragGrayRgn

The Dr agW ndow function calls the Dr agG ay Rgn function to move an outline of a

window around the screen as the user drags a window.

FUNCTI ON DragGrayRgn (theRgn: RgnHandl e; startPt: Point;
limtRect, slopRect: Rect; axis: Integer;
actionProc: ProcPtr): Longlnt;

t heRgn A handle to the region to be dragged.

start Pt The location, in the local coordinates of the current graphics port, of the

cursor when the mouse button was pressed.
limtRect Arectangle, in the local coordinates of the current graphics port, that
limits where the region can be dragged. This parameter works in
conjunction with the sl opRect parameter, as illustrated in Figure 4-23
on page 4-98.

sl opRect A rectangle, in the local coordinates of the current graphics port, that
gives the user some leeway in moving the mouse without violating
the limits of the | i mi t Rect parameter, as illustrated in Figure 4-23 on
page 4-98. The sl opRect rectangle should be larger than the | i mi t Rect
rectangle.

axi s A constant that constrains the region’s motion. The axi s parameter can

have one of these values:
CONST noConst rai nt = 0; {no constraints}
hAxi sOnl y = 1, {nove on horizontal axis }
{ only}
VAXi sOnl y = 2; {nove on vertical axis }
{ only}
4-96 Window Manager Reference

DESCRIPTION

CHAPTER 4

Window Manager

If an axis constraint is in effect, the outline follows the cursor’s
movements along only the specified axis, ignoring motion along the other
axis. With or without an axis constraint, the outline appears only when
the mouse is inside the s| opRect rectangle.

actionProc A pointer to a procedure that defines an action to be performed
repeatedly as long as the user holds down the mouse button. The
procedure can have no parameters. If the value of acti onProc is NI L,
Dr agGr ayRgn simply retains control until the mouse button is released.

The Dr agGr ayRgn function moves a gray outline of a region on the screen, following
the movements of the cursor, until the mouse button is released. It returns the difference
between the point where the mouse button was pressed and the offset point—that is, the
point in the region whose horizontal and vertical offsets from the upper-left corner of the
region’s enclosing rectangle are the same as the offsets of the starting point when the
user pressed the mouse button. The Dr agG- ayRgn function stores the vertical difference
between the starting point and the offset point in the high-order word of the return value
and the horizontal difference in the low-order word.

The Dr agGr ayRgn function limits the movement of the region according to the
constraints set by the | i m t Rect and sl opRect parameters:

» Aslong as the cursor is inside the | i m t Rect rectangle, the region’s outline follows
it normally. If the mouse button is released while the cursor is within this rectangle,
the return value reflects the simple distance that the cursor moved in each dimension.

s When the cursor moves outside the | i mi t Rect rectangle, the offset point stops at the
edge of the | i mi t Rect rectangle. If the mouse button is released while the cursor
is outside the | i m t Rect rectangle but inside the S| opRect rectangle, the return
value reflects only the difference between the starting point and the offset point,
regardless of how far outside of the | i m t Rect rectangle the cursor may have
moved. (Note that part of the region can fall outside the | i m t Rect rectangle, but
not the offset point.)

s When the cursor moves outside the sl opRect rectangle, the region’s outline
disappears from the screen. The Dr agGr ay Rgn function continues to track the cursor,
however, and if the cursor moves back into the s| opRect rectangle, the outline
reappears. If the mouse button is released while the cursor is outside the sl opRect
rectangle, both words of the return value are set to $8000. In this case, the Window
Manager does not move the window from its original location.

Figure 4-23 on page 4-98 illustrates how the region stops moving when the offset point
reaches the edge of the | i m t Rect rectangle. The cursor continues to move, but the
region does not.

If the mouse button is released while the cursor is anywhere inside the sl opRect
rectangle, the Window Manager redraws the window in its new location, which is
calculated from the value returned by Dr agG ayRgn.

Window Manager Reference 4-97

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Figure 4-23 Limiting rectangle used by Dr agGr ayRgn

sl opRect startPt
IimtRect t heRgn

The user presses the mouse button with the cursor at st art Pt .

Although the cursor continues to move, the region identified by
t heRgn stops when the offset point reaches the edge of the
I i mt Rect rectangle.

ASSEMBLY-LANGUAGE INFORMATION

4-98

You can set the global variable Dr agHooK to point to an optional procedure, defined
by your application, which will be called by Dr agGr ayRgn as long as the mouse
button is held down. (If there’s an act i onPr oc procedure, it is called first.) If you
want Dr agGr ay Rgn to draw the region’s outline in a pattern other than gray, you
can store the pattern in the global variable Dr agPat t er n and then invoke the macro
_DragTheRgn. Note that the use of the Window Manager’s global variables is not
guaranteed to be compatible with system software versions later than System 6.

Window Manager Reference

CHAPTER 4

Window Manager

PinRect
The Dr agGr ayRgn function uses the Pi nRect function to contain a point within a
specified rectangle.
FUNCTI ON Pi nRect (theRect: Rect; thePt: Point): Longlnt;
t heRect The rectangle in which the point is to be contained.
t hePt The point to be contained.
DESCRIPTION

The Pi nRect function returns a point within the specified rectangle that is as close as
possible to the specified point. (The high-order word of the returned long integer is the
vertical coordinate; the low-order word is the horizontal coordinate.)

If the specified point is within the rectangle, Pi nRect returns the point itself. If not, then

= if the horizontal position is to the left of the rectangle, Pi nRect returns the left edge
as the horizontal coordinate

= if the horizontal position is to the right of the rectangle, Pi nRect returns the right
edge minus 1 as the horizontal coordinate

= if the vertical position is above the rectangle, Pi nRect returns the top edge as the
vertical coordinate

= if the vertical position is below the rectangle, Pi nRect returns the bottom edge minus
1 as the vertical coordinate

Note

The 1 is subtracted when the point is below or to the right of the
rectangle so that a pixel drawn at that point lies within the rectangle. If
the point is exactly on the bottom or the right edge of the rectangle,
however, 1 should be subtracted but isn’t. O

Resizing Windows

This section describes the procedures you can use to track the cursor while the user
resizes a window and to draw the window in a new size.

GrowWindow

Use the Gr owW ndow function to allow the user to change the size of a window. The
G owW ndow function displays an outline (grow image) of the window as the user
moves the cursor to make the window larger or smaller; it handles all user interaction

Window Manager Reference 4-99

Jabeue\ mopuipn -

DESCRIPTION

CHAPTER 4

Window Manager

until the user releases the mouse button. After calling Gr owW ndow you call the
Si zeW ndow procedure to change the size of the window.

FUNCTI ON G- owW ndow (t heW ndow. W ndowPtr ;
startPt: Point; sizeRect: Rect): Longlnt;

t heW ndow A pointer to the window record of the window to drag.

start Pt The location of the cursor at the time the mouse button was first pressed,
in global coordinates. Your application retrieves this point from the
wher e field of the event record.

si zeRect The limits on the vertical and horizontal measurements of the port
rectangle, in pixels.
Although the si zeRect parameter is in the form of the Rect data
type, the four numbers in the structure represent lengths, not
screen coordinates. Thet op, | eft, bott om and ri ght fields of the
si zeRect parameter specify the minimum vertical measurement
(t op), the minimum horizontal measurement (I ef t), the maximum
vertical measurement (bot t om), and the maximum horizontal
measurement (r i ght).
The minimum measurements must be large enough to allow a
manageable rectangle; 64 pixels on a side is typical. Because the user
cannot ordinarily move the cursor off the screen, you can safely set
the upper bounds to the largest possible length (65,535 pixels) when
you're using G- owW ndow to follow cursor movements.

The G- owW ndow function moves a dotted-line image of the window’s right and lower
edges around the screen, following the movements of the cursor until the mouse button
is released. It returns the new dimensions, in pixels, of the resulting window: the height
in the high-order word of the returned long-integer value and the width in the low-order
word. You can use the functions H Wor d and LoWr d to retrieve only the high-order and
low-order words, respectively.

A return value of 0 means that the new size is the same as the size of the current
port rectangle.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

4-100

You can set the global variable Dr agHook to point to an optional procedure, defined by
your application, which will be called by G owWW ndow as long as the mouse button is
held down. (If there’s an act i onPr oc procedure, the act i onPr oc procedure is called
first.) Note that the use of the Window Manager’s global variables is not guaranteed to
be compatible with system software versions later than System 6.

See Listing 4-13 on page 4-58 for an example that calls G owW ndow when the user
presses the mouse button while the cursor is in the size box.

Window Manager Reference

CHAPTER 4

Window Manager

SizeWindow

DESCRIPTION

SEE ALSO

Use the Si zeW ndow procedure to set the size of a window.

PROCEDURE Si zeW ndow (t heW ndow. W ndowPtr; w, h: Integer;
f Updat e: Bool ean);

t heW ndow A pointer to the window record of the window to be sized.

w The new window width, in pixels.
h The new window height, in pixels.
f Updat e A Boolean value that specifies whether any newly created area of the

content region is to be accumulated into the update region (TRUE) or not
(FALSE). You ordinarily pass a value of TRUE to ensure that the area is
updated. If you pass FALSE, you're responsible for maintaining the
update region yourself. For more information on adding rectangles to and
removing rectangles from the update region, see the description of

I nval Rect on page 4-107 and Val i dRect on page 4-108.

The Si zeW ndow procedure changes the size of the window’s graphics port rectangle to
the dimensions specified by the wand h parameters, or does nothing if the values of w
and h are 0. The Window Manager redraws the window in the new size, recentering the
title and truncating it if necessary. Your application calls Si zeW ndowimmediately after
calling G- owW ndow to adjust the window to any changes made by the user through the
size box.

See Listing 4-13 on page 4-58 for an example that calls Si zeW ndowto resize a window
based on the return value of G owW ndow

Zooming Windows

TrackBox

This section describes the procedures you can use to track mouse activity in the zoom
box and to zoom windows.

Use the Tr ackBox function to track the cursor when the user presses the mouse button
while the cursor is in the zoom box.

FUNCTI ON TrackBox (theW ndow. W ndowPtr; thePt: Point;
part Code: Integer): Bool ean;

Window Manager Reference 4-101

Jabeue\ mopuipn -

DESCRIPTION

CHAPTER 4

Window Manager

t heW ndow A pointer to the window record of the window in which the mouse
button was pressed.

t hePt The location of the cursor when the mouse button was pressed. Your
application receives this point from the wher e field in the event record.

part Code The part code (either i nZoom n or i nZoonQut) returned by the
Fi ndW ndow function.

The Tr ackBox function tracks the cursor when the user presses the mouse button while
the cursor is in the zoom box, retaining control until the mouse button is released. While
the button is down, Tr ackBox highlights the zoom box while the cursor is in the zoom
region, as illustrated in Figure 4-20 on page 4-47.

When the mouse button is released, Tr ackBox removes the highlighting from the zoom
box and returns TRUE if the cursor is within the zoom region and FALSE if it is not.

Your application calls the Tr ackBox function when it receives a result code of either

i nZoom n or i nZoonmQut from the Fi ndW ndow function. If Tr ackBox returns TRUE,
your application calculates the standard state, if necessary, and calls the ZoomW ndow
procedure to zoom the window. If Tr ackBox returns FALSE, your application

does nothing.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

You can set the global variable Dr agHook to point to an optional procedure, defined by
your application, which will be called by Tr ackBox as long as the mouse button is held
down. (If there’s an act i onPr oc procedure, the act i onPr oc procedure is called first.)
Note that the use of the Window Manager’s global variables is not guaranteed to be
compatible with system software versions later than System 6.

See Listing 4-12 on page 4-55 for an example that calls Tr ackBox to track cursor activity
when the user presses the mouse button while the cursor is in the zoom box.

ZoomWindow

4-102

Use the ZoomW ndow procedure to zoom the window when the user has pressed and
released the mouse button with the cursor in the zoom box.

PROCEDURE ZoomW ndow (t heW ndow. W ndowPtr ;
part Code: Integer; front: Bool ean);

t heW ndow A pointer to the window record of the window to be zoomed.

part Code The result (either i nZoonl n ori nZoonQut) returned by the
Fi ndW ndow function.

Window Manager Reference

DESCRIPTION

SEE ALSO

CHAPTER 4

Window Manager

front A Boolean value that determines whether the window is to be brought to
the front. If the value of f r ont is TRUE, the window necessarily becomes
the frontmost, active window. If the value of f r ont is FALSE, the
window’s position in the window list does not change. Note that if a
window was active before it was zoomed, it remains active even if the
value of f r ont is FALSE.

The ZoomW ndow procedure zooms a window in or out, depending on the value of
the part Code parameter. Your application calls ZoomW ndow passing it the part
code returned by Fi ndW ndow when it receives a result of TRUE from Tr ackBox.
The ZoomW ndow procedure then changes the window’s port rectangle to either
the user state (if the part code is i nZoom n) or the standard state (if the part code is
i nZoontut), as stored in the window state data record, described in the section
“Zooming a Window” beginning on page 4-53.

If the part code is i nZoonQut , your application ordinarily calculates and sets the
standard state before calling ZoomA ndow

For best results, call the QuickDraw procedure Er aseRect, passing the window’s
graphics port as the port rectangle, before calling ZoomW ndow

See Listing 4-12 on page 4-55 for an example that calculates and sets the standard state
and then calls ZoomA ndowto zoom a window.

Closing and Deallocating Windows

This section describes the procedures that track user activity in the close box and that
close and dispose of windows.

When you no longer need a window, call the O oseW ndow procedure if you
allocated the memory for the window record or the Di sposeW ndow procedure if
you did not.

TrackGoAway

Use the Tr ackGoAway function to track the cursor when the user presses the mouse
button while the cursor is in the close box.

FUNCTI ON TrackGoAway (theW ndow. W ndowPtr ;
thePt: Point): Bool ean;

t heW ndow A pointer to the window record of the window in which the mouse-down
event occurred.

t hePt The location of the cursor at the time the mouse button was pressed. Your
application receives this point from the wher e field of the event record.

Window Manager Reference 4-103

Jabeue\ mopuipn -

DESCRIPTION

CHAPTER 4

Window Manager

The Tr ackGoAway function tracks cursor activity when the user presses the mouse
button while the cursor is in the close box, retaining control until the user releases the
mouse button. While the button is down, Tr ackGoAway highlights the close box as long
as the cursor is in the close region, as illustrated in Figure 4-19 on page 4-46.

When the mouse button is released, Tr ackGoAway removes the highlighting from the
close box and returns TRUE if the cursor is within the close region and FALSE if it is not.

Your application calls the Tr ackGoAway function when it receives a result code of

i nGoAway from the Fi ndW ndow function. If Tr ackGoAway returns TRUE, your
application calls its own procedure for closing a window, which can call either the

d oseW ndow procedure or the Di sposeW ndow procedure to remove the window
from the screen. (Before removing a document window, your application ordinarily
checks whether the document has changed since the associated file was last saved.
See the chapter “Introduction to File Management” in Inside Macintosh: Files for a
general discusion of handling files.) If Tr ackGoAway returns FALSE, your application
does nothing.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

You can set the global variable Dr agHooK to point to an optional procedure, defined by
your application, which will be called by Tr ackGoAway as long as the mouse button is
held down. (If there’s an act i onPr oc procedure, the act i onPr oc procedure is called
first.) Note that the use of the Window Manager’s global variables is not guaranteed to

be compatible with system software versions later than System 6.

See Listing 4-9 on page 4-44 for an example that calls Tr ackGoAway to track cursor
activity when the user presses the mouse button while the cursor is in the close box.

CloseWindow

DESCRIPTION

4-104

Use the O oseW ndow procedure to remove a window if you allocated memory yourself
for the window’s window record.

PROCEDURE Cl oseW ndow (t heW ndow. W ndowPtr);

t heW ndow A pointer to the window record of the window to be closed.

The O oseW ndow procedure removes the specified window from the screen and
deletes it from the window list. It releases the memory occupied by all data structures
associated with the window except the window record itself.

Window Manager Reference

SEE ALSO

DisposeWindow

CHAPTER 4

Window Manager

If you allocated memory for the window record and passed a pointer to it as one of the
parameters to the functions that create windows, call O oseW ndowwhen you're done
with the window. You must then call the Memory Manager procedure Di sposePtr to
release the memory occupied by the window record.

WARNING

If your application allocated any other memory for use with a window,
you must release it before calling G oseW ndow The Window Manager
releases only the data structures it created.

Also, O oseW ndowassumes that any picture pointed to by the window
record field Wi ndowPi ¢ is data, not a resource, and it calls the
QuickDraw procedure Ki | | Pi ct ur e to delete it. If your application
uses a picture stored as a resource, you must release the memory it
occupies with the Rel easeResour ce procedure and set the

wi ndowPi c field to NI L before closing the window. a

Any pending update events for the window are discarded. If the window being removed
is the frontmost window, the window behind it, if any, becomes the active window.

See Listing 4-17 on page 4-61 for an example that calls O oseW ndowto remove a
window from the screen.

-

See Listing 4-3 on page 4-28 for an example that calls Cl oseW ndowto clean up memory
when an attempt to create a new window fails.

DESCRIPTION

Jabeue\ mopuipn

Use the Di sposeW ndow procedure to remove a window if you let the Window
Manager allocate memory for the window record.

PROCEDURE Di sposeW ndow (t heW ndow. W ndowPtr);

t heW ndow A pointer to the window record of the window to be closed.

The Di sposeW ndow procedure removes a window from the screen, deletes it from the
window list, and releases the memory occupied by all structures associated with the
window, including the window record. (Di sposeW ndow calls Cl oseW ndowand then
releases the memory occupied by the window record.)

Window Manager Reference 4-105

CHAPTER 4

Window Manager

WARNING

If your application allocated any other memory for use with a window,
you must release it before calling Di sposeW ndow The Window
Manager releases only the data structures it created.

The Di sposeW ndow procedure assumes that any picture pointed to by
the window record field Wi ndowPi ¢ is data, not a resource, and it calls
the QuickDraw procedure Ki | | Pi ct ur e to delete it. If your application
uses a picture stored as a resource, you must release the memory it
occupies with the Rel easeResour ce procedure and set the

wi ndowPi ¢ field to NI L before closing the window. a

Any pending update events for the window are discarded. If the window being removed
is the frontmost window, the window behind it, if any, becomes the active window.

Maintaining the Update Region

This section describes the routines you use to update your windows and to maintain
window update regions.

BeginUpdate

DESCRIPTION

4-106

Use the Begi nUpdat e procedure to start updating a window when you receive an
update event for that window.

PROCEDURE Begi nUpdate (theW ndow. W ndowPtr);

t heW ndow A pointer to the window’s window record. Your application gets this
information from the nessage field in the update event record.

The Begi nUpdat e procedure limits the visible region of the window’s graphics port to
the intersection of the visible region and the update region; it then sets the window’s
update region to an empty region. After calling Begi nUpdat e, your application redraws
either the entire content region or only the visible region. In either case, only the parts of
the window that require updating are actually redrawn on the screen.

Every call to Begi nUpdat e must be matched with a subsequent call to EndUpdat e after
your application redraws the content region.

Note
In Pascal, Begi nUpdat e and EndUpdat e can’t be nested. That is,
you must call EndUpdat e before the next call to Begi nUpdat e.

You can nest Begi nUpdat e and EndUpdat e calls in assembly
language if you save and restore the copy of the vi sRgn, a copy
of which is stored, in global coordinates, in the global variable
SaveVi sRgn. O

Window Manager Reference

CHAPTER 4

Window Manager

SPECIAL CONSIDERATIONS

SEE ALSO

EndUpdate

If you don't clear the update region when you receive an update event, the Event
Manager continues to send update events until you do.

See Figure 4-21 on page 4-49 for an illustration of how Begi nUpdat e and EndUpdat e
affect the visible region and update region. See Listing 4-10 on page 4-50 for an example
that updates a window.

DESCRIPTION

SEE ALSO

InvalRect

Use the EndUpdat e procedure to finish updating a window.
PROCEDURE EndUpdate (theW ndow. W ndowPtr);

t heW ndow A pointer to the window’s window record.

The EndUpdat e procedure restores the normal visible region of a window’s graphics
port. When you receive an update event for a window, you call Begi nUpdat e, redraw
the update region, and then call EndUpdat e. Each call to Begi nUpdat e must be
balanced by a subsequent call to EndUpdat e.

See Figure 4-21 on page 4-49 for an illustration of how Begi nUpdat e and EndUpdat e
affect the visible region and update region. See Listing 4-10 on page 4-50 for an example
that updates a window.

Use the | nval Rect procedure to add a rectangle to a window’s update region.

PROCEDURE | nval Rect (badRect: Rect);

badRect A rectangle, in local coordinates, that is to be added to a window’s
update region.

Window Manager Reference 4-107

Jabeue\ mopuipn -

DESCRIPTION

InvalRgn

CHAPTER 4

Window Manager

The | nval Rect procedure adds a specified rectangle to the update region of the
window whose graphics port is the current port. Specify the rectangle in local
coordinates. The Window Manager clips it, if necessary, to fit in the window’s
content region.

Both your application and the Window Manager use the | nval Rect procedure.

When the user enlarges a window, for example, the Window Manager uses | nval Rect
to add the newly created content region to the update region. Your application uses

I nval Rect to add the two rectangles formerly occupied by the scroll bars in the smaller
content area.

DESCRIPTION

SEE ALSO

ValidRect

Use the | nval Rgn procedure to add a region to a window’s update region.
PRCOCEDURE | nval Rgn (badRgn: RgnHandl e);

badRgn The region, in local coordinates, that is to be added to a window’s
update region.

The | nval Rgn procedure adds a specified region to the update region of the window
whose graphics port is the current port. Specify the region in local coordinates. The
Window Manager clips it, if necessary, to fit in the window’s content region.

See Listing 4-13 on page 4-58 for an example that uses | nval Rgn to add part of the
window’s content region to the update region.

4-108

Use the Val i dRect procedure to remove a rectangle from a window’s update region.
PROCEDURE Val i dRect (goodRect: Rect);

goodRect A rectangle, in local coordinates, to be removed from a window’s
update region.

Window Manager Reference

DESCRIPTION

CHAPTER 4

Window Manager

The Val i dRect procedure removes a specified rectangle from the update region of the
window whose graphics port is the current port. Specify the region in local coordinates.
The Window Manager clips it, if necessary, to fit in the window’s content region.

Your application uses Val i dRect to tell the Window Manager that it has already drawn
a rectangle and to cancel any updates accumulated for that area. You can thereby
improve response time by reducing redundant redrawing.

Suppose, for example, that you've resized a window that contains a size box and

scroll bars. Depending on the dimensions of the newly sized window, the new size

box and scroll bar areas may or may not have been accumulated into the window’s
update region. After calling Si zeW ndow you can redraw the size box or scroll bars
immediately and then call Val i dRect for the areas they occupy. If they were in fact
accumulated into the update region, Val i dRect removes them so that you do not have
to redraw them with the next update event.

Jabeue\ mopuipn -

SEE ALSO
See Listing 4-13 on page 4-58 for an example that uses Val i dRect to remove part of the
window’s content region from the update region.
ValidRgn
Use the Val i dRgn procedure to remove a specified region from a window’s
update region.
PROCEDURE Val i dRgn (goodRgn: RgnHandl e);
goodRgn A region, in local coordinates, to be removed from a window’s
update region.
DESCRIPTION

The Val i dRgn procedure removes a specified region from the update region of the
window whose graphics port is the current port. Specify the region in local coordinates.
The Window Manager clips it, if necessary, to fit in the window’s content region.

Setting and Retrieving Other Window Characteristics

This section describes the routines that let you set and retrieve less commonly used fields
in the window record.

Window Manager Reference 4-109

CHAPTER 4

Window Manager

SetWindowPic

DESCRIPTION

Use the Set W ndowPi ¢ procedure to establish a picture that the Window Manager can
draw in a window’s content region.

PROCEDURE Set W ndowPi ¢ (t heW ndow. W ndowPtr ;
Pic: PicHandl e);

t heW ndow A pointer to a window’s window record.

Pic A handle to the picture to be drawn in the window.

The Set W ndowPi ¢ procedure stores in a window’s window record a handle to a
picture to be drawn in the window. When the window’s content region must be updated,
the Window Manager then draws the picture or part of the picture, as necessary, instead
of generating an update event.

Note

The O oseW ndowand Di sposeW ndow procedures assume that any
picture pointed to by the window record field Wi ndowPi c is stored as
data, not as a resource. If your application uses a picture stored as a
resource, you must release the memory it occupies by calling the
Resource Manager’s Rel easeResour ce procedure and set the

W ndowPi ¢ field to NI L before you close the window. O

GetWindowPic

DESCRIPTION

4-110

Use the Get W ndowPi ¢ function to retrieve a handle to a window’s picture.

FUNCTI ON Get W ndowPi ¢ (t heW ndow. W ndowPtr): PicHandl e;

t heW ndow A pointer to the window’s window record.

The Get W ndowPi ¢ function returns a handle to the picture to be drawn in a specified
window’s content region. The handle must have been stored previously with the
Set W ndowPi ¢ procedure.

Window Manager Reference

CHAPTER 4

Window Manager

SetWRefCon

DESCRIPTION

Use the Set WRef Con procedure to set the r ef Con field of a window record.
PROCEDURE Set WRef Con (t heW ndow. W ndowPtr; data: Longlnt);

t heW ndow A pointer to the window’s window record.
dat a The data to be placed in the r ef Con field.

The Set WRef Con procedure places the specified data in the r ef Con field of the
specified window record. The r ef Con field is available to your application for any
window-related data it needs to store.

SEE ALSO
See Listing 4-3 on page 4-28 for an example that sets the r ef Con field. See Listing 4-16
on page 4-60 for an example that uses the contents of the r ef Con field.
GetWRefCon
Use the Get WRef Con function to retrieve the reference constant from a window’s
window record.
FUNCTI ON Get WRef Con (t heW ndow. W ndowPtr): Longlnt;
t heW ndow A pointer to the window’s window record.
DESCRIPTION
The Get WRef Con function returns the long integer data stored in the r ef Con field of the
specified window record.
SEE ALSO

See the section “Managing Multiple Windows” beginning on page 4-23 for suggested
ways to use the r ef Con field. See Listing 4-1 on page 4-25 for an example of an
application-defined routine that gets the r ef Con field.

Window Manager Reference 4-111

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

GetW Variant

DESCRIPTION

SEE ALSO

Use the Get W/ar i ant function to retrieve a window’s variation code.
FUNCTI ON Get W/ari ant (theW ndow. W ndowPtr): |nteger;

t heW ndow A pointer to the window’s window record.

The Get W/ar i ant function returns the variation code of the specified window.
Depending on the window’s window definition function, the result of Get W/ar i ant
can represent one of the standard window types listed in the section “Creating a
Window” beginning on page 4-25 or a variation code defined by your own window
definition function.

See “Types of Windows” beginning on page 4-8 for a definition of variation codes. See
“The Window Definition Function” beginning on page 4-120 for a detailed description of
variation codes.

Manipulating the Desktop

This section describes the routines that let your application retrieve information about
the desktop and set the desktop pattern. Ordinarily, your application doesn’t need to
manipulate any part of the desktop outside of its own windows.

SetDeskCPat

DESCRIPTION

4-112

Use the Set DeskCPat procedure to set the desktop pattern on a computer that supports
Color QuickDraw.

PROCEDURE Set DeskCPat (deskPi xPat: Pi xPat Handl e);

deskPi xPat A handle to a pixel pattern.

The Set DeskCPat procedure sets the desktop pattern to a specified pixel pattern, which
can be drawn in more than two colors. After a call to Set DeskCPat , the desktop is
automatically redrawn in the new pattern. If the specified pattern is a binary pattern
(with a pattern type of 0), it is drawn is the current foreground and background colors. If
the value of the deskPi xPat parameter is NI L, Set DeskCPat uses the standard binary
desk pattern (that is, the ' ppat ' resource with resource ID 16).

Window Manager Reference

CHAPTER 4

Window Manager

Note

For compatibility with other Macintosh applications and the
system software, applications should ordinarily not change the
desktop pattern. O

The Window Manager’s desktop-painting routines can paint the desktop either in the
binary pattern stored in the global variable DeskPat t er n or in a new pixel pattern. The
desktop pattern used at startup is determined by the value of the parameter-RAM bit
flag called pCDeskPat . If the value of pCDeskPat is 0, the Window Manager uses the
new pixel pattern; if not, it uses the binary pattern stored in DeskPat t er n. The user can
change the color pattern through the General Controls panel, which changes the value
of pCDeskPat .

GetGrayRgn

DESCRIPTION

Use the Get G- ayRgn function to retrieve a handle to the current desktop region.

FUNCTI ON Get GrayRgn: RgnHandl e;

The Get G ayRgn function returns a handle to the current desktop region from the
global variable Gr ay Rgn.

The desktop region represents all available screen space, that is, the desktop area
displayed by all monitors attached to the computer. Ordinarily, your application
doesn’t need to access the desktop region directly.

When your application calls Dr agW ndow to let the user drag a window, it can use
Cet Gr ayRgn to set the limiting rectangle to the entire desktop area.

SEE ALSO
See Listing 4-9 on page 4-44 for an example that uses Get Gr ay Rgn to specify the
limiting rectangle when calling Dr agW ndow to let the user move a window.
GetCWMgrPort

Use the Get CWMr Por t procedure to retrieve a pointer to the Window Manager port on
a system that supports Color QuickDraw.

PROCEDURE Get CWWgr Port (VAR wiWgr CPort: CGrafPtr);

wMgr CPort A parameter in which Get CWWgr Por t returns a pointer to the Window
Manager port.

Window Manager Reference 4-113

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

DESCRIPTION

The Get CWMyr Por t procedure places a pointer to the color Window Manager port in
the parameter wMgr CPor t . The Get CWMpr Por t procedure is available only on
computers with Color QuickDraw.

The Window Manager port is a graphics port that occupies all of the main screen.
Ordinarily, your application doesn’t need to access the Window Manager port.

Note
Do not change any regions of the Window Manager port. If you do, the
Window Manager might not handle overlapping windows properly. O

GetWMgrPort

Use the Get WWgr Por t procedure to retrieve a pointer to the Window Manager port on a
system with only the original monochrome QuickDraw.

PROCEDURE Get WWMgr Port (VAR wPort: GrafPtr);

wPor t A parameter in which Get WMgr Por t returns a pointer to the Window
Manager port.

DESCRIPTION
The Get WMgr Por t procedure places a pointer to the Window Manager port in the
parameter WPort .

The Window Manager port is a graphics port that occupies all of the main screen.
Ordinarily, your application doesn’t need to access the Window Manager port.

Note
Do not change any regions of the Window Manager port. If you do, the
Window Manager might not handle overlapping windows properly. O

Manipulating Window Color Information

This section describes the routines you use for setting and retrieving window color
information. Your application does not normally change window color information.

SetWinColor

Use the Set W nCol or procedure to set a window’s window color table.

PROCEDURE Set W nCol or (theW ndow. W ndowPtr;
newCol or Tabl e: WCTabHandl e) ;

4-114 Window Manager Reference

DESCRIPTION

SEE ALSO

CHAPTER 4

Window Manager

t heW ndow A pointer to the window’s window record.
newCol or Tabl e

A handle to a window color table record, which defines the colors for the
window’s new color table.

The Set W nCol or procedure sets a window’s color table. If the window has no
auxiliary window record, it creates a new one with the specified window color table and
adds it to the auxiliary window list. If the window already has an auxiliary record, its
window color table is replaced. The Window Manager then redraws the window frame
and highlighted text in the new colors and sets the window’s background color to the
new content color.

If the new color table has the same entries as the default color table, Set W nCol or
changes the auxiliary window record so that it points to the default color table.

Window color table resources (resources of type ' wet b’) should not be purgeable.

If you specify a value of NI L for the parameter t heW ndow Set W nCol or changes the
default color table in memory. Your application shouldn’t, however, change the default
color table.

For a description of a window color table, see “The Window Color Table Record” on
page 4-71. For a description of the auxiliary window record, see “The Auxiliary Window
Record” on page 4-73. For a description of the ' wct b' resource, see “The Window Color
Table Resource” on page 4-127.

GetAuxWin

DESCRIPTION

Use the Get AuxW n function to retrieve a handle to a window’s auxiliary
window record.

FUNCTI ON Get AuxW n (theW ndow. W ndowPtr;
VAR awHndl : AuxW nHandl e) : Bool ean;

t heW ndow A pointer to the window’s window record.

awHnd| Ahandle to the window’s auxiliary window record.

The Get AuxW n function returns a Boolean value that reports whether or not the
window has an auxiliary window record, and it sets the variable parameter awHndl
to the window’s auxiliary window record.

If the window has no auxiliary window record, Get AuxW n places the default window
color table in awHndl and returns a value of FALSE.

Window Manager Reference 4-115

Jabeue\ mopuipn -

SEE ALSO

CHAPTER 4

Window Manager

For a description of the auxiliary window record, see “The Auxiliary Window Record”
on page 4-73.

Low-Level Routines

This section describes the low-level routines that are called by higher-level Window
Manager routines. Ordinarily, you won’t need to use these routines.

CheckUpdate

DESCRIPTION

ClipAbove

The Event Manager uses the CheckUpdat e function to scan the window list for
windows that need updating.

FUNCTI ON CheckUpdate (VAR t heEvent: EventRecord): Bool ean;

t heEvent An event record to be filled in if a window needs updating.

The CheckUpdat e function scans the window list from front to back, checking for a
visible window that needs updating (that is, a visible window whose update region is
not empty). If it finds one whose window record contains a picture handle, it redraws
the window itself and continues through the list. If it finds a window record whose
update region is not empty and whose window record does not contain a picture handle,
it stores an update event in the parameter t heEvent and returns TRUE. If it finds no
such window, it returns FALSE.

The Event Manager is the only software that ordinarily calls CheckUpdat e.

DESCRIPTION

4-116

The Window Manager uses the Cl i pAbove procedure to determine the clip region of
the Window Manager port for displaying a window.

PROCEDURE Cl i pAbove (w ndow. W ndowPeek);

wi ndow A pointer to the window’s complete window record.

The C i pAbove procedure sets the clip region of the Window Manager port to
be the area of the desktop that intersects the current clip region, minus the
structure regions of all the windows in front of the specified window.

Window Manager Reference

SaveOld

CHAPTER 4

Window Manager

The O i pAbove procedure retrieves the desktop region from the global
variable Gr ayRgn.

DESCRIPTION

DrawNew

The Window Manager uses the Saved d procedure to save a window’s current
structure and content regions preparatory to updating the window.

PROCEDURE Saved d (w ndow. W ndowPeek) ;

W ndow A pointer to the window’s complete window record.

The SaveQd d procedure saves the specified window’s current structure region and
content region for the Dr awNew procedure. Each call to Saved d must be balanced
by a subsequent call to Dr awNew

DESCRIPTION

The Window Manager uses the Dr awNew procedure to erase and update changed
window regions.

PROCEDURE Dr awNew (w ndow. W ndowPeek; update: Bool ean);

Jabeue\ mopuipn -

W ndow A pointer to the window’s complete window record.

updat e A Boolean value that determines whether the regions are updated.

The Dr awNew procedure erases the parts of a window’s structure and content regions
that are part of the window’s former state and part of its new state but not both. That is,

(A dStructure XOR NewStructure) UNION (A dContent XOR NewCont ent)
If the update parameter is set to TRUE, Dr awNew also updates the erased regions.

WARNING
In Pascal, Saved d and Dr awNew are not nestable. a

ASSEMBLY-LANGUAGE INFORMATION

In assembly language, you can nest Saved d and Dr awNewif you save and restore the
values of the global variables O dSt r uct ur e and O dCont ent .

Window Manager Reference 4-117

PaintOne

CHAPTER 4

Window Manager

DESCRIPTION

The Window Manager uses the Pai nt One procedure to redraw the invalid, exposed
portions of one window on the desktop.

PROCEDURE Pai nt One (wi ndow. W ndowPeek; cl obberedRgn: RgnHandl e);

W ndow A pointer to the window’s complete window record.

cl obber edRgn
A handle to the region that has become invalid.

The Pai nt One procedure “paints” the invalid portion of the specified window and
all windows above it. It draws as much of the window frame as is in cl obber edRgn
and, if some content region is exposed, erases the exposed area (paints it with the
background pattern) and adds it to the window’s update region. If the value of the
wi ndow parameter is NI L, the window is the desktop, and Pai nt One paints it with
the desktop pattern.

ASSEMBLY-LANGUAGE INFORMATION

The global variables SaveUpdat e and Pai nt Whi t e are flags used by Pai nt One.
Normally both flags are set. Clearing SaveUpdat e prevents cl obber edRgn from being
added to the window’s update region. Clearing Pai nt Whi t e prevents cl obber edRgn
from being erased before being added to the update region (this is useful, for example, if
the background pattern of the window isn’t the background pattern of the desktop). The
Window Manager sets both flags periodically, so you should clear the appropriate flags
each time you need them to be clear.

PaintBehind

4-118

The Window Manager uses the Pai nt Behi nd procedure to redraw a series of windows
in the window list.

PROCEDURE Pai nt Behi nd (start W ndow. W ndowPeek;
cl obber edRgn: RgnHandl e) ;

start W ndow
A pointer to the window’s complete window record.

cl obber edRgn
Ahandle to the region that has become invalid.

Window Manager Reference

DESCRIPTION

CHAPTER 4

Window Manager

The Pai nt Behi nd procedure calls Pai nt One for st ar t W ndowand all the windows
behind st ar t W ndow clipped to cl obber edRgn.

ASSEMBLY-LANGUAGE INFORMATION

CalcVis

Because Pai nt Behi nd clears the global variable Pai nt Wi t e before calling
Pai nt One, cl obber edRgn isn’t erased. The Pai nt Whi t e global variable is reset
after the call to Pai nt One.

DESCRIPTION

The Window Manager uses the Cal cVi s procedure to calculate the visible region
of a window.

PROCEDURE Cal cVi s (w ndow. W ndowPeek) ;

w ndow A pointer to the window’s complete window record.

The Cal cVi s procedure calculates the visible region of the specified window by starting
with its content region and subtracting the structure region of each window in front of it.

CalcVisBehind

DESCRIPTION

The Window Manager uses the Cal cVi sBehi nd procedure to calculate the visible
regions of a series of windows.

PROCEDURE Cal cVi sBehi nd (startW ndow. W ndowPeek;
cl obberedRgn: RgnHandl e) ;

start W ndow
A pointer to a window’s window record.

cl obber edRgn
A handle to the desktop region that has become invalid.

The Cal cVi sBehi nd procedure calculates the visible regions of the window specified
by the st ar t W ndow parameter and all windows behind st ar t W ndow that intersect
cl obber edRgn. It is called after Pai nt Behi nd.

Window Manager Reference 4-119

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

Application-Defined Routine

This section describes the window definition function. The Window Manager supplies
window definition functions that handle the standard window types described in “Types
of Windows” beginning on page 4-8.

The Window Definition Function

MyWindow

If your application defines its own window types, you must supply your own window
definition function to handle them. Store your definition function as a resource of type
"WDEF' with an ID from 128 through 4096. (Window definition function resource IDs 0
and 1 are the default window definition functions; resource IDs 2 through 127 are
reserved by Apple Computer, Inc.)

Your window definition function can support up to 16 variation codes, which are
identified by integers 0 through 15. To invoke your own window type, you specify the
window’s definition ID, which contains the resource ID of the window’s definition
function in the upper 12 bits and the variation code in the lower 4 bits. Thus, for a given
resource ID and variation code, the window definition ID is

(16 * resource ID) + (variation code)

When you create a window, the Window Manager calls the Resource Manager to access
the window definition function. The Resource Manager reads the window definition
function into memory and returns a handle to it. The Window Manager stores this
handle in the wi ndowDef Pr oc field of the window record. (If 24-bit addressing is in
effect, the Window Manager stores the variation code in the lower 4 bits of the

wi ndowDef Pr oc field; if 32-bit addressing is in effect, the Window Manager stores the
variation code elsewhere.) Later, when it needs to perform a type-dependent action on
the window, the Window Manager calls the window definition function and passes it the
variation code as a parameter.

4-120

The window definition function is responsible for drawing the window frame, reporting
the region where mouse-down events occur, calculating the window’s structure region
and content region, drawing the size box, resizing the window frame when the user
drags the size box, and performing any customized initialization or disposal tasks.

You can give your window definition function any name you wish. It takes four
parameters and returns a result code:

FUNCTI ON MyW ndow (var Code: Integer; theWndow. W ndowPtr;
message: |nteger; param Longlnt): Longlnt;

var Code The window’s variation code.

t heW ndow A pointer to the window’s window record.

Window Manager Reference

CHAPTER 4

Window Manager

message A code for the task to be performed. The message parameter has one of
these values:
CONST
wDr aw = 0; {draw wi ndow frane}
wHi t = 1; {report where nouse-down event }
{ occurred}
wCal cRgns = 2; {calculate strucRgn and cont Rgn}
wiNew = 3; {performadditional }

{ initialization}

wDi spose = 4; {perform additional disposal }

{ tasks}
WG ow = 5; {draw grow i mage during resizing}
wDrawd con = 6; {draw size box and scroll bar }

{ outline}

The subsections that follow explain each of these tasks in detail.

par am Data associated with the task specified by the message parameter. If the
task requires no data, this parameter is ignored.

Your window definition function performs whatever task is specified by the message
parameter and returns a function result if appropriate. If the task performed requires no
result code, return 0.

The function’s entry point must be at the beginning of the function.

You can set up the various tasks as subroutines inside the window definition function,
but you're not required to do so.

Drawing the Window Frame

When you receive a WDr aw message, draw the window frame in the current graphics
port, which is the Window Manager port.

You must make certain checks to determine exactly how to draw the frame. If the value
of the vi si bl e field in the window record is FALSE, you should do nothing; otherwise,
you should examine the par amparameter and the status flags in the window record:

» If the value of par amis 0, draw the entire window frame.
» If the value of par amis 0 and the hi | i t ed field in the window record is TRUE,
highlight the frame to show that the window is active.

o If the value of the goAwayFl ag field in the window record is also TRUE, draw a
close box in the window frame.

o If the value of the spar eFl ag field in the window record is also TRUE, draw a
zoom box in the window frame.

» If the value of the par amparameter is W nGoAway, add highlighting to, or remove
it from, the window’s close box. Figure 4-19 on page 4-46 illustrates the close box
with and without highlighting as drawn by the Window Manager’s window
definition function.

Window Manager Reference 4-121

Jabeue\ mopuipn -

4-122

CHAPTER 4

Window Manager

s If the value of the par amparameter is WM nZoom add highlighting to, or remove it
from, the window’s zoom box. Figure 4-20 on page 4-47 illustrates the zoom box
with and without highlighting as drawn by the Window Manager’s window
definition function.

Note

When the Window Manager calls a window definition function
with a message of WDr aw it stores a value of type | nt eger in the
par amparameter without clearing the high-order word. When
processing the wDr awmessage, use only the low-order word of the
par amparameter. O

The window frame typically but not necessarily includes the window’s title, which
should be displayed in the system font and system font size. The Window Manager
port is already set to use the system font and system font size.

When designing a title bar that includes the window title, allow at least 16 pixels
vertically to support localization for script systems in which the system font can be no
smaller than 12 points.

Note
Nothing drawn outside the window’s structure region is visible. O

Returning the Region of a Mouse-Down Event

When you receive a wHi t message, you must determine where the cursor was when the
mouse button was pressed. The wHi t message is accompanied by the mouse location, in
global coordinates, in the par amparameter. The vertical coordinate is in the high-order
word of the parameter, and the horizontal coordinate is in the low-order word. You
return one of these constants:

CONST

WNoHi t = 0; {none of the foll ow ng}

winContent = 1; {in content region (except grow, if active)}

w nDr ag = 2; {in drag region}

w nGr ow = 3; {in growregion (active wi ndow only)}

w nGoAway = 4; {in go-away region (active w ndow only)}

w nZoom n = 5; {in zoombox for zoonming in (active w ndow }
{ only)}

wl nZoonut = 6; {in zoombox for zoomi ng out (active w ndow }
{ only)}

The return value WNoHi t might mean (but not necessarily) that the point isn’t in the
window. The standard window definition functions, for example, return WNoHi t if the
point is in the window frame but not in the title bar.

Return the constants W nGr ow Wi nGoAway, W nZoom n, and Wl nZoonQut only if the
window is active—by convention, the size box, close box, and zoom box aren’t drawn if
the window is inactive. In an inactive document window, for example, a mouse-down
event in the part of the title bar that would contain the close box if the window were
active is reported as W nDr ag.

Window Manager Reference

CHAPTER 4

Window Manager

Calculating Regions

When you receive the wCal cRgns message, you calculate the window’s structure and
content regions based on the current graphics port’s port rectangle. These regions, whose
handles are in the st r ucRgn and cont Rgn fields of the window record, are in global
coordinates. The Window Manager requests this operation only if the window is visible.

WARNING

When you calculate regions for your own type of window, do not alter
the clip region or the visible region of the window’s graphics port. The
Window Manager and QuickDraw take care of this for you. Altering the
clip region or visible region may damage other windows. a

Initializing a New Window

When you receive the wNew message, you can perform any type-specific initialization
that may be required. If the content region has an unusual shape, for example, you might
allocate memory for the region and store the region handle in the dat aHand| e field of
the window record. The initialization routine for a standard document window creates
the wSt at eDat a record for storing zooming data.

Disposing of aWindow

When you receive the wDi spose message, you can perform any additional tasks
necessary for disposing of a window. You might, for example, release memory that was
allocated by the initialization routine. The dispose routine for a standard document
window disposes of the wSt at eDat a record.

Resizing aWindow

When you receive the W& owmessage, draw a grow image of the window. With the
WG OWmessage you receive a pointer to a rectangle, in global coordinates, whose
upper-left corner is aligned with the port rectangle of the window’s graphics port. Your
grow image should fit inside the rectangle. As the user drags the mouse, the Window
Manager sends repeated WG 0w messages, so that you can change your grow image to
match the changing mouse location.

Jabeue\ mopuipn -

Draw the grow image in the current graphics port, which is the Window Manager port,
in the current pen pattern and pen mode. These are set up (as gr ay and not Pat Xor) to
conform to the Macintosh user interface guidelines.

The grow routine for a standard document window draws a dotted (gray) outline of the
window and also the lines delimiting the title bar, size box, and scroll bar areas.

Drawing the Size Box

When you receive the wDr awG con message, you draw the size box in the content
region if the window is active—if the window is inactive, draw whatever is appropriate
to show that the window cannot currently be sized.

Window Manager Reference 4-123

CHAPTER 4

Window Manager

Note

If the size box is located in the window frame instead of the content
region, do nothing in response to the wDr awG con message, instead
drawing the size box in response to the wDr aw message. O

The routine that draws a size box for an active document window draws the size box in
the lower-right corner of the port rectangle of the window’s graphics port. It also draws
lines delimiting the size box and scroll bar areas. For an inactive document window, it
erases the size box and draws the delimiting lines.

Resources

This section describes the resources used by the Window Manager:

= the' WND' resource, used for describing the characteristics of windows

s the' WDEF' resource, which holds a window definition function

s the' wet b' resource, which defines the colors to be used for a window’s frame

and highlighting

The Window Resource

You typically define a window resource for each type of window that your application
creates. Figure 4-24 illustrates a compiled ' W ND' resource.

Figure 4-24 Structure of a compiled window (' W ND') resource

"W ND resource

Bytes

} Initial rectangle

Window definition ID

Visibility status

Presence of close box

Reference constant

Length (n) of window title

Z Window title

Positioning specfication

4-124 Window Manager Reference

CHAPTER 4

Window Manager

A compiled version of a window resource contains the vollowing elements:

s The upper-left and lower-right corners, in global coordinates, of a rectangle
that defines the initial size and placement of the window’s content region.
Your application can change this rectangle before displaying the window,
either programmatically or through an optional positioning code described
later in this section.

s The window’s definition ID, which incorporates both the resource ID of the window
definition function that will handle the window and an optional variation code.
Together, the window definition function resource ID and the variation code define a
window type. Place the resource ID of the window definition function in the upper
12 bits of the definition ID. Window definition functions with IDs 0 through 127 are
reserved for use by Apple Computer, Inc. Place the optional variation code in the
lower 4 bits of the definition ID.

If you're using one of the standard window types (described in “Types of Windows”
beginning on page 4-8), the definition ID is one of the window-type constants:

CONST

docunent Proc = 0; {novable, sizable w ndow, }
{ no zoom box}
dBoxPr oc = 1; {alert box or nopdal dialog box}
pl ai nDBox = 2; {plain box}
al t DBoxPr oc = 3; {plain box with shadow}
noG- owbDocPr oc = 4; {novable wi ndow, no size box or }
{ zoom box}
nmovabl eDBoxPr oc = 5; {novabl e nodal dial og box}
zoonmDocPr oc = 8; {standard docunent w ndow}
zoonNoG ow = 12; {zoonabl e, nonresizabl e w ndow}
r DocProc = 16; {rounded-corner w ndow}

You can also add a zoom box to a movable modal dialog box by specifying the sum
of two constants: movabl eDBoxPr oc + zoomnmDocPr oc, but a zoom box is not
recommended on any dialog box.

You can control the angle of curvature on a rounded-corner window (window type
r DocPr oc) by adding one of these integers:

Diameters of

Window definition ID curvature
r DocPr oc 16, 16
rDocProc + 2 4,4
rDocProc + 4 6,6
rDocProc + 6 10, 10

» A specification that determines whether the window is visible or invisible. This
characteristic controls only whether the Window Manager displays the window, not
necessarily whether the window can be seen on the screen. (A visible window entirely
covered by other windows, for example, is “visible” even though the user cannot see
it.) You typically create a new window in an invisible state, build the content area of
the window, and then display the completed window.

Window Manager Reference 4-125

Jabeue\ mopuipn -

CHAPTER 4

Window Manager

= A specification that determines whether or not the window has a close box. The
Window Manager draws the close box when it draws the window frame. The window
type specified in the second field determines whether a window can support a close
box; this field determines whether the close box is present.

= A reference constant, which your application can use for whatever data it needs to
store. When it builds a new window record, the Window Manager stores, in the
r ef Con field, whatever value you specify in the fifth element of the window resource.
You can also put a placeholder here and then set the r ef Con field yourself with the
Set V\Ref Con procedure.

= A string that specifies the window title. The first byte of the string specifies the length
of the string (that is, the number of characters in the title plus 1 byte for the length),
in bytes.

= An optional positioning specification that overrides the window position established
by the rectangle in the first field. The positioning value can be one of the integers
defined by the constants listed here. In these constant names, the terms have the
following meanings:

center Centered both horizontally and vertically, relative either to a
screen or to another window (if a window to be centered
relative to another window is wider than the window that
preceded it, it is pinned to the left edge; a narrower window
is centered)

st agger Located 10 pixels to the right and 10 pixels below the
upper-left corner of the last window (in the case of staggering
relative to a screen, the first window is placed just below
the menu bar at the left edge of the screen, and subsequent
windows are placed on that screen relative to the
first window)

alert position Centered horizontally and placed in the “alert position”
vertically, that is, with about one-fifth of the window or
screen above the new window and the rest below

par ent Wi ndow The window in which the user was last working

The seventh element of the resource can contain one of the values specified by
these constants:

CONST noAut oCent er

0x0000; {use initial }
{ location}
Ox280A; {center on nain }
{ screen}
Ox300A; {place in alert }
{ position on nmain }

cent er Mai nScr een

al ert Posi ti onMai nScr een

{ screen}

st agger Mai nScr een = Ox380A; {stagger on nain }
{ screen}

cent er Par ent W ndow = OXA80A; {center on parent }
{ w ndow}

4-126 Window Manager Reference

CHAPTER 4

Window Manager

al ert Posi ti onPar ent W ndow OxBOOA; {place in alert }

{ position on }

{ parent wi ndow}
OxB80A; {stagger relative }

{ to parent w ndow}
Ox680A; {center on parent }

{ w ndow screen}

st agger Par ent W ndow

cent er Par ent W ndowScr een

al ert Posi ti onPar ent W ndowScr een
Ox700A; {place in alert }
{ position on }
{ parent w ndow }
{ screen}
0x780A; { stagger on parent }
{ wi ndow screen}

st agger Par ent W ndowScr een

The positioning constants are convenient when the user is creating new documents or
when you are handling your own dialog boxes and alert boxes. When you are creating
a new window to display a previously saved document, however, you should display
the new window in the same rectangle as the previous window (that is, the window
the document occupied when it was last saved). For more information, see
“Positioning a Document Window on the Desktop” beginning on page 4-30.

Use the Get NewCW ndow or Get NewW ndow function to read a' W ND' resource. Both
functions create a new window record and fill it in according to the values specified in a
"WND resource.

The Window Definition Function Resource

Jabeue\ mopuipn -

Window definition functions are stored as resources of type ' WDEF' . The ' WDEF'
resource is simply the executable code for the window definition function.

The two standard window definition functions supplied by the Window Manager use
resource IDs 0 and 1.

The Window Color Table Resource

You can specify your own window color tables as resources of type ' wct b' .

Ordinarily, you should not define your own window color tables, unless you have some
extraordinary need to control the color of a window’s frame or text highlighting. To
assign a table to a window when you create the window, provide a window color table
(" wet b') resource with the same resource ID as the ' W ND' resource from which you
create the window.

The window color table resource is an exact image of the window color table data
structure. Figure 4-25 illustrates the contents of a compiled ' wet b’ resource.

Window Manager Reference 4-127

CHAPTER 4

Window Manager

Figure 4-25 Structure of a compiled window color table (' wct b') resource

4-128

'wet b' resource

Bytes

} Unused

3

Number of entries minus 1 2
Part identifier 2

Red value 2

Green value 2

Blue value 2

Part identifier 2
Red value 2
Green value 2
Blue value 2

A compiled version of a window resource contains the following elements:

= Anunused field 6 bytes long.

= An integer that specifies the number of entries in the resource (that is, the number of

color specification records) minus 1.

= A series of color specification records, each of which consists of a 2-byte part identifier
and three 2-byte color values. The part identifier is an integer specified by one of

these constants:

CONST wCont ent Col or
wkr aneCol or
wText Col or
wHi | i t eCol or
wTi t | eBar Col or
wHi | i t eCol orLi

ght

wHi | i t eCol or Dar k

wrTi t | eBar Li ght

Window Manager Reference

RO

{content region background}

{w ndow f rane}

{window title and button text}
{reserved}

{reserved}

{lightest stripes in title bar }
{ and |ightest dinmed text}
{darkest stripes in title bar }
{ and darkest di med text}
{lightest parts of title bar }
{ background}

CHAPTER 4

Window Manager

wTi t | eBar Dar k
wDi al ogLi ght
wDi al ogDar k

wTi ngeLi ght
wTi ngeDar k

8;

9;

10;

11,
12;

{darkest parts of title bar }

{ background}

{l'ightest elenent of dialog box }
{ frane}

{dar kest el enent of dialog box }
{ frane}

{l'i ghtest w ndow tingi ng}

{dar kest w ndow tingi ng}

The color values are simply the intensity of the red, green, and blue in each window
part (see Inside Macintosh: Imaging for a description of RGB color).

Window Manager Reference

4-129

Jabeue\ mopuipn -

	Window Manager
	Windo w Mana ger Refer ence
	Data Structures
	The Color Window Record
	The Window Record
	The Window State Data Record
	The Window Color Table Record
	The Auxiliary Window Record
	The Window List

	Window Manager Routines
	Initializing the Window Manager
	Creating Windows
	Naming Windows
	Displaying Windows
	Retrieving Window Information
	Moving Windows
	Resizing Windows
	Zooming Windows
	Closing and Deallocating Windows
	Maintaining the Update Region
	Setting and Retrieving Other Window Characteristic...
	Manipulating the Desktop
	Manipulating Window Color Information
	Low-Level Routines

	Application-Defined Routine
	The Window Definition Function

	Resources
	The Window Resource
	The Window Definition Function Resource
	The Window Color Table Resource

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

