CHAPTER 6

Dialog Manager

when the user clicks its close box. The next time the user invokes the Global Changes
command, the dialog box is already available, in the same location and with the same
text selected as when it was last used.

If you adjust the menus when you display a dialog box, be sure to return them to an
appropriate state when you close the dialog box, as described in “Adjusting Menus for
Modal Dialog Boxes” beginning on page 6-68 and “Adjusting Menus for Movable Modal
and Modeless Dialog Boxes” on page 6-73.

Dialog Manager Reference

This section describes the data structure, routines, and resources that are specific to the
Dialog Manager.

The “Data Structure” section shows the Pascal data structure for the dialog record, which
the Dialog Manager creates and maintains. The “Dialog Manager Routines” section
describes Dialog Manager routines for invoking alerts, creating and disposing of dialog
boxes, manipulating items in alert and dialog boxes, and handling events in dialog boxes.

The “Application-Defined Routines” section describes routines that your application
must supply when you need to create application-defined items in dialog boxes, to filter
events that the Dialog Manager doesn’t handle, and to define its own alert sounds.

The “Resources” section describes the dialog resource, the alert resource, the item list
resource, the dialog color table resource, the alert color table resource, and the item
color table resource. The summary sections that conclude this chapter include listings
of the constants that define values for the item types in alert and dialog boxes, the OK
and Cancel buttons in alert boxes, and the icons in note alert boxes, caution alert boxes,
and stop alert boxes, along with the constants used by the Gest al t function for the
Dialog Manager.

Data Structure

This section describes the dialog record. Your application doesn’t need to create or use
this record; rather, your application simply uses the appropriate Dialog Manager
routines, creates any necessary resources, and then allows the Dialog Manager to create
and use records of this data type as necessary. The dialog record is described here for
completeness only.

The Dialog Record

To create an alert or a dialog box, you use a Dialog Manager routine—such as Al ert or
Get NewDi al og—that incorporates information from your item list resource and from
your alert resource or dialog resource into a data structure, called a dialog record, in
memory. The Dialog Manager creates a dialog record, which is a data structure of type
Di al ogRecor d, whenever your application creates an alert or a dialog box. Your
application generally should not create a dialog record or directly access its fields.

Dialog Manager Reference 6-101

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

TYPE Dial ogPtr
Di al ogPeek

W ndowPt r;
“Di al ogRecord

Di al ogRecord =

RECORD
wi ndow: W ndowRecord; {dial og wi ndow}
itemns: Handl e; {itemlist resource}
t ext H: TEHandl e; {current editable text itent
editField: Integer; {editabl e text item nunber }
{ mnus 1}
edi t Open: I nt eger; {used internally; reserved}
aDefltem I nt eger; {default button item nunber}
END;
Field descriptions
w ndow The window record for the alert box or dialog box.
items A handle to the item list resource for the alert or the dialog box.
textH A handle to the current editable text item.
editField The current editable text item.
edi t Qpen Used internally; reserved.
aDef I tem The item number of the default button.

Dialog Manager Routines

This section describes the routines for initializing the Dialog Manager, invoking alerts,
creating and disposing of dialog boxes, manipulating items in alert and dialog boxes,
and handling events in alert and dialog boxes.

Some Dialog Manager routines can be accessed using more than one spelling of the
routine’s name, depending on the interface files supported by your development
environment. For example, Get Di al ogl t emis also available as Get DI t em

Table 6-1 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 6-1 Mapping between new and previous names of Dialog Manager routines
New name Previous name

Di al ogCopy Dl gCopy

Di al ogCut Dl gCut

Di al ogDel et e Dl gDel ete

Di al ogPast e D gPast e

Di sposeDi al og Di sposDi al og

Fi ndDi al ogltem Fi ndDl t em

6-102 Dialog Manager Reference

CHAPTER 6

Dialog Manager

Table 6-1

Mapping between new and previous names of Dialog Manager routines (continued)

New name

Get Al ert St age

CGet Di al ogltem

Get Di al ogl t enTText
Hi deDi al ogltem
NewCol or Di al og
Reset Al ert St age
Sel ect Di al ogl t enirext
Set Di al ogFont

Set Di al ogltem

Set Di al ogl t enTText
ShowDi al ogltem
Updat eDi al og

Initializing the Dialog Manager

Previous name
Get Al rt St age
GetDitem

Get | Text

H deDltem
NewCDi al og
Reset Al rt St age
Sel | Text

Set DAFont
SetDitem

Set | Text
ShowDl t em
Updt Di al og

Before using the Dialog Manager, you must initialize—in order—QuickDraw, the
Font Manager, the Window Manager, the Menu Manager, and TextEdit. The first
Dialog Manager routine to call is the | ni t Di al ogs procedure, which initializes

the Dialog Manager.

At your application’s request, the Dialog Manager uses the system alert sound for
signaling the user during various alert stages. For alerts, if you want the Dialog Manager
to play sounds other than the system alert sound, write your own sound procedure
(described on page 6-144) and call the Er r or Sound procedure to make it the current

sound procedure.

By default, the Dialog Manager displays static text and editable text items in the system
font. To make it easier to localize your application for use with worldwide versions of
system software, you should not change the font. However, if you determine that it is
imperative for your application to display static text or editable text in a font other than
the system font, you can use the Set Di al ogFont procedure.

InitDialogs

Use the | ni t Di al ogs procedure to initialize the Dialog Manager.

PROCEDURE | ni t Di al ogs (resuneProc:

Dialog Manager Reference

ResumeProcPtr);

6-103

JabBeuey bojeig n

DESCRIPTION

ErrorSound

CHAPTER 6

Dialog Manager

resunmeProc
A pointer to a procedure used by the System Error Handler in case a fatal
system error occurs on a system that predates MultiFinder. For System 7,
your application should set this parameter to NI L.

Before using the Dialog Manager, you must initialize QuickDraw, the Font Manager,
the Window Manager, the Menu Manager, and TextEdit, in that order. Then, to
initialize the Dialog Manager, call | ni t Di al ogs once before all other Dialog Manager
routines. The | ni t Di al ogs procedure does the following initialization:

= It saves the pointer passed in the r esunmePr oc parameter. For System 7, your
application should set the r esumePr oc parameter to NI L.

= Itinstalls the system alert sound. To change the system alert sound, use the
Er r or Sound procedure.

= It passes empty strings to the Par anText procedure.

DESCRIPTION

To use your own alert sound instead of the system alert sound for signaling the user, use
the Er r or Sound procedure.

PROCEDURE Err or Sound (soundProc: SoundProcPtr);

soundProc A pointer to a procedure that generates the desired alert sounds.

The Dialog Manager uses the system alert sound for signaling the user during various
alert stages. The system alert sound, which is a sound resource stored in the System
file, is played whenever system software or your application uses the Sound Manager
procedure SysBeep. By changing the setting in the Sound control panel, the user can
determine which sound is played. If you want to use sounds other than the system
alert sound at various alert stages, write your own sound procedure and call the

Er r or Sound procedure to make it the current sound procedure.

SPECIAL CONSIDERATIONS

SEE ALSO

6-104

If you pass NI L in the soundPr oc parameter, the Dialog Manager neither plays sounds
nor causes the menu bar to blink, and thus the user receives no signal.

See the description of M/Al er t Sound on page 6-144 for a discussion of how to write
the sound procedure pointed to by the soundPr oc parameter. For examples of how to
incorporate sound alerts into alert stages, see Listing 6-2 on page 6-21 and Listing 6-3 on
page 6-22.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

SetDialogFont

DESCRIPTION

Although you generally should not change the font used in static and editable text items,
you can do so with the Set Di al ogFont procedure. The Set Di al ogFont procedure is
also available as the Set DAFont procedure.

PROCEDURE Set Di al ogFont (fontNum | nteger);

f ont Num A font ID number. Do not rely on font number constants. Instead, use
the Font Manager function Get FNumto find the font number to pass in
this parameter.

For subsequently created dialog and alert boxes, Set Di al ogFont sets the font of the
dialog or alert box’s graphics port to the specified font. If you don't call this procedure,
the system font is used. The Set Di al ogFont procedure does not affect titles of controls,
which are always displayed in the system font.

SPECIAL CONSIDERATIONS

There are a number of caveats regarding the Set Di al ogFont procedure.

First, the Standard File Package does not always properly calculate the position of the
standard file dialog box once this procedure has been called; for example, the standard
file dialog box may be partially obscured by a menu bar. Second, be aware that this
procedure affects all static text and editable text items in all of the alert and dialog boxes
you subsequently display. Third, Set Di al ogFont does not change the font for control
titles. Fourth, you can’t use Set Di al ogFont to change the font size or font style.
Finally, and most importantly, your application will be much easier to localize if you
always use the system font in your alert and dialog boxes and never use

Set Di al ogFont .

SEE ALSO
See the chapter “Font Manager” in Inside Macintosh: Text for information about the
Get FNumfunction.

Creating Alerts

To create an alert—consisting of an alert sound, an alert box, or both—use one of
these functions: Not eAl ert, Cauti onAl ert, St opAl ert, and Al ert . The first
three functions display, respectively, the note, caution, and stop alert icons (see
Figure 6-3, Figure 6-4, and Figure 6-5) in the upper-left corner of the alert box. The
Al ert function allows you to display your own icon or to have no icon at all in the
upper-left corner of your alert box.

Dialog Manager Reference 6-105

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

These functions take descriptive information about the alert from an alert resource that
you provide. When you call one of these functions, you pass it the resource ID of the
alert resource and a pointer to an event filter function. These functions create a dialog
record, play an alert sound, and display an alert box according to the alert stages that
you specify in the alert resource.

You should specify a pointer to an event filter function when you call the Al ert,
St opAl ert, Cauti onAl ert, and Not eAl ert functions. You can use the same
event filter function in most or all of your alert and modal dialog boxes.

If you need to find out the current alert stage—for example, to ensure that your applica-
tion deactivates the frontmost window only if an alert box is to be displayed at that
stage—use the Get Al ert St age function. To change the current alert stage, use the
Reset Al ert St age procedure.

Your application does not dispose of alert boxes; the Dialog Manager does that for you
automatically.

Alert

To display an alert box (or, if appropriate for the alert stage, to play an alert sound
instead of or in addition to displaying the alert box), you can use the Al ert function.
This function does not display a default icon in the upper-left corner of the alert box;
you can leave this area blank, or you can specify your own icon in the alert’s item list
resource, which in turn is specified in the alert resource.

FUNCTION Alert (alertlD: Integer;
filterProc: Modal FilterProcPtr): |nteger;

alertlD The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
Mbdal Di al og procedure.

DESCRIPTION

The Al ert function creates the alert defined in the specified alert resource. The function
calls the current alert sound procedure and passes it the sound number specified in the
alert resource for the current alert stage. If no alert box is to be drawn at this stage,

Al ert returns -1; otherwise, it uses the NewDi al og function to create and display the
alert box. The default system window colors are used unless your application provides
an alert color table resource with the same resource ID as the alert resource.

6-106 Dialog Manager Reference

CHAPTER 6

Dialog Manager

The Al ert function uses the Mbdal Di al og procedure, which repeatedly gets and
handles most events for you. The Modal Di al og procedure, in turn, gets each event by
calling the Event Manager function Get Next Event . If the event is a mouse-down event
outside the content region of the alert box, Mbdal Di al 0g emits an error sound and gets
the next event.

The Al ert function continues calling Modal Di al og until the user selects an enabled
control (typically a button), at which time the Al ert function removes the alert box from
the screen and returns the item number of the selected control. Your application then
responds as appropriate when the user clicks this item.

For events inside the alert box, Modal Di al og passes the event to an event filter function
before handling the event. The event filter function provides a secondary event-handling
loop for events that Mbdal Di al og doesn’t handle. You specify a pointer to your event
filter function in the f i | t er Pr oc parameter of the Al ert function.

If youset the fi | t er Proc parameter to NI L, the Dialog Manager uses the standard
event filter function, which behaves as follows:

= If the user presses the Return or Enter key, the event filter function returns TRUE and
returns the item number for the default button.

However, your application should provide a simple event filter function that not only
replicates this behavior but also

s returns TRUE and the item number for the Cancel button if the user presses Esc or
Command-period

= updates your windows in response to update events (this also allows background
windows to receive update events) and returns FALSE

= returns FALSE for all events that your event filter function doesn’t handle
You can also use the event filter function to test for and respond to keyboard equivalents.

Unless the event filter function handles the event in its own way and returns TRUE,
Modal Di al og handles the event inside the alert box as follows:

» If the user presses the mouse button while the cursor is in a control, the Control
Manager function Tr ackCont r ol tracks the cursor. If the user releases the
mouse button while the cursor is in an enabled control, Al ert, St opAl ert,
Caut i onAl ert, and Not eAl ert remove the alert box and return the control’s
item number. (Generally, buttons should be the only controls you use in alert boxes.)

= If the user presses the mouse button while the cursor is in any enabled item other than
a control, Al ert, St opAl ert, Cauti onAl ert, and Not eAl ert remove the alert box
and return the item number. (Generally, button controls should be the only enabled
items in alert boxes.)

= If user presses the mouse button while the cursor is in a disabled item or in no item,
or if any other event occurs, Al ert, St opAl ert, Cauti onAl ert, and Not eAl ert
do nothing.

Dialog Manager Reference 6-107

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

The Al ert function uses the QuickDraw routine Set Port to make the alert box the
current graphics port. It's not necessary for your application to call Set Port again
before displaying alert boxes, because you can’t draw into any other windows between
the time you create an alert box and the time the Dialog Manager displays it.

SPECIAL CONSIDERATIONS

SEE ALSO

6-108

If you need to display an alert box while your application is running in the background
or is otherwise invisible to the user, you should use the Notification Manager to post a
notification to the user. The Notification Manager automatically displays an alert box
containing whatever message you specify; you will not need to use the Dialog Manager
to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to an alert box
that your application presents.

The Modal Di al og procedure is described on page 6-135. See “Writing an Event Filter
Function for Alert and Modal Dialog Boxes” beginning on page 6-86 for a discussion of
how to write an event filter function. See “Creating Alert Sounds and Alert Boxes”
beginning on page 6-18 for a discussion of alerts and alert stages. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about button
titles and messages in alert boxes. Alert resources are described on page 6-150. Alert
color table resources are described on page 6-157. The Dialog Manager uses the system
alert sound as the error sound unless you change it by calling the Er r or Sound pro-
cedure, described on page 6-104. See “Responding to Events in Alert Boxes” beginning
on page 6-81 for a discussion of how to respond to events returned by the Al ert
function. See the chapter “Notification Manager” in Inside Macintosh: Processes for
information about the Notification Manager.

The Not eAl ert, Cauti onAl ert, and St opAl ert functions are identical to the Al ert
function, except that Not eAl ert (described on page 6-110), Caut i onAl ert (described
on page 6-111), and St opAl ert (described next) display icons in the upper-left corners
of alert boxes.

Dialog Manager Reference

StopAlert

CHAPTER 6

Dialog Manager

DESCRIPTION

SEE ALSO

To display an alert box with a stop icon in its upper-left corner (or, if appropriate for the
alert stage, to play an alert sound instead of or in addition to displaying the alert box),
use the St opAl ert function.

FUNCTI ON StopAlert (alertlD: Integer
filterProc: Modal FilterProcPtr): Integer

alertlD The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
Modal Di al og procedure. If you set this parameter to NI L, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

The St opAl ert function is the same as the Al ert function except that, before drawing
the items in the alert box, St opAl ert draws the stop icon in the upper-left corner
(within the rectangle with local coordinates [10,20,42,52]). The stop icon has the
following resource ID:

CONST stoplcon = 0; {stop icon}

By default, the Dialog Manager uses the standard stop icon from the System file. You can
change this icon by providing your own ' | CON' resource with this resource ID number.

Use a stop alert to inform the user that a problem or situation is so serious that the action
cannot be completed. Stop alerts typically have only a single button (OK), because all the
user can do is acknowledge that the action cannot be completed.

Figure 6-5 on page 6-9 illustrates the stop icon in a typical stop alert. Except that it
includes a stop icon in the alert box, St opAl ert isidentical to the Al ert function. See
the description of the Al ert function on page 6-106 for detailed information about the
parameters and behavior of both of these functions.

Dialog Manager Reference 6-109

JabBeuey bojeig n

NoteAlert

CHAPTER 6

Dialog Manager

DESCRIPTION

SEE ALSO

6-110

To display an alert box with a note icon in its upper-left corner (or, if appropriate for the
alert stage, to play an alert sound instead of or in addition to displaying the alert box),
use the Not eAl ert function.

FUNCTI ON NoteAl ert (alertlD: |nteger
filterProc: Modal FilterProcPtr): Integer

alertlD The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
Modal Di al og procedure. If you set this parameter to NI L, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

The Not eAl ert function is the same as the Al ert function except that, before drawing
the items in the alert box, Not eAl ert draws the note icon in the upper-left corner
(within the rectangle with local coordinates [10,20,42,52]). The note icon has the
following resource ID:

CONST notelcon = 1; {note icon}

By default, the Dialog Manager uses the standard note icon from the System file. You can
change this icon by providing your own ' | CON' resource with this resource ID number.

Use a note alert to inform users of a minor mistake that won’t have any disastrous
consequences if left as is. Usually this type of alert simply offers information, and the
user responds by clicking an OK button. Occasionally, a note alert may ask a simple
question and provide a choice of responses.

Figure 6-3 on page 6-8 illustrates the note icon in a typical note alert. Except that it
includes a note icon in the alert box, Not eAl ert isidentical to the Al ert function. See
the description of the Al ert function on page 6-106 for detailed information about the
parameters and behavior of both of these functions.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

CautionAlert

DESCRIPTION

SEE ALSO

To display an alert box with a caution icon in its upper-left corner (or, if appropriate for
the alert stage, to play an alert sound instead of or in addition to displaying the alert
box), use the Caut i onAl ert function.

FUNCTI ON CautionAlert (alertlD: Integer;
filterProc: Modal FilterProcPtr): Integer;

alertlD The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
Modal Di al og procedure. If you set this parameter to NI L, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

The Caut i onAl ert function is the same as the Al ert function except that, before
drawing the items in the alert box, Caut i onAl ert draws the caution icon in the
upper-left corner (within the rectangle with local coordinates [10,20,42,52]). The caution
icon has the following resource ID:

CONST cautionlcon = 2; {caution icon}

By default, the Dialog Manager uses the standard caution icon from the System file.
You can change this icon by providing your own' | CON' resource with this resource
ID number.

Use a caution alert to alert the user of an operation that may have undesirable results if
it's allowed to continue. Give the user the choice of continuing the action (by clicking an
OK button) or stopping it (by clicking a Cancel button).

Figure 6-4 on page 6-9 illustrates the caution icon in a typical caution alert. Except
that it includes a caution icon in the alert box, Caut i onAl ert isidentical to the

Al ert function. See the description of the Al ert function on page 6-106 for detailed
information about the parameters and behavior of both of these functions.

Dialog Manager Reference 6-111

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

GetAlertStage

DESCRIPTION

To determine the stage of the last occurrence of an alert, use the Get Al ert St age
function. The Get Al er t St age function is also available as the Get Al rt St age function.

FUNCTI ON CGet Al ert St age: | nt eger;

The Get Al ert St age function returns a number from 0 to 3 as the stage of the last
occurrence of an alert. For example, you can use the Get Al er t St age function to
ensure that your application deactivates the active window only if an alert box is to be
displayed at that stage.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The global variable ACount contains this number. In addition, the global variable
ANunber contains the resource ID of the alert resource of the last alert that occurred.

Listing 6-19 on page 6-66 illustrates how to use Get Al er t St age to determine whether
to deactivate a window for the current alert stage. Listing 6-2 on page 6-21 illustrates
how to use an alert resource to specify different alert responses according to different
alert stages.

ResetAlertStage

DESCRIPTION

SEE ALSO

6-112

To reset the current alert stage to the first alert stage, use the Reset Al ert St age
procedure. The Reset Al ert St age procedure is also available as the
Reset Al rt St age procedure.

PROCEDURE Reset Al ert St age;

The Reset Al ert St age procedure resets every alert to a first-stage alert.

Listing 6-2 on page 6-21 illustrates how to use an alert resource to specify different alert
responses according to different alert stages.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

Creating and Disposing of Dialog Boxes

To create a dialog box, you should generally use the Get NewDi al og function, which
takes information about the dialog from a dialog resource in a resource file. Like window
resources, dialog resources isolate descriptive information from your application code
for ease of modification or translation to other languages. However, you can also use the
NewDi al og and NewCol or Di al og functions—for which you pass descriptive
information in parameters—to create dialog boxes.

The NewCol or Di al og function is identical to the NewDi al 0g function, except that
NewCol or Di al og returns a pointer to a color graphics port.

When you no longer need a dialog box, use the Cl oseDi al og procedure if

you allocated the memory for the dialog record of the dialog box and use the

Di sposeDi al og procedure if you did not. (To merely make the dialog box invisible
to the user, you can use the Window Manager procedure Hi deW ndow)

GetNewDialog

DESCRIPTION

To create a dialog box from a description in a dialog resource, use the Get NewDi al og
function.

FUNCTI ON Get NewDi al og (di al ogl D: Integer; dStorage: Ptr;
behi nd: WndowPtr): Dial ogPtr;

di al ogl D The resource ID of a dialog resource. If the dialog resource is missing,
the Dialog Manager returns to your application without creating the
dialog box.

dStorage A pointer to the memory for the dialog record. If you set this parameter to
NI L for modal dialog boxes and movable modal dialog boxes, the Dialog
Manager automatically allocates memory for them in your application
heap. For a modeless dialog box, however, you should allocate your
own memory as you would for a window—otherwise, your heap could
become fragmented.

behi nd A pointer to the window behind which the dialog box is to be placed
on the desktop. Always set this parameter to the window pointer
Poi nter (- 1) to bring the dialog box in front of all other windows.

The Get NewDi al og function creates a dialog record from the information in the dialog
resource and returns a pointer to it. You can use this pointer with Window Manager or
QuickDraw routines to manipulate the dialog box. If the dialog resource specifies that
the dialog box should be visible, the dialog box is displayed. If the dialog resource
specifies that the dialog box should initially be invisible, use the Window Manager
procedure ShowW ndowto display the dialog box.

Dialog Manager Reference 6-113

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

If you supply a dialog color table resource with the same resource ID as the dialog
resource, Get NewDi al og uses the NewCol or Di al og function and returns a pointer
to a color graphics port. If no dialog color table resource is present, Get NewDi al og
uses NewDi al 0g to return a pointer to a black-and-white graphics port, although
system software draws the window frame using the system’s default colors.

The dSt or age and behi nd parameters of Get NewDi al og have the same meaning as
they do in the Window Manager function Get NewW ndow Always set the behi nd
parameter to Poi nt er (- 1) to bring the dialog box to the front.

The dialog resource contains the resource ID of the dialog box’s item list resource. After
calling the Resource Manager to read the item list resource into memory (if it’s not
already in memory), Get NewDi al og makes a copy of the item list resource and uses
that copy; thus you may have several dialog boxes with identical items.

If you provide a dialog color table resource, Get NewDi al 0g copies it before passing it to
the Window Manager routine Set W nCol or unless the number-of-entries element of
the dialog color table resource is set to -1, in which case the default window colors are
used instead. The Get NewDi al og function makes the copy so that the dialog color table
resource can be purged without affecting the dialog box.

SPECIAL CONSIDERATIONS

6-114

The Get NewDi al og function doesn’t release the memory occupied by the resources.
Therefore, your application should mark all resources used for a dialog box as purgeable.

If either the dialog resource or the item list resource can’t be read, the function result is
NI L; your application should test to ensure that NI L is not returned before performing
any more operations with the dialog box or its items.

For modal dialog boxes, the Dialog Manager function Modal Di al og traps all events.
This prevents your event loop from receiving activate events for your windows. Thus,
if one of your application’s windows is active when you use Get NewDi al 0g to create
a modal dialog box, you must explicitly deactivate that window before displaying the
modal dialog box.

If you ever need to display a dialog box while your application is running in the back-
ground or is otherwise invisible to the user, you should use the Notification Manager to
post a notification to the user. The Notification Manager automatically displays an alert
box containing whatever message you specify; you do not use the Dialog Manager to
create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to the dialog box
that your application presents.

The Get NewDi al og function uses either NewDi al og or NewCol or Di al og, each of
which generates an update event for the entire window contents. Thus, with the

Dialog Manager Reference

SEE ALSO

CHAPTER 6

Dialog Manager

exception of controls, items aren’t drawn immediately. The Dialog Manager calls the
Control Manager to draw controls, and the Control Manager draws them immediately.
So the controls won't be drawn twice, the Dialog Manager calls the Window Manager
procedure Val i dRect for the enclosing rectangle of each control. If you find that there
is too great a lag between the drawing of controls and the drawing of other items, try
making the dialog box initially invisible and then calling the Window Manager
procedure ShowW ndow to show it.

See “Creating Dialog Boxes” beginning on page 6-23 and “Displaying Alert and Dialog
Boxes” beginning on page 6-61 for discussions and examples of how to use
Cet NewDi al og.

The Get NewW ndow and ShowW ndow procedures are described in the chapter
“Window Manager” of this book. The Notification Manager is described in the
chapter “Notification Manager” in Inside Macintosh: Processes.

“Adjusting Menus for Modal Dialog Boxes” beginning on page 6-68 and “Adjusting
Menus for Movable Modal and Modeless Dialog Boxes” on page 6-73 discuss menu
adjustment when your application displays dialog boxes. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text [tems” beginning on page 6-40 for recommendations about messages
and control titles in dialog boxes.

NewColorDialog

To create a dialog box, you can use the NewCol or Di al og function, which returns a
pointer to a color graphics port. Generally, you should instead use Get NewDi al og to
create a dialog box, because Get NewDi al og takes information about the dialog box
from a dialog resource in a resource file. (Like window resources, dialog resources isolate
descriptive information from your application code for ease of modification or transla-
tion to other languages.) The NewCol or Di al og function is also available as the

NewCDi al og function.

FUNCTI ON NewCol or Di al og (dStorage: Ptr; boundsRect: Rect;
title: Str255; visible: Bool ean;
procl D: Integer; behind: WndowPtr;
goAwayFl ag: Bool ean; refCon: Longlnt;
items: Handle): CDialogPtr;

dStorage A pointer to the memory for the dialog record. If you set this parameter to
NI L for modal dialog boxes and movable modal dialog boxes, the Dialog
Manager allocates memory for them on your application heap. For a
modeless dialog box, however, you should allocate your own memory
as you would for a window—otherwise, your heap could become
fragmented.

Dialog Manager Reference 6-115

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

boundsRect
A rectangle, given in global coordinates, that determines the size and
position of the dialog box; these coordinates specify the upper-left and
lower-right corners of the dialog box.

title A text string used for the title of a modeless or movable modal dialog
box. You can specify an empty string (not NI L) for a title bar that contains
no text.

visible A flag that specifies whether the dialog box should be drawn on the
screen immediately. If you set this parameter to FALSE, the dialog box is
not drawn until your application uses the Window Manager procedure
ShowW ndowto display it.

procl D The window definition ID for the type of dialog box. Use the dBoxPr oc
constant to specify modal dialog boxes, the noGr owDocPr oc constant to
specify modeless dialog boxes, and the novabl eDBoxPr oc constant to
specify movable modal dialog boxes.

behi nd A pointer to the window behind which the dialog box is to be placed on
the desktop. Always set this parameter to the window pointer
Poi nt er (- 1) to bring the dialog box in front of all other windows.

goAwayFl ag
A flag to specify whether a modeless dialog box should have a close box
in its title bar when the dialog box is active. If you set this parameter to
TRUE, the dialog window has a close box in its title bar when the window
is active; only modeless dialog boxes should have close boxes.

ref Con A value that the Dialog Manager uses to set the r ef Con field of the
dialog box’s window record. Your application may store any value here
for any purpose. For example, your application can store a number that
represents a dialog box type, or it can store a handle to a record that
maintains state information about the dialog box. You
can use the Window Manager procedure Set \Ref Con at any time to
change this value in the dialog record for a dialog box, and you can use
the Get WRef Con function to determine its current value.

itens Ahandle to an item list resource for the dialog box. You can get the
handle by calling the Resource Manager function Get Resour ce to read
the item list resource into memory. Use the Memory Manager procedure
HNoPur ge to make the handle unpurgeable while you use it or use the
Operating System utility function HandToHand to make a copy of the
handle and use the copy.

DESCRIPTION

The NewCol or Di al og function creates a dialog box as specified by its parameters
and returns a pointer to a color graphics port for the new dialog box. The first eight
parameters (dSt or age through r ef Con) are passed to the Window Manager function
NewCW ndow which creates the dialog box. You can use this pointer with Window
Manager or QuickDraw routines to manipulate the dialog box.

The Dialog Manager uses the default window colors for the dialog box. By using the
system’s default colors, you ensure that your application’s interface is consistent with

6-116 Dialog Manager Reference

CHAPTER 6

Dialog Manager

that of the Finder and other applications. However, if you absolutely feel compelled to
break from this consistency, you can use the Window Manager procedure Set W nCol or
to use your own dialog color table resource that specifies colors other than the default
colors. Be aware, however, that nonstandard colors in your alert and dialog boxes may
initially confuse your users.

The Window Manager creates an auxiliary window record for the color dialog box. You
can access this record with the Window Manager function Get AuxW n. (The

di al ogCl t emhandl e field of the auxiliary window record points to the dialog box’s
item color table resource.) If the dialog box’s content color isn’t white, it's a good idea
to call NewCol or Di al og with the vi si bl e flag set to FALSE. After the color table
and color item list resource are installed, use the Window Manager procedure

ShowW ndowto display the dialog box if it’s the frontmost window. If the dialog box

is a modeless dialog box that is not in front, use the Window Manager procedure
ShowHi de to display it.

When specifying the size and position of the dialog box in the boundsRect parameter,
you should generally try to center dialog boxes between the left and right margins of the
screen or the window where the user is working, whichever is more appropriate. Also
ensure that the tops of dialog boxes (including the title bars of modeless and movable
modal dialog boxes) lie below the menu bar when you position them on the main screen.
You can use the Menu Manager function Get MBar Hei ght to determine the height of
the menu bar.

SPECIAL CONSIDERATIONS

For modal dialog boxes, the Dialog Manager function Modal Di al og traps all events.
This prevents your event loop from receiving activate events for your windows. Thus, if
one of your application’s windows is active when you use NewCol or Di al og to create
a modal dialog box, you must explicitly deactivate that window before displaying the
modal dialog box.

If you ever need to display a dialog box while your application is running in the back-
ground or is otherwise invisible to the user, you should use the Notification Manager
to post a notification to the user. The Notification Manager automatically displays an
alert box containing whatever message you specify; you do not need to use the Dialog
Manager to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to the dialog box
that your application presents.

The NewCol or Di al og function generates an update event for the entire window
contents. Thus, with the exception of controls, items aren’t drawn immediately. The
Dialog Manager calls the Control Manager to draw controls, and the Control Manager
draws them immediately. So that the controls won’t be drawn twice, the Dialog Manager

Dialog Manager Reference 6-117

JabBeuey bojeig n

SEE ALSO

NewDialog

CHAPTER 6

Dialog Manager

calls the Window Manager procedure Val i dRect for the enclosing rectangle of each
control. If you find that there is too great a lag between the drawing of controls and the
drawing of other items, try making the dialog box initially invisible and then calling the
Window Manager procedure ShowW ndow to show it.

Window Manager routines are described in the chapter “Window Manager” in this book.
The Notification Manager is described in the chapter “Notification Manager” in Inside
Macintosh: Processes. See Inside Macintosh: Memory for a description of HNoPur ge. See
Inside Macintosh: Operating System Utilities for a description of HandToHand.

“Adjusting Menus for Modal Dialog Boxes” beginning on page 6-68 and “Adjusting
Menus for Movable Modal and Modeless Dialog Boxes” on page 6-73 discuss menu bar
adjustment when your application displays dialog boxes. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about messages
and control titles in dialog boxes. The Get Resour ce function is described in the chapter
“Resource Manager” of Inside Macintosh: More Macintosh Toolbox.

DESCRIPTION

6-118

To create a dialog box, you can use the NewDi al og function, which returns a pointer to a
black-and-white graphics port (although system software draws the window frame of
the dialog box using the system’s default window colors). Generally, you should instead
use Get NewDi al og to create a dialog box; Get NewDi al og takes information about the
dialog from a dialog resource in a resource file. (Like window resources, dialog resources
isolate descriptive information from your application code for ease of modification or
translation to other languages.)

The NewDi al og function is identical to the NewCol or Di al og function, except that
NewDi al og returns a pointer to a black-and-white graphics port. See the discussion
of NewCol or Di al og on page 6-115 for descriptions of the parameters that you also
pass to NewDi al og.

FUNCTI ON NewDi al og (dStorage: Ptr; boundsRect: Rect;
title: Str255; visible: Bool ean;
procl D: Integer; behind: WndowPtr;
goAwayFl ag: Bool ean; refCon: Longlnt;
itens: Handle): DialogPtr;

The NewDi al og function creates a dialog box as specified by its parameters and returns
a pointer to a black-and-white graphics port for the new dialog box. The first eight
parameters (dSt or age through r ef Con) are passed to the Window Manager function
NewW ndow which creates the dialog box.

Dialog Manager Reference

SEE ALSO

CHAPTER 6

Dialog Manager

When specifying the size and position of the dialog box in the boundsRect parameter,
you should generally try to center dialog boxes between the left and right margins of the
screen or the window where the user is working, whichever is more appropriate. Also
ensure that the tops of dialog boxes (including the title bars of modeless and movable
modal dialog boxes) lie below the menu bar when you position them on the main screen.
You can use the Menu Manager function Get MBar Hei ght to determine the height of the
menu bar.

If you use a dialog color table resource to change the default window colors, use the
NewCol or Di al og function, which returns a pointer to a color graphics port. See the
description of NewCol or Di al og on page 6-115 for additional information common to
both the NewDi al og and NewCol or Di al og functions.

CloseDialog

DESCRIPTION

To dismiss a dialog box for whose dialog record you allocated memory, use the
Cl oseDi al og procedure.

PROCEDURE Cl oseDi al og (theDi al og: Dial ogPtr);

t heDi al og A pointer to a dialog record.

The C oseDi al og procedure removes a dialog box from the screen and deletes it from
the window list. The Ol oseDi al og procedure releases the memory occupied by

= the data structures associated with the dialog box (such as its structure, content, and
update regions)

= all the items in the dialog box (except for pictures and icons, which might be shared
by other resources) and any data structures associated with them

Generally, you should provide memory for the dialog record of modeless dialog boxes
when you create them. (You can let the Dialog Manager provide memory for modal and
movable modal dialog boxes.) You should then use Cl oseDi al og to close a modeless
dialog box when the user clicks the close box or chooses Close from the File menu.

Because Cl oseDi al og does not dispose of the dialog resource or the item list

resource, it is important to make these resources purgeable. Unlike Get NewDi al og,
NewCol or Di al og does not use a copy of the item list resource. Thus, if you

use NewCol or Di al og to create a dialog box, you may want to use Cl oseDi al og to
keep the item list resource in memory even if you didn’t supply a pointer to the memory.

Dialog Manager Reference 6-119

JabBeuey bojeig n

SEE ALSO

CHAPTER 6

Dialog Manager

If you let the Dialog Manager allocate memory for the dialog box (by passing NI L in the
dSt or age parameter to the Get NewDi al og, NewCol or Di al og, or NewDi al og
function), use the Di sposeDi al og procedure, described next, instead of Cl oseDi al og.

DisposeDialog

DESCRIPTION

SEE ALSO

To dismiss a dialog box for which the Dialog Manager supplies memory, use the
Di sposeDi al og procedure. The Di sposeDi al 0og procedure is also available
as the Di sposDi al og procedure.

PROCEDURE Di sposeDi al og (thebDi al og: Dial ogPtr);

t heDi al og A pointer to a dialog record.

The Di sposeDi al og procedure calls the Cl oseDi al og procedure and, in addition,
releases the memory occupied by the dialog box’s item list resource and the dialog
record. Call Di sposeDi al og when you're done with a dialog box if you pass NI L in
the dSt or age parameter to Get NewDi al og, NewCol or Di al og, or NewDi al og.

Generally, your application should not allocate memory for the dialog records of modal
dialog boxes or movable modal dialog boxes. In these cases your application should use
Di sposeDi al og when the user clicks the OK or Cancel button.

If you allocate memory for the dialog box (for example, by passing a pointer in the
dSt or age parameter to the Get NewDi al og, NewCol or Di al og, or NewhDi al og
function), use Cl oseDi al 0g, described on page 6-119, instead of Di sposeDi al og.

Manipulating Items in Alert and Dialog Boxes

6-120

In many cases, you won't have to make any changes to alert or dialog boxes after you
define them in the resource file. If you do need to make changes, use the Dialog Manager
routines described in this section.

For most item manipulation, first call the Get Di al ogl t emprocedure to get the
information about the item. You can then use other routines to manipulate that item. Use
the Set Di al ogl t emprocedure if you use any of these other routines to change the
item. You must also use Set Di al ogl t emto install any of your own application-defined
draw procedures. If you use Set Di al ogl t em make the dialog box initially invisible,
change the item as appropriate, then make the dialog box visible by using the Window
Manager procedure ShowW ndow (For information about manipulating text in an

alert box or a dialog box, see “Handling Text in Alert and Dialog Boxes” beginning on
page 6-129.)

Dialog Manager Reference

CHAPTER 6

Dialog Manager

You can dynamically add items to and remove items from a dialog box by using the
AppendDl TL and Shor t enDI TL procedures. These procedures are especially useful
if you share a single item list resource among multiple dialog boxes, because you can
then use AppendDI TL or Shor t enDI TL to add or remove items as appropriate for
individual dialog boxes. You typically make such dialog boxes invisible, use the
AppendDI TL and Shor t enDl TL procedures as appropriate, then make the dialog
boxes visible by using the Window Manager procedure ShowW ndow

GetDialogltem

To get a handle to an item so that you can manipulate it (for example, to determine its
current value, to change it, or to install a pointer to a draw procedure for an
application-defined item), use the Get Di al ogl t emprocedure. The Get Di al ogl t em
procedure is also available as the Get DI t emprocedure.

PROCEDURE Get Di al ogltem (theDi al og: Di al ogPtr; itemNo: |nteger;
VAR itemlype: Integer; VAR item Handl e;
VAR box: Rect);

t heDi al og A pointer to a dialog record.

i temNo A number corresponding to the position of an item in the dialog box’s
item list resource.

itenType Avalue that represents the type of item requested in the i t emNo
parameter. You can use any of these constants to determine the value
returned in this parameter:

CONST

ctrliltem = 4; {add this constant to the next }
{ four constants}

bt nCtrl = 0; {standard button control}
chkCtrl = 1; {standard checkbox control}
radcerl = 2; {standard radi o button}
resCrl = 3; {control defined in a 'CNTL'}
hel pltem 1; {hel p bal | oons}
st at Text = 8; {static text}
edi t Text = 16; {editabl e text}
iconltem = 32; {icon}
picltem = 64; { Qui ckDr aw pi cture}
userltem = 0; {application-defined iten

i tenDi sable = 128; {add to any of the above to }
{ disable it}

Dialog Manager Reference 6-121

JabBeuey bojeig n

DESCRIPTION

SEE ALSO

CHAPTER 6

Dialog Manager

item For an application-defined draw procedure, a pointer to the draw
procedure (coerced to a handle), returned for the item specified in the
i t emNo parameter; for all other item types, a handle to the item.

box The display rectangle (described in coordinates local to the dialog box),
returned for the item specified in the i t enNo parameter.

The Get Di al ogl t emprocedure returns in its parameters the following information
about the item numbered i t enNo in the item list resource of the specified dialog box:
in the i t enType parameter, the item type; in the i t emparameter, a handle to the item
(or, for application-defined draw procedures, the procedure pointer); and in the box
parameter, the display rectangle for the item.

For most item manipulation, first use the Get Di al ogl t emprocedure to get the informa-
tion about the item. You can then use other routines, such as Get Di al ogl t enifext and
Set Di al ogl t em to determine and change the value of that item.

Listing 6-12 on page 6-49 illustrates the use of Get Di al ogl t emin conjunction with
Cet Di al ogl t enText to retrieve the text entered by a user in an editable text item.
Listing 6-16 on page 6-58 illustrates the use of Get Di al ogl t emin conjunction with
Set Di al ogl t emto install the draw procedure for an application-defined item into
a dialog box. Listing 6-26 on page 6-83 illustrates the use of Get Di al ogl t emto
determine the current value of a checkbox in a dialog box.

SetDialogltem

6-122

After using the Get Di al ogl t emprocedure to get a handle to an item from a dialog box,
use the Set Di al ogl t emprocedure to set or change the item. The Set Di al ogl t em
procedure is also available as the Set DI t emprocedure.

PROCEDURE Set Di al ogltem (theDi al og: Di al ogPtr; itemNo: Integer;
iteniType: Integer; item Handle;
box: Rect);

t heDi al og A pointer to a dialog record.

i temNo A number corresponding to the position of an item in the dialog box’s
item list resource.

itenifype Avalue that represents the type of item in the i t enNo parameter. To
specify the value for this parameter, you can use any of the constants
listed on page 6-121 for the i t enTType parameter of the Get Di al ogl t em
procedure.

Dialog Manager Reference

DESCRIPTION

SEE ALSO

CHAPTER 6

Dialog Manager

item For an application-defined item, a pointer to the draw procedure (coerced
to a handle) for the item specified in the i t emNo parameter; for all other
item types, a handle to the item.

box The display rectangle (described in coordinates local to the dialog box) for
the item specified in the i t enNo parameter.

The Set Di al ogl t emprocedure sets the item specified by the i t enNo parameter for the
specified dialog box. This procedure installs the item without drawing it; typically you
create an invisible dialog box, use Set Di al ogl t em then use the Window Manager
procedure ShowW ndowto draw the dialog box and its items.

Listing 6-16 on page 6-58 illustrates how to use Set Di al ogl t emto install an
application-defined draw procedure. The ShowW ndow procedure is described in the
chapter “Window Manager” of this book.

HideDialogltem

DESCRIPTION

Although you should rarely need to do so, you can make an item in a dialog box
invisible by using the Hi deDi al ogl t emprocedure. The Hi deDi al ogl t emprocedure
is also available as the Hi deDI t emprocedure.

PROCEDURE Hi deDi al ogltem (theDi al og: DialogPtr; itemNo: |nteger);

t heDi al og A pointer to a dialog record.

i temNo A number corresponding to the position of an item in the dialog box’s
item list resource.

The H deDi al ogl t emprocedure hides the item specified by i t emNo by giving it a
display rectangle that’s off the screen. Specifically, if the left coordinate of the item’s
display rectangle is less than 8192 (hexadecimal $2000), Hi deDi al ogl t emadds 16,384
(hexadecimal $4000) to both the left and right coordinates of the rectangle. If the item is
already hidden (that is, if the left coordinate is greater than 8192), H deDi al ogl t em
does nothing. To redisplay an item that’s been hidden by H deDi al ogl t em you can
use the ShowDi al ogl t emprocedure.

Dialog Manager Reference 6-123

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

SPECIAL CONSIDERATIONS

If your application needs to display a number of dialog boxes that are similar except for
one or two items, it’s generally easier to modify the common elements using the
AppendDI TL and Shor t enDI TL procedures than to use the Hi deDi al ogl t emand
ShowDi al ogl t emprocedures.

The rectangle for a static text item must always be at least as wide as the first character of
the text.

You generally shouldn’t use Hi deDi al ogl t emto make an editable text item invisible,
because as the user presses the Tab key, the Dialog Manager attempts to move the cursor
to the hidden editable text item, where the user’s subsequent keystrokes will be placed.

ShowDialogltem

DESCRIPTION

6-124

To redisplay an item that has been hidden by the Hi deDi al ogl t emprocedure, use the
Showbi al ogl t emprocedure. The ShowDi al ogl t emprocedure is also available as the
ShowDl t emprocedure.

PROCEDURE ShowDi al ogltem (t heDi al og: Dial ogPtr; itemNo: |nteger);

t heDi al og A pointer to a dialog record.

i temNo A number corresponding to the position of an item in the dialog box’s
item list resource.

The ShowDi al ogl t emprocedure redisplays the item specified ini t enNo by restoring
the display rectangle the item had prior to the Hi deDi al ogl t emcall. Specifically, if

the left coordinate of the item’s display rectangle is greater than 8192, ShowDi al ogl t em
subtracts 16,384 from both the left and right coordinates of the rectangle. If the item

is already visible (that is, if the left coordinate is less than 8192), ShowDi al ogl t em

does nothing.

The ShowDi al ogl t emprocedure adds the rectangle that contained the item to the
update region so that it will be drawn. Note that if the item is a control you define in a
control (" CNTL') resource, the rectangle added to the update region is the rectangle
defined in the control resource, not the display rectangle defined in the item list resource.
If the item is an editable text item, ShowDi al ogl t emactivates it by calling the TextEdit
procedure TEACt i vat e.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

FindDialogltem

To determine the item number of an item at a particular location in a dialog box, use the
Fi ndDi al ogl t emfunction. The Fi ndDi al ogl t emfunction is also available as the
Fi ndDI t emfunction.

FUNCTI ON Fi ndDi al ogltem (theDi al og: Di al ogPtr; thePt: Point)
I nt eger;

t heDi al og A pointer to a dialog record.
t hePt A point, specified in coordinates local to the dialog box.

DESCRIPTION
If the point specified in the parameter t hePt lies within an item, Fi ndDi al ogl t em
returns a number corresponding to the position of that item in the dialog box’s item list
resource. If the point doesn’t lie within the item’s rectangle, Fi ndDi al ogl t emreturns
-1.If items overlap, Fi ndDi al ogl t emreturns the item number of the first item, in the
item list resource, containing the point.
This function is useful for changing the cursor when it's over a particular item.
The Fi ndDi al ogl t emfunction returns 0 for the first item in the item list resource,
1 for the second, and so on. To get the proper item number before calling the
Cet Di al ogl t emor Set Di al ogl t emprocedure, add 1 to Fi ndDi al ogl t enis
function result, as shown here:
theltem := FindD al oglten(thebDi al og, thePoint) + 1;
Note that Fi ndDi al ogl t emreturns the item number of disabled items as well as
enabled items.

AppendDITL

To add items to an existing dialog box while your application is running, use the
AppendDI TL procedure.

PROCEDURE AppendDl TL (theDi al og: DialogPtr; theD TL: Handl e;
t heMet hod: DI TLMet hod) ;

t heDi al og A pointer to a dialog record. This is the dialog record to which you will
add the item list resource specified in the parameter t heDI TL.

t heDl TL A handle to the item list resource whose items you want to append to the
dialog box.

Dialog Manager Reference 6-125

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

t heMet hod The manner in which you want the new items to be displayed in the
existing dialog box. You can pass a negative value to offset the appended
items from a particular item in the existing dialog box. You can also pass
any of these constants:

CONST

overlayDl TL = 0; {overlay existing itens}
appendDl TLRi ght = 1; {append at right}
appendDl TLBottom = 2; {append at botton}

DESCRIPTION

The AppendDl TL procedure adds the items in the item list resource specified in the
parameter t heDl TL to the items of a dialog box. This procedure is especially useful if
several dialog boxes share a single item list resource, because you can use AppendDI TL
to add items that are appropriate for individual dialog boxes. Your application can use
the Resource Manager function Get Resour ce to get a handle to the item list resource
whose items you wish to add.

In the parameter t heMet hod, you specify how to append the new items, as follows:

s If you use the over | ayDl TL constant, AppendDl TL superimposes the appended
items over the dialog box. That is, AppendDl TL interprets the coordinates of the
display rectangles for the appended items (as specified in their item list resource) as
local coordinates within the dialog box.

s If you use the appendDl TLRi ght constant, AppendDl TL appends the items to the
right of the dialog box by positioning the display rectangles of the appended items
relative to the upper-right coordinate of the dialog box. The AppendDl TL procedure
automatically expands the dialog box to accommodate the new dialog items.

» If you use the appendDl TLBot t omconstant, AppendDl TL appends the items to the
bottom of the dialog box by positioning the display rectangles of the appended items
relative to the lower-left coordinate of the dialog box. The AppendDl TL procedure
automatically expands the dialog box to accommodate the new dialog items.

= You can also append a list of items relative to an existing item by passing a negative
number in the parameter t heMet hod. The absolute value of this number is
interpreted as the item in the dialog box relative to which the new items are to be
positioned. For example, if you pass -2, the display rectangles of the appended
items are offset relative to the upper-left corner of item number 2 in the dialog box.

You typically create an invisible dialog box, call the AppendDI TL procedure, then make
the dialog box visible by using the Window Manager procedure ShowW ndow

SPECIAL CONSIDERATIONS

The AppendDl TL procedure modifies the contents of the dialog box (for instance, by
enlarging it). To use an unmodified version of the dialog box at a later time, your
application should use the Resource Manager procedure Rel easeResour ce to release
the memory occupied by the appended item list resource. Otherwise, if your application
calls AppendDl TL to add items to that dialog box again, the dialog box remains

6-126 Dialog Manager Reference

SEE ALSO

CHAPTER 6

Dialog Manager

modified by your previous call—for example, it will still be longer at the bottom if you
previously used the appendDI TLBot t omconstant.

The AppendDl TL procedure is available in System 7 and in earlier versions of the
Communications Toolbox. Before calling AppendDl TL, you should make sure that it
is available by using the Gest al t function with the gest al t DI TLExt At t r selector.
Test the bit indicated by the gest al t DI TLExt Pr esent constant in the r esponse
parameter. If the bit is set, then AppendDl TL is available.

Listing 6-13 on page 6-54 and Listing 6-14 on page 6-55 illustrate a typical use

of AppendDl TL. Figure 6-29 on page 6-52 shows the result of using the

over | ayDl TL constant, Figure 6-30 on page 6-52 shows the result of using the
appendDl TLRi ght constant, Figure 6-31 on page 6-53 shows the result of using
the appendDl TLBot t omconstant, and Figure 6-32 on page 6-53 shows the result
of using a negative number in the parameter t heMet hod.

The chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox describes
the Get Resour ce and Rel easeResour ce routines. The Gest al t function is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Ultilities.
See the chapter “Window Manager” in this book for information about ShowwW ndow

ShortenDITL

DESCRIPTION

To remove items from an existing dialog box while your application is running, use the
Short enDl TL procedure.

PROCEDURE ShortenDl TL (theDi al og: Di al ogPtr;
nunberltemnms: Integer);

t heDi al og A pointer to a dialog record.
nunber | t ems

The number of items to remove (starting from the last item in the item
list resource).

The Short enDI TL procedure removes the specified number of items from the dialog
box. This procedure is especially useful if several dialog boxes share a single item list
resource, because you can use Shor t enDl TL to remove items as necessary for
individual dialog boxes.

You typically create an invisible dialog box, call the Shor t enDI TL procedure, then make
the dialog box visible by using the Window Manager procedure ShowW ndow Note that
Short enDl TL does not automatically resize the dialog box; you can use

the Window Manager procedure Si zeW ndowif you need to resize the dialog box.

Dialog Manager Reference 6-127

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

SPECIAL CONSIDERATIONS

SEE ALSO

CountDITL

The Shor t enDI TL procedure is available in System 7 and in earlier versions of the
Communications Toolbox. Before calling Shor t enDI TL, you should make sure that it
is available by using the Gest al t function with the gest al t DI TLExt At t r selector.
Test the bit indicated by the gest al t DI TLExt Pr esent constant in the r esponse
parameter. If the bit is set, then Shor t enDl TL is available.

You can use the Count DI TL function, described next, to determine the number of items
in the dialog box’s item list resource. See the chapter “Window Manager” in this book
for information on the ShowW ndowand Si zeW ndow procedures. The Gest al t
function is described in the chapter “Gestalt Manager” in Inside Macintosh: Operating
System Utilities.

DESCRIPTION

You can determine the number of items in a dialog box by using the Count DI TL
function.

FUNCTI ON Count DI TL (t heDi al og: DialogPtr): Integer;

t heDi al og A pointer to a dialog record.

The Count DI TL function returns the number of current items in a dialog box. You
typically use Count DI TL in conjunction with Shor t enDl TL to remove items from a
dialog box.

SPECIAL CONSIDERATIONS

SEE ALSO

6-128

The Count DI TL function is available in System 7 and in earlier versions of the Commu-
nications Toolbox. Before calling Count DI TL, you should make sure that it is available
by using the Gest al t function with the gest al t DI TLExt At t r selector. Test the bit
indicated by the gest al t DI TLExt Pr esent constant in the r esponse parameter. If the
bit is set, then Count DI TL is available.

The Gest al t function is described in the chapter “Gestalt Manager” in Inside Macintosh:
Operating System Ultilities.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

Handling Text in Alert and Dialog Boxes

The Dialog Manager provides several routines for manipulating text. You can use the
Par anifext procedure to supply text strings, such as document titles, dynamically

in the static text items of alert and dialog boxes. The Get Di al ogl t enTText and

Set Di al ogl t enText procedures are useful for determining and changing text in both
static text and editable text items. You can use the Sel ect Di al ogl t enTText procedure
to select and highlight text in an editable text item.

When a dialog box containing an editable text item is active, use the Di al ogCut
procedure to handle the Cut editing command, the Di al ogCopy procedure to handle
the Copy command, the Di al ogPast e procedure to handle the Paste command, and
the Di al ogDel et e procedure to handle the Clear command.

Once you determine that an event occurs in a modeless or movable modal dialog box,
you can use the Di al ogSel ect function, which is described on page 6-139, to handle
key-down events in editable text items automatically. The Modal Di al og procedure
uses Di al ogSel ect to handle key-down events in the editable text items of modal
dialog boxes.

ParamText
To substitute text strings in the static text items of your alert or dialog boxes while your
application is running, use the Par anTText procedure.
PROCEDURE Par anifext (paranD: Str255; paranil: Str255;
paranmR: Str255; paranB: Str255);
par anD A text string to substitute for the special string 20 in the static text items
of all subsequently created alert and dialog boxes.
par amil A text string to substitute for the special string 21 in the static text items
of all subsequently created alert and dialog boxes.
par an? A text string to substitute for the special string * 2 in the static text items
of all subsequently created alert and dialog boxes.
par anB A text string to substitute for the special string *3 in the static text items
of all subsequently created alert and dialog boxes.
DESCRIPTION

The Par anlext procedure replaces the special strings "0 through * 3 in the static text
items of all subsequently created alert and dialog boxes with the text strings you pass as
parameters. Pass empty strings (not NI L) for parameters not used.

SPECIAL CONSIDERATIONS

The strings used in Par aniText are stored in the low-memory global variable
DASt ri ngs, which specifies a set of string handles used by the Dialog Manager.

Dialog Manager Reference 6-129

JabBeuey bojeig n

SEE ALSO

CHAPTER 6

Dialog Manager

If the user launches a desk accessory in your application’s partition and the desk
accessory calls Par aniText , it may change the text in your application’s dialog box.

You should be very careful about using Par anText in modeless dialog boxes. If a
modeless dialog box using Par anilext is onscreen and you display another dialog box
or alert box that also uses Par aniText , both boxes will be affected by the latest call

to Par anirext .

The strings you pass in the parameters to Par anilext cannot contain the special strings
A0 through "3, or else the procedure will enter an endless loop of substitutions in
versions of system software earlier than 7.1.

Note that you should try to store text strings in resource files to facilitate translation into
other languages; therefore, Par aniText is best used for supplying text strings, such as
document names, that the user specifies. To avoid problems with grammar and sentence
structure when you localize your application, you should use Par anifext to supply
only one text string per screen message.

Listing 6-9 on page 6-47 and Listing 6-10 on page 6-48 show an example of how you can
use Par anfText to supply the title of the user’s current document to your alert and
dialog boxes. If you need to supply a default text string to an editable text item while
your application is running, use Set Di al ogl t enTText . The Set Di al ogl t enfText
procedure also allows you to set or change the entire text string for a static text item.

GetDialogltemText

DESCRIPTION

After using the Get Di al ogl t emprocedure to get a handle to an editable text item or a
static text item in a dialog box, you can use the Get Di al ogl t eniText procedure to get
the text string contained in that item. The Get Di al ogl t enTText procedure is also
available as the Get | Text procedure.

PROCEDURE Get Di al ogltemlext (item Handle; VAR text: Str255);

item Ahandle to an editable text item or a static text item in a dialog box.

t ext The text contained within the item.

The Get Di al ogl t eniText procedure returns, in the t ext parameter, the text of the
given editable text or static text item.

SPECIAL CONSIDERATIONS

6-130

If the user types more than 255 characters in an editable text item,
Cet Di al ogl t enText returns only the first 255.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

SEE ALSO
Listing 6-12 on page 6-49 illustrates how to use Get Di al ogl t enText to retrieve
the text that a user types into an editable text item.

SetDialogltemText
After using the Get Di al ogl t emprocedure to get a handle to an editable text item or
a static text item in a dialog box, you can use the Set Di al ogl t enfText procedure to
display a particular text string in that item. The Set Di al ogl t eniText procedure is also
available as the Set | Text procedure.
PROCEDURE Set Di al oglteniText (item Handle; text: Str255);
item A handle to an editable text item or a static text item in a dialog box.
t ext The text to display in the item.

DESCRIPTION

The Set Di al ogl t enText procedure places the specified text in the specified item and
draws the item. This procedure is useful for supplying a default text string—such as a
document name—for an editable text item while your application is running.

SPECIAL CONSIDERATIONS

All strings should be stored in resource files to ease translation into other languages.

SEE ALSO
For static text items, the Par anTText procedure, described on page 6-129, is useful when
you need to determine and provide only a portion of a text string while your application
is running.

SelectDialogltemText

To select and highlight text contained in an editable text item, use the
Sel ect Di al ogl t eniText procedure. The Sel ect Di al ogl t eniText procedure
is also available as the Sel | Text procedure.

PROCEDURE Sel ect Di al ogl t emText (theDi al og: Dial ogPtr;
i temNo: Integer;
strtSel: Integer;
endSel : | nteger);

Dialog Manager Reference 6-131

JabBeuey bojeig n

DESCRIPTION

CHAPTER 6

Dialog Manager

t heDi al og A pointer to a dialog record.

i temNo A number corresponding to the position of an editable text item in the
dialog box’s item list resource.

strt Sel A number representing the position of the first character to begin
selecting.

endSel A number representing one position past the last character to be selected.

If the item in the i t enNo parameter is an editable text item that contains text, the

Sel ect Di al ogl t enfText procedure sets the text selection range to extend from

the character position specified in the st rt Sel parameter up to but not including the
character position specified in the endSel parameter. The selection range is highlighted
unless st rt Sel equals endSel , in which case a blinking vertical bar is displayed to
indicate an insertion point at that position. If the editable text item doesn’t contain text,
Sel ect Di al ogl t enilext displays the insertion point.

You can select the entire text by specifying the number 0 in the st rt Sel parameter and
the number 32767 in the endSel parameter.

For example, if the user makes an unacceptable entry in the editable text item, your
application can display an alert box reporting the problem and then use

Sel ect Di al ogl t enilext to select the entire text so it can be replaced by a new
entry. Without this procedure, the user would have to select the item before making
the new entry.

SEE ALSO
For details about text selection range and character position, see the chapter “TextEdit”
in Inside Macintosh: Text.

DialogCut
When a dialog box containing an editable text item is active, use the Di al ogCut
procedure to handle the Cut editing command. The Di al ogCut procedure is also
available as the DI gCut procedure.
PROCEDURE Di al ogCut (theDi al og: DialogPtr);
t heDi al og A pointer to a dialog record.

DESCRIPTION
The Di al ogCut procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TECut to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.

6-132 Dialog Manager Reference

SEE ALSO

CHAPTER 6

Dialog Manager

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TECut procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogCopy

DESCRIPTION

SEE ALSO

When a dialog box containing an editable text item is active, use the Di al ogCopy
procedure to handle the Copy editing command. The Di al ogCopy procedure is also
available as the DI gCopy procedure.

PROCEDURE Di al ogCopy (thebDi al og: Dial ogPtr);

t heDi al og A pointer to a dialog record.

The Di al ogCopy procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TECopy to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TECopy procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogPaste

When a dialog box containing an editable text item is active, use the Di al ogPast e
procedure to handle the Paste editing command. The Di al ogPast e procedure is also
available as the DI gPast e procedure.

PROCEDURE Di al ogPaste (theDi al og: Dial ogPtr);

t heDi al og A pointer to a dialog record.

Dialog Manager Reference 6-133

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

DESCRIPTION

The Di al ogPast e procedure checks whether the dialog box has any editable text
items and, if so, applies the TextEdit procedure TEPast e to the selected editable text
item. Your application should test whether a dialog box is the frontmost window
when handling mouse-down events in the Edit menu and then call this routine when
appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TEPast e procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogDelete

When a dialog box containing an editable text item is active, use the Di al ogDel et e
procedure to handle the Clear editing command. The Di al ogDel et e procedure is also
available as the DI gDel et e procedure.

PROCEDURE Di al ogDel ete (theDi al og: Dial ogPtr);

t heDi al og A pointer to a dialog record.

DESCRIPTION

The Di al ogDel et e procedure checks whether the dialog box has any editable text
items and, if so, applies the TextEdit procedure TEDel et e to the selected text. Your
application should test whether a dialog box is the frontmost window when handling
mouse-down events in the Edit menu and then call this routine when appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TEDel et e procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

6-134 Dialog Manager Reference

CHAPTER 6

Dialog Manager

Handling Events in Dialog Boxes

Handling events in an alert box is very simple: after you invoke an alert box, the Dialog
Manager handles most events for you by automatically calling the Mbdal Di al og
procedure. To handle events in a modal dialog box, your application must explicitly call
the Mbdal Di al og procedure after displaying the dialog box. In either case, when an
enabled item is clicked, the Dialog Manager returns the item number. You'll then do
whatever is appropriate in response to that click. For both alert and modal dialog boxes,
you should also provide a simple event filter function that allows other windows to
respond to update events and that allows your alert or dialog box to respond to a few
key-down events for keys such as Return, Enter, and Esc.

You can use your normal event-handling code to determine whether an event occurs in a
modeless or movable modal dialog box, or you can use the | sDi al ogEvent function to
learn whether they need to be handled as part of a dialog box. Once you determine that
an event occurs in a modeless or movable modal dialog box, you can use the

Di al ogSel ect function to handle key-down events in editable text items automatically,
to handle update and activate events automatically, and to report the enabled items
clicked by the user. You then respond as appropriate to clicks in your active items. Or
you can use Control Manager, TextEdit, and Window Manager routines (such as

Fi ndW ndow Begi nUpdat e, EndUpdat e, Fi ndCont r ol , TrackCont r ol , and

TEQ i ck) to handle these events without the aid of the Dialog Manager.

ModalDialog

DESCRIPTION

To handle events when you display a modal dialog box, use the Modal Di al og
procedure.

PROCEDURE Mbdal Di al og (filterProc: Modal FilterProcPtr;
VAR itenHit: Integer);

filterProc
A pointer to an event filter function.

itemHt A number representing the position of the selected item in the item list
resource for the active modal dialog box.

Call the Mbdal Di al og procedure immediately after displaying a modal dialog box. The
Modal Di al og procedure assumes that a modal dialog box is displayed as the current
port, and Modal Di al og repeatedly handles events inside that port until an event
involving an enabled dialog box item—such as a click in a radio button, for example—
occurs. If the event is a mouse-down event outside the content region of the dialog box,
Modal Di al og emits the system alert sound and gets the next event. After receiving an
event involving an enabled item, Modal Di al og returns its item number in the i t enHi t
parameter. Your application should then do whatever is appropriate in response to an
event in that item. Your application should continue calling Mbdal Di al og until the user
selects the OK or Cancel button.

Dialog Manager Reference 6-135

JabBeuey bojeig n

6-136

CHAPTER 6

Dialog Manager

For events inside the dialog box, Mbdal Di al og passes the event to the event filter
function pointed to in the f i | t er Pr oc parameter before handling the event. When the
event filter returns FALSE, Modal Di al og handles the event. If the event filter function
handles the event, the event filter function returns TRUE, and Mbdal Di al og performs
no more event handling.

If you set the f i | t er Pr oc parameter to NI L, the standard event filter function is
executed. The standard event filter function returns TRUE and causes Modal Di al og to
return item number 1, which is the number of the default button, when the user presses
the Return key or the Enter key. However, your application should provide a simple
event filter function that

= returns TRUE and the item number for the default button if the user presses the
Return or Enter key

= returns TRUE and the item number for the Cancel button if the user presses the Esc
key or the Command-period key combination

» updates your windows in response to update events (this allows background
applications to receive update events) and return FALSE

» returns FALSE for all events that your event filter function doesn’t handle

You can use the same event filter function in most or all of your alert and modal
dialog boxes.

You can also use the event filter function specified in the f i | t er Pr oc parameter to test
for and respond to keyboard equivalents and more complex events—for instance, the
user dragging the cursor within an application-defined item.

To handle events, Modal Di al og calls the | sDi al ogEvent function. If the result of

| sDi al ogEvent is TRUE, then Modal Di al og calls the Di al ogSel ect function to
handle the event. Unless the event filter function returns TRUE, Mbdal Di al og handles
the event as follows:

» In response to an activate or update event for the dialog box, Mbdal Di al og activates
or updates its window.

= If the user presses the mouse button while the cursor is in an editable text item,
Modal Di al og responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If a key-down event occurs and
there’s an editable text item, Modal Di al og uses TextEdit to handle text entry and
editing automatically. If the editable text item is enabled, Modal Di al og returns its
item number after it receives either the mouse-down or key-down event. Normally,
editable text items are disabled, and you use the Get Di al ogl t eniText procedure to
read the information in the items only after the user clicks the OK button.

» If the user presses the mouse button while the cursor is in a control, Mbdal Di al og
calls the Control Manager function Tr ackCont r ol . If the user releases the mouse
button while the cursor is in an enabled control, Modal Di al og returns the control’s
item number. Your application should respond appropriately—for example, by
performing a command after the user clicks the OK button.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

= If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, Modal Di al og returns the item’s number, and your application should
respond appropriately. Generally, only controls should be enabled. If your application
creates a control more complex than a button, radio button, or checkbox, your
application must handle events inside that item with your event filter function.

= If the user presses the mouse button while the cursor is in a disabled item or in no
item, or if any other event occurs, Modal Di al og does nothing.

SPECIAL CONSIDERATIONS

SEE ALSO

Do not use Mbdal Di al og for movable modal dialog boxes (that is, those created with
the novabl eDBoxPr oc window definition ID) or for modeless dialog boxes (that is,
those created with the noGr owDocPr oc window definition ID). If you want the Dialog
Manager to assist you in handling events for movable modal and modeless dialog boxes,
use the | sDi al ogEvent and Di al ogSel ect functions instead.

The Modal Di al og procedure calls the Event Manager function Get Next Event with a
mask that excludes disk-inserted events. To receive disk-inserted events, your event filter
function can call the Event Manager procedure Set Syst enEvent Mask.

When Modal Di al og calls Tr ackCont r ol , it does not allow you to specify the action
procedure necessary for anything more complex than a button, radio button, or
checkbox. If you need a more complex control (for example, one that measures how long
the user holds down the mouse button or how far the user has moved an indicator), you
can create your own control, a picture, or an application-defined item that draws a
control- like object in your dialog box. You must then provide an event filter function
that appropriately handles events in that item.

Listing 6-26 on page 6-83 illustrates the use of Mbdal Di al 0g. “Responding to Events in
Editable Text Items” beginning on page 6-79 describes how Modal Di al og uses TextEdit
to handle text entry and editing in editable text items. The | sDi al ogEvent and

Di al ogSel ect functions (which your application may use instead of Modal Di al og
for modeless and movable modal dialog boxes) are described on page 6-138 and

page 6-139, respectively. See the description of M/Event Fi | t er on page 6-145 for
information about the event filter function your application should specify in the
filterProc parameter.

The Get Next Event and Set Syst enEvent Mask routines are described in the chapter
“Event Manager” in this book. See that chapter as well for a discussion of disk-inserted
events. See “Responding to Events in Controls” on page 6-78 for a description of how
your application should respond to events inside of controls; the Tr ackCont r ol
function is fully described in the chapter “Control Manager” in this book. Also see that
chapter for information about creating your own nonstandard controls. TextEdit is
described in the chapter “TextEdit” of Inside Macintosh: Text.

Dialog Manager Reference 6-137

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

IsDialogEvent

DESCRIPTION

6-138

To determine whether a modeless dialog box or a movable modal dialog box is active
when an event occurs, you can use the | sDi al ogEvent function.

FUNCTI ON | sDi al ogEvent (theEvent: EventRecord): Bool ean;

t heEvent An event record returned by an Event Manager function such as
Wi t Next Event .

If any event, including a null event, occurs when your dialog box is active,

| sDi al ogEvent returns TRUE; otherwise, it returns FALSE. When | sDi al ogEvent
returns FALSE, pass the event to the rest of your event-handling code. When

| sDi al ogEvent returns TRUE, pass the event to Di al 0gSel ect after testing for the
events that Di al ogSel ect does not handle.

A dialog record includes a window record. When you use the Get NewDi al og,

NewDi al og, or NewCol or Di al og function to create a dialog box, the Dialog Manager
sets the wi ndowKi nd field in the window record to di al ogKi nd. To determine whether
the active window is a dialog box, | sDi al ogEvent checks the wi ndowKi nd field.

Before passing the event to Di al ogSel ect, you should perform the following tests
whenever | sDi al ogEvent returns TRUE:

s Check whether the event is a key-down event for the Return, Enter, Esc, or
Command-period keystrokes. When the user presses the Return or Enter key, your
application should respond as if the user had clicked the default button; when the
user presses Esc or Command-period, your application should respond as if the user
had clicked the Cancel button. Use the Control Manager procedure Hi | i t eCont r ol
to highlight the applicable button for 8 ticks.

= At this point, you may also want to check for and respond to any special events that
you do not wish to pass to Di al ogSel ect or that require special processing before
you pass them to Di al ogSel ect . You would need to do this, for example, if the
dialog box needs to respond to disk-inserted events.

s Check whether the event is an update event for a window other than the dialog box
and, if it is, update your window.

s For complex items that you create, such as pictures or application-defined items that
emulate complex controls, test for and respond to mouse events inside those items as
appropriate. When Di al ogSel ect calls Tr ackCont r ol , it does not allow you to
specify the action procedure necessary for anything more complex than a button,
radio button, or checkbox. If you need a more complex control (for example, one that
measures how long the user holds down the mouse button or how far the user has
moved an indicator), you can create your own control or a picture or an
application-defined item that draws a control-like object in your dialog box. You must
then test for and respond to those events yourself.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

If your application uses | sDi al ogEvent to help handle events when you display a
movable modal dialog box, perform the following additional tests before passing events
to Di al ogSel ect :

» Test for mouse-down events in the title bar of the movable modal dialog box and
respond by dragging the dialog box accordingly.

s Test for and respond to mouse-down events in the Apple menu and, if the movable
modal dialog box includes editable text items, in the Edit menu. (You should disable
all other menus when you display a movable modal dialog box.)

» Play the system alert sound for every other mouse-down event outside the movable
modal dialog box.

SPECIAL CONSIDERATIONS

SEE ALSO

Both | sDi al ogEvent and Di al ogSel ect are unreliable when running in versions of
system software earlier than System 7. You shouldn’t use these routines if you expect
your application to run in earlier versions of system software.

The Wi t Next Event function is described in the chapter “Event Manager” in this book.
See Inside Macintosh: Sound for a description of the SysBeep procedure. The
Fr ont W ndow function is described in the chapter “Window Manager” in this book.

DialogSelect

DESCRIPTION

After determining that an event related to an active modeless dialog box or an active
movable modal dialog box has occurred, you can use the Di al ogSel ect function to
handle most of the events inside the dialog box.

FUNCTI ON Di al ogSel ect (theEvent: EventRecord,;
VAR t heDi al og: Dial ogPtr;
VAR itenHit: Integer): Bool ean;

t heEvent An event record returned by an Event Manager function such as
Wi t Next Event .

t heDi al og A pointer to a dialog record for the dialog box where the event occurred.

itenHt A number corresponding to the position of an item within the item list
resource of the active dialog box.

The Di al ogSel ect function handles most of the events relating to a dialog box. If the
event is an activate or update event for a dialog box, Di al ogSel ect activates or
updates it and returns FALSE. If the event involves an enabled item, Di al ogSel ect

Dialog Manager Reference 6-139

JabBeuey bojeig n

6-140

CHAPTER 6

Dialog Manager

returns a function result of TRUE. Initsi t enHi t parameter, it returns the item number
of the item selected by the user. In the parameter t heDi al 0g, it returns a pointer to
the dialog record for the dialog box where the event occurred. In all other cases, the

Di al ogSel ect function returns FALSE. When Di al ogSel ect returns TRUE, do
whatever is appropriate as a response to the event involving that item in that particular
dialog box; when it returns FALSE, do nothing.

Generally, only controls should be enabled in a dialog box; therefore your application
should normally respond only when Di al ogSel ect returns TRUE after the user clicks
an enabled control, such as the OK button.

The Di al ogSel ect function first obtains a pointer to the window containing the event.
For update and activate events, the event record contains the window pointer. For other
types of events, Di al ogSel ect calls the Window Manager function Fr ont W ndow
The Dialog Manager then makes this window the current graphics port by calling the
QuickDraw procedure Set Por t . Then Di al ogSel ect prepares to handle the event by
setting up text information if there are any editable text items in the active dialog box.

If the event is an update event for a dialog box, Di al ogSel ect calls the Window
Manager procedure Begi nUpdat e, the Dialog Manager procedure Dr awDi al og,

and then the Window Manager procedure EndUpdat e. When an item is a control
defined in a control (" CNTL') resource, the rectangle added to the update region is the
rectangle defined in the control resource, not the display rectangle defined in the item
list resource.

The Di al ogSel ect function handles the event as follows:

» In response to an activate or update event for the dialog box, Di al ogSel ect
activates or updates its window and returns FALSE.

= If a key-down event or an auto-key event occurs and there’s an editable text item
in the dialog box, Di al ogSel ect uses TextEdit to handle text entry and editing,
and Di al ogSel ect returns TRUE for a function result. Initsi t emHi t parameter,
Di al ogSel ect returns the item number.

» If a key-down event or an auto-key event occurs and there’s no editable text item in
the dialog box, Di al ogSel ect returns FALSE.

= If the user presses the mouse button while the cursor is in an editable text item,
Di al ogSel ect responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If the editable text item is disabled,
Di al ogSel ect returns FALSE. If the editable text item is enabled, Di al ogSel ect
returns TRUE and in its i t emHi t parameter returns the item number. Normally,
editable text items are disabled, and you use the Get Di al ogl t eniText function to
read the information in the items only after the OK button is clicked.

» If the user presses the mouse button while the cursor is in a control, Di al ogSel ect
calls the Control Manager function Tr ackCont r ol . If the user releases the mouse
button while the cursor is in an enabled control, Di al ogSel ect returns TRUE for a
function result and initsi t enHi t parameter returns the control’s item number. Your
application should respond appropriately—for example, by performing a command
after the user clicks the OK button.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

= If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, Di al ogSel ect returns TRUE for a function result and inits i t enHi t
parameter returns the item’s number. Generally, only controls should be enabled. If
your application creates a complex control—such as one that measures how far a dial
is moved—your application must handle mouse events in that item before passing the
event to Di al ogSel ect .

= If the user presses the mouse button while the cursor is in a disabled item, or if it is in
no item, or if any other event occurs, Di al ogSel ect does nothing.

= If the event isn’t one that Di al ogSel ect specifically checks for (if it’s a null event,
for example), and if there’s an editable text item in the dialog box, Di al ogSel ect
calls the TextEdit procedure TEIl dl e to make the insertion point blink.

SPECIAL CONSIDERATIONS

SEE ALSO

Because Di al ogSel ect handles only mouse-down events in a dialog box and
key-down events in a dialog box’s editable text items, you should handle other events

as appropriate before passing them to Di al ogSel ect . Likewise, when Di al ogSel ect
calls Tr ackCont r ol , it does not allow you to specify any action procedure necessary for
anything more complex than a button, radio button, or checkbox. If you need a more
complex control (for example, one that measures how long the user holds down the
mouse button or how far the user has moved an indicator), you can create your own
control or a picture or an application-defined item that draws a control-like object in
your dialog box. You must then test for and respond to those events yourself.

Within dialog boxes, use the procedures Di al ogCut, Di al ogCopy, Di al ogPast e, and
Di al ogDel et e to support Cut, Copy, Paste, and Clear commands in editable text boxes.

The Di al ogSel ect function is unreliable when running in versions of system software
earlier than System 7. You shouldn’t use this routine if you expect your application to
run under earlier versions of system software.

Listing 6-25 on page 6-79 illustrates the use of Di al ogSel ect to make the cursor blink
in editable text items during null events; Listing 6-29 on page 6-92 illustrates the use of
Di al ogSel ect to handle mouse events in a modeless dialog box; Listing 6-33 on

page 6-96 illustrates the use of Di al ogSel ect to handle key-down events in editable
text items; Listing 6-34 on page 6-98 illustrates the use of Di al ogSel ect to handle
activate events in a modeless dialog box.

Dialog Manager Reference 6-141

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

DrawDialog

DESCRIPTION

SEE ALSO

If you don’t use any other Dialog Manager routines for handling events in a dialog box,
you can use the Dr awDi al 0og procedure to draw its entire contents.

PROCEDURE Dr awDi al og (thebDi al og: Dial ogPtr);

t heDi al og A pointer to a dialog record.

The Dr awDi al og procedure draws the entire contents of the specified dialog box. The
Dr awDi al og procedure draws all dialog items, calls the Control Manager procedure
Dr awCont r ol s to draw all controls, and calls the TextEdit procedure TEUpdat e to
update all static and editable text items and to draw their display rectangles. The

Dr awDi al og procedure also calls the application-defined items’ draw procedures if
the items’ rectangles are within the update region.

The Di al ogSel ect, Mbdal Di al og, Al ert, St opAl ert, Not eAl ert, and

Caut i onAl ert routines use Dr awDi al og automatically. If you use Get NewDi al og
to create a dialog box but don’t use any of these other Dialog Manager routines when
handling events in the dialog box, you can use Dr awDi al og to redraw the contents of
the dialog box when it’s visible. If the dialog box is invisible, first use the Window
Manager procedure ShowW ndowand then use Dr awDi al og.

See the chapters “Window Manager” and “Event Manager” in this book for more
information on update and activate events for windows. The Dr awCont r ol s procedure
is described in the chapter “Control Manager” in this book. The TEUpdat e procedure is
described in the chapter “TextEdit” in Inside Macintosh: Text.

UpdateDialog

6-142

You can use the Updat eDi al og procedure to redraw the update region of a
specified dialog box. The Updat eDi al og procedure is also available as the
Updt Di al og procedure.

PROCEDURE Updat eDi al og (theDi al og: Di al ogPtr;
updat eRgn: RgnHandl e) ;

t heDi al og A pointer to a dialog record.
updat eRgn A handle to the window region that needs to be updated.

Dialog Manager Reference

DESCRIPTION

SEE ALSO

CHAPTER 6

Dialog Manager

The Updat eDi al og procedure redraws only the region in a dialog box specified in the
updat eRgn parameter. Because the Di al ogSel ect, Modal Di al og, Al ert,

St opAl ert, Not eAl ert, and Caut i onAl ert routines automatically call Dr awDi al og
to handle update events in your alert and dialog boxes, your application might never
need to use Updat eDi al og.

Instead of drawing the entire contents of the specified dialog box, Updat eDi al og
draws only the items in the specified update region. You can use Updat eDi al og in
response to an update event, and you should usually bracket it by calls to the Window
Manager procedures Begi nUpdat e and EndUpdat e. The Updat eDi al og procedure
uses the QuickDraw procedure Set Por t to make the dialog box the current graphics
port. For drawing controls, Updat eDi al og uses the Control Manager procedure
Updat eCont r ol s, which is faster than the Dr awCont r ol s procedure.

Listing 6-35 on page 6-99 illustrates the use of Updat eDi al og to respond to update
events in a modeless dialog box. See the chapter “Window Manager” in this book for
more information on update and activate events for windows. The Updat eCont r ol s
procedure is described in the chapter “Control Manager” in this book.

Application-Defined Routines

Myltem

If you supply an application-defined item in a dialog box, you must provide a draw
procedure for the Dialog Manager to use when displaying the item; that procedure is
referred to in this section as Myl t em If you want the Dialog Manager to play sounds
other than the system alert sound, you must provide your own sound procedure,
referred to in this section as MyAl er t Sound. To supplement the Dialog Manager’s
ability to handle events in the Macintosh multitasking environment, you should provide
an event filter function that the Dialog Manager calls whenever it displays alert boxes
and modal dialog boxes. This function is referred to as MyEvent Fi | t er.

To draw your own application-defined item in a dialog box, provide a draw procedure
that takes two parameters: a window pointer to the dialog box and an item number from
the dialog box’s item list resource. For example, this is how you should declare the
procedure if you were to name it Myl t em

PROCEDURE Myltem (t heW ndow. W ndowPtr; itemNo: |nteger);
t heW ndow A pointer to the dialog record for the dialog box containing an
application-defined item. If your procedure can draw in more than

one dialog box, this parameter tells your procedure which one to
draw in.

Dialog Manager Reference 6-143

JabBeuey bojeig n

DESCRIPTION

SEE ALSO

CHAPTER 6

Dialog Manager

i temNo A number corresponding to the position of an item in the item list
resource for the specified dialog box. If your procedure draws more
than one item, this parameter tells your procedure which one to draw.

The Dialog Manager calls your procedure to draw an application-defined item at the
time you display the specified dialog box. When calling your draw procedure, the Dialog
Manager sets the current port to the dialog box’s graphics port. Normally, you create an
invisible dialog box and then use the Window Manager procedure ShowW ndow to
display the dialog box.

Before you display the dialog box, use the Set Di al ogl t emprocedure to install this
procedure in the dialog record. Before using Set Di al ogl t em you must first use the
Cet Di al ogl t emprocedure to obtain a handle to an item of type user | t em

If you enable the application-defined item that you draw with this procedure, the

Modal Di al og procedure and the Di al ogSel ect function return the item’s number
when the user clicks that item. If your application needs to respond to a user action more
complex than this (for example, if your application needs to measure how long the user
holds down the mouse or how far the user drags the cursor), your application must track
the cursor itself. If you use Modal Di al og, your event filter function must handle events
inside the item; if you use Di al ogSel ect, your application must handle events inside
the item before handing events to Di al ogSel ect .

Listing 6-17 on page 6-59 illustrates a procedure that draws a bold outline around

a button of any size and shape; Listing 6-16 on page 6-58 shows the use of

Cet Di al ogl t emand Set Di al ogl t emto install this draw procedure in a dialog
record. The ShowW ndow procedure is described in the chapter “Window Manager”
in this book.

MyAlertSound

6-144

If you want the Dialog Manager to play sounds other than the system alert sound, write
your own sound procedure and call the Er r or Sound procedure to make it the current
sound procedure. For example, you can declare a sound procedure named

MyAl er t Sound, as shown here:

PROCEDURE MyAl ert Sound (soundNo: I nteger);

soundNo An integer from 0 to 3, representing the four possible alert stages.

Dialog Manager Reference

DESCRIPTION

CHAPTER 6

Dialog Manager

For each of the four alert stages that can be reported in the soundNo parameter, your
procedure can emit any sound that you define. When the Dialog Manager calls your
procedure, it passes 0 as the sound number for alert sounds specified by the si | ent
constant in the alert resource. The Dialog Manager passes 1 for sounds specified by the
soundl constant, 2 for sounds specified by the sound2 constant, and 3 for sounds
specified by the sound3 constant.

SPECIAL CONSIDERATIONS

When the Dialog Manager detects a click outside an alert box or a modal dialog box, it
uses the Sound Manager procedure SysBeep to play the system alert sound. By
changing settings in the Sound control panel, the user can select which sound to play as
the system alert sound. For consistency with system software and other Macintosh
applications, your sound procedure should call SysBeep whenever your sound
procedure receives sound number 1 (which you can represent with the sound1 constant).

SEE ALSO
Listing 6-3 on page 6-22 illustrates how to use MyAl er t Sound. The SysBeep procedure
is described in Inside Macintosh: Sound.

MyEventFilter

To supplement the Dialog Manager’s ability to handle events, your application should
provide an event filter function that the Dialog Manager calls when it displays alert
boxes and modal dialog boxes. Your event filter function should have three parameters
and return a Boolean value. For example, this is how you would declare it if you were to
name it MyEvent Fi l ter:

FUNCTI ON MyEvent Filter (theDi al og: Dial ogPtr;
VAR t heEvent: Event Record,;
VAR itemHit: Integer): Bool ean;

t heDi al og A pointer to a dialog record for an alert box or a modal dialog box.

t heEvent An event record returned by an Event Manager function such as
Wi t Next Event .
itenmHt A number corresponding to the position of an item in the item list

resource for the alert or modal dialog box.

Dialog Manager Reference 6-145

JabBeuey bojeig n

DESCRIPTION

6-146

CHAPTER 6

Dialog Manager

After receiving an event that it does not handle, your function should return FALSE.
When your function returns FALSE, Mbdal Di al og handles the event, which you pass
in the parameter t heEvent . (Your function can also change the event to simulate a
different event and return FALSE, which passes the event to the Dialog Manager for
handling.) If your function does handle the event, your function should return TRUE

as a function result, and in the i t enHi t parameter return the number of the item

that it handled. The Modal Di al og procedure and, in turn, the Al ert, Not eAl ert,
St opAl ert, and Cauti onAl ert functions then return this item number in their own
i tenHi t parameters.

Your event filter function should perform the following tasks:

» return TRUE and the item number for the default button if the user presses Return
or Enter

» return TRUE and the item number for the Cancel button if the user presses Esc or
Command-period

» update your windows in response to update events (this allows background
applications to receive update events) and return FALSE

» return FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor in an application-
defined item. For example, if you provide an application-defined item that requires you
to measure how long the user holds down the mouse button or how far the user drags
the cursor, use the event filter function to handle events inside that item.

The Mbdal Di al og procedure calls the Event Manager function Get Next Event with a
mask that excludes disk-inserted events; to receive disk-inserted events, your event filter
function can call the Event Manager procedure Set Syst enEvent Mask.

You can use the same event filter function in most or all of your alert and modal
dialog boxes.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. Your event filter function should always
check whether the Return key or Enter key was pressed and, if so, return the number of
the default button in the i t enHi t parameter and a function result of TRUE.

In all alert and dialog boxes, any buttons that are activated by key sequences should
invert to indicate which item has been selected. Use the Control Manager procedure

Hi |i teControl toinverta button for 8 ticks, long enough to be noticeable but not so
long as to be annoying. The Control Manager performs this action whenever users click
a button, and your application should do this whenever the user presses the keyboard
equivalent of a button click.

Dialog Manager Reference

SEE ALSO

Resources

CHAPTER 6

Dialog Manager

For modal dialog boxes that contain editable text items, your application should handle
menu bar access to allow use of your Edit menu and its Cut, Copy, Paste, Clear, and
Undo commands. Your event filter function should then test for and handle clicks

in your Edit menu and keyboard equivalents for the appropriate commands in your
Edit menu. Your application should respond by using the procedures Di al ogCut,

Di al ogCopy, Di al ogPast e, and Di al ogDel et e to support the Cut, Copy, Paste, and
Clear commands.

For an alert box, you specify a pointer to your event filter function in a parameter that
you pass to the Al ert, St opAl ert, Cauti onAl ert, and Not eAl ert functions. For a
modal dialog box, specify a pointer to your event filter function in a parameter that you
pass to the Mbdal Di al og procedure.

Listing 6-27 on page 6-88 illustrates an event filter function. The functions
Get Next Event and Set Syst enEvent Mask are described in the chapter
“Event Manager” in this book.

This section describes resources used by the Dialog Manager for displaying alerts and
dialog boxes. These resources are

» the dialog (' DLOG) resource, which specifies the window type, display rectangle,
and item list resource for a dialog box

» thealert (" ALRT") resource, which specifies alert sounds, a display rectangle, and an
item list resource for an alert box

» theitem list (' DI TL') resource, which specifies the items—such as buttons and static
text—to display in an alert box or a dialog box

» the dialog color table (" dct b') resource, which lets you supply a color graphics port
for a dialog box and also use colors other than the default colors in a dialog box

» the alert color table (" act b') resource, which lets you use colors other than the
default colors in an alert box

» the item color table (' i ct b') resource, which lets you change the default colors,
typeface, font style, and font size of items in an alert box or a dialog box

This section describes the structures of these resources after they are compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
files for these resources, see “Using the Dialog Manager” beginning on page 6-17 for
detailed information.

Dialog Manager Reference 6-147

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

The Dialog Resource

You can use a dialog resource to define a dialog box. A dialog resource is a resource of
type ' DLOG . All dialog resources must be marked purgeable, and they must have
resource ID numbers greater than 128.

To specify the items in a dialog box, you must also provide an item list resource,
described beginning on page 6-151. Use the Get NewDi al 0g function (described on
page 6-113) to create the dialog box defined in the dialog resource.

The format of a Rez input file for a dialog resource differs from its compiled output
format. This section describes the structure of a Rez-compiled dialog resource. If you
are concerned only with creating a dialog resource, see “Creating Dialog Boxes”
beginning on page 6-23.

Figure 6-42 shows the format of a compiled dialog resource.

Figure 6-42 Structure of a compiled dialog (' DLOG) resource

6-148

' DLOG resource type Bytes
} Rectangle } 8
Window definition 1D 2
Visibility 1
Reserved 1
Close box specification 1
Reserved 1
Reference constant 4
Item list ID 2
/ Window title /1 to 256
Alignment byte Oorl
Dialog box position 2

The compiled version of a dialog resource contains the following elements:

» Rectangle. This determines the dialog box’s dimensions and, possibly, its position.

(The last element in the dialog resource usually specifies a position for the dialog box.)

s Window definition ID.

o If the integer 0 appears here (as specified in the Rez input file by the dBoxPr oc
window definition ID), the Dialog Manager displays a modal dialog box.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

o If the integer 4 appears here (as specified in the Rez input file by the
noGr owbDocPr oc window definition ID), the Dialog Manager displays a
modeless dialog box.

o If the integer 5 appears here (as specified in the Rez input file by the
movabl eDBoxPr oc window definition ID), the Dialog Manager displays
a movable modal dialog box.

These types of dialog boxes are illustrated in Figure 6-6 on page 6-10, Figure 6-8 on
page 6-12, and Figure 6-7 on page 6-11, respectively.

= Visibility. If this is set to a value of 1 (as specified by the vi si bl e constant in the Rez
input file), the Dialog Manager displays this dialog box as soon as you call the
CGet NewDi al og function. If this is set to a value of 0 (as specified by the i nvi si bl e
constant in the Rez input file), the Dialog Manager does not display this dialog box
until you call the Window Manager procedure ShowW ndow

= Close box specification. This specifies whether to draw a close box. Normally, this is
set to a value of 1 (as specified by the goAway constant in the Rez input file) only for a
modeless dialog box to specify a close box in its title bar. Otherwise, this is set to a
value of 0 (as specified by the noGoAway constant in the Rez input file).

= Reference constant. This contains any value that an application stores here. For
example, an application can store a number that represents a dialog box type, or
it can store a handle to a record that maintains state information about the dialog
box or other window types. An application can use the Window Manager procedure
Set WRef Con at any time to change this value in the dialog record for a dialog box,
and you can use the Get WRef Con function to determine its current value.

= Item list resource ID. The ID of the item list resource that specifies the items—such as
buttons and static text—to display in the dialog box.

= Window title. This is a Pascal string displayed in the dialog box’s title bar only when
the dialog box is modeless.

= Alignment byte. This is an extra byte added if necessary to make the previous Pascal
string end on a word boundary.

= Dialog box position. This specifies the position of the dialog box on the screen. (If your
application positions dialog boxes on its own, don’t use these constants, because your
code may conflict with the Dialog Manager.)

o If 0x0000 appears here (as specified by the noAut oCent er constant in the Rez
input file), the Dialog Manager positions this dialog box according to the global
coordinates specified in the rectangle element of this resource.

o If 0XBOOA appears here (as specified by the al er t Posi ti onPar ent W ndow
constant in the Rez input file), the Dialog Manager positions the dialog box over
the frontmost window so that the window’s title bar appears. This is illustrated in
Figure 6-33 on page 6-63.

o If 0xB00A appears here (as specified by the al er t Posi t i onMai nScr een constant
in the Rez input file), the Dialog Manager centers the dialog box near the top of the
main screen. This is illustrated in Figure 6-34 on page 6-63.

o If 0x700A appears here (as specified in the Rez input file by the
al ert Posi ti onPar ent W ndowScr een constant), the Dialog Manager
positions the dialog box on the screen where the user is currently working.
This is illustrated in Figure 6-35 on page 6-64.

Dialog Manager Reference 6-149

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

The Alert Resource

You can use an alert resource to define an alert. An alert resource is a resource of type
" ALRT' . All alert resources must be marked purgeable, and they must have resource ID
numbers greater than 128.

To specify the items in an alert box, you must also provide an item list resource,
described beginning on page 6-151. To display the alert, you call either the Not eAl er t,
CautionAl ert, St opAl ert, or Al ert function and pass it the resource ID of the
alert resource. The Not eAl ert, Cauti onAl ert, St opAl ert, and Al ert functions
are described in “Creating Alerts” beginning on page 6-105.

The format of a Rez input file for an alert resource differs from its compiled output
format. This section describes the structure of a Rez-compiled alert resource. If you are
concerned only with creating an alert resource, see “Creating Alert Sounds and Alert
Boxes” beginning on page 6-18.

Figure 6-43 shows the structure of a compiled alert resource.

Figure 6-43 Structure of a compiled alert (" ALRT") resource

6-150

" ALRT' resource type Bytes
} Rectangle }8
Item list resource ID 2

4th-stage alert information | 3rd-stage alert information | 1
2nd-stage alert information | 1st-stage alert information | 1

Alert box position 2

The compiled version of an alert resource contains the following elements:

» Rectangle. This determines the alert box’s dimensions and, possibly, its position. (The
last element in the alert resource usually specifies a position for the alert box.)

s [Item list resource ID. The ID of the item list resource that specifies the items—such as
buttons and static text—to display in the alert box.

» Fourth-stage alert information. This specifies the response when the user repeats the
action that invokes this alert four or more consecutive times. The Dialog Manager
responds in the manner specified in the 4 bits that make up this element.

o If the first bit is set, the Dialog Manager draws a bold outline around the second
item in the item list resource (typically, the Cancel button) and—if your application
does not specify an event filter function—returns 2 when the user presses the
Return or Enter key at the fourth consecutive occurrence of the alert. If the first bit
is not set, the Dialog Manager draws a bold outline around the first item in the item
list resource (typically, the OK button) and—if your application does not specify an
event filter function—returns 1 when the user presses the Return or Enter key.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

o If the second bit is set, the Dialog Manager displays the alert box at this stage. If the
second bit is not set, the Dialog Manager doesn’t display the alert box at this stage.

o If neither of the next 2 bits is set, the Dialog Manager plays no alert sound at this
stage. If bit 3 is set and bit 4 is not set, the Dialog Manager plays the first alert
sound—by default, the system alert sound. If bit 3 is not set and bit 4 is set, the
Dialog Manager plays the second alert sound; by default, it plays the system alert
sound twice. If both bit 3 and bit 4 are set, the Dialog Manager plays the third alert
sound; by default, it plays the system alert sound three times. By defining your
own alert sound (described on page 6-144) and calling the Er r or Sound procedure
(described on page 6-104) to make it the current sound procedure, you can specify
your own alert sounds.

s Third-stage alert information. This specifies the response when the user repeats the
action that invokes this alert three consecutive times. The Dialog Manager interprets
these 4 bits in the manner described for the fourth-stage alert.

s Second-stage alert information. This specifies the response when the user repeats the
action that invokes this alert two consecutive times. The Dialog Manager interprets
these 4 bits in the manner described for the fourth-stage alert.

» First-stage alert information. This specifies the response for the first time that the user
performs the action that invokes this alert. The Dialog Manager interprets these 4 bits
in the manner described for the fourth-stage alert.

= Alert box position. This specifies the position of the alert box on the screen. (If your
application positions alert boxes on its own, don’t use these constants, because your
code may conflict with the Dialog Manager.)

o If 0x0000 appears here (as specified by the noAut oCent er constant in the Rez
input file), the Dialog Manager positions this alert box according to the global
coordinates specified in the rectangle element of this resource.

o If 0xBOOA appears here (as specified by the al er t Posi ti onPar ent W ndow
constant in the Rez input file), the Dialog Manager positions the alert box over the
frontmost window so that the window’s title bar appears. This is illustrated in
Figure 6-33 on page 6-63.

o If 0x300A appears here (as specified by the al ert Posi t i onMai nScr een constant
in the Rez input file), the Dialog Manager centers the alert box near the top of the
main screen. This is illustrated in Figure 6-34 on page 6-63.

o If 0x700A appears here (as specified in the Rez input file by the
al ert Posi ti onPar ent W ndowScr een constant), the Dialog Manager
positions the alert box on the screen where the user is currently working.
This is illustrated in Figure 6-35 on page 6-64.

The Item List Resource

You use an item list resource to specify items—such as buttons and text—in alert boxes
and dialog boxes. An item list resource is a resource with the resource type' DI TL' . All
item list resources must be marked purgeable, and they must have resource ID numbers
greater than 128.

Dialog Manager Reference 6-151

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

For an alert box, you specify the resource ID of the item list resource in an alert

resource (described beginning on page 6-150). For a dialog box that you create with

the Get NewDi al og function, you specify the resource ID of the item list resource in a
dialog resource (described beginning on page 6-148). For a dialog box that you create
with either the NewCol or Di al og function (described on page 6-115) or the NewDi al og
function (described on page 6-118), you use the Resource Manager function

Cet Resour ce to read the item list resource into memory and to provide a handle to
the item list resource in memory.

The format of a Rez input file for an item list resource differs from its compiled output
format. This section describes the structure of a Rez-compiled item list resource. If you
are concerned only with creating an item list resource, see “Providing Items for Alert and
Dialog Boxes” beginning on page 6-26.

Figure 6-44 shows the format of a compiled item list resource.

Figure 6-44 Structure of a compiled item list (" DI TL') resource

6-152

"DI TL' resource type Bytes

Item count minus 1

Z First item / (Variable)

(variable format)

7 /

Last item :
Variable
{ (variable format) { (vari)

The compiled version of an item list resource contains the following elements:

s Item count minus 1. This value is 1 less than the total number of items defined in
this resource.

= A variable number of items.

The format of each item depends on its type. Figure 6-45 shows the format of an item
defined to be a button, a checkbox, a radio button, a static text item, or an editable
text item.

The compiled version of a button, checkbox, radio button, static text item, or editable
text item consists of the following elements:

= Reserved. The Dialog Manager uses the element for storage.

» Display rectangle. This determines the size and location of the item in the alert box or
dialog box. The display rectangle is specified in coordinates local to the alert box
or dialog box; these coordinates specify the upper-left and lower-right corners of
the item.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

Figure 6-45 Structure of compiled button, checkbox, radio button, static text, and editable

text items
Button, checkbox, radio button, Bytes
static text, and editable text items
Reserved 4
Z Display rectangle /8
Enable flag| Item type (7 bits) 1
/ Text / 110256
Alignment byte Oor1l

» Enable flag. This specifies whether the item is enabled or disabled. If this bit is set,
the item is enabled and the Dialog Manager reports to your application whenever
mouse-down events occur inside this item.

» [tem type.

O

If this bit string is set to 4 (as specified in the Rez input file by the But t on
constant), then the item is a button.

If this bit string is set to 5 (as specified in the Rez input file by the CheckBox
constant), then the item is a checkbox.

If this bit string is set to 6 (as specified in the Rez input file by the Radi oBut t on
constant), then the item is a radio button.

If this bit string is set to 8 (as specified in the Rez input file by the St at i cText
constant), then the item is static text.

If this bit string is set to 16 (as specified in the Rez input file by the Edi t Text
constant), then the item is editable text.

s Text. This specifies the text that appears in the item. This element consists of a length
byte and as many as 255 additional bytes for the text. (“Titles for Buttons, Checkboxes,
and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text and
Editable Text Items” beginning on page 6-40 contain recommendations about appro-
priate text in items.)

O

O

O

For a button, checkbox, or radio button, this is the title for that control.
For a static text item, this is the text of the item.

For an editable text item, this can be an empty string (in which case the editable
text item contains no text), or it can be a string that appears as the default string in
the editable text item.

= Alignment byte. This is added if necessary to make the previous text string end on a
word boundary.

Dialog Manager Reference 6-153

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

Figure 6-46 shows the format for an element defined to be a control, an icon, or a
picture item.

Figure 6-46 Structure of compiled control, icon, and picture items

Control, icon, and picture items Bytes
Reserved 4
Z Display rectangle / 8
Enable flag| Item type (7 bits) 1
Reserved 1
Resource ID 2

The compiled version of a control, an icon, or a picture item consists of the following
elements:

» Reserved. The Dialog Manager uses the element for storage.

» Display rectangle. This determines the size and location of the item in the alert box
or dialog box. The display rectangle is specified in coordinates local to the alert or
dialog box.

» Enable flag. This specifies whether the item is enabled or disabled. If this bit is set, the
item is enabled and the Dialog Manager reports to your application whenever
mouse-down events occur inside this item.

» [tem type.

o If this 7-bit string is set to 7 (as specified in the Rez input file by the Cont r ol
constant), then the item is a button.

o If this is set to 32 (as specified in the Rez input file by the | con constant), then the
item is an icon.

o If this is set to 64 (as specified in the Rez input file by the Pi ct ur e constant), then
the item is a QuickDraw picture.
= Resource ID.
o For a control item, this is the resource ID of a' CTRL' resource.

o For an icon item, this is the resource ID of an' | CON' resource and, optionally, a
'cicn' resource

o For a picture item, this is the resource ID of a' PI CT' resource.

Figure 6-47 shows the format for an application-defined item.

6-154 Dialog Manager Reference

CHAPTER 6

Dialog Manager

Figure 6-47

Structure of a compiled application-defined item

Application-defined items Bytes
Reserved 4
Z Display rectangle / 8
Enable flag] Item type (7 bits) 1
Reserved 1

The compiled version of an application-defined item consists of the following elements:

Reserved. The Dialog Manager uses the element for storage.

Display rectangle. This determines the size and location of the application-defined
item in the alert box or dialog box. The display rectangle is specified in coordinates

local to the alert box or dialog box.

Enable flag. This specifies whether the application-defined item is enabled or
disabled. If this bit is set, the item is enabled and the Dialog Manager reports to
your application whenever mouse-down events occur inside this item.

Item type. This is set to a value of 0 (as specified in the Rez input file by the

User | t emconstant).

Figure 6-48 shows the format for a help item. (Help items are described in detail in the
chapter “Help Manager” of Inside Macintosh: More Macintosh Toolbox.)

Figure 6-48 Structure of compiled help items
Help items Bytes
Reserved 4
/ Reserved /s
Enable flag| Item type (7 bits)
Size
Hel pl t emtype
Resource ID 2
Item number 2
(HVBcanAppendhdl g only)

Dialog Manager Reference

6-155

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

The compiled version of a help item consists of the following elements:

Reserved. The Dialog Manager uses the element for storage.
Reserved. This should be set to 0.

Enable flag. This specifies whether the item is enabled or disabled. For help items, this
bit should never be set, because the Dialog Manager cannot report to your application
when mouse-down events occur inside the item.

Item type. This is set to 1 (as specified in the Rez input file by the Hel pl t emconstant).

Size. This specifies the number of bytes contained in the rest of this element. This is set
to 4 for an item identified by either the HVScanhdl g or HVBcanhr ct identifier, or it’s
set to 6 for an item identified by the HVScanAppendhdl g identifier.

Hel pl t emtype. This specifies the type of help item defined in the resource.

o For an item identified by the HVBcanhdl g identifier, this element contains the
value 1.

o For an item identified by the HVBcanhr ct identifier, this element contains the
value 2.

o For an item identified by the HVScanAppendhdl g identifier, this element contains
the value 8.

Resource ID. This is the resource ID of the resource containing the help messages for
this alert box or dialog box.

o For an item identified by either the HVMScanhdl g or HVScanAppendhdl g
identifier, this is the ID of an ' hdl g' resource.

o For an item identified by the HVBcanhr ct identifier, this is the ID of an
"hrct' resource.

Item number. This is available only for an item identified by the HVScanAppendhdl g
identifier. This is the item number within the alert box or dialog box after which the
help messages specified in the ' hdl g' resource should be displayed. These help
messages relate to the items that are appended to the alert box or dialog box. (The
item list resource does not contain these 2 bytes for items identified by either the
HMBcanhdl g or HVBcanhr ct identifier.)

The Dialog Color Table Resource

6-156

On color monitors, the Dialog Manager automatically adds color to your alert and dialog
boxes so that they match the colors of the windows, alert boxes, and dialog boxes used
by system software. These colors provide aesthetic consistency across all monitors, from
black-and-white displays to 8-bit color displays. On a color monitor, for example, the
racing stripes in the title bar of a modeless dialog box are gray, the close box and
window frame are in color, and the buttons and text are black.

When you create dialog resources, your application’s dialog boxes use the system’s
default colors. Typically, this is all you need to do to provide color for your dialog
boxes—with the following exceptions:

When you need to include a color version of an icon in a dialog box, you must create a
resource of type ' ci cn' with the same resource ID as the black-and-white ' | CON
resource specified in the item list resource. Plate 2 at the front of this book shows an
alert box that includes a color icon.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

= When you need to produce a blended gray color for outlining the inactive (that is,
dimmed) default button, you must create a dialog color table (' dct b') resource with
the same resource ID as the dialog resource.

“Using an Application-Defined Item to Draw the Bold Outline for a Default Button”
beginning on page 6-56 explains how to create a draw routine that outlines the default
button of a dialog box. If you deactivate a dialog box, you should dim its buttons and
use gray to draw the outline for the default button. Because Get NewDi al og and

NewDi al og supply black-and-white graphics ports for dialog boxes, you can create a
dialog color table resource for the dialog box to force the Dialog Manager to supply a
color graphics port. Then you can use a blended gray color for the outline for the default
button. (The NewCol or Di al og function supplies a color graphics port.)

Even when you create a dialog color table resource for drawing a gray outline, you
should not change the system’s default colors. If you feel absolutely compelled to use
nonstandard colors, you can use the Dialog Manager to specify colors other than the
default colors. Your application can specify its own colors for a dialog box by creating a
dialog color table (' dct b') resource with the same resource ID as the dialog resource
(described beginning on page 6-148). You don’t have to call any new routines to change
the colors used in dialog boxes. When you call the Get NewDi al og function, for
example, the Dialog Manager automatically attempts to load a dialog color table
resource with the same resource ID as the dialog resource.

Be aware, however, that nonstandard colors in your dialog boxes may initially confuse
your users. Also be aware that despite any changes you may make, users can alter the
colors of dialog boxes anyway by changing settings in the Color control panel.

WARNING

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. a

A dialog color table resource has exactly the same format as a window color table (that
is, a resource of type ' wet b'), which is described in the chapter “Window Manager” of
this book.

If the dialog box’s content color isn’t white, specify the i nvi si bl e constant in the
dialog resource. Use the Window Manager procedure ShowW ndowto display the dialog
box when it’s the frontmost window. If the dialog box is a modeless dialog box that is
not in front, use the Window Manager procedure ShowH de to display it.

The Alert Color Table Resource

On color monitors, the Dialog Manager automatically adds color to your alert boxes so
that they match the colors of the windows and alerts used by system software. When
you create alert resources, your application’s alert boxes use the system’s default colors.
Typically, this is all you need to do to provide color for your alert boxes. (However, to
include a color version of an icon in an alert box, you must add a resource of type

' cicn' with the same resource ID as the black-and-white ' | CON' resource specified in
the item list resource.)

Dialog Manager Reference 6-157

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

If you feel absolutely compelled to use nonstandard colors, you can use the Dialog
Manager to specify colors other than the default colors. Your application can specify its
own colors for an alert box by creating an alert color table (' act b') resource with the
same resource ID as the alert resource (described beginning on page 6-150). You don’t
have to call any new routines to change the colors used in alert or dialog boxes. When
you call the Al ert function, for example, the Dialog Manager automatically attempts to
load an alert color table resource with the same resource ID as the alert resource.

Be aware, however, that nonstandard colors in your alert boxes may initially confuse
your users. Also be aware that despite any changes you may make, users can alter the
colors of dialog boxes anyway by changing settings in the Color control panel.

WARNING

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. a

An alert color table resource has exactly the same format as a window color table
(" wet b') resource, which is described in the chapter “Window Manager” of this book.

The Item Color Table Resource

6-158

On color monitors, the Dialog Manager automatically draws the items in your dialog
and alert boxes so that they match the colors of the items used by system software in its
dialog and alert boxes. The Dialog Manager also uses the default system font when it
draws the text in the static text and editable text items of your dialog and alert boxes.

If you feel absolutely compelled to use nonstandard fonts and colors, you can use the
Dialog Manager to specify your own colors, typeface, font style, and font size.

Note

The Dialog Manager displays the typeface, font style, and font size you
specify only on color monitors. O

Your application can specify these by creating an item color table (' i ct b') resource
with the same resource ID as the dialog or alert box’s item list resource , and then
providing a dialog color table resource for a dialog box or an alert color table resource
for an alert box. You don’t have to call any new routines to change the colors, typefaces,
font styles, or font sizes used in dialog boxes. When you call the Get NewDi al og
function, for example, the Dialog Manager automatically attempts to load an item color
table resource with the same resource ID as the item list resource.

Note

To make it easier to localize your application for other script

systems, you should not change the font. Do not use a smaller font,

such as 9-point Geneva; some script systems, such as KanjiTalk,

require 12-point fonts. O

Also, be aware that nonstandard colors for items in your dialog and alert boxes may
initially confuse your users.

Dialog Manager Reference

CHAPTER 6

Dialog Manager

WARNING

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. a

If you want to provide an item color table resource for an alert box or a dialog box, you
must create an alert color table resource or a dialog color table resource, even if the item
color table resource has no actual color information and describes only static text and
editable text style changes.

An item color table resource is a resource of type ' i ¢t b' . All item color table resources
must have resource ID numbers greater than 128.

There is no Rez template available for creating item color table resources. When
you compile an item color table resource, it should follow the format illustrated in
Figure 6-49.

Figure 6-49 Structure of a compiled item color table resource

"ictb' resourcetype Bytes

Item data 2
First item

Item offset 2

) Item data 2
Last item

Item offset 2

First
control color table or / (Variable)

text style table

/

Last
control color table or / (Variable)
font style table

First font family / (Variable)

Last font family { (Variable)

Dialog Manager Reference 6-159

JabBeuey bojeig n

6-160

CHAPTER 6

Dialog Manager

You define an item color table resource for a dialog box or an alert box by specifying
these elements in a resource with the' i ct b' resource type:

= Items. These consist of a variable number of items, corresponding to those in an item
list resource with the same resource ID as this item color table resource.
= Control color tables and text style tables.

o A control color table defines the colors used in a control. Several controls can share
the same control color table.

o A text style table defines the font family, font style, font size, and color of text in an
editable text item or a static text item. Several editable text and static text items can
share the same text style table.

= Optionally, a list of font families. If you use any text style tables, you generally
conclude the item color table resource with a list of text strings, each of which
specifies a font family. Although you may specify font numbers instead of font names,
it's much more reliable to specify names, because system software may renumber
these fonts as they are installed and removed. For every editable text item and static
text item listed at the top of the item color table resource, specify a font family at the
bottom of the resource.

The information contained in an element depends on the type of item it describes:

» Item data. This contains information about how this item is described in the rest of
this resource.
o For a control, this is the length (in bytes) of its control color table.

o For a static text item or an editable text item, the bits of this element determine
which elements of the text style table to use and are interpreted as follows:

Bit Meaning

Change the font family.

Change the typeface.

Change the font size.

Change the font foreground color.
Add the font size.

13 Change the font background color.
14 Change the font mode.

= W N RO

15 The font element is an offset to the name.

= Item offset. The number of bytes from the beginning of the resource to either the
control color table or the text style table that describes this item.

When both the item data and item offset elements are set to 0, then the control or text
item is drawn with the default colors, typeface, font size, and font style. Even if only the
first few items of the dialog box have color style information, there must be room for all
of the items actually in the box (with the item data and item offset elements of the
unused entries set to 0).

Dialog Manager Reference

CHAPTER 6

Dialog Manager

For controls, the colors are described by a color table identical toa' cct b’ resource used
by the Control Manager. Multiple controls can use the same color table. If the resource
sets both the item data and the item offset element to 0, then the system’s default colors
are used for the control. The format of a control color table is illustrated in Figure 6-50.

Figure 6-50 Structure of a compiled control color table

Control color table Bytes
Reserved 4
Reserved 2
Number of control parts 2
First part identifier 2
Red component 2
Green component 2
Blue component 2

Last part identifier 2
Red component 2
Green component 2
Blue component 2

A control color table consists of the following elements:
» Reserved. This should always be set to a value of 0.
» Reserved. Again, should always be set to a value of 0.

= Number of control parts. For standard controls other than scroll bars, this should be
set to 3, because a standard control uses only three parts: frame, control body, and
text. For scroll bars, this should be set to 12; see the description of the control color
table resource in the chapter “Control Manager” for information on specifying the
colors for a scroll bar. To create a control that uses other parts, you must create a
custom ' CDEF' resource, as described in the chapter “Control Manager” in this book.

Dialog Manager Reference 6-161

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

= Part identifier. This is a value that identifies a part of the first control. The following
list shows the values and constants they represent for the standard controls other than
scroll bars. For information on the part identifiers for a scroll bar, see the description
of the control color table resource in the chapter “The Control Manager” in this book.
They can be listed in any order in the control color table.

Constant Value Control part

cFr ameCol or 0 Frame

cBodyCol or 1 Body

cText Col or 2 Text (such as titles)

» Red component. This is an integer that represents the intensity of the red component
of the color to use when drawing this control part.

» Green component. This is an integer that represents the intensity of the green
component of the color to use when drawing this control part.

» Blue component. This is an integer that represents the intensity of the blue component
of the color to use when drawing this control part.

» Part identifier, and the red, green, and blue color components for the next control part.
Specify color components for every part of this control whose color you want to
change. If a part is not listed in the control color table, the Dialog Manager draws it in
its default color.

Figure 6-51 shows the format of a text style table.

Figure 6-51 Structure of a compiled text style table

Text style table Bytes
Typeface 2
Font style 2
Font size 2
Red component for text 2
Green component for text 2
Blue component for text 2
Red component for background 2
Green component for background 2
Blue component for background 2
Mode 2

6-162 Dialog Manager Reference

CHAPTER 6

Dialog Manager

The text style table must be 20 bytes long, as shown in Figure 6-51. Multiple editable text
and static text items can use the same text style record. To display text in the standard
typeface, color, font size, and font style, set the item data and item offset elements for the
item to 0. Allocate space for all fields in the text style table, even if they are not used.

A text style table consists of the following elements (see Inside Macintosh: Text for a
discussion of font families, font style, and point sizes):

Typeface. This is the name of the font family to use. If bit 15 in the item data element is
set to 1, then this element contains an offset (in bytes) to a font name element at the
end of the resource. If bit 0 in the item data element is set to 1, then this element
contains the number of a font family. If bit 0 in the item data element is set to 0, this
element is set to 0, and the system default font is used.

Font style. This is the font style to use. If bit 1 in the item data element is set to 1, then
this element uses the bits of the low-order byte to describe which styles to apply to the
text. If all bits in the low-order byte are set to 0, the plain font style is used. The bit
numbers and the styles they represent are

Bit

value Style

0 Bold

1 Italic

2 Underline
3 Outline

4 Shadow

5 Condensed
6 Extended

Font size. This is the point size of the font. If bit 2 in the item data element is set to 1,
this element contains a value representing a point size. If bit 4 in the item data element
is set to 1, this element contains a value to add to the current point size of the text. If
bit 0 in the item data element is set to 0, this element is set to 0, and the system font
size (12) is used.

Text red color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the red component of the color to use when
drawing the text.

Text green color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the green component of the color to use when
drawing the text.

Text blue color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the blue component of the color to use when
drawing the text.

Background red color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the red component of the color
to use when drawing the background behind the text.

Dialog Manager Reference 6-163

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

= Background green color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the green component of the color
to use when drawing the background behind the text.

= Background blue color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the blue component of the color
to use when drawing the background behind the text.

= Mode. If bit 14 in the item data element is set to 1, this element contains an integer
that represents how characters are placed in the bit image. The values that the Dialog
Manager interprets and the constants that represent them are listed here. See Inside
Macintosh: Imaging for a discussion of source transfer modes.

Constant Value
scrO 1
sr cXor 2
srcBic 3

6-164 Dialog Manager Reference

CHAPTER 6

Dialog Manager

Summary of the Dialog Manager

Pascal Summary

Constants

CONST

{checking for AppendDl TL, ShortenDlI TL, CountDI TL using Gestalt function}
gestaltDl TLExt Attr = "ditl'; {Gestalt selector for AppendD TL, etc.}
gestal t DI TLExt Present = O0; {if this bit's set, then AppendD TL, }

{ ShortenDl TL, & CountDI TL are avail abl e}

{itemtypes for GetDialogltem SetDialogltent

ctriltem = 4, {add this constant to the next four constants}
btnCrl = 0; {standard button control}

chkCrl =1, {standard checkbox control}

radCtrl = 2; {standard radi o button}

rescrl = 3; {control defined in a control resource}
hel pltem 1; {hel p bal | oons}

st at Text = 8, {static text}

edi t Text = 16; {editabl e text}

i conltem = 32; {icon}

picltem = 64; { Qui ckDr aw pi ct ure}

userltem = 0; {application-defined iten}

i tenDi sabl e = 128; {add to any of the above to disable it}

{item nunbers of OK and Cancel buttons in alert boxes}
ok = 1; {first button is OK button}
cancel = 2; {second button is Cancel button}

{resource IDs of alert box icons}
st opl con = 0;
not el con = 1,
cautionl con 2;

{constants used for theMethod paraneter in AppendDl TL}
overl ayDI TL = 0; {overlay existing itens}
appendDl TLRi ght 1, {append at right}
appendDl TLBott om 2; {append at bottont

Summary of the Dialog Manager 6-165

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

{constants for procl D paraneter of NewDi al og, NewCol or Di al og}
dBoxProc = 1; {nodal dial og box}
noG owbDocPr oc = 4; {nodel ess dial og box}
novabl eDBoxPr oc 5; {novabl e nodal dial og box}

Data Types
TYPE DialogPtr = WndowPtr;
ResumeProcPtr = Prochktr;
SoundPr ocPtr = Prochktr;
Modal Fi |l ter ProcPtr = Prochktr;
Di al ogPeek = ~Di al ogRecord;
Di al ogRecord =
RECORD
wi ndow: W ndowRecord; {dial og wi ndow}
itens: Handl e; {itemlist resource}
t ext H: TEHandl e; {current editable text itent
editField: Integer; {editabl e text item nunber m nus 1}
edi t Open: I nt eger; {used internally}
aDefltem I nt eger; {default button item nunber}
END;

DI TLMet hod = I nteger;

Dialog Manager Routines

Initializing the Dialog Manager

PROCEDURE | ni t Di al ogs (resunmeProc: ResuneProcPtr);
PROCEDURE Er r or Sound (soundProc: SoundProcPtr);
PROCEDURE Set Di al ogFont (fontNum Integer); {also spelled Set DAFont}
Creating Alerts
{sone routines have 2 spellings--see Table 6-1 for the alternate spellings}
FUNCTI ON Al ert (alertID: Integer; filterProc:
Modal FilterProcPtr): Integer;
FUNCTI ON St opAl ert (alertID Integer; filterProc:
Modal FilterProcPtr): I nteger;
FUNCTI ON Not eAl ert (alertID: Integer; filterProc:
Modal Fil terProcPtr): Integer;
FUNCTI ON Cauti onAl ert (alertID: Integer; filterProc:
Modal FilterProcPtr): Integer;
FUNCTI ON Get Al ert St age . Integer;

PROCEDURE Reset Al ert St age;

6-166 Summary of the Dialog Manager

CHAPTER 6

Dialog Manager

Creating and Disposing of Dialog Boxes

{sone routines have 2 spellings--see Table 6-1 for the alternate spellings}

FUNCTI ON CGet NewDi al og (dialogl D Integer; dStorage: Ptr;
behi nd: WndowPtr): Dial ogPtr;

FUNCTI ON NewCol or Di al og (dStorage: Ptr; boundsRect:
Str255; visible: Bool ean;

Rect; title:
procl D: | nteger;

behi nd: W ndowPt r; goAwayFl ag: Bool ean;
ref Con: Longlnt; itens: Handle): DialogPtr;

FUNCTI ON NewDi al og (dStorage: Ptr; boundsRect: Rect; title:

Str255; visible: Bool ean;

procl D: | nteger;

behi nd: W ndowPtr; goAwayFl ag: Bool ean;
refCon: Longlnt; itenms: Handle): DialogPtr;

PROCEDURE C oseDi al og (theDi al og: Dial ogPtr);
PROCEDURE Di sposeDi al og (theDi al og: Dial ogPtr);

Manipulating Items in Alert and Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE Get Di al ogl tem (theDi al og: DialogPtr; itemNo: Integer;
VAR itenfType: Integer; VAR item Handl e;

VAR box: Rect);

PROCEDURE Set Di al ogl t em (theDi al og: DialogPtr; itemNo: Integer;
iteniType: Integer; item Handle; box: Rect);

PROCEDURE Hi deDi al ogltem (theDi al og: DialogPtr; itemNo: Integer);
PROCEDURE ShowDi al ogltem (theDi al og: DialogPtr; itemNo: Integer);

FUNCTI ON Fi ndDi al ogl t em (theDi al og: DialogPtr; thePt: Point): Integer;
PROCEDURE AppendDl TL (theDi al og: DialogPtr; theDl TL: Handl e;

t heMet hod: DI TLMet hod) ;
PRCCEDURE ShortenDl TL (theDi al og: DialogPtr; nunberltens: |nteger);
FUNCTI ON Count DI TL (thebDi al og: DialogPtr): Integer;

Handling Text in Alert and Dialog Boxes

{sone routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE Par amlext (paranD: Str255; paraml: Str255;
paran®: Str255; paranB: Str255);

PROCEDURE GCet Di al ogl tenifext (item Handle; VAR text: Str255);
PROCEDURE Set Di al oglteniText (item Handle; text: Str255);

PROCEDURE Sel ect Di al ogl t enTText

(theDi al og: DialogPtr; itemNo: Integer;

strtSel: Integer; endSel:
PROCEDURE Di al ogCut (theDi al og: Dial ogPtr);
PROCEDURE Di al ogCopy (theDi al og: Dial ogPtr);

Summary of the Dialog Manager

I nt eger);

6-167

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

PROCEDURE Di al ogPast e (theDi al og: Dial ogPtr);
PROCEDURE Di al ogDel et e (theDi al og: Dial ogPtr);

Handling Events in Dialog Boxes

{sone routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE Mbdal Di al og (filterProc: Modal FilterProcPtr; VAR itenHit:
I nt eger);

FUNCTI ON | sDi al ogEvent (theEvent: Event Record): Bool ean;

FUNCTI ON Di al ogSel ect (theEvent: Event Record; VAR thebDi al og:
DialogPtr; VAR itenHit: Integer): Bool ean;

PROCEDURE Dr awDi al og (theDi al og: Dial ogPtr);

PROCEDURE Updat eDi al og (theDi al og: Di al ogPtr; updateRgn: RgnHandl e);

Application-Defined Routines

PROCEDURE Myltem (theW ndow. WndowPtr; itemNo: Integer);
PROCEDURE MyAl ert Sound (soundNo: I nteger);
FUNCTI ON MyEvent Fi l ter (theDi al og: DialogPtr; VAR theEvent:

Event Record; VAR itenHit: Integer): Bool ean;

C Summary

Constants

enum {
/*checking for AppendD TL, ShortenDl TL, CountDl TL using Gestalt function*/
#idefine gestal tDI TLExt Attr "ditl' /*CGestalt selector*/
gestal t Dl TLExt Present = 0 /*if this bit's set, then AppendD TL, */
/* ShortenDl TL, & CountDI TL are avail abl e*/

b
enum {
/*itemtypes for GetDitem SetDItent/
ctrliltem = 4, /*add this constant to the next four constants*/
bt nCtrl = 0, [/*standard button control*/
chkCtrl = 1, /*standard checkbox control */
radCtrl = 2, [/*standard radi o button*/
resCtrl = 3, /*control defined in a control resource*/
st at Text =8, [*static text*/
edi t Text = 16, /*editable text*/
i conltem = 32, /*icon*/

6-168 Summary of the Dialog Manager

CHAPTER 6

Dialog Manager

picltem = 64, /*QuickDraw picture*/

userltem = 0, /*application-defined itent/

hel pl tem = 1, [/*help balloons*/

i tenDi sabl e = 128,/*add to any of the above to disable it*/

/*item nunbers of OK and Cancel buttons in alert boxes*/
ok =1, /*first button is OK button*/
cancel = 2, [*second button is Cancel button*/

/*resource | Ds of alert box icons*/

st opl con = 0,
not el con =1,
cautionlcon = 2

b

enum {

/*constants used for theMethod paraneter in AppendD TL*/
over | ayDl TL =0, /*overlay existing itens*/
appendDl TLRi ght =1, /*append at right*/
appendDl TLBottom = 2 / *append at bottont/

i

enum {

/*constants for proclD paranmeter of NewDi al og, NewCol or Di al og*/
dBoxPr oc = 1, /*nodal dialog box*/
noGr owDocPr oc = 4, [*nodel ess dial og box*/
novabl eDBoxPr oc =5 /*novabl e nodal dial og box*/

b

Data Types

t ypedef W ndowPtr Dial ogPtr

typedef struct D al ogRecord Di al ogRecord;
t ypedef struct D al ogRecord *Di al ogPeek

struct Dial ogRecor d{

W ndowRecord Wi ndow; /*di al og wi ndow*/

Handl e itens; /*itemlist resource*/

TEHandl e t ext H; /*current editable text itent/

short editField; /*editable text item nunber mnus 1*/
short edi t Open; /*used internally*/

short aDefltem /*default button item nunber*/

Summary of the Dialog Manager

6-169

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

t ypedef pascal void (*ResunmeProcPtr)(void);
typedef pascal void (*SoundProcPtr)(void);
typedef pascal Bool ean (*Modal FilterProcPtr)(Di al ogPtr thebDi al og,
Event Record *t heEvent, short *itenHit);
typedef short DI TLMet hod;

Dialog Manager Routines

Initializing the Dialog Manager
pascal void InitD al ogs (ResuneProcPtr resuneProc);

pascal void ErrorSound (SoundProcPtr soundProc);
pascal void SetD al ogFont (short fontNunm); /*al so spelled Set DAFont */

Creating Alerts

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/
pascal short Alert (short alertID Modal FilterProcPtr filterProc);
pascal short StopAlert (short alertID Mdal FilterProcPtr filterProc);
pascal short NoteAlert (short alertID ModalFilterProcPtr filterProc);
pascal short CautionAl ert (short alertID Modal FilterProcPtr filterProc);
#defi ne Get Al ert Stage() (* (short*) Ox0A9A);

pascal void ResetAlertStage (void);

Creating and Disposing of Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/
pascal Dial ogPtr Get NewDi al og
(short dialoglD, void *dStorage,
W ndowPt r behi nd);
pascal Dial ogPtr NewCol or Di al og
(void *dStorage, const Rect *boundsRect,
Const Str255Paramtitl e, Bool ean vi sibl e,
short procl D, WndowPtr behind,
Bool ean goAwayFl ag, | ong refCon, Handl e itens);
pascal Di al ogPtr NewDi al og
(void *dStorage, const Rect *boundsRect,
Const Str255Paramtitl e, Bool ean vi sibl e,
short procl D, WndowPtr behind,
Bool ean goAwayFl ag, |ong ref Con,
Handl e itens);
pascal void C oseDi al og (Di al ogPtr thebDial og);

pascal void Di sposeDi al og (Di al ogPtr thebDi al og);

6-170 Summary of the Dialog Manager

CHAPTER 6

Dialog Manager

Manipulating Items in Alert and Dialog Boxes

/*sonme routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal

pascal

pascal
pascal
pascal
pascal

pascal
pascal

void GetDial ogltem (Di al ogPtr thebDi al og, short itenNo,
short *itenifype, Handle *item Rect *box);

void SetDial ogltem (Di al ogPtr thebDi al og, short itenmNo, short
itenlType, Handle item const Rect *box);

void Hi deDi alogltem (DialogPtr thebDi alog, short itenNo);
voi d ShowDi al ogltem (DialogPtr thebDi al og, short itenNo);
short FindDial ogltem (D alogPtr theD al og, Point thePt);

voi d AppendDl TL (Di al ogPtr thebDi al og, Handl e theDI TL,

DI TLMet hod t heMet hod) ;
voi d ShortenDI TL (Di al ogPtr thebDi al og, short nunberltens);
short Count DI TL (Di al ogPtr thebDial og);

Handling Text in Alert and Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal

pascal
pascal
pascal
pascal
pascal

pascal
pascal

voi d Par anirext (Const St r 255Par am par an0,
Const St r 255Par am par antl,
Const St r 255Par am par ang,
Const St r 255Par am par anB) ;

voi d Cet Di al ogl t enirext

(Handl e item Str255 text);
voi d Set Di al ogl t eniText

(Handl e item Const Str255Param text);
voi d Sel ect D al ogl t enirext

(Dial ogPtr thebi al og, short itenm\o,
short strtSel, short endSel);

voi d Di al ogCut (Di al ogPtr thebDi al og);
voi d Di al ogCopy (Di al ogPtr thebDial og);
voi d Di al ogPast e (Di al ogPtr thebDial og);
voi d Di al ogDel ete (Di al ogPtr thebDi al og);

Handling Events in Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal
pascal
pascal

pascal
pascal

voi d Modal D al og (Modal FilterProcPtr filterProc, short *itenmHit);
Bool ean |sDi al ogEvent (const Event Record *t heEvent);

Bool ean Di al ogSel ect (const Event Record *theEvent,
Di al ogPtr *theDial og, short *itenmHit);

voi d DrawDi al og (Di al ogPtr thebDi al og);
voi d Updat eDi al og (Di al ogPtr thebDi al og, RgnHandl e updat eRgn);

Summary of the Dialog Manager 6-171

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

Application-Defined Routines

pascal void Myltem (WndowPtr theW ndow, short itenNo);
pascal void MyAl ert Sound (short soundNo);

pascal Bool ean MyEventFilter (Di al ogPtr theDial og, *EventRecord theEvent,
*short itenmHit);

Assembly-Language Summary

Data Structures

DialogRecord Data Structure

0 dW ndow 156 bytes window record for the alert box or dialog box
156 items long handle to the item list resource for the alert box or dialog box
160 teHandl e long handle to the current editable text item
164 editField word current editable text item
166 edi t Open word used internally
168 aDef I tem word item number of the default button

Global Variables

DASt ri ngs Handles to text strings specified with the Par anilext procedure
DABeeper Address of current sound procedure

Dl gFont Font number for text in dialog boxes and alert boxes

ACount Alert stage number (0 through 3) of the last alert

ANunber Resource ID of last alert

ResunmePr oc Address of resume procedure (should not be used in System 7)

6-172 Summary of the Dialog Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	Dialog Manager, Part 3 (Reference and Summary)
	Dialog Manager Reference
	Data Structure
	The Dialog Record

	Dialog Manager Routines
	Initializing the Dialog Manager
	Creating Alerts
	Creating and Disposing of Dialog Boxes
	Manipulating Items in Alert and Dialog Boxes
	Handling Text in Alert and Dialog Boxes
	Handling Events in Dialog Boxes

	Application-Defined Routines
	Resources
	The Dialog Resource
	The Alert Resource
	The Item List Resource
	The Dialog Color Table Resource
	The Alert Color Table Resource
	The Item Color Table Resource

	Summary of the Dialog Manager
	Pascal Summary
	Constants
	Data Types
	Dialog Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Dialog Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

