CHAPTER 3

Menu Manager

Here is the structure

of a menu record:

TYPE Menulnfo = {menu record}
RECORD
menul D I nt eger; {nunber that identifies the menu}
menuW dt h: I nt eger; {width (in pixels) of the menu}
menuHei ght: I nteger; {height (in pixels) of the nenu}
menuPr oc: Handl e; {menu definition procedure}
enabl eFl ags: Longl nt; {indi cates whet her nenu and }
{ menu itens are enabl ed}
nmenuDat a: Str 255; {title of menu}
{itenDefinitions} {variable-length data that }

END;

Field descriptions
menul D

menuW dt h
menuHei ght
menuPr oc

enabl eFl ags

menuDat a

itenDefinitions

{ defines the nenu itens}

A number that identifies the menu. Each menu in your application
must have a unique menu ID. Your application specifies the menu
ID when you create the menu. Thereafter you can use the menu ID
and the Get MenuHandl e function to get a handle to the menu’s
menu record.

When you define hierarchical menus, you must use a number from
1 through 235 for the menu ID of a submenu of an application; use a
number from 236 through 255 for the submenu of a desk accessory.

The horizontal dimensions of the menu, in pixels.
The vertical dimensions of the menu, in pixels.

A handle to the menu definition procedure of the menu. The Menu
Manager uses this menu definition procedure to draw the menu.

A value that represents the enabled state of the menu title and
the first 31 items in the menu. All menu items greater than 31
are enabled by default and can be disabled only by disabling the
entire menu.

A string that defines the title of the menu. Although the menuDat a
field is defined by the data type St r 255 in the Menul nf o data
structure, the Menu Manager allocates only the storage necessary
for the title: the number of characters in the title of the string plus 1.

Variable-length data that defines the characteristics of each menu
item in the menu. If the menu uses the standard menu definition
procedure, this data can be conceptually defined in this manner:

itemData: ARRAY[1..X] OF
itenBtring: String; {text of menu iten}
i tenl con: Byt e; {icon nunber m nus 256}

3-96 Menu Manager Reference

CHAPTER 3

Menu Manager

i tenmCOnd: Char ; {keyboard equi val ent or }
{ value ($1B) indicating }
{ itemhas a subnenu, or }
{ ($1C) if itemhas }
{ a script code, or }
{ ($1D) if itemMs '"ICON }
{ shoul d be reduced, or }
{ ($1E) if itemhas an }
{ "SICN icon}

i temvark: Char ; {mar ki ng character or }

{ menu | D of subnenu}
itenttyl e: Style; {style of menu text}

endMar ker ; Byt e; {contains 0 if no }

{ nore nenu itens}
The menu definition procedure maintains the information about the
menu items. You typically define your menu items in ' MENU
resources, and the Menu Manager stores information describing
your items in the menu’s menu record.

Your application should not directly change the values of any fields in a menu record.
Use Menu Manager routines to change the characteristics of menu items or to make
other changes to a menu.

The Menu List

The menu list contains information about the menus in a menu bar, about submenus,
and about pop-up menus. A menu list contains handles to the menu records of zero,
one, or more menus and contains other information that the Menu Manager uses to
manage menus.

The | ni t Menus procedure creates the current menu list of an application. The current
menu list contains handles to the menu records of all menus currently in the menu bar
and handles to the menu records of any submenus or pop-up menus inserted into the
menu list by your application. The menu bar shows the titles, in order, of all menus
(other than submenus or pop-up menus) in the menu list.

The initial menu list created by | ni t Menus does not contain handles to any menus. The
Menu Manager dynamically allocates storage in a menu list as menus are added to and
deleted from the menu list.

Your application should not directly change or access the information in a menu list. You
should use Menu Manager routines to create a menu list and to add menus to or remove
menus from the current menu list.

You typically define your application’s menu bar in an' MBAR' resource and create a
menu list using the Get NewiVBar function. The Get NewVBar function returns a handle
to a menu list. You can set the current menu list to the menu list returned by

Get NewiVBar using the Set MenuBar procedure.

Menu Manager Reference 3-97

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

The structure of the menu list is private to the Menu Manager. For conceptual purposes,
however, its general structure is defined here.

TYPE Dynani cMenulLi st =

RECORD
| ast Menu: I nt eger; {offset to last pull-down nmenu}
lastRight: Integer; {pixel location of right edge }
{ of rightnost nmenu in nmenu bar}
nbResl D: I nt eger; {upper 13 bits are the resource ID of nenu }
{ bar defn function, low 3 bits the variant}
nenu: ARRAY[1..X] {variable array with one record for }
OF MenuRec; { each nenu}
| ast HVenu: | nt eger; {offset to | ast subnenu or pop-up nmenu}
menuTi t| eSave: {handl e to bits behind inverted nenu title}
pi xMapHandl e;
hMenu: ARRAY[1..Y] {variable array with one record for }
OF HMenuRec; { each subnenu or pop-up nenu}
END;

The Menu Manager dynamically allocates the records that contain handles to the menu
records of menus in the menu bar, submenus, and pop-up menus. These records can be
defined conceptually as the MenuRec and HVenuRec data types. The Menu Manager
uses a data structure similar to that of the MenuRec data type to store information about
pull-down menus in the menu list.

TYPE MenuRec =

RECORD
menuOH: MenuHandl e; {handle to nenu's nmenu record}
nmenulLeft: I nt eger; {pixel location of left edge }
{ of this nenu}
END;

The Menu Manager stores information about submenus and pop-up menus at the end of
a menu list in a data structure similar to that of the HVenuRec data type.

TYPE HMenuRec =

RECORD
menuHOH: MenuHandl e; {handl e to nenu's menu record}
reserved: I nt eger; {reserved}

END;

The Menu Color Information Table Record

3-98

Your application’s menu color information table defines the standard color for the
menu bar, titles of menus, text and characteristics of menu items, and background color
of a displayed menu. If you do not add any entries to this table, the Menu Manager
draws your menus using the default colors, black on white. You can add colors to your

Menu Manager Reference

CHAPTER 3

Menu Manager

menus by adding entries to your application’s menu color information table by using
Menu Manager routines or by defining these entries in an' ntt b’ resource. Note that
the menu color information table uses a format that is different from the standard color
table format.

The Menu Manager maintains information about an application’s menu color

information table as an array of menu color entry records.

TYPE MCTable = ARRAY[O0..0] OF MCEntry; {menu col or table}
MCTabl ePtr = ~MCTabl e; {pointer to a nenu col or table}
MCTabl eHandl e = "MCTabl ePtr;{handle to a nenu col or tabl e}

A menu color entry is defined by the MCEnt r y data type.

TYPE MCEntry = {menu col or entry}
RECORD
nct | D I nt eger; {menu ID or O for menu bar}
nctltem I nt eger; {menu item nunmber or 0 for } z
{ menu title} g
nct RGB1: RGBCol or; {usage depends on nttlD and } =
{ nctliten} §
nct RGB2: RGBCol or; {usage depends on ncttlD and } ‘c'jg
{ nctiten
nct RGB3: RGBCol or; {usage depends on nttlD and }
{ nctlitent
nct RGB4: RGBCol or; {usage depends on nttlD and }
{ nctliten}
nctreserved: | nt eger; {reserved}
END;
MCEntryPtr = "MCEntry; {pointer to a nenu col or entry}

The first two fields of a menu color entry record, ntt | Dand ntt | t em define whether
the entry is a menu bar entry, a menu title entry, or a menu item entry. The following
four fields specify color information for whatever type of entry the ntt | Dand ntt |t em
fields describe. The value of the nTt | Dfield in the last entry in a menu color information
table is —99, and the rest of the fields of the last entry are reserved. The Menu Manager
automatically creates the last entry in a menu color information table; your application
should not use the value -99 as the menu ID of a menu if you wish to add a menu color
entry for it.

The Menu Manager creates your application’s menu color information table the first
time your application calls | ni t Menus or | ni t Pr ocMenu. It creates the menu color
information table as initially empty except for the last entry, which indicates the end
of the table.

Menu Manager Reference 3-99

CHAPTER 3

Menu Manager

Table 3-7 shows how the Menu Manager interprets the nct | Dand nct | t emfields for
each type of menu color entry in a menu color information table.

Table 3-7 Color information for menu entries
ID Item RGB1 RGB2 RGB3 RGB4
Menu bar 0 0 Default Default back- Default Default bar
menu title ground color item color color
color of menus
Menu title N<>0 0 Menu title Bar color Default Background
color item color color of
menu
Menu item N<>0 M<>0 Mark color Item text Keyboard Background
color equivalent color of
color menu
Last entry -99 Reserved Reserved Reserved Reserved Reserved

A menu bar entry is defined by a menu color entry record that contains 0 in both the

nct | Dand net | t emfields. You can define only one menu bar entry in a menu color
information table. If you don’t provide a menu bar entry for your application’s menu
color information table, the Menu Manager uses the standard menu bar colors (black text
on a white background), and it uses the standard colors for the other menu elements.
You can provide a menu bar entry to specify default colors for the menu title, the
background of a displayed menu, the items in a menu, and the menu bar. The color
information fields for a menu bar entry are interpreted as follows:

= ntt RGBI specifies the default color for menu titles. If a menu doesn’t have a menu
title entry, the Menu Manager uses the value in this field as the color of the menu title.

= Tt RGB2 specifies the default color for the background of a displayed menu. If a
menu doesn’t have a menu title entry, the Menu Manager uses the value in this field
as the color of the menu’s background when it is displayed.

= Tt RGB3 specifies the default color for the items in a displayed menu. If a menu item
doesn’t have a menu item entry or a default color defined in a menu title entry, the
Menu Manager uses the value in this field as the color of the menu item.

= nTt RGB4 specifies the default color for the menu bar. If a menu doesn’t have a menu
bar entry (and doesn’t have any menu title entries), the Menu Manager uses the
standard colors for the menu bar.

A menu title entry is defined by a menu color entry record that contains a menu ID in
the ntt | Dfield and 0 in the nct | t emfield. You can define only one menu title entry for
each menu. If you don’t provide a menu title entry for a menu in your application’s
menu color information table, the Menu Manager uses the colors defined by the menu
bar entry. If a menu bar entry doesn’t exist, the Menu Manager uses the standard colors

3-100 Menu Manager Reference

CHAPTER 3

Menu Manager

(black on white). You can provide a menu title entry to specify a color for the title and
background of a specific menu and a default color for its items. The color information
fields for a menu title entry are interpreted as follows:

= ntt RGBI specifies the color for the menu title of the specified menu. If a menu
doesn’t have a menu title entry, the Menu Manager uses the default value defined
in the menu bar entry.

= nTt RGB2 specifies the default color for the menu bar. If a menu color information
table doesn’t have a menu bar entry, the Menu Manager uses the value in this field as
the color of the menu bar. If a menu bar entry already exists, the Menu Manager
replaces the value in the ntt RGB2 field of the menu title entry with the value defined
in the nct RGB4 field of the menu bar entry.

= nTt RGB3 specifies the default color for the items in the menu. If a menu item doesn’t
have a menu item entry or a default color defined in a menu bar entry, the Menu
Manager uses the value in this field as the color of the menu item.

= nTt RGB4 specifies the color for the background of the menu.

A menu item entry is defined by a menu color entry record that contains a menu ID in
the ntt | Dfield and an item number in the ntt | t emfield. You can define only one
menu item entry for each menu item. If you don’t provide a menu item entry for an item
in your application’s menu color information table, the Menu Manager uses the colors
defined by the menu title entry (or by the menu bar entry if the menu containing the
item doesn’t have a menu title entry). If neither a menu title entry nor a menu bar entry
exists, the Menu Manager draws the mark, text, and keyboard equivalent in black. You
can provide a menu item entry to specify a color for the mark, text, and keyboard
equivalent of a specific menu item. The color information fields for a menu item entry
are interpreted as follows:

= ntt RGBI specifies the color for the mark of the menu item. If a menu item doesn’t
have a menu item entry, the Menu Manager uses the default value defined in the
menu title entry or the menu bar entry.

= nTt RGB2 specifies the color for the text of the menu item. If a menu item doesn’t have
a menu item entry, the Menu Manager uses the default value defined in the menu title
entry or the menu bar entry. The Menu Manager also draws a black-and-white icon of
a menu item using the same color as defined by the nct RGB2 field. (Use a' ci cn'
resource to provide a menu item with a color icon.)

» nTt RGB3 specifies the color for the keyboard equivalent of the menu item. If a menu
item doesn’t have a menu item entry, the Menu Manager uses the default value
defined in the menu title entry or the menu bar entry.

= ntt RGB4 specifies the color for the background of the menu. If the menu color
information table doesn’t have a menu title entry for the menu this item is in, or
doesn’t have a menu bar entry, the Menu Manager uses the value in this field as the
background color of the menu. If a menu title entry already exists, the Menu Manager
replaces the value in the nct RGB4 field of the menu item entry with the value defined
in the nct RGB4 field of the menu title entry (or with the nct RGB2 field of the menu
bar entry).

Menu Manager Reference 3-101

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

You can use the Get MCl nf o function to get a copy of your application’s menu color
information table and the Set MCEnt r i es procedure to set entries of your application’s
menu color information table, or you can provide ' nct b' resources that define the color
entries for your menus.

The Get Menu, Get NewMBar, and Cl ear MenuBar routines can also modify the entries in
the menu color information table. The Get Menu function looks for an ' ntt b' resource
with a resource ID equal to the value in the menul D parameter. If it finds one, it adds the
entries to the application’s menu color information table.

The Get NewVBar function builds a new menu color information table when it creates
the new menu list. If you want to save the current menu color information table, call
Get MCI nf o before calling Get NewivBar .

The O ear MenuBar procedure reinitializes both the current menu list and the menu
color information table.

Menu Manager Routines

3-102

The Menu Manager includes routines for creating menus, changing the characteristics of
menu items, and handling user choice of menu commands. The Menu Manager also
provides routines for adding items to and deleting items from menus, counting the
number of items in a menu, getting a handle to a menu’s menu record, disposing of
menus, calculating the dimensions of a menu, highlighting the menu bar, and managing
entries in your application’s menu color information table.

Some Menu Manager routines can be accessed using more than one spelling of the
routine’s name, depending on the interface files supported by your development
environment. For example, Get MenuHandl e is also available as Get MHand| e.
Table 3-8 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 3-8 Mapping between new and previous names of Menu Manager routines
New name Previous name

AppendResMenu AddResMenu

Del et eMCENtri es Del MCEntri es

Del et eMenul t em Del Menul t em

Di sposeMCl nf o Di spMCI nf o

Get MenuHandl e Get MHandl e

Get Menul t enrext Getltem

I nsert Menul tem I nsMenul tem

Set Menul t enlext Setltem

Menu Manager Reference

CHAPTER 3

Menu Manager

Initializing the Menu Manager

InitMenus

You can use the | ni t Menus procedure to initialize the Menu Manager.

You can use the | ni t Pr ocMenu procedure to set the current menu list so that it uses a
custom menu bar definition function if necessary.

DESCRIPTION

The I ni t Menus procedure allocates space for your application’s current menu list in
your application’s heap. Your application needs to call | ni t Menus only once to
initialize the Menu Manager and the current menu list for your application.

PROCEDURE | ni t Menus;

The | ni t Menus procedure creates the current menu list with no menus, submenus, or
pop-up menus. | ni t Menus also creates your application’s menu color information
table. After allocating the menu color information table, | ni t Menus looks for an
"nmetb' resource with resource ID 0. You can provide an' ntt b’ resource with a
resource ID of 0 as one of your application’s resources if you want to use colors other
than the default colors for your application’s menu bar and menus. If | ni t Menus finds
and successfully loads an ' nct b’ resource, it adds the information contained in that
resource to the menu color information table (using Set MCEnt ri es).

Jabeue\ nusiy -

The | ni t Menus procedure also draws an empty menu bar.

SPECIAL CONSIDERATIONS

SEE ALSO

Your application must initalize QuickDraw, the Font Manager, and the Window Manager
(using the I ni t Graf, | ni t Font's, and | ni t W ndows procedures) before initializing
the Menu Manager.

To set up the menus for your application’s menu bar, use Get NewiVBar and

Set MenuBar, described on page 3-111 and page 3-112, respectively. You can also add
menus to the current menu list using the | nser t Menu procedure, described on
page 3-108.

To remove all menus from the current menu list, use the Cl ear MenuBar procedure,
described on page 3-110.

If your application uses its own menu bar definition function, use the | ni t Pr ocMenu
procedure to set the mbRes| Dfield of the current menu list to the resource ID of your
custom ' MBDF' resource.

Menu Manager Reference 3-103

CHAPTER 3

Menu Manager

See “The Menu Color Information Table Resource” on page 3-155 for a description of the
"nttb' resource.

See the chapter “Window Manager” in this book for a description of the | ni t W ndows
procedure. See Inside Macintosh: Imaging and Inside Macintosh: Text for descriptions of the
I ni t Graf and I ni t Font s procedures.

InitProcMenu

DESCRIPTION

Apple recommends that you use the standard menu bar definition function. However, if
your application provides its own menu bar definition function, use the | ni t Pr ocMenu
procedure to set the nbRes| Dfield of the current menu list to the resource ID of your
custom ' MBDF' resource.

PROCEDURE | nit ProcMenu (reslD: Integer);

resl D The resource ID of your application’s menu bar definition function in the
upper 13 bits of this parameter; the variant in the lower 3 bits. You must
use a resource ID greater than $100.

For resources of type ' MBDF' , Apple reserves resource IDs $000 through
$100 for its own use.

The | ni t Pr ocMenu procedure creates the current menu list if it hasn’t already been
created by a previous call to | ni t Menus. The | ni t Pr ocMenu procedure stores the
resource ID that you specify in the mbRes| Dfield of the current menu list. The Menu
Manager uses the menu bar definition function referred to in this field to draw the menu
bar and to perform basic operations on menus.

SPECIAL CONSIDERATIONS

SEE ALSO

3-104

The resource ID of your application’s menu bar definition function is maintained in the
current menu list until your application next calls | ni t Menus; | ni t Menus initializes
the mbRes| D field with the resource ID of the standard menu bar definition function.
This can affect applications such as development environments that control other
applications that may call | ni t Menus.

See the description of the | ni t Menus procedure on page 3-103; you should use
I ni t Menus if your application uses the standard menu bar definition function.

Menu Manager Reference

CHAPTER 3

Menu Manager

Creating Menus

NewMenu

You can use the NewMenu or Get Menu function to create a pull-down menu, although
you usually create all the menus in your menu bar at once by providing an' MBAR
resource and using the Get NewBar function. See “Getting and Setting the Menu Bar”
on page 3-112 for information on creating a menu bar. You typically use the NewVenu or
Get Menu function to create submenus or pop-up menus.

The NewMenu function creates a menu with the specified title, assigns it the specified
menu ID, and creates a menu record for the menu. Use AppendMenu,

I nsert Menul t em AppendResMenu, or | nser t ResMenu to add items to menus you
create with NewiVenu.

The Get Menu function creates a menu with the title, items, and characteristics defined in
a specified ' MENU resource.

Both NewMenu and Get Menu allocate space in your application’s heap for the menu
record and return a handle to the menu’s newly created menu record.

To add menus created by NewiMenu or Get Menu to the current menu list, use the
I nsert Menu procedure. To update the menu bar with any new menu titles, use
Dr awMenuBar .

You can use the NewMenu function to create an empty menu with a specified title and
menu ID. In most cases you should store information about your menus (such as their
titles, items, and characteristics) in resources; use the Get Menu or Get NewVBar function
to create menus from resource definitions.

FUNCTI ON NewMenu (nenul D: Integer; menuTitle: Str255): MenuHandl e;

nmenul D The menu ID of the menu. (Note that this is not the resource ID of a
' MENU resource.) The menu ID is a number that identifies the menu. Use
positive menu IDs for menus belonging to your application. Use negative
menu IDs for desk accessories (except for submenus of a desk accessory).
Submenus must have menu IDs from 1 through 255. For submenus of an
application, use menu IDs from 1 through 235; for submenus of a desk
accessory, use menu IDs from 236 through 255. Apple reserves the menu
ID of 0.

menuTi tl e The title of the new menu. Note that in most cases you should store
the titles of menus in resources, so that your menu titles can be more
easily localized.

Menu Manager Reference 3-105

Jabeue\ nusiy -

DESCRIPTION

CHAPTER 3

Menu Manager

The NewMenu function creates a menu with the specified title, assigns it the specified
menu ID, creates a menu record for the menu, and returns a handle to the menu record.
It sets up the menu record to use the standard menu definition procedure (and it reads
the standard menu definition procedure into memory if it isn’t already there). The
NewVenu function does not insert the newly created menu into the current menu list.

After creating a menu with NewVenu, use AppendMenu, | nsert Menul t em
AppendResMenu, or | nsert ResMenu to add menu items to the menu. To add a menu
created by Newivenu to the current menu list, use the | nser t Menu procedure. To update
the menu bar with any new menu titles, use the Dr amVenuBar procedure.

SPECIAL CONSIDERATIONS

SEE ALSO

GetMenu

To release the memory associated with a menu that you created using NewiVenu, first
call Del et eMenu to remove the menu from the current menu list and to remove any
entries for this menu in your application’s menu color information table; then call

Di sposeMenu to dispose of the menu’s menu record. After disposing of a menu, use
Dr awMenuBar to update the menu bar.

If the NewiMenu function is unable to create the menu record, it returns NI L as its
function result.

For information on how to add items to a menu, see the description of AppendMenu on
page 3-124, | nser t Menul t emon page 3-126, AppendResMenu on page 3-128, and

| nsert ResMenu on page 3-129. For information on | nser t Menu, see page 3-108. To
dispose of a menu, see the description of Del et eMenu on page 3-109 and Di sposeMenu
on page 3-140.

3-106

Use the Get Menu function to create a menu with the title, items, and other characteristics
defined ina' MENU resource with the specified resource ID. You typically use this
function only when you create submenus; you can create all your pull-down menus at
once using the Get NewMBar function, and you can create pop-up menus using the
standard pop-up control definition function.

FUNCTI ON Get Menu (resourcel D. I nteger): MenuHandl e;
r esour cel D The resource ID of the' MENU resource that defines the characteristics of

the menu. (You usually use the same number for a menu'’s resource ID as
the number that you specify for the menu ID in the menu resource.)

Menu Manager Reference

DESCRIPTION

CHAPTER 3

Menu Manager

The Get Menu function creates a menu according to the specified menu resource, and it
also creates a menu record for the menu. It reads the menu definition procedure
(specified in the menu resource) into memory if it isn’t already in memory, and it stores
a handle to the menu definition procedure in the menu record. The Get Menu function
does not insert the newly created menu into the current menu list.

After reading the' MENU' resource, the Get Menu function searches for an ' nct b’
resource with the same resource ID as the' MENU resource. If Get Menu finds this

'nmct b' resource, it uses the information in the ' ntt b' resource to add entries for this
menu to the application’s menu color information table. The Get Menu function uses
Set MCEnt ri es to add the entries defined by the ' nTt b' resource to the application’s
menu color information table. If Get Menu doesn’t find this ' ntt b' resource, it uses the
default colors specified in the menu bar entry of the application’s menu color
information, or, if the menu bar entry doesn’t exist, it uses the standard colors for

the menu.

The Get Menu function returns a handle to the menu record of the menu. You can use the
returned menu handle to refer to this menu in most Menu Manager routines. If Get Menu
is unable to read the menu or menu definition procedure from the resource file,

Get Menu returns NI L.

After creating a menu with Get Menu, you can use AppendMenu, | nsert Menul t em
AppendResMenu, or | nsert ResMenu to add more menu items to the menu if necessary.

To add a menu created by Get Menu to a menu list, use the | nser t Menu procedure. To
update the menu bar with any new menu titles, use the Dr awmVenuBar procedure.

Storing the definitions of your menus in resources (especially menu titles and menu

items) makes your application easier to localize.

WARNING
Menus in a resource must not be purgeable. a

SPECIAL CONSIDERATIONS

To release the memory associated with a menu that you read from a resource file using
Get Menu, first call Del et eMenu to remove the menu from the menu list and to remove
any menu title entry or menu item entries for this menu in the application’s menu color
information table, then call the Resource Manager procedure Rel easeResour ce to
dispose of the menu’s menu record. Use Dr awenuBar to update the menu bar.

WARNING

Call Get Menu only once for a particular menu. If you need the handle of
a menu currently in the menu list, use Get MenuHandl e or the Resource
Manager function Get Resour ce. a

Menu Manager Reference 3-107

Jabeue\ nusiy -

SEE ALSO

CHAPTER 3

Menu Manager

For a description of the ' MENU' resource, see “The Menu Resource” on page 3-151; for a
sample ' MENU resource in Rez format, see Listing 3-2 on page 3-48. For information on
the ' nct b’ resource, see “The Menu Color Information Table Resource” on page 3-155.

For details on how to add items to a menu, see the description of AppendMenu on
page 3-124, | nser t Menul t emon page 3-126, AppendResMenu on page 3-128, and

I nsert ResMe
on page 3-109.
page 3-113.

nu on page 3-129. To remove a menu, see the description of Del et eMenu
To update the menu bar, use the Dr awMenuBar procedure, described on

Adding Menus to and Removing Menus From the Current Menu List

InsertMenu

After creating a menu with NewMenu or Get Menu, use the | nser t Menu procedure to
insert the menu into the current menu list. Use the Del et eMenu procedure to delete
a menu from the current menu list; use the C ear MenuBar procedure to remove all
menus from the current menu list.

3-108

Use the | nser

PROCEDURE |

t heMenu

beforel D

t Menu procedure to insert an existing menu into the current menu list.
nsert Menu (theMenu: MenuHandl e; beforel D: Integer);

A handle to the menu record of the menu. The NewMenu and Get Menu
functions return a handle to a menu record that you can use in this
parameter.

A number that indicates where in the current menu list the menu should
be inserted. | nser t Menu inserts the menu into the current menu list
before the menu whose menu ID equals the number specified in the

bef or el D parameter. If the number in the bef or el D parameter is 0 (or
itisn’t the ID of any menu in the menu list), | nser t Menu adds the new
menu after all others (except before the Help, Keyboard, and Application
menus). If the menu is already in the current menu list or the menu list is
already full, | nsert Menu does nothing.

You can specify —1 for the bef or el D parameter to insert a submenu into
the current menu list. The submenus in the submenu portion of the menu
list do not have to be currently associated with a hierarchical menu item;
you can store submenus in the menu list and later specify that a menu
item has a submenu if needed. However, note that the MenuKey function
scans all menus in the menu list for keyboard equivalents, including
submenus that are not associated with any menu item. You should not
define keyboard equivalents for submenus that are in the current menu
list but not associated with a menu item.

Menu Manager Reference

DESCRIPTION

CHAPTER 3

Menu Manager

You can also specify —1 for the bef or el D parameter to insert a pop-up
menu into the current menu list. However, if you use the standard
pop-up control definition function, the pop-up control automatically
inserts the menu into the current menu list according to the needs of the
pop-up control.

The | nser t Menu procedure inserts into the current menu list the menu identified by the
specified handle to a menu record. To update the menu bar to reflect the new menu, use
Dr awienuBar.

SEE ALSO
For details on how to update your application’s menu bar, see the description of
Dr awienuBar on page 3-113.
DeleteMenu
Use the Del et eMenu procedure to delete an existing menu from the current menu list.
PROCEDURE Del et eMenu (rmenul D: | nteger);
menul D The menu ID of the menu to delete from the current menu list. If the
menu list does not contain a menu with the specified menu ID,
Del et eMenu does nothing.
DESCRIPTION

The Del et eMenu procedure deletes the menu identified by the specified menu ID

from the current menu list, and it removes all color entries for that menu from the
application’s menu color information table. Del et eMenu does not release the memory
occupied by the menu’s menu record. To release the memory occupied by the menu’s
associated data structures, use Di sposeMenu if you created the menu using NewiVenu;
use the Resource Manager procedure Rel easeResour ce if you created the menu using
Get Menu or you read the resource in using Get NewivBar .

The Del et eMenu procedure first checks the submenu portion of the current menu list
for a menu ID with the specified ID. If it finds such a menu, it deletes that menu and
returns. If Del et eMenu doesn’t find the menu in the submenu portion, it checks the
regular portion of the current menu list. This allows a desk accessory to delete a
submenu without deleting an application’s menu whose menu ID might conflict with
the menu ID defined by a desk accessory.

After deleting a menu, use Dr awmenuBar to update the menu bar to reflect the changes
to the current menu list.

Menu Manager Reference 3-109

Jabeue\ nusiy -

SEE ALSO

CHAPTER 3

Menu Manager

For details on how to dispose of a menu’s associated data structures using

Di sposeMenu, see “Disposing of Menus” on page 3-140. For information on the
Rel easeResour ce procedure, see the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.

ClearMenuBar

DESCRIPTION

SEE ALSO

Use the Cl ear MenuBar procedure to delete all menus from the current menu list.

PROCEDURE Cl ear MenuBar ;

The Cl ear MenuBar procedure deletes all menus from the current menu list and deletes
all color entries from the application’s menu color information table. Cl ear MenuBar
does not release the memory occupied by any of the menus’ menu records or the menu
color information table. To release the memory occupied by the data structures
associated with the menus, use Di sposeMenu for each menu you created using
NewiMenu; use Rel easeResour ce for each menu you created using Get Menu or if you
read the resource in using Get NewiVBar .

After deleting all menus from the current menu list, use Dr amVenuBar to update the
appearance of the menu bar.

To update your application’s menu bar, see the description of Dr amMenuBar on
page 3-113. For information on the Rel easeResour ce procedure, see the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

Getting a Menu Bar Description From an 'MBAR' Resource

3-110

You usually create your application’s menu bar by doing the following:

» defining the order and resource ID of your menus in an' MBAR resource
» defining the menus in" MENU resources

» reading in these descriptions using the Get NewBar function

» setting the current menu list to the menu list returned by Get NewiVBar

» updating the menu bar using Dr awvenuBar

Menu Manager Reference

CHAPTER 3

Menu Manager

GetNewMBar

DESCRIPTION

Use the Get NewVBar function to read in the definition of a menu bar from an' MBAR
resource.

FUNCTI ON Get NewiVBar (nenuBar| D: | nteger): Handl e;

menuBar | D The resource ID of an' MBAR resource that specifies the menus for a
menu bar.

The Get NewMBar function reads in the definition of a menu bar and its associated
menus from an' MBAR' resource. The ' MBAR' resource identifies the order of menus
contained in its menu bar. For each menu, it also specifies the menu’s resource ID. The
Get NewMBar function reads in each menu from the' MENU resource with the resource
ID specified in the ' MBAR' resource.

The Get NewVBar function creates a menu list for the menu bar defined by the ' MBAR
resource and returns a handle to the menu list. (If the resource isn’t already in memory,
Get NewiVBar reads it into memory.) If Get NewiVBar can’t read the resource,

Get NewiVBar returns NI L. Get NewiVBar uses Get Menu to read in each individual menu.

After reading in menus from an' MBAR' resource, use Set MenuBar to make the menu
list created by Get NewiVBar the current menu list. Then use Dr awMenuBar to update
the menu bar.

To release the memory occupied by the data structures associated with the menus in a
menu list, use Di sposeMenu for each menu you created using NewMenu; use the
Resource Manager procedure Rel easeResour ce for each menu you created using
Get Menu or if you read the resource in using Get NewMBar . To release the memory
occupied by a menu list, use the Memory Manager procedure Di sposeHand! e.

SPECIAL CONSIDERATIONS

The Get NewMBar function first saves the current menu list and then clears the current
menu list and your application’s menu color information table. It then creates a

new menu list. Before returning a handle to the new menu list, the Get NewMBar
function restores the current menu list to the previously saved menu list, but

Cet NewMBar does not restore the previous menu color information table. To save

and then restore your application’s current menu color information table, call the

Get MCI nf o function before Get NewiVBar and call the Set MCl nf 0 procedure afterward.

While you supply only the resource ID of an' MBAR' resource to the Get NewivBar
function, your application often needs to use the menu IDs defined in each of your
menus’ ' MENU resources. Most Menu Manager routines require either a menu ID
or a handle to a menu record to perform operations on a specific menu. For menus in
the current menu list, you can use the Get MenuHandl e function to get the handle to
a menu record of a menu with a given menu ID.

Menu Manager Reference 3-111

Jabeue\ nusiy -

SEE ALSO

CHAPTER 3

Menu Manager

For a description of the ' MENU' resource, see “The Menu Resource” on page 3-151; for a
sample ' MENU resource in Rez format, see Listing 3-2 on page 3-48. For a description of
the ' MBAR' resource, see “The Menu Bar Resource” on page 3-155; for a sample ' MBAR
resource in Rez format, see Listing 3-4 on page 3-49. For information on the ' ntt b’
resource, see “The Menu Color Information Table Resource” on page 3-155. For
information about the Resource Manager, see Inside Macintosh: More Macintosh Toolbox.

Getting and Setting the Menu Bar

You can use the Get MenuBar function to get a handle to a copy of the current menu list.
Use the Set MenuBar procedure to set the current menu bar to a menu list previously
returned by Get MenuBar or Get NewiBar . You can get the height of the menu bar using
the Get MBar Hei ght function.

GetMenuBar

DESCRIPTION

Use the Get MenuBar function to get a handle to a copy of the current menu list.

FUNCTI ON Get MenuBar: Handl e;

The Get MenuBar function creates a copy of the current menu list and returns a handle
to the copy. You can save the returned menu list and then add menus to or remove
menus from the current menu list (using | nser t Menu, Del et eMenu, or

C ear MenuBar). You can later restore the saved menu list using Set MenuBar .

To release the memory occupied by a saved menu list, use the Memory Manager’s
Di sposeHand! e procedure.

WARNING

Get MenuBar doesn’t copy the menu records, just the menu list (which
contains handles to the menu records). Do not dispose of any menus in a
saved menu list if you wish to restore the menu list later. a

SetMenuBar

3-112

Use the Set MenuBar procedure to set the current menu list to a specified menu list.
PROCEDURE Set MenuBar (menuList: Handl e);

menuli st A handle to a menu list that specifies the menus for a menu bar. You
should specify a handle returned by Get MenuBar or Get NewiVBar .

Menu Manager Reference

DESCRIPTION

CHAPTER 3

Menu Manager

The Set MenuBar procedure copies the given menu list to the current menu list. As with
CGet MenuBar, Set MenuBar doesn’t copy the menu records, just the menu list (which
contains handles to the menu records).

You can use Set MenuBar to restore a menu list that you previously saved using
Get MenuBar or to set the current menu list to a menu list created by Get NewiVBar .

The Set MenuBar procedure sets only the current menu list; to update the menu bar
according to the new menu list, use the Dr awmVenuBar procedure.

GetMBarHeight

DESCRIPTION

Use the Get MBar Hei ght function if you need to determine the current height of the
menu bar. When the Roman script system is the current system script, the menu bar is
20 pixels high. If a non-Roman script is the current system script, the menu bar may be
greater than 20 pixels high to accommodate the current system font.

FUNCTI ON Get MBar Hei ght : | nt eger;

The Get MBar Hei ght function returns the current height, in pixels, of the menu bar.

Drawing the Menu Bar

Whenever your application adds menus to or removes menus from the current menu
list, you should update the titles of the menus in the menu bar using the Dr amVenuBar
procedure. If you change the enabled state of a menu, you should call Dr awMenuBar to
update the menu title accordingly. Alternatively, you can use the | nval MenuBar
procedure instead of Dr awvenuBar to invalidate the menu bar; this causes the Event
Manager to redraw the menu bar as part of its normal processing of update events.

DrawMenuBar

DESCRIPTION

Use the Dr awMenuBar procedure to draw the menu bar based on the current menu list.

PROCEDURE Dr awienuBar ;

The Dr awMenuBar procedure draws (or redraws) the menu bar according to the current
menu list. You must call Dr amvenuBar to update the menu bar after adding menus to or
deleting menus from the current menu list using | nser t Menu or Del et eMenu, after
setting the current menu list using Set MenuBar, after changing the enabled state of a
menu, or after any other routine that changes the current menu list.

Menu Manager Reference 3-113

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

InvalMenuBar

DESCRIPTION

Use the | nval MenuBar procedure to invalidate the menu bar.

PROCEDURE | nval MenuBar ;

The | nval MenuBar procedure marks the menu bar as changed and in need

of updating. When the Event Manager scans update regions for regions that require
updating, the Event Manager also checks to determine whether the menu bar

requires updating (because of a call to | nval MenuBar). If the menu bar needs updating,
the Event Manager calls the Dr awMenuBar procedure to draw the menu bar.

You can use | nval MenuBar instead of Dr amVenuBar to minimize blinking in the menu
bar. For example, if you have several application-defined routines that can change the
enabled state of a menu and each calls Dr awMenuBar, you can replace the calls to

Dr awVenuBar with calls to | nval MenuBar . In this way the menu bar is redrawn only
once instead of multiple times in quick succession. If you need to make immediate
changes to the menu bar, use Dr amvenuBar . If you want to redraw the menu bar at most
once each time through your event loop, use | nval MenuBar. The | nval MenuBar
procedure is available only in System 7.

Responding to the User’s Choice of a Menu Command

3-114

When the user presses the mouse button while the cursor is in the menu bar, your
application should call the MenuSel ect function to allow the user to choose a
command from the menu bar. If the user presses the mouse button while the cursor is
over a pop-up menu that does not use the standard pop-up control definition function,
your application should call the PopUpMenuSel ect function to allow the user to make
a choice from the pop-up menu.

You should also allow the user to choose a menu command by typing a keyboard
equivalent. When the user presses a key on the keyboard, your application should
determine if the Command key was pressed at the same time, and, if so, your application
should call the MenuKey function to map this keyboard combination to any
corresponding Command-key equivalent.

If the user chooses an item, both the MenuSel ect and MenuKey functions highlight the
title of the menu containing the chosen item and report the user’s choice to your
application. Your application should perform the corresponding command and, when
finished, should unhighlight the menu title using the Hi | i t eMenu procedure to indicate
to the user that the command is completed.

If the user releases the mouse button while the cursor is over a disabled item or types the
keyboard equivalent of a disabled item, MenuSel ect and MenuKey do not report the
menu ID or menu item of the item. To determine if the user chose a disabled item (for
example, so that your application can provide assistance to the user or explain to the
user why the command is disabled), you can use the MenuChoi ce function to return the
menu ID and menu item of the disabled menu command.

Menu Manager Reference

MenuSelect

CHAPTER 3

Menu Manager

Your application should adjust its menus before calling MenuSel ect or MenuKey. For
example, you should enable or disable menu items as appropriate and add any
applicable checkmarks or dashes to items that show attributes.

DESCRIPTION

Use the MenuSel ect function to allow the user to choose a menu item from the menus
in your application’s menu bar.

FUNCTI ON MenuSel ect (startPt: Point): Longlnt;

start Pt The point (in global coordinates) representing the location of the cursor at
the time the mouse button was pressed.

When the user presses the mouse button while the cursor is in the menu bar, your
application receives a mouse-down event. To handle mouse-down events in the menu
bar, pass the location of the cursor at the time of the mouse-down event as the st art Pt
parameter to MenuSel ect . The MenuSel ect function displays and removes menus as
the user moves the cursor over menu titles in the menu bar, and it handles all user
interaction until the user releases the mouse button.

As the user drags the cursor through the menu bar, the MenuSel ect function highlights
the title of the menu the cursor is currently over and displays all items in that menu. If
the user moves the cursor so that it is over a different menu, the MenuSel ect function
removes the previous menu and unhighlights its menu title.

The MenuSel ect function highlights and unhighlights menu items as the user drags the
cursor over the items in a menu. The MenuSel ect function highlights a menu item if
the item is enabled and the cursor is currently over it; it removes such highlighting when
the user moves the cursor to another menu item. The MenuSel ect function does not
highlight disabled menu items.

If the user chooses an enabled menu item (including any item from a submenu), the
MenuSel ect function returns a value as its function result that indicates which menu
and menu item the user chose. The high-order word of the function result contains the
menu ID of the menu, and the low-order word contains the item number of the menu
item chosen by the user. The MenuSel ect function leaves the menu title highlighted;
after performing the chosen task your application should unhighlight the menu title
using the Hi | i t eMenu procedure.

If the user chooses an item from a submenu, MenuSel ect returns the menu ID of the
submenu in the high-order word and the item chosen by the user in the low-order word
of its function result. The MenuSel ect function also highlights the title of the menu in
the menu bar that the user originally displayed in order to begin traversing to the
submenu. After performing the chosen task, your application should unhighlight the
menu title.

Menu Manager Reference 3-115

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

If the user releases the mouse button while the cursor is over a disabled item, in the
menu bar, or outside of any menu, the MenuSel ect function returns 0 in the high-order
word of its function result and the low-order word is undefined. If it is necessary for
your application to find the item number of the disabled item, your application can call
MenuChoi ce to return the menu ID and menu item.

If the user chooses an enabled item in a menu that a desk accessory has inserted into
your application’s menu list, MenuSel ect uses the Syst emMenu procedure to process
this occurrence and returns 0 to your application in the high-order word.

SPECIAL CONSIDERATIONS

When the MenuSel ect function pulls down a menu, it stores the bits behind the menu
as a relocatable object in the application heap of your application.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

3-116

The I ni t Menus and | ni t Pr ocMenu procedures initialize the MenuHook and

MBar Hook global variables to 0. If you choose, you can store the addresses of routines
that MenuSel ect calls in these global variables. The MenuHook global variable contains
the address (if any) of a routine that MenuSel ect calls repeatedly while the mouse
button is down. MenuSel ect does not pass any parameters to this routine.

The MBar Hook global variable contains the address (if any) of a routine that

MenuSel ect calls after a menu title is highlighted and the menu rectangle is calculated
but before the menu is drawn. The menu rectangle is the rectangle (in global
coordinates) in which the menu will be drawn. MenuSel ect passes a pointer to the
menu rectangle on the stack. If you provide the address of a routine in the MBar Hook
global variable, it should normally return 0 in the DO register, indicating that

MenuSel ect should continue; returning 1 causes MenuSel ect to cancel its operation
and return immediately to the application.

The MenuSel ect function uses the global variable MBar Enabl e to determine if all
menus in the current menu bar belong to a desk accessory or an application. If the

MBar Enabl e global variable is nonzero, then all menus in the current menu bar belong
to a desk accessory. If the MBar Enabl e global variable is 0, then all menus in the current
menu bar belong to an application. If you're writing a desk accessory, you may need to
set the MBar Enabl e global variable to a nonzero value; if you're writing an application,
you should not change the value of the MBar Enabl e global variable.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID
of the submenu, not the menu to which the submenu is attached.

For information on adjusting your application’s menus before calling MenuSel ect, see
“Adjusting the Menus of an Application” beginning on page 3-73.

Menu Manager Reference

MenuKey

CHAPTER 3

Menu Manager

See the description of the Hi | i t eMenu procedure on page 3-119 for details on how to
unhighlight a menu. For information on how to determine if the user chose a disabled
item, see the description of the MenuChoi ce function on page 3-118.

DESCRIPTION

If the user presses another key while holding down the Command key, call the MenuKey
function to determine if the keyboard combination maps to the keyboard equivalent of a
menu item in a menu in the current menu list.

FUNCTI ON MenuKey (ch: Char): Longlnt;

ch The 1-byte character representing the key pressed by the user in
combination with the Command key.

The MenuKey function maps the given character to the menu and menu item with that
keyboard equivalent. The MenuKey function returns as its function result a value that
indicates the menu ID and menu item that has the keyboard equivalent corresponding to
the given character.

The MenuKey function does not distinguish between uppercase and lowercase letters. It
takes the 1-byte character passed to it and calls the Upper Text procedure (which
provides localizable uppercase conversion of the character). Thus, MenuKey translates
any lowercase character to uppercase when comparing a keyboard event to keyboard
equivalents. This allows a user to invoke a keyboard equivalent command, such as the
Copy command, by pressing the Command key and “c” or “C”. For consistency between
applications, you should define the keyboard equivalents of your commands so that they

appear in uppercase in your menus.

If the given character maps to an enabled menu item in the current menu list, MenuKey
highlights the menu title of the chosen menu, returns the menu ID in the high-order
word of its function result, and returns the chosen menu item in the low-order word of
its function result. After performing the chosen task, your application should
unhighlight the menu title using the Hi | i t eMenu procedure.

If the given character does not map to an enabled menu item in the current menu list,
MenuKey returns 0 in its high-order word and the low-order word is undefined.

If the given character maps to a menu item in a menu that a desk accessory has inserted
into your application’s menu list, MenuSel ect uses the Syst emVenu procedure to
process this occurrence and returns 0 to your application in the high-order word.

You should not define menu items with identical keyboard equivalents. The MenuKey
function scans the menus from right to left and the items from top to bottom. If you have
defined more than one menu item with identical keyboard equivalents, MenuKey returns
the first one it finds.

Menu Manager Reference 3-117

Jabeue\ nusiy -

SEE ALSO

CHAPTER 3

Menu Manager

The MenuKey function first searches the regular portion of the current menu list for a
menu item with a keyboard equivalent matching the given key. If it doesn’t find one
there, it searches the submenu portion of the current menu list. If the given key maps to
a menu item in a submenu, MenuKey highlights the menu title in the menu bar that the
user would normally pull down to begin traversing to the submenu. Your application
should perform the desired command and then unhighlight the menu title.

You shouldn’t assign a Command-Shift-number key sequence to a menu item as its
keyboard equivalent; Command-Shift-number key sequences are reserved for use as
' FKEY' resources. Command-Shift-number key sequences are not returned to your
application, but instead are processed by the Event Manager. The Event Manager
invokes the ' FKEY' resource with a resource ID that corresponds to the number that
activates it.

Apple reserves the Command-key codes $1B (Control-[) through $1F (Control-_) to
indicate meanings other than keyboard equivalents. MenuKey ignores these character
codes and returns a function result of 0 if you specify any of these values in the ch
parameter. Your application should not use these character codes for its own use.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID
of the submenu, not the menu to which the submenu is attached.

WARNING

Do not define a “circular” hierarchical menu—that is, a hierarchical
menu in which a submenu has a submenu whose submenu is

a hierarchical menu higher in the chain. If MenuKey detects a circular
hierarchical menu, it creates a system error with error number 86. a

To unhighlight a menu, use the Hi | i t eMenu procedure, described on page 3-119. To
provide support for keyboard equivalents other than Command-key equivalents, see the
discussion of ' KCHR' resources in Inside Macintosh: Text.

MenuChoice

DESCRIPTION

3-118

If your application needs to find the item number of a disabled menu item that the
user attempted to choose, you can use the MenuChoi ce function to return the chosen
menu item.

FUNCTI ON MenuChoi ce: Longlnt;

If the user chooses a disabled menu item, the MenuChoi ce function returns a value that
indicates which menu and menu item the user chose. The high-order word of the

Menu Manager Reference

CHAPTER 3

Menu Manager

function result contains the menu ID of the menu, and the low-order word contains the
item number of the menu item chosen by the user.

The MenuChoi ce function returns 0 as the low-order word of its function result if the
mouse button was released while the cursor was in the menu bar or outside the menu.

SPECIAL CONSIDERATIONS

HiliteMenu

The Menu Manager updates the global variable MenuDi sabl e whenever a menu is
displayed. As the user moves the cursor over each item, the Menu Manager calls the
menu definition procedure of the menu to update the MenuDi sabl e global variable to
reflect the current menu ID and menu item. The standard menu definition procedure
updates the global variable MenuDi sabl e appropriately. If your application uses its
own menu definition procedure, your menu definition procedure should support this
feature; if you use a menu definition procedure that does not update the global variable
MenuDi sabl e appropriately, the result returned by MenuChoi ce is undefined.

DESCRIPTION

Jabeue\ nusiy -

You can use the Hi | i t eMenu procedure to highlight or unhighlight menu titles. For
example, after performing a menu command chosen by the user, use the Hi | i t eMenu
procedure to unhighlight the menu title.

PROCCEDURE Hi | i teMenu (rmenul D: | nteger);

nmenul D The menu ID of the menu whose title should be highlighted. If the menu
title of the specified menu is already highlighted, Hi | i t eMenu does
nothing. If the menu ID is 0 or the specified menu ID isn’t in the current
menu list, H | i t eMenu unhighlights whichever menu title is currently
highlighted (if any).

The MenuSel ect and MenuKey functions highlight the title of the menu containing
the item chosen by the user. After performing the chosen task, your application
should unhighlight the menu title by calling Hi | i t eMenu and passing 0 in the
menul Dparameter.

The Hi | i t eMenu procedure highlights a menu title by first saving the bits behind the
title rectangle and then drawing the highlighted title. Hi | i t eMenu unhighlights a menu
title by restoring the bits behind the menu title.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID
of the submenu, not the menu to which the submenu is attached.

Menu Manager Reference 3-119

SEE ALSO

CHAPTER 3

Menu Manager

To highlight the entire menu bar, use the Fl ashMenuBar procedure, described on
page 3-141.

PopUpMenuSelect

DESCRIPTION

3-120

To display a pop-up menu without using the standard pop-up control definition
function, use the PopUpMenuSel ect function to display the pop-up menu anywhere
on the screen. If your application uses the standard pop-up control definition function,
your application does not need to use PopUpMenuSel ect .

FUNCTI ON PopUpMenuSel ect (nenu: MenuHandl e;
Top: Integer; Left: Integer;
PopUpl tem | nteger)
Longl nt;

menu A handle to the menu record of the menu. The NewiVenu, Get Menu, and
Get MenuHandl e functions return a handle to a specified menu’s menu
record.

Top The top coordinate of the pop-up box when it is closed. This value should
be in global coordinates.

Left The left coordinate of the pop-up box when it is closed. This value should
be in global coordinates.

PopUpl t em The item number of the current item minus 1. This value should
correspond to the user’s previous choice from this menu. If the user has
not previously made a choice, this value should be set to the default value.

The PopUpMenuSel ect function uses the location specified by the Top and Lef t
parameters to determine where to display the specified item of the pop-up menu. The
PopUpMenuSel ect function displays the pop-up menu so that the menu item specified
in the PopUpl t emparameter appears highlighted at the specified location. Figure 3-24
on page 3-34 shows the pop-up title and pop-up box of a pop-up menu.

The PopUpMenuSel ect function highlights and unhighlights menu items and handles
all user interaction until the user releases the mouse button. The PopUpMenuSel ect
function returns the menu ID of the chosen menu in the high-order word of its function
result and the chosen menu item in the low-order word.

Your application is responsible for highlighting the pop-up title, setting the mark of the
current menu item appropriately, and drawing the text and downward-pointing
indicator in the pop-up box before calling PopUpMenuSel ect . Your application should
also make sure the pop-up menu is in the submenu portion of the current menu list
before calling PopUpMenuSel ect . (You can use the | nser t Menu procedure and specify
-1 in the bef or el D parameter to insert the pop-up menu into the current menu list.)

Menu Manager Reference

SystemMenu

CHAPTER 3

Menu Manager

After calling PopUpMenuSel ect , your application can delete the pop-up menu from the
current menu list or leave it in the current menu list.

Your application is also responsible for storing the current value of the menu item,
drawing the text and downward-pointing indicator in the pop-up box, and
unhighlighting the pop-up title after calling PopUpMenuSel ect . If you use the standard
pop-up control definition function, these actions are performed for you by the pop-up
control and your application does not need to call PopUpMenuSel ect .

When implementing pop-up menus, you should follow the guidelines for pop-up menus
described in Macintosh Human Interface Guidelines. For example, you should define the
pop-up box of your pop-up menu as a rectangle that is the same height as a menu item,
with a one-pixel drop shadow, and should make the pop-up box wide enough to show
the currently selected item and a downward-pointing indicator.

DESCRIPTION

The MenuSel ect and MenuKey functions call the Syst emMenu procedure when the
user chooses an item in a menu that belongs to a desk accessory launched in your
application’s partition. Your application should not need to call the Syst emvenu
procedure.

Jabeue\ nusiy -

PROCEDURE Syst emMVenu (nmenuResult: Longlnt);

menuResul t The value that indicates the menu and menu item chosen by the user. The
menu ID is in the high-order word, and the menu item is in the low-order
word. The menu ID for a menu belonging to a desk accessory is a
negative number.

The Syst emVenu procedure directs the desk accessory to perform the appropriate action
for the given menu item by calling the desk accessory’s control routine and passing the
accMenu constant in the csCode parameter. The desk accessory should perform the
desired action and return. See Inside Macintosh: Devices for more information on desk
accessories.

ASSEMBLY-LANGUAGE INFORMATION

If you're writing a desk accessory, you may need to set the MBar Enabl e global variable
to appropriate values. If the MBar Enabl e global variable is nonzero, then all menus in
the current menu bar belong to a desk accessory. If the MBar Enabl e global variable is 0,
then all menus in the current menu bar belong to an application. If you're writing an
application, you should not change the value of the MBar Enabl e global variable.

Menu Manager Reference 3-121

CHAPTER 3

Menu Manager

SystemEdit

When the user chooses one of the standard editing commands in the Edit menu (Undo,
Cut, Copy, Paste, and Clear), call the Syst enEdi t function to determine whether the
active window belongs to a desk accessory that is launched in your application’s
partition. If so, the Syst enEdi t function directs the desk accessory to perform the
editing command and returns TRUE. If the active window does not belong to a desk
accessory launched in your application’s partition, Syst enEdi t returns FALSE and

your application should process the command.

FUNCTI ON SystentEdit (editCnd: I|Integer): Bool ean;

edi t Cmd The item number of the standard editing command chosen by the user.

Getting a Handle to a Menu Record

Most Menu Manager routines that manage menus require that you specify a handle to
the menu record of the menu on which you want to perform an operation. You can use
the HMGet Hel pMenuHandl e function to get a handle to your application’s Help menu.
Use the Get MenuHandl e function to get a handle to the menu record of any of your
application’s other pull-down menus or submenus in the current menu list. For pop-up
menus that use the standard control definition function, you can access the control
record to get the menu'’s handle.

GetMenuHandle

DESCRIPTION

3-122

You can use the Get MenuHandl e function to get a handle to the menu record of any of
your application’s menus other than its Help menu. (Use the HMGet Hel pMenuHandl e
function to get a handle to the menu record of your application’s Help menu.) The

Cet MenuHandl e function is also available as the Get MHand| e function.

FUNCTI ON Get MenuHandl e (nmenul D: | nteger): MenuHandl e;

menul D The menu ID of the menu. (Note that this is not the resource ID,
although you often assign the menu ID so that it matches the resource
ID.) You assign a menu ID in the ' MENU' resource of a menu. If you

do not define your menus in' MENU resources, you can assign a menu
ID using NewiVenu.

The Get MenuHandl e function returns a handle to the menu record of the menu having
the specified menu ID. If the menu is in the current menu list, Get MenuHandl e returns
a handle to the menu record of the menu as its function result. Otherwise,

CGet MenuHandl e returns NI L as its function result.

Menu Manager Reference

CHAPTER 3

Menu Manager

SPECIAL CONSIDERATIONS

To get a handle to a menu record of a pop-up menu that you create using the pop-up
control definition function, dereference the cnt r | Dat a field of the pop-up menu’s
control record instead of using Get MenuHandl e.

HMGetHelpMenuHandle

DESCRIPTION

Use the HMGet Hel pMenuHandl e function to get a handle to the menu record of your
application’s Help menu.

FUNCTI ON HMGet Hel pMenuHandl e (VAR nh: MenuHandl e): OSErr;

mh The HMCet Hel pMenuHandl e function returns a copy of a handle to your
application’s Help menu in this parameter.

The HMGet Hel pMenuHandl e function returns in the mh parameter a copy of a handle to
the menu record of your application’s Help menu. With this handle, you can append
items to your application’s Help menu by using the AppendMenu procedure or other
related Menu Manager routines. The Help Manager automatically adds the divider that
separates your items from the rest of the Help menu items.

Be sure to define help balloons for your items in the Help menu by creating an ' hmmu'
resource and specifying the kHVHel pMenul D constant as its resource ID.

The Menu Manager functions MenuSel ect and MenuKey return a result with the menu
ID in the high-order word and the menu item in the low-order word. The MenuSel ect
function (and the MenuKey function, if the user chooses an item with a keyboard
equivalent) returns the kHVHel pMenul D constant in the high-order word when the user
chooses an appended item from the Help menu. The menu item number of the
appended menu item is returned in the low-order word of the function result. Apple
reserves the right to change the number of standard items in the Help menu. To
determine the number of items in the Help menu, call the Count M t ens function.

SPECIAL CONSIDERATIONS

RESULT CODES

Do not use the Get MenuHandl e function to get a handle to the menu record of the Help
menu. Get MenuHandl e returns a handle to the menu record of the global Help menu,
not the menu record of the Help menu that is specific to your application.

noErr 0 No error

parantrr -50 Error in parameter list

menful | Err -108 Not enough room in heap zone
r esNot Found -192 Unable to read resource

hnHel pManager Not | ni t ed —-855 Help menu not set up

Menu Manager Reference 3-123

Jabeue\ nusiy -

SEE ALSO

CHAPTER 3

Menu Manager

For examples of how to add items to your application’s Help menu and how to handle
the user’s choice of an item in the Help menu, see Listing 3-14 on page 3-68 and
Listing 3-26 on page 3-81. See the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox for information on creating help balloons for the menus of

your application.

Adding and Deleting Menu Items

You can add the names of all resources of a specified type to a menu using the

| nsert ResMenu or AppendResMenu procedure. You can add menu items that you
define to a menu using the AppendMenu or | nser t Menul t emprocedure. You can also
delete menu items using the Del et eMenul t emprocedure. In most cases you should

not insert or delete individual menu items from an already existing menu unless the user
expects a menu (such as a list of currently open documents) to change.

If you add menu items using the AppendMenu or | nsert Menul t emprocedure, you
should define in resources the text and other characteristics of the menu items that you
add. This makes your application easier to localize for other regions.

AppendMenu

DESCRIPTION

3-124

Use the AppendMenu procedure to append one or more items to a menu previously
created using NewMenu, Get Menu, or Get NewMBar .

PROCEDURE AppendMenu (menu: MenuHandl e; data: Str255);

menu A handle to the menu record of the menu to which you wish to append
the menu item or items.

dat a A string that defines the characteristics of the new menu item or items.
Note that in most cases you should store the text of a menu item in a
resource, so that your menu items can be more easily localized. The
AppendMenu procedure appends the menu items in the order in which
they are listed in the dat a parameter.

The AppendMenu procedure appends any defined menu items to the specified menu.
The menu items are added to the end of the menu. You specify the text of any menu
items and their characteristics in the dat a parameter. You can embed metacharacters in
the string to define various characteristics of a menu item.

Menu Manager Reference

SEE ALSO

CHAPTER 3

Menu Manager

Here are the metacharacters that you can specify in the dat a parameter:

Metacharacter Description
; or Return Separates menu items.
n When followed by an icon number, defines the icon for the item. If the

keyboard equivalent field contains $1C, this number is interpreted as
a script code.

! When followed by a character, defines the mark for the item. If the
keyboard equivalent field contains $1B, this value is interpreted as
the menu ID of a submenu of this menu item.

< When followed by one or more of the characters B, I, U, O, and S,
defines the character style of the item to Bold, Italic, Underline,
Outline, or Shadow, respectively.

/ When followed by a character, defines the keyboard equivalent for
the item. When followed by $1B, specifies that this menu item has a
submenu. To specify that the menu item has a script code, small icon,
or reduced icon, use the Set | t emCnd procedure to set the keyboard
equivalent field to $1C, $1D, or $1E, respectively.

(Defines the menu item as disabled.

You can specify any, all, or none of these metacharacters in the text string. The
metacharacters that you specify aren’t displayed in the menu item. (To use any of these
metacharacters in the text of a menu item, first use AppendMenu, specifying at least one
character as the item’s text, and then use the Set Menul t eniText procedure to set the
item’s text to the desired string.)

Note

If you add menu items using the AppendMenu procedure, you should
define the text and any marks or keyboard equivalents in resources for
easier localization. O

You can specify the first character that defines the text of a menu item as a hyphen to
create a divider line. The string in the dat a parameter can be blank (containing one or
more spaces), but it should not be an empty string.

If you do not define a specific characteristic of a menu item, the AppendMenu procedure
assigns the default characteristic to the menu item. If you do not define any characteristic
other than the text for a menu item, the AppendMenu procedure inserts the menu item so
that it appears in the menu as an enabled item, without an icon or a mark, in the plain
character style, and without a keyboard equivalent.

You can use AppendMenu to append items to a menu regardless of whether the menu is
in the current menu list.

See “Adding Items to a Menu” on page 3-64 for examples of appending items to a menu.

Menu Manager Reference 3-125

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

InsertMenultem

DESCRIPTION

3-126

Use the | nsert Menul t emprocedure to insert one or more items to a menu previously
created using Newenu, Get Menu, or Get NewivBar .

The | nser t Menul t emprocedure is also available as the | nsMenul t emprocedure.

PROCEDURE | nsert Menultem (t heMenu: MenuHandl e; itenttring: Str255;
afterltem Integer);

t heMenu A handle to the menu record of the menu to which you wish to add the
menu item or items.

itenString
A string that defines the characteristics of the new menu items. Note that
in most cases you should store the text of a menu item in a resource, so
that your menu items can be more easily localized. You can specify the
contents of the i t enSt r i ng parameter using metacharacters; the
| nsert Menul t emprocedure accepts the same metacharacters as the
AppendMenu procedure. However, if you specify multiple items, the
| nsert Menul t emprocedure inserts the items in the reverse of their
order in the i t enSt r i ng parameter.

afterltem The item number of the menu item after which the new menu items are to
be added. Specify 0 in the af t er | t emparameter to insert the new items
before the first menu item; specify the item number of a current menu
item to insert the new menu items after it; specify a number greater than
or equal to the last item in the menu to append the new items to the end
of the menu.

The | nsert Menul t emprocedure inserts any defined menu items to the specified menu.
The menu items are inserted according to the location specified by theaf t er I t em
parameter. You specify the text of any menu items and their characteristics in the

i t enSt ri ng parameter. You can embed metacharacters in the string you specify to
define various characteristics of a menu item. The metacharacters aren’t displayed in

the menu.

Here are the metacharacters you can specify in the i t ent r i ng parameter:

Metacharacter Description
; or Return Separates menu items.

n When followed by an icon number, defines the icon for the item. If the

keyboard equivalent field contains $1C, this number is interpreted as
a script code.

! When followed by a character, defines the mark for the item. If the
keyboard equivalent field contains $1B, this value is interpreted as
the menu ID of a submenu of this menu item.

Menu Manager Reference

SEE ALSO

CHAPTER 3

Menu Manager

Metacharacter Description

< When followed by one or more of the characters B, I, U, O, and S,
defines the character style of the item to Bold, Italic, Underline,
Outline, or Shadow, respectively.

/ When followed by a character, defines the keyboard equivalent for
the item. When followed by $1B, specifies that this menu item has a
submenu. To specify that the menu item has a script code, small icon,
or reduced icon, use the Set | t enCnd procedure to set the keyboard
equivalent field to $1C, $1D, or $1E, respectively.

(Defines the menu item as disabled.

You can specify any, all, or none of these metacharacters in the text string. The
metacharacters that you specify aren’t displayed in the menu item. To use any of these
metacharacters in the text of a menu item, first use | nser t Menul t em specifying at least
one character as the item’s text, and then use the Set Menul t enilext procedure to set
the item’s text to the desired string.

Note

If you add menu items using the | nsert Menul t emprocedure, you
should define the text and any marks or keyboard equivalents in
resources for easier localization. O

You can specify the first character that defines the text of a menu item as a hyphen to
create a divider line. The string in the i t enSt r i ng parameter can be blank (containing
one or more spaces), but it should not be an empty string.

If you do not define a specific characteristic of a menu item, the | nsert Menul t em
procedure assigns the default characteristic to the menu item. If you do not define any
characteristic other than the text for a menu item, the | nser t Menul t emprocedure
inserts the menu item so that it appears in the menu as an enabled item, without an icon
or a mark, in the plain character style, and without a keyboard equivalent.

You can use | nsert Menul t emto insert items into a menu regardless of whether the
menu is in the current menu list.

See “Adding Items to a Menu” beginning on page 3-64 for examples.

DeleteMenultem

Use the Del et eMenul t emprocedure to delete an item from a menu. The
Del et eMenul t emprocedure is also available as the Del Menul t emprocedure.

PROCEDURE Del et eMenultem (t heMenu: MenuHandl e; item |nteger);

Menu Manager Reference 3-127

Jabeue\ nusiy -

DESCRIPTION

CHAPTER 3

Menu Manager

t heMenu A handle to the menu record of the menu from which you want to delete
the menu item.

item The item number of the menu item to delete. If you specify 0 or a number
greater than the last item in the menu, Del et eMenul t emdoes not delete
any item from the menu.

The Del et eMenul t emprocedure deletes a specified menu item from a menu. The

Del et eMenul t emprocedure also deletes the item’s menu item entry from your
application’s menu color information table (if an entry exists). You should not delete
items from an existing menu unless the user expects the menu (such as a menu that lists
open documents) to change.

AppendResMenu

DESCRIPTION

3-128

Use the AppendResMenu procedure to search all resource files open to your application
for a given resource type and to append the names of any resources it finds to a specified
menu. The specified menu must have been previously created using Newienu,

Get Menu, or Get NewiVBar .

The AppendResMenu procedure is also available as the AddResMenu procedure.
PROCEDURE AppendResMenu (theMenu: MenuHandl e; theType: ResType);

t heMenu Ahandle to the menu record of the menu to which to append the names
of any resources of a given type that AppendResMenu finds.

t heType A four-character code that identifies the resource type for which to search.

The AppendResMenu procedure searches all resource files open to your application for
resources of the type defined by the parameter t heType. It appends the names of any
resources it finds of the given type to the end of the specified menu. AppendResMenu
appends the names of found resources in alphabetical order; it does not alphabetize
items already in the menu. The AppendResMenu procedure does not add resources with
names that begin with a period (.) or a percent sign (%) to the menu.

The AppendResMenu procedure assigns default characteristics to each menu item. Each
appended menu item appears in the menu as an enabled item, without an icon or a
mark, in the plain character style, and without a keyboard equivalent. To get the name or
to change other characteristics of an item appended by AppendResMenu, use the Menu
Manager routines described in “Getting and Setting the Appearance of Menu Items”
beginning on page 3-130.

Menu Manager Reference

CHAPTER 3

Menu Manager

If you specify that AppendResMenu add resources of type ' DRVR' to your Apple menu,
AppendResMenu adds the name (and icon) of each item in the Apple Menu Items folder
to the menu.

If you specify that AppendResMenu append resources of type ' FONT' or' FOND' , the
Menu Manager performs special processing for any resources it finds that have font
numbers greater than $4000. If the script system associated with the font name is
installed in the system, AppendResMenu stores information in the i t enDef i ni ti ons
array (in the i t eml con and i t enOnd fields for that item) in the menu’s menu record.
This allows the Menu Manager to display the font name in the correct script.

SPECIAL CONSIDERATIONS

The AppendResMenu procedure calls the Resource Manager procedure Set ResLoad
(specifying TRUE in the | oad parameter) before returning. The AppendResMenu
procedure reads the resource data of the resources it finds into memory. If your
application does not want the Resource Manager to read resource data into memory
when your application calls other routines that read resources, you need to call

Set ResLoad and specify FALSE in the | oad parameter after AppendResMenu returns.

SEE ALSO
Listing 3-15 on page 3-69 shows a sample that adds items from the Apple Menu Items
folder to the Apple menu, and Listing 3-16 on page 3-70 shows a sample that adds font
names to a menu. See Inside Macintosh: More Macintosh Toolbox for information on the
Resource Manager.

InsertResMenu

Use the | nser t ResMenu procedure to search all resource files open to your application
for a given resource type and to insert the names of any resources it finds to a specified
menu. The items are inserted after the specified menu item. The specified menu must
have been previously created using NewMenu, Get Menu, or Get NewiVBar .

PROCEDURE | nsert ResMenu (t heMenu: MenuHandl e; theType: ResType;
afterltem Integer);

t heMenu A handle to the menu record of the menu to which to add the names of
any resources of a given type that | nsert ResMenu finds.

t heType A four-character code that identifies the resource type for which to search.

afterltem Anumber thatindicates where in the menu to insert the names of any
resources of the given type that | nsert ResMenu finds. Specify 0 in the
af t er | t emparameter to insert the items before the first menu item;
specify the item number of a menu item already in the menu to insert the
items after the specified item number. If you specify a number greater
than or equal to the last item in the menu, the items are inserted at the
end of the menu.

Menu Manager Reference 3-129

Jabeue\ nusiy -

DESCRIPTION

CHAPTER 3

Menu Manager

The | nser t ResMenu procedure searches all resource files open to your application for
resources of the type defined by the parameter t heType. It inserts the names of any
resources it finds of the given type at the specified location in the specified menu.

| nsert ResMenu adds the names of found resources in alphabetical order; it does not
alphabetize items already in the menu.

The | nser t ResMenu procedure does not add resources with names that begin with a
period (.) or a percent sign (% to the menu.

The | nser t ResMenu procedure assigns default characteristics to each menu item. Each
appended menu item appears in the menu as an enabled item, without an icon or a
mark, in the plain character style, and without a keyboard equivalent. To get the name or
to change other characteristics of an item appended by | nser t ResMenu, use the Menu
Manager routines described in the next section, “Getting and Setting the Appearance of
Menu Items.”

If you specify that | nsert ResMenu add resources of type ' DRVR' to your Apple menu,
I nser t ResMenu adds the name (and icon) of each item in the Apple Menu Items folder
to the menu.

If you specify that | nsert ResMenu add resources of type ' FONT' or ' FOND' , the
Menu Manager performs special processing for any resources it finds that have font
numbers greater than $4000. If the script associated with the font name is currently
active, | nsert ResMenu stores information in the i t enDef i ni ti ons array (in the

i tenl conand it enCnd fields for that item) in the menu’s menu record that allows the
Menu Manager to display the font name in the correct script.

SPECIAL CONSIDERATIONS

The | nser t ResMenu procedure calls the Resource Manager procedure Set ResLoad
(specifying TRUE in the | oad parameter) before returning. The | nser t ResMenu
procedure reads the resource data of the resources it finds into memory. If your
application does not want the Resource Manager to read resource data into memory
when your application calls other routines that read resources, you need to call

Set ResLoad and specify FALSE in the | oad parameter after | nser t ResMenu returns.

Getting and Setting the Appearance of Menu Items

3-130

You can get information about the characteristics of a menu item using Menu Manager
routines. For example, you can get an item’s text, style, mark, keyboard equivalent,
script code, and associated icons. You can also determine if a menu item has a submenu
associated with it and the menu ID of the submenu.

You can set the characteristics of a menu item, including associating a submenu with a
menu item, using Menu Manager routines. Whenever possible, however, you should
define your application’s menu items in ' MENU resources. This makes your application
easier to localize for other regions.

You can also enable and disable menu items or entire menus using Menu Manager
routines.

Menu Manager Reference

Enableltem

CHAPTER 3

Menu Manager

DESCRIPTION

SEE ALSO

Use the Enabl el t emprocedure to enable a menu item or a menu.

PROCEDURE Enabl eltem (t heMenu: MenuHandl e; item |Integer);

t heMenu A handle to the menu record of the menu containing the menu item
to enable.

item The item number of the menu item to enable, or 0 to enable the entire
menu. You cannot individually enable a menu item with an item number
greater than 31.

If you specify 0 in the i t emparameter, the Enabl el t emprocedure
enables the menu title and all items in the menu that were not previously
individually disabled.

The Enabl el t emprocedure enables a specified menu item so that it no longer appears
dim and so that the user can choose the menu item.

Note that, if you enable a menu, the Enabl el t emprocedure enables the menu title but
only enables those menu items that are not currently disabled as a result of your
application previously calling Di sabl el t emand specifying each item’s item number.
For example, if all items in your application’s Edit menu are enabled, you can disable the
Cut and Copy commands individually using Di sabl el t em If you choose to disable the
entire menu by passing 0 as the i t emparameter to Di sabl el t em the menu and all its
items are disabled. If you then enable the entire menu by passing 0 as the i t em
parameter to Enabl el t em) the menu and its items are enabled, except for the Cut and
Copy commands, which remain disabled. In this case, to enable the Cut and Copy
commands you must enable each one individually using Enabl el t em

If your application enables a menu using Enabl el t em it should call Dr awiMenuBar to
update the menu bar’s appearance.

See “Enabling and Disabling Menu Items” on page 3-58 for examples of enabling items
in a menu.

Disableltem

Use the Di sabl el t emprocedure to disable a menu item or an entire menu.

PROCEDURE Di sabl el tem (t heMenu: MenuHandl e; item |nteger);

Menu Manager Reference 3-131

Jabeue\ nusiy -

DESCRIPTION

SEE ALSO

CHAPTER 3

Menu Manager

t heMenu Ahandle to the menu record of the menu containing the menu item
to disable.

item The item number of the menu item to disable, or 0 to disable the entire
menu. You cannot individually disable a menu item with an item number
greater than 31.

If you specify 0 in the i t emparameter, the Di sabl el t emprocedure
disables the menu title and all items in the menu, including menu items
with item numbers greater than 31.

The Di sabl el t emprocedure disables a specified menu item so that it appears dim and
cannot be chosen by the user.

If your application disables a menu using Di sabl el t em your application should call
Dr awVenuBar to update the menu bar’s appearance.

See “Enabling and Disabling Menu Items” on page 3-58 for examples of disabling items
in a menu.

GetMenultemText

DESCRIPTION

3-132

Use the Get Menul t enfText procedure to get the text of a specific menu item. The
Get Menul t enText procedure is also available as the Get | t emprocedure.

PROCEDURE Get Menul t enText (theMenu: MenuHandl e; item |Integer;
VAR itenttring: Str255);

t heMenu A handle to the menu record of the menu containing the menu item
whose text you wish to get.

item The item number of the menu item. The Get Menul t enTText procedure
returns the text of this item.

i tenString The Get Menul t enText procedure returns the text of the menu item in
this parameter.

The Get Menul t enfText procedure returns the text of the specified menu item in the
i tenBt ri ng parameter. Use other Menu Manager routines to get information about
the other characteristics of a menu item.

Menu Manager Reference

CHAPTER 3

Menu Manager

SetMenultemText

DESCRIPTION

SEE ALSO

Use the Set Menul t enfText procedure to set the text of a specific menu item to a given
string. The Set Menul t enTText procedure is also available as the Set | t emprocedure.

PROCEDURE Set Menul t enText (theMenu: MenuHandl e; item |Integer;
itenBtring: Str255);

t heMenu Ahandle to the menu record of the menu containing the menu item
whose text you wish you to set.

item The item number of the menu item. The Set Menul t enTText procedure
sets the text of this item.

itenString The Set Menul t enfText procedure sets the text of the menu item
according to the string specified in the i t enSt r i ng parameter. The
Set Menul t enText procedure does not recognize metacharacters or set
any other characteristics of the menu item. The i t enSt r i ng parameter
can be blank, but it should not be an empty string.

Jabeue\ nusiy -

The Set Menul t eniText procedure sets the text of the specified menu item to the text
specified in the i t enSt r i ng parameter. The Set Menul t enText procedure does not
recognize any metacharacters used by the AppendMenu and | nsert Menul t em
procedures. Use other Menu Manager routines to set other characteristics of a menu item.

If you set the text of a menu item using the Set Menul t eniText procedure, you should
store the text in a string resource so that your application can be more easily localized.

See Listing 3-9 on page 3-59 for an example of setting the text of a menu item.

GetltemStyle

Use the Get | t enSt y| e procedure to get the style of the text in a specific menu item.

PROCEDURE CetltentStyl e (theMenu: MenuHandle; item |Integer;
VAR chStyle: Style);

t heMenu A handle to the menu record of the menu containing the menu item
whose style you wish to get.

item The item number of the menu item. The Get | t enSt yl e procedure
returns the style of the text for this item.

Menu Manager Reference 3-133

CHAPTER 3

Menu Manager

chStyle The Get | t enSt yI e procedure returns the style of the text for this item in
the chSt yl e parameter. The chSt yl e parameter is a set defined by the
St yl e data type.

TYPE
Styleltem

(bold, italic, underline, outline,
shadow, condense, extend);
Style = SET OF Styleltem

DESCRIPTION

The Get | t enSt yI e procedure returns the style of the text of the specified menu item in
the chSt yl e parameter. The returned style can be one or more of the styles defined by
the St yl e data type, or it is the empty set if the style of the text is Plain.

SetltemStyle

Use the Set | t ent y| e procedure to set the style of the text in a specific menu item.

PROCEDURE Setltenttyle (theMenu: MenuHandl e; item |Integer;
chStyle: Style);

t heMenu A handle to the menu record of the menu containing the menu item
whose style you wish to set.

item The item number of the menu item. The Set | t enSt y| e procedure sets
the style of the text for this item.

chStyle The Set | t enSt yl e procedure sets the style of the text for this item
according to the style described by the chSt yl e parameter. The
chStyl e parameter is a set defined by the St y| e data type.

TYPE
Styleltem = (bold, italic, underline, outline,
shadow, condense, extend);

Style = SET OF Styleltem

You can set the style to one or more of the styles defined by the Styl e
data type, or you can set it to Plain by specifying an empty set in the
chSt yl e parameter.

DESCRIPTION

The Set | t enSt yl e procedure sets the style of the text of the specified menu item to the
style or styles defined by the chSt yl e parameter.

SEE ALSO

See Listing 3-10 on page 3-60 for examples of setting the style of a menu item.

3-134 Menu Manager Reference

CHAPTER 3

Menu Manager

GetltemMark

Use the Get | t emMar k procedure to get the mark of a specific menu item or the menu ID
of the submenu associated with the menu item.

PROCEDURE Get |t emVark (theMenu: MenuHandl e; item |Integer;

t heMenu

item

mar kChar

DESCRIPTION
If the item has

VAR mar kChar: Char);

Ahandle to the menu record of the menu containing the menu item
whose mark or submenu you wish to get.

The item number of the menu item. The Get | t emMar k procedure returns
the mark of this item o, if this item has a submenu associated with it,
returns the menu ID of the submenu in the mar kChar parameter.

The Get | t emVar k procedure returns the mark or the submenu of this
item in the mar KChar parameter. A menu item can have a mark or a
submenu attached to it, but not both. If this menu item has a marking
character, the Get | t emVar k procedure returns the mark. If this menu
item has a submenu associated with it, the Get I t emVar k procedure
returns the menu ID of the submenu. If the item doesn’t have a mark or
a submenu, Get | t emMar k returns 0 in this parameter.

a mark or submenu, the Get | t emVar k procedure returns the mark or the

menu ID of the submenu of the specified menu item in the mar kChar parameter (or 0 if
the item doesn’t have a mark or a submenu).

SetltemMark

Use the Set | t

emvar k procedure to set the mark of a specific menu item or to change or

set the submenu associated with a menu item.

PROCEDURE Set |t emvark (theMenu: MenuHandl e; item Integer;

t heMenu

item

mar kChar

mar kChar: Char);

A handle to the menu record of the menu containing the menu item
whose mark or submenu you wish to set.

The item number of the menu item. The Set | t emMar k procedure sets
the mark or the submenu of this item.

The Set | t emVar k procedure sets the mark or submenu of this item
according to the information in the mar kChar parameter.

Menu Manager Reference 3-135

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

To set the mark of a menu item, specify the marking character in the
mar kChar parameter. You can also use one of these constants to specify
that the item has no mark, has a checkmark as the marking character, or
has the diamond symbol as the marking character:

CONST
noMar k = 0, {no marking character}
checkMar k = $12; {checknark}

di amondMark = $13; {di anond synbol }

To set the submenu associated with this menu item, specify the menu ID
of the submenu in the mar kChar parameter.

DESCRIPTION

The Set | t emVar k procedure sets the mark or the submenu of the specified menu item.
SEE ALSO

See Listing 3-11 on page 3-61 for examples of setting the mark of a menu item.
ChecklItem

Use the Checkl t emprocedure to set the mark of a specific menu item to a checkmark or

to remove a mark from a menu item.

PROCEDURE Checkltem (theMenu: MenuHandl e; item Integer;

checked: Bool ean);

t heMenu A handle to the menu record of the menu containing the menu item
whose mark you wish to set to a checkmark or whose mark you wish to
remove.

item The item number of the menu item.

checked The Checkl t emprocedure sets or removes the mark of the item
according to the information in the checked parameter.

To set the mark of a menu item to a checkmark, specify TRUE in the
checked parameter. To remove a checkmark or any other mark from a
menu item, specify FALSE in the checked parameter.
DESCRIPTION
The Checkl t emprocedure sets the mark of the specified menu item to a checkmark or
removes any mark from the menu item.
SEE ALSO
See Listing 3-11 on page 3-61 for examples of setting the mark of a menu item.
3-136 Menu Manager Reference

CHAPTER 3

Menu Manager

Getltemlcon

Use the Get | t enl con procedure to get the icon or script code of a specific menu item. If
the menu item’s keyboard equivalent field contains $1C, the returned number represents
the script code of the menu item. Otherwise, the returned number represents the item’s
icon number.

PROCEDURE Cetltem con (theMenu: MenuHandle; item |Integer;
VAR i conl ndex: Byte);

t heMenu A handle to the menu record of the menu containing the menu item
whose icon or script code you wish to get.

item The item number of the menu item. The Get | t eml con procedure returns
the icon number or script code of this item.

i conl ndex For menu items that do not specify $1C in the keyboard equivalent field,
the Get | t el con procedure returns the icon number of the item’s icon
in this parameter. The icon number returned in this parameter is a value
from 1 through 255 if the menu item has an icon associated with it and is
0 otherwise. You can add 256 to the icon number to generate the resource
IDofthe' cicn',' Il CON' ,or' SI CN resource that describes the icon of
the menu item. For example, if the Get | t enl con procedure returns 5 in
this parameter, then the icon of the menu item is described by an icon
resource with resource ID 261.

Jabeue\ nusiy -

For menu items that contain $1C in the keyboard equivalent field, the
Get I t em con procedure returns the script code of the menu item. The
Menu Manager displays the menu item using this script code if the
corresponding script system is installed.

DESCRIPTION

The Get | t eml con procedure returns the icon number or script code of the specified
menu item in the i conl ndex parameter (or 0 if the item doesn’t have an icon or a
script code).

SetltemlIcon

Use the Set | t eml con procedure to set the icon number or script code of a specific
menu item. Usually you display menu items in the current system script; however, if
needed, you can use the Set | t eml con procedure to set the script code of a menu item.
For an item’s script code to be set, the keyboard equivalent field of the item must contain
$1C. If the keyboard equivalent field contains any other value, the Set | t enl con
procedure interprets the specified number as the item’s icon number.

PROCEDURE Setltem con (theMenu: MenuHandl e; item |Integer;
i conl ndex: Byte);

Menu Manager Reference 3-137

DESCRIPTION

CHAPTER 3

Menu Manager

t heMenu Ahandle to the menu record of the menu containing the menu item
whose icon (or script code) you wish to set.

item The item number of the menu item. The Set | t el con procedure sets
the icon (or script code) of this item.

i conl ndex If the menu item’s keyboard equivalent field does not contain $1C, the
Set | t eml con procedure sets the icon number of the item’s icon to the
number defined in this parameter. The icon number you specify should
be a value from 1 through 255 (or from 1 through 254 if the item has a
small or reduced icon) or 0 if the item does not have an icon.

The Menu Manager adds 256 to the icon number to generate the resource
IDofthe' cicn' or' | CON resource that describes the icon of the menu
item. For example, if you specify 5 as the value of thei conl ndex
parameter, when the Menu Manager needs to draw the item, it looks for
an icon resource with resource ID 261.

If the menu item’s keyboard equivalent field contains $1C, the

Set | t eml con procedure sets the script code of the menu item to the
number defined in the i conl ndex parameter. The Menu Manager
displays the menu item using the specified script code if the
corresponding script system is installed.

You can specify 0 in the i conl ndex parameter to indicate that the item
uses the current system script and does not have an icon number.

The Set | t eml con procedure sets the icon number or script code of the specified menu
item to the value in the i conl ndex parameter.

SEE ALSO
See “Changing the Icon or Script Code of Menu Items” beginning on page 3-62 for
examples of setting the icon of a menu item.
GetltemCmd
Use the Get | t emCrd procedure to get the value of the keyboard equivalent field of a
menu item.
PROCEDURE Get I tenCnd (theMenu: MenuHandle; item |Integer;
VAR cmdChar: Char);
t heMenu A handle to the menu record of the menu containing the menu item
whose keyboard equivalent field you wish to get.
item The item number of the menu item. The Get | t emCnd procedure returns
the keyboard equivalent field of this item.
3-138 Menu Manager Reference

DESCRIPTION

CHAPTER 3

Menu Manager

cndChar The value of the item’s keyboard equivalent field. The Menu Manager
uses this value to map keyboard equivalents to menu commands or to
indicate special characteristics of the menu item.

If the cmdChar parameter contains $1B, the menu item has a submenu; a
value of $1C indicates that the item has a script code; a value of $1D
indicates that the Menu Manager reduces the item’s ' | CON' resource;
and a value of $1E indicates that the item has an' SI CN' resource.

The Get | t enCnd procedure returns the value in the keyboard equivalent field of the
specified menu item in the cmdChar parameter (or 0 if the item doesn’t have a keyboard
equivalent, submenu, script code, reduced icon, or small icon).

SetltemCmd

DESCRIPTION

Use the Set | t enCnd procedure to set the value of the keyboard equivalent field of a
menu item. You usually define the keyboard equivalents and other characteristics of
your menu items in ' MENU resources rather than using the Set | t enCnd procedure.

PROCEDURE Set I tenCnd (theMenu: MenuHandle; item |Integer;
cndChar: Char);

t heMenu A handle to the menu record of the menu containing the menu item
whose keyboard equivalent field you wish to set.

item The item number of the menu item. The Set | t emCnd procedure sets the
keyboard equivalent field of this item to the value specified in the
cndChar parameter.

cndChar The value of the item’s keyboard equivalent field. The Menu Manager
uses this value to map keyboard equivalents to menu commands or to
define special characteristics of the menu item.

To indicate that the menu item has a submenu, specify $1B in the
cmdChar parameter; specify a value of $1C to indicate that the item has a
script code; specify a value of $1D to indicate that the Menu Manager
should reduce the item’s ' | CON' resource to the size of a small icon; and
specify a value of $1E to indicate that the item has an' SI CN' resource.

The values $01 through $1A, as well as $1F and $20, are reserved for use
by Apple. You should not use any of these reserved values in the
cndChar parameter.

The Set | t enOnd procedure sets the value in the keyboard equivalent field of the
specified menu item in the crdChar parameter (you can specify 0 if the item doesn’t
have a keyboard equivalent, submenu, script code, reduced icon, or small icon). If you

Menu Manager Reference 3-139

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

specify that the item has a submenu, you should provide the menu ID of the submenu as
the item’s marking character. If you specify that the item has a script code, provide the
script code in the icon field of the menu item. If you specify that the item has an' SI CN
or areduced' | CON' resource, provide the icon number in the icon field of the item.

Disposing of Menus

If you no longer need a menu in the menu list, you can delete the menu using

Del et eMenu. You should then release the memory associated with that menu using
the Di sposeMenu procedure if you created the menu using NewMenu; otherwise,
use the Resource Manager procedure Rel easeResour ce. See the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox for information on the

Rel easeResour ce routine.

DisposeMenu

DESCRIPTION

SEE ALSO

To release the memory occupied by a menu’s associated data structures, use either the
Di sposeMenu procedure or the Resource Manager procedure Rel easeResour ce.
Use Di sposeMenu if you created the menu using NewVenu; use Rel easeResour ce if
you created the menu using Get Menu or read the resource in using Get NewiVBar .

You should delete the menu from the current menu list using Del et eMenu or
O ear MenuBar before calling the Di sposeMenu procedure.

PROCEDURE Di sposeMenu (theMenu: MenuHandl e);

t heMenu A handle to the menu record of the menu you wish to dispose of.

The Di sposeMenu procedure releases the memory occupied by the specified menu’s
menu record. The handle that you pass in the parameter t heMenu is not valid after
Di sposeMenu returns.

To delete a menu from the current menu list, see the description of the Del et eMenu
procedure on page 3-109.

Counting the Items in a Menu

3-140

If your application needs to count the number of items in a menu—for example, in a
menu that can contain a variable number of menu items such as the Font menu or Help
menu—use the Count M t ens function.

Menu Manager Reference

CHAPTER 3

Menu Manager

CountMItems

DESCRIPTION

You can count the number of items in a menu using the Count M t ens function.

FUNCTI ON Count Mtens (theMenu: MenuHandl e): Integer;

t heMenu A handle to the menu record of the menu whose items your application
needs to count.

The Count M t ens function counts the number of items in the specified menu and
returns as its function result the number of items in the menu.

Highlighting the Menu Bar

You can highlight (invert) a menu title or the entire menu bar using the FI ashMenuBar
procedure. (The Hi | i t eMenu procedure highlights only menu titles.) In most cases
your application should not highlight the menu bar; use Hi | i t eMenu to highlight a
menu title.

The user sets the number of times an enabled menu item flashes using the General
Controls panel. The Set MenuFl ash procedure can be used to control the number of
times that menu items blink when the user chooses an enabled menu item; usually you
should not change the setting chosen by the user.

FlashMenuBar

DESCRIPTION

Use the Fl ashMenuBar procedure to highlight (invert) a menu title or the entire menu
bar. You can call Fl ashMenuBar twice in a row to make the menu bar blink.

PROCCEDURE Fl ashMenuBar (nenul D: | nteger);

menul D The menu ID of the menu whose title you want to invert. Use 0 in this
parameter to invert the entire menu bar. If the specified menu ID does not
exist in the current menu list, the Fl ashMenuBar procedure inverts the
entire menu bar.

The FI ashMenuBar procedure inverts the title of the specified menu or inverts the
menu bar. To prevent unexpected colors from appearing in the menu bar, you should
not call Fl ashMenuBar to invert a menu title while the entire menu bar is inverted.

Menu Manager Reference 3-141

Jabeue\ nusiy -

SEE ALSO

CHAPTER 3

Menu Manager

Only one menu title can be inverted at a time. If no menus are currently highlighted,
calling Fl ashMenuBar with a specific menu ID inverts the title of that menu. If you call
Fl ashMenuBar again specifying another menu ID that is different from that of the
previously inverted menu title, Fl ashMenuBar restores the previously highlighted
menu to normal and then inverts the title of the specified menu.

You can also highlight a menu using the Hi | i t eMenu procedure, described on
page 3-119.

SetMenuFlash

DESCRIPTION

Use the Set MenuFl ash procedure to set the number of times a menu item blinks when
the user chooses an enabled menu item. The user sets this value using the General
Controls panel, and in most cases your application should not change the value set by
the user.

PROCEDURE Set MenuFl ash (count: Integer);

count The number of times an enabled menu item should blink when the user
chooses it. This value is initially set to 3 by the General Controls panel. A
count of 0 disables the blinking. Values greater than 3 can be slow and
distracting to the user.

The Set MenuFl ash procedure sets the number of times that the Menu Manager causes
a menu item to blink when the user chooses an enabled menu item.

The appearance of blinking in a menu item is determined by the menu’s menu definition
procedure.

ASSEMBLY-LANGUAGE INFORMATION

The global variable MenuFl ash contains the current count (number of times) a menu
item blinks when chosen by the user.

Recalculating Menu Dimensions

3-142

The Menu Manager uses the Cal cMenuSi ze procedure to recalculate the dimensions of
a menu whenever its contents have changed. In most cases your application does not
need to use the Cal cMenuSi ze procedure.

Menu Manager Reference

CHAPTER 3

Menu Manager

CalcMenuSize

DESCRIPTION

The Cal cMenuSi ze procedure recalculates the horizontal and vertical dimensions of
a menu and stores the new values in the renuW dt h and nenuHei ght fields of the
menu record.

PROCEDURE Cal cMenuSi ze (theMenu: MenuHandl e);

t heMenu A handle to the menu record of the menu whose dimensions need
recalculating.

The Cal cMenuSi ze procedure uses the menu definition procedure of the specified
menu to calculate the dimensions of the menu.

Managing Entries in the Menu Color Information Table

GetMClInfo

The Menu Manager maintains color information about an application’s menus in a menu
color information table. The standard menu definition procedure defines the standard
color for the menu bar, titles of menus, text and characteristics of a menu item, and
background color of a displayed menu. You can change any of these colors by adding
entries to your application’s menu color information table. However, note that in most
cases your application should use the default colors for its menus.

You can provide an' ntt b’ resource with resource ID 0 as one of your application’s
resources if you want to use colors other than the default colors for your application’s
menu bar and menus. (Or you can provide an' ntt b' resource with the same resource
IDasa' MENU resource to define the color entries for a single menu.) You can also add
entries to or delete entries from your application’s menu color information table using
the Set MCEnt ri es and Del et eMCEnt ri es procedures. You can get information about
an entry using the Get MCEnt ry function. To get or set your application’s menu color
information table, use the Get MCl nf o function or Set MCl nf o procedure. To dispose of
your application’s menu color information table, use the Di sposeMCl nf o procedure.

Note that the menu color information table uses a format that is different from the
standard color table format. “The Menu Color Information Table Record” beginning on
page 3-98 describes the format of the menu color information table in detail.

Use the Get MCI nf o function to get a handle to a copy of your application’s menu color
information table.

FUNCTI ON Get MCI nf o: MCTabl eHandl e;

Menu Manager Reference 3-143

Jabeue\ nusiy -

DESCRIPTION

SEE ALSO

SetMClInfo

CHAPTER 3

Menu Manager

The Get MCI nf 0 function creates a copy of your application’s menu color information
table and returns a handle to the copy. If the copy fails, Get MCl nf 0 returns NI L.

See “The Menu Color Information Table Record” beginning on page 3-98 for a
description of the format of the menu color information table.

DESCRIPTION

SEE ALSO

3-144

Use the Set MCl nf 0 procedure to set your application’s menu color information table.
PROCEDURE Set MCI nf o (nmenuCTbl : MCTabl eHandl e) ;

menuCTbl A handle to a menu color information table.

The Set MCI nf 0 procedure copies the table specified by the menuCTbl parameter
to your application’s menu color information table. If successful, the Set MCl nf o
procedure is responsible for disposing of your application’s current menu color
information table, so your application does not need to explicitly dispose of the
current table.

Your application should call the Memory Manager function MenEr r or to determine
whether the Set MCI nf 0 procedure successfully copied the table. If the Set MCl nf o
procedure cannot successfully copy the table, it does not dispose of the current menu
color information table and the MenEr r or function returns a nonzero result code. If the
Set MCI nf o procedure is able to successfully copy the table, it disposes of the current
menu color information table and the MenEr r or function returns the noEr r result code.

If the menu color information table specifies a new menu bar color or new menu title
colors, your application should call Dr awMenuBar after calling Set MCl nf o.

Note that Get NewBar does not save your application’s current menu color information
table. If your application changes menu bars, you can save and restore your application’s
current menu color information table by calling Get MCl nf o0 before Get NewivBar and
calling Set MCl nf o afterward.

See “The Menu Color Information Table Record” beginning on page 3-98 for a
description of the format of the menu color information table. For an example of using
the Get MCI nf 0 and Set MCI nf o routines to save and restore menu color information,
see Listing 3-6 on page 3-52. See Inside Macintosh: Memory for information on the
MenEr r or function

Menu Manager Reference

CHAPTER 3

Menu Manager

DisposeMClnfo

DESCRIPTION

Use the Di sposeMCl nf o procedure to dispose of a menu color information table. The
Di sposeMCl nf o procedure is also available as the Di spMCl nf 0 procedure.

PROCEDURE Di sposeMCl nfo (menuCTbl: MCTabl eHandl e) ;

menuCTbl A handle to a menu color information table.

The Di sposeMCl nf 0 procedure disposes of the menu color information table referred
to by the menuCTbl parameter.

GetMCEntry

DESCRIPTION

Use the Get MCEnt ry function to return information about an entry in your application’s
menu color information table. You can get information about the menu bar entry, a menu
title entry, or a menu item entry.

FUNCTI ON Get MCEntry (menul D: I nteger; menultem |nteger)
MCEnt ryPtr;

nmenul D The menu ID that the Get MCEnt r y function should use to return
information about the menu color information table. Specify 0 in the
menul D parameter (and the menul t emparameter) to get the menu bar
entry. Specify the menu ID of a menu in the current menu list in the
menul D parameter and 0 in the menul t emparameter to get a specific
menu title entry. Specify the menu ID of a menu in the current menu list
in the menul D parameter and an item number in the nenul t em
parameter to get a specific menu item entry.

menultem The menu item that the Get MCEnt r y function should use to return
information about the menu color information table. If you specify 0 in
this parameter, Get MCEnt r y returns either the menu bar entry or the
menu title entry, depending on the value of the nenul D parameter. If you
specify the item number of a menu item in this parameter and the menu
ID of a menu in the current menu list in the menul D parameter,
Get MCEnt r y returns a specific menu item entry.

The Get MCEnt r y function returns a menu bar entry, a menu title entry, or a menu item
entry according to the values specified in the menul Dand nenul t emparameters. If
the Get MCENt r y function finds the specified entry in your application’s menu color
information table, it returns a pointer to a record of data type MCEnt ry. If the specified
entry is not found, Get MCEnt r y returns NI L.

Menu Manager Reference 3-145

Jabeue\ nusiy -

SEE ALSO

CHAPTER 3

Menu Manager

WARNING

The menu color information table is relocatable, so the pointer returned
by the Get MCEnt r y function may not be valid across routines that may
move or purge memory. Your application should make a copy of the
menu color entry record if necessary. a

“The Menu Color Information Table Record” beginning on page 3-98 describes the
entries in a menu color information table.

SetMCEntries

DESCRIPTION

Use the Set MCEnt r i es procedure to set entries in your application’s menu color
information table. You can set any or all of your application’s menu item entries and
menu title entries or the menu bar entry.

PROCEDURE Set MCEntries (nunEntries: Integer;
menuCEntries: MCTabl ePtr);

nunEnt ri es The number of entries contained in the array of menu color entry records.

menuCEntries
A pointer to an array of menu color entry records. Specify the number of
records in the array in the nunEnt ri es parameter.

The Set MCEnt r i es procedure sets any specified menu bar entry, menu title entry, or
menu item entry according to the values specified in the menu color entry records. If
an entry already exists for a specified menu color entry, the Set MCEnt r i es procedure
updates the entry in your application’s menu color information table with the new
values. If the entry doesn’t exist, it is added to your application’s menu color
information table.

If any of the added entries specify a new menu bar color or new menu title colors, your
application should call Dr awmVenuBar to update the menu bar with the new colors.

SPECIAL CONSIDERATIONS

3-146

The Set MCEnt r i es procedure may move or purge memory. Your application should
make sure that the array specified by the nenuCEnt r i es parameter is nonrelocatable
before calling Set MCEnt ri es.

Menu Manager Reference

SEE ALSO

CHAPTER 3

Menu Manager

“The Menu Color Information Table Record” beginning on page 3-98 describes the
entries in a menu color information table.

DeleteMCEntries

DESCRIPTION

Use the Del et eMCEnt ri es procedure to delete one or all entries for a specific menu
from your application’s menu color information table. You can delete a menu item entry,
a menu title entry, the menu bar entry, or all menu item entries of a specific menu. The
Del et eMCENt ri es procedure is also available as the Del MCEnt r i es procedure.

PROCEDURE Del et eMCEntries (nmenul D Integer; nenultem |Integer);

menul D The menu ID that the Del et eMCEnt ri es procedure should use to
determine which entry to delete from the menu color information table.
Specify 0 in the menul D parameter (and the nenul t emparameter) to
delete the menu bar entry. Specify the menu ID of a menu in the current
menu list in the menul D parameter and 0 in the menul t emparameter to
delete a specific menu title entry. Specify the menu ID of a menu in the
current menu list in the nenul D parameter and an item number in the
menul t emparameter to delete a specific menu item entry.

menul tem The menu item that the Del et eMCEnt ri es procedure should use to
determine which entry to delete from the menu color information table. If
you specify 0 in this parameter, Del et eMCEnt r i es deletes either the
menu bar entry or menu title entry, depending on the value of the
menul D parameter. If you specify the item number of a menu item in this
parameter and the menu ID of a menu in the current menu list in the
menul D parameter, Del et eMCEnt r i es deletes a specific menu item
entry. You can also delete all menu item entries for a specific menu from
your application’s menu color information table using this constant:

CONST
nct Al lltems = -98; {delete all nenu itementries }
{ for the specified nmenu}

The Del et eMCEnt ri es procedure deletes a menu bar entry, a menu title entry, a menu
item entry, or all menu item entries of a given menu, according to the values specified in
the menul Dand nenul t emparameters. If the Get MCEnt r y function does not find the
specified entry in your application’s menu color information table, it does not delete the
entry. Your application should not delete the last entry in your application’s menu color
information table.

If any of the deleted entries changes the menu bar color or a menu title color, your
application should call Dr awMenuBar to update the menu bar.

Menu Manager Reference 3-147

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

Application-Defined Routine

Apple provides a standard menu definition procedure and standard menu bar definition
function. The Menu Manager uses the menu definition procedure and menu bar
definition function to display and perform basic operations on menus and the menu bar.
Although the Menu Manager allows you to provide your own menu bar definition
function, Apple recommends that you use the standard menu bar definition function.
Similarly, in most cases the standard menu definition procedure should meet the needs
of most applications. However, if your application has special needs, you can choose to
provide your own menu definition procedure. If you do so, define your menu definition
procedure so that it emulates the standard behavior of menus as much as possible. If you
define your own menus, they should follow the guidelines described in this chapter and
in Macintosh Human Interface Guidelines.

The Menu Definition Procedure

The Menu Manager uses the menu definition procedure of a menu to draw the menu
items in the menu, to determine which item the user chose from the menu, and to
calculate the menu’s dimensions. If you provide your own menu definition procedure,
it should also perform these tasks.

Apple provides a standard menu definition procedure, stored as a resource in the System
file. The standard menu definition procedure is the ' MDEF' resource with resource ID 0.
When you define your menus, you specify the menu definition procedure the Menu
Manager should use when managing them. You'll usually want to use the standard
menu definition procedure for your application. However, if you need a feature not
provided by the standard menu definition procedure (for example, if you want to
include more graphics in your menus), you can choose to write your own menu
definition procedure.

MyMenuDef

3-148

You can provide your own menu definition procedure if you need special features in a
menu other than those provided by the standard menu definition procedure. This section
describes how to define your own menu definition procedure, defines the parameters
passed to your procedure by the Menu Manager, and describes the general actions your
procedure should perform.

PROCEDURE MyMenuDef (message: |nteger; theMenu: MenuHandl e;
VAR menuRect: Rect; hitPt: Point;
VAR whi chltem |nteger);

nessage A number that identifies the operation that the menu definition proce-

dure should perform. The nessage parameter can contain any one of
these values:

Menu Manager Reference

CHAPTER 3

Menu Manager

CONST
nDr awivs g = 0; {draw the nenu}
nChooseMsg {tell which itemwas chosen }
{ and highlight it}
nSi zeMsg = 2; {calculate nenu di nensi ons}
nPopUpMsg {cal cul ate rectangle of }
{ the pop-up box}

11
=

I
w

Your menu definition procedure should not respond to any value other
than the four constants listed above.

t heMenu A handle to the menu record of the menu that the operation should affect.

menuRect The rectangle (in global coordinates) in which the menu is located; the
Menu Manager provides this information to the menu definition
procedure only when the value in the nessage parameter is the
nDr awiVsg or mChooseMsg constant.

When the value in the nessage parameter is the "PopUpMsg constant,
the menu definition procedure should calculate and then return the
dimensions of the pop-up box in this parameter. When the value in the
message parameter is the mSi zeMsg constant, the menu definition
procedure should calculate the horizontal and vertical dimensions of the
menu rectangle and store these values in the menuW dt h and

menuHei ght fields of the menu record.

hi t Pt A mouse location (in global coordinates). The Menu Manager provides
information in this parameter to the menu definition procedure when the
value in the message parameter is the nChooseMsg or nPopUpMsg
constant. When the menu definition procedure receives the nChooseMsg
constant in the nessage parameter, it should determine whether the
mouse location specified in the hi t Pt parameter is in an enabled menu
item and highlight or unhighlight the item specified in the whi chl t em
parameter appropriately. When the menu definition procedure receives
the mPopUpMs g constant in the nessage parameter, the hi t Pt
parameter contains the top-left coordinates of the closed pop-up box,
which your procedure can use to calculate the rectangle of the open
pop-up box.

whi chl t em The item number of the last item chosen from this menu (or 0 if an item
hasn’t been chosen). The Menu Manager provides information in this
parameter to the menu definition procedure when the value in the
message parameter is the nChooseMsg constant. When the menu
definition procedure receives the mchooseMsg constant in the
message parameter, it should determine whether the mouse location
specified in the hi t Pt parameter is in an enabled menu item. If so, the
menu definition procedure should unhighlight the item specified by
the whi chl t emparameter, highlight the new item, and return the new
item number in whi chl t em If the mouse location isn’t in an enabled
menu item, the menu definition procedure should unhighlight the
item specified by the whi chl t emparameter and return 0 in the
whi chl t emparameter.

Menu Manager Reference 3-149

Jabeue\ nusiy -

DESCRIPTION

3-150

CHAPTER 3

Menu Manager

The Menu Manager calls your menu definition procedure whenever it needs your
definition procedure to perform a certain action on a specific menu. The action
your menu definition procedure should perform depends on the value of the
message parameter.

If you provide your own menu definition procedure, store it in a resource of type

" MDEF' and include its resource ID in the description of each menu that uses your own
definition procedure. If you create a menu using Get Menu (or Get NewivBar), the Menu
Manager reads the menu definition procedure into memory and stores a handle to it in

the menuPr oc field of the menu’s menu record.

If you create a menu using NewVenu, the Menu Manager stores a handle to the standard
menu definition procedure in the menuPr oc field of the menu’s menu record. In this
case you must replace the value in the menuPr oc field with a handle to your own
procedure and then call the Cal cMenuSi ze procedure. If your menu definition
procedure is in a resource file, you can get its handle by using the Resource Manager to
read it from the resource file into memory. However, note that you should usually store
your menus in resources (rather than using NewMenu) to make your application easier to
localize. See the “Resource Manager” chapter in Inside Macintosh: More Macintosh Toolbox
for information on the Resource Manager.

The menu definition procedure is responsible for drawing the contents of the menu and
its menu items, determining whether the cursor is in a displayed menu, highlighting and
unhighlighting menu items, and calculating a menu’s dimensions.

When the Menu Manager requests your menu definition procedure to perform an action
on a menu, it provides your procedure with a handle to its menu record. This allows
your procedure to access the data in the menu record and to use any data in the variable
data portion of the menu record to appropriately handle the menu items.

When the Menu Manager creates a menu as a result of an application calling Get Menu
or Get NewiVBar, it fills out the menul D, menuPr oc, enabl eFl ags, nenuTi t| e, and

i t enDefi niti ons fields of the menu record according to its resource definition. If the
menu is managed by your menu definition procedure, the Menu Manager calls your
procedure (specifying nSi zeMsg) to calculate and fill in the menuHei ght and

menuW dt h fields of the menu record. The menu items are described by a variable
length field (i t enDef i ni ti ons) in the menu record. Your menu definition procedure
can define and use this variable-length data in any manner it chooses.

For pop-up menus that are not implemented as controls, the Menu Manager uses the
menu definition procedure to support pop-up menus. If your menu definition procedure
supports pop-up menus, it should respond appropriately to the mMPopUpMsg constant.

The Menu Manager specifies the mPopUpMs g constant in the nessage parameter and
calls your menu definition procedure whenever it needs to calculate the rectangle
bounded by the pop-up box for a pop-up menu that is managed by your menu
definition procedure. The parameter t heMenu contains a handle to the menu record

of the pop-up menu, the hi t Pt parameter contains the top-left coordinates of the pop-
up box, and whi chl t emcontains the previously chosen item. Your menu definition
procedure should calculate the rectangle in which the pop-up menu is to appear

Menu Manager Reference

SEE ALSO

Resources

CHAPTER 3

Menu Manager

and return this rectangle in the nenuRect parameter. If the menu is so large that it
scrolls, return the actual top of the menu in the whi chl t emparameter. For pop-up
menus, your menu definition procedure also must place the pop-up menu’s scrolling
information in the global variables TopMenul t emand At MenuBot t om Place in
TopMenul t emthe pixel value of the top of the scrollable menu, and place in

At MenuBot t omthe pixel value of the bottom of the scrollable menu.

Note

Your menu definition procedure should not assume that the A5
register is properly set up, so your procedure can’t refer to any of
the QuickDraw global variables. O

For additional information on how your menu definition procedure should respond
when it receives the nDr aws g, mChooseMsg, or nSi zeMsg constant in the message
parameter, see “Writing Your Own Menu Definition Procedure” beginning on page 3-87.

This section describes the menu (' MENU') resource, menu bar (' MBAR') resource, and
menu color information table (' nct b') resource. Usually you should define your menus
using ' MENU resources, define the menus in your menu bar in an' MBAR resource, and
use the Get NewMBar function to read in the descriptions of your menus and menu bar.

If you want to use colors other than the default colors in a menu, you can provide an
"metb' resource with the same resource ID as its corresponding ' MENU resource, or
you can provide an' ntt b’ resource with resource ID 0 to define colors for all your
menus and your menu bar.

If you choose to provide your own menu definition procedure, you should store your
routine in an ' MDEF' resource.

To createa’ MENU ,an' MBAR ,oran' nctb' resource, either you can specify the
resource description in an input file and compile the resource using a resoure compiler,
such as Rez, or you can directly create your resources in a resource file using a tool such
as ResEdit. This section describes the structures of these resources after they are
compiled by the Rez resource compiler. If you are interested in creating the Rez input
files for these resources, see “Using the Menu Manager,” beginning on page 3-41, for
detailed information.

The Menu Resource

You can provide descriptions of your menus in' MENU resources and use the Get Menu
function or Get NewVBar function (if you also provide an' MBAR' resource) to read in
the descriptions of your menus. After reading in the resource description, the Menu
Manager stores the information about specific menus in menu records.

Menu Manager Reference 3-151

Jabeue\ nusiy -

A

CHAPTER 3

Menu Manager

WARNING
Menus in a resource must not be purgeable. a

Figure 3-37 shows the format of a compiled ' MENU' resource. See Listing 3-1 on
page 3-43 for a description of a' MENU' resource in Rez input format.

Figure 3-37 Structure of a compiled menu (" MENU') resource

3-152

' MENU resource type Bytes
Menu ID 2
Placeholder for menu width 2
Placeholder for menu height 2

Resource ID of menu definition procedure | 2

Placeholder 2
Initial enabled state of the menu 4
and menu items
Length (n) of title 1
Characters of menu title n
Z Variable-length data that /variable

defines the menu items

Placeholder 1

A compiled version of a' MENU resource contains the following elements:

s Menu ID. Each menu in your application should have a unique menu ID. Note that

the menu ID does not have to match the resource ID, although by convention most
applications assign the same number for a menu’s resource ID and menu ID. A
negative menu ID indicates a menu belonging to a desk accessory (except for
submenus of a desk accessory). A menu ID from 1 through 235 indicates a menu (or
submenu) of an application; a menu ID from 236 through 255 indicates a submenu of
a desk accessory. Apple reserves the menu ID of 0.

Placeholder (two integers containing 0) for the menu’s width and height. After
reading in the resource data, the Menu Manager requests the menu’s menu definition
procedure to calculate the width and height of the menu and to store these values in
the mrenuW dt h and menuHei ght fields of the menu record.

Resource ID of the menu’s menu definition procedure. If the integer 0 appears here (as
specified by the t ext MenuPr oc constant in the Rez input file), the Menu Manager
uses the standard menu definition procedure to manage the menu. If you provide
your own menu definition procedure, its resource ID should appear in these bytes.

Menu Manager Reference

CHAPTER 3

Menu Manager

After reading in the menu’s resource data, the Menu Manager reads in the menu
definition procedure, if necessary. The Menu Manager stores a handle to the menu’s
menu definition procedure in the menuPr oc field of the menu record.

= Placeholder (an integer containing 0).

» The initial enabled state of the menu and first 31 menu items. This is a 32-bit value,
where bits 1-31 indicate if the corresponding menu item is disabled or enabled, and
bit 0 indicates whether the menu is enabled or disabled. The Menu Manager
automatically enables menu items greater than 31 when a menu is created.

= The length (in bytes) of the menu title.
= The title of the menu.

= Variable-length data that describes the menu items. If you provide your own menu
definition procedure, you can define and provide this variable-length data according
to the needs of your procedure. The Menu Manager simply reads in the data for each
menu item and stores it as variable data at the end of the menu record. The menu
definition procedure is responsible for interpreting the contents of the data. For
example, the standard menu definition procedure interprets this data according to the
description given in the following paragraphs.

= Placeholder (a byte containing 0) to indicate the end of the menu item definitions.

If you use the standard menu definition procedure, your' MENU resource should
describe the menu items in this manner. For each menu item, you need to provide its
text, the icon number, the keyboard equivalent or other value ($1B to indicate the menu
item has a submenu, $1C to indicate a script code other than the system script for the
item’s text, $1D to indicate the item’s icon should be reduced, or $1E to indicate that an

" SI CN' icon should be used), the marking character of the menu item or menu ID of the
menu item’s submenu, and the font style of the menu item’s text. If an item doesn’t have
a particular characteristic, specify 0 for that characteristic. Figure 3-38 shows the
variable-length data portion of a compiled ' MENU resource that uses the standard menu
definition procedure.

Figure 3-38 The variable-length data that describes menu items as defined by the standard

menu definition procedure

Variable-length datain ' MENU resource Bytes
(For each menu item)
Length (m) of menu item text 1
} Text of menu item / m

Icon number, script code, or 0
Keyboard equivalent, $1B, $1C, $1D, $1E, or 0
Marking character or menu ID of submenu, or 0

Style of the menu item

A N

Menu Manager Reference 3-153

Jabeue\ nusiy -

3-154

CHAPTER 3

Menu Manager

The variable-length data portion of a compiled version of a' MENU resource that uses
the standard menu definition procedure contains the following elements:

Length (in bytes) of the menu item’s text.
Text of the menu item.

Icon number, script code, or 0 (as specified by the noi con constant in a Rez input file)
if the menu item doesn’t contain an icon and uses the system script. The icon number
is a number from 1 through 255 (or from 1 through 254 for small or reduced icons).
The Menu Manager adds 256 to the icon number to generate the resource ID of the
menu item’s icon. If a menu item has an icon, you should also provide a' ci cn' or an
"1 CON' resource with the resource ID equal to the icon number plus 256. If you want
the Menu Manager to reduce an' | CON' resource to the size of a small icon, also
provide the value $1D in the keyboard equivalent field. If you provide an"' SI CN
resource, provide $1E in the keyboard equivalent field. Otherwise, the Menu Manager
looks first fora' ci cn' resource with the calculated resource ID and uses that icon. If
you want the Menu Manager to draw the item’s text in a script other than the system
script, specify the script code here and also provide $1C in the keyboard equivalent
field. If the script system for the specified script is installed, the Menu Manager draws
the item’s text using that script. An item that is drawn in a script other than the
system script cannot also have an icon.

Keyboard equivalent (specified as a 1-byte character), the value $1B (as specified by
the constant hi er ar chi cal Menu in a Rez input file) if the item has a submenu, the
value $1C if the item uses a script other than the system script, or 0 (as specified by
the nokey constant in a Rez input file) if the item has neither a keyboard equivalent
nor a submenu and uses the system script. A menu item can have a keyboard
equivalent, a submenu, a small icon, a reduced icon, or a script code, but not more
than one of these characteristics. For items containing icons, you can provide $1D in
this field if you want the Menu Manager to reduce an' | CON' resource to the size
of a small icon. Provide $1E if you want the Menu Manager to use an"' SI CN
resource for the item’s icon. The values $01 through $1A as well as $1F and $20 are
reserved for use by Apple; your application should not use any of these reserved
values in this field.

Marking character, the menu ID of the item’s submenu, or 0 (as specified by the

nomar k constant in a Rez input file) if the item has neither a mark nor a submenu. A
menu item can have a mark or a submenu, but not both. Submenus of an application
should have menu IDs from 1 through 235; submenus of a desk accessory should have
menu IDs from 236 through 255.

Font style of the menu item. The constants bol d, i tal i ¢, pl ai n, outl i ne, and
shadow can be used in a Rez input file to define their corresponding styles.

If you provide your own menu definition procedure, you should use the same format
for your resource descriptions of menus as shown in Figure 3-37. You can use the same
format or a format of your choosing to describe menu items. You can also use bits 1-31
of the enabl eFl ags field of the menu record as you choose; however, bit 0 must still
indicate whether the menu is enabled or disabled.

Menu Manager Reference

CHAPTER 3

Menu Manager

The Menu Bar Resource

You can describe the order and number of menus in your menu bar in an' MBAR
resource, and you can describe your menus in' MENU resources. If you do so, you can
use the Get NewMBar function to read in the descriptions of your menus and create a
new menu list. The Menu Manager stores information about your application’s menu
bar in a menu list. Figure 3-39 shows the format of a compiled ' MBAR' resource. (See
Listing 3-4 on page 3-49 for a description of an' MBAR' resource in Rez input format.)

Figure 3-39 Structure of a compiled menu bar (' MBAR') resource

' MBAR' resource type Bytes
Number of menus 2
- w
Resource ID of first menu 2
Resource ID of second menu 2 %
=}
Resource ID of next menu 2 ;
[
=}
[
4 / 2
@
Resource ID of last menu 2

A compiled version of an' MBAR' resource contains the following elements:

= Number of menus described by this menu bar.

= A variable number (the amount should match the number declared in the first 2 bytes)
of resource IDs; each resource ID should identify a' MENU resource.

If you use the Get NewiVBar function, the Menu Manager places the menus in the menu
bar according to the order that they appear in the ' MBAR resource.

The Menu Color Information Table Resource

To use colors other than the default colors in a menu, provide a menu color information
table (' nct b') resource with the same resource ID as its corresponding ' MENU
resource. You can also choose to provide an' ntt b’ resource with resource ID 0 to
define colors for all your menus and your menu bar. Note that you should usually use
the default colors provided by the Menu Manager.

The Menu Manager stores color information about your application’s menus and menu
bar in a menu color information table. If you provide an' ntt b' resource with resource
ID 0, the Menu Manager reads the resource in when your application calls | ni t Menus
and stores the information in your application’s menu color information table. If you
provide an' ntt b' resource with the same resource ID as a' MENU resource, when you

Menu Manager Reference 3-155

CHAPTER 3

Menu Manager

use Get Menu to read in the resource description of the menu (or Get NewiVBar to read
in all menus in the menu bar), the Menu Manager also reads in any associated ' ntt b’
resource (if it exists). “The Menu Color Information Table Record” beginning on

page 3-98 describes the format of the menu color information table.

Figure 3-40 shows the format of a compiled ' nct b' resource.

Figure 3-40 Structure of a compiled menu color information table (' ntt b') resource

3-156

"nct b’ resource type Bytes
Number of entries 2
Z First color entry / 28

4 /

{ Last color entry { 28

A compiled version of an' nct b' resource contains the following elements:
= a count of the number of menu color entry descriptions

= a variable number of menu color entries

A color entry defines colors for various parts of the menu and menu bar. Figure 3-41 on
the next page shows the format of a compiled menu color entry inan' nttb' resource.

Each menu color entry inan ' nct b' resource contains the following:

= A menu ID to indicate that this entry is either a menu item entry or menu title entry, 0
to indicate that this entry is a menu bar entry, or —99 to indicate that this is the last
entry in this resource.

= Anitem number to indicate that this entry is a menu item entry, or 0 to indicate that
this is either a menu title or menu bar entry. Together, the menu ID and menu item
determine how the type of menu color entry is described. See Table 3-7 on page 3-100
for a complete description of how the menu ID and menu item specifications define
the type of menu color entry.

= RGB1: for a menu bar entry, the default color for menu titles; for a menu title entry, the
title color of a specific menu; for a menu item entry, the mark color for a specific item.

= RGB2: for a menu bar entry, the default background color of a displayed menu; for a
menu title entry, the default color for the menu bar; for a menu item entry, the color
for the text of a specific item.

Menu Manager Reference

CHAPTER 3

Menu Manager

Figure 3-41 Structure of a menu color entry inan ' nct b’ resource

Menu color entry Bytes
ID 2
Item 2
/ RGB1 /6
/ RGB2 /6
/ RGB3 / 6
{ RGB4 {6

» RGB3: for a menu bar entry, the default color of items in a displayed menu; for a
menu title entry, the default color for items in a specific menu; for a menu item entry,
the color for the keyboard equivalent of a specific item.

» RGB4: for a menu bar entry, the default color of the menu bar; for a menu title entry,
the background color of a specific menu; for a menu item entry, the background color
of a specific menu.

The Menu Definition Procedure Resource

If you provide your own menu definition procedure, you should store it in a resource of
type ' MDEF' . Provide as the resource data the compiled or assembled code of your
menu definition procedure. The entry point of your procedure must be at the beginning
of the resource data.

If you define your menus in ' MENU resources (and use the Get Menu or Get NewiVBar
function), you specify the menu definition procedure that the Menu Manager should
use to manage the menu in the' MENU resource. If you use the NewMenu function
(instead of ' MENU resources), your application must explicitly replace the handle to
the standard menu definition procedure in the menuPr oc field of the menu record with
a handle to the desired menu definition procedure.

Menu Manager Reference 3-157

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

Summary of the Menu Manager

Pascal Summary

Constants

CONST
noMar k = 0; {nmenu itemdoesn't have a marking character}

{val ues for the nessage paraneter to the nenu definition procedure}
nDr awivs g = 0; {drawthe nmenu items of a menu}
nChooseMsg = 1; {highlight or unhighlight a nenu itemas }

{ appropriate if the cursor is in a nenu iten

nSi zeMsg = 2; {calculate the dinensions of a menu}
nPopUpMsg = 3; {calculate the open pop-up box rectangl e}
t ext MenuPr oc = 0; {resource ID of standard nmenu definition }
{ procedure}
hMenuCnd = 27; {constant ($1B) specified as keyboard equival ent }

{ to indicate a nenu item has a subnenu}
hi er Menu = -1; {constant used with InsertMenu routine to insert }
{ a subnmenu or pop-up nenu into the subnenu }
{ portion of the current nenu list}
-98; {search for all itenms with the given |D}
-99;{last nmenu color table entry has this value }
{ inthe IDfield of the entry}

nct Al I tens
nct Last | Dl ndi ¢

Data Types
TYPE
Menul nfo = {menu record}
RECORD
menul D I nt eger; {nunber that identifies the nenu}
menuW dt h: I nteger; {width (in pixels) of the nmenu}
nmenuHei ght: | nteger; {hei ght (in pixels) of the menu}
menuPr oc: Handl e; {menu definition procedure}
enabl eFl ags: Longl nt ; {indi cates whet her nenu and }

{ nenu itens are enabl ed}

3-158 Summary of the Menu Manager

CHAPTER 3

Menu Manager

nmenuDat a: Str255; {title of nenu}
{itenDefinitions} {vari abl e-length data that }
{ defines the nenu itens}
END;
MenuPt r = ~Menul nf o; {pointer to a nenu record}
MenuHandl e = ~MenuPtr; {handl e to a nmenu record}
MCEntry = {menu col or entry record}
RECORD
nct | D I nt eger; {menu ID or O for menu bar}
nctltem I nt eger; {nmenu item nunber or 0 for }
{ menu title}
nct RGB1: RGBCol or; {usage depends on nttlD and }
{ nctliten}
nct RGB2: RGBCol or; {usage depends on nttlD and }
{ nctliteny cj%
nct RGB3: RGBCol or; {usage depends on nttlD and } ;
{ nctltent %
nct RGB4: RGBCol or; {usage depends on nttlD and } <
{ nctliten} B
nct Reserved: | nt eger; {reserved}
END;
MCEntryPtr = ~"MCEntry; {pointer to a nenu col or entry record}
MCTabl e = ARRAY[O0..0] OF MCEntry; {nenu color table}

MCTabl ePtr = ~MCTabl e; {pointer to a nenu col or table}
MCTabl eHandl e = "MCTabl ePtr; {handle to a nenu col or table}

Menu Manager Routines

Initializing the Menu Manager

PROCEDURE | ni t Menus;
PROCEDURE | ni t ProcMenu (reslD: Integer);

Creating Menus

FUNCTI ON Newivenu (menul D Integer; nenuTitle: Str255)
MenuHandl e;
FUNCTI ON Get Menu (resourcel D: Integer): MenuHandl e;

Summary of the Menu Manager 3-159

CHAPTER 3

Menu Manager

Adding Menus to and Removing Menus From the Current Menu List

PROCEDURE | nsert Menu (theMenu: MenuHandl e; beforel D |nteger);
PROCEDURE Del et eMenu (menul D: | nteger);

PRCCEDURE Cl ear MenuBar ;

Getting a Menu Bar Description From an 'MBAR' Resource
FUNCTI ON Get NewiVBar (rmenuBar I D: Integer): Handl e;

Getting and Setting the Menu Bar

FUNCTI ON Get MenuBar: Handl e;
PROCEDURE Set MenuBar (menulLi st: Handl e);
FUNCTI ON Get MBar Hei ght: | nt eger;

Drawing the Menu Bar

PROCEDURE Dr awMenuBar ;
PROCEDURE | nval MenuBar ;

Responding to the User’s Choice of a Menu Command

FUNCTI ON MenuSel ect (startPt: Point): Longlnt;
FUNCTI ON MenuKey (ch: Char): Longlnt;
FUNCTI ON MenuChoi ce: Longlnt;

PROCEDURE Hi | i t eMenu (menul D: | nteger);

FUNCTI ON PopUpMenuSel ect (menu: MenuHandl e;

Top: Integer; Left: Integer;
PopUpltem Integer): Longlnt;

PROCEDURE Syst enmvenu (menuResul t: Longlnt);
FUNCTI ON Syst enEdi t (editCmd: Integer): Bool ean;

Getting a Handle to a Menu Record

{some routines have two spellings, see Table 3-8 for the alternate spelling}
FUNCTI ON Get MenuHandl e (menul D I nteger): MenuHandl e;

FUNCTI ON HMGet Hel pMenuHandl e
(VAR nmh: MenuHandl e): OSErr;

Adding and Deleting Menu Items
{sone routines have two spellings, see Table 3-8 for the alternate spelling}

PROCEDURE AppendMenu (menu: MenuHandl e; data: Str255);

PROCEDURE | nsert Menul t em (theMenu: MenuHandl e; itenftring: Str255;
afterltem |Integer);

3-160 Summary of the Menu Manager

CHAPTER 3

Menu Manager

PROCEDURE Del et eMenul tem
PROCEDURE AppendResMenu
PROCEDURE | nsert ResMenu

(theMenu: MenuHandl e; item

(theMenu: MenuHandl e; theType:
(theMenu: MenuHandl e; theType:

afterltem |Integer);

Getting and Setting the Appearance of Menu Items

{sone routines have two spellings,

PROCEDURE Enabl el t em
PROCEDURE Di sabl el tem
PROCEDURE Get Menul t enTText

PROCEDURE Set Menul t enText
PROCEDURE Cet I tenftyl e
PROCEDURE Setltenfstyl e
PROCEDURE Get | t emvar k
PROCEDURE Set | t emiVar k
PROCEDURE Checkltem
PROCEDURE Cet |t em con
PROCEDURE Set | t enl con
PROCEDURE Get | t enCnd
PROCEDURE Set | t enCnd

Disposing of Menus
PROCEDURE Di sposeMenu

Counting the Items in a Menu

FUNCTI ON Count M t ens

Highlighting the Menu Bar

PROCEDURE Fl ashMenuBar
PROCEDURE Set MenuFl ash

(theMenu: MenuHandl e; item
(theMenu: MenuHandl e; item

(theMenu: MenuHandl e; item
VAR itenttring: Str255);
(theMenu: MenuHandl e; item

itenBString: Str255);
(theMenu: MenuHandl e; item
VAR chStyle: Style);
(theMenu: MenuHandl e; item
chStyle: Style);
(theMenu: MenuHandl e; item
VAR mar kChar: Char);
(theMenu: MenuHandl e; item
mar kChar: Char);
(theMenu: MenuHandl e; item
checked: Bool ean);
(theMenu: MenuHandl e; item
VAR i conl ndex: Byte);
(theMenu: MenuHandl e; item
i conl ndex: Byte);
(theMenu: MenuHandl e; item
VAR crmdChar: CHAR);

(theMenu: MenuHandl e; item
cndChar: CHAR);

(theMenu: MenuHandl e);

I nt eger);

I nt eger);
I nt eger);
| nt eger;

| nt eger;

I nt eger;

| nt eger;

| nt eger;

I nt eger;

I nt eger;

I nt eger;

I nt eger;

| nt eger;

| nt eger;

(theMenu: MenuHandl e): | nteger;

(menul D: | nteger);
(count: Integer);

Summary of the Menu Manager

ResType) ;
ResType;

see Table 3-8 for the alternate spelling}

3-161

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

Recalculating Menu Dimensions

PROCEDURE Cal cMenuSi ze (t heMenu: MenuHandl e);

Managing Entries in the Menu Color Information Table

{sone routines have two spellings, see Table 3-8 for the alternate spelling}
FUNCTI ON Get MCI nf 0: MCTabl eHandl e;

PROCEDURE Set MCI nf o (menuCTbl : MCTabl eHandl e) ;

PROCEDURE Di sposeMCl nf o (menuCTbl : MCTabl eHandl e) ;

FUNCTI ON Get MCEnt ry (menul D I nteger; menultem |nteger)
MCEnt ryPtr;

PROCEDURE Set MCEntri es (nunEntries: |nteger;

menuCEntries: MCTabl ePtr);
PROCEDURE Del et eMCEntri es (menul D I nteger; nmenultem |Integer);

Application-Defined Routine

PROCEDURE My MenuDef (message: Integer; theMenu: MenuHandl e;
VAR menuRect: Rect; hitPt: Point;
VAR whi chltem | nteger);

C Summary

Constants

enum {
#defi ne novark '\0' /*nmenu item doesn't have a marki ng character*/

/*val ues for the nessage paraneter to the menu definition procedure*/

nDr awivs g =0, /*draw the nenu itens of a nenu*/
nmChooseMsg =1, /*highlight or unhighlight a nenu itemas */
/* appropriate if the cursor is in a nmenu itent/
nSi zeMVsg = 2, [/*calculate the dinensions of a nenu*/
mPopUpMsg = 3, [/*calculate the open pop-up box rectangl e*/
t ext MenuPr oc = 0, /*resource ID of standard menu definition */
/* procedure*/
hMenuCnrd = 27, /*constant ($1B) specified as keyboard */
/* equivalent to indicate an item has a subnmenu*/
hi er Menu = -1, /*constant used with InsertMenu to insert */

/* a subnenu or pop-up menu into the subnenu */
/* portion of the current nenu list*/

3-162 Summary of the Menu Manager

CHAPTER 3

Menu Manager

-98,/*search for all items with the given | D/
-99 /*last nmenu color table entry has this value */
/[* inthe IDfield of the entry*/

nct Al I tens
nct Last | DI ndi ¢

1
Data Types
struct Menulnfo { /*menu record*/
short nmenul D /*nunber that identifies the nmenu*/
short menuW dt h; /*width (in pixels) of the nmenu*/
short menuHei ght ; /*hei ght (in pixels) of the menu*/
Handl e menuPr oc; /*menu definition procedure*/
| ong enabl eFl ags; /*indi cates whet her menu and */
/* menu itens are enabl ed*/
Str 255 nenuDat a; [*title of menu*/
/*itenDefinitions*/ /*variabl e-1 ength data that */
/* defines the menu itenms*/
b
typedef struct Menul nfo Menul nfo; /*pointer to a menu record*/

t ypedef Menulnfo *MenuPtr, **MenuHandle; /*handle to a menu record*/

struct MCEntry { /*menu col or entry record*/

short nct | D; /[*menu ID or O for menu bar*/

short nctltem /*menu item nunber or 0 for */
/[* menu title*/

RGBCol or nct RGB1; /*usage depends on ncttlD and */
[* nctltemt/

RGBCol or nct RGB2; /*usage depends on nttlD and */
/[* nctltemt/

RGBCol or nct RGB3; /*usage depends on nttlD and */
/* mctltent/

RGBCol or nct RGB4; /*usage depends on ncttlD and */
[* nctltemt/

short nct Reserved; [*reserved*/

b

t ypedef struct MCEntry MCEntry;

typedef MCEntry *MCEntryPtr; /*pointer to a menu color entry record*/
/*menu col or table*/

typedef MCEntry MCTabl e[1], *MCTabl ePtr, **MCTabl eHandl e;

Summary of the Menu Manager 3-163

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

Menu Manager Routines

Initializing the Menu Manager

pascal
pascal

void I nitMenus (void);
void InitProcMenu (short reslD);

Creating Menus

MenuHandl e Newivenu (short nenul D, const Str255 nenuTitle);
MenuHandl e Get Menu (short resourcel D);

pascal
pascal

Adding Menus to and Removing Menus From the Current Menu List

pascal
pascal
pascal

void I nsertMenu
voi d Del et eMenu (short nenul D);
voi d C ear MenuBar (void);

(MenuHandl e t heMenu,

Getting a Menu Bar Description From an 'MBAR' Resource

pascal

Handl e Get NewiVBar (short nenuBarlD);

Getting and Setting the Menu Bar

pascal
pascal

#def i ne Get MBar Hei ght ()

Handl e Get MenuBar (void);
voi d Set MenuBar (Handl e menulLi st);

Drawing the Menu Bar

pascal
pascal

voi d Dr awivenuBar (voi d);
voi d | nval MenuBar (void);

Responding to the User’s Choice of a Menu Command

pascal
pascal
pascal
pascal
pascal

pascal
pascal

3-164

| ong MenuSel ect (Point startht);
| ong MenuKey (short ch);

| ong MenuChoi ce (voi d);

void HiliteMenu

| ong PopUpMenuSel ect (MenuHandl e nenu,
short popUplten;

voi d Systenmvenu (long nmenuResul t);

Bool ean Syst enEdit (short editCmd);

(short nenul D);

Summary of the Menu Manager

(* (short*) OxO0BAA)

short top,

short

short beforelD);

left,

CHAPTER 3

Menu Manager

Getting a Handle to a Menu Record

{sone routines have two spellings,

pascal

pascal

Menu

OSEr

Handl e Get MenuHandl e
(short nenul D);

r HMCGet Hel pMenuHandl e
(MenuHandl e *nh);

Adding and Deleting Menu Items

{sone routines have two spellings,

pascal
pascal

pascal
pascal
pascal

voi d
voi d

voi d
voi d
voi d

see Table 3-8 for the alternate spelling}

see Table 3-8 for the alternate spelling}

AppendMenu (MenuHandl e nenu, Const Str255Param dat a) ;

I nsert Menultem (MenuHandl e t heMenu,
Const Str255Param itenString,
short afterlten);

Del eteMenultem (MenuHandl e t heMenu, short iten);

AppendResMenu (MenuHandl e t heMenu, ResType theType);
I nsert ResMenu (MenuHandl e t heMenu, ResType theType,

short afterlten);

Getting and Setting the Appearance of Menu Items

{sone routines have two spellings,

pascal

pascal
pascal

pascal

pascal

pascal
pascal

pascal

pascal

pascal

pascal

voi d
voi d
voi d

voi d

voi d

voi d
voi d

voi d

voi d

voi d

voi d

Enabl el t em (MenuHandl e theMenu, short iten);

Di sabl el tem (MenuHandl e theMenu, short iteny;

Cet Menul t emlext (MenuHandl e t heMenu, short item
Str255 itenttring);

Set Menul t enifext (MenuHandl e t heMenu, short item
Const Str255Param i tenString);

Cetltenttyl e (MenuHandl e theMenu, short item
Style *chStyle);

Setltenttyl e (MenuHandl e theMenu, short item

Get | t emvar k (MenuHandl e theMenu, short item
short *mar kChar);

Set | t emvar k (MenuHandl e theMenu, short item
short markChar);

Checkl tem (MenuHandl e theMenu, short item
Bool ean checked);

Getltem con (MenuHandl e theMenu, short item
short *iconl ndex);

Setltem con (MenuHandl e theMenu, short item

short iconl ndex);

Summary of the Menu Manager

short

see Table 3-8 for the alternate spelling}

chStyle);

3-165

Jabeue\ nusiy -

CHAPTER 3

Menu Manager

pascal void GetltenCnd (MenuHandl e t heMenu,
*cndChar) ;
pascal void SetltenCnrd (MenuHandl e t heMenu,

Disposing of Menus

pascal void Di sposeMenu (MenuHandl e t heMenu) ;

Counting the Items in a Menu

pascal short CountMtemns (MenuHandl e t heMenu) ;

Highlighting the Menu Bar

voi d Fl ashMenuBar
voi d Set MenuFl ash

pascal (short nenul D);

pascal (short count);

Recalculating Menu Dimensions

pascal void Cal cMenuSi ze (MenuHandl e t heMenu) ;

Managing Entries in the Menu Color Information Table

{sone routines have two spellings,

item short

item short cndChar);

see Table 3-8 for the alternate spelling}

MCTabl ePtr menuCEntri es);

pascal MCTabl eHandl e Get MCl nf o(voi d);

pascal void Set Ml nfo (MCTabl eHandl e nenuCThbl) ;

pascal void Di sposeMCl nfo (MCTabl eHandl e nenuCTbl) ;

pascal MCEntryPtr Get MCEntry (short nenul D, short nenulten;
pascal void Set MCEntries (short nunEntries,

pascal void DeleteMCEntries (short nenulD, short nenulteny;

Application-Defined Routine

pascal void MyMenuDef

3-166

(short nessage, MenuHandl e theMenu,
Rect *nenuRect, Point hitPt,
short *whichlten);

Summary of the Menu Manager

CHAPTER 3

Menu Manager

Assembly-Language Summary

Data Structures

The Menu Information Data Structure

0 menul D word number that identifies the menu
2 menuW dt h word width (in pixels) of the menu
4 menuHei ght word height (in pixels) of the menu
6 menuDef Handl e long menu definition procedure
10 menuEnabl e long enable flags
14 menuDat a 256 bytes menu title followed by menu item information

Global Variables

At MenuBot t om The pixel value at the bottom of the scrollable menu.

MBar Enabl e Contains 0 if all menus in the current menu bar belong to an application;
contains a nonzero value if all menus belong to a desk accessory.

MBar Hei ght Contains current height of the menu bar, in pixels.

MBar Hook Address of routine that MenuSel ect calls repeatedly while the mouse button
is down.

MenudCl nf o Contains a handle to application’s menu color information table.

MenuDi sabl e Contains the menu ID and item number of the last item chosen, regardless of
whether the item was disabled or enabled.

MenuFl ash Contains the current count (number of times) a menu item blinks when chosen
by the user.

MenuHook Address of routine that MenuSel ect calls after a menu title is highlighted and
the menu rectangle is calculated but before the menu is drawn.

TheMenu Contains the menu ID of the highlighted menu in the menu bar.

TopMenul tem The pixel value at the top of the scrollable menu.

Result Codes

noErr 0 No error

parantrr -50 Error in parameter list

menful | Err -108 Not enough room in heap zone
r esNot Found -192 Unable to read resource

hnHel pManager Not | ni t ed -855 Help menu not set up

Summary of the Menu Manager 3-167

Jabeue\ nusiy -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	Menu Manager, Part 2 (Reference)
	Menu Mana ger Refer ence
	The Menu List
	The Menu Color Information Table Record
	Menu Manager Routines
	Initializing the Menu Manager
	Creating Menus
	Adding Menus to and Removing Menus From the Curren...
	Getting a Menu Bar Description From an 'MBAR' Reso...
	Getting and Setting the Menu Bar
	Drawing the Menu Bar
	Responding to the User’s Choice of a Menu Command
	Getting a Handle to a Menu Record
	Adding and Deleting Menu Items
	Getting and Setting the Appearance of Menu Items
	Disposing of Menus
	Counting the Items in a Menu
	Highlighting the Menu Bar
	Recalculating Menu Dimensions
	Managing Entries in the Menu Color Information Tab...

	Application-Defined Routine
	The Menu Definition Procedure

	Resources
	The Menu Resource
	The Menu Bar Resource
	The Menu Color Information Table Resource
	The Menu Definition Procedure Resource

	Summary of the Menu Manager
	Pascal Summary
	Constants
	Data Types
	Menu Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Menu Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Data Structures
	Global Variables

	Result Codes

	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

