CHAPTER 5

Control Manager

You can use Control Manager routines to change values in the control record, or you
can access and change its fields yourself; normally, you don’t change the values in
the auxiliary control record. However, both the control record and the auxiliary
control record have fields in which your application can store information as you
deem appropriate.

You can obtain the menu handle and the menu ID of the menu associated with a pop-up
menu by dereferencing the cont r | Dat a field of the control record, which, for pop-up
menu controls, contains a handle to a pop-up private data record. This record contains
the menu handle and the menu ID for the associated menu.

You use a control color table record only when you want to use nonstandard colors for a
control that you create while your application is running. Your application probably
shouldn’t ever create a control color table record because you should use the system’s
default colors to ensure consistency of the interface across applications.

The Control Record

When you create a control, the Control Manager incorporates the information you
specify (either in the control resource or in the parameters of the NewCont r ol function)
into a control record, which is a data structure of type Cont r ol Recor d. The Control
Manager functions you use for creating a control, Get NewCont r ol and NewCont r ol ,
return a handle to a newly allocated control record. Thereafter, your application
normally refers to the control by this handle, because most other Control Manager
routines expect a control handle as their first parameter.

You can use Control Manager routines to determine and change several of the values in

the control record, or you can access and change its fields yourself.

TYPE Control Record =
PACKED RECORD

next Control : Control Handl e; {next control}
contrl Owner: W ndowPt r; {control's w ndow}
contrl Rect: Rect ; {rectangl e}
contrl Vis: Byt e; {255 if visible}
contrlHilite: Byte; {hi ghlight state}
contrl Val ue: I nt eger; {control's current setting}
contrl M n: I nt eger; {control's mnimum setting}
contrl Max: I nt eger; {control's maxi mum setting}
contrl| Def Proc: Handl e; {control definition function}
contr | Dat a: Handl e; {data used by contrl| Def Proc}
contrl Action: ProcPtr; {action procedure}
cont r | Rf Con: Longl nt ; {control's reference val ue}
contrlTitle: Str 255; {control's title}

END;

Control Manager Reference 5-73

Jabeuel [0nu0D -

5-74

CHAPTER 5

Control Manager

Field descriptions
next Contr ol

contrl Omer
contrl Rect

contrlVis

contrlHlite

contrl Val ue

contrl Mn

A handle to the next control associated with this control’s window.
All the controls belonging to a given window are kept in a linked
list, beginning in the cont r ol Li st field of the window record and
chained together through the next Cont r ol fields of the individual
control records. The end of the list is marked by a NI L value; as new
controls are created, they’re added to the beginning of the list.

A pointer to the window to which this control belongs.

The rectangle that completely encloses the control, in the local
coordinates of the control’s window. You can use the MoveCont r ol
and Si zeCont r ol procedures to change the rectangle stored in
this field.

The invisible/ visible state for the control. When the value of this
field is 0, the Control Manager does not draw the control (its state is
invisible); when the value of this field is 255, the Control Manager
draws the control (its state is visible). Note that even when a control
is visible, it might still be obscured from sight by an overlapping
window or some other object. You can use the Hi deCont r ol
procedure to change this field from visible to invisible, and you can
use the ShowCont r ol procedure to change this field from invisible
to visible.

Specifies whether and how the control is to be displayed, indicating
whether it’s active or inactive and, if active, whether it’s selected.
The value of 0 signifies an active control that is not selected. A value
from 1 through 253 signifies a part code designating the part of

the (active) control to highlight, indicating that the user is pressing
the mouse button while the cursor is in that part. The value

255 signifies that the control is to be made inactive and drawn
accordingly. The Hi | i t eCont r ol procedure lets you change the
value of this field.

The control’s current setting. For buttons, checkboxes, and radio
buttons, 0 means the control is off and 1 means it’s on. For scroll
bars and other sliders, cont r | Val ue may take any value within
the range specified in the cont r | M n and cont r | Max fields. For
pop-up menus, this value is the item number of the menu item
chosen by the user; if the user hasn’t chosen a menu item, it is the
item number of the first menu item. For other controls, you can use
this field as you wish. You can use the Get Cont r ol Val ue function
to determine the value of this field, and you can use the

Set Cont r ol Val ue procedure to change the value of this field.

The control’s minimum possible setting. For on-and-off controls—
like checkboxes and radio buttons—this value should be 0 (meaning
that the control is off). For scroll bars and other sliders, this can be
any appropriate minimum value. For controls—like buttons—

that don’t retain a setting, this value should be 0. For pop-up
menus, the Control Manager sets this field to 1. For other

controls, you can use this field as you wish. You can use the

Cet Cont r ol M ni mumfunction to determine the value of this field,
and you can use the Set Cont r ol M ni mumprocedure to change
the value of this field.

Control Manager Reference

CHAPTER 5

Control Manager

contrl Max

cont r| Def Proc

contrl Dat a

contrl Action

contr| Rf Con

contrlTitle

The control’s maximum possible setting. For on-and-off controls
like checkboxes and radio buttons, this value should be 1 (meaning
that the control is on). For scroll bars and other sliders, this can be
any appropriate maximum value. When you make the maximum
setting of a scroll bar equal to its minimum setting, the control
definition function automatically makes the scroll bar inactive.
When you make the maximum setting exceed the minimum, the
control definition function makes the scroll bar active again. For
controls—like buttons—that don’t retain a setting, this value should
be 1. For pop-up menus, the Control Manager sets this value to the
number of items in the menu. For other controls, you can use this
field as you wish. You can use the Get Cont r ol Maxi numfunction
to determine the value of this field, and you can use the

Set Cont r ol Maxi mumprocedure to change the value of this field.

A handle to the control definition function for this type of
control. When you create a control, you identify its type with
a control definition ID, which is converted into a handle to the
control definition function and stored in this field. Thereafter,
the Control Manager uses this handle to access the definition
function; you should never need to refer to this field directly.

Note

In systems running in 24-bit mode, the high-order byte of the
cont r | Def Pr oc field contains the variant, which the Control
Manager gets from the control definition ID. O

Reserved for use by the control definition function, typically to hold
additional information specific to a particular control type. For
example, the control definition function for scroll bars uses this field
for a handle to the region containing the scroll box. (If no more than
4 bytes of additional information are needed, the definition function
may store the information directly in the cont r | Dat a field rather
than using a handle.) The control definition function for pop-up
menus uses this field to store a pop-up private data record, which is
described on page 5-77.

A pointer to the control’s action procedure, if any. The

TrackCont r ol function may call this procedure to respond to
the user’s dragging of the control, and this procedure responds

by repeatedly performing some action as long as the user holds
down the mouse button. See the description of Tr ackCont r ol

on page 5-90 for more information about the action procedure.
You can use the Get Cont r ol Act i on function to determine the
current value of this field and the Set Cont r ol Act i on procedure
to change it.

The control’s reference value, which your application may use
for any purpose. You can use the Get Cont r ol Ref er ence
function to determine the current value of this field and the
Set Cont r ol Ref er ence procedure to change it.

The control title, if any. You can use the Get Control Titl e
procedure to determine the current value of this field and the
Set Control Ti t| e procedure to change it.

Control Manager Reference 5-75

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

The Auxiliary Control Record

5-76

For drawing all controls on systems running in 32-bit mode (which users can select using
the Memory control panel), and for drawing controls that use colors other than the
system default, the Control Manager creates and maintains a linked list of auxiliary
control records, beginning in the global variable AuxCt | Head. (There is only one global
list for all controls in all windows, not a separate one for each window. Each window
record, by contrast, has a handle to the list of its own controls.)

An auxiliary control record is a data structure of type AuxCt | Rec. Your application
doesn’t create and generally shouldn’t manipulate an auxiliary control record for a
control; rather, you let the Control Manager create and manipulate the auxiliary control
record. To create controls using colors other than the system default colors, use the

Set Cont r ol Col or procedure (described on page 5-101) or create a control color table
resource (described on page 5-121) and let the Control Manager create the necessary
auxiliary control records. There is, however, a field in the auxiliary control record that
you can use to store information as you see fit; to get a handle to the auxiliary control
record for a control, you can use the Get Auxi | i ar yCont r ol Recor d function
(described on page 5-107).

Each auxiliary control record is relocatable and resides in your application heap. Here is
how an auxiliary control record is defined:

TYPE AuxCt| Rec =

RECORD
acNext : AuxCt| Handl e; {handle to next AuxCt| Rec}
acOaner : Control Handl e; {handle to this record's control}
acCrTabl e: CCTabHandl e; {handl e to control color table }
{ record}
acFl ags: I nt eger; {reserved}
acReserved: Longl nt; {reserved for future use}
acRef Con: Longl nt ; {for use by application}
END;
Field descriptions
acNext A handle to the next record in the auxiliary control list.
acOwner The handle of the control to which this auxiliary record belongs;
used as an ID field.
acCTabl e The handle to a control color table record. (The control color table
record is described on page 5-77.)
acFl ags Reserved for use by the Control Manager.
acReserved Reserved for future expansion.
acRef Con A reference value, which your application may use for any purpose.

On systems using 32-bit mode, every control has its own auxiliary record, and

the acCTabl e field contains a handle to the default control color table unless
your application uses the Set Cont r ol Col or procedure or creates a control color
table resource.

Control Manager Reference

CHAPTER 5

Control Manager

When drawing a control, the standard control definition functions search the linked list
of auxiliary control records for the auxiliary control record whose acOmner field points
to the control being drawn. If the standard control definition functions find an auxiliary
control record for the control, they use the control color table specified in the acCTabl e
field. If the standard control definition functions do not find an auxiliary control record
for the control, they use the default system colors.

The Pop-Up Menu Private Data Record

You can obtain the menu handle and the menu ID of the menu associated with a pop-up
menu by dereferencing the cont r | Dat a field of the pop-up menu’s control record. The
cont r| Dat a field of a control record is a handle to a block of private information. For
pop-up menu controls, this field is a handle to a pop-up private data record, which is a
data structure of type popupPri vat eDat a.

TYPE popupPrivateData =

RECORD
mHandl e: MenuHandl e; {handl e to nenu record}
m D: I nt eger; {menu | D}
nPrivat e: ARRAY[0..0] OF SignedByte; {reserved}
END;

Field descriptions

nmHandl e Contains a handle to the menu.
m D The menu ID of the menu.
nPrivate Reserved.

You can use the standard pop-up control definition function to manage pop-up menus.
For information on creating pop-up menus, see “Creating a Pop-Up Menu” beginning on
page 5-25. See the chapter “Menu Manager” in this book for additional information.

The Control Color Table Record

By creating a control color table record and using the Set Cont r ol Col or procedure
(described on page 5-101), your application can draw a control that uses colors other
than the system default. (Alternatively, you can use nonstandard colors for a control you
define in a control resource by creating a control color table resource—described on
page 5-121—with the same resource ID as the control resource.) Be aware that controls in
nonstandard colors may initially confuse your users.

A control color table record is a data structure of type Ct | CTab; it is defined as follows:

TYPE Ctl CTab =

RECORD
ccSeed: Longl nt ; {reserved; set to 0}
ccRi der: I nt eger; {reserved; set to 0}

Control Manager Reference 5-77

Jabeuel [0nu0D -

5-78

CHAPTER 5

Control Manager

ctSize: I nt eger; {nunber of Col orSpec records in next }
{ field; 3 for standard control s}
ct Tabl e: ARRAY[0. . 3] OF Col or Spec;
END;

Field descriptions

ccSeed Reserved in control color tables; set to 0.
ccRi der Reserved in control color tables; set to 0.
ct Si ze The number of Col or Spec records in the next field. For controls

drawn with the standard definition procedure, this field is always 3,
because a standard control has three parts: frame, control body, and
scroll box for scroll bars, and frame, control body, and text for other
controls. If you want to supply Col or Spec records for additional
parts, you must define your own controls, as described in “Defining
Your Own Control Definition Function” beginning on page 5-109.

ct Tabl e An array of Col or Spec records. Each Col or Spec record describes
the color of a different control part. Here is how a Col or Spec
record is defined:

TYPE Col or Spec =

RECORD
partldentifier: I nt eger; {control part}
part RGB: RGBCol or; {col or of part}
END;

The part I dentifi er field of the Col or Spec record holds an
integer that associates an RGBCol or record with a particular part of
the control.

Three Col or Spec records are used to describe the parts of buttons,
checkboxes, and radio buttons. Here are the constants that are used
inthe partldentifi er fields of the three Col or Spec records
used to describe these controls:

{for buttons, checkboxes, and radi o buttons}
CONST cFrameCol or = 0; {frame color}
cBodyCol or = 1; {fill color for body of }
{ control}
cText Col or = 2; {text color}

When highlighted, buttons exchange their body and text colors;
checkboxes and radio buttons change their appearance without
changing colors. All three types indicate deactivation by dimming
their text with no change in colors.

Control Manager Reference

CHAPTER 5

Control Manager

A number of Col or Spec records are used to describe the parts
of scroll bars. Here are the constants that are used in the
partldentifier fields of the Col or Spec records used to
describe the colors in scroll bars:

CONST

cFrameCol or = 0; {Used to produce foreground color for scroll arrows }
{ & gray area}

cBodyCol or = 1; {Used to produce colors in the scroll box}

cArrowsCol orLight = 5; {Used to produce colors in arrows & scroll bar }
{ background col or}

cArrowsCol orDark = 6; {Used to produce colors in arrows & scroll bar }
{ background col or}

cThunbLi ght = 7; {Used to produce colors in scroll box}

cThunbDar k = 8; {Used to produce colors in scroll box}

cHi i teLi ght = 9; {Use sane value as wHiliteCol orLight in 'wcthb'}

cHiliteDark = 10; {Use sane value as wHiliteColorDark in 'wctbh'}

cTi tl eBarLi ght = 11; {Use sane value as wTlitleBarLight in '"wcth'}

cTitl eBar Dar k = 12; {Use sane value as wlitleBarDark in "wcthbh'}

cTi ngelLi ght = 13; {Use same val ue as wrlingeLight in 'wtb'}

cTi ngeDar k = 14; {Use sanme value as wrlingeDark in "wctb'}

When highlighted, scroll arrows are filled with the foreground
color. A deactivated scroll bar shows no scroll box and displays its
gray areas in a solid background color with no pattern.

The Col or Spec records for a control can appear in any order. If
you include a part identifier that is not found, the Control Manager
uses the first Col or Spec record with an identifiable part. If you do
not specify a part identifier, the Control Manager uses the default
color for that part.

The par t RGB field of the Col or Spec record specifies an

RGBCol or record, which in turn specifies the red, green, and blue
values for the part’s color. Use three 16-bit unsigned integers to give

the intensity values for the three additive primary colors. Here is
how the RGBCol or record is defined:

TYPE R@&Col or =

RECORD
red: Integer; {red value for control part}
green: Integer; {green value for control part}
bl ue: I nteger; {blue value for control part}
END;

When you create a control color table record, your application should not deallocate it if
another control is still using it.

When drawing a control, the standard control definition functions search the linked list
of auxiliary control records for the record whose acOwner field points to that control.
If a standard control definition function finds such a record, it uses the color table
designated by that record; otherwise, it uses the default system colors. Each control

Control Manager Reference 5-79

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

using colors other than the system default has its own auxiliary control record, even if
that control uses the same control color table record as another control; two or more
auxiliary records can share the same control color table record. (Auxiliary control records
are described on page 5-76.)

If you create a control definition function (as explained in “Defining Your Own Control
Definition Function” beginning page 5-109), you can use color tables of any desired size
and define their contents in any way you wish, except that part indices 1 through 127 are
reserved for system definition. Any such nonstandard control definition function should

bypass the defaulting mechanism by allocating an explicit auxiliary record for every

control it creates.

Control Manager Routines

5-80

This section describes the Control Manager routines for creating controls, drawing
controls, tracking mouse events within controls, changing control display, determining

control values, and removing controls.

Some Control Manager routines can be accessed using more than one spelling of

the routine’s name, depending on the interface files supported by your development
environment. For example, Set Cont r ol Val ue is also available as Set Ct | Val ue.
Table 5-1 provides a mapping between the previous name of a routine and its new

equivalent name.

Table 5-1 Mapping between new and previous names of Control Manager routines
New name Previous name
Get Auxi | i aryContr ol Record Get AuxCt |

Get Control Action Get Ctl Action
Get Cont r ol Maxi mum Get Ct | Max
Get Control M ni num GetCtlIMn
Get Cont r ol Ref erence Get CRef Con
GetControl Title GetCTitle
Get Cont r ol Val ue Get Ct | Val ue
Get Cont rol Vari ant Get Cvari ant
Set Control Acti on Set Ctl Acti on
Set Cont r ol Col or Set Ct | Col or
Set Cont r ol Maxi mum Set Ct | Max
Set Cont r ol M ni mum SetCtIMn
Set Cont r ol Ref erence Set CRef Con
SetControl Title SetCTitle
Updat eControl s Updt Cont r ol

Control Manager Reference

CHAPTER 5

Control Manager

Creating Controls

To create a control, you should generally use the Get NewCont r ol function, which takes
information about the control from a control resource. Like menu resources, control
resources isolate descriptive information from your application code, making your
application easier to modify or translate. However, you can also use the NewCont r ol
function—for which you pass descriptive information in parameters—to create controls.

Both Get NewCont r ol and NewCont r ol return a handle to the control record of the
newly created control. Thereafter, your application normally refers to the control by this
handle, because most other Control Manager routines expect a control handle as their
first parameter. When you create scroll bars and pop-up menus, you should store their
handles in one of your application’s own data structures for later reference.

When you use the Dialog Manager to implement buttons, radio buttons, checkboxes,
and pop-up menus in alert boxes and dialog boxes, the Dialog Manager automatically
uses the Control Manager to create these controls for you. If you implement other
controls in alert or dialog boxes, and whenever you implement controls—such as scroll
bars—in your application’s windows, you must use either Get NewCont r ol or
NewCont r ol to create these controls.

GetNewControl

DESCRIPTION

To create a control from a description in a control resource (" CNTL'), use the
CGet NewCont r ol function.

FUNCTI ON Get NewControl (control I D: |Integer; owner: WndowPtr)
Cont r ol Handl e;

control I D The resource ID of a control resource.

owner A pointer to the window in which you want to attach the control.

The Get NewCont r ol function creates a control record from the information in the
specified control resource, adds the control record to the control list for the specified
window, and returns as its function result a handle to the control. You use this handle
when referring to the control in most other Control Manager routines. After making a
copy of the control resource, Get NewCont r ol releases the memory occupied by the
original control resource before returning.

If you provide a control color table resource with the same resource ID as the control
resource, Get NewCont r ol creates an auxiliary control record that uses the colors you
specify in your control color table resource. If you don’t provide a control color table,
CGet NewCont r ol creates an auxiliary control record that uses the default control color
table if the computer is running in 32-bit mode.

Control Manager Reference 5-81

Jabeuel [0nu0D -

SEE ALSO

CHAPTER 5

Control Manager

The control resource specifies the rectangle for the control, its initial setting, its visibility
state, its maximum and minimum settings, its control definition ID, a reference value,
and its title (if any). After you use Get NewCont r ol to create the control, you can change
the current setting, the maximum setting, the minimum setting, the reference value, and
the title by using, respectively, the Set Cont r ol Val ue, Set Cont r ol Maxi mum

Set Cont r ol M ni mum Set Cont r ol Ref er ence, and Set Cont r ol Ti t | e procedures.
You can use the MoveCont r ol and Si zeCont r ol procedures to change the control’s
rectangle. You can use the Get Cont r ol Val ue, Get Cont r ol Maxi num

Cet Cont r ol M ni num Get Cont r ol Ref er ence, and Get Control Ti t | e functions to
determine the control values.

If the control resource specifies that the control should be visible, the Control Manager
draws the control. If the control resource specifies that the control should initially be
invisible, you can use the ShowCont r ol procedure to make the control visible.

If Get NewCont r ol can’t read the control resource from the resource file,
Get NewCont r ol returns NI L.

See Listing 5-1 on page 5-17 and Listing 5-5 on page 5-24 for examples of how to use
Get NewCont r ol to create, respectively, a button and a scroll bar. For information about
windows’ control lists, see the chapter “Window Manager” in this book.

NewControl

5-82

To create a control, you can use the NewCont r ol function, which accepts in its
parameters the information that describes the control. Generally, you should instead use
the Get NewCont r ol function to create a control. The Get NewCont r ol function takes
information about the control from a control resource, and as a result your application is
easier to modify or translate into other languages.

FUNCTI ON NewControl (theW ndow. W ndowPtr; boundsRect: Rect;
title: Str255; visible: Bool ean;
val ue: Integer; nmin: Integer; max: |nteger;
procl D: Integer; refCon: Longlnt)
Cont r ol Handl e;

t heW ndow A pointer to the window in which you want to attach the control. All
coordinates pertaining to the control are interpreted in this window’s
local coordinate system.

boundsRect The rectangle, specified in the given window’s local coordinates, that
encloses the control and thus determines its size and location.

Control Manager Reference

CHAPTER 5

Control Manager

title

vi si bl e

val ue

procl D

For controls that need a title—such as buttons, checkboxes, radio buttons,
and pop-up menus—the string for that title. For controls that don’t use
titles, pass an empty string.

The visible/invisible state for the control. If you pass TRUE in this
parameter, NewCont r ol draws the control immediately, without using
your window’s standard updating mechanism. If you pass FALSE, you
must later use the ShowCont r ol procedure to display the control.

The initial setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 0 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, pass 0 in
this parameter for a control that is off, and pass 1 for a control that is on.
For controls—such as scroll bars and sliders—that can take a range of
settings, specify whatever value is appropriate within that range.

The minimum setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 0 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, use 0
(meaning “off”) for the minimum value. For controls—such as scroll bars
and sliders—that can take a range of settings, specify whatever minimum
value is appropriate.

The maximum setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 1 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, use 1
(meaning “on”) for the maximum value. For controls—such as scroll bars
and sliders—that can take a range of settings, specify whatever maximum
value is appropriate. When you make the maximum setting of a scroll bar
equal to its minimum setting, the control definition function
automatically makes the scroll bar inactive; when you make the
maximum setting exceed the minimum, the control definition function
makes the scroll bar active again.

The control definition ID, which leads to the control definition function
for this type of control. The control definition function is read into
memory if it isn’t already in memory. The control definition IDs and their
constants for the standard controls are listed here. (You can also define
your own control definition function and specify it the procl D
parameter.)

CONST
pushBut Pr oc = 0; {button}
checkBoxPr oc = 1; { checkbox}
radi oBut Proc = 2; {radi o button}
useWront = 8; {add to above to display }
{ title in wi ndow font}
scrol | Bar Proc = 16; {scroll bar}
popupMenuPr oc = 1008; {pop-up menu}
popupFi xedW dt h = $0001; {add to popupMenuProc to }

{ use a fixed-width ctrl}

Control Manager Reference 5-83

Jabeuel [0nu0D -

DESCRIPTION

5-84

CHAPTER 5

Control Manager

popupUseAddResMenu = $0004; {add to popupMenuProc to }
speci fy a value of }
type ResType in the }
contrl RfCon field of }
the control record; }
Menu Manager adds }
resources of this type }
to the menu}
popupUseWFont = $0008; {add to popupMenuProc to }
{ display in wi ndow font}

Lt W et W e W e W e)

ref Con The control’s reference value, which is set and used only by
your application.

The NewCont r ol function creates a control record from the information you specify in
its parameters, adds the control record to the control list for the specified window, and
returns as its function result a handle to the control. You use this handle when referring
to the control in most other Control Manager routines.

The NewCont r ol function creates an auxiliary control record that uses the default
control color table if the computer is running in 32-bit mode.

If you need to use colors other than the default colors for the control, create a control
color table record and use the Set Cont r ol Col or procedure.

When specifying the rectangle in the boundsRect parameter, keep the following
guidelines in mind:

» Buttons are drawn to fit the rectangle exactly. To accommodate the tallest characters in
the system font, allow at least a 20-point difference between the top and bottom
coordinates of the rectangle.

» For checkboxes and radio buttons, there should be at least a 16-point difference
between the top and bottom coordinates.

» By convention, scroll bars are 16 pixels wide, so there should be a 16-point difference
between the left and right (or top and bottom) coordinates. (If there isn’t, the scroll bar
is scaled to fit the rectangle.) A standard scroll bar should be at least 48 pixels long, to
allow room for the scroll arrows and scroll box.

The Control Manager displays control titles in the system font. When specifying a title
for the control in the t i t | € parameter, make sure the title fits in the control’s rectangle;
otherwise, NewCont r ol truncates the title. For example, NewCont r ol truncates the
titles of checkboxes and radio buttons on the right in Roman scripts, and it centers and
truncates both ends of the button titles.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes,
and radio buttons. When specifying a multiple-line title, separate the lines with the
ASCII character code $0D (carriage return). If the control is a button, each line is
horizontally centered, and the font leading is inserted between lines. (The height of each

Control Manager Reference

CHAPTER 5

Control Manager

line is equal to the distance from the ascent line to the descent line plus the leading of the
font used. Be sure to make the total height of the rectangle greater than the number of
lines times this height.) If the control is a checkbox or a radio button, the text is justified
as appropriate for the user’s current script system, and the checkbox or button is
vertically centered within its rectangle.

After you use NewCont r ol to create the control, you can change the current setting,
the maximum setting, the minimum setting, the reference value, and the title by using,
respectively, the Set Cont r ol Val ue, Set Cont r ol Maxi mum Set Cont r ol M ni nmum
Set Cont r ol Ref er ence, and Set Control Ti t| e procedures. You can use the
MoveCont rol and Si zeCont r ol procedures to change the control’s rectangle. You
can use the Get Cont r ol Val ue, Get Cont r ol Maxi mum Get Cont r ol M ni mum

Cet Cont r ol Ref er ence, and Get Cont r ol Ti t | e functions to determine the
control values.

SPECIAL CONSIDERATIONS

SEE ALSO

Drawing Controls

The title of a button, checkbox, radio button, or pop-up menu normally appears in the
system font, which in Roman script systems is 12-point Chicago. Do not use a smaller
font; some script systems, such as KanjiTalk, require 12-point fonts. You should generally
use the system font in your controls; doing so will simplify localization effort. However,
if you absolutely need to display a control title in the font currently associated with the
window’s graphics port, you can add the popupUseWFont constant to the pop-up menu
control definition ID or add the useWFont constant to the other standard control
definition IDs.

For information about windows’ control lists, see the chapter “Window Manager” in
this book. Control definition IDs for other controls are discussed in “Defining Your Own
Control Definition Function” beginning on page 5-109.

-

If you specify that a control is initially visible (either in the control resource or in a
parameter to NewCont r ol), the Control Manager draws the control inside its window
when you call either the Get NewCont r ol or the NewCont r ol function. In either case,
the Control Manager draws the control immediately, without using your window’s
standard updating mechanism. If you specify that a control is invisible, you can use the
ShowCont r ol procedure when you want to draw the control.

Jabeuel [0nu0D

Note that even a visible control might be completely or partially obscured by
overlapping windows or other objects.

When your application receives an update event for a window that contains controls,

use Updat eCont r ol s to redraw the necessary controls in the updated window. Note
that the Dialog Manager automatically draws and updates controls in alert boxes and
dialog boxes.

Control Manager Reference 5-85

CHAPTER 5

Control Manager

ShowControl

DESCRIPTION

To draw a control that is currently invisible, you can use the ShowCont r ol procedure.
PROCEDURE ShowControl (theControl: Control Handl e);

t heControl A handle to the control you want to make visible.

If the specified control is invisible, the ShowCont r ol procedure makes it visible and
immediately draws the control within its window without using your window’s
standard updating mechanism. If the control is already visible, ShowCont r ol has
no effect.

You can make a control invisible in several ways:
» You can specify that it’s invisible in its control resource.
= You can specify that it’s invisible in a parameter to the NewCont r ol function.

» You can use the H deCont r ol procedure to change a visible control into an
invisible one.

» You can directly change the cont r| Vi s field of the control’s control record.

SPECIAL CONSIDERATIONS

SEE ASO

The ShowCont r ol procedure draws the control in its window, but the control can still
be completely or partially obscured by overlapping windows or other objects.

Listing 5-14 on page 5-39 illustrates the use of ShowCont r ol to redisplay scroll bars
after moving and resizing them.

UpdateControls

5-86

To update controls in a window, you can use the Updat eCont r ol s procedure. The
Updat eCont r ol s procedure is also available as the Updt Cont r ol procedure.

PROCEDURE Updat eControl s (theW ndow. W ndowPtr;
updat eRgn: RgnHandl e) ;

t heW ndow A pointer to the window containing the controls to update.
updat eRgn The update region within the specified window.

Control Manager Reference

DESCRIPTION

CHAPTER 5

Control Manager

The Updat eCont r ol s procedure draws those controls that are in the specified update
region. This procedure is faster than the Dr awCont r ol s procedure, which draws all of
the controls in a window. By contrast, Updat eCont r ol s draws only those controls in
the update region.

Your application should call Updat eCont r ol s upon receiving an update event for a
window that contains controls. Window Manager routines such as Sel ect W ndow
ShowwW ndow and Bri ngToFr ont do not automatically call Dr awCont r ol s to display
the window’s controls. They just add the appropriate regions to the window’s update
region, generating an update event.

In response to an update event, you normally call Updat eCont r ol s after using the
Window Manager procedure Begi nUpdat e and before using the Window Manager
procedure EndUpdat e. You should set the updat eRgn parameter to the visible region
of the window’s port, as specified in the port’s vi sRgn field.

SPECIAL CONSIDERATIONS

SEE ALSO

If your application draws parts of a control outside of its rectangle, Updat eCont r ol s
might not redraw it.

The Dialog Manager handles update events for controls in alert boxes and dialog boxes.

Listing 5-8 on page 5-30 illustrates the use of Updat eCont r ol s. The Begi nUpdat e and
EndUpdat e procedures are described in the chapter “Window Manager” in this book.
See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes.

DrawControls

DESCRIPTION

Although you should generally use the Updat eCont r ol s procedure to update controls
in a window, you can instead use the Dr awCont r ol s procedure.

PROCEDURE Dr awControl s (theW ndow. W ndowPtr);

t heW ndow A pointer to a window whose controls you want to display.

The Dr awCont r ol s procedure draws all controls currently visible in the specified
window. The controls are drawn in reverse order of creation; thus, in case of overlapping
controls, the control created first appears frontmost in the window.

Control Manager Reference 5-87

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Because the Updat eCont r ol s procedure redraws only those controls that need
updating, your application should generally use it instead of Dr awCont r ol s upon
receiving an update event for a window that contains controls.

You should call either Dr awCont r ol s or Updat eCont r ol s after calling the Window
Manager procedure Begi nUpdat e and before calling EndUpdat e.

SPECIAL CONSIDERATIONS

SEE ALSO

The Dialog Manager automatically draws and updates controls in alert boxes and
dialog boxes.

Window Manager routines such as Sel ect W ndow ShowW ndow and Br i ngToFr ont
do not automatically update the window’s controls. They just add the appropriate
regions to the window’s update region, generating an update event.

See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes. See the chapter “Window Manager” in this book
for more information about Window Manager routines.

Draw1Control

DESCRIPTION

Although you should generally use the Updat eCont r ol s procedure to update controls,
you can use the Dr awlCont r ol procedure to update a single control.

PROCEDURE Dr awlControl (theControl: Control Handl e);

t heCont r ol A handle to the control you want to draw.

The Dr awlCont r ol procedure draws the specified control if it’s visible within its
window. The Updat eCont r ol s procedure automatically calls Dr awlCont r ol .

Handling Mouse Events in Controls

5-88

When the user presses the mouse button, your application receives a mouse-down event.
Use the Window Manager function Fi ndW ndowto determine which window contains
the cursor. If the mouse-down event occurred in the content region of your application’s
active window, use the Fi ndCont r ol function to determine whether the cursor was

in an active control and, if so, which control. To follow and respond to the cursor
movements in that control, and then to determine in which part of the control the
mouse-up event occurs, use the Tr ackCont r ol function.

Control Manager Reference

CHAPTER 5

Control Manager

FindControl

DESCRIPTION

To determine whether a mouse-down event has occurred in a control and, if so, in which
part of that control, use the Fi ndCont r ol function.

FUNCTI ON Fi ndControl (thePoint: Point; theWndow. WndowPtr;
VAR t heControl: Control Handl e): I nteger;

t hePoi nt A point, specified in coordinates local to the window, where the
mouse-down event occurred.

t heW ndow A pointer to the window in which the mouse-down event occurred.

t heCont r ol A handle to the control in which the mouse-down event occurred.

When the user presses the mouse button while the cursor is in a visible, active control,

Fi ndControl returns as its function result a part code identifying the control’s part; the
function also returns a handle to the control in the parameter t heCont r ol . The part
codes that Fi ndCont r ol returns, and the constants you can use to represent them, are
listed here:

CONST i nButton = 10; {button}
i nCheckBox = 11; {checkbox or radi o button}
i nUpButt on = 20; {up arrow for a vertical scroll }

{ bar, left arrow for a horizontal }
{ scroll bar}

nDownBut t on = 21; {down arrow for a vertical scroll }
{ bar, right arrow for a }
{ horizontal scroll bar}

nPageUp = 22; {gray area above scroll box for a }
{ vertical scroll bar, gray area }
{ to left of scroll box for a }
{ horizontal scroll bar}

nPageDown = 23; {gray area below scroll box for a }
{ vertical scroll bar, gray area }
{ toright of scroll box for a}
{ horizontal scroll bar}

i NThunb = 129; {scroll box}

The pop-up control definition function does not define part codes for pop-up menus.
Instead, your application should store the handles for your pop-up menus when you
create them. Your application should then test the handles you store against the handles
returned by Fi ndCont r ol before responding to users’ choices in pop-up menus.

If the mouse-down event occurs in an invisible or inactive control, or if it occurs outside
a control, Fi ndCont r ol setst heControl to Nl L and returns 0 as its function result.

Control Manager Reference 5-89

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

When a mouse-down event occurs, your application should call Fi ndCont r ol after
using the Window Manager function Fi ndW ndow to ascertain that a mouse-down
event has occurred in the content region of a window containing controls.

Before calling Fi ndContr ol , use the G obal ToLocal procedure to convert the point
stored in the wher e field (which describes the location of the mouse-down event) of the
event record to coordinates local to the window. Then, when using Fi ndCont r ol , pass
this point in the parameter t hePoi nt .

In the parameter t heW ndow pass the window pointer returned by the Fi ndW ndow
function.

After using Fi ndControl to determine that a mouse-down event has occurred in

a control, you generally use the Tr ackCont r ol function, which automatically

follows the movements of the cursor and responds as appropriate until the user releases
the mouse button.

SPECIAL CONSIDERATIONS

SEE ALSO

The Dialog Manager automatically calls Fi ndCont r ol and TrackContr ol for
mouse-down events inside controls of alert boxes and dialog boxes.

The Fi ndCont r ol function also returns NI L in the parameter t heCont r ol and 0 as
its function result if the window is invisible or if it doesn’t contain the given point.
(However, Fi ndW ndowwon't return a window pointer to an invisible window or to
one that doesn’t contain the point where the mouse-down event occurred. As long as
you call Fi ndW ndowbefore Fi ndCont r ol , this situation won't arise.)

Listing 5-10 on page 5-33 illustrates the use of Fi ndCont r ol for detecting mouse-down
events in a pop-up menu and a button; Listing 5-18 on page 5-53 illustrates its use for
detecting mouse-down events in scroll bars.

The Fi ndW ndow function is described in the chapter “Window Manager” in this book.
The G obal ToLocal procedure is described in Inside Macintosh: Imaging.

The event record is described in the chapter “Event Manager” in this book. See the
chapter “Dialog Manager” in this book for more information about including controls in
alert boxes and dialog boxes.

TrackControl

5-90

To follow and respond to cursor movements in a control and then to determine the
control part in which the mouse-up event occurs, use the Tr ackCont r ol function.

FUNCTI ON TrackControl (theControl: Control Handl e;
t hePoi nt: Point; actionProc: ProcPtr)
I nt eger;

Control Manager Reference

DESCRIPTION

CHAPTER 5

Control Manager

t heCont r ol A handle to the control in which a mouse-down event occurred.

t hePoi nt A point, specified in coordinates local to the window, where the
mouse-down event occurred.

acti onProc The action procedure. Typically, you should set this parameter to NI L
for buttons, checkboxes, radio buttons, and the scroll box of a scroll bar;
set this parameter to Poi nt er (- 1) for pop-up menus; and set this
parameter to the pointer to an action procedure for scroll arrows and
gray areas of scroll bars, as well as for any other controls that require
you to define additional actions to take while the user holds down the
mouse button.

The Tr ackCont r ol function follows the user’s cursor movements in a control and
provides visual feedback until the user releases the mouse button. The visual feedback
given by TrackCont r ol depends on the control part in which the mouse-down event
occurs. When highlighting is appropriate, for example, Tr ackCont r ol highlights the
control part (and removes the highlighting when the user releases the mouse button).
When the user holds down the mouse button while the cursor is in an indicator (such as
the scroll box of a scroll bar) and moves the mouse, Tr ackCont r ol responds by
dragging a dotted outline of the indicator.

The Tr ackCont r ol function returns as its function result the control’s part code if the
user releases the mouse button while the cursor is inside the control part, or 0 if the user
releases the mouse button while the cursor is outside the control part. For control parts,
the TrackCont r ol function returns the same values (represented by the constants

i nButton,i nCheckBox, i nUpButt on, i nDownBut t on, i nPageUp, i nPageDown,
and i nThunb) returned by the Fi ndCont r ol function, as described on page 5-89.

When Tr ackCont r ol returns a value other than 0 as its function result, your applica-
tion should respond as appropriate to a mouse-up event in that control part. When
TrackCont rol returns 0 as its function result, your application should do nothing.

If the user releases the mouse button when the cursor is in an indicator such as a scroll
box, Tr ackCont r ol calls the control’s control definition function to reposition the
indicator. The control definition function for scroll bars, for example, responds to the
user dragging a scroll box by redrawing the scroll box, calculating the control’s current
setting according to the new relative position of the scroll box, and storing the current
setting in the control record. Thus, if the minimum and maximum settings are 0 and 10,
and the scroll box is in the middle of the scroll bar, 5 is stored as the current setting. For a
scroll bar, your application must then respond by scrolling to the corresponding relative
position in the document.

Generally, you use Tr ackCont r ol after using the Fi ndCont r ol function. In the
parameter t heCont r ol of TrackContr ol , pass the control handle returned by the
Fi ndCont r ol function, and in the parameter t hePoi nt, supply the same point you
passed to Fi ndCont r ol (that is, a point in coordinates local to the window).

Control Manager Reference 5-91

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

While the user holds down the mouse button with the cursor in one of the standard con-
trols, Tr ackCont r ol performs the following actions, depending on the value you pass
in the parameter act i onPr oc. (For other controls, what you pass in this parameter de-
pends on how you define the control.)

» If you pass NI L in the act i onPr oc parameter, Tr ackCont r ol uses no action
procedure and therefore performs no additional actions beyond highlighting the
control or dragging the indicator. This is appropriate for buttons, checkboxes, radio
buttons, and the scroll box of a scroll bar.

» If you pass a pointer to an action procedure in the act i onPr oc parameter, you must
provide the procedure, and it must define some action that your application repeats as
long as the user holds down the mouse button. This is appropriate for the scroll
arrows and gray areas of a scroll bar.

» If you pass Poi nt er (—1) in the act i onPr oc parameter, Tr ackCont r ol looks in
the cont r | Act i on field of the control record for a pointer to the control’s action
procedure. This is appropriate when you are tracking the cursor in a pop-up menu.
(You can use the Get Cont r ol Act i on function to determine the value of this field,
and you can use the Set Cont r ol Act i on procedure to change this value.) If the
contrl Acti on field of the control record contains a procedure pointer,
TrackCont rol uses the action procedure it points to; if the field of the control record
also contains the value Poi nt er (1), TrackCont r ol calls the control’s control
definition function to perform the necessary action; you may wish to do this if you
define your own control definition function for a custom control. If the field of the
control record contains the value NI L, Tr ackCont r ol performs no action.

SPECIAL CONSIDERATIONS

When you need to handle events in alert and dialog boxes, Dialog Manager routines
automatically call Fi ndCont r ol and TrackContr ol .

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

5-92

The Tr ackCont r ol function invokes the Window Manager function Dr agG- ay Rgn, so
you can use the global variables Dr agHook and Dr agPat t er n.

See “Defining Your Own Action Procedures” beginning on page 5-115 for information
about an action procedure to specify in the act i onPr oc parameter. See “Defining Your
Own Control Definition Function” beginning on page 5-109 for information about
creating a control definition function.

Listing 5-11 on page 5-36, Listing 5-12 on page 5-37, Listing 5-13 on page 5-38,
and Listing 5-18 on page 5-53 illustrate the use of Tr ackCont r ol for responding to

mouse-down events in, respectively, a button, a pop-up menu, a checkbox, and a
scroll bar.

See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes.

Control Manager Reference

TestControl

CHAPTER 5

Control Manager

DESCRIPTION

The Test Cont r ol function is called by the Fi ndCont r ol and Tr ackCont r ol
functions—normally you won’t need to call it yourself. However, should you ever need
to determine the control part in which a mouse-down event occurred, you can use the
Test Cont rol function.

FUNCTI ON Test Control (theControl: Control Handl e; thePt: Point)
I nt eger;

t heCont r ol A handle to the control in which the mouse-down event occurred.

t hePt The point, in a window’s local coordinates, where the mouse-down
event occurred.

When the control specified by the parameter t heCont r ol is visible and active,
Test Cont r ol tests which part of the control contains the point specified by the
parameter t hePt . For its function result, Test Cont r ol returns the part code of the
control part, or 0 if the point is outside the control.

If the control is invisible or inactive, Test Cont r ol returns 0.

Changing Control Settings and Display

In response to user actions, you often need to change the settings, highlight states, sizes,
and locations of your controls. Whenever your application calls the Tr ackCont r ol
function, the Control Manager automatically manipulates control display as appropriate
as the user presses and releases the mouse button. For example, Tr ackCont r ol calls the
Hi |i t eCont rol procedure to highlight buttons; for scroll bars, Tr ackCont r ol calls
the Dr agCont r ol procedure to move an outline of the scroll box in a scroll bar and the
Set Cont r ol Val ue procedure to change the scroll bar’s current setting and redraw the
scroll box in its new location. (Note that the Dialog Manager automatically calls
TrackControl for controls in alert boxes and dialog boxes. See the chapter “Dialog
Manager” in this book for more information.)

When the user releases the mouse button while the cursor is in a control, your
application often needs to change its setting. When the user clicks a checkbox, for
example, your application must change its setting to on or off, and the Control Manager
automatically draws or removes an X in the checkbox.

There are other instances when you must change the settings and display of a control.
For example, when the user changes the size of a window that contains a scroll bar, you
need to resize and move the scroll bar accordingly.

For controls whose values the user can set, you can use the Set Cont r ol Val ue
procedure to change the control’s setting and redraw the control accordingly. When
you need to change the maximum setting of a scroll bar or a dial, you can use the

Control Manager Reference 5-93

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Set Cont r ol Maxi mumprocedure; if you need to change the minimum setting, you

can use the Set Cont r ol M ni numprocedure. If you need to change a control title,

you can use the Set Cont r ol Ti t | e procedure. You can use the Hi deCont r ol
procedure to make a control invisible. When you need to make a control inactive

(such as when its window is not frontmost) or in any other way change the highlighting
of a control, you can use the Hi | i t eCont r ol procedure.

To move a scroll bar, you use the MoveCont r ol and Si zeCont r ol procedures.

Although it’s not recommended, you can also change a control’s default colors to those
of your own choosing by using the Set Cont r ol Col or procedure.

To invoke a continuous action while the user holds down the mouse button, you

can specify an action procedure (described in “Defining Your Own Action Procedures”
beginning on page 5-115) in a parameter to Tr ackCont r ol . Under certain circum-
stances, you can use the Set Cont r ol Act i on procedure to change the control’s action
procedure, though you should rarely if ever need to.

SetControl Value

DESCRIPTION

5-94

To change the current setting of a control and redraw it accordingly, you can use the
Set Cont r ol Val ue procedure. The Set Cont r ol Val ue procedure is also available as
the Set Ct | Val ue procedure.

PROCEDURE Set Control Val ue (theControl: Control Handl e;
t heval ue: | nteger);

t heControl A handle to the control whose current setting you wish to change.
theVal ue The new setting for the control.

The Set Cont r ol Val ue procedure changes the cont r | Val ue field of the control
record to the specified value and redraws the control to reflect the new setting. For
checkboxes and radio buttons, the value 1 fills the control with the appropriate mark,
and 0 removes the mark. For scroll bars, Set Cont r ol Val ue redraws the scroll box
where appropriate.

If the specified value is less than the minimum setting for the control,
Set Cont r ol Val ue sets the control to its minimum setting; if the value is greater
than the maximum setting, Set Cont r ol Val ue sets the control to its maximum.

When you create a control, you specify an initial setting either in the control resource or
in the val ue parameter of the NewCont r ol function. To determine a control’s current
setting before changing it in response to a user’s click in that control, use the

Cet Cont r ol Val ue function.

Control Manager Reference

CHAPTER 5

Control Manager

SEE ALSO

Listing 5-13 on page 5-38 illustrates the use of Set Cont r ol Val ue to change the setting
of a checkbox. Listing 5-16 on page 5-41 and Listing 5-20 on page 5-61 illustrate the use
of Set Cont r ol Val ue to change the setting of a scroll bar.

SetControlMinimum

To change the minimum setting of a control and redraw its indicator or scroll box
accordingly, you can use the Set Cont r ol M ni numprocedure. The
Set Cont r ol M ni mumprocedure is also available as the Set Ct | M n procedure.

PROCEDURE Set Control M ni mrum (t heControl : Control Handl e;
m nVal ue: |nteger);

t heControl A handle to the control whose minimum setting you wish to change.

m nVal ue The new minimum setting.

DESCRIPTION
The Set Cont r ol M ni mumprocedure changes the cont r | M n field of the control
record to the setting you specify in the m nVal ue parameter and redraws its indicator
or scroll box to reflect its new range.

When you create a control, you specify an initial minimum setting either in the control
resource or in the m n parameter of the NewCont r ol function. To determine a control’s
current minimum setting, use the Get Cont r ol M ni mumfunction.

SetControlMaximum

To change the maximum setting of a control and redraw its indicator or scroll
box accordingly, you can use the Set Cont r ol Maxi mumprocedure. The
Set Cont r ol Maxi mumprocedure is also available as the Set Ct | Max procedure.

PROCEDURE Set Cont r ol Maxi mum (t heControl: Control Handl e;
maxVal ue: | nteger);

t heControl A handle to the control whose maximum setting you wish to change.

maxVal ue The new maximum setting.

DESCRIPTION

The Set Cont r ol Maxi mumprocedure changes the cont r | Max field of the control
record to the setting you specify in the maxVal ue parameter and redraws its indicator
or scroll box to reflect its new range.

Control Manager Reference 5-95

Jabeuel [0nu0D -

SEE ALSO

CHAPTER 5

Control Manager

When you create a control, you specify an initial maximum setting either in the control
resource or in the max parameter of the NewCont r ol function. To determine a control’s
current maximum setting, use the Get Cont r ol Maxi mumfunction.

When you set the maximum setting of a scroll bar equal to its minimum setting, the
control definition function makes the scroll bar inactive; when you make the maximum
setting exceed the minimum, the control definition function makes the scroll bar active
again.

Listing 5-16 on page 5-41 illustrates the use of Set Cont r ol Maxi mumto specify the
maximum setting for a scroll bar.

SetControlTitle

DESCRIPTION

5-96

To change the title of a control and redraw the control accordingly, use the
Set Cont rol Ti t| e procedure. The Set Cont r ol Ti t| e procedure is also available as
the Set CTi t | e procedure.

PROCEDURE Set Control Title (theControl: Control Handl e;
title: Str255);

t heControl Ahandle to a control, the title of which you want to change.
title The new title for the control.

The Set Cont r ol Ti t | e procedure changes the contr| Ti t | e field of the control
record to the given string and redraws the control, using the system font for the
control title.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes,
and radio buttons. When specifying a multiple-line title, separate the lines with the
ASCII character code $0D (carriage return). If the control is a button, each line is
horizontally centered, and the font leading is inserted between lines. (The height of each
line is equal to the distance from the ascent line to the descent line plus the leading of the
font used. Be sure to make the total height of the rectangle greater than the number of
lines times this height.) If the control is a checkbox or a radio button, the text is justified
as appropriate for the user’s current script system, and the checkbox or button is
vertically centered within its rectangle.

When you create a control, you specify an initial title either in the control resource or in
thetit| e parameter of the NewCont r ol function. To determine a control’s current title,
use the Get Control Ti t| e procedure.

Control Manager Reference

CHAPTER 5

Control Manager

HideControl

To make a control invisible, before adjusting its size and location, for example, use the
Hi deContr ol procedure.

PROCEDURE Hi deControl (theControl: Control Handl e);

t heControl A handle to the control you want to hide.

DESCRIPTION
The H deCont r ol procedure makes the specified control invisible by changing the
value of the cont r | Vi s field of the control record and removing the control from the
screen. To fill the region previously occupied by the control, H deCont r ol uses the
background pattern of the window’s graphics port. It also adds the control’s rectangle to
the window’s update region, so that anything else that was previously obscured by the
control will reappear on the screen. If the control is already invisible, H deCont r ol has
no effect.

To make the control visible again, you can use the ShowCont r ol procedure.

SPECIAL CONSIDERATIONS
The MoveCont r ol and Si zeCont r ol procedures both call H deCont r ol and
ShowCont r ol automatically. However, so that the control will not blink on the screen
when you make both of these calls, you should use Hi deCont r ol to make the control
invisible until you are finished manipulating it, and then use ShowCont r ol .

SEE ALSO
Listing 5-14 on page 5-39 illustrates the use of Hi deCont r ol before adjusting scroll bar
settings and locations.

MoveControl

To move a control within its window, you can use the MoveCont r ol procedure.

PROCEDURE MoveControl (theControl: Control Handl e;
h: Integer; v: Integer);

t heControl A handle to the control you wish to move.

h The horizontal coordinate (local to the control’s window) of the new
location of the upper-left corner of the control’s rectangle.

\Y; The vertical coordinate (local to the control’s window) of the new
location of the upper-left corner of the control’s rectangle.

Control Manager Reference 5-97

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

DESCRIPTION
The MoveCont r ol procedure moves the control to the new location specified by the h
and v parameters, using them to change the rectangle specified in the cont r | Rect field
of the control’s control record. When the control is visible, MoveCont r ol first hides it
and then redraws it at its new location.
For example, if the user resizes a document window that contains a scroll bar, your
application can use MoveCont r ol to move the scroll bar to its new location.
SEE ALSO
Listing 5-24 on page 5-67 illustrates the use of MoveCont r ol to change the location of a
scroll bar.
SizeControl
To change the size of a control’s rectangle, use the Si zeCont r ol procedure.
PROCEDURE Si zeControl (theControl: Control Handl e;
h: Integer; v: Integer);
t heControl A handle to the control you wish to resize.
w The new width, in pixels, of the resized control.
h The new height, in pixels, of the resized control.
DESCRIPTION
The Si zeCont r ol procedure changes the rectangle specified in the cont r | Rect field
of the control’s control record. The lower-right corner of the rectangle is adjusted so
that it has the width and height specified by the wand h parameters; the position of the
upper-left corner is not changed. If the control is currently visible, it’s first hidden and
then redrawn in its new size. The Si zeCont r ol procedure uses H deCont r ol , which
changes the window’s update region.
SEE ALSO
Listing 5-24 on page 5-67 illustrates the use of Si zeCont r ol to change the size of a
scroll bar.
HiliteControl
If you need to change the highlighting of a control, you can use the Hi | i t eCont r ol
procedure.
PROCEDURE Hi liteControl (theControl: Control Handl e;
hiliteState: |nteger);
5-98 Control Manager Reference

DESCRIPTION

CHAPTER 5

Control Manager

t heCont r ol A handle to the control.

hiliteState
A value from 0 through 255 to signify the highlighting of the control.
The value of 0 signifies no highlighting for the active control. A value
from 1 through 253 signifies a part code designating the part of the
(active) control to highlight. (Part codes are explained in the description
of Fi ndCont r ol on page 5-89.) The value 255 signifies that the control is
to be made inactive and drawn accordingly.

The Hi | i t eCont r ol procedure calls the control definition function to redraw the
control with the highlighting specified in the hi | i t eSt at e parameter. The

Hi |i t eControl procedure uses the value in this parameter to change the value
of thecontrl H | it e field of the control’s control record.

Except for scroll bars (which you should hide using the H deCont r ol procedure), you
should use Hi | i t eCont r ol to make all controls inactive when their windows are not
frontmost. The Tr ackCont r ol function automatically uses the Hi | i t eCont r ol
procedure as appropriate; when you use Tr ackCont r ol , you don’t need to call
HiliteControl.

SPECIAL CONSIDERATIONS

The value 254 should not be passed in the hi | i t eSt at e parameter; this value is
reserved for future use.

SEE ALSO
The chapter “Dialog Manager” in this book provides several examples of the use of
HiliteControl.

DragControl

If you need to draw and move an outline of a control or its indicator (such as the scroll
box of a scroll bar) while the user drags it, you can use the Dr agCont r ol procedure.

PROCEDURE Dr agControl (theControl: Control Handl e;
startPt: Point;
l[imtRect: Rect; slopRect: Rect;
axis: Integer);

t heControl A handle to the control to drag.

start Pt The location of the cursor, expressed in the local coordinates of the
control’s window, at the time the user first presses the mouse button.

Control Manager Reference 5-99

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

l'imtRect Arectangle—which should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag
the control’s outline.

sl opRect Arectangle that allows some extra space for the user to move the mouse
while still constraining the control within the rectangle specified in the
['i mit Rect parameter.

axi s The axis along which the user may drag the control’s outline. The
following list shows the constants you can use—and the values they
represent—for constraining the motion along an axis:

CONST
noConstraint = 0; {no constraint}
hAxi sOnl y = 1; {drag along horizontal axis only}
VAXi sOnl y = 2; {drag along vertical axis only}

DESCRIPTION

The Dr agCont r ol procedure moves a dotted outline of the control around the screen,
following the movements of the cursor until the user releases the mouse button. When
the user releases the mouse button, Dr agCont r ol calls MoveCont r ol . In turn,
MoveCont r ol moves the control to the location to which the user dragged it.

The Tr ackCont r ol function automatically uses the Dr agCont r ol procedure as
appropriate; when you use Tr ackCont r ol , you don’t need to call Dr agCont r ol .

ThestartPt,|imtRect,sl opRect, and axi s parameters have the same meaning as
for the Window Manager function Dr agG ayRgn.

SPECIAL CONSIDERATIONS

Before tracking the cursor, Dr agCont r ol calls the control definition function. If you
define your own control definition function, you can specify custom dragging behavior.

ASSEMBLY-LANGUAGE INFORMATION

Like TrackControl, DragCont r ol invokes the Window Manager function
Dr agGr ayRgn, so you can use the global variables Dr agHook and Dr agPat t er n.

SEE ALSO

For information about creating your own control definition functions, see “Defining Your
Own Control Definition Function” beginning on page 5-109. See the description of the

Dr agGr ayRgn function in the chapter “Window Manager” in this book for a more
complete discussion of the st art Pt, | i mi t Rect, sl opRect, and axi s parameters,
which are used identically in the Dr agCont r ol function.

5-100 Control Manager Reference

CHAPTER 5

Control Manager

SetControlColor

DESCRIPTION

To draw a control using colors other than the default colors used by system software,
you can use the Set Cont r ol Col or procedure. The Set Cont r ol Col or procedure is
also available as the Set Ct | Col or procedure.

PROCEDURE Set Cont rol Col or (theControl: Control Handl e;
newCol or Tabl e: CCTabHandl e);

t heCont r ol A handle to the control whose colors you wish to change.

newCol or Tabl e
A handle to a control color table record.

The Set Cont r ol Col or procedure changes the color table for the specified control. If
the control currently has no auxiliary control record, Set Cont r ol Col or creates one
that includes the control color table record specified in the parameter newCol or Tabl e
and adds the auxiliary control record to the head of the auxiliary control list. If there

is already an auxiliary record for the control, Set Cont r ol Col or replaces its color
table with the contents of the control color table record specified in the parameter
newCol or Tabl e.

To use nonstandard colors for a control, you must create a control color table, either by
creating a color control table record and calling Set Cont r ol Col or or by creating a
control color table resource. Generally, you use Set Cont r ol Col or when you create

a control using NewCont r ol and want to use nonstandard colors for it or when you
change any control’s colors after you've created it. When you want to use nonstandard
colors for those controls you create in a control (' CNTL') resource, you should create a
control color table (' cct b') resource with the same resource ID as the control resource.

A control whose colors you set with Set Cont r ol Col or should initially be invisible.
After using Set Cont r ol Col or to set the control’s colors, use the ShowCont r ol
procedure to make the control visible.

SPECIAL CONSIDERATIONS

On color monitors, the Control Manager automatically draws controls so that they match
the colors of the controls used by system software. Be aware that nonstandard colors in
your controls may initially confuse your users.

When you create a control color table record, your application should not deallocate it if
another control is still using it.

Control Manager Reference 5-101

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

SetControlAction

DESCRIPTION

If you set the action procedure to Poi nt er (- 1) when you use TrackCont r ol , you can
use the Set Cont r ol Act i on procedure to set or change the action procedure. The
Set Cont r ol Act i on procedure is also available as the Set Ct | Act i on procedure.

PROCEDURE Set Control Action (theControl: Control Handl e;
actionProc: ProcPtr);

t heCont r ol A handle to the control whose action procedure you wish to change.

actionProc A pointer to an action procedure defining what action your application
takes while the user holds down the mouse button.

The Set Cont r ol Acti on procedure changes the cont r| Act i on field of the control’s
control record to point to the action procedure specified in the act i onPr oc parameter.
If the cursor is in the specified control, Tr ackCont r ol calls this action procedure

when user holds down the mouse button. You must provide the action procedure, and it
must define some action to perform repeatedly as long as the user holds down the
mouse button. (The Tr ackCont r ol function always highlights and drags the control

as appropriate.)

SPECIAL CONSIDERATIONS

SEE ALSO

The value in the cont r | Act i on field of the control’s control record is used
by TrackCont r ol only if you set the action procedure to Tr ackCont r ol to
Poi nter(-1).

An action procedure is usually specified in a parameter to Tr ackCont r ol ; you
generally don’t need to call Set Cont r ol Act i on to change it.

Action procedures are described in “Defining Your Own Action Procedures” beginning
on page 5-115.

Determining Control Values

5-102

Your application sets a control’s various values—such as current setting, minimum and
maximum settings, title, reference value, and action procedure—when it creates the
control. When the user clicks a control, however, your application often needs to
determine the current setting and other possible values of that control. When the user
clicks a checkbox, for example, your application must determine whether the box is
checked before deciding whether to draw a checkmark inside the checkbox or remove
the checkmark.

Control Manager Reference

CHAPTER 5

Control Manager

You can use the Get Cont r ol Val ue, Get Control Titl e, Get Cont rol M ni num

CGet Cont r ol Maxi mum Get Cont r ol Acti on, and Get Cont r ol Ref er ence routines to
determine, respectively, a control’s current setting, title, minimum setting, maximum
setting, action procedure, and reference value. To get a handle to a control’s auxiliary
control record, you can use the Get Auxi | i ar yCont r ol Recor d function; your
application can use the acRef Con field of an auxiliary control record for any purpose.
To determine the variation code that is specified in the control definition function for a
particular control, you can use the Get Cont r ol Var i ant function. This section also
includes a description of the Set Cont r ol Ref er ence procedure, which allows your
application to change its reference value for a control.

GetControlValue

DESCRIPTION

SEE ALSO

To determine a control’s current setting, use the Get Cont r ol Val ue function. The
Cet Cont r ol Val ue function is also available as the Get Ct | Val ue function.

FUNCTI ON CGet Control Val ue (theControl: Control Handl e): I nteger;

t heCont r ol A handle to a control.

The Get Cont r ol Val ue function returns as its function result the specified control’s
current setting, which is stored in the cont r | Val ue field of the control record.

When you create a control, you specify an initial setting either in the control resource or
in the val ue parameter of the NewCont r ol function. You can change the setting by
using the Set Cont r ol Val ue procedure.

Listing 5-12 on page 5-37 and Listing 5-13 on page 5-38 illustrate the use of

Get Cont r ol Val ue for determining the current setting of, respectively, a pop-up
menu and a checkbox. Listing 5-16 on page 5-41, Listing 5-18 on page 5-53, and
Listing 5-20 on page 5-61 illustrate the use of this function for determining the
current setting of a scroll bar.

GetControlMinimum

To determine a control’s minimum setting, use the Get Cont r ol M ni mumfunction. The
Get Cont r ol M ni mumfunction is also available as the Get Ct | M n function.

FUNCTI ON Get Control M ni num (t heControl: Control Handl e): | nteger;

t heCont rol A handle to the control whose minimum value you wish to determine.

Control Manager Reference 5-103

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

DESCRIPTION
The Get Cont r ol M ni mumfunction returns as its function result the specified control’s
minimum setting, which is stored in the cont r | M n field of the control record.

When you create a control, you specify an initial minimum setting either in the control
resource or in the m n parameter of the NewCont r ol function. You can change the
minimum setting by using the Set Cont r ol M ni mumprocedure.

GetControlMaximum

To determine a control’s maximum setting, use the Get Cont r ol Maxi numfunction. The
Get Cont r ol Maxi mumfunction is also available as the Get Ct | Max function.

FUNCTI ON Get Contr ol Maxi mum (t heControl: Control Handl e): | nteger;

t heCont r ol A handle to the control whose maximum value you wish to determine.

DESCRIPTION

The Get Cont r ol Maxi mumfunction returns as its function result the specified control’s
maximum setting, which is stored in the cont r | Max field of the control record.

When you create a control, you specify an initial maximum setting either in the control
resource or in the max parameter of the NewCont r ol function. You can change the
maximum setting by using the Set Cont r ol Maxi mumprocedure.

SEE ALSO

Listing 5-16 on page 5-41 and Listing 5-20 on page 5-61 illustrate the use of

Cet Cont r ol Maxi mumfor determining the maximum scrolling distance of a scroll bar.
GetControlTitle

To determine the title of a control, use the Get Cont r ol Ti t | e procedure. The
Get Cont rol Ti t| e procedure is also available as the Get CTi t | e procedure.

PROCEDURE Get Control Title (theControl: Control Handl e;
VAR title: Str255);

t heControl A handle to the control whose title you want to determine.
title The title of the control.

5-104 Control Manager Reference

CHAPTER 5

Control Manager

DESCRIPTION
The Get Cont r ol Ti t | e procedure returns the specified control title, which is stored in
the contr| Ti t| e field of the control record.

When you create a control, you specify an initial title either in the control resource or in
theti t| e parameter of the NewCont r ol function. You can change the title by using the
Set Cont rol Ti t | e procedure.

GetControlReference

To determine a control’s current reference value, use the Get Cont r ol Ref er ence
function. The Get Cont r ol Ref er ence function is also available as the Get CRef Con
function.

FUNCTI ON CGet Contr ol Ref erence (theControl: Control Handl e): Longlnt;

t heControl A handle to the control whose current reference value you wish
to determine.

DESCRIPTION

The Get Cont r ol Ref er ence function returns as its function result the current reference
value for the specified control.

When you create a control, you specify an initial reference value, either in the control
resource or in the r ef Con parameter of the NewCont r ol function. The reference value
is stored in the cont r | Rf Con field of the control record. You can use this field for any
purpose, and you can use the Set Cont r ol Ref er ence procedure, described next, to
change this value.

SetControlReference

To change a control’s current reference value, use the Set Cont r ol Ref er ence
procedure. The Set Cont r ol Ref er ence procedure is also available as the
Set CRef Con procedure.

PROCEDURE Set Control Ref erence (theControl: Control Handl e;
data: Longlnt);

t heControl A handle to the control whose reference value you wish to change.

dat a The new reference value for the control.

Control Manager Reference 5-105

Jabeuel [0nu0D -

DESCRIPTION

CHAPTER 5

Control Manager

The Set Cont r ol Ref er ence procedure sets the control’s reference value to the value
you specify in the dat a parameter.

When you create a control, you specify an initial reference value, either in the
control resource or in the r ef Con parameter of the NewCont r ol function. The
reference value is stored in the cont r | Rf Con field of the control record; you can
use the Get Cont r ol Ref er ence function to determine the current value. You
can use this value for any purpose.

GetControlAction

DESCRIPTION

SEE ALSO

To get a pointer to the action procedure stored in the cont r | Act i on field
of the control’s control record, use the Get Cont r ol Act i on function. The
Get Cont r ol Act i on function is also available as the Get Ct | Act i on function.

FUNCTI ON Get Control Action (theControl: Control Handl e): ProcPtr;

t heCont r ol A handle to a control.

The Get Cont r ol Act i on function returns as its function result whatever value is
stored in the cont r | Act i on field of the control’s control record. This field specifies
the action procedure that Tr ackCont r ol uses if you set its act i onPr oc parameter to
Poi nt er (- 1) . The action procedure should define an action to take in response to the
user’s holding down the mouse button while the cursor is in the control. You can use
the Set Cont r ol Act i on procedure to change this action procedure.

For information about defining an action procedure, see “Defining Your Own Action
Procedures” beginning on page 5-115.

GetControl Variant

5-106

To determine the variation code specified in the control definition function for a
particular control, you can use the Get Cont r ol Var i ant function. The
Cet Cont rol Vari ant function is also available as the Get CVar i ant function.

FUNCTI ON Get Control Variant (theControl: Control Handl e): |nteger;

t heControl A handle to the control whose variation code you wish to determine.

Control Manager Reference

DESCRIPTION

SEE ALSO

CHAPTER 5

Control Manager

The Get Cont r ol Var i ant function returns as its function result the variation code for

the specified control.

Variation codes are described in “The Control Definition Function” on page 5-14.

GetAuxiliaryControlRecord

DESCRIPTION

Use the Get Auxi | i aryCont r ol Recor d function to get a handle to a control’s
auxiliary control record. The Get Auxi | i ar yCont r ol Recor d function is also
available as the Get AuxCt | function.

FUNCTI ON Get Auxi | i aryControl Record (theControl: Control Handl e;
VAR acHndl : AuxCt| Handl e)
Bool ean;

t heControl Ahandle to a control.
acHndl A handle to the auxiliary control record for the control.

In its acHndl parameter, the Get Auxi | i ar yCont r ol Recor d function returns a

handle to the auxiliary control record for the specified control. Your application typically
doesn’t need to access an auxiliary control record unless you need its acRef Con field,

which your application can use for any purpose.

The value that Get Auxi | i ar yCont r ol Recor d returns for a function result depends

on the control’s color control table, as described here:

= If your application has changed the default control color table for the given control

(either by using the Set Cont r ol Col or procedure or by creating its own control

color table), the function returns TRUE.

= If your application has not changed the default control color table, the function
returns FALSE.

= If you set the parameter t heCont r ol to NI L, the Dialog Manager ensures that
the control uses the default color table, and Get Auxi | i ar yCont r ol Record
returns TRUE.

Control Manager Reference

5-107

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Removing Controls

When you use the Window Manager procedures Di sposeW ndowand Cl oseW ndow
to remove a window, they automatically remove all controls associated with the window
and release the memory the controls occupy.

When you no longer need a control in a window that you want to keep, you can use the
Di sposeCont r ol procedure to remove the control from the window’s control list and
release the memory it occupies. You can use the Ki | | Cont r ol s procedure to dispose of
all of a window’s controls at once.

DisposeControl

DESCRIPTION

To remove a particular control from a window that you want to keep, use the
Di sposeCont r ol procedure.

PROCEDURE Di sposeControl (theControl: Control Handl e);

t heControl A handle to the control you wish to remove.

The Di sposeCont r ol procedure removes the specified control from the screen, deletes
it from its window’s control list, and releases the memory occupied by the control record
and any data structures associated with the control.

SPECIAL CONSIDERATIONS

The Window Manager procedures Cl oseW ndowand Di sposeW ndow automatically
dispose of all controls associated with the given window.

SEE ALSO
To remove all of the controls in a window, use the Ki | | Cont r ol s procedure, described
next. The Cl oseW ndowand Di sposeW ndow procedures are described in the chapter
“Window Manager” in this book.
KillControls
To remove all of the controls in a particular window that you want to keep, use the
Ki I I Control s procedure.
PROCEDURE Ki || Controls (theWndow. W ndowPtr);
t heW ndow A pointer to the window containing the controls to remove.
5-108 Control Manager Reference

DESCRIPTION

CHAPTER 5

Control Manager

The Ki I | Cont r ol s procedure disposes of all controls associated with the specified
window by calling the Di sposeCont r ol procedure for each control.

SPECIAL CONSIDERATIONS

SEE ALSO

The Window Manager procedures Cl oseW ndowand Di sposeW ndow automatically
dispose of all controls associated with the given window.

The O oseW ndowand Di sposeW ndow procedures are described in the chapter
“Window Manager” in this book.

Application-Defined Routines

This section describes how to create your own control definition function—declared
here as MyCont r ol —which your application needs to provide when defining new,
nonstandard controls. This section also describes action procedures—declared here

as MyAct i on and Myl ndi cat or Act i on—which define additional actions to be
performed repeatedly as long as the user holds down the mouse button while the
cursor is in a control. For example, you need to define an action procedure for scrolling
through a document while the user holds down the mouse button and the cursor is

in a scroll arrow.

Defining Your Own Control Definition Function

In addition to the standard controls (buttons, checkboxes, radio buttons, pop-up menus,
and scroll bars), the Control Manager allows you to define new, nonstandard controls as
appropriate for your application. For example, you can define a three-way selector
switch, a memory-space indicator that looks like a thermometer, or a thruster control for
a spacecraft simulator. Controls and their indicators may occupy regions of any shape, as
permitted by QuickDraw.

To define your own type of control, you write a control definition function, compile it as
a resource of type ' CDEF' , and store it in your resource file. (See the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox for more information about
creating resources.) Whenever you create a control, you specify a control definition ID,
which the Control Manager uses to determine the control definition function. The control
definition ID is an integer that contains the resource ID of the control definition function
in its upper 12 bits and a variation code in its lower 4 bits. Thus, for a given resource ID
and variation code

control definition ID = 16 x resource ID + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control
definition function with resource ID 0. Because they have variation codes of 0, 1,
and 2, respectively, their respective control definition IDs are 0, 1, and 2.

Control Manager Reference 5-109

Jabeuel [0nu0D -

MyControl

CHAPTER 5

Control Manager

You can define your own variation codes, which various Control Manager routines pass
to your control definition function. This allows you to use one ' CDEF' resource to
handle several variations of the same general control.

The Control Manager calls the Resource Manager to access your control definition
function with the given resource ID. The Resource Manager reads your control definition
function into memory and returns a handle to it. The Control Manager stores this handle
in the cont r | Def Pr oc field of the control record. In 24-bit addressing mode, the
variation code is placed in the high-order byte of this field; in 32-bit mode, the variation
code is placed in the most significant byte of the acReser ved field in the control’s
AuxCt | Rec record. Later, when various Control Manager routines need to perform a
type-dependent action on the control, they call your control definition function and pass
it the variation code as a parameter.

If you create a control definition function, you can use control color table records of
any desired size and define their contents in any way you wish, except that part indices
1 through 127 are reserved for system definition. Note that in this case, you should
allocate explicit auxiliary records for every control you create.

5-110

If you wish to define new, nonstandard controls for your application, you must write a
control definition function and store it in a resource file as a resource of type ' CDEF' .
Here’s how you would declare a procedure named MyCont r ol :

FUNCTI ON MyControl (varCode: Integer; theControl: Control Handl e;
nessage: |nteger; param Longlnt): Longlnt;

var Code The variation code for this control. To derive the control definition ID for
the control, add this value to the result of 16 multiplied by the resource ID
of the ' CDEF' resource containing this function. The variation code
allows you to specify several control definition IDs within one ' CDEF'
resource, thereby defining several variations of the same basic control.

t heControl A handle to the control that the operation will affect.

nmessage A value (from the following list) that specifies which operation your
function must undertake.

CONST dr awCnt | = 0; {draw the control or its part}
testCntl = 1; {test where nmpuse button }
{ is pressed}
cal cCRgns = 2; {calculate region for }
{ control or indicator in }
{ 24-bit systens}
initcCntl = 3; {peformany additional }

{ control initialization}

Control Manager Reference

DESCRIPTION

CHAPTER 5

Control Manager

di spCnt | = 4; {performany additional }
{ disposal actions}
posCnt | = 5; {nove indicator and }
{ update its setting}
t hunbCnt | = 6; {calculate paraneters for }
{ draggi ng indicator}
dragCnt | = 7; {performany custom draggi ng }
{ of control or its indicator}
aut oTr ack = 8; {execute action procedure }

{ specified by your function}
cal cCntl Rgn = 10; {calculate region for control}

cal cThunmbRgn = 11; {calculate region for }
{ indicator}
par am A value whose meaning depends on the operation specified in the

message parameter.

The Control Manager calls your control definition function under various circumstances;
the Control Manager uses the message parameter to inform your control definition
function what action it must perform. The data that the Control Manager passes in the
par amparameter, the action that your control definition function must undertake, and
the function result that your control definition function returns all depend on the value
that the Control Manager passes in the message parameter. The rest of this section
describes how to respond to the various values that the Control Manager passes in the
nmessage parameter.

Drawing the Control or Its Part

When the Control Manager passes the value for the dr awCnt | constant in the nessage
parameter, the low word in the par amparameter has one of the following values:

s the value 0, indicating the entire control
» the value 129, signifying an indicator that must be moved

= any other value, indicating a part code for the control (Don’t use part code 128, which
is reserved for future use, or part code 129, which the Control Manager uses to signify
an indicator that must be moved.)

Note

For the dr awCnt | message, the high-order word of the par am
parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter. O

If the specified control is visible, your control definition function should draw the control
(or the part specified in the par amparameter) within the control’s rectangle. If the
control is invisible (that is, if its cont r | Vi s field is set to 0), your control definition
function does nothing.

Control Manager Reference 5-111

Jabeuel [0nu0D -

5-112

CHAPTER 5

Control Manager

When drawing the control or its part, take into account the current values of its
contrl Hiliteandcontrl Val ue fields of the control’s control record.

If the part code for your control’s indicator is passed in par am assume that the indicator
hasn’t moved; the Control Manager, for example, may be calling your control definition
function so that you may simply highlight the indicator. However, when your applica-
tion calls the Set Cont r ol Val ue, Set Cont r ol M ni num and Set Cont r ol Maxi num
procedures, they in turn may call your control definition function to redraw the
indicator. Since these routines have no way of determining what part code you chose

for your indicator, they all pass 129 in par am meaning that you should move your
indicator. Your control definition function must detect this part code as a special case and
remove the indicator from its former location before drawing it. If your control has more
than one indicator, you should interpret 129 to mean all indicators.

When passed the value for the dr awCnt | constant in the nessage parameter, your
control definition function should always return 0 as its function result.

Testing Where the Mouse-Down Event Occurs

To request your control definition function to determine whether a specified point is

in a visible control, the Fi ndCont r ol function sends the value for the t est Cnt |
constant in the message parameter. In this case, the par amparameter specifies a point
(in coordinates local to the control’s window) as follows:

» The point’s vertical coordinate is contained in the high-order word of the long integer.

= The point’s horizontal coordinate is contained in the low-order word.

When passed the value for the t est Cnt | constant in the nessage parameter, your
control definition function should return the part code of the part that contains the
specified point; it should return 0 if the point is outside the control or if the control
is inactive.

Calculating the Control and Indicator Regions

When the Control Manager passes the value for the cal cCRgns constant in the
message parameter, your control definition function should calculate the region
occupied by either the control or its indicator. The Control Manager passes a QuickDraw
region handle in the par amparameter; it is this region that you calculate. If the
high-order bit of par amis set, the region requested is that of the control’s indicator;
otherwise, the region requested is that of the entire control. Your control definition
function should clear the high bit of the region handle before calculating the region.

When the Control Manager passes the value for the cal cCnt | Rgn constant in the
message parameter, your control definition function should calculate the region passed
in the par amparameter for the specified control. When the Control Manager passes the
value for the cal cThunbRgn constant, calculate the region occupied by the indicator.

When passed the values for the cal cCRgns, cal cCnt | Rgn, and cal cThunbRgn
constants, your control definition function should always return 0, and it should express
the region in the local coordinate system of the control’s window.

Control Manager Reference

CHAPTER 5

Control Manager

IMPORTANT

The Control Manager passes the cal cCRgns constant when the 24-bit
Memory Manager is in operation. When the 32-bit Memory Manager is
in operation, the Control Manager instead passes the cal cCnt | Rgn
constant or the cal cThunbRgn constant. Your control definition
function should respond to all three constants. a

Performing Any Additional Initialization

After initializing fields of a control record as appropriate when creating a new control,
the Control Manager passes i ni t Cnt | in the nessage parameter to give your control
definition function the opportunity to perform any type-specific initialization you may
require. For example, if you implement the control’s action procedure in its control
definition function, you’'ll need to store Poi nt er (—1) in the cont r| Act i on field of the
control’s control record. Then, in a call to Tr ackCont r ol for this control, you would
pass Poi nt er (—1) in the acti onPr oc parameter of Tr ackContr ol .

The standard control definition function for scroll bars allocates space for a region to
hold the scroll box and stores the region handle in the cont r | Dat a field of the new
control record.

When passed the value for the i ni t Cnt | constant in the message parameter, your
control definition function should ignore the par amparameter and return 0 as a
function result.

Performing Any Additional Disposal Actions

The Di sposeCont r ol procedure passes di spCnt | in the message parameter to give
your control definition function the opportunity to carry out any additional actions
when disposing of a control. For example, the standard definition function for scroll bars
releases the memory occupied by the scroll box region, whose handle is kept in the
contr | Dat a field of the control’s control record.

When passed the value for the di spCnt | constant in the nessage parameter, your
control definition function should ignore the par amparameter and return 0 as a
function result.

Moving the Indicator

When a mouse-up event occurs in the indicator of a control, the Tr ackCont r ol
function calls your control definition function and passes posCnt | in the message
parameter. In this case, the par amparameter contains a point (in coordinates local to the
control’s window) that specifies the vertical and horizontal offset, in pixels, by which
your control definition function should move the indicator from its current position.
Typically, this is the offset between the points where the cursor was when the user
pressed and released the mouse button while dragging the indicator. The offset point is
specified as follows:

» The point’s vertical offset is contained in the high-order word of the par amparameter.

s The point’s horizontal offset is contained in the low-order word.

Control Manager Reference 5-113

Jabeuel [0nu0D -

5-114

CHAPTER 5

Control Manager

Your definition function should calculate the control’s new setting based on the
given offset and then, to reflect the new setting, redraw the control and update the
contrl Val ue field in the control’s control record. Your control definition function
should ignore the par amparameter and return 0 as a function result.

Note that the Set Cont r ol Val ue, Set Cont r ol M ni num and Set Cont r ol Maxi mum
procedures do not call your control definition function with the posCnt | message;
instead, they pass the dr awCnt | message.

Calculating Parameters for Dragging the Indicator

When the Control Manager passes the value for t humbCnt | in the message parameter,
your control definition function should respond by calculating values (analogous to
thel i m t Rect, sl opRect, and axi s parameters of Dr agCont r ol) that constrain
how the indicator is dragged. The par amparameter contains a pointer to the following
data structure:

RECORD
limtRect, sl opRect: Rect;
axi s: I nt eger;
END;

On entry, the field paranf*. | i mi t Rect. t opLeft contains the point where the
mouse-down event first occurred. Your definition function should store the appropriate
values into the fields of the record pointed to by par am they’re analogous to the
similarly named parameters to the Window Manager function Dr agGr ayRgn.

Performing Custom Dragging

The Control Manager passes dr agCnt | in the nessage parameter to give your control
definition function the opportunity to specify its own method for dragging a control (or
its indicator).

The par amparameter specifies whether the user is dragging an indicator or the
whole control:

= Avalue of 0 means the user is dragging the entire control.

= Any nonzero value means the user is dragging only the indicator.

If you want to use the Control Manager’s default method of dragging (which is to call
DragControl to drag the control or the Window Manager function Dr agG ayRgn to
drag its indicator), return 0 as the function result for your control definition function.

If your control definition function returns any nonzero result, the Control Manager does
not drag your control, and instead your control definition function must drag the
specified control (or its indicator) to follow the cursor until the user releases the mouse
button, as follows:

» If the user drags the entire control, your definition function should use the
MoveCont r ol procedure to reposition the control to its new location after the user
releases the mouse button.

Control Manager Reference

CHAPTER 5

Control Manager

= If the user drags the indicator, your definition function must calculate the control’s
new setting (based on the pixel offset between the points where the cursor was when
the user pressed and released the mouse button while dragging the indicator) and
then, to reflect the new setting, redraw the control and update the cont r | Val ue field
in the control’s control record. Note that, in this case, the Tr ackCont r ol function
returns 0 whether or not the user changes the indicator’s position. Thus, you must
determine whether the user has changed the control’s setting, for instance, by
comparing the control’s value before and after the call to Tr ackCont r ol .

Executing an Action Procedure

You can design a control whose action procedure is specified by your control definition
function. When you create the control, your control definition function must first
respond to the i ni t Cnt | message by storing Poi nt er (—1) in the contrl Acti on
field of the control’s control record. (As previously explained, the Control Manager
sends thei ni t Cnt | message to your control definition function after initializing

the fields of a new control record.) Then, when your application passes Poi nt er (—1)
in the act i onPr oc parameter to the TrackCont r ol function, Tr ackCont r ol

calls your control definition function with the aut 0Tr ack message. The par am
parameter specifies the part code of the part where the mouse-down event occurs.
Your control definition function should then use this information to respond as an action
procedure would.

Note

For the aut oTr ack message, the high-order word of the par am
parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter. O

ASSEMBLY-LANGUAGE INFORMATION

The function’s entry point must be at the beginning.

SEE ALSO

The Tr ackCont r ol function is described on page 5-90; creating an action procedure is
described in the next section.

Defining Your Own Action Procedures

When a mouse-down event occurs in a control, the Tr ackCont r ol function responds as
appropriate by highlighting the control or dragging the indicator as long as the user
holds down the mouse button. You can define other actions to be performed repeatedly
during this interval. To do so, define your own action procedure and point to it in the
act i onPr oc parameter of the Tr ackCont r ol function.

When calling your action procedure for a control part other than an indicator,
TrackCont r ol passes your action procedure (1) a handle to the control and (2) the
control’s part code. Your action procedure should then respond as appropriate. For

Control Manager Reference 5-115

Jabeuel [0nu0D -

MyAction

CHAPTER 5

Control Manager

example, if the user is working in a text document and holds down the mouse button
while the cursor is in the lower scroll arrow, your application should scroll continuously
one line at a time until the user releases the mouse button or reaches the end of

the document.

For a control part other than an indicator, you declare an action procedure that takes two
parameters: a handle to the control in which the mouse-down event occurred and an
integer that represents the part of the control in which the mouse-down event occurred.
Such an action procedure is declared as MyAct i on in the following section.

If the mouse-down event occurs in an indicator, your action procedure should take no
parameters, because the user may move the cursor outside the indicator while dragging
it. Such an action procedure, declared here as Myl ndi cat or Act i on, is described on
page 5-117.

Because it will be called with either zero or two parameters, according to whether the
mouse-down event occurred in an indicator or elsewhere, your action procedure can be
defined for only one case or the other. The only way to specify actions in response to all
mouse-down events in a control, regardless of whether they’re in an indicator, is to
define your own control definition function, as described in “Defining Your Own Control
Definition Function” beginning on page 5-109.

DESCRIPTION

5-116

Here’s how to declare an action procedure for a control part other than an indicator if
you were to name the procedure MyAct i on:

PROCEDURE MyAction (theControl: Control Handl e; part Code: |nteger);

t heCont r ol A handle to the control in which the mouse-down event occurred.

part Code When the cursor is still in the control part where mouse-down event first
occurred, this parameter contains that control’s part code. When the
user drags the cursor outside the original control part, this parameter
contains 0.

Your procedure can perform any action appropriate for the control part. For example,
when a mouse-down event occurs in a scroll arrow or gray area of a scroll bar,
TrackCont r ol calls your action procedure and passes it the part code and a handle
to the scroll bar. Your action procedure should examine the part code to determine
the part of the control in which the mouse-down event occurred. Your action
procedure should then scroll up or down a line or page as appropriate and then call
the Set Cont r ol Val ue procedure to change the control’s setting and redraw the
scroll box.

Control Manager Reference

CHAPTER 5

Control Manager

ASSEMBLY-LANGUAGE INFORMATION

If you store a pointer to a procedure in the global variable Dr agHook, your procedure is
called repeatedly (with no parameters) as long as the user holds down the mouse button.
The Tr ackCont r ol function invokes the Window Manager function Dr agG ayRgn,
which calls the Dr agHook procedure. The Dr agG ay Rgn function uses the pattern
stored in the global variable Dr agPat t er n for the dragged outline of the indicator.

SEE ALSO

Listing 5-19 on page 5-59 illustrates a pair of action procedures for scrolling through a
text document. As an alternative to passing a pointer to your action procedure in a
parameter to Tr ackCont r ol , you can use the Set Cont r ol Act i on procedure to

store a pointer to the action procedure in the cont r | Act i on field in the control record.
When you pass Poi nt er (—1) instead of a procedure pointer to Tr ackCont r ol ,
TrackCont r ol uses the action procedure pointed to in the control record.

MylIndicatorAction

Here’s how to declare an action procedure for an indicator if you were to name the
procedure Myl ndi cat or Act i on:

PROCEDURE M| ndi cat or Act i on;

DESCRIPTION

Your procedure can perform any action appropriate for the control part. For example, if
your application plays music while displaying a volume control slider, your application
should change the volume in response to the user’s action in the slider switch.

SEE ALSO
See the MyAct i on procedure described on page 5-116 for other considerations.

Resources

This section describes the control (' CNTL') resource and the control color table
(" cct b') resource. You can use the control resource to define a control and use the
control color table resource to change the default colors of a control’s parts.

Control Manager Reference 5-117

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

The Control Resource

You can use a control resource to define a control. A control resource is a resource of
type' CNTL' . All control resources must have resource ID numbers greater than 128.
Use the Get NewCont r ol function (described on page 5-81) to create a control defined in
a control resource. The Control Manager uses the information you specify to create a
control record in memory. (The control record is described on page 5-73.)

This section describes the structure of this resource after it is compiled by the Rez
resource compiler, available from APDA. The format of a Rez input file for a control
resource differs from its compiled output form, which is illustrated in Figure 5-25. If you
are concerned only with creating a control resource, see “Creating and Displaying a
Control” beginning on page 5-15.

Figure 5-25 Structure of a compiled control (" CNTL") resource

5-118

" CNTL" resourcetype Bytes

} Rectangle } 8

Initial setting 2
Visibility 1

Fill 1
Maximum setting 2
Minimum setting 2
Control definition ID 2
Reference value 4

Z Title Z Variable

The compiled version of a control resource contains the following elements:

» The rectangle, specified in coordinates local to the window, that encloses the control;
this rectangle encloses the control and thus determines its size and location.

» The initial setting for the control.
o For controls—such as buttons—that don’t retain a setting, this value should be 0.

o For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,
a value of 0 in this element indicates that the control is initially off; a value of 1
indicates that the control is initially on.

o For controls—such as scroll bars and dials—that can take a range of settings,
whatever initial value is appropriate within that range is specified in this element.

Control Manager Reference

CHAPTER 5

Control Manager

o For pop-up menus, a combination of values instructs the Control Manager where
and how to draw the control title. Appropriate values, along with the constants

used to specify them in a Rez input file, are listed here:

CONST popupTitl eBol d
popupTitleltalic
popupTi tl eUnderline

popupTitl eQutline
popupTi t | eShadow
popupTi t | eCondense
popupTi t | eExt end
popupTi tl eNoStyl e
popupTi tl eLeft Just

popupTi t| eCent er Just

popupTi t| eRi ght Just

$00000100;
$00000200;
$00000400;

$00000800;
$00001000;
$00002000;
$00004000;
$00008000;
$00000000;

$00000001;

$000000FF;

{bol df ace font styl e}
{italic font style}

{underline font }
{ style}

{outline font style}
{shadow font styl e}

{condensed text}
{extended text}

{monostyl e text}
{place title left
{ of pop-up box}

}

{center title over }

{ pop-up box}

{place title right }

{ of pop-up box}

= The visibility of the control. If this element contains the value TRUE, Get NewCont r ol
draws the control immediately, without using the application’s standard updating
mechanism for windows. If this element contains the value FALSE, the application
must use the ShowCont r ol procedure (described on page 5-86) when it’s prepared to

display the control.
= Fill. This should be set to 0.

= The maximum setting for the control.

o For controls—such as buttons—that don’t retain a setting, this value should be 1.

o For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,
this element should contain the value 1 (meaning “on”).

o For controls—such as scroll bars and dials—that can take a range of settings, this
element can contain whatever maximum value is appropriate; when the
application makes the maximum setting of a scroll bar equal to its minimum
setting, the control definition function automatically makes the scroll bar inactive,
and when the application makes the maximum setting exceed the minimum, the
control definition function makes the scroll bar active again.

o For pop-up menus, this element contains the width, in pixels, of the control title.

= The minimum setting for the control.

o For controls—such as buttons—that don’t retain a setting, this value should be 0.

o For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,
the value 0 (meaning “off”) should be set in this element.

o For controls—such as scroll bars and dials—that can take a range of settings, this
element contains whatever minimum value is appropriate.

o For pop-up menus, this element contains the resource ID of the ' MENU resource

that describes the menu items.

Control Manager Reference

5-119

Jabeuel [0nu0D -

5-120

CHAPTER 5

Control Manager

= The control definition ID, which the Control Manager uses to determine the control

definition function for this control. “Defining Your Own Control Definition Function”
beginning on page 5-109 describes how to create control definition functions and their
corresponding control definition IDs. The following list shows the control definition
ID numbers—and the constants that represent them in Rez input files—for the
standard controls.

CONST

pushBut Pr oc = 0; {button}

checkBoxPr oc =1, {checkbox}

radi oBut Proc = 2; {radi o button}

useWFont = 8; {when added to above, shows }
{ title in the w ndow font}

scrol | Bar Proc = 16; {scroll bar}

popupMenuPr oc = 1008; {pop-up nenu}

popupFi xedW dt h = $0001; {add to popupMenuProc to }
{ use fixed-width control}

popupUseAddResMenu = $0004; {add to popupMenuProc to }

{ specify a value of type }

{ ResType in the contrl Rf Con }

{ field of the control }

{ record; Menu Manager }

{ adds resources of this }

{ type to the nenu}
popupUseWFont = $0008; {if added to popupMenuProc, }

{ shows title in wi ndow font}

Note

The title of a button, checkbox, radio button, or pop-up menu normally
appears in the system font, which in Roman script systems is 12-point
Chicago. Do not use a smaller font; some script systems, such as
KanjiTalk, require 12-point fonts. You should generally use the system
font in your controls; doing so will simplify localization effort. However,
if you absolutely need to display a control title in the font currently
associated with the window’s graphics port, you can add the
popupUseWFont constant to the pop-up menu control definition

ID or add the useWFont constant to the other standard control
definition IDs. O

The control’s reference value, which is set and used only by the application (except
when the application adds the popupUseAddResMenu variation code to the
popupMenuPr oc control definition ID, as described in “Creating a Pop-Up Menu”
beginning on page 5-25).

Control Manager Reference

CHAPTER 5

Control Manager

= For controls—such as buttons, checkboxes, radio buttons, and pop-up menus—that
need a title, the string for that title; for controls that don’t use titles, an empty string.

After you use Get NewCont r ol to create the control, you can change the current setting,
the maximum setting, the minimum setting, the reference value, and the title by using,
respectively, the Set Cont r ol Val ue, Set Cont r ol Maxi mum Set Cont r ol M ni mum
Set Cont r ol Ref er ence, and Set Cont r ol Ti t | e routines. You can use the
MoveControl and Si zeCont r ol procedures to change the control’s rectangle. You
can use the Get Cont r ol Val ue, Get Cont r ol Maxi mum Get Cont r ol M ni mum

Get Cont r ol Ref er ence, and Get Cont r ol Ti t | e routines to determine the

control values.

The Control Color Table Resource

On color monitors, the Control Manager automatically draws control parts so that they
match the colors of the controls used by system software.

If you feel absolutely compelled to use nonstandard colors, the Control Manager

allows you to do so. Your application can specify these by creating a control color table
(" cctb') resource; you must give the control color table resource for a control the
same resource ID as its control (' CNTL') resource, which is described on page 5-118.
When you call the Get NewCont r ol function to create the control, the Control Manager
automatically attempts to load a control color table resource with the same resource ID
as the control resource specified to Get NewCont r ol . The Control Manager also creates
an auxiliary control record for the control; the auxiliary control record is described

on page 5-76.

Note
Using nonstandard colors in your controls may initially confuse
your users. O

Generally, you use a control color table resource for a control that you define in a control
resource. To change a control’s colors, or to use nonstandard colors in a control

you create using NewCont r ol , create a control color table record and use the

Set Cont r ol Col or procedure. The control color table record is described on page 5-77;
the Set Cont r ol Col or procedure is described on page 5-101.

A control color table resource is of type ' cct b’ . All control color table resources must
have resource ID numbers greater than 128. Figure 5-26 on the next page shows the
format of a control color table resource. Note that Di sposeCont r ol does not delete
a control color table resource; therefore, you should make each control color table
resource purgeable.

Control Manager Reference 5-121

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Figure 5-26 Structure of a compiled control color table (' cct b') resource

‘cctb’ resource type Bytes
Reserved 4
Reserved 2

Number of control parts 2
First part identifer 2
Red component 2
Green component 2
Blue component 2
Last part identifier 2
Red component 2
Green component 2
Blue component 2

You define a control color table resource by specifying these elements in a resource with
the' cctb' resource type:

» Reserved. Should always be set to 0.
» Reserved. Should always be set to 0.

= Number of control parts. For standard controls other than scroll bars, this should be
set to 3, because these controls consist of a frame, a control body, and text. For scroll
bars, this should be set to 12. A scroll bar consists of a frame, a body, and scroll box;
each part of a scroll bar has various highlight and tinge colors associated with it. To
create a control with more parts, you must create your own control definition function
(as described in “Defining Your Own Control Definition Function” beginning on
page 5-109) that recognizes additional parts.

= First part identifier. A value or constant that identifies the control’s part to color. The
part identifiers can be listed in any order. The scroll bar control definition function
may use more than one part identifier to produce the actual colors used for each part
of the scroll bar.

CONST
cFraneCol or = 0; {frame color; for scroll bars, used to produce }
{ foreground color for scroll arrows & gray area}
cBodyCol or = 1; {body color; for scroll bars, used to produce }
{ colors in the scroll box}
cText Col or = 2; {text color; unused for scroll bars}
5-122 Control Manager Reference

CHAPTER 5

Control Manager

cArrowsCol orLi ght = 5;
cArrowsCol orDark = 6;
cThunbLi ght =7,
cThunbDar k = 8;
cHi liteLight =9; {Use
cHi lI'iteDark = 10; {Use
cTi t | eBarLi ght = 11; {Use
cTi t| eBar Dark = 12; {Use
cTi ngeLi ght = 13; {Use
cTi ngeDar k = 14; {Use

sane
sane
sane
sane
sane
sane

val ue
val ue
val ue
val ue
val ue
val ue

as
as
as
as
as
as

{Used to produce colors in arrows & scroll bar
{ background col or}

{Used to produce colors in arrows & scroll bar
{ background col or}

{Used to produce colors in scroll box}

{Used to produce colors in scroll box}

}
}

wHi [iteCol orLight in '"wcth'}

wHi liteColorDark in "wecth'}
wrlitleBarLight in 'wthbh'}
wlitleBarDark in '"wetbh'}
wTi ngeLight in '"wcthb'}

wTi ngeDark in 'wctb'}

» Red component. An integer that represents the intensity of the red component of
the color to use when drawing this part of the control. In this and the next two
elements, use 16-bit unsigned integers to give the intensity values of three additive

primary colors.

» Green component. An integer that represents the intensity of the green component of
the color to use when drawing this part of the control.

» Blue component. An integer that represents the intensity of the blue component of the
color to use when drawing this part of the control.

» Part identifier and red, green, and blue components for the next control part. You can
list parts in any order in this resource. If the application specifies a part identifier that
cannot be found, the Control Manager uses the colors for the control’s first identifiable
part. If a part is not listed in the control color table, the Dialog Manager draws it in its

default color.

The Control Definition Function

The resource type for a control definition function is' CDEF' . The resource data is
the compiled or assembled code of the function. See “Defining Your Own Control
Definition Function” beginning on page 5-109 for information about creating a control

definition function.

Control Manager Reference

5-123

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Summary of the Control Manager

Pascal Summary

Constants
CONST
{control definition |Ds}
pushBut Pr oc = 0; {button}
checkBoxPr oc =1, {checkbox}
radi oBut Proc = 2; {radi o button}
useWFont = 8; {add to above to display control title in }
{ the wi ndow font}
scrol | Bar Proc = 16; {scroll bar}
popupMenuPr oc = 1008; {pop-up nenu}
popupMenuCDEFpr oc = popupMenuProc; {synonymfor conpatibility}

{pop-up nmenu CDEF vari ation codes}

popupFi xedW dt h = $0001; {add to popupMenuProc to use }
{ fixed-width control}
popupUseAddResMenu = $0004; {add to popupMenuProc to specify a }

{ value of type ResType in the }

{ contrIRfCon field of the control }

{ record; Menu Manager adds }

{ resources of this type to the menu}
popupUseWFont = $0008; {add to popupMenuProc to show control }

{ title in the wi ndow font}

{part codes}

i nButton = 10; {button}
i nCheckBox = 11; {checkbox or radi o button}
i nUpBut t on = 20; {up arrow for a vertical scroll bar, }

{ left arrow for a horizontal scroll bar}
i nDownBut t on = 21; {down arrow for a vertical scroll bar, }

{ right arrow for a horizontal scroll bar}
i nPageUp = 22; {gray area above scroll box for a }

{ vertical scroll bar, gray area to }
{ left of scroll box for a horizontal }
{ scroll bar}

5-124 Summary of the Control Manager

CHAPTER 5

Control Manager

i nPageDown =

i nThunb =

23; {gray area below scroll box for a }
{ vertical scroll bar, gray area to }

{ right of scroll box for a horizontal }

{ scroll bar}
129; {scroll box (or other indicator)}

{pop-up title characteristics}

popupTi tl eBol d =
popupTitleltalic =
popupTi tl eUnderline =
popupTitl eQutli ne =
popupTi t | eShadow =
popupTi t | eCondense
popupTi t| eExt end =
popupTi tl eNoStyl e

popupTi t| eLeft Just

popupTi t| eCent er Just
popupTi tl eRi ght Just

{axis constraints for

noConst rai nt =
hAXi sOnl y =
VAXi sOnly =

$00000100; {bol df ace font styl e}
$00000200; {italic font style}
$00000400; {underline font style}
$00000800; {outline font style}
$00001000; {shadow font style}
$00002000; {condensed char act er s}
$00004000; {ext ended char act er s}
$00008000; {rmonostyl ed text}

$00000000; {place title left of pop-up box}

$00000001; {center title over pop-up box}

$000000FF; {place title right of pop-up box}

DragControl procedure}

0; {no constraint}
1; {drag al ong horizontal axis only}
2; {drag along vertical axis only}

{constants for the nessage paraneter in a control definition funct

dr anCnt | =
test Cnt | =

cal cCRgns =

initcCntl =
di spCnt | =
posCnt | =
t humbCnt | =
dragCnt | =

aut oTr ack =

cal cCntl Rgn =
cal cThunbRgn =

{part identifiers for
cFraneCol or =

Col or Spec records in a control

0; {draw the control or its part}

1; {test where nmouse button is pressed}

2; {calculate region for control or indicat
{ 24-bit systens}

on}

or in}

; {peformany additional control initialization}

; {take any additional disposal actions}

7 {calculate paranmeters for draggi ng indicator}

3
4
5; {nove indicator and update its setting}
6
7

; {performany custom draggi ng of control
{ its indicator}

or }

8; {execute action procedure specified by your }

{ function}
10; {calculate region for control}
11; {calculate region for indicator}

col or table resource}

0; {frame color; for scroll bars, also fore- }
{ ground color for scroll arrows and gray area}

Summary of the Control Manager

5-125

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

cBodyCol or

cText Col or
cThunbCol or

Data Types

= 1; {for scroll bars, background color for }

{ scroll arrows and gray area; for other }

{ controls, the fill color for body of control}
= 2; {text color; unused for scroll bars}
= 3; {Reserved}

TYPE Control Ptr
Cont r ol Handl e

Control Record =

PACKED RECORD
next Control :
contrl Oaner:
contrl Rect:
contrl Vis:
contrlH lite:
contrl Val ue:
contrl Mn:
cont r | Max:

contr| Def Proc:

contrl Dat a:

contrl Acti on:

contr | Rf Con:

contrlTitle:
END,;

AuxCt| Ptr
AuxCt | Handl e

AuxCt | Rec =

RECORD
acNext :
acOnner :
acCrTabl e:
acFl ags:
acReserved:
acRef Con:

END;

5-126

= ~Control Record;

~Control Ptr;

Cont r ol Handl e;
W ndowPt r;
Rect ;

Byt e;

Byt e;

I nt eger;

I nt eger;

I nt eger;
Handl e;
Handl e;
ProchPtr;
Longl nt;
St r 255;

NAuxCt | Rec;
NAUXCH | Ptr;

AuxCt | Handl e;
Cont r ol Handl e;
CCTabHandl e;

I nt eger;

Longl nt ;

Longl nt;

Summary of the Control Manager

{next control}

{control's w ndow}
{rectangl e}

{255 if visible}

{hi ghlight state}

{control's current setting}
{control's m ni mum setti ng}
{control's maxi mum setting}
{control definition function}
{data used by contrl| Def Proc}
{action procedure}
{control's reference val ue}
{control's title}

{handl e to next AuxCt| Rec}
{handle to this record' s control}
{handl e to color table record}
{reserved}

{reserved for future use}

{for use by application}

CHAPTER 5

Control Manager

CCTabPt r = NCt| CTab;
CCTabHandl e = ~CCTabPtr;
Gl Crab =
RECORD
ccSeed: Longl nt ; {reserved; set to 0}
ccRi der: I nt eger; {reserved; set to 0}
ct Si ze: I nt eger; {nunber of Col orSpec records in next }
{ field; 3 for standard control s}
ct Tabl e: ARRAY[0. . 3] OF Col or Spec;
END;
Control Manager Routines
Creating Controls
FUNCTI ON Get NewCont r ol (control ID: Integer; owner: WndowPtr)
Cont r ol Handl e;
FUNCTI ON NewCont r ol (theW ndow. W ndowPtr; boundsRect: Rect;

title: Str255; visible: Boolean;
val ue: Integer; mn: Integer; max: Integer;
procl D: Integer; refCon: Longlnt)

Cont r ol Handl e;

Drawing Controls

{UpdateControls is also spelled as Updt Control}

PROCEDURE ShowCont r ol (theControl: Control Handl e);

PROCEDURE Updat eControl s (theW ndow. W ndowPtr; updateRgn: RgnHandl e);
PROCEDURE Dr awControl s (theW ndow. W ndowPtr);

PROCEDURE Dr awlCont r ol (theControl: Control Handl e);

Handling Mouse Events in Controls

FUNCTI ON Fi ndCont r ol (thePoint: Point; theWndow. WndowPtr;
VAR t heControl : Control Handl e): Integer;
FUNCTI ON TrackContr ol (theControl: Control Handl e; thePoint: Point;
actionProc: ProcPtr): Integer;
FUNCTI ON Test Cont r ol (theControl: Control Handl e; thePt: Point)
I nt eger;

Summary of the Control Manager

5-127

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

Changing Control Settings and Display

{sone routines have 2 spellings—see Table 5-1 for the alternate spellings}

PROCEDURE Set Cont r ol Val ue (theControl: Control Handl e; theValue: |nteger);
PROCEDURE Set Control M ni mum (theControl: Control Handl e; m nVal ue: |nteger);
PROCEDURE Set Cont r ol Maxi mum (theControl: Control Handl e; maxVal ue: | nteger);
PROCEDURE Set Control Title (theControl: Control Handle; title: Str255);
PROCEDURE Hi deCont r ol (theControl: Control Handl e);
PROCEDURE MoveCont r ol (theControl: Control Handl e; h: Integer;
v: |Integer);
PROCEDURE Si zeCont r ol (theControl: Control Handl e; w. Integer; h:
I nt eger);
PROCEDURE Hi | it eControl (theControl: Control Handl e;
hiliteState: Integer);
PROCEDURE Dr agCont r ol (theControl: Control Handl e; startPt: Point;
limtRect: Rect; slopRect: Rect;
axi s: Integer);
PROCEDURE Set Cont r ol Col or (theControl: Control Handl e; newCol or Tabl e:
CCTabHandl e) ;
PROCEDURE Set Control Action (theControl: Control Handl e;

actionProc:

Determining Control Values

ProcPtr);

{sone routines have 2 spellings—see Table 5-1 for the alternate spellings}

FUNCTI ON CGet Contr ol Val ue (theControl:
FUNCTI ON Get Control M ninum (theControl:
FUNCTI ON Get Cont r ol Maxi mum (theControl :
PROCEDURE Get Control Titl e (theControl:
FUNCTI ON Get Cont r ol Ref erence
(theControl:
PROCEDURE Set Cont r ol Ref er ence
(theControl:
FUNCTI ON Get Control Acti on (theControl:
FUNCTI ON CGet Control Variant (theControl:

FUNCTI ON Get Auxi | i aryControl Record

(theControl:
VAR acHndl :
Removing Controls
PROCEDURE Di sposeContr ol (theControl:
PROCEDURE Ki | | Control s (t heW ndow.

5-128 Summary of the Control Manager

Control Handl e): I nteger;
Control Handl e): I nteger;
Control Handl e): I nteger;
Control Handl e; VAR title: Str255);
Cont rol Handl €): Longl nt;

Control Handl e; data: Longlnt);

Control Handl e): ProcPtr;
Control Handl e): I nteger;
Cont r ol Handl e;

AuxCt | Handl e) : Bool ean;

Cont r ol Handl e) ;
W ndowPt r) ;

CHAPTER 5

Control Manager

Application-Defined Routines

Defining Your Own Control Definition Function

FUNCTI ON MyCont r ol (var Code: Integer; theControl: Control Handl e;
message: |Integer; param Longlnt) : Longlnt;

Defining Your Own Action Procedures

PROCEDURE MyActi on (theControl: Control Handl e; part Code: Integer);
PROCEDURE M| ndi cat or Acti on;

C Summary

Constants

enum {
/*control definition I|IDs*/

pushBut Pr oc = 0, / *but t on*/

checkBoxProc = 1, / *checkbox*/

r adi oBut Proc = 2, /*radi o button*/

useWront = 8, /*add to above to display control */
/* title in the wi ndow font*/

scrol | Bar Proc = 16, /*scroll bar*/

popupMenuPr oc = 1008, [/*pop-up menu*/

/*pop-up nmenu CDEF variation codes*/
popupFi xedWdth =1 << 0, /*add to popupMenuProc to use */
/* use fixed-wi dth control */
popupUseAddResMenu = 1 << 2, /*add to popupMenuProc to specify a */
/* value of type ResType in the */
/* contrl RfCon field of the control */
/* record; Menu Manager adds */
/* resources of this type to the menu*/
popupUseWFont = 1 << 3 /*add to popupMenuProc to display */
/* control title in the wi ndow font*/

Summary of the Control Manager 5-129

Jabeuel [0nu0D -

enum {

enum {

enum {

CHAPTER 5

Control Manager

/*part codes*/
i nButton = 10, /*button*/
i nCheckBox = 11, /*checkbox or radi o button*/
i nUpBut t on = 20, /*up arrow for a vertical scroll bar, */
/* left arrow for a horizontal scroll bar*/
i nDownBut t on = 21, /*down arrow for a vertical scroll bar, */
/* right arrow for a horizontal scroll bar*/
i nPageUp = 22, /*gray area above scroll box for a */

/* vertical scroll bar, gray area to */
/* left of scroll box for a horizontal */
/* scroll bar*/

nPageDown = 23, /*gray area below scroll box for a */
/* vertical scroll bar, gray area to */
/* right of scroll box for a horizontal */
/* scroll bar*/

nThunb = 129 /*scroll box (or other indicator)*/

/[*pop-up title characteristics*/

popupTitleBold = 1 << 8, /*bol df ace font style*/
popupTitleltalic = 1 << 9, /*italic font style*/
popupTi tl eUnderline = 1 << 10, /*underline font style*/
popupTitleQutline = 1 << 11, /*outline font style*/
popupTi tl eShadow = 1 << 12, / *shadow font styl e*/
popupTi tl eCondense = 1 << 13, /*condensed text*/
popupTitl eExtend = 1 << 14, /*extended text*/
popupTitl eNoStyle = 1 << 15 /*nonostyl ed text*/

/[*pop-up title characteristics*/

popupTi tl eLeftJust = 0x00000000, /*place title left of pop-up box*/
popupTi tl eCent er Just = 0x00000001, /*center title over pop-up box*/
popupTi tl eRi ght Just = 0x000000FF, [*place title right of pop-up box*/

/*axis constraints for DragControl procedure*/

5-130

noConst rai nt =0, /*no constraint*/
hAXi sOnl y = 1, /*constrain novenent to horizontal axis only*/
VAXi sOnly = 2, /*constrain novenent to vertical axis only*/

Summary of the Control Manager

/*constants for the nessage paraneter

[*part

}s

CHAPTER 5

Control Manager

dr anCnt |
test Cnt |

cal cCRgns

initcCntl
di spCnt |
posCnt |

t humbCnt |
dragCnt |

aut oTr ack

cal cCntl Rgn
cal cThunmbRgn

in a control definition function*/

=0, /*drawthe control or control part*/
=1, /*test where nouse button was pressed*/
=2, [/*calculate region for control or indicator in */
/[* 24-bit systens*/
= 3, /*do any additional control initialization*/
4, [*take any additional disposal actions*/
= 5, /*nove indicator and update its setting*/
6, [/*calculate parameters for draggi ng indicator*/
=7, [*peformany custom draggi ng of control or */
/[* its indicator*/
= 8, /[*execute action procedure specified by your */
/* function*/
= 10, /*calculate region for control*/
= 11, /*calculate region for indicator*/

identifiers for

cFraneCol or

cBodyCaol or

cText Col or
cThunbCol or

Data Types

Col or Spec records in a control

color tabl e resource*/

=0, /*frame color; for scroll bars, also foreground */
/* color for scroll arrows and gray area*/

=1, /[*for scroll bars, background col or for scroll */
/* arrows and gray area; for other controls, */
/* the fill color for body of control*/

=2, [*text color; for scroll bars, unused*/

=3 / *Reserved*/

struct Control Record {

struct Control Record **next Contr ol

W ndowPt r
Rect

unsi gned char
unsi gned char
short

short

short

Handl e
Handl e
ProcPtr

| ong

Str 255

/ *next control */

contrl Omer; /*control's w ndowt/
contrl Rect; /*rectangl e*/
contrl Vi s; [*255 if visible*/

contrlH lite;
contrl Val ue;
contrl M n;
contrl Max;
cont r| Def Proc
contrl Dat a;
contrl Acti on;
contr | Rf Con;
contrlTitle;

Summary of the Control Manager

/*hi ghlight state*/

/*control's current setting*/
/[*control's mninumsetting*/
/*control's maxi num setting*/
/*control definition function*/
/*data used by contrl| Def Proc*/
/*action procedure*/
/*control's reference val ue*/
/[*control's title*/

5-131

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

t ypedef struct Control Record Control Record;
typedef Control Record *Control Ptr, **Control Handl e;

struct AuxCtl Rec {

Handl e acNext ; /*handl e to next AuxCt| Rec*/
Control Handl e acOaner ; /*handle to this record' s control */
CCTabHandl e acCrTabl e; /*handl e to col or table record*/
short acFl ags; /*reserved*/

| ong acReserved; /*reserved for future use*/

| ong acRef Con; /*for use by application*/

s

typedef struct AuxCtl Rec AuxCtl Rec;
typedef AuxCtl Rec *AuxCtlPtr, **AuxCl| Handl e;

struct ¢l CTab {

| ong ccSeed; /*reserved; set to 0*/
short ccRi der; /*reserved; set to 0*/
short ctSize; /*nunber of Col or Spec records in next

/* field; 3 for standard control s*/
Col or Spec ct Tabl e[4] ;
}s
typedef struct QI CTab Ct| CTab;
typedef CtICrab *CCTabPtr, **CCTabHandl e;

Control Manager Routines

Creating Controls

pascal Control Handl e Get NewCont r ol
(short control |l D, WndowPtr owner);

pascal Contr ol Handl e NewContr ol
(WndowPtr theW ndow, const Rect *boundsRect,
Const Str255Paramtitle, Bool ean visible,
short value, short min, short max,
short procl D, |ong refCon);

Drawing Controls

/*Updat eControls is also spelled as Updt Control */

pascal voi d ShowContr ol (Control Handl e theControl);

pascal void UpdateControls (WndowPtr theW ndow, RgnHandl e updateRgn);
pascal void DrawControls (W ndowPtr theW ndow) ;

pascal void DrawlContr ol (Control Handl e theControl);

5-132 Summary of the Control Manager

CHAPTER 5

Control Manager

Handling Mouse Events in Controls

pascal
pascal

pascal

short Fi ndControl (Poi nt thePoint, WndowPtr

t heW ndow,

Control Handl e *theControl);

short TrackContr ol (Control Handl e t heControl,
ProcPtr actionProc);

short Test Control (Control Handl e t heControl,

Changing Control Settings and Display

Poi nt t hePoi nt,

Poi nt thePt);

/*some routines have 2 spellings—see Table 5-1 for the alternate spellings*/

pascal
pascal

pascal

pascal

pascal
pascal
pascal
pascal
pascal

pascal
pascal

voi d Set Control Val ue (Control Handl e t heControl,
voi d Set Control M ni num

(Control Handl e t heControl,
voi d Set Cont r ol Maxi mum

(Control Handl e t heControl,

void SetControl Title (Control Handl e theControl,
Const Str255Paramtitle);
voi d Hi deContr ol (Control Handl e t heControl)

voi d MoveContr ol (Control Handl e t heControl,

voi d SizeControl (Control Handl e t heControl,
void HiliteControl (Control Handl e t heControl,
voi d DragControl (Control Handl e t heControl,

const Rect *limtRect,

short theVal ue);

short m nVal ue);

short maxVal ue);

short h, short v);
short w, short h);

short hiliteState);

Poi nt startPt,

const Rect *slopRect, short axis);
ProcPtr acti onProc)

voi d Set Control Acti on(Control Handl e t heControl,
voi d Set Control Col or (Control Handl e t heControl,

CCTabHandl e newCol or Tabl e) ;

Determining Control Values

/*some routines have 2 spellings—see Table 5-1 for the alternate spellings*/

pascal

pascal

pascal

pascal
pascal

pascal

pascal

short Get Control Val ue
(Control Handl e t heControl);

short Get Control M ni num
(Control Handl e t heControl);

short Get Control Maxi mum
(Control Handl e theControl);

void CGetControl Title (Control Handl e theControl,

| ong Get Control Ref erence
(Control Handl e t heControl);

voi d Set Control Reference
(Control Handl e t heControl,

ProcPtr Get Control Action

Str255 title);

| ong data);

(Control Handl e t heControl);

Summary of the Control Manager

5-133

Jabeuel [0nu0D -

CHAPTER 5

Control Manager

pascal short GetControl Vari ant
(Control Handl e t heControl);

pascal Bool ean Get AuxiliaryControl Record
(Control Handl e t heControl,
AuxCt | Handl e *acHndl);

Removing Controls

pascal void Di sposeControl (Control Handl e t heControl);
pascal void KillControls (W ndowPt r t heW ndow) ;

Application-Defined Routines

Defining Your Own Control Definition Function

pascal |ong MyControl (short varCode, Control Handl e theControl,
short nessage, |ong paran;

Defining Your Own Action Procedures

pascal void MyAction (Control Handl e theControl, short partCode);
pascal void Ml ndi catorActi on;

Assembly-Language Summary

Data Structures

ControlRecord Data Structure

0 next Cont r ol long handle to next control in control list
4 cont r| Oaner long pointer to this control’s window
8 contrl Rect 8 bytes control’s rectangle
16 contrlVis 1 byte value of 255 if control is visible
17 contrlHlite 1 byte highlight state
18 contrl Val ue word control’s current setting
20 contrliMn word control’s minimum setting
22 contrl Max word control’s maximum setting
24 cont r | Def Proc long handle to control definition function
28 contrl Data long data used by control definition function
32 contrlAction long address of action procedure
36 contrl Rf Con long control’s reference value
40 contrlTitle 256 bytes control title (preceded by length byte)

5-134 Summary of the Control Manager

CHAPTER 5

Control Manager

AuxCtlRec Data Structure

0 acNext long handle to next AuxCt | Rec record in control list
4 acOwner long handle to this record’s control
8 acCTable long handle to color table for this control
12 acFl ags word miscellaneous flags
14 acReserved long reserved for use by Apple Computer, Inc.
18 acRef Con long for use by application
Global Variables
AuxCt | Head First in a linked list of auxiliary control records
AuxW nHead Contains a pointer to the linked list of auxiliary control records
Dr agHook Addpress of procedure to execute during Tr ackCont r ol and Dr agCont r ol

DragPattern

Pattern of dragged region’s outline (8 bytes)

Summary of the Control Manager

5-135

Jabeuel [0nu0D -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	Control Manager, Part 2 (Reference)
	Contr ol Mana ger Refer ence
	The Control Record
	The Auxiliary Control Record
	The Pop-Up Menu Private Data Record
	The Control Color Table Record
	Control Manager Routines
	Creating Controls
	Drawing Controls
	Handling Mouse Events in Controls
	Changing Control Settings and Display
	Determining Control Values
	Removing Controls

	Application-Defined Routines
	Defining Your Own Control Definition Function
	Defining Your Own Action Procedures

	Resources
	The Control Resource
	The Control Color Table Resource
	The Control Definition Function

	Summary of the Control Manager
	Pascal Summary
	Constants
	Data Types
	Control Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Control Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

