

C H A P T E R 5

5

C
ontrol M

anager

Control Manager 5

You can use Control Manager routines to change values in the control record, or you
can access and change its fields yourself; normally, you don’t change the values in
the auxiliary control record. However, both the control record and the auxiliary
control record have fields in which your application can store information as you
deem appropriate.

You can obtain the menu handle and the menu ID of the menu associated with a pop-up
menu by dereferencing the contrlData field of the control record, which, for pop-up
menu controls, contains a handle to a pop-up private data record. This record contains
the menu handle and the menu ID for the associated menu.

You use a control color table record only when you want to use nonstandard colors for a
control that you create while your application is running. Your application probably
shouldn’t ever create a control color table record because you should use the system’s
default colors to ensure consistency of the interface across applications.

The Control Record 5

When you create a control, the Control Manager incorporates the information you
specify (either in the control resource or in the parameters of the NewControl function)
into a control record, which is a data structure of type ControlRecord. The Control
Manager functions you use for creating a control, GetNewControl and NewControl,
return a handle to a newly allocated control record. Thereafter, your application
normally refers to the control by this handle, because most other Control Manager
routines expect a control handle as their first parameter.

You can use Control Manager routines to determine and change several of the values in
the control record, or you can access and change its fields yourself.

TYPE ControlRecord =

PACKED RECORD

nextControl: ControlHandle; {next control}

contrlOwner: WindowPtr; {control's window}

contrlRect: Rect; {rectangle}

contrlVis: Byte; {255 if visible}

contrlHilite: Byte; {highlight state}

contrlValue: Integer; {control's current setting}

contrlMin: Integer; {control's minimum setting}

contrlMax: Integer; {control's maximum setting}

contrlDefProc: Handle; {control definition function}

contrlData: Handle; {data used by contrlDefProc}

contrlAction: ProcPtr; {action procedure}

contrlRfCon: LongInt; {control's reference value}

contrlTitle: Str255; {control's title}

END;
Control Manager Reference 5-73

C H A P T E R 5

Control Manager

Field descriptions

nextControl A handle to the next control associated with this control’s window.
All the controls belonging to a given window are kept in a linked
list, beginning in the controlList field of the window record and
chained together through the nextControl fields of the individual
control records. The end of the list is marked by a NIL value; as new
controls are created, they’re added to the beginning of the list.

contrlOwner A pointer to the window to which this control belongs.
contrlRect The rectangle that completely encloses the control, in the local

coordinates of the control’s window. You can use the MoveControl
and SizeControl procedures to change the rectangle stored in
this field.

contrlVis The invisible/visible state for the control. When the value of this
field is 0, the Control Manager does not draw the control (its state is
invisible); when the value of this field is 255, the Control Manager
draws the control (its state is visible). Note that even when a control
is visible, it might still be obscured from sight by an overlapping
window or some other object. You can use the HideControl
procedure to change this field from visible to invisible, and you can
use the ShowControl procedure to change this field from invisible
to visible.

contrlHilite Specifies whether and how the control is to be displayed, indicating
whether it’s active or inactive and, if active, whether it’s selected.
The value of 0 signifies an active control that is not selected. A value
from 1 through 253 signifies a part code designating the part of
the (active) control to highlight, indicating that the user is pressing
the mouse button while the cursor is in that part. The value
255 signifies that the control is to be made inactive and drawn
accordingly. The HiliteControl procedure lets you change the
value of this field.

contrlValue The control’s current setting. For buttons, checkboxes, and radio
buttons, 0 means the control is off and 1 means it’s on. For scroll
bars and other sliders, contrlValue may take any value within
the range specified in the contrlMin and contrlMax fields. For
pop-up menus, this value is the item number of the menu item
chosen by the user; if the user hasn’t chosen a menu item, it is the
item number of the first menu item. For other controls, you can use
this field as you wish. You can use the GetControlValue function
to determine the value of this field, and you can use the
SetControlValue procedure to change the value of this field.

contrlMin The control’s minimum possible setting. For on-and-off controls—
like checkboxes and radio buttons—this value should be 0 (meaning
that the control is off). For scroll bars and other sliders, this can be
any appropriate minimum value. For controls—like buttons—
that don’t retain a setting, this value should be 0. For pop-up
menus, the Control Manager sets this field to 1. For other
controls, you can use this field as you wish. You can use the
GetControlMinimum function to determine the value of this field,
and you can use the SetControlMinimum procedure to change
the value of this field.
5-74 Control Manager Reference

C H A P T E R 5

Control Manager

5

C
ontrol M

anager

contrlMax The control’s maximum possible setting. For on-and-off controls
like checkboxes and radio buttons, this value should be 1 (meaning
that the control is on). For scroll bars and other sliders, this can be
any appropriate maximum value. When you make the maximum
setting of a scroll bar equal to its minimum setting, the control
definition function automatically makes the scroll bar inactive.
When you make the maximum setting exceed the minimum, the
control definition function makes the scroll bar active again. For
controls—like buttons—that don’t retain a setting, this value should
be 1. For pop-up menus, the Control Manager sets this value to the
number of items in the menu. For other controls, you can use this
field as you wish. You can use the GetControlMaximum function
to determine the value of this field, and you can use the
SetControlMaximum procedure to change the value of this field.

contrlDefProc A handle to the control definition function for this type of
control. When you create a control, you identify its type with
a control definition ID, which is converted into a handle to the
control definition function and stored in this field. Thereafter,
the Control Manager uses this handle to access the definition
function; you should never need to refer to this field directly.

Note

In systems running in 24-bit mode, the high-order byte of the
contrlDefProc field contains the variant, which the Control
Manager gets from the control definition ID. ◆

contrlData Reserved for use by the control definition function, typically to hold
additional information specific to a particular control type. For
example, the control definition function for scroll bars uses this field
for a handle to the region containing the scroll box. (If no more than
4 bytes of additional information are needed, the definition function
may store the information directly in the contrlData field rather
than using a handle.) The control definition function for pop-up
menus uses this field to store a pop-up private data record, which is
described on page 5-77.

contrlAction A pointer to the control’s action procedure, if any. The
TrackControl function may call this procedure to respond to
the user’s dragging of the control, and this procedure responds
by repeatedly performing some action as long as the user holds
down the mouse button. See the description of TrackControl
on page 5-90 for more information about the action procedure.
You can use the GetControlAction function to determine the
current value of this field and the SetControlAction procedure
to change it.

contrlRfCon The control’s reference value, which your application may use
for any purpose. You can use the GetControlReference
function to determine the current value of this field and the
SetControlReference procedure to change it.

contrlTitle The control title, if any. You can use the GetControlTitle
procedure to determine the current value of this field and the
SetControlTitle procedure to change it.
Control Manager Reference 5-75

C H A P T E R 5

Control Manager

The Auxiliary Control Record 5

For drawing all controls on systems running in 32-bit mode (which users can select using
the Memory control panel), and for drawing controls that use colors other than the
system default, the Control Manager creates and maintains a linked list of auxiliary
control records, beginning in the global variable AuxCtlHead. (There is only one global
list for all controls in all windows, not a separate one for each window. Each window
record, by contrast, has a handle to the list of its own controls.)

An auxiliary control record is a data structure of type AuxCtlRec. Your application
doesn’t create and generally shouldn’t manipulate an auxiliary control record for a
control; rather, you let the Control Manager create and manipulate the auxiliary control
record. To create controls using colors other than the system default colors, use the
SetControlColor procedure (described on page 5-101) or create a control color table
resource (described on page 5-121) and let the Control Manager create the necessary
auxiliary control records. There is, however, a field in the auxiliary control record that
you can use to store information as you see fit; to get a handle to the auxiliary control
record for a control, you can use the GetAuxiliaryControlRecord function
(described on page 5-107).

Each auxiliary control record is relocatable and resides in your application heap. Here is
how an auxiliary control record is defined:

TYPE AuxCtlRec =

RECORD

acNext: AuxCtlHandle; {handle to next AuxCtlRec}

acOwner: ControlHandle; {handle to this record's control}

acCTable: CCTabHandle; {handle to control color table }

{ record}

acFlags: Integer; {reserved}

acReserved: LongInt; {reserved for future use}

acRefCon: LongInt; {for use by application}

END;

Field descriptions

acNext A handle to the next record in the auxiliary control list.
acOwner The handle of the control to which this auxiliary record belongs;

used as an ID field.
acCTable The handle to a control color table record. (The control color table

record is described on page 5-77.)
acFlags Reserved for use by the Control Manager.
acReserved Reserved for future expansion.
acRefCon A reference value, which your application may use for any purpose.

On systems using 32-bit mode, every control has its own auxiliary record, and
the acCTable field contains a handle to the default control color table unless
your application uses the SetControlColor procedure or creates a control color
table resource.
5-76 Control Manager Reference

C H A P T E R 5

Control Manager

5

C
ontrol M

anager

When drawing a control, the standard control definition functions search the linked list
of auxiliary control records for the auxiliary control record whose acOwner field points
to the control being drawn. If the standard control definition functions find an auxiliary
control record for the control, they use the control color table specified in the acCTable
field. If the standard control definition functions do not find an auxiliary control record
for the control, they use the default system colors.

The Pop-Up Menu Private Data Record 5

You can obtain the menu handle and the menu ID of the menu associated with a pop-up
menu by dereferencing the contrlData field of the pop-up menu’s control record. The
contrlData field of a control record is a handle to a block of private information. For
pop-up menu controls, this field is a handle to a pop-up private data record, which is a
data structure of type popupPrivateData.

TYPE popupPrivateData =

RECORD

mHandle: MenuHandle; {handle to menu record}

mID: Integer; {menu ID}

mPrivate: ARRAY[0..0] OF SignedByte; {reserved}

END;

Field descriptions

mHandle Contains a handle to the menu.
mID The menu ID of the menu.
mPrivate Reserved.

You can use the standard pop-up control definition function to manage pop-up menus.
For information on creating pop-up menus, see “Creating a Pop-Up Menu” beginning on
page 5-25. See the chapter “Menu Manager” in this book for additional information.

The Control Color Table Record 5

By creating a control color table record and using the SetControlColor procedure
(described on page 5-101), your application can draw a control that uses colors other
than the system default. (Alternatively, you can use nonstandard colors for a control you
define in a control resource by creating a control color table resource—described on
page 5-121—with the same resource ID as the control resource.) Be aware that controls in
nonstandard colors may initially confuse your users.

A control color table record is a data structure of type CtlCTab; it is defined as follows:

TYPE CtlCTab =

RECORD

ccSeed: LongInt; {reserved; set to 0}

ccRider: Integer; {reserved; set to 0}
Control Manager Reference 5-77

C H A P T E R 5

Control Manager
ctSize: Integer; {number of ColorSpec records in next }

{ field; 3 for standard controls}

ctTable: ARRAY[0..3] OF ColorSpec;

END;

Field descriptions

ccSeed Reserved in control color tables; set to 0.
ccRider Reserved in control color tables; set to 0.
ctSize The number of ColorSpec records in the next field. For controls

drawn with the standard definition procedure, this field is always 3,
because a standard control has three parts: frame, control body, and
scroll box for scroll bars, and frame, control body, and text for other
controls. If you want to supply ColorSpec records for additional
parts, you must define your own controls, as described in “Defining
Your Own Control Definition Function” beginning on page 5-109.

ctTable An array of ColorSpec records. Each ColorSpec record describes
the color of a different control part. Here is how a ColorSpec
record is defined:

TYPE ColorSpec =

RECORD

partIdentifier: Integer; {control part}

partRGB: RGBColor; {color of part}

END;

The partIdentifier field of the ColorSpec record holds an
integer that associates an RGBColor record with a particular part of
the control.
Three ColorSpec records are used to describe the parts of buttons,
checkboxes, and radio buttons. Here are the constants that are used
in the partIdentifier fields of the three ColorSpec records
used to describe these controls:

{for buttons, checkboxes, and radio buttons}

CONST cFrameColor = 0; {frame color}

cBodyColor = 1; {fill color for body of }

{ control}

cTextColor = 2; {text color}

When highlighted, buttons exchange their body and text colors;
checkboxes and radio buttons change their appearance without
changing colors. All three types indicate deactivation by dimming
their text with no change in colors.
5-78 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
A number of ColorSpec records are used to describe the parts
of scroll bars. Here are the constants that are used in the
partIdentifier fields of the ColorSpec records used to
describe the colors in scroll bars:

CONST
cFrameColor = 0; {Used to produce foreground color for scroll arrows }

{ & gray area}
cBodyColor = 1; {Used to produce colors in the scroll box}
cArrowsColorLight = 5; {Used to produce colors in arrows & scroll bar }

{ background color}
cArrowsColorDark = 6; {Used to produce colors in arrows & scroll bar }

{ background color}
cThumbLight = 7; {Used to produce colors in scroll box}
cThumbDark = 8; {Used to produce colors in scroll box}
cHiliteLight = 9; {Use same value as wHiliteColorLight in 'wctb'}
cHiliteDark = 10; {Use same value as wHiliteColorDark in 'wctb'}
cTitleBarLight = 11; {Use same value as wTitleBarLight in 'wctb'}
cTitleBarDark = 12; {Use same value as wTitleBarDark in 'wctb'}
cTingeLight = 13; {Use same value as wTingeLight in 'wctb'}
cTingeDark = 14; {Use same value as wTingeDark in 'wctb'}

When highlighted, scroll arrows are filled with the foreground
color. A deactivated scroll bar shows no scroll box and displays its
gray areas in a solid background color with no pattern.
The ColorSpec records for a control can appear in any order. If
you include a part identifier that is not found, the Control Manager
uses the first ColorSpec record with an identifiable part. If you do
not specify a part identifier, the Control Manager uses the default
color for that part.
The partRGB field of the ColorSpec record specifies an
RGBColor record, which in turn specifies the red, green, and blue
values for the part’s color. Use three 16-bit unsigned integers to give
the intensity values for the three additive primary colors. Here is
how the RGBColor record is defined:

TYPE RGBColor =
RECORD

red: Integer; {red value for control part}
green: Integer; {green value for control part}
blue: Integer; {blue value for control part}

END;

When you create a control color table record, your application should not deallocate it if
another control is still using it.

When drawing a control, the standard control definition functions search the linked list
of auxiliary control records for the record whose acOwner field points to that control.
If a standard control definition function finds such a record, it uses the color table
designated by that record; otherwise, it uses the default system colors. Each control
Control Manager Reference 5-79

C H A P T E R 5

Control Manager
using colors other than the system default has its own auxiliary control record, even if
that control uses the same control color table record as another control; two or more
auxiliary records can share the same control color table record. (Auxiliary control records
are described on page 5-76.)

If you create a control definition function (as explained in “Defining Your Own Control
Definition Function” beginning page 5-109), you can use color tables of any desired size
and define their contents in any way you wish, except that part indices 1 through 127 are
reserved for system definition. Any such nonstandard control definition function should
bypass the defaulting mechanism by allocating an explicit auxiliary record for every
control it creates.

Control Manager Routines 5
This section describes the Control Manager routines for creating controls, drawing
controls, tracking mouse events within controls, changing control display, determining
control values, and removing controls.

Some Control Manager routines can be accessed using more than one spelling of
the routine’s name, depending on the interface files supported by your development
environment. For example, SetControlValue is also available as SetCtlValue.
Table 5-1 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 5-1 Mapping between new and previous names of Control Manager routines

New name Previous name

GetAuxiliaryControlRecord GetAuxCtl

GetControlAction GetCtlAction

GetControlMaximum GetCtlMax

GetControlMinimum GetCtlMin

GetControlReference GetCRefCon

GetControlTitle GetCTitle

GetControlValue GetCtlValue

GetControlVariant GetCVariant

SetControlAction SetCtlAction

SetControlColor SetCtlColor

SetControlMaximum SetCtlMax

SetControlMinimum SetCtlMin

SetControlReference SetCRefCon

SetControlTitle SetCTitle

UpdateControls UpdtControl
5-80 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
Creating Controls 5

To create a control, you should generally use the GetNewControl function, which takes
information about the control from a control resource. Like menu resources, control
resources isolate descriptive information from your application code, making your
application easier to modify or translate. However, you can also use the NewControl
function—for which you pass descriptive information in parameters—to create controls.

Both GetNewControl and NewControl return a handle to the control record of the
newly created control. Thereafter, your application normally refers to the control by this
handle, because most other Control Manager routines expect a control handle as their
first parameter. When you create scroll bars and pop-up menus, you should store their
handles in one of your application’s own data structures for later reference.

When you use the Dialog Manager to implement buttons, radio buttons, checkboxes,
and pop-up menus in alert boxes and dialog boxes, the Dialog Manager automatically
uses the Control Manager to create these controls for you. If you implement other
controls in alert or dialog boxes, and whenever you implement controls—such as scroll
bars—in your application’s windows, you must use either GetNewControl or
NewControl to create these controls.

GetNewControl 5

To create a control from a description in a control resource ('CNTL'), use the
GetNewControl function.

FUNCTION GetNewControl (controlID: Integer; owner: WindowPtr)

: ControlHandle;

controlID The resource ID of a control resource.

owner A pointer to the window in which you want to attach the control.

DESCRIPTION

The GetNewControl function creates a control record from the information in the
specified control resource, adds the control record to the control list for the specified
window, and returns as its function result a handle to the control. You use this handle
when referring to the control in most other Control Manager routines. After making a
copy of the control resource, GetNewControl releases the memory occupied by the
original control resource before returning.

If you provide a control color table resource with the same resource ID as the control
resource, GetNewControl creates an auxiliary control record that uses the colors you
specify in your control color table resource. If you don’t provide a control color table,
GetNewControl creates an auxiliary control record that uses the default control color
table if the computer is running in 32-bit mode.
Control Manager Reference 5-81

C H A P T E R 5

Control Manager
The control resource specifies the rectangle for the control, its initial setting, its visibility
state, its maximum and minimum settings, its control definition ID, a reference value,
and its title (if any). After you use GetNewControl to create the control, you can change
the current setting, the maximum setting, the minimum setting, the reference value, and
the title by using, respectively, the SetControlValue, SetControlMaximum,
SetControlMinimum, SetControlReference, and SetControlTitle procedures.
You can use the MoveControl and SizeControl procedures to change the control’s
rectangle. You can use the GetControlValue, GetControlMaximum,
GetControlMinimum, GetControlReference, and GetControlTitle functions to
determine the control values.

If the control resource specifies that the control should be visible, the Control Manager
draws the control. If the control resource specifies that the control should initially be
invisible, you can use the ShowControl procedure to make the control visible.

If GetNewControl can’t read the control resource from the resource file,
GetNewControl returns NIL.

SEE ALSO

See Listing 5-1 on page 5-17 and Listing 5-5 on page 5-24 for examples of how to use
GetNewControl to create, respectively, a button and a scroll bar. For information about
windows’ control lists, see the chapter “Window Manager” in this book.

NewControl 5

To create a control, you can use the NewControl function, which accepts in its
parameters the information that describes the control. Generally, you should instead use
the GetNewControl function to create a control. The GetNewControl function takes
information about the control from a control resource, and as a result your application is
easier to modify or translate into other languages.

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect;

title: Str255; visible: Boolean;

value: Integer; min: Integer; max: Integer;

procID: Integer; refCon: LongInt)

: ControlHandle;

theWindow A pointer to the window in which you want to attach the control. All
coordinates pertaining to the control are interpreted in this window’s
local coordinate system.

boundsRect The rectangle, specified in the given window’s local coordinates, that
encloses the control and thus determines its size and location.
5-82 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
title For controls that need a title—such as buttons, checkboxes, radio buttons,
and pop-up menus—the string for that title. For controls that don’t use
titles, pass an empty string.

visible The visible/invisible state for the control. If you pass TRUE in this
parameter, NewControl draws the control immediately, without using
your window’s standard updating mechanism. If you pass FALSE, you
must later use the ShowControl procedure to display the control.

value The initial setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 0 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, pass 0 in
this parameter for a control that is off, and pass 1 for a control that is on.
For controls—such as scroll bars and sliders—that can take a range of
settings, specify whatever value is appropriate within that range.

min The minimum setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 0 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, use 0
(meaning “off”) for the minimum value. For controls—such as scroll bars
and sliders—that can take a range of settings, specify whatever minimum
value is appropriate.

max The maximum setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 1 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, use 1
(meaning “on”) for the maximum value. For controls—such as scroll bars
and sliders—that can take a range of settings, specify whatever maximum
value is appropriate. When you make the maximum setting of a scroll bar
equal to its minimum setting, the control definition function
automatically makes the scroll bar inactive; when you make the
maximum setting exceed the minimum, the control definition function
makes the scroll bar active again.

procID The control definition ID, which leads to the control definition function
for this type of control. The control definition function is read into
memory if it isn’t already in memory. The control definition IDs and their
constants for the standard controls are listed here. (You can also define
your own control definition function and specify it the procID
parameter.)

CONST

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

 useWFont = 8; {add to above to display }

 { title in window font}

scrollBarProc = 16; {scroll bar}

 popupMenuProc = 1008; {pop-up menu}

popupFixedWidth = $0001; {add to popupMenuProc to }

 { use a fixed-width ctrl}
Control Manager Reference 5-83

C H A P T E R 5

Control Manager
popupUseAddResMenu = $0004; {add to popupMenuProc to }

 { specify a value of }

 { type ResType in the }

 { contrlRfCon field of }

 { the control record; }

 { Menu Manager adds }

 { resources of this type }

 { to the menu}

popupUseWFont = $0008; {add to popupMenuProc to }

 { display in window font}

refCon The control’s reference value, which is set and used only by
your application.

DESCRIPTION

The NewControl function creates a control record from the information you specify in
its parameters, adds the control record to the control list for the specified window, and
returns as its function result a handle to the control. You use this handle when referring
to the control in most other Control Manager routines.

The NewControl function creates an auxiliary control record that uses the default
control color table if the computer is running in 32-bit mode.

If you need to use colors other than the default colors for the control, create a control
color table record and use the SetControlColor procedure.

When specifying the rectangle in the boundsRect parameter, keep the following
guidelines in mind:

■ Buttons are drawn to fit the rectangle exactly. To accommodate the tallest characters in
the system font, allow at least a 20-point difference between the top and bottom
coordinates of the rectangle.

■ For checkboxes and radio buttons, there should be at least a 16-point difference
between the top and bottom coordinates.

■ By convention, scroll bars are 16 pixels wide, so there should be a 16-point difference
between the left and right (or top and bottom) coordinates. (If there isn’t, the scroll bar
is scaled to fit the rectangle.) A standard scroll bar should be at least 48 pixels long, to
allow room for the scroll arrows and scroll box.

The Control Manager displays control titles in the system font. When specifying a title
for the control in the title parameter, make sure the title fits in the control’s rectangle;
otherwise, NewControl truncates the title. For example, NewControl truncates the
titles of checkboxes and radio buttons on the right in Roman scripts, and it centers and
truncates both ends of the button titles.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes,
and radio buttons. When specifying a multiple-line title, separate the lines with the
ASCII character code $0D (carriage return). If the control is a button, each line is
horizontally centered, and the font leading is inserted between lines. (The height of each
5-84 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
line is equal to the distance from the ascent line to the descent line plus the leading of the
font used. Be sure to make the total height of the rectangle greater than the number of
lines times this height.) If the control is a checkbox or a radio button, the text is justified
as appropriate for the user’s current script system, and the checkbox or button is
vertically centered within its rectangle.

After you use NewControl to create the control, you can change the current setting,
the maximum setting, the minimum setting, the reference value, and the title by using,
respectively, the SetControlValue, SetControlMaximum, SetControlMinimum,
SetControlReference, and SetControlTitle procedures. You can use the
MoveControl and SizeControl procedures to change the control’s rectangle. You
can use the GetControlValue, GetControlMaximum, GetControlMinimum,
GetControlReference, and GetControlTitle functions to determine the
control values.

SPECIAL CONSIDERATIONS

The title of a button, checkbox, radio button, or pop-up menu normally appears in the
system font, which in Roman script systems is 12-point Chicago. Do not use a smaller
font; some script systems, such as KanjiTalk, require 12-point fonts. You should generally
use the system font in your controls; doing so will simplify localization effort. However,
if you absolutely need to display a control title in the font currently associated with the
window’s graphics port, you can add the popupUseWFont constant to the pop-up menu
control definition ID or add the useWFont constant to the other standard control
definition IDs.

SEE ALSO

For information about windows’ control lists, see the chapter “Window Manager” in
this book. Control definition IDs for other controls are discussed in “Defining Your Own
Control Definition Function” beginning on page 5-109.

Drawing Controls 5

If you specify that a control is initially visible (either in the control resource or in a
parameter to NewControl), the Control Manager draws the control inside its window
when you call either the GetNewControl or the NewControl function. In either case,
the Control Manager draws the control immediately, without using your window’s
standard updating mechanism. If you specify that a control is invisible, you can use the
ShowControl procedure when you want to draw the control.

Note that even a visible control might be completely or partially obscured by
overlapping windows or other objects.

When your application receives an update event for a window that contains controls,
use UpdateControls to redraw the necessary controls in the updated window. Note
that the Dialog Manager automatically draws and updates controls in alert boxes and
dialog boxes.
Control Manager Reference 5-85

C H A P T E R 5

Control Manager
ShowControl 5

To draw a control that is currently invisible, you can use the ShowControl procedure.

PROCEDURE ShowControl (theControl: ControlHandle);

theControl A handle to the control you want to make visible.

DESCRIPTION

If the specified control is invisible, the ShowControl procedure makes it visible and
immediately draws the control within its window without using your window’s
standard updating mechanism. If the control is already visible, ShowControl has
no effect.

You can make a control invisible in several ways:

■ You can specify that it’s invisible in its control resource.

■ You can specify that it’s invisible in a parameter to the NewControl function.

■ You can use the HideControl procedure to change a visible control into an
invisible one.

■ You can directly change the contrlVis field of the control’s control record.

SPECIAL CONSIDERATIONS

The ShowControl procedure draws the control in its window, but the control can still
be completely or partially obscured by overlapping windows or other objects.

SEE ASO

Listing 5-14 on page 5-39 illustrates the use of ShowControl to redisplay scroll bars
after moving and resizing them.

UpdateControls 5

To update controls in a window, you can use the UpdateControls procedure. The
UpdateControls procedure is also available as the UpdtControl procedure.

PROCEDURE UpdateControls (theWindow: WindowPtr;

 updateRgn: RgnHandle);

theWindow A pointer to the window containing the controls to update.

updateRgn The update region within the specified window.
5-86 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
DESCRIPTION

The UpdateControls procedure draws those controls that are in the specified update
region. This procedure is faster than the DrawControls procedure, which draws all of
the controls in a window. By contrast, UpdateControls draws only those controls in
the update region.

Your application should call UpdateControls upon receiving an update event for a
window that contains controls. Window Manager routines such as SelectWindow,
ShowWindow, and BringToFront do not automatically call DrawControls to display
the window’s controls. They just add the appropriate regions to the window’s update
region, generating an update event.

In response to an update event, you normally call UpdateControls after using the
Window Manager procedure BeginUpdate and before using the Window Manager
procedure EndUpdate. You should set the updateRgn parameter to the visible region
of the window’s port, as specified in the port’s visRgn field.

SPECIAL CONSIDERATIONS

If your application draws parts of a control outside of its rectangle, UpdateControls
might not redraw it.

The Dialog Manager handles update events for controls in alert boxes and dialog boxes.

SEE ALSO

Listing 5-8 on page 5-30 illustrates the use of UpdateControls. The BeginUpdate and
EndUpdate procedures are described in the chapter “Window Manager” in this book.
See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes.

DrawControls 5

Although you should generally use the UpdateControls procedure to update controls
in a window, you can instead use the DrawControls procedure.

PROCEDURE DrawControls (theWindow: WindowPtr);

theWindow A pointer to a window whose controls you want to display.

DESCRIPTION

The DrawControls procedure draws all controls currently visible in the specified
window. The controls are drawn in reverse order of creation; thus, in case of overlapping
controls, the control created first appears frontmost in the window.
Control Manager Reference 5-87

C H A P T E R 5

Control Manager
Because the UpdateControls procedure redraws only those controls that need
updating, your application should generally use it instead of DrawControls upon
receiving an update event for a window that contains controls.

You should call either DrawControls or UpdateControls after calling the Window
Manager procedure BeginUpdate and before calling EndUpdate.

SPECIAL CONSIDERATIONS

The Dialog Manager automatically draws and updates controls in alert boxes and
dialog boxes.

Window Manager routines such as SelectWindow, ShowWindow, and BringToFront
do not automatically update the window’s controls. They just add the appropriate
regions to the window’s update region, generating an update event.

SEE ALSO

See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes. See the chapter “Window Manager” in this book
for more information about Window Manager routines.

Draw1Control 5

Although you should generally use the UpdateControls procedure to update controls,
you can use the Draw1Control procedure to update a single control.

PROCEDURE Draw1Control (theControl: ControlHandle);

theControl A handle to the control you want to draw.

DESCRIPTION

The Draw1Control procedure draws the specified control if it’s visible within its
window. The UpdateControls procedure automatically calls Draw1Control.

Handling Mouse Events in Controls 5

When the user presses the mouse button, your application receives a mouse-down event.
Use the Window Manager function FindWindow to determine which window contains
the cursor. If the mouse-down event occurred in the content region of your application’s
active window, use the FindControl function to determine whether the cursor was
in an active control and, if so, which control. To follow and respond to the cursor
movements in that control, and then to determine in which part of the control the
mouse-up event occurs, use the TrackControl function.
5-88 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
FindControl 5

To determine whether a mouse-down event has occurred in a control and, if so, in which
part of that control, use the FindControl function.

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr;

 VAR theControl: ControlHandle): Integer;

thePoint A point, specified in coordinates local to the window, where the
mouse-down event occurred.

theWindow A pointer to the window in which the mouse-down event occurred.

theControl A handle to the control in which the mouse-down event occurred.

DESCRIPTION

When the user presses the mouse button while the cursor is in a visible, active control,
FindControl returns as its function result a part code identifying the control’s part; the
function also returns a handle to the control in the parameter theControl. The part
codes that FindControl returns, and the constants you can use to represent them, are
listed here:

CONST inButton = 10; {button}

inCheckBox = 11; {checkbox or radio button}

inUpButton = 20; {up arrow for a vertical scroll }

{ bar, left arrow for a horizontal }

{ scroll bar}

inDownButton = 21; {down arrow for a vertical scroll }

{ bar, right arrow for a }

{ horizontal scroll bar}

inPageUp = 22; {gray area above scroll box for a }

{ vertical scroll bar, gray area }

{ to left of scroll box for a }

{ horizontal scroll bar}

inPageDown = 23; {gray area below scroll box for a }

{ vertical scroll bar, gray area }

{ to right of scroll box for a }

{ horizontal scroll bar}

inThumb = 129; {scroll box}

The pop-up control definition function does not define part codes for pop-up menus.
Instead, your application should store the handles for your pop-up menus when you
create them. Your application should then test the handles you store against the handles
returned by FindControl before responding to users’ choices in pop-up menus.

If the mouse-down event occurs in an invisible or inactive control, or if it occurs outside
a control, FindControl sets theControl to NIL and returns 0 as its function result.
Control Manager Reference 5-89

C H A P T E R 5

Control Manager
When a mouse-down event occurs, your application should call FindControl after
using the Window Manager function FindWindow to ascertain that a mouse-down
event has occurred in the content region of a window containing controls.

Before calling FindControl, use the GlobalToLocal procedure to convert the point
stored in the where field (which describes the location of the mouse-down event) of the
event record to coordinates local to the window. Then, when using FindControl, pass
this point in the parameter thePoint.

In the parameter theWindow, pass the window pointer returned by the FindWindow
function.

After using FindControl to determine that a mouse-down event has occurred in
a control, you generally use the TrackControl function, which automatically
follows the movements of the cursor and responds as appropriate until the user releases
the mouse button.

SPECIAL CONSIDERATIONS

The Dialog Manager automatically calls FindControl and TrackControl for
mouse-down events inside controls of alert boxes and dialog boxes.

The FindControl function also returns NIL in the parameter theControl and 0 as
its function result if the window is invisible or if it doesn’t contain the given point.
(However, FindWindow won’t return a window pointer to an invisible window or to
one that doesn’t contain the point where the mouse-down event occurred. As long as
you call FindWindow before FindControl, this situation won’t arise.)

SEE ALSO

Listing 5-10 on page 5-33 illustrates the use of FindControl for detecting mouse-down
events in a pop-up menu and a button; Listing 5-18 on page 5-53 illustrates its use for
detecting mouse-down events in scroll bars.

The FindWindow function is described in the chapter “Window Manager” in this book.
The GlobalToLocal procedure is described in Inside Macintosh: Imaging.

The event record is described in the chapter “Event Manager” in this book. See the
chapter “Dialog Manager” in this book for more information about including controls in
alert boxes and dialog boxes.

TrackControl 5

To follow and respond to cursor movements in a control and then to determine the
control part in which the mouse-up event occurs, use the TrackControl function.

FUNCTION TrackControl (theControl: ControlHandle;

 thePoint: Point; actionProc: ProcPtr)

 : Integer;
5-90 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
theControl A handle to the control in which a mouse-down event occurred.

thePoint A point, specified in coordinates local to the window, where the
mouse-down event occurred.

actionProc The action procedure. Typically, you should set this parameter to NIL
for buttons, checkboxes, radio buttons, and the scroll box of a scroll bar;
set this parameter to Pointer(-1) for pop-up menus; and set this
parameter to the pointer to an action procedure for scroll arrows and
gray areas of scroll bars, as well as for any other controls that require
you to define additional actions to take while the user holds down the
mouse button.

DESCRIPTION

The TrackControl function follows the user’s cursor movements in a control and
provides visual feedback until the user releases the mouse button. The visual feedback
given by TrackControl depends on the control part in which the mouse-down event
occurs. When highlighting is appropriate, for example, TrackControl highlights the
control part (and removes the highlighting when the user releases the mouse button).
When the user holds down the mouse button while the cursor is in an indicator (such as
the scroll box of a scroll bar) and moves the mouse, TrackControl responds by
dragging a dotted outline of the indicator.

The TrackControl function returns as its function result the control’s part code if the
user releases the mouse button while the cursor is inside the control part, or 0 if the user
releases the mouse button while the cursor is outside the control part. For control parts,
the TrackControl function returns the same values (represented by the constants
inButton, inCheckBox, inUpButton, inDownButton, inPageUp, inPageDown,
and inThumb) returned by the FindControl function, as described on page 5-89.

When TrackControl returns a value other than 0 as its function result, your applica-
tion should respond as appropriate to a mouse-up event in that control part. When
TrackControl returns 0 as its function result, your application should do nothing.

If the user releases the mouse button when the cursor is in an indicator such as a scroll
box, TrackControl calls the control’s control definition function to reposition the
indicator. The control definition function for scroll bars, for example, responds to the
user dragging a scroll box by redrawing the scroll box, calculating the control’s current
setting according to the new relative position of the scroll box, and storing the current
setting in the control record. Thus, if the minimum and maximum settings are 0 and 10,
and the scroll box is in the middle of the scroll bar, 5 is stored as the current setting. For a
scroll bar, your application must then respond by scrolling to the corresponding relative
position in the document.

Generally, you use TrackControl after using the FindControl function. In the
parameter theControl of TrackControl, pass the control handle returned by the
FindControl function, and in the parameter thePoint, supply the same point you
passed to FindControl (that is, a point in coordinates local to the window).
Control Manager Reference 5-91

C H A P T E R 5

Control Manager
While the user holds down the mouse button with the cursor in one of the standard con-
trols, TrackControl performs the following actions, depending on the value you pass
in the parameter actionProc. (For other controls, what you pass in this parameter de-
pends on how you define the control.)

■ If you pass NIL in the actionProc parameter, TrackControl uses no action
procedure and therefore performs no additional actions beyond highlighting the
control or dragging the indicator. This is appropriate for buttons, checkboxes, radio
buttons, and the scroll box of a scroll bar.

■ If you pass a pointer to an action procedure in the actionProc parameter, you must
provide the procedure, and it must define some action that your application repeats as
long as the user holds down the mouse button. This is appropriate for the scroll
arrows and gray areas of a scroll bar.

■ If you pass Pointer(–1) in the actionProc parameter, TrackControl looks in
the contrlAction field of the control record for a pointer to the control’s action
procedure. This is appropriate when you are tracking the cursor in a pop-up menu.
(You can use the GetControlAction function to determine the value of this field,
and you can use the SetControlAction procedure to change this value.) If the
contrlAction field of the control record contains a procedure pointer,
TrackControl uses the action procedure it points to; if the field of the control record
also contains the value Pointer(–1), TrackControl calls the control’s control
definition function to perform the necessary action; you may wish to do this if you
define your own control definition function for a custom control. If the field of the
control record contains the value NIL, TrackControl performs no action.

SPECIAL CONSIDERATIONS

When you need to handle events in alert and dialog boxes, Dialog Manager routines
automatically call FindControl and TrackControl.

ASSEMBLY-LANGUAGE INFORMATION

The TrackControl function invokes the Window Manager function DragGrayRgn, so
you can use the global variables DragHook and DragPattern.

SEE ALSO

See “Defining Your Own Action Procedures” beginning on page 5-115 for information
about an action procedure to specify in the actionProc parameter. See “Defining Your
Own Control Definition Function” beginning on page 5-109 for information about
creating a control definition function.

Listing 5-11 on page 5-36, Listing 5-12 on page 5-37, Listing 5-13 on page 5-38,
and Listing 5-18 on page 5-53 illustrate the use of TrackControl for responding to
mouse-down events in, respectively, a button, a pop-up menu, a checkbox, and a
scroll bar.

See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes.
5-92 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
TestControl 5

The TestControl function is called by the FindControl and TrackControl
functions—normally you won’t need to call it yourself. However, should you ever need
to determine the control part in which a mouse-down event occurred, you can use the
TestControl function.

FUNCTION TestControl (theControl: ControlHandle; thePt: Point)

 : Integer;

theControl A handle to the control in which the mouse-down event occurred.

thePt The point, in a window’s local coordinates, where the mouse-down
event occurred.

DESCRIPTION

When the control specified by the parameter theControl is visible and active,
TestControl tests which part of the control contains the point specified by the
parameter thePt. For its function result, TestControl returns the part code of the
control part, or 0 if the point is outside the control.

If the control is invisible or inactive, TestControl returns 0.

Changing Control Settings and Display 5

In response to user actions, you often need to change the settings, highlight states, sizes,
and locations of your controls. Whenever your application calls the TrackControl
function, the Control Manager automatically manipulates control display as appropriate
as the user presses and releases the mouse button. For example, TrackControl calls the
HiliteControl procedure to highlight buttons; for scroll bars, TrackControl calls
the DragControl procedure to move an outline of the scroll box in a scroll bar and the
SetControlValue procedure to change the scroll bar’s current setting and redraw the
scroll box in its new location. (Note that the Dialog Manager automatically calls
TrackControl for controls in alert boxes and dialog boxes. See the chapter “Dialog
Manager” in this book for more information.)

When the user releases the mouse button while the cursor is in a control, your
application often needs to change its setting. When the user clicks a checkbox, for
example, your application must change its setting to on or off, and the Control Manager
automatically draws or removes an X in the checkbox.

There are other instances when you must change the settings and display of a control.
For example, when the user changes the size of a window that contains a scroll bar, you
need to resize and move the scroll bar accordingly.

For controls whose values the user can set, you can use the SetControlValue
procedure to change the control’s setting and redraw the control accordingly. When
you need to change the maximum setting of a scroll bar or a dial, you can use the
Control Manager Reference 5-93

C H A P T E R 5

Control Manager
SetControlMaximum procedure; if you need to change the minimum setting, you
can use the SetControlMinimum procedure. If you need to change a control title,
you can use the SetControlTitle procedure. You can use the HideControl
procedure to make a control invisible. When you need to make a control inactive
(such as when its window is not frontmost) or in any other way change the highlighting
of a control, you can use the HiliteControl procedure.

To move a scroll bar, you use the MoveControl and SizeControl procedures.

Although it’s not recommended, you can also change a control’s default colors to those
of your own choosing by using the SetControlColor procedure.

To invoke a continuous action while the user holds down the mouse button, you
can specify an action procedure (described in “Defining Your Own Action Procedures”
beginning on page 5-115) in a parameter to TrackControl. Under certain circum-
stances, you can use the SetControlAction procedure to change the control’s action
procedure, though you should rarely if ever need to.

SetControlValue 5

To change the current setting of a control and redraw it accordingly, you can use the
SetControlValue procedure. The SetControlValue procedure is also available as
the SetCtlValue procedure.

PROCEDURE SetControlValue (theControl: ControlHandle;

theValue: Integer);

theControl A handle to the control whose current setting you wish to change.

theValue The new setting for the control.

DESCRIPTION

The SetControlValue procedure changes the contrlValue field of the control
record to the specified value and redraws the control to reflect the new setting. For
checkboxes and radio buttons, the value 1 fills the control with the appropriate mark,
and 0 removes the mark. For scroll bars, SetControlValue redraws the scroll box
where appropriate.

If the specified value is less than the minimum setting for the control,
SetControlValue sets the control to its minimum setting; if the value is greater
than the maximum setting, SetControlValue sets the control to its maximum.

When you create a control, you specify an initial setting either in the control resource or
in the value parameter of the NewControl function. To determine a control’s current
setting before changing it in response to a user’s click in that control, use the
GetControlValue function.
5-94 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
SEE ALSO

Listing 5-13 on page 5-38 illustrates the use of SetControlValue to change the setting
of a checkbox. Listing 5-16 on page 5-41 and Listing 5-20 on page 5-61 illustrate the use
of SetControlValue to change the setting of a scroll bar.

SetControlMinimum 5

To change the minimum setting of a control and redraw its indicator or scroll box
accordingly, you can use the SetControlMinimum procedure. The
SetControlMinimum procedure is also available as the SetCtlMin procedure.

PROCEDURE SetControlMinimum (theControl: ControlHandle;

 minValue: Integer);

theControl A handle to the control whose minimum setting you wish to change.

minValue The new minimum setting.

DESCRIPTION

The SetControlMinimum procedure changes the contrlMin field of the control
record to the setting you specify in the minValue parameter and redraws its indicator
or scroll box to reflect its new range.

When you create a control, you specify an initial minimum setting either in the control
resource or in the min parameter of the NewControl function. To determine a control’s
current minimum setting, use the GetControlMinimum function.

SetControlMaximum 5

To change the maximum setting of a control and redraw its indicator or scroll
box accordingly, you can use the SetControlMaximum procedure. The
SetControlMaximum procedure is also available as the SetCtlMax procedure.

PROCEDURE SetControlMaximum (theControl: ControlHandle;

 maxValue: Integer);

theControl A handle to the control whose maximum setting you wish to change.

maxValue The new maximum setting.

DESCRIPTION

The SetControlMaximum procedure changes the contrlMax field of the control
record to the setting you specify in the maxValue parameter and redraws its indicator
or scroll box to reflect its new range.
Control Manager Reference 5-95

C H A P T E R 5

Control Manager
When you create a control, you specify an initial maximum setting either in the control
resource or in the max parameter of the NewControl function. To determine a control’s
current maximum setting, use the GetControlMaximum function.

When you set the maximum setting of a scroll bar equal to its minimum setting, the
control definition function makes the scroll bar inactive; when you make the maximum
setting exceed the minimum, the control definition function makes the scroll bar active
again.

SEE ALSO

Listing 5-16 on page 5-41 illustrates the use of SetControlMaximum to specify the
maximum setting for a scroll bar.

SetControlTitle 5

To change the title of a control and redraw the control accordingly, use the
SetControlTitle procedure. The SetControlTitle procedure is also available as
the SetCTitle procedure.

PROCEDURE SetControlTitle (theControl: ControlHandle;

title: Str255);

theControl A handle to a control, the title of which you want to change.

title The new title for the control.

DESCRIPTION

The SetControlTitle procedure changes the contrlTitle field of the control
record to the given string and redraws the control, using the system font for the
control title.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes,
and radio buttons. When specifying a multiple-line title, separate the lines with the
ASCII character code $0D (carriage return). If the control is a button, each line is
horizontally centered, and the font leading is inserted between lines. (The height of each
line is equal to the distance from the ascent line to the descent line plus the leading of the
font used. Be sure to make the total height of the rectangle greater than the number of
lines times this height.) If the control is a checkbox or a radio button, the text is justified
as appropriate for the user’s current script system, and the checkbox or button is
vertically centered within its rectangle.

When you create a control, you specify an initial title either in the control resource or in
the title parameter of the NewControl function. To determine a control’s current title,
use the GetControlTitle procedure.
5-96 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
HideControl 5

To make a control invisible, before adjusting its size and location, for example, use the
HideControl procedure.

PROCEDURE HideControl (theControl: ControlHandle);

theControl A handle to the control you want to hide.

DESCRIPTION

The HideControl procedure makes the specified control invisible by changing the
value of the contrlVis field of the control record and removing the control from the
screen. To fill the region previously occupied by the control, HideControl uses the
background pattern of the window’s graphics port. It also adds the control’s rectangle to
the window’s update region, so that anything else that was previously obscured by the
control will reappear on the screen. If the control is already invisible, HideControl has
no effect.

To make the control visible again, you can use the ShowControl procedure.

SPECIAL CONSIDERATIONS

The MoveControl and SizeControl procedures both call HideControl and
ShowControl automatically. However, so that the control will not blink on the screen
when you make both of these calls, you should use HideControl to make the control
invisible until you are finished manipulating it, and then use ShowControl.

SEE ALSO

Listing 5-14 on page 5-39 illustrates the use of HideControl before adjusting scroll bar
settings and locations.

MoveControl 5

To move a control within its window, you can use the MoveControl procedure.

PROCEDURE MoveControl (theControl: ControlHandle;

 h: Integer; v: Integer);

theControl A handle to the control you wish to move.

h The horizontal coordinate (local to the control’s window) of the new
location of the upper-left corner of the control’s rectangle.

v The vertical coordinate (local to the control’s window) of the new
location of the upper-left corner of the control’s rectangle.
Control Manager Reference 5-97

C H A P T E R 5

Control Manager
DESCRIPTION

The MoveControl procedure moves the control to the new location specified by the h
and v parameters, using them to change the rectangle specified in the contrlRect field
of the control’s control record. When the control is visible, MoveControl first hides it
and then redraws it at its new location.

For example, if the user resizes a document window that contains a scroll bar, your
application can use MoveControl to move the scroll bar to its new location.

SEE ALSO

Listing 5-24 on page 5-67 illustrates the use of MoveControl to change the location of a
scroll bar.

SizeControl 5

To change the size of a control’s rectangle, use the SizeControl procedure.

PROCEDURE SizeControl (theControl: ControlHandle;

 h: Integer; v: Integer);

theControl A handle to the control you wish to resize.

w The new width, in pixels, of the resized control.

h The new height, in pixels, of the resized control.

DESCRIPTION

The SizeControl procedure changes the rectangle specified in the contrlRect field
of the control’s control record. The lower-right corner of the rectangle is adjusted so
that it has the width and height specified by the w and h parameters; the position of the
upper-left corner is not changed. If the control is currently visible, it’s first hidden and
then redrawn in its new size. The SizeControl procedure uses HideControl, which
changes the window’s update region.

SEE ALSO

Listing 5-24 on page 5-67 illustrates the use of SizeControl to change the size of a
scroll bar.

HiliteControl 5

If you need to change the highlighting of a control, you can use the HiliteControl
procedure.

PROCEDURE HiliteControl (theControl: ControlHandle;

 hiliteState: Integer);
5-98 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
theControl A handle to the control.

hiliteState
A value from 0 through 255 to signify the highlighting of the control.
The value of 0 signifies no highlighting for the active control. A value
from 1 through 253 signifies a part code designating the part of the
(active) control to highlight. (Part codes are explained in the description
of FindControl on page 5-89.) The value 255 signifies that the control is
to be made inactive and drawn accordingly.

DESCRIPTION

The HiliteControl procedure calls the control definition function to redraw the
control with the highlighting specified in the hiliteState parameter. The
HiliteControl procedure uses the value in this parameter to change the value
of the contrlHilite field of the control’s control record.

Except for scroll bars (which you should hide using the HideControl procedure), you
should use HiliteControl to make all controls inactive when their windows are not
frontmost. The TrackControl function automatically uses the HiliteControl
procedure as appropriate; when you use TrackControl, you don’t need to call
HiliteControl.

SPECIAL CONSIDERATIONS

The value 254 should not be passed in the hiliteState parameter; this value is
reserved for future use.

SEE ALSO

The chapter “Dialog Manager” in this book provides several examples of the use of
HiliteControl.

DragControl 5

If you need to draw and move an outline of a control or its indicator (such as the scroll
box of a scroll bar) while the user drags it, you can use the DragControl procedure.

PROCEDURE DragControl (theControl: ControlHandle;

 startPt: Point;

 limitRect: Rect; slopRect: Rect;

 axis: Integer);

theControl A handle to the control to drag.

startPt The location of the cursor, expressed in the local coordinates of the
control’s window, at the time the user first presses the mouse button.
Control Manager Reference 5-99

C H A P T E R 5

Control Manager
limitRect A rectangle—which should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag
the control’s outline.

slopRect A rectangle that allows some extra space for the user to move the mouse
while still constraining the control within the rectangle specified in the
limitRect parameter.

axis The axis along which the user may drag the control’s outline. The
following list shows the constants you can use—and the values they
represent—for constraining the motion along an axis:

CONST

noConstraint = 0; {no constraint}

 hAxisOnly = 1; {drag along horizontal axis only}

vAxisOnly = 2; {drag along vertical axis only}

DESCRIPTION

The DragControl procedure moves a dotted outline of the control around the screen,
following the movements of the cursor until the user releases the mouse button. When
the user releases the mouse button, DragControl calls MoveControl. In turn,
MoveControl moves the control to the location to which the user dragged it.

The TrackControl function automatically uses the DragControl procedure as
appropriate; when you use TrackControl, you don’t need to call DragControl.

The startPt, limitRect, slopRect, and axis parameters have the same meaning as
for the Window Manager function DragGrayRgn.

SPECIAL CONSIDERATIONS

Before tracking the cursor, DragControl calls the control definition function. If you
define your own control definition function, you can specify custom dragging behavior.

ASSEMBLY-LANGUAGE INFORMATION

Like TrackControl, DragControl invokes the Window Manager function
DragGrayRgn, so you can use the global variables DragHook and DragPattern.

SEE ALSO

For information about creating your own control definition functions, see “Defining Your
Own Control Definition Function” beginning on page 5-109. See the description of the
DragGrayRgn function in the chapter “Window Manager” in this book for a more
complete discussion of the startPt, limitRect, slopRect, and axis parameters,
which are used identically in the DragControl function.
5-100 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
SetControlColor 5

To draw a control using colors other than the default colors used by system software,
you can use the SetControlColor procedure. The SetControlColor procedure is
also available as the SetCtlColor procedure.

PROCEDURE SetControlColor (theControl: ControlHandle;

newColorTable: CCTabHandle);

theControl A handle to the control whose colors you wish to change.

newColorTable
A handle to a control color table record.

DESCRIPTION

The SetControlColor procedure changes the color table for the specified control. If
the control currently has no auxiliary control record, SetControlColor creates one
that includes the control color table record specified in the parameter newColorTable
and adds the auxiliary control record to the head of the auxiliary control list. If there
is already an auxiliary record for the control, SetControlColor replaces its color
table with the contents of the control color table record specified in the parameter
newColorTable.

To use nonstandard colors for a control, you must create a control color table, either by
creating a color control table record and calling SetControlColor or by creating a
control color table resource. Generally, you use SetControlColor when you create
a control using NewControl and want to use nonstandard colors for it or when you
change any control’s colors after you’ve created it. When you want to use nonstandard
colors for those controls you create in a control ('CNTL') resource, you should create a
control color table ('cctb') resource with the same resource ID as the control resource.

A control whose colors you set with SetControlColor should initially be invisible.
After using SetControlColor to set the control’s colors, use the ShowControl
procedure to make the control visible.

SPECIAL CONSIDERATIONS

On color monitors, the Control Manager automatically draws controls so that they match
the colors of the controls used by system software. Be aware that nonstandard colors in
your controls may initially confuse your users.

When you create a control color table record, your application should not deallocate it if
another control is still using it.
Control Manager Reference 5-101

C H A P T E R 5

Control Manager
SetControlAction 5

If you set the action procedure to Pointer(-1) when you use TrackControl, you can
use the SetControlAction procedure to set or change the action procedure. The
SetControlAction procedure is also available as the SetCtlAction procedure.

PROCEDURE SetControlAction (theControl: ControlHandle;

 actionProc: ProcPtr);

theControl A handle to the control whose action procedure you wish to change.

actionProc A pointer to an action procedure defining what action your application
takes while the user holds down the mouse button.

DESCRIPTION

The SetControlAction procedure changes the contrlAction field of the control’s
control record to point to the action procedure specified in the actionProc parameter.
If the cursor is in the specified control, TrackControl calls this action procedure
when user holds down the mouse button. You must provide the action procedure, and it
must define some action to perform repeatedly as long as the user holds down the
mouse button. (The TrackControl function always highlights and drags the control
as appropriate.)

SPECIAL CONSIDERATIONS

The value in the contrlAction field of the control’s control record is used
by TrackControl only if you set the action procedure to TrackControl to
Pointer(–1).

An action procedure is usually specified in a parameter to TrackControl; you
generally don’t need to call SetControlAction to change it.

SEE ALSO

Action procedures are described in “Defining Your Own Action Procedures” beginning
on page 5-115.

Determining Control Values 5

Your application sets a control’s various values—such as current setting, minimum and
maximum settings, title, reference value, and action procedure—when it creates the
control. When the user clicks a control, however, your application often needs to
determine the current setting and other possible values of that control. When the user
clicks a checkbox, for example, your application must determine whether the box is
checked before deciding whether to draw a checkmark inside the checkbox or remove
the checkmark.
5-102 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
You can use the GetControlValue, GetControlTitle, GetControlMinimum,
GetControlMaximum, GetControlAction, and GetControlReference routines to
determine, respectively, a control’s current setting, title, minimum setting, maximum
setting, action procedure, and reference value. To get a handle to a control’s auxiliary
control record, you can use the GetAuxiliaryControlRecord function; your
application can use the acRefCon field of an auxiliary control record for any purpose.
To determine the variation code that is specified in the control definition function for a
particular control, you can use the GetControlVariant function. This section also
includes a description of the SetControlReference procedure, which allows your
application to change its reference value for a control.

GetControlValue 5

To determine a control’s current setting, use the GetControlValue function. The
GetControlValue function is also available as the GetCtlValue function.

FUNCTION GetControlValue (theControl: ControlHandle): Integer;

theControl A handle to a control.

DESCRIPTION

The GetControlValue function returns as its function result the specified control’s
current setting, which is stored in the contrlValue field of the control record.

When you create a control, you specify an initial setting either in the control resource or
in the value parameter of the NewControl function. You can change the setting by
using the SetControlValue procedure.

SEE ALSO

Listing 5-12 on page 5-37 and Listing 5-13 on page 5-38 illustrate the use of
GetControlValue for determining the current setting of, respectively, a pop-up
menu and a checkbox. Listing 5-16 on page 5-41, Listing 5-18 on page 5-53, and
Listing 5-20 on page 5-61 illustrate the use of this function for determining the
current setting of a scroll bar.

GetControlMinimum 5

To determine a control’s minimum setting, use the GetControlMinimum function. The
GetControlMinimum function is also available as the GetCtlMin function.

FUNCTION GetControlMinimum (theControl: ControlHandle): Integer;

theControl A handle to the control whose minimum value you wish to determine.
Control Manager Reference 5-103

C H A P T E R 5

Control Manager
DESCRIPTION

The GetControlMinimum function returns as its function result the specified control’s
minimum setting, which is stored in the contrlMin field of the control record.

When you create a control, you specify an initial minimum setting either in the control
resource or in the min parameter of the NewControl function. You can change the
minimum setting by using the SetControlMinimum procedure.

GetControlMaximum 5

To determine a control’s maximum setting, use the GetControlMaximum function. The
GetControlMaximum function is also available as the GetCtlMax function.

FUNCTION GetControlMaximum (theControl: ControlHandle): Integer;

theControl A handle to the control whose maximum value you wish to determine.

DESCRIPTION

The GetControlMaximum function returns as its function result the specified control’s
maximum setting, which is stored in the contrlMax field of the control record.

When you create a control, you specify an initial maximum setting either in the control
resource or in the max parameter of the NewControl function. You can change the
maximum setting by using the SetControlMaximum procedure.

SEE ALSO

Listing 5-16 on page 5-41 and Listing 5-20 on page 5-61 illustrate the use of
GetControlMaximum for determining the maximum scrolling distance of a scroll bar.

GetControlTitle 5

To determine the title of a control, use the GetControlTitle procedure. The
GetControlTitle procedure is also available as the GetCTitle procedure.

PROCEDURE GetControlTitle (theControl: ControlHandle;

VAR title: Str255);

theControl A handle to the control whose title you want to determine.

title The title of the control.
5-104 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
DESCRIPTION

The GetControlTitle procedure returns the specified control title, which is stored in
the contrlTitle field of the control record.

When you create a control, you specify an initial title either in the control resource or in
the title parameter of the NewControl function. You can change the title by using the
SetControlTitle procedure.

GetControlReference 5

To determine a control’s current reference value, use the GetControlReference
function. The GetControlReference function is also available as the GetCRefCon
function.

FUNCTION GetControlReference (theControl: ControlHandle): LongInt;

theControl A handle to the control whose current reference value you wish
to determine.

DESCRIPTION

The GetControlReference function returns as its function result the current reference
value for the specified control.

When you create a control, you specify an initial reference value, either in the control
resource or in the refCon parameter of the NewControl function. The reference value
is stored in the contrlRfCon field of the control record. You can use this field for any
purpose, and you can use the SetControlReference procedure, described next, to
change this value.

SetControlReference 5

To change a control’s current reference value, use the SetControlReference
procedure. The SetControlReference procedure is also available as the
SetCRefCon procedure.

PROCEDURE SetControlReference (theControl: ControlHandle;

 data: LongInt);

theControl A handle to the control whose reference value you wish to change.

data The new reference value for the control.
Control Manager Reference 5-105

C H A P T E R 5

Control Manager
DESCRIPTION

The SetControlReference procedure sets the control’s reference value to the value
you specify in the data parameter.

When you create a control, you specify an initial reference value, either in the
control resource or in the refCon parameter of the NewControl function. The
reference value is stored in the contrlRfCon field of the control record; you can
use the GetControlReference function to determine the current value. You
can use this value for any purpose.

GetControlAction 5

To get a pointer to the action procedure stored in the contrlAction field
of the control’s control record, use the GetControlAction function. The
GetControlAction function is also available as the GetCtlAction function.

FUNCTION GetControlAction (theControl: ControlHandle): ProcPtr;

theControl A handle to a control.

DESCRIPTION

The GetControlAction function returns as its function result whatever value is
stored in the contrlAction field of the control’s control record. This field specifies
the action procedure that TrackControl uses if you set its actionProc parameter to
Pointer(-1). The action procedure should define an action to take in response to the
user’s holding down the mouse button while the cursor is in the control. You can use
the SetControlAction procedure to change this action procedure.

SEE ALSO

For information about defining an action procedure, see “Defining Your Own Action
Procedures” beginning on page 5-115.

GetControlVariant 5

To determine the variation code specified in the control definition function for a
particular control, you can use the GetControlVariant function. The
GetControlVariant function is also available as the GetCVariant function.

FUNCTION GetControlVariant (theControl: ControlHandle): Integer;

theControl A handle to the control whose variation code you wish to determine.
5-106 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
DESCRIPTION

The GetControlVariant function returns as its function result the variation code for
the specified control.

SEE ALSO

Variation codes are described in “The Control Definition Function” on page 5-14.

GetAuxiliaryControlRecord 5

 Use the GetAuxiliaryControlRecord function to get a handle to a control’s
auxiliary control record. The GetAuxiliaryControlRecord function is also
available as the GetAuxCtl function.

FUNCTION GetAuxiliaryControlRecord (theControl: ControlHandle;

VAR acHndl: AuxCtlHandle)

: Boolean;

theControl A handle to a control.

acHndl A handle to the auxiliary control record for the control.

DESCRIPTION

In its acHndl parameter, the GetAuxiliaryControlRecord function returns a
handle to the auxiliary control record for the specified control. Your application typically
doesn’t need to access an auxiliary control record unless you need its acRefCon field,
which your application can use for any purpose.

The value that GetAuxiliaryControlRecord returns for a function result depends
on the control’s color control table, as described here:

■ If your application has changed the default control color table for the given control
(either by using the SetControlColor procedure or by creating its own control
color table), the function returns TRUE.

■ If your application has not changed the default control color table, the function
returns FALSE.

■ If you set the parameter theControl to NIL, the Dialog Manager ensures that
the control uses the default color table, and GetAuxiliaryControlRecord
returns TRUE.
Control Manager Reference 5-107

C H A P T E R 5

Control Manager
Removing Controls 5

When you use the Window Manager procedures DisposeWindow and CloseWindow
to remove a window, they automatically remove all controls associated with the window
and release the memory the controls occupy.

When you no longer need a control in a window that you want to keep, you can use the
DisposeControl procedure to remove the control from the window’s control list and
release the memory it occupies. You can use the KillControls procedure to dispose of
all of a window’s controls at once.

DisposeControl 5

To remove a particular control from a window that you want to keep, use the
DisposeControl procedure.

PROCEDURE DisposeControl (theControl: ControlHandle);

theControl A handle to the control you wish to remove.

DESCRIPTION

The DisposeControl procedure removes the specified control from the screen, deletes
it from its window’s control list, and releases the memory occupied by the control record
and any data structures associated with the control.

SPECIAL CONSIDERATIONS

The Window Manager procedures CloseWindow and DisposeWindow automatically
dispose of all controls associated with the given window.

SEE ALSO

To remove all of the controls in a window, use the KillControls procedure, described
next. The CloseWindow and DisposeWindow procedures are described in the chapter
“Window Manager” in this book.

KillControls 5

To remove all of the controls in a particular window that you want to keep, use the
KillControls procedure.

PROCEDURE KillControls (theWindow: WindowPtr);

theWindow A pointer to the window containing the controls to remove.
5-108 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
DESCRIPTION

The KillControls procedure disposes of all controls associated with the specified
window by calling the DisposeControl procedure for each control.

SPECIAL CONSIDERATIONS

The Window Manager procedures CloseWindow and DisposeWindow automatically
dispose of all controls associated with the given window.

SEE ALSO

The CloseWindow and DisposeWindow procedures are described in the chapter
“Window Manager” in this book.

Application-Defined Routines 5
This section describes how to create your own control definition function—declared
here as MyControl—which your application needs to provide when defining new,
nonstandard controls. This section also describes action procedures—declared here
as MyAction and MyIndicatorAction—which define additional actions to be
performed repeatedly as long as the user holds down the mouse button while the
cursor is in a control. For example, you need to define an action procedure for scrolling
through a document while the user holds down the mouse button and the cursor is
in a scroll arrow.

Defining Your Own Control Definition Function 5

In addition to the standard controls (buttons, checkboxes, radio buttons, pop-up menus,
and scroll bars), the Control Manager allows you to define new, nonstandard controls as
appropriate for your application. For example, you can define a three-way selector
switch, a memory-space indicator that looks like a thermometer, or a thruster control for
a spacecraft simulator. Controls and their indicators may occupy regions of any shape, as
permitted by QuickDraw.

To define your own type of control, you write a control definition function, compile it as
a resource of type 'CDEF', and store it in your resource file. (See the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox for more information about
creating resources.) Whenever you create a control, you specify a control definition ID,
which the Control Manager uses to determine the control definition function. The control
definition ID is an integer that contains the resource ID of the control definition function
in its upper 12 bits and a variation code in its lower 4 bits. Thus, for a given resource ID
and variation code

control definition ID = 16 x resource ID + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control
definition function with resource ID 0. Because they have variation codes of 0, 1,
and 2, respectively, their respective control definition IDs are 0, 1, and 2.
Control Manager Reference 5-109

C H A P T E R 5

Control Manager
You can define your own variation codes, which various Control Manager routines pass
to your control definition function. This allows you to use one 'CDEF' resource to
handle several variations of the same general control.

The Control Manager calls the Resource Manager to access your control definition
function with the given resource ID. The Resource Manager reads your control definition
function into memory and returns a handle to it. The Control Manager stores this handle
in the contrlDefProc field of the control record. In 24-bit addressing mode, the
variation code is placed in the high-order byte of this field; in 32-bit mode, the variation
code is placed in the most significant byte of the acReserved field in the control’s
AuxCtlRec record. Later, when various Control Manager routines need to perform a
type-dependent action on the control, they call your control definition function and pass
it the variation code as a parameter.

If you create a control definition function, you can use control color table records of
any desired size and define their contents in any way you wish, except that part indices
1 through 127 are reserved for system definition. Note that in this case, you should
allocate explicit auxiliary records for every control you create.

MyControl 5

If you wish to define new, nonstandard controls for your application, you must write a
control definition function and store it in a resource file as a resource of type 'CDEF'.
Here’s how you would declare a procedure named MyControl:

FUNCTION MyControl (varCode: Integer; theControl: ControlHandle;

message: Integer; param: LongInt): LongInt;

varCode The variation code for this control. To derive the control definition ID for
the control, add this value to the result of 16 multiplied by the resource ID
of the 'CDEF' resource containing this function. The variation code
allows you to specify several control definition IDs within one 'CDEF'
resource, thereby defining several variations of the same basic control.

theControl A handle to the control that the operation will affect.

message A value (from the following list) that specifies which operation your
function must undertake.

CONST drawCntl = 0; {draw the control or its part}

testCntl = 1; {test where mouse button }

{ is pressed}

calcCRgns = 2; {calculate region for }

{ control or indicator in }

{ 24-bit systems}

initCntl = 3; {peform any additional }

{ control initialization}
5-110 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
dispCntl = 4; {perform any additional }

{ disposal actions}

 posCntl = 5; {move indicator and }

{ update its setting}

 thumbCntl = 6; {calculate parameters for }

{ dragging indicator}

dragCntl = 7; {perform any custom dragging }

{ of control or its indicator}

autoTrack = 8; {execute action procedure }

{ specified by your function}

calcCntlRgn = 10; {calculate region for control}

calcThumbRgn = 11; {calculate region for }

{ indicator}

param A value whose meaning depends on the operation specified in the
message parameter.

DESCRIPTION

The Control Manager calls your control definition function under various circumstances;
the Control Manager uses the message parameter to inform your control definition
function what action it must perform. The data that the Control Manager passes in the
param parameter, the action that your control definition function must undertake, and
the function result that your control definition function returns all depend on the value
that the Control Manager passes in the message parameter. The rest of this section
describes how to respond to the various values that the Control Manager passes in the
message parameter.

Drawing the Control or Its Part 5

When the Control Manager passes the value for the drawCntl constant in the message
parameter, the low word in the param parameter has one of the following values:

■ the value 0, indicating the entire control

■ the value 129, signifying an indicator that must be moved

■ any other value, indicating a part code for the control (Don’t use part code 128, which
is reserved for future use, or part code 129, which the Control Manager uses to signify
an indicator that must be moved.)

Note
For the drawCntl message, the high-order word of the param
parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter. ◆

If the specified control is visible, your control definition function should draw the control
(or the part specified in the param parameter) within the control’s rectangle. If the
control is invisible (that is, if its contrlVis field is set to 0), your control definition
function does nothing.
Control Manager Reference 5-111

C H A P T E R 5

Control Manager
When drawing the control or its part, take into account the current values of its
contrlHilite and contrlValue fields of the control’s control record.

If the part code for your control’s indicator is passed in param, assume that the indicator
hasn’t moved; the Control Manager, for example, may be calling your control definition
function so that you may simply highlight the indicator. However, when your applica-
tion calls the SetControlValue, SetControlMinimum, and SetControlMaximum
procedures, they in turn may call your control definition function to redraw the
indicator. Since these routines have no way of determining what part code you chose
for your indicator, they all pass 129 in param, meaning that you should move your
indicator. Your control definition function must detect this part code as a special case and
remove the indicator from its former location before drawing it. If your control has more
than one indicator, you should interpret 129 to mean all indicators.

When passed the value for the drawCntl constant in the message parameter, your
control definition function should always return 0 as its function result.

Testing Where the Mouse-Down Event Occurs 5

To request your control definition function to determine whether a specified point is
in a visible control, the FindControl function sends the value for the testCntl
constant in the message parameter. In this case, the param parameter specifies a point
(in coordinates local to the control’s window) as follows:

■ The point’s vertical coordinate is contained in the high-order word of the long integer.

■ The point’s horizontal coordinate is contained in the low-order word.

When passed the value for the testCntl constant in the message parameter, your
control definition function should return the part code of the part that contains the
specified point; it should return 0 if the point is outside the control or if the control
is inactive.

Calculating the Control and Indicator Regions 5

When the Control Manager passes the value for the calcCRgns constant in the
message parameter, your control definition function should calculate the region
occupied by either the control or its indicator. The Control Manager passes a QuickDraw
region handle in the param parameter; it is this region that you calculate. If the
high-order bit of param is set, the region requested is that of the control’s indicator;
otherwise, the region requested is that of the entire control. Your control definition
function should clear the high bit of the region handle before calculating the region.

When the Control Manager passes the value for the calcCntlRgn constant in the
message parameter, your control definition function should calculate the region passed
in the param parameter for the specified control. When the Control Manager passes the
value for the calcThumbRgn constant, calculate the region occupied by the indicator.

When passed the values for the calcCRgns, calcCntlRgn, and calcThumbRgn
constants, your control definition function should always return 0, and it should express
the region in the local coordinate system of the control’s window.
5-112 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
IMPORTANT

The Control Manager passes the calcCRgns constant when the 24-bit
Memory Manager is in operation. When the 32-bit Memory Manager is
in operation, the Control Manager instead passes the calcCntlRgn
constant or the calcThumbRgn constant. Your control definition
function should respond to all three constants. ▲

Performing Any Additional Initialization 5

After initializing fields of a control record as appropriate when creating a new control,
the Control Manager passes initCntl in the message parameter to give your control
definition function the opportunity to perform any type-specific initialization you may
require. For example, if you implement the control’s action procedure in its control
definition function, you’ll need to store Pointer(–1) in the contrlAction field of the
control’s control record. Then, in a call to TrackControl for this control, you would
pass Pointer(–1) in the actionProc parameter of TrackControl.

The standard control definition function for scroll bars allocates space for a region to
hold the scroll box and stores the region handle in the contrlData field of the new
control record.

When passed the value for the initCntl constant in the message parameter, your
control definition function should ignore the param parameter and return 0 as a
function result.

Performing Any Additional Disposal Actions 5

The DisposeControl procedure passes dispCntl in the message parameter to give
your control definition function the opportunity to carry out any additional actions
when disposing of a control. For example, the standard definition function for scroll bars
releases the memory occupied by the scroll box region, whose handle is kept in the
contrlData field of the control’s control record.

When passed the value for the dispCntl constant in the message parameter, your
control definition function should ignore the param parameter and return 0 as a
function result.

Moving the Indicator 5

When a mouse-up event occurs in the indicator of a control, the TrackControl
function calls your control definition function and passes posCntl in the message
parameter. In this case, the param parameter contains a point (in coordinates local to the
control’s window) that specifies the vertical and horizontal offset, in pixels, by which
your control definition function should move the indicator from its current position.
Typically, this is the offset between the points where the cursor was when the user
pressed and released the mouse button while dragging the indicator. The offset point is
specified as follows:

■ The point’s vertical offset is contained in the high-order word of the param parameter.

■ The point’s horizontal offset is contained in the low-order word.
Control Manager Reference 5-113

C H A P T E R 5

Control Manager
Your definition function should calculate the control’s new setting based on the
given offset and then, to reflect the new setting, redraw the control and update the
contrlValue field in the control’s control record. Your control definition function
should ignore the param parameter and return 0 as a function result.

Note that the SetControlValue, SetControlMinimum, and SetControlMaximum
procedures do not call your control definition function with the posCntl message;
instead, they pass the drawCntl message.

Calculating Parameters for Dragging the Indicator 5

When the Control Manager passes the value for thumbCntl in the message parameter,
your control definition function should respond by calculating values (analogous to
the limitRect, slopRect, and axis parameters of DragControl) that constrain
how the indicator is dragged. The param parameter contains a pointer to the following
data structure:

RECORD

limitRect,slopRect: Rect;

axis: Integer;

END;

On entry, the field param^.limitRect.topLeft contains the point where the
mouse-down event first occurred. Your definition function should store the appropriate
values into the fields of the record pointed to by param; they’re analogous to the
similarly named parameters to the Window Manager function DragGrayRgn.

Performing Custom Dragging 5

The Control Manager passes dragCntl in the message parameter to give your control
definition function the opportunity to specify its own method for dragging a control (or
its indicator).

The param parameter specifies whether the user is dragging an indicator or the
whole control:

■ A value of 0 means the user is dragging the entire control.

■ Any nonzero value means the user is dragging only the indicator.

If you want to use the Control Manager’s default method of dragging (which is to call
DragControl to drag the control or the Window Manager function DragGrayRgn to
drag its indicator), return 0 as the function result for your control definition function.

If your control definition function returns any nonzero result, the Control Manager does
not drag your control, and instead your control definition function must drag the
specified control (or its indicator) to follow the cursor until the user releases the mouse
button, as follows:

■ If the user drags the entire control, your definition function should use the
MoveControl procedure to reposition the control to its new location after the user
releases the mouse button.
5-114 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
■ If the user drags the indicator, your definition function must calculate the control’s
new setting (based on the pixel offset between the points where the cursor was when
the user pressed and released the mouse button while dragging the indicator) and
then, to reflect the new setting, redraw the control and update the contrlValue field
in the control’s control record. Note that, in this case, the TrackControl function
returns 0 whether or not the user changes the indicator’s position. Thus, you must
determine whether the user has changed the control’s setting, for instance, by
comparing the control’s value before and after the call to TrackControl.

Executing an Action Procedure 5

You can design a control whose action procedure is specified by your control definition
function. When you create the control, your control definition function must first
respond to the initCntl message by storing Pointer(–1) in the contrlAction
field of the control’s control record. (As previously explained, the Control Manager
sends the initCntl message to your control definition function after initializing
the fields of a new control record.) Then, when your application passes Pointer(–1)
in the actionProc parameter to the TrackControl function, TrackControl
calls your control definition function with the autoTrack message. The param
parameter specifies the part code of the part where the mouse-down event occurs.
Your control definition function should then use this information to respond as an action
procedure would.

Note
For the autoTrack message, the high-order word of the param
parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter. ◆

ASSEMBLY-LANGUAGE INFORMATION

The function’s entry point must be at the beginning.

SEE ALSO

The TrackControl function is described on page 5-90; creating an action procedure is
described in the next section.

Defining Your Own Action Procedures 5

When a mouse-down event occurs in a control, the TrackControl function responds as
appropriate by highlighting the control or dragging the indicator as long as the user
holds down the mouse button. You can define other actions to be performed repeatedly
during this interval. To do so, define your own action procedure and point to it in the
actionProc parameter of the TrackControl function.

When calling your action procedure for a control part other than an indicator,
TrackControl passes your action procedure (1) a handle to the control and (2) the
control’s part code. Your action procedure should then respond as appropriate. For
Control Manager Reference 5-115

C H A P T E R 5

Control Manager
example, if the user is working in a text document and holds down the mouse button
while the cursor is in the lower scroll arrow, your application should scroll continuously
one line at a time until the user releases the mouse button or reaches the end of
the document.

For a control part other than an indicator, you declare an action procedure that takes two
parameters: a handle to the control in which the mouse-down event occurred and an
integer that represents the part of the control in which the mouse-down event occurred.
Such an action procedure is declared as MyAction in the following section.

If the mouse-down event occurs in an indicator, your action procedure should take no
parameters, because the user may move the cursor outside the indicator while dragging
it. Such an action procedure, declared here as MyIndicatorAction, is described on
page 5-117.

Because it will be called with either zero or two parameters, according to whether the
mouse-down event occurred in an indicator or elsewhere, your action procedure can be
defined for only one case or the other. The only way to specify actions in response to all
mouse-down events in a control, regardless of whether they’re in an indicator, is to
define your own control definition function, as described in “Defining Your Own Control
Definition Function” beginning on page 5-109.

MyAction 5

Here’s how to declare an action procedure for a control part other than an indicator if
you were to name the procedure MyAction:

PROCEDURE MyAction (theControl: ControlHandle; partCode: Integer);

theControl A handle to the control in which the mouse-down event occurred.

partCode When the cursor is still in the control part where mouse-down event first
occurred, this parameter contains that control’s part code. When the
user drags the cursor outside the original control part, this parameter
contains 0.

DESCRIPTION

Your procedure can perform any action appropriate for the control part. For example,
when a mouse-down event occurs in a scroll arrow or gray area of a scroll bar,
TrackControl calls your action procedure and passes it the part code and a handle
to the scroll bar. Your action procedure should examine the part code to determine
the part of the control in which the mouse-down event occurred. Your action
procedure should then scroll up or down a line or page as appropriate and then call
the SetControlValue procedure to change the control’s setting and redraw the
scroll box.
5-116 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
ASSEMBLY-LANGUAGE INFORMATION

If you store a pointer to a procedure in the global variable DragHook, your procedure is
called repeatedly (with no parameters) as long as the user holds down the mouse button.
The TrackControl function invokes the Window Manager function DragGrayRgn,
which calls the DragHook procedure. The DragGrayRgn function uses the pattern
stored in the global variable DragPattern for the dragged outline of the indicator.

SEE ALSO

Listing 5-19 on page 5-59 illustrates a pair of action procedures for scrolling through a
text document. As an alternative to passing a pointer to your action procedure in a
parameter to TrackControl, you can use the SetControlAction procedure to
store a pointer to the action procedure in the contrlAction field in the control record.
When you pass Pointer(–1) instead of a procedure pointer to TrackControl,
TrackControl uses the action procedure pointed to in the control record.

MyIndicatorAction 5

Here’s how to declare an action procedure for an indicator if you were to name the
procedure MyIndicatorAction:

PROCEDURE MyIndicatorAction;

DESCRIPTION

Your procedure can perform any action appropriate for the control part. For example, if
your application plays music while displaying a volume control slider, your application
should change the volume in response to the user’s action in the slider switch.

SEE ALSO

See the MyAction procedure described on page 5-116 for other considerations.

Resources 5
This section describes the control ('CNTL') resource and the control color table
('cctb') resource. You can use the control resource to define a control and use the
control color table resource to change the default colors of a control’s parts.
Control Manager Reference 5-117

C H A P T E R 5

Control Manager

The Control Resource 5

You can use a control resource to define a control. A control resource is a resource of
type 'CNTL'. All control resources must have resource ID numbers greater than 128.
Use the GetNewControl function (described on page 5-81) to create a control defined in
a control resource. The Control Manager uses the information you specify to create a
control record in memory. (The control record is described on page 5-73.)

This section describes the structure of this resource after it is compiled by the Rez
resource compiler, available from APDA. The format of a Rez input file for a control
resource differs from its compiled output form, which is illustrated in Figure 5-25. If you
are concerned only with creating a control resource, see “Creating and Displaying a
Control” beginning on page 5-15.

Figure 5-25 Structure of a compiled control ('CNTL') resource

The compiled version of a control resource contains the following elements:

■ The rectangle, specified in coordinates local to the window, that encloses the control;
this rectangle encloses the control and thus determines its size and location.

■ The initial setting for the control.
n For controls—such as buttons—that don’t retain a setting, this value should be 0.
n For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

a value of 0 in this element indicates that the control is initially off; a value of 1
indicates that the control is initially on.

n For controls—such as scroll bars and dials—that can take a range of settings,
whatever initial value is appropriate within that range is specified in this element.

Rectangle

Initial setting

Visibility

Minimum setting

Control definition ID

Reference value

Title

Maximum setting

8

2

1

2

2

2

4

Variable

'CNTL' resource type Bytes

Fill 1
5-118 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager

n For pop-up menus, a combination of values instructs the Control Manager where
and how to draw the control title. Appropriate values, along with the constants
used to specify them in a Rez input file, are listed here:

CONST popupTitleBold = $00000100; {boldface font style}

popupTitleItalic = $00000200; {italic font style}

popupTitleUnderline = $00000400; {underline font }

{ style}

popupTitleOutline = $00000800; {outline font style}

popupTitleShadow = $00001000; {shadow font style}

popupTitleCondense = $00002000; {condensed text}

popupTitleExtend = $00004000; {extended text}

popupTitleNoStyle = $00008000; {monostyle text}

popupTitleLeftJust = $00000000; {place title left }

{ of pop-up box}

popupTitleCenterJust = $00000001; {center title over }

{ pop-up box}

popupTitleRightJust = $000000FF; {place title right }

{ of pop-up box}

■ The visibility of the control. If this element contains the value TRUE, GetNewControl
draws the control immediately, without using the application’s standard updating
mechanism for windows. If this element contains the value FALSE, the application
must use the ShowControl procedure (described on page 5-86) when it’s prepared to
display the control.

■ Fill. This should be set to 0.

■ The maximum setting for the control.
n For controls—such as buttons—that don’t retain a setting, this value should be 1.
n For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

this element should contain the value 1 (meaning “on”).
n For controls—such as scroll bars and dials—that can take a range of settings, this

element can contain whatever maximum value is appropriate; when the
application makes the maximum setting of a scroll bar equal to its minimum
setting, the control definition function automatically makes the scroll bar inactive,
and when the application makes the maximum setting exceed the minimum, the
control definition function makes the scroll bar active again.

n For pop-up menus, this element contains the width, in pixels, of the control title.

■ The minimum setting for the control.
n For controls—such as buttons—that don’t retain a setting, this value should be 0.
n For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

the value 0 (meaning “off”) should be set in this element.
n For controls—such as scroll bars and dials—that can take a range of settings, this

element contains whatever minimum value is appropriate.
n For pop-up menus, this element contains the resource ID of the 'MENU' resource

that describes the menu items.
Control Manager Reference 5-119

C H A P T E R 5

Control Manager
■ The control definition ID, which the Control Manager uses to determine the control
definition function for this control. “Defining Your Own Control Definition Function”
beginning on page 5-109 describes how to create control definition functions and their
corresponding control definition IDs. The following list shows the control definition
ID numbers—and the constants that represent them in Rez input files—for the
standard controls.

CONST

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

useWFont = 8; {when added to above, shows }

{ title in the window font}

scrollBarProc = 16; {scroll bar}

popupMenuProc = 1008; {pop-up menu}

popupFixedWidth = $0001; {add to popupMenuProc to }

{ use fixed-width control}

popupUseAddResMenu = $0004; {add to popupMenuProc to }

{ specify a value of type }

{ ResType in the contrlRfCon }

{ field of the control }

{ record; Menu Manager }

{ adds resources of this }

{ type to the menu}

popupUseWFont = $0008; {if added to popupMenuProc, }

{ shows title in window font}

Note

The title of a button, checkbox, radio button, or pop-up menu normally
appears in the system font, which in Roman script systems is 12-point
Chicago. Do not use a smaller font; some script systems, such as
KanjiTalk, require 12-point fonts. You should generally use the system
font in your controls; doing so will simplify localization effort. However,
if you absolutely need to display a control title in the font currently
associated with the window’s graphics port, you can add the
popupUseWFont constant to the pop-up menu control definition
ID or add the useWFont constant to the other standard control
definition IDs. ◆

■ The control’s reference value, which is set and used only by the application (except
when the application adds the popupUseAddResMenu variation code to the
popupMenuProc control definition ID, as described in “Creating a Pop-Up Menu”
beginning on page 5-25).
5-120 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
■ For controls—such as buttons, checkboxes, radio buttons, and pop-up menus—that
need a title, the string for that title; for controls that don’t use titles, an empty string.

After you use GetNewControl to create the control, you can change the current setting,
the maximum setting, the minimum setting, the reference value, and the title by using,
respectively, the SetControlValue, SetControlMaximum, SetControlMinimum,
SetControlReference, and SetControlTitle routines. You can use the
MoveControl and SizeControl procedures to change the control’s rectangle. You
can use the GetControlValue, GetControlMaximum, GetControlMinimum,
GetControlReference, and GetControlTitle routines to determine the
control values.

The Control Color Table Resource 5

On color monitors, the Control Manager automatically draws control parts so that they
match the colors of the controls used by system software.

If you feel absolutely compelled to use nonstandard colors, the Control Manager
allows you to do so. Your application can specify these by creating a control color table
('cctb') resource; you must give the control color table resource for a control the
same resource ID as its control ('CNTL') resource, which is described on page 5-118.
When you call the GetNewControl function to create the control, the Control Manager
automatically attempts to load a control color table resource with the same resource ID
as the control resource specified to GetNewControl. The Control Manager also creates
an auxiliary control record for the control; the auxiliary control record is described
on page 5-76.

Note
Using nonstandard colors in your controls may initially confuse
your users. ◆

Generally, you use a control color table resource for a control that you define in a control
resource. To change a control’s colors, or to use nonstandard colors in a control
you create using NewControl, create a control color table record and use the
SetControlColor procedure. The control color table record is described on page 5-77;
the SetControlColor procedure is described on page 5-101.

A control color table resource is of type 'cctb'. All control color table resources must
have resource ID numbers greater than 128. Figure 5-26 on the next page shows the
format of a control color table resource. Note that DisposeControl does not delete
a control color table resource; therefore, you should make each control color table
resource purgeable.
Control Manager Reference 5-121

C H A P T E R 5

Control Manager
Figure 5-26 Structure of a compiled control color table ('cctb') resource

You define a control color table resource by specifying these elements in a resource with
the 'cctb' resource type:

■ Reserved. Should always be set to 0.

■ Reserved. Should always be set to 0.

■ Number of control parts. For standard controls other than scroll bars, this should be
set to 3, because these controls consist of a frame, a control body, and text. For scroll
bars, this should be set to 12. A scroll bar consists of a frame, a body, and scroll box;
each part of a scroll bar has various highlight and tinge colors associated with it. To
create a control with more parts, you must create your own control definition function
(as described in “Defining Your Own Control Definition Function” beginning on
page 5-109) that recognizes additional parts.

■ First part identifier. A value or constant that identifies the control’s part to color. The
part identifiers can be listed in any order. The scroll bar control definition function
may use more than one part identifier to produce the actual colors used for each part
of the scroll bar.

CONST

cFrameColor = 0; {frame color; for scroll bars, used to produce }

{ foreground color for scroll arrows & gray area}

cBodyColor = 1; {body color; for scroll bars, used to produce }

{ colors in the scroll box}

cTextColor = 2; {text color; unused for scroll bars}

Reserved

Reserved

Number of control parts

Red component

Green component

Blue component

First part identifer

4

2

2

2

2

2

2

'cctb' resource type
 Bytes

Red component

Green component

Blue component

Last part identifier
 2

2

2

2

5-122 Control Manager Reference

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
cArrowsColorLight = 5; {Used to produce colors in arrows & scroll bar }

{ background color}

cArrowsColorDark = 6; {Used to produce colors in arrows & scroll bar }

{ background color}

cThumbLight = 7; {Used to produce colors in scroll box}

cThumbDark = 8; {Used to produce colors in scroll box}

cHiliteLight = 9; {Use same value as wHiliteColorLight in 'wctb'}

cHiliteDark = 10; {Use same value as wHiliteColorDark in 'wctb'}

cTitleBarLight = 11; {Use same value as wTitleBarLight in 'wctb'}

cTitleBarDark = 12; {Use same value as wTitleBarDark in 'wctb'}

cTingeLight = 13; {Use same value as wTingeLight in 'wctb'}

cTingeDark = 14; {Use same value as wTingeDark in 'wctb'}

■ Red component. An integer that represents the intensity of the red component of
the color to use when drawing this part of the control. In this and the next two
elements, use 16-bit unsigned integers to give the intensity values of three additive
primary colors.

■ Green component. An integer that represents the intensity of the green component of
the color to use when drawing this part of the control.

■ Blue component. An integer that represents the intensity of the blue component of the
color to use when drawing this part of the control.

■ Part identifier and red, green, and blue components for the next control part. You can
list parts in any order in this resource. If the application specifies a part identifier that
cannot be found, the Control Manager uses the colors for the control’s first identifiable
part. If a part is not listed in the control color table, the Dialog Manager draws it in its
default color.

The Control Definition Function 5

The resource type for a control definition function is 'CDEF'. The resource data is
the compiled or assembled code of the function. See “Defining Your Own Control
Definition Function” beginning on page 5-109 for information about creating a control
definition function.
Control Manager Reference 5-123

C H A P T E R 5

Control Manager
Summary of the Control Manager 5

Pascal Summary 5

Constants 5

CONST

{control definition IDs}

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

useWFont = 8; {add to above to display control title in }

{ the window font}

scrollBarProc = 16; {scroll bar}

popupMenuProc = 1008; {pop-up menu}

popupMenuCDEFproc = popupMenuProc; {synonym for compatibility}

{pop-up menu CDEF variation codes}

popupFixedWidth = $0001; {add to popupMenuProc to use }

{ fixed-width control}

popupUseAddResMenu = $0004; {add to popupMenuProc to specify a }

{ value of type ResType in the }

{ contrlRfCon field of the control }

{ record; Menu Manager adds }

{ resources of this type to the menu}

popupUseWFont = $0008; {add to popupMenuProc to show control }

{ title in the window font}

{part codes}

inButton = 10; {button}

inCheckBox = 11; {checkbox or radio button}

inUpButton = 20; {up arrow for a vertical scroll bar, }

{ left arrow for a horizontal scroll bar}

inDownButton = 21; {down arrow for a vertical scroll bar, }

{ right arrow for a horizontal scroll bar}

inPageUp = 22; {gray area above scroll box for a }

{ vertical scroll bar, gray area to }

{ left of scroll box for a horizontal }

{ scroll bar}
5-124 Summary of the Control Manager

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
inPageDown = 23; {gray area below scroll box for a }

{ vertical scroll bar, gray area to }

{ right of scroll box for a horizontal }

{ scroll bar}

inThumb = 129; {scroll box (or other indicator)}

{pop-up title characteristics}

popupTitleBold = $00000100; {boldface font style}

popupTitleItalic = $00000200; {italic font style}

popupTitleUnderline = $00000400; {underline font style}

popupTitleOutline = $00000800; {outline font style}

popupTitleShadow = $00001000; {shadow font style}

popupTitleCondense = $00002000; {condensed characters}

popupTitleExtend = $00004000; {extended characters}

popupTitleNoStyle = $00008000; {monostyled text}

popupTitleLeftJust = $00000000; {place title left of pop-up box}

popupTitleCenterJust = $00000001; {center title over pop-up box}

popupTitleRightJust = $000000FF; {place title right of pop-up box}

{axis constraints for DragControl procedure}

noConstraint = 0; {no constraint}

hAxisOnly = 1; {drag along horizontal axis only}

vAxisOnly = 2; {drag along vertical axis only}

{constants for the message parameter in a control definition function}

drawCntl = 0; {draw the control or its part}

testCntl = 1; {test where mouse button is pressed}

calcCRgns = 2; {calculate region for control or indicator in }

{ 24-bit systems}

initCntl = 3; {peform any additional control initialization}

dispCntl = 4; {take any additional disposal actions}

posCntl = 5; {move indicator and update its setting}

thumbCntl = 6; {calculate parameters for dragging indicator}

dragCntl = 7; {perform any custom dragging of control or }

{ its indicator}

autoTrack = 8; {execute action procedure specified by your }

{ function}

calcCntlRgn = 10; {calculate region for control}

calcThumbRgn = 11; {calculate region for indicator}

{part identifiers for ColorSpec records in a control color table resource}

cFrameColor = 0; {frame color; for scroll bars, also fore- }

{ ground color for scroll arrows and gray area}
Summary of the Control Manager 5-125

C H A P T E R 5

Control Manager
cBodyColor = 1; {for scroll bars, background color for }

{ scroll arrows and gray area; for other }

{ controls, the fill color for body of control}

cTextColor = 2; {text color; unused for scroll bars}

cThumbColor = 3; {Reserved}

Data Types 5

TYPE ControlPtr = ^ControlRecord;

ControlHandle = ^ControlPtr;

ControlRecord =

PACKED RECORD

nextControl: ControlHandle; {next control}

contrlOwner: WindowPtr; {control's window}

contrlRect: Rect; {rectangle}

contrlVis: Byte; {255 if visible}

contrlHilite: Byte; {highlight state}

contrlValue: Integer; {control's current setting}

contrlMin: Integer; {control's minimum setting}

contrlMax: Integer; {control's maximum setting}

contrlDefProc: Handle; {control definition function}

contrlData: Handle; {data used by contrlDefProc}

contrlAction: ProcPtr; {action procedure}

contrlRfCon: LongInt; {control's reference value}

contrlTitle: Str255; {control's title}

END;

AuxCtlPtr = ^AuxCtlRec;

AuxCtlHandle = ^AuxCtlPtr;

AuxCtlRec =

RECORD

acNext: AuxCtlHandle; {handle to next AuxCtlRec}

acOwner: ControlHandle; {handle to this record's control}

acCTable: CCTabHandle; {handle to color table record}

acFlags: Integer; {reserved}

acReserved: LongInt; {reserved for future use}

acRefCon: LongInt; {for use by application}

END;
5-126 Summary of the Control Manager

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
CCTabPtr = ^CtlCTab;

CCTabHandle = ^CCTabPtr;

CtlCTab =

RECORD

ccSeed: LongInt; {reserved; set to 0}

ccRider: Integer; {reserved; set to 0}

ctSize: Integer; {number of ColorSpec records in next }

{ field; 3 for standard controls}

ctTable: ARRAY[0..3] OF ColorSpec;

END;

Control Manager Routines 5

Creating Controls

FUNCTION GetNewControl (controlID: Integer; owner: WindowPtr)
: ControlHandle;

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect;
title: Str255; visible: Boolean;
value: Integer; min: Integer; max: Integer;
procID: Integer; refCon: LongInt)
: ControlHandle;

Drawing Controls

{UpdateControls is also spelled as UpdtControl}

PROCEDURE ShowControl (theControl: ControlHandle);

PROCEDURE UpdateControls (theWindow: WindowPtr; updateRgn: RgnHandle);

PROCEDURE DrawControls (theWindow: WindowPtr);

PROCEDURE Draw1Control (theControl: ControlHandle);

Handling Mouse Events in Controls

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr;
VAR theControl: ControlHandle): Integer;

FUNCTION TrackControl (theControl: ControlHandle; thePoint: Point;
actionProc: ProcPtr): Integer;

FUNCTION TestControl (theControl: ControlHandle; thePt: Point)
: Integer;
Summary of the Control Manager 5-127

C H A P T E R 5

Control Manager
Changing Control Settings and Display

{some routines have 2 spellings——see Table 5-1 for the alternate spellings}

PROCEDURE SetControlValue (theControl: ControlHandle; theValue: Integer);

PROCEDURE SetControlMinimum (theControl: ControlHandle; minValue: Integer);

PROCEDURE SetControlMaximum (theControl: ControlHandle; maxValue: Integer);

PROCEDURE SetControlTitle (theControl: ControlHandle; title: Str255);

PROCEDURE HideControl (theControl: ControlHandle);

PROCEDURE MoveControl (theControl: ControlHandle; h: Integer;
v: Integer);

PROCEDURE SizeControl (theControl: ControlHandle; w: Integer; h:
Integer);

PROCEDURE HiliteControl (theControl: ControlHandle;
hiliteState: Integer);

PROCEDURE DragControl (theControl: ControlHandle; startPt: Point;
limitRect: Rect; slopRect: Rect;
axis: Integer);

PROCEDURE SetControlColor (theControl: ControlHandle; newColorTable:
CCTabHandle);

PROCEDURE SetControlAction (theControl: ControlHandle;
actionProc: ProcPtr);

Determining Control Values

{some routines have 2 spellings——see Table 5-1 for the alternate spellings}

FUNCTION GetControlValue (theControl: ControlHandle): Integer;

FUNCTION GetControlMinimum (theControl: ControlHandle): Integer;

FUNCTION GetControlMaximum (theControl: ControlHandle): Integer;

PROCEDURE GetControlTitle (theControl: ControlHandle; VAR title: Str255);

FUNCTION GetControlReference
(theControl: ControlHandle): LongInt;

PROCEDURE SetControlReference
(theControl: ControlHandle; data: LongInt);

FUNCTION GetControlAction (theControl: ControlHandle): ProcPtr;

FUNCTION GetControlVariant (theControl: ControlHandle): Integer;

FUNCTION GetAuxiliaryControlRecord
(theControl: ControlHandle;
VAR acHndl: AuxCtlHandle): Boolean;

Removing Controls

PROCEDURE DisposeControl (theControl: ControlHandle);

PROCEDURE KillControls (theWindow: WindowPtr);
5-128 Summary of the Control Manager

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
Application-Defined Routines 5

Defining Your Own Control Definition Function
FUNCTION MyControl (varCode: Integer; theControl: ControlHandle;

message: Integer; param: LongInt) : LongInt;

Defining Your Own Action Procedures

PROCEDURE MyAction (theControl: ControlHandle; partCode: Integer);

PROCEDURE MyIndicatorAction;

C Summary 5

Constants 5

enum {

/*control definition IDs*/

pushButProc = 0, /*button*/

checkBoxProc = 1, /*checkbox*/

radioButProc = 2, /*radio button*/

useWFont = 8, /*add to above to display control */

/* title in the window font*/

scrollBarProc = 16, /*scroll bar*/

popupMenuProc = 1008, /*pop-up menu*/

/*pop-up menu CDEF variation codes*/

popupFixedWidth = 1 << 0, /*add to popupMenuProc to use */

/* use fixed-width control*/

popupUseAddResMenu = 1 << 2, /*add to popupMenuProc to specify a */

/* value of type ResType in the */

/* contrlRfCon field of the control */

/* record; Menu Manager adds */

/* resources of this type to the menu*/

popupUseWFont = 1 << 3 /*add to popupMenuProc to display */

/* control title in the window font*/

};
Summary of the Control Manager 5-129

C H A P T E R 5

Control Manager
enum {

/*part codes*/

inButton = 10, /*button*/

inCheckBox = 11, /*checkbox or radio button*/

inUpButton = 20, /*up arrow for a vertical scroll bar, */

/* left arrow for a horizontal scroll bar*/

inDownButton = 21, /*down arrow for a vertical scroll bar, */

/* right arrow for a horizontal scroll bar*/

inPageUp = 22, /*gray area above scroll box for a */

/* vertical scroll bar, gray area to */

/* left of scroll box for a horizontal */

/* scroll bar*/

inPageDown = 23, /*gray area below scroll box for a */

/* vertical scroll bar, gray area to */

/* right of scroll box for a horizontal */

/* scroll bar*/

inThumb = 129 /*scroll box (or other indicator)*/

};

enum {

/*pop-up title characteristics*/

popupTitleBold = 1 << 8, /*boldface font style*/

popupTitleItalic = 1 << 9, /*italic font style*/

popupTitleUnderline = 1 << 10, /*underline font style*/

popupTitleOutline = 1 << 11, /*outline font style*/

popupTitleShadow = 1 << 12, /*shadow font style*/

popupTitleCondense = 1 << 13, /*condensed text*/

popupTitleExtend = 1 << 14, /*extended text*/

popupTitleNoStyle = 1 << 15 /*monostyled text*/

};

enum {

/*pop-up title characteristics*/

popupTitleLeftJust = 0x00000000, /*place title left of pop-up box*/

popupTitleCenterJust = 0x00000001, /*center title over pop-up box*/

popupTitleRightJust = 0x000000FF, /*place title right of pop-up box*/

/*axis constraints for DragControl procedure*/

noConstraint = 0, /*no constraint*/

hAxisOnly = 1, /*constrain movement to horizontal axis only*/

vAxisOnly = 2, /*constrain movement to vertical axis only*/
5-130 Summary of the Control Manager

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
/*constants for the message parameter in a control definition function*/

drawCntl = 0, /*draw the control or control part*/

testCntl = 1, /*test where mouse button was pressed*/

calcCRgns = 2, /*calculate region for control or indicator in */

/* 24-bit systems*/

initCntl = 3, /*do any additional control initialization*/

dispCntl = 4, /*take any additional disposal actions*/

posCntl = 5, /*move indicator and update its setting*/

thumbCntl = 6, /*calculate parameters for dragging indicator*/

dragCntl = 7, /*peform any custom dragging of control or */

/* its indicator*/

autoTrack = 8, /*execute action procedure specified by your */

/* function*/

calcCntlRgn = 10, /*calculate region for control*/

calcThumbRgn = 11, /*calculate region for indicator*/

/*part identifiers for ColorSpec records in a control color table resource*/

cFrameColor = 0, /*frame color; for scroll bars, also foreground */

/* color for scroll arrows and gray area*/

cBodyColor = 1, /*for scroll bars, background color for scroll */

/* arrows and gray area; for other controls, */

/* the fill color for body of control*/

cTextColor = 2, /*text color; for scroll bars, unused*/

cThumbColor = 3 /*Reserved*/

};

Data Types 5

struct ControlRecord {

struct ControlRecord **nextControl; /*next control*/

WindowPtr contrlOwner; /*control's window*/

Rect contrlRect; /*rectangle*/

unsigned char contrlVis; /*255 if visible*/

unsigned char contrlHilite; /*highlight state*/

short contrlValue; /*control's current setting*/

short contrlMin; /*control's minimum setting*/

short contrlMax; /*control's maximum setting*/

Handle contrlDefProc; /*control definition function*/

Handle contrlData; /*data used by contrlDefProc*/

ProcPtr contrlAction; /*action procedure*/

long contrlRfCon; /*control's reference value*/

Str255 contrlTitle; /*control's title*/

};
Summary of the Control Manager 5-131

C H A P T E R 5

Control Manager
typedef struct ControlRecord ControlRecord;

typedef ControlRecord *ControlPtr, **ControlHandle;

struct AuxCtlRec {

Handle acNext; /*handle to next AuxCtlRec*/

ControlHandle acOwner; /*handle to this record's control*/

CCTabHandle acCTable; /*handle to color table record*/

short acFlags; /*reserved*/

long acReserved; /*reserved for future use*/

long acRefCon; /*for use by application*/

};

typedef struct AuxCtlRec AuxCtlRec;

typedef AuxCtlRec *AuxCtlPtr, **AuxCtlHandle;

struct CtlCTab {

long ccSeed; /*reserved; set to 0*/

short ccRider; /*reserved; set to 0*/

short ctSize; /*number of ColorSpec records in next */

/* field; 3 for standard controls*/

ColorSpec ctTable[4];

};

typedef struct CtlCTab CtlCTab;

typedef CtlCTab *CCTabPtr, **CCTabHandle;

Control Manager Routines 5

Creating Controls

pascal ControlHandle GetNewControl
(short controlID, WindowPtr owner);

pascal ControlHandle NewControl
(WindowPtr theWindow, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short value, short min, short max,
short procID, long refCon);

Drawing Controls

/*UpdateControls is also spelled as UpdtControl*/

pascal void ShowControl (ControlHandle theControl);

pascal void UpdateControls (WindowPtr theWindow, RgnHandle updateRgn);

pascal void DrawControls (WindowPtr theWindow);

pascal void Draw1Control (ControlHandle theControl);
5-132 Summary of the Control Manager

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
Handling Mouse Events in Controls

pascal short FindControl (Point thePoint, WindowPtr theWindow,
ControlHandle *theControl);

pascal short TrackControl (ControlHandle theControl, Point thePoint,
ProcPtr actionProc);

pascal short TestControl (ControlHandle theControl, Point thePt);

Changing Control Settings and Display
/*some routines have 2 spellings——see Table 5-1 for the alternate spellings*/

pascal void SetControlValue (ControlHandle theControl, short theValue);

pascal void SetControlMinimum
(ControlHandle theControl, short minValue);

pascal void SetControlMaximum
(ControlHandle theControl, short maxValue);

pascal void SetControlTitle (ControlHandle theControl,
ConstStr255Param title);

pascal void HideControl (ControlHandle theControl)

pascal void MoveControl (ControlHandle theControl, short h, short v);

pascal void SizeControl (ControlHandle theControl, short w, short h);

pascal void HiliteControl (ControlHandle theControl, short hiliteState);

pascal void DragControl (ControlHandle theControl, Point startPt,
const Rect *limitRect,
const Rect *slopRect, short axis);

pascal void SetControlAction (ControlHandle theControl, ProcPtr actionProc)

pascal void SetControlColor (ControlHandle theControl,
CCTabHandle newColorTable);

Determining Control Values
/*some routines have 2 spellings——see Table 5-1 for the alternate spellings*/

pascal short GetControlValue
(ControlHandle theControl);

pascal short GetControlMinimum
(ControlHandle theControl);

pascal short GetControlMaximum
(ControlHandle theControl);

pascal void GetControlTitle (ControlHandle theControl, Str255 title);

pascal long GetControlReference
(ControlHandle theControl);

pascal void SetControlReference
(ControlHandle theControl, long data);

pascal ProcPtr GetControlAction
 (ControlHandle theControl);
Summary of the Control Manager 5-133

C H A P T E R 5

Control Manager
pascal short GetControlVariant
(ControlHandle theControl);

pascal Boolean GetAuxiliaryControlRecord
(ControlHandle theControl,
AuxCtlHandle *acHndl);

Removing Controls

pascal void DisposeControl (ControlHandle theControl);

pascal void KillControls (WindowPtr theWindow);

Application-Defined Routines 5

Defining Your Own Control Definition Function

pascal long MyControl (short varCode, ControlHandle theControl,
short message, long param);

Defining Your Own Action Procedures

pascal void MyAction (ControlHandle theControl, short partCode);

pascal void MyIndicatorAction;

Assembly-Language Summary 5

Data Structures 5

ControlRecord Data Structure

0 nextControl long handle to next control in control list
4 contrlOwner long pointer to this control’s window
8 contrlRect 8 bytes control’s rectangle

16 contrlVis 1 byte value of 255 if control is visible
17 contrlHilite 1 byte highlight state
18 contrlValue word control’s current setting
20 contrlMin word control’s minimum setting
22 contrlMax word control’s maximum setting
24 contrlDefProc long handle to control definition function
28 contrlData long data used by control definition function
32 contrlAction long address of action procedure
36 contrlRfCon long control’s reference value
40 contrlTitle 256 bytes control title (preceded by length byte)
5-134 Summary of the Control Manager

C H A P T E R 5

Control Manager

5
C

ontrol M
anager
AuxCtlRec Data Structure

Global Variables 5

0 acNext long handle to next AuxCtlRec record in control list
4 acOwner long handle to this record’s control
8 acCTable long handle to color table for this control

12 acFlags word miscellaneous flags
14 acReserved long reserved for use by Apple Computer, Inc.
18 acRefCon long for use by application

AuxCtlHead First in a linked list of auxiliary control records
AuxWinHead Contains a pointer to the linked list of auxiliary control records
DragHook Address of procedure to execute during TrackControl and DragControl
DragPattern Pattern of dragged region’s outline (8 bytes)
Summary of the Control Manager 5-135

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	Control Manager, Part 2 (Reference)
	Contr ol Mana ger Refer ence
	The Control Record
	The Auxiliary Control Record
	The Pop-Up Menu Private Data Record
	The Control Color Table Record
	Control Manager Routines
	Creating Controls
	Drawing Controls
	Handling Mouse Events in Controls
	Changing Control Settings and Display
	Determining Control Values
	Removing Controls

	Application-Defined Routines
	Defining Your Own Control Definition Function
	Defining Your Own Action Procedures

	Resources
	The Control Resource
	The Control Color Table Resource
	The Control Definition Function

	Summary of the Control Manager
	Pascal Summary
	Constants
	Data Types
	Control Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Control Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

