CHAPTER 6

Dialog Manager

MyDr awDef aul t But t onQut | i ne uses this gray for outlining the dimmed default
button. Otherwise, MyDr awDef aul t But t onQut | i ne uses the QuickDraw procedure
PenPat to draw a gray outline on black-and-white monitors.

Displaying Alert and Dialog Boxes

You typically define alerts and dialog boxes in resources, as described in “Creating Alert
Sounds and Alert Boxes” beginning on page 6-18 and in “Creating Dialog Boxes”
beginning on page 6-23. To create an alert or a dialog box, you use a Dialog Manager
function—such as Al ert or Get NewDi al og—that incorporates information from your
item list resource and from your alert resource or dialog resource into a data structure,
called a dialog record, in memory. The Dialog Manager creates a dialog record, which is a
data structure of type Di al ogRecor d, whenever your application creates an alert or a
dialog box.

The Dialog Manager automatically displays alert boxes at the appropriate alert stages; it
also automatically displays those dialog boxes that you specify as visible in their dialog
resources. But you must use a Window Manager routine such as ShowW ndowto display
dialog boxes that you specify as invisible in their dialog resources.

When you use a function that creates an alert (namely, Al ert, St opAl ert, Not eAl ert,
or Caut i onAl ert), the Dialog Manager automatically displays the alert box at the alert
stages that you specify with the vi si bl e constant in your alert resource. You do not use
any routines other than the Al ert, St opAl ert, Not eAl ert, and Cauti onAl ert
functions to display an alert box.

When you specify the vi si bl e constant in a dialog resource, the Dialog Manager
immediately displays the dialog box when you use the Get NewDi al og function. If

you instead specify the i nvi si bl e constant so that the dialog box is initially invisible
when you call Get NewDi al 0g, use the Window Manager procedure ShowW ndow

to display it. This is useful if you need to manipulate a dialog item dynamically using
Cet Di al ogl t emand Set Di al ogl t embefore you display the dialog box. For example,
if you want to install an application-defined draw procedure for a dialog box, you
specify the i nvi si bl e constant in a dialog resource, pass the resource ID of that dialog
resource in a parameter to Get NewDi al og, use Get Di al ogl t emand Set Di al oglt em
to install the application-defined draw procedure, then call ShowW ndowto display the
dialog box, as previously shown in Listing 6-16 on page 6-58.

You should always specify Poi nt er (- 1) as a parameter to Get NewDi al og to display a
dialog box as the active (that is, frontmost) window.

You should perform the following tasks in conjunction with displaying an alert box or a
dialog box:
» Specify an appropriate screen position at which to display the alert box or dialog box.

= Deactivate the frontmost window (if one exists) before displaying an alert box or a
modal dialog box.

s Determine whether you've already created a modeless dialog box and, if so, select it
instead of creating a new instance of it.

» Adjust your menus appropriately for a modal dialog box with editable text items and
for any movable modal and modeless dialog box you wish to display.

Using the Dialog Manager 6-61

JabBeuey bojeig n

6-62

CHAPTER 6

Dialog Manager

The Di al ogSel ect function uses the QuickDraw procedure Set Por t to make the alert
or dialog box the current graphics port. The Modal Di al og procedure and the functions
that create alert boxes use Di al ogSel ect to respond to update and activate events. You
can also use Di al ogSel ect to respond to update and activate events in your modeless
and movable modal dialog boxes. In response to update events, you can instead use the
Updat eDi al og function, which also makes the dialog box the current graphics port.

In these cases, it’s generally not necessary for your application to call Set Port when
displaying, updating, or activating alert boxes and dialog boxes. See Inside Macintosh:
Imaging for more information about Set Port .

These and other related issues are explained in detail in the next several sections of
this chapter.

Positioning Alert and Dialog Boxes

As previously described in “Creating Alert Sounds and Alert Boxes” beginning on

page 6-18 and “Creating Dialog Boxes” beginning on page 6-23, you specify a rectangle
in every alert resource and dialog resource. The dimensions of this rectangle determine
the dimensions of the alert box or dialog box. You can also let the rectangle coordinates
serve as the global coordinates that determine the position of the alert box or dialog box,
or you can let the Dialog Manager automatically locate it for you according to three
standard positions. To specify these standard positions in System 7, your application can
use the following constants in the Rez input files for alert resources and dialog resources:

Constant Description

al ert Posi ti onPar ent W ndow Position the alert or dialog box over
the frontmost window

al ert Posi ti onMai nScr een Position the alert or dialog box on
the main screen

al ert Posi ti onPar ent W ndowScr een Position the alert or dialog box on
the screen containing the frontmost
window

If your application positions alert or dialog boxes on its own, don’t use these
constants, because your code may conflict with the Dialog Manager. If you do use
these constants, use them to specify the positions of both alert boxes and dialog boxes.

The next three figures illustrate various alert boxes that might appear when the user is
working on two monitors: a 12-inch monitor (the main screen) that displays the menu
bar and a full-page monitor that displays a document window. These figures show
where the Dialog Manager places an alert box according to the position specified in
the alert resource.

Figure 6-33 shows an alert box displayed in response to an error made by the
user while working on a document; the alert resource specifies the

al ert Posi ti onPar ent W ndow constant, which tells the Dialog Manager to
position the alert box over the frontmost window so that the window’s title bar
appears. This position is appropriate for an alert box or a dialog box that relates
directly to the frontmost window. You should always try to position alert boxes
and dialog boxes where the user is working.

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Figure 6-33 An alert box in front of a document window

-~
Document

VAN

Not all alert boxes or dialog boxes relate to the frontmost window. Some may relate
only to actions the user performs on the main screen. For example, Figure 6-34
illustrates an alert box displayed when the user chooses the About command from
the Apple menu. For an alert box or dialog box such as this, you should specify the
al ert Posi ti onMai nScr een constant in the alert or dialog resource. Figure 6-34

shows how the Dialog Manager centers such an alert box near the top of the main screen.

Figure 6-34 An alert box on the main screen

Document

Using the Dialog Manager

6-63

1abeue bojeig n

CHAPTER 6

Dialog Manager

Sometimes you may need to display an alert box or a dialog box that applies neither to
the frontmost window nor to an action performed on the main screen. To catch the user’s
attention, you should position such an alert or dialog box on the screen where the user is
working. For example, if you need to alert the user that available disk space is low, you
should specify the al ert Posi ti onPar ent W ndowScr een constant. Figure 6-35
shows how the Dialog Manager displays such an alert box or dialog box when a
document window appears on a screen other than the main screen.

Figure 6-35 An alert box in the alert position of the document window screen

6-64

If you don’t specify a positioning constant, the Dialog Manager uses the rectangle
coordinates in your alert resource or dialog resource as global coordinates specifying
where to position your alert or dialog box. If you wish to specify the position yourself in
this manner, you should generally try to center alert and dialog boxes between the left
and right margins of the screen or the window where the user is working, whichever is
most appropriate. If you don’t use the positioning constants, you should also place the
tops of alert and dialog boxes (including the title bars of modeless and movable modal
dialog boxes) below the menu bar. You can use the Get MBar Hei ght function, described
in the chapter “Menu Manager” in this book, to determine the height of the menu bar.

Deactivating Windows Behind Alert and Modal Dialog Boxes

For alert and modal dialog boxes, the Modal Di al og procedure traps all events before
they are passed to your event loop, which normally handles activate events for your
windows. Thus, if a window is active, you must explicitly deactivate it before displaying
an alert box or a modal dialog box.

Your modeless dialog boxes and movable modal dialog boxes never use the
Modal Di al og procedure. Therefore, you do not have to deactivate the frontmost
window explicitly before displaying a modeless or a movable modal dialog box.

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Instead, the Event Manager continues sending your application activate events for
your windows as needed, which you typically handle in your normal event loop. (The
chapters “Event Manager” and “Window Manager” in this book explain how to
activate and deactivate windows.)

Plate 2 at the front of this book shows an alert box that an application displays when the
user chooses the About command in the Apple menu. Listing 6-18 shows an application-
defined routine, ShowMy About Box, that displays this alert box.

Listing 6-18 Deactivating the front window before displaying an alert box

PROCEDURE ShowWy About Box;

VAR
itemHit: I nt eger;
docW ndow. W ndowPtr;
event: Event Recor d;
BEA N
docW ndow : = Front W ndow, {get the front w ndow}

{if there's a front wi ndow, deactivate it}
| F docW ndow <> NI L THEN
DoAct i vat e(docW ndow, FALSE, event);
{then show the alert box}
itenHi t := Al ert(kAboutBoxlI D, @EventFilter);
END;

The ShowMy About Box routine uses the Window Manager function Fr ont W ndow If
Fr ont W ndowreturns a valid pointer, ShowMy About Box calls its DoAct i vat e
procedure to deactivate that window before calling the Al ert function to display the
alert box. When the user clicks the OK button, the alert box is dismissed. The Event
Manager then sends the application update events so that it can update the contents of
any windows as appropriate, and the Event Manager sends the application an activate
event so that it can activate the previously frontmost window again. The application
handles these events in its normal event loop.

If your application does not display an alert box during certain alert stages, use the

Cet Al ert St age function to test for those stages before deactivating the active window.
The Get Al ert St age function returns the last occurrence of an alert as a number from
0 to 3. Figure 6-36 shows an alert box that appears only after the user repeats an error
three consecutive times.

Figure 6-36 An alert box displayed only after the third alert stage

You must keep your graphic within
the margins of the page.

Using the Dialog Manager 6-65

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

Listing 6-19 shows how you might use Get Al ert St age to determine if such an alert
needs to be displayed before deactivating the document window.

Listing 6-19 Using Get Al er t St age to determine when to deactivate the front window

PROCEDURE MyAl ert;

VAR
itenHit: I nt eger;
al ert St age: I nt eger;
docW ndow:. W ndowPt r;
event : Event Recor d;
BEG N
docW ndow : = Front W ndow,

alertStage : = GetAl ert St age;
IF (alertStage >= 2) AND (docW ndow <> NI L) THEN {at 3rd alert stage, }
DoAct i vat e(docW ndow, FALSE, event); { deactivate front w ndow & }

itenH t
END;

.= StopAlert(kStopAlerti D, @W¥EventFilter); { display alert box}

Displaying Modeless Dialog Boxes

For a modeless dialog box, check to make sure it isn’t already open before you create and
display it. For example, the modeless dialog box shown in Figure 6-37 should appear
when the user chooses the Global Changes command. After invoking this command, the
user may select another window, thereby deactivating the modeless dialog box.

Figure 6-37 A modeless dialog box for changing text in a document

6-66

SC=——— Global Changes

Find What: || |
|

Change To: |

So as not to create multiple versions of this dialog box whenever the user chooses the
Global Changes command, the application-defined routine Dod obal ChangesDi al og,
shown in Listing 6-20, checks whether the dialog box already exists.

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Listing 6-20 Ensuring that the modeless dialog box isn’t already open before creating it

FUNCTI ON Dod obal ChangesDi al og: OSErr;

BEG N
Dod obal ChangesDi al og : = kSuccess; {assune success}
| F gChangeDi al ogPtr = NIL THEN {it doesn't exist, so create it}
BEG N

gChangeDi al ogPtr : = Get NewDi al og(k@ obal ChangesDl og, NI L, Pointer(-1));
| F gChangeDi alogPtr = NNL THEN {handl e fail ure}
BEG N
Dod obal ChangesDi al og : = kFai |l ed;
EXI T(DoShowivbdel essFi ndDi al ogBox) ;
END;
{set window refCon to store value that identifies the dbox}
Set WRef Con(gChangeDi al ogPtr, Longl nt (k@ obal ChangesDl og)) ;
END
ELSE {it does exist, so display and select it}
BEG N
ShowW ndow(gChangeDi al ogPtr); {it's hidden; so show it}
Sel ect W ndow(gChangeDi al ogPtr);{bring it to the front}
END;
My Adj ust Menus; {adj ust the menus}
END;

In this example, a pointer to the modeless dialog box is stored in a global variable. If

the global variable does not contain a pointer, DoG obal ChangesDi al og uses

Get NewDi al og to create and draw the dialog box. Later, if the user decides to close the
modeless dialog box, the application merely hides it so that when the user needs it again,
Dod obal ChangesDi al og can display the dialog box in the same location and with
the same text selected as when the user last used it. Hiding this dialog box is illustrated
later in Listing 6-30 on page 6-94.

If the dialog box has already been created, DoG obal ChangesDi al og uses the Window

Manager procedures ShowW ndow to make the dialog box visible and Sel ect W ndow
to make it active.

Finally, Dod obal ChangesDi al og uses the application-defined routine
MyAdj ust Menus to adjust the menus as appropriate for the modeless dialog box.

Listing 6-34 on page 6-98 illustrates an application-defined routine,

DoAct i vat ed obal ChangesDi al og, that handles activate events for this
modeless dialog box. The DoAct i vat eG obal ChangesDi al og routine in
turn uses Di al ogSel ect, which sets the graphics port to the modeless dialog
box whenever the user makes it active.

Using the Dialog Manager 6-67

JabBeuey bojeig n

6-68

CHAPTER 6

Dialog Manager

Adjusting Menus for Modal Dialog Boxes

The Dialog Manager and the Menu Manager interact to provide various degrees of
access to the menus in your menu bar. For alert boxes and modal dialog boxes without
editable text items, you can simply allow system software to provide the appropriate
access to your menu bar.

When your application displays either an alert box or a modal dialog box (that is, a
window of type dBoxPr oc), these actions occur:

1. System software disables all menu items in the Help menu, except the Show Balloons
(or Hide Balloons) command, which system software enables.

2. System software disables all menu items in the Application menu.

3. If the Keyboard menu appears in the menu bar, system software enables that menu
but disables the About Keyboards command.

When your application displays an alert box or calls the Mbdal Di al og procedure

for a modal dialog box (described in “Responding to Events in Modal Dialog Boxes”
beginning on page 6-82), the Dialog Manager determines whether any of the following
cases is true:

= Your application does not have an Apple menu.

» Your application has an Apple menu, but the menu is disabled when the dialog box
is displayed.

» Your application has an Apple menu, but the first item in that menu is disabled when
the dialog box is displayed.

If none of these cases is true, system software behaves as follows:
1. The Menu Manager disables all of your application’s menus.

2. If the modal dialog box contains a visible and active editable text field—and if the
menu bar contains a menu having commands with the standard keyboard equivalents
Command-X, Command-C, and Command-V—then the Menu Manager enables
those three commands and the menu that contains them. The user can then use either
the menu commands or their keyboard equivalents to cut, copy, and paste text.

(The menu item having keyboard equivalent Command-X must be one of the first
five menu items.)

When your application displays alert boxes and modal dialog boxes with no editable text
items, it can safely allow system software to handle menu bar access as described in
steps 1 and 2.

However, because system software cannot handle the Undo or Clear command (or any
other context-appropriate command) for you, your application should handle its own
menu bar access for modal dialog boxes with editable text items by performing the
following tasks:

» disable the Apple menu or the first item in the Apple menu (typically, your
application’s About command) in order to take control of its menu bar access
when displaying a modal dialog box

Using the Dialog Manager

CHAPTER 6

Dialog Manager

= disable all of its menus except the Edit menu, as well as any inappropriate commands
in the Edit menu

= use the Dialog Manager procedures Di al ogCut, Di al ogCopy, Di al ogPast e,
and Di al ogDel et e to support the Cut, Copy, Paste, and Clear commands in editable
text items

= provide your own code for supporting the Undo command

= enable your application’s items in the Help menu as appropriate (system software
disables all items except the Hide Balloons/Show Balloons command)

You don’t need to do anything else for the system-handled menus—namely, Application,
Keyboard, and Help. System software handles these menus for you automatically.

The Di al ogCut, Di al ogCopy, Di al ogPast e, and Di al ogDel et e procedures are
described beginning on page 6-132. Your application can test whether a dialog box is the
front window when handling mouse-down events in the Edit menu and then call these
routines as appropriate.

Figure 6-38 illustrates how an application disables all of its own menus except its Edit
menu when displaying a modal dialog box containing editable text items. Access to the
Edit menu benefits the user who instead of typing prefers copying from and pasting into
editable text items.

Figure 6-38 Menu access when displaying a modal dialog box

[& fie Edit Fesd Yous (2 4%

My Window |

Please type your dog’s name:
[tappys. hua |

Listing 6-21 on the next page shows an application-defined routine, MyAdj ust Menus,
that the SurfWriter application calls to adjust its menus after it displays a window or
dialog box, but before it calls Modal Di al og to handle events in a modal dialog box.
When MyAdj ust Menus determines that the frontmost window is a modal dialog box
containing an editable text item, it calls another application-defined routine,

MyAdj ust MenusFor Di al ogs, which adjusts the menus appropriately. Listing 6-22 on
the next page shows the MyAdj ust MenusFor Di al ogs routine.

Using the Dialog Manager 6-69

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

Listing 6-21 Adjusting menus for various windows

PROCEDURE MyAdj ust Menus:

VAR
Wi ndow: W ndowPt r;
wi ndowType: | nteger;
nenu: MenuHandl e;
BEA N
wi ndow : = Front W ndow;

wi ndowType : = MyGet W ndowType(w ndow) ;

CASE wi ndowType OF

kMyDocW ndow: {docunment window is in front}
MyAdj ust MenusFor DocW ndows;

kMyDi al ogW ndow. {a dialog box is in front}
MyAdj ust MenusFor Di al ogs;

kDAW ndow. {adj ust nenus accordingly for a DA w ndow}
My Adj ust MenusFor DA,

kKNil: {there isn't a front w ndow}
MyAdj ust MenusNoW ndows;

END; {of CASE}

Dr awMenuBar ; {redraw nenu bar}

END;

The MyAdj ust MenusFor Di al ogs routine in Listing 6-22 first determines what type of
dialog box is in front: modal, movable modal, or modeless. For modal dialog boxes,
MyAdj ust MenusFor Di al ogs disables the Apple menu so that the application can take
control of its menus away from the Dialog Manager. The MyAdj ust MenusFor Di al ogs
routine then uses the Menu Manager routines Get MenuHandl e and Di sabl el t emto
disable all other application menus except the Edit menu. (To provide help balloons that
explain why these menus are unavailable to the user, MyAdj ust MenusFor Di al ogs
uses the Help Manager procedure HVSet MenuRes| D to reassign help resources to these
menus; see the chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox for
more information.)

Listing 6-22 Disabling menus for a modal dialog box with editable text items

PROCEDURE MyAdj ust MenusFor Di al ogs;

VAR
w ndow. W ndowPt r ;
wi ndowType: | nteger;
myErr: OSErr;
nmenu: MenuHandl e;
BEG N
Wi ndow : = Front W ndow;,

6-70 Using the Dialog Manager

CHAPTER 6

Dialog Manager

Wi ndowType : = MyGet W ndowType(w ndow) ;
CASE wi ndowType OF
kMyModal Di al ogs:
BEG N
menu : = CGet MenuHandl e(mAppl e) ; {get handle to Apple nenu}
IF menu = NIL THEN
EXI T(MyAdj ust MenusFor Di al ogs) ;

Di sabl el tem(menu, 0); {di sabl e Apple nmenu to get control of nenus}
nyErr := HVSBet MenuResI D(nFile, kFileHelplD); {set up help balloons}
nmenu : = Get MenuHandl e(nFile); {get handle to File nenu}

IF menu = NIL THEN
EXI T(MyAdj ust MenusFor Di al ogs) ;
Di sabl el ten{nmenu, 0); {di sable File nenu}
myErr := HMBet MenuReslI D(nFile, kFileHelplD); {set up hel p ball oons}
I F nyErr <> NoErr THEN
EXI T(MyAdj ust MenusFor Di al ogs) ;
menu : = CGet MenuHandl e(mTool s) ; {get handle to Tools nenu}
IF menu = NIL THEN
EXI T(MyAdj ust MenusFor Di al ogs) ;
Di sabl el tem(menu, 0); {di sabl e Tool s nmenu}
nyErr := HVSet MenuResl| D(nfool s, kTool sHel pI D); {hel p ball oons}
IF nyErr <> NoErr THEN
EXI T(MyAdj ust MenusFor Di al ogs) ;
MyAdj ust Edi t MenuFor Mbdal Di al ogs;
END; {of kMyModal Di al ogs CASE}
kMyd obal ChangesModel essDi al og:
; {adjust nenus here as needed}
kMyMovabl eMbdal Di al og:
; {adjust nenus here as follows: }
{ disable all nenus except Apple, then }
{ call MyAdj ust Edi t MenuFor Modal Di al ogs for editable text itens}
END; {of CASE}

END;

To adjust the items in the Edit menu, MyAdj ust MenusFor Di al ogs calls another
application-defined routine, MyAdj ust Edi t MenuFor Modal Di al ogs, which is
shown in Listing 6-23 on the next page. The MyAdj ust Edi t MenuFor Mbdal Di al ogs
routine uses application-defined code to implement the Undo command; uses the
Menu Manager procedure Enabl el t emto enable the Cut, Copy, Paste, and Clear
commands when appropriate; and disables the commands that support Edition
Manager capabilities. Remember that your application should use the Dialog Manager
procedures Di al ogCut, Di al ogCopy, Di al ogPast e, and Di al ogDel et e to support
the Cut, Copy, Paste, and Clear commands in editable text items.

Using the Dialog Manager 6-71

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

Listing 6-23 Adjusting the Edit menu for a modal dialog box

PROCEDURE MyAdj ust Edi t MenuFor Modal Di al ogs;

VAR
w ndow. W ndowPt r ;
nmenu: MenuHandl e;
sel ection, undo: Bool ean;
of fset: Longl nt;
undoText : Str 255;
BEG N
wi ndow : = Front W ndow;
menu : = CGet MenuHandl e(nEdit); {get a handle to the Edit menu}
IF nenu = NIL THEN {add your own error handling}

EXIT (M/Adj ust Edi t MenuFor Modal Di al ogs) ;
undo := Myl slLast Acti onUndoabl e(undoText);
|F undo THEN {if action can be undone}
BEG N

Enabl el t en{ nenu, i Undo);

Set Menul t enifext (nmenu, i Undo, undoText);
END
ELSE {if action can't be undone}
BEG N

Set Menul t eniText (renu, i Undo, gCant Undo);

Di sabl el tem(menu, i Undo);

END;

sel ection := MySel ection(w ndow) ;

| F sel ecti on THEN

BEG N {enable editing items if there's a selection}

Enabl el t em(menu, i Cut);
Enabl el t en{ nenu, i Copy);
END
ELSE
BEG N {disable editing itenms if there isn't a selection}
Di sabl el tenm{menu, iCut);
Di sabl el t en{ nenu, i Copy);
END;
|F MyGet Scrap(NIL, 'TEXT', offset) > 0 THEN
Enabl el tem(nmenu, iPaste) {enable if sonething to paste}
ELSE
Di sabl el tenm(nenu, iPaste);{disable if nothing to paste}
Di sabl elten{menu, iSelectAll);
Di sabl el tem(menu, i CreatePublisher);
Di sabl el ten{nenu, i SubscribeTo);
Di sabl el t en{nmenu, i PubSubOptions);
END;
END;

6-72 Using the Dialog Manager

CHAPTER 6

Dialog Manager

See the chapter “Menu Manager” in this book for more information on menus and the
menu bar.

When the user dismisses the alert box or modal dialog box, the Menu Manager restores
all menus to their state prior to the appearance of the alert or modal dialog box—unless
your application handles its own menu bar access, in which case you must restore the
menus to their previous states. You can use a routine similar to M/Adj ust Menus, shown
in Listing 6-21 on page 6-70, to adjust the menus appropriately according to the type of
window that becomes the frontmost window.

Adjusting Menus for Movable Modal and Modeless Dialog Boxes

Although it always leaves the Help, Keyboard, and Application menus and their
commands enabled, system software does nothing else to manage the menu bar when
you display movable modal and modeless dialog boxes. Instead, your application
should allow or deny access to the rest of your menus as appropriate to the context. For
example, if your application displays a modeless dialog box for a search-and-replace
command, you should allow access to the Edit menu to assist the user with the editable
text items, and you should allow use of the File menu so that the user can open another
file to be searched. However, you should disable other menus if their commands cannot
be used inside the active modeless dialog box.

When creating a modeless dialog box, your application should perform the following
tasks:

» disable only those menus whose commands are invalid in the current context

s if the modeless dialog box includes editable text items, use the Dialog Manager
procedures Di al ogCut, Di al ogCopy, Di al ogPast e, and Di al ogDel et e to
support the Cut, Copy, Paste, and Clear commands in editable text items

When your application creates a movable modal dialog box, it should perform the
following tasks:

= leave the Apple menu enabled so that the user can open other applications with it

» if your movable modal dialog box contains editable text items, leave the Edit menu
enabled but use the Dialog Manager procedures Di al ogCut , Di al ogCopy,
Di al ogPast e, and Di al ogDel et e to support the Cut, Copy, Paste, and
Clear commands

= disable all of your other menus

Listing 6-21 on page 6-70 shows an application-defined routine, MyAdj ust Menus, that
SurfWriter uses to adjust its menus after it displays a window or dialog box. You can use
a similar routine to adjust your menus as appropriate given the nature of the active
window, movable modal dialog box, or modeless dialog box.

Using the Dialog Manager 6-73

JabBeuey bojeig n

6-74

CHAPTER 6

Dialog Manager

Displaying Multiple Alert and Dialog Boxes

You should generally present the user with only one modal dialog box or alert box at a
time. Sometimes, you may need to present a modal dialog box and an alert box on the
screen at one time. For example, when the user saves a file with the same name as
another file, the Standard File Package displays an alert box on top of the standard file
dialog box. The alert box asks the user whether to replace the existing file.

Avoid closing a modal dialog box and immediately displaying another modal dialog
box or an alert box in response to a user action. This situation creates a “tunneling modal
dialog box” effect that might confuse the user. Missing the content of the previous
modal dialog box and unable to return to it, the user has difficulty predicting what will
happen next.

However, the user should never see more than one modal dialog and one alert box on
the screen simultaneously. You can present multiple simultaneous modeless dialog
boxes, just as you can present multiple document windows.

When you remove an alert box or a modal dialog box that overlies the default button
of a previous alert box, the Dialog Manager doesn’t redraw that button’s bold outline.
Therefore, you should not use an alert box if you need to display another overlapping
alert box or dialog box. Instead, you should create a modal dialog box, and you must
provide it with an application-defined item that draws the bold outline around the
default button. The Mbdal Di al og procedure then causes the item to be redrawn after
an update event.

In System 7, the Window Manager automatically dims the window frame of a dialog box
when you deactivate it to display an alert box, another modal dialog box, or a window.
When you deactivate a dialog box, you should use the Control Manager procedure

Hi 1iteControl tomake the controls of a dialog box inactive. You should also draw the
outline of the default button of a deactivated dialog box in gray instead of black. Listing
6-16 on page 6-58 shows an application-defined procedure that draws a gray outline
when the default button is inactive; Listing 6-34 on page 6-98 shows how to use

Hi I'i t eControl to make buttons inactive and active in response to activate events for a
dialog box.

Displaying Alert and Dialog Boxes From the Background

If you ever need to display an alert box or a modal dialog box while your application is
running in the background or is otherwise invisible to the user, you should use the
Notification Manager to post a notification to the user. For example, if your application
performs lengthy background tasks such as printing many documents or transferring
large amounts of data to other computers, you might wish to inform the user that the
operation is completed. In these cases, you should post a notification request to notify
the user when the operation is completed. Then the Notification Manager automatically
displays an alert box containing whatever message you specify; you do not need to use
the Dialog Manager to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from your
application to the user. There is no provision for carrying information back from the user

Using the Dialog Manager

CHAPTER 6

Dialog Manager

to your application while it is in the background (although it is possible for your applica-
tion to determine if the notification was received). If you need to solicit information from
the user, use the Notification Manager to ask the user to bring your application to the
foreground. The user can then respond to your alert box or modal dialog box. See the
chapter “Notification Manager” in Inside Macintosh: Processes for information about the
Notification Manager.

Including Color in Your Alert and Dialog Boxes

On color monitors, the Dialog Manager automatically adds color to your alert and dialog
boxes so that they match the colors of the windows, alert boxes, and dialog boxes used
by system software. These colors provide aesthetic consistency across all monitors, from
black-and-white displays to 8-bit color displays. On a color monitor, for example, the
racing stripes in the title bar of a modeless dialog box are gray, the close box and
window frame are in color, and the buttons and text are black.

When you create alert and dialog resources, your application’s alert and dialog boxes
use the system’s default colors. With the following exceptions, creating alert and dialog
resources is typically all you need to do to provide color for your alert and dialog boxes:

= When you need to include a color version of an icon in an alert box or a dialog box,
you must create a resource of type' ci cn' with the same resource ID as the
black-and-white ' | CON' resource specified in the item list resource. Plate 2 at the
front of this book shows an alert box that includes a color icon.

= If you use Get NewDi al og or NewDi al og to create a dialog box and you need to
produce a blended gray color for outlining the inactive (that is, dimmed) default
button, you must create a dialog color table (' dct b') resource with the same
resource ID as the dialog resource.

“Using an Application-Defined Item to Draw the Bold Outline for a Default Button”
beginning on page 6-56 explains how to create a draw routine that outlines the default
button of a dialog box. If you deactivate a dialog box, you should dim its buttons and
use gray to draw the outline for the default button. Because Get NewDi al og and

NewDi al og supply black-and-white graphics ports for dialog boxes, you can create a
dialog color table resource for the dialog box to force the Dialog Manager to supply a
color graphics port. Then you can use a blended gray color for the outline for the default
button. (NewCol or Di al og supplies a color graphics port.)

Even when you create a dialog color table resource for drawing a gray outline, you
should not change the system’s default colors. Listing 6-24 shows a dialog color table
resource that leaves the default colors intact but forces the Dialog Manager to supply a
color graphics port.

Listing 6-24 Rez input for a dialog color table resource using the system’s default colors

data 'dctb' (kd obal ChangesDi al og, purgeable) {
$" 0000 0000 0000 FFFF" /*use default col ors*/

s

Using the Dialog Manager 6-75

JabBeuey bojeig n

6-76

CHAPTER 6

Dialog Manager

By using the system’s default colors, you ensure that your application’s interface is
consistent with that of the Finder and other applications. However, if you feel absolutely
compelled to break from this consistency, the Dialog Manager offers you the ability to
specify colors other than the default colors. Be aware, however, that nonstandard colors
in your alert and dialog boxes may initially confuse your users.

Also be aware that despite any changes you make, users can alter the colors of alert and
dialog boxes anyway by changing the settings in the Color control panel.

Your application can specify its own colors in an alert color table (' act b') resource
with the same resource ID as the alert resource or in a dialog color table (' dct b')
resource with the same resource ID as the dialog resource. Both of these resources have
exactly the same format as a window color table (' wet b') resource, described in the
chapter “Window Manager” in this book.

WARNING

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not specify colors for these elements if you
wish to maintain backward compatibility. a

You don’t have to call any new routines to change the colors used in alert or dialog
boxes. When you call the Get NewDi al og function, for example, the Dialog Manager
automatically attempts to load a dialog color table resource with the same resource ID
as the dialog resource.

Likewise, you can change the system default colors for controls and the color, style,
typeface, and size of text used in an alert box or a dialog box by creating an item color
table (' i ct b') resource with the same resource ID as the item list resource. You don’t
have to call any routines to create color items. When you use the Get NewDi al og
function, the Dialog Manager looks first for an item color table resource with the same
resource ID as that of the item list resource.

Note

If you want to provide an item color table resource for an alert box or

a dialog box, you must create an alert color table resource or a dialog
color table resource, even if the item color table resource has no actual
color information and describes only static text and editable text style
changes. You cannot use an item color table resource to set the font on
computers that do not support Color QuickDraw. Also, be aware that
changing the default system font makes your application more difficult
to localize. O

Even if you provide your own' dctb'," actb',or'ictb' resources, you do not
need to test whether your application is running on a computer that supports Color
QuickDraw in order to use these resources.

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Handling Events in Alert and Dialog Boxes

The next two sections explain how the Dialog Manager uses the Control Manager to
handle events in controls automatically and how it uses TextEdit to handle events in
editable text items automatically. The information in these two sections, “Responding to
Events in Controls” and “Responding to Events in Editable Text Items,” applies to all
alert boxes and all types of dialog boxes: modal, modeless, and movable modal.

To display and handle events in alert boxes, you can use the Dialog Manager functions
Al ert, Not eAl ert, Cauti onAl ert, and St opAl ert . The Dialog Manager handles all
of the events generated by the user until the user clicks a button (typically the OK or
Cancel button). When the user clicks a button, the alert box functions invert the button
that was clicked, close the alert box, and report the user’s selection to your application.
Your application is responsible for performing the appropriate action associated with
that button. This is described in detail in “Responding to Events in Alert Boxes”
beginning on page 6-81.

For modal dialog boxes, you use the Mbdal Di al og procedure. The Dialog Manager
handles most of the user interaction until the user selects an item. The Modal Di al og
procedure then reports that the user selected an enabled item, and your application is
responsible for performing the action associated with that item. Your application
typically calls Modal Di al og repeatedly, responding to clicks on enabled items as
reported by Mbdal Di al 0g, until the user clicks OK or Cancel. This is described in detail
in “Responding to Events in Modal Dialog Boxes” beginning on page 6-82.

For alert boxes and modal dialog boxes, you should also supply an event filter function
as one of the parameters to the alert box functions or the Mbdal Di al og procedure. As
the user interacts with the alert or modal dialog box, these routines pass events to your
event filter function before handling each event. Your event filter function can handle
any events not handled by the Dialog Manager or, if necessary, can choose to handle
events normally handled by the Dialog Manager. This is described in detail in “Writing
an Event Filter Function for Alert and Modal Dialog Boxes” beginning on page 6-86.

To handle events in modeless or movable modal dialog boxes, you can use the

| sDi al ogEvent function to determine whether the event occurred while a dialog box
was the frontmost window. For every type of event that occurs when the dialog box is
active (including null events), | sDi al ogEvent returns TRUE; otherwise, it returns
FALSE. When | sDi al ogEvent returns TRUE, you can use the Di al ogSel ect function
to handle key-down events in editable text items automatically, to handle update and
activate events automatically, and to report the enabled items that the user clicks. You
then respond appropriately to clicks in your active items.

Alternatively, you can handle events in modeless and movable modal dialog boxes much
as you handle events in other windows. That is, when you receive an event you can first
determine the type of event that occurred and then take the appropriate action according
to which window is in front. If a modeless or movable modal dialog box is in front, you
can provide code that takes any actions specific to that dialog box and call the

Di al ogSel ect function to handle any events that your code doesn’t handle. The
sections “Responding to Mouse Events in Modeless and Movable Modal Dialog Boxes”

Using the Dialog Manager 6-77

JabBeuey bojeig n

6-78

CHAPTER 6

Dialog Manager

beginning on page 6-89, “Responding to Keyboard Events in Modeless and Movable
Modal Dialog Boxes” beginning on page 6-94, and “Responding to Activate and Update
Events in Modeless and Movable Modal Dialog Boxes” beginning on page 6-97 all take
this alternate approach.

Responding to Events in Controls

The Dialog Manager greatly simplifies the work necessary for you to implement buttons,
checkboxes, pop-up menus, and radio buttons. For alert boxes and all types of dialog
boxes—modal, modeless, and movable modal—the Dialog Manager uses Control
Manager routines to display controls automatically, highlight controls appropriately, and
report to your application when mouse-down events occur within controls. For example,
when the user moves the cursor to an enabled button and holds down the mouse button,
the Dialog Manager uses the Control Manager function Tr ackCont r ol to invert the
button. When the user releases the mouse button with the enabled button still inverted,
the Dialog Manager uses Tr ackCont r ol to report which item was clicked. Your
application then responds appropriately—for example, by performing the operation
associated with the OK button, by deselecting any other radio button when a radio
button is clicked, or by canceling the current operation when the Cancel button is clicked.

For clicks in checkboxes, pop-up menus, and radio buttons, your application usually
uses the Control Manager routines Get Cont r ol Val ue and Set Cont r ol Val ue

to get and appropriately set the items’ values. The chapter “Control Manager” in this
book explains these routines in detail, but this chapter also offers examples of how

to use these routines in your alert and dialog boxes. Because the Control Manager does
not know how radio buttons are grouped, it doesn’t automatically turn one off when
the user clicks another one. Instead, it’s up to your application to handle this by using
the Get Cont r ol Val ue and Set Cont r ol Val ue routines.

When the user clicks the OK button, your application performs whatever action is
necessary according to the values returned by Get Cont r ol Val ue for each of the
various checkboxes and radio buttons displayed in your alert or dialog box.

When Modal Di al og and Di al ogSel ect call Tr ackCont r ol , they do not allow you
to specify any special action procedures necessary for anything more complex than a
button, radio button, or checkbox. If you need a more complex control that, for example,
measures how long the user holds down the mouse button or how far the user has
moved an indicator, you can create your own control (or picture or application-defined
item that draws a control-like object) in your dialog box. If you use the Modal Di al og
procedure, you must then provide an event filter function that appropriately handles
events within that item, and if you use the Di al ogSel ect function, you must test for
and respond to those events yourself. Alternatively, you can use Window Manager
routines to display an appropriate window and then use the Control Manager to create
and manage such complex controls yourself. See the chapters “Window Manager” and
“Control Manager” in this book for more information.

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Responding to Events in Editable Text Items

When the user enters or edits text in an editable text item in your dialog boxes, the
Dialog Manager calls TextEdit to handle the events automatically. (You generally
shouldn’t include editable text items in alert boxes.) You typically disable editable text
items because you generally don’t need to be informed every time the user types a
character or clicks one of them. Instead you need to determine the text only when the OK
button is clicked. As illustrated in Listing 6-12 on page 6-49, use Get Di al ogl t eniText
to determine the final value of the editable text item after the user clicks the OK button.

When you use the Modal Di al og procedure to handle events in modal dialog boxes and
when you use the Di al 0ogSel ect function for modeless or movable modal dialog
boxes, the Dialog Manager calls TextEdit to handle keystrokes and mouse actions within
editable text items, so that

= when the user clicks the item, a blinking vertical bar appears that indicates an
insertion point where text may be entered

= when the user drags over text in the item, the text is highlighted; when the user
double-clicks a word, the word is highlighted; the highlighted selection is then
replaced by what the user types

» when the user holds down the Shift key while clicking or dragging, the highlighted
selection is extended or shortened appropriately

= when the user presses the Backspace key, the highlighted selection or the character
preceding the insertion point is deleted

= when the user presses the Tab key, the cursor automatically advances to the next
editable text item in the item list resource, wrapping around to the first if there are no
more items

If your modeless or movable modal dialog box contains any editable text items, call

Di al ogSel ect even when Wi t Next Event returns FALSE. This is necessary because
the Di al ogSel ect function calls the TEI dl e procedure to make the text cursor blink
within your editable text items during null events; otherwise, the text cursor will not
blink. Listing 6-25 illustrates an application-defined routine, Dol dl e, that calls

Di al ogSel ect whenever the application receives null events while its modeless
dialog box is the frontmost window.

Listing 6-25 Using Di al ogSel ect during null events

PROCEDURE Dol dl e (event: Event Record);

VAR
Wi ndow: W ndowPt r;
wi ndowType: | nteger;
itemHit: I nt eger;
result: Bool ean;
BEA N
wi ndow : = Front W ndow;

{determ ne which type of w ndow -docunent, }

Using the Dialog Manager 6-79

JabBeuey bojeig n

6-80

CHAPTER 6

Dialog Manager

{ nodel ess dialog box, etc.--is in front}

w ndowType : = MyGet W ndowType(w ndow) ;

CASE wi ndowType OF

kMyDocW ndow. {docunent wi ndow i s frontnost}
i {see exanples in "Event Manager" chapter}

kMyQ obal ChangesModel essDi al og: {nodel ess dialog is frontnost}
result := DialogSel ect(event, window, itenHit);

END; {of CASE}

END;

Generally, your application should handle menu bar access when you display dialog
boxes containing editable text items. Leave your Edit menu enabled, and use the

Di al ogCut, Di al ogCopy, Di al ogPast e, and Di al ogDel et e procedures to support
the Cut, Copy, Paste, and Clear commands and their keyboard equivalents. You should
also provide your own code to support the Undo command. “Adjusting Menus for
Modal Dialog Boxes” beginning on page 6-68 and “Adjusting Menus for Movable Modal
and Modeless Dialog Boxes” on page 6-73 describe how to allow users to access your
Edit menu when you display dialog boxes.

If you don’t supply your own event filter function and the user presses the Return or
Enter key while a modal dialog box is onscreen, the Dialog Manager treats the event as a
click on the default button (that is, the first item in the list) regardless of whether the
dialog box contains an editable text item. If your event filter function responds to the
user pressing Return and Enter by moving the cursor in editable text items, don’t display
a bold outline around any buttons. If your event filter function responds to the user
pressing Return and Enter as if the user clicks the default button, then you should
display a bold outline around the default button. See “Writing an Event Filter Function
for Alert and Modal Dialog Boxes” beginning on page 6-86 for an example of how to
map the Return and Enter keys to the default button in your dialog boxes.

Initially, an editable text item may contain default text or no text. You can provide
default text either by specifying a text string as the last element for that item in the item
list resource or by using the Set Di al ogl t enfText procedure, which is described on
page 6-131.

When a dialog box that contains editable text items is first displayed, the insertion

point usually appears in the first editable text item in the item list resource. You may
instead want to use the Sel ect Di al ogl t enTText procedure so that the dialog box
appears with text selected, or so that an insertion point or a text selection reappears if
the user makes an error while entering text. For example, the user who accidentally
types nonnumeric input when a number is required can be given the opportunity to type
the entry again. The Sel ect Di al ogl t enText procedure is described in detail on

page 6-131.

By default, the Dialog Manager displays editable text items in the system font. To
maintain visual consistency across applications for your users and to make it easier to
localize your application, you should not change the font or font size.

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Responding to Events in Alert Boxes

After displaying an alert box or playing an alert sound, the Al ert, St opAl ert,
Cauti onAl ert, and Not eAl ert functions call the Modal Di al og procedure to handle
events automatically for you.

The Modal Di al og procedure, in turn, gets each event by calling the Event Manager
function Get Next Event . If the event is a mouse-down event outside the content region
of the alert box, Mbdal Di al og emits the system alert sound and gets the next event.

The Al ert, St opAl ert, Cauti onAl ert, and Not eAl ert functions continue calling
Modal Di al og until the user selects an enabled control (typically a button). At this time
these functions remove the alert box from the screen and return the item number of the
selected control. Your application then responds as appropriate for a click on this item.

For example, the code that supports the alert box displayed in Figure 6-39 must respond
to three different events—one for each button that the user may click.

Figure 6-39 Three buttons for which Caut i onAl ert reports events

Save changes to the Surfllriter document
“My Window” before closing?

Listing 6-9 on page 6-47 shows an application-defined routine, named

Myd oseDocunent, for the Close command. If the document has been modified
since the last save, \yCl oseDocunent displays the alert box illustrated in Figure 6-39
before closing the window. After MyCl oseDocunent displays the caution alert, it
tests for the item number that Caut i onAl ert returns after it removes the alert box.

If the user clicks the Save button, Caut i onAl ert returns its item number, and

Myl oseDocunent calls other application-defined routines to save the file, close the
file, and close the window. If the user clicks the Don’t Save button, MyCl oseDocunent
closes the window without saving the file. The only other possible response is for the
user to click the Cancel button, in which case MyCl oseDocumnent does nothing—the
Dialog Manager removes the alert box, and MyCl oseDocunent simply leaves the
document window as it is.

The standard event filter function allows users to press the Return or Enter key in lieu of
clicking the default button. When one of these keys is pressed, the standard event filter
function returns TRUE to Mbdal Di al og, which in turn causes Al ert, St opAl ert,

Caut i onAl ert, and Not eAl ert to return the item number of the default button. When
you write your own event filter function, it should emulate the standard filter function
by responding in this way to keyboard events involving the Return and Enter keys.

Using the Dialog Manager 6-81

JabBeuey bojeig n

6-82

CHAPTER 6

Dialog Manager

For events inside the alert box, Modal Di al og passes the event to an event filter function
before handling the event. The event filter function provides a secondary event-handling
loop for handling events that Modal Di al og doesn’t handle and for overriding events
that Mbdal Di al og would otherwise handle. You should provide a simple event filter
function for every alert box and modal dialog box in your application.

You specify a pointer to your event filter function in the second parameter to the Al ert,
St opAl ert, Cauti onAl ert, and Not eAl ert functions. In the MyCl oseDocunent
routine shown on page 6-47, a pointer to the M/Event Fi | t er function is specified. In
most cases, you can use the same event filter function in every one of your alert and
modal dialog boxes. An example of a simple event filter function that allows background
applications to receive update events and performs the other necessary event handling is
provided in “Writing an Event Filter Function for Alert and Modal Dialog Boxes”
beginning on page 6-86.

Unless your event filter function handles the event in its own way and returns TRUE,
Modal Di al og handles the event inside the alert box as follows:

» Inresponse to an activate or update event for the alert box, Modal Di al og activates or
updates its window.

» If the user presses the mouse button while the cursor is in a control, the Control
Manager function Tr ackCont r ol tracks the mouse. If the user releases the
mouse button while the cursor is in an enabled control, Al ert, St opAl ert,
Caut i onAl ert, and Not eAl ert remove the alert box and return the control’s
item number. (Generally, buttons should be the only controls you use in alert boxes.)

» If the user presses the mouse button while the cursor is in any enabled item other than
a control, Al ert, St opAl ert, Cauti onAl ert, and Not eAl ert remove the alert box
and return the item number. (Generally, button controls should be the only enabled
items in alert boxes.)

» If the user presses the mouse button while the cursor is in a disabled item, or if it is
in no item, or if any other event occurs, Al ert, St opAl ert, Cauti onAl ert, and
Not eAl ert do nothing.

Responding to Events in Modal Dialog Boxes

Call the Mbdal Di al og procedure immediately after displaying a modal dialog box.

This procedure repeatedly handles events inside the modal dialog box until an event
involving an enabled item—such as a click in a radio button—occurs. If the event is a
mouse-down event outside the content region of the dialog box, Modal Di al 0og emits
the system alert sound and gets the next event. After receiving an event involving an
enabled item, Mbdal Di al og returns the item number. Normally you then do whatever
is appropriate in response to an event in that item. Your application should continue
calling Mbdal Di al og until the user selects the OK or Cancel button, at which point your
application should close the dialog box.

For example, if the user clicks a radio button, your application should get the value
of that button, turn off any other selected radio button within its group, and call
Modal Di al og again to get the next event. If the user clicks the Cancel button, your
application should restore the user’s work to its state just before the user invoked the
dialog box, and then your application should remove the dialog box from the screen.

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Note
Do not use Modal Di al og for modeless or movable modal
dialog boxes. O

The code that supports the modal dialog box shown in Figure 6-40 must respond to
events in four controls: two checkboxes and two buttons.

Figure 6-40 Four items for which Modal Di al og reports events

WipeOut typing correction options:

[11gnore Words in All Caps

[J1gnore Slang Terms

[Cancel] [[Spell [:he-::k]]

Listing 6-26 illustrates an application-defined routine, MySpel | CheckDi al og, that
responds to events in these four controls.

Listing 6-26 Responding to events in a modal dialog box

FUNCTI ON MySpel | CheckDi al og: OSErr;

VAR
docW ndow: W ndowPt r;
i gnor eCapsCheck: Bool ean;
i gnor eS| angCheck: Bool ean;
spel | Di al og: Di al ogPtr;
itenHit, itemlype: I nt eger;
i temHandl e: Handl e;
itenRect: Rect ;
capsVval : I nt eger;
sl angVal : I nt eger;
event: Event Recor d;
BEG N
capsval := 0;
sl angval := 0;

i gnor eCapsCheck : = FALSE;

i gnor eS| angCheck : = FALSE;

MySpel | CheckDi al og : = kSuccess; {assune success}
docW ndow : = Front W ndow, {get front w ndow}
| F docW ndow <> NI L THEN

Using the Dialog Manager

6-83

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

DoAct i vat e(docW ndow, FALSE, event); {deactivat e docunent w ndow}
spel | Di al og : = Get NewDi al og(kSpel | Checkl D, NIL, Pointer(-1));
|F spellDialog = NIL THEN
BEG N
MySpel | CheckDi al og : = kFai |l ed;
Exi t (MySpel | CheckDi al og) ;
END;
MyAdj ust Menus; {adj ust nenus as needed}
GetDi al ogl tem(spel | Di al og, kUserltem itenfType, itenHandl e, itenRect);
Set Di al ogl ten{spel | Di al og, kUserltem itenilype,
Handl e(@WDr awDef aul t Butt onQut |l i ne), itenRect);
ShowW ndow(spel | Di al og) ; {show di al og box with default button outlined}
REPEAT
Modal Di al og(@¥EventFilter, itemH t); {get events}
IF itenHit = kAl | Caps THEN {user clicked Ignore Wrds in Al Caps}
BEG N
{get the control handle to the checkbox}
Get Di al ogl tem(spel | Di al og, kAl Caps, itenilype, itenHandl e,

itemRect);
{get the last value of the checkbox}
capsVal := GetControl Val ue(Control Handl e(itenHandl e));
{toggl e the value of the checkbox}
capsVal := 1 - capsVal;

{set the checkbox to the new val ue}
Set Cont r ol Val ue(Cont rol Handl e(i t enHandl e), capsVal);
END;
IFitenHit = kSlang THEN {user clicked Ignore Slang Terns}
BEG N
{get checkbox's handle, get its value, toggle it, then reset it}
Get Di al ogl tem(spel | Di al og, kSl ang, itenlType, itenHandl e, itenRect);
sl angVal := Get Control Val ue(Control Handl e(it enHandl e));
slangval := 1 - slangVal;
Set Cont r ol Val ue(Cont r ol Handl e(i t emHandl e), sl angVal);
END;
UNTIL ((itenHit = kSpell Check) OR (itenHit = kCancel));
Di sposeDi al og(spel | D al og) ; {cl ose the dial og box}
IF itenHit = kSpell Check THEN {user clicked Spell Check button}
BEG N

| F capsVal = 1 THEN {user wants to ignore all caps}
i gnor eCapsCheck : = TRUE
I F slangval = 1 THEN {user wants to ignore sl ang}

i gnor eS| angCheck : = TRUE

6-84 Using the Dialog Manager

CHAPTER 6

Dialog Manager

{now start the spell check}
Spel | CheckMyDoc (i gnor eCapsCheck, ignoreSl angcheck);
END;
END;

The MySpel | CheckDi al og routine calls Mbdal Di al og immediately after using

Cet NewDi al og to create and display the dialog box. The MySpel | CheckDi al og
routine repeatedly responds to events in the two checkboxes until the user clicks either
the Spell Check or the Cancel button. When the user clicks either of the checkboxes
(which are the third and fourth items in the item list resource), MySpel | CheckDi al og
uses the Get Di al ogl t emprocedure to get a handle to the checkbox. The

MySpel | CheckDi al og routine coerces this handle to a control handle and passes

it to the Control Manager function Get Cont r ol Val ue to get the last value of the
control (1 if the checkbox was selected or 0 if it was unselected). Subtracting this

value from 1, MySpel | CheckDi al og derives a new value for the control. Then
MySpel | CheckDi al og passes this value to the Control Manager procedure

Set Cont r ol Val ue to set the new value. The Control Manager responds by drawing
an X in the box if the value of the control is 1 or removing the X if the value of the
control is 0.

As soon as the user clicks the Spell Check or Cancel button (which are the first and
second items in the item list resource), MySpel | CheckDi al og stops responding to
events in the checkboxes. This routine uses the Di sposeDi al og procedure (which is
explained in “Closing Dialog Boxes” beginning on page 6-100) to remove the dialog box.
If the user clicks the Cancel button, MySpel | CheckDi al og does no further processing
of the information in the dialog box. If, however, the user clicks the Spell Check button,
My Spel | CheckDi al og calls another application-defined routine, Spel | CheckMyDoc,
to check the document for spelling errors according to the preferences that the user
communicated in the checkboxes.

For events inside the dialog box, Mbdal Di al og passes the event to an event filter
function before handling the event. In this example, the application specifies a pointer to
its own event filter function, MyEvent Fi | t er. As described in the next section, your
application should provide an event filter function. You can use the same event filter
function in most or all of your alert and modal dialog boxes.

Unless your event filter function handles the event and returns TRUE, Mbdal Di al og
handles the event as follows:

= Inresponse to an activate or update event for the dialog box, Modal Di al og activates
or updates its window.

= If the user presses the mouse button while the cursor is in an editable text item,
Modal Di al og responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If a key-down event occurs and
there’s an editable text item, text entry and editing are handled as described in
“Responding to Events in Editable Text Items” beginning on page 6-79. If the editable
text item is enabled, Modal Di al og returns its item number after it receives either the
mouse-down or key-down event. Normally, editable text items are disabled, and you
use the Get Di al ogl t enTText procedure to read the information in the items only
after the user clicks the OK button. Listing 6-12 on page 6-49 illustrates this technique.

Using the Dialog Manager 6-85

JabBeuey bojeig n

6-86

CHAPTER 6

Dialog Manager

= If the user presses the mouse button while the cursor is in a control, Modal Di al og
calls the Control Manager function Tr ackCont r ol . If the user releases the mouse
button while the cursor is in an enabled control, Modal Di al og returns the control’s
item number. Your application should respond appropriately; for example, Listing
6-26 uses an application-defined routine that checks the spelling of a document when
the user clicks the Spell Check button.

» If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, Modal Di al og returns the item’s number, and your application should
respond appropriately. Generally, only controls should be enabled. If your application
creates a complex control—such as one that measures how far a dial is moved—your
application must provide an event filter function to handle mouse events in that item.

s If the user presses the mouse button while the cursor is in a disabled item or in no
item, or if any other event occurs, Modal Di al og does nothing.

Writing an Event Filter Function for Alert and Modal Dialog Boxes

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. In early versions of Macintosh system
software, when a single application controlled the computer, the standard event filter
function for alert boxes and most modal dialog boxes was usually sufficient. However,
because the standard event filter function does not permit background applications to
receive or respond to update events, it is no longer sufficient.

Thus, your application should provide a simple event filter function that performs these
functions and also allows inactive windows to receive update events. You can use the
same event filter function in most or all of your alert and modal dialog boxes.

You can also use your event filter function to handle other events that Modal Di al og
doesn’t handle—such as the Command-period key-down event, disk-inserted events,
keyboard equivalents, and mouse-down events (if necessary) for application-defined
items that you provide.

For example, the standard event filter function ignores key-down events for the
Command key. When your application allows the user to access your menus after you
display a dialog box, your event filter function should handle keyboard equivalents for
menu commands and return TRUE.

At a minimum, your event filter function should perform the following tasks:

= return TRUE and the item number for the default button if the user presses the Return
or Enter key

» return TRUE and the item number for the Cancel button if the user presses the Esc key
or the Command-period key combination

» update your windows in response to update events (this also allows background
applications to receive update events) and return FALSE

» return FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor in an application-

Using the Dialog Manager

CHAPTER 6

Dialog Manager

defined item. For example, if you provide an application-defined item that requires you
to measure how long the user holds down the mouse button or how far the user drags
the cursor, use the event filter function to handle events inside that item.

If it seems that you will spend time replicating much of your primary event loop in this
event filter function, you might consider handling all the events in your main event loop
instead of using the Dialog Manager’s Al ert, Not eAl ert, St opAl ert, and

Cauti onAl ert functions or Modal Di al og procedure.

Your own event filter function should have three parameters and return a Boolean value.
For example, this is how to declare an event filter function named MyEvent Fi | t er:

FUNCTI ON MyEvent Filter (theDi al og: Dial ogPtr;
VAR t heEvent: Event Record;
VAR itenmHi t: Integer): Bool ean;

After receiving an event that it does not handle, your function should return FALSE.
When your function returns FALSE, Mbdal Di al og handles the event, which you pass
in the parameter t heEvent . (Your function can also change the event to simulate a
different event and return FALSE, which passes the altered event to the Dialog Manager
for handling.) If your function does handle the event, your function should return TRUE
as a function result and, in the i t enHi t parameter, the number of the item that it
handled. The Mbdal Di al og procedure and, in turn, the Al ert, Not eAl ert,

St opAl ert, and Caut i onAl ert functions then return this item number in their own

i tenHi t parameter.

Because Modal Di al og calls the Get Next Event function with a mask that excludes
disk-inserted events, your event filter function can call the Event Manager procedure

Set Syst enEvent Mask to accept disk-inserted events. See the chapter “Event Manager”
in this book for a discussion about handling disk-inserted events.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. Your event filter function should always
check whether the Return key or Enter key was pressed and, if so, return the item
number of the default button in the i t enHi t parameter and a function result of TRUE.
Your event filter function should also check whether the Esc key was pressed and, if so,
return the item number for the Cancel button in the i t enrHi t parameter and a function
result of TRUE. Your event filter function should also respond to the Command-period
key-down event as if the user had clicked the Cancel button.

To give visual feedback indicating which item has been selected, you should invert
buttons that are activated by keyboard equivalents for all alert and dialog boxes. A
good rule of thumb is to invert a button for 8 ticks, long enough to be noticeable but
not so long as to be annoying. The Control Manager performs this action whenever

a user clicks a button, and your application should do this whenever a user presses the
keyboard equivalent of a button click.

For modal dialog boxes that contain editable text items, your application should handle
menu bar access to allow use of your Edit menu and its Cut, Copy, Paste, Clear, and
Undo commands, as explained in “Adjusting Menus for Modal Dialog Boxes” beginning

Using the Dialog Manager 6-87

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

on page 6-68. Your event filter function should then test for and handle mouse-down
events in the menu bar and key-down events for keyboard equivalents of Edit menu
commands. Your application should respond to users’ choices from the Edit menu by
using the procedures Di al ogCut, Di al ogCopy, Di al ogPast e, and Di al ogDel et e to
support the Cut, Copy, Paste, and Clear commands.

Listing 6-27 shows MyEvent Fi | t er, which begins by handling update events in
windows other than the alert or dialog box. (By responding to update events for your
application’s own inactive windows in this way, you allow Mbdal Di al og to perform
a minor switch when necessary so that background applications can update their
windows, too.)

Next, MyEvent Fi | t er handles activate events. This event filter function then handles
key-down events for the Return and Enter keys as if the user had clicked the default
button, and it handles key-down events for the Esc key as if the user had clicked the
Cancel button. (See Inside Macintosh: Text for information about character codes for the
Return, Enter, and Esc keys.) Your event filter function can then include tests for other
events, such as disk-inserted events and keyboard equivalents.

Listing 6-27 A typical event filter function for alert and modal dialog boxes

FUNCTI

VAR

key:

ite
ite
ite
fin
BEA N

ON MyEventFilter(theDi al og: Dial ogPtr;
VAR t heEvent: Event Recor d;
VAR itenHit: Integer): Bool ean;

Char ;
mrype: I nt eger,
nHandl e: Handl e;
nRect : Rect ;

al Ti cks: Longl nt;

MyEventFilter := FALSE, {assunme Dialog Mgr will handle it}

| F

(theEvent.what = updateEvt) AND
(W ndowPt r (t heEvent . mnessage) <> theDi al og) THEN
DoUpdat e(W ndowPt r (t heEvent . nessage)) {update the wi ndow behi nd}

ELSE | F (theEvent.what = activateEvt) AND (W ndowPtr (theEvent. nessage)

<> t heDi al og) THEN
DoAct i vat e(W ndowPt r (t heEvent . message) ,
(BAnd(t heEvent . nodifiers, activeFlag) <> 0), theEvent)

ELSE

6-88

CASE t heEvent.what OF
keyDown, aut oKey: {user pressed a key}
BEG N

key := Char (BAnd(theEvent. nessage, char CodeMask));
| F (key = Char (kReturnKey)) OR (key = Char (kEnterKey)) THEN

Using the Dialog Manager

CHAPTER 6

Dialog Manager

BEA N {respond as if user clicked Spell Check}
Get Di al ogl ten{t heDi al og, kSpel | Check, itenType, itenHandl e,
itemRect);
{invert the Spell Check button for user feedback}
HiliteControl (Control Handl e(itenHandl e), inButton);
Del ay(kVi sual Del ay, final Ticks); {invert button for 8 ticks}
Hi liteControl (Control Handl e(itenHandl e), O0);
nyEventFilter := TRUE, {event's being handl ed}
itenHit := kSpell Check; {return the default button}
END;
| F (key = Char(kEscapeKey)) OR {user pressed Esc key}
(Bool ean(BAnd(t heEvent. nodifiers, cndKey)) AND
(key = Char (kPeri odKey))) THEN {user pressed Crd- pd}
BEG N {handl e as if user clicked Cancel}
CGet Di al ogl ten{theDi al og, kCancel, itemlype, itenHandl e,
itemRect);
{invert the Cancel button for user feedback}
HiliteControl (Control Handl e(itenHandl e), inButton);
Del ay(kVi sual Del ay, final Ticks); {invert button for 8 ticks}
HiliteControl (Control Handl e(itenHandl e), O0);
MyEventFilter := TRUE, {event's being handl ed}
itemHit := kCancel; {return the Cancel button}
END;, {of Cancel}
{handl e any ot her keyboard equi val ents here}
END;, {of keydown, autokey}
{handl e disk-inserted and ot her events here, as needed}
OTHERW SE
END; {of CASE}
END;

To use this event filter function for an alert box, the application specifies a pointer to
M/Event Fi | t er when it calls one of the Al ert functions, as shown in Listing 6-19 on
page 6-66. To use this event filter function for a modal dialog box, the application
specifies a pointer to M/Event Fi | t er when it calls Modal Di al og, as shown in
Listing 6-26 on page 6-83.

Responding to Mouse Events in Modeless and
Movable Modal Dialog Boxes

To handle events in modeless and movable modal dialog boxes, you can use the

| sDi al ogEvent function to determine when events occur while a dialog box is the
frontmost window. For such events, you can then use the Di al ogSel ect function to
handle key-down events in editable text items automatically, to handle update and
activate events automatically, and to report the enabled items that the user clicks. You
must also use additional Toolbox routines to handle other types of keyboard events and
other events in the dialog box.

Using the Dialog Manager 6-89

JabBeuey bojeig n

6-90

CHAPTER 6

Dialog Manager

WARNING

The | sDi al ogEvent and Di al ogSel ect functions are unreliable
when running in versions of system software previous to System 7. a

Alternatively, and probably most efficiently, your application can respond to events in
modeless and movable modal dialog boxes by first determining the type of event that
occurred and then taking the appropriate action according to which type of window is
in front. If a modeless or movable modal dialog box is in front, you can provide code
that takes any actions specific to that dialog box. You can then use the Di al ogSel ect
function instead of the Control Manager functions Fi ndCont r ol and Tr ackCont r ol
to handle mouse events in your dialog boxes. The Di al ogSel ect function also handles
update events, activate events, and events in editable text items. (If your modeless or
movable modal dialog box contains editable text items, you should call Di al ogSel ect
during null events to cause the text cursor to blink.)

If you choose to determine whether events involve movable modal or modeless dialog
boxes without the aid of the | sDi al ogEvent function, your application should be
prepared to handle the following mouse events:

= clicks in the menu bar, which your application has adjusted as appropriate for the
dialog box. Be sure to use the procedures Di al ogCut, Di al ogCopy, Di al ogPast e,
and Di al ogDel et e to support the Cut, Copy, Paste, and Clear commands in editable
text items in your dialog boxes.

» clicks in the content region of an active movable modal or modeless dialog box. You
can use the Di al ogSel ect function to aid you in handling the event.

= clicks in the content region of an inactive modeless dialog box. In this case, your
application should make the modeless dialog box active by making it the front-
most window.

= clicks in the content region of an inactive window whenever a movable modal or
modeless dialog box is active. For movable modal dialog boxes, your application
should emit the system alert sound, whereas for modeless dialog boxes, your
application should bring the inactive window to the front.

= mouse-down events in the drag region (that is, the title bar) of an active movable
modal or modeless dialog box. Your application should use the Window Manager
procedure Dr agW ndow to move the dialog box in response to the user’s actions.

= mouse-down events in the drag region of an inactive window when a movable
modal dialog box is active. Your application should not move the inactive window
in response to the user’s actions. Instead, your application should play the system
alert sound.

= clicks in the close box of a modeless dialog box. Your application should dispose of or
hide the modeless dialog box, whichever action is more appropriate.

Figure 6-41 shows a simple modeless dialog box with editable text items.

Listing 6-28 illustrates an application-defined procedure that handles mouse-down
events for all windows, including the modeless dialog box shown in Figure 6-41.

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Figure 6-41 A modeless dialog box for which Di al ogSel ect reports events

[I=—— Global Changes

Find What: ||

|
Change To: | |

Listing 6-28 Handling mouse-down events for all windows

PROCEDURE DoMbuseDown (event: Event Record);

VAR

part: I nt eger;

t hi sW ndow: W ndowPt r
BEG N

{find general |ocation of the cursor at the tinme of nobuse-down event}
part := Fi ndW ndow(event.where, thisWndow);
CASE part OF {take action based on the cursor |ocation}

i nMenuBar: ; {cursor in nenu bar; respond with Menu Manager routi nes}
i nSysW ndow. ; {cursor in a DA, use SystenClick here}
i nCont ent : {cursor in the content area of one of this app's w ndows}

I F thi sWndow <> Front Wndow THEN
BEA N {nouse-down in a wi ndow other than the front }
{ wi ndow -nake the clicked wi ndow the front w ndow, }
{ unless the front window is a novabl e nodal dial og box}
| F Myl sMovabl eModal (Front W ndow) THEN
SysBeep(30) {emt systemalert sound}
ELSE
Sel ect W ndow(t hi SW ndow) ;
END
ELSE {nouse-down in the content area of front w ndow}
DoCont ent C i ck(thi sWndow, event);

i nDr ag: {handl e nmouse-down in drag area}
I F (thi sWndow <> Front Wndow) AND (Myl sMbvabl eModal (Fr ont W ndow))
THEN
SysBeep(30) {emt systemalert sound}
ELSE
Dr agW ndow(t hi sW ndow, event.where, GetG ayRgn™”".rgnBBox);
i nGow. ; {handl e nouse-down in zoom box here}
i nGoAway': {handl e nouse-down in close box here}
| F TrackGoAway(t hi sW ndow, event.where) THEN
Dodl oseCnd;
i nZoom n, inZoonut: ; {handl e zoom box region for standard w ndows}
END; {end of CASE}

END, {of DoMbuseDown}

Using the Dialog Manager 6-91

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

The DoMouseDown routine first uses the Window Manager function Fi ndW ndow to
determine approximately where the cursor is when the mouse button is pressed. When
the user presses the mouse button while the cursor is in the content area of a window,
DoMbuseDown first checks whether the mouse-down event occurs in the currently active
window by comparing the window pointer returned by Fi ndW ndow with that returned
by the Window Manager function Fr ont W ndow

When the mouse-down event occurs in an inactive window, DoMbus eDown uses another
application-defined routine, Myl sMbvabl eModal , to check whether the active window
is a movable modal dialog box. If so, DoMouseDown plays the system alert sound.
Otherwise, DoMouseDown uses the Window Manager procedure Sel ect W ndow

to make the selected window active. (Although not illustrated in this book, the

M/l sMovabl eMbdal routine uses the Window Manager function Get W/ar i ant to
determine whether the variation code for the front window is novabl eDBoxPr oc. If so,
M/l sMovabl eMbdal returns TRUE.) See the chapter “Window Manager” in this book
for more information about the Sel ect W ndowand Get W/ar i ant routines.

As in this example, you must ensure that the movable dialog box is modal within your
application. That is, the user should not be able to switch to another of your application’s
windows while the movable modal dialog box is active. Instead, your application should
emit the system alert sound. Notice as well that when the mouse-down event occurs in
the drag region of any window, DoMbuseDown checks whether the drag region belongs
to an inactive window while a movable modal dialog box is active. If it does,
DoMbuseDown again plays the system alert sound. (However, by clicking other applica-
tions” windows or by selecting other applications from the Application and Apple
menus, users should be able to switch your application to the background when you
display a movable modal dialog box—an action users cannot perform with fixed-
position modal dialog boxes.)

If a user presses the mouse button while the cursor is in the content region of the active
window, DoMouseDown calls another application-defined routine, DoCont ent d i ck,
to further handle mouse events. Listing 6-29 shows how this routine in turn uses the

Di al ogSel ect function to handle the mouse-down event after the application
determines that it occurs in the modeless dialog box shown in Figure 6-41 on page 6-91.

Listing 6-29 Using the Di al ogSel ect function for responding to mouse-down events

PROCEDURE DoContentd ick (thiswWndow w ndowPtr; event: EventRecord);
VAR

itemHit: I nt eger;
r ef Con: I nt eger;
BEG N

wi ndowType : = MyGet W ndowType(t hi sW ndow) ;
CASE wi ndowType OF
kMyDocW ndow:. ;
{handl e clicks in docunent wi ndow here; see the chapter "Control }
{ Manager" for sanple code for this case}

6-92 Using the Dialog Manager

CHAPTER 6

Dialog Manager

kd obal Changesl D: {user clicked d obal Changes dial og box}

BEG N
| F Di al ogSel ect (event, DialogPtr(thiswndow), itenHit) THEN
BEG N
IF itenHit = kChange THEN {user clicked Change}
i {use CetDial ogltem and GetDi al ogl tenifext to get }
{ the text strings and replace one string with the }
{ other here}
IFitenHit = kStop THEN {user clicked Stop}
i {stop maeki ng changes here}
END;

END; {of CASE for kd obal Changesl D}
{handl e ot her wi ndow types here}
END;, {of CASE}
END;

In this example, when the user clicks the Change button, Di al ogSel ect returns its
item number. Within the user’s document, the application then performs a global search
and replace. (Listing 6-12 on page 6-49 illustrates how an application can use the

Cet Di al ogl t emand Get Di al ogl t eniText procedures for this purpose.) Generally,
only controls should be enabled in a dialog box; therefore, your application normally
responds only when Di al ogSel ect returns TRUE after the user clicks an enabled
control. For example, if the event is an activate or update event for a dialog box,

Di al ogSel ect activates or updates it and returns FALSE, so your application does not
need to respond to the event.

At this point, you may also want to check for and respond to any special events that you
do not wish to pass to Di al 0gSel ect or that require special processing before you pass
them to Di al ogSel ect . You would need to do this, for example, if the dialog box needs
to respond to disk-inserted events.

IMPORTANT

When Di al ogSel ect calls Tr ackCont r ol , it does not allow you to
specify any action procedures necessary for a more complex control—
for example, a control that measures how long the user holds down

the mouse button or one that measures how far the user has moved

an indicator. For instances like this, you can create a picture or an
application-defined item that draws a control-like object; you must then
test for and respond to those events yourself before passing events to

Di al ogSel ect . Or, you can use the Control Manager functions

Fi ndControl and TrackCont r ol to process the mouse events inside
the controls of your dialog box. a

Listing 6-28 on page 6-91 calls one of its application-defined routines, DoCl oseCnd,
whenever the user clicks the close box of the active window. If the active window is a
modeless dialog box, you might find it more efficient to hide the window rather than
remove its data structures. Listing 6-30 shows how you can use the Window Manager
routine H deW ndowto hide the Global Changes modeless dialog box when the user

Using the Dialog Manager 6-93

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

clicks its close box. The next time the user chooses the Global Changes command, the
dialog box is already available, in the same location and with the same text selected as
when it was last used. (Listing 6-20 on page 6-67 illustrates how first to create and later

redisplay this modeless dialog box.)

Listing 6-30 Hiding a modeless dialog box in response to a Close command

6-94

PROCEDURE DoCl oseCnd;
VAR
myW ndow. W ndowPt r;
nyDat a: MyDocRecHnd;
wi ndowType: | nteger;
BEG N
nyW ndow : = Front W ndow;,
wi ndowType : = MyGet W ndowType(nmyW ndow) ;
CASE wi ndowType OF
kMyd obal ChangesModel essDi al og:
H deW ndow(nyW ndow) ;
kMySpel | Model essDi al og:
H deW ndow(myW ndow) ;
kMyDocW ndow.
BEG N
nyData : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
MyC oseDocunent (nmyDat a) ;
END; {of kMyDocW ndow case}
k DAW ndow.
Cl oseDeskAcc(W ndowPeek(myW ndow) ~. wi ndowKi nd) ;
END; {of CASE}
END;

Responding to Keyboard Events in Modeless and
Movable Modal Dialog Boxes

If you adopt the previously described strategy of determining—without the aid of the
I sDi al ogEvent function—whether events involve movable modal or modeless dialog
boxes, your application should be prepared to handle the following keyboard events:

= keyboard equivalents, such as Command-C to copy, to which your application should

respond appropriately

» key-down events for the Return and Enter keys, to which your application should

respond as if the user had clicked the default button

s key-down events for the Esc or Command-period keystrokes, to which your

application should respond as if the user had clicked the Cancel button

= key-down and auto-key events in editable text items, for which your application can
use the Di al ogSel ect function, which in turn calls TextEdit to handle keystrokes

within editable text items automatically

Using the Dialog Manager

CHAPTER 6

Dialog Manager

Listing 6-31 illustrates how an application can check for keyboard equivalents whenever
it receives key-down events. If the user holds down the Command key while pressing
another key, the application calls another of its application-defined procedures,
DoMenuCommand, which handles keyboard equivalents for menu commands. See the
chapter “Menu Manager” in this book for an example of a DoMenuCommand procedure.
Remember that when a movable modal dialog box or a modeless dialog box is active,
your application should adjust the menus appropriately, and use the procedures

Di al ogCut, D al ogCopy, Di al ogPast e, and Di al ogDel et e to support the Cut,
Copy, Paste, and Clear commands in editable text items.

Listing 6-31 Checking for key-down events involving the Command key

PROCEDURE DoKeyDown (event: Event Record);

VAR
key: Char;

BEG N
key := CHR(BAnd(event. message, char CodeMask));
| F BAnd(event. nodi fiers, cndKey) <> 0 THEN

BEG N {Command key down}
| F event.what = keyDown THEN
BEG N
MyAdj ust Menus; {adj ust the nenus as needed}
DoMenuCommand(MenuKey(key)); {handl e the menu conmand}
END;
END
ELSE

MyHandl eKeyDown(event);
END;

After determining that a key-down event does not involve a keyboard equivalent,
Listing 6-31 calls another of its own routines, MyHandl eKeyDown, which is shown
in Listing 6-32.

Listing 6-32 Checking for key-down events in a modeless dialog box

PRCCEDURE MyHandl eKeyDown (event: EventRecord);

VAR
wi ndow: W ndowPt r;
wi ndowType: I nt eger;
BEG N
wi ndow : = Front W ndow,

{determ ne the type of w ndow -docunent, nodel ess, etc.}

Using the Dialog Manager 6-95

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

Wi ndowType : = MyGet W ndowType(w ndow) ;
I F wi ndowType = kMyDocW ndow THEN {key-down in doc w ndow}

BEG N {handl e keystrokes in docunent w ndow here}
END
ELSE {key-down in nodel ess di al og box}

MyHandl eKeyDownl nMbdel ess(event, w ndowType);
END;

The MyHandl eKeyDown routine determines what type of window is active when

the user presses a key. If a modeless dialog box is the frontmost window,

MyHand| eKeyDown automatically calls another application-defined routine,
MyHandl eKeyDownl nModel ess, to respond to key-down events in modeless dialog
boxes. The MyHandl eKeyDownl nMbdel ess routine is shown in Listing 6-33.

Listing 6-33 Responding to key-down events in a modeless dialog box

PROCEDURE MyHandl eKeyDownl nMbdel ess(event: Event Record; w ndowType: |nteger);
VAR

key: Char ;

i tenlype: I nt eger;

i terHandl e: Handl e;

itemRect: Rect ;

final Ticks: Longlnt;

handl ed: Bool ean;

item I nt eger;

t heDi al og: Dial ogPtr;
BEA N

handl ed : = FALSE;
theDi al og : = Front W ndow,
CASE wi ndowType OF
kd obal Changesl D: {key-down in d obal Changes dial og box}
BEG N
key := Char(BAnd(event. nessage, char CodeMask));
| F (key = Char (kReturnKey)) OR (key = Char (kEnterKey)) THEN
BEA N {respond as if user clicked Change}
CGet Di al oglten(t heDi al og, kChange, itemlype, itenHandl e,
itenmRect);
{invert the Change button for 8 ticks for user feedback}
HiliteControl (Control Handl e(itenHandl e), inButton);
Del ay(kVi sual Del ay, fi nal Ticks);
HiliteControl (Control Handl e(itenHandl e), 0);
{use CetDial ogltem and CetDi al oglteniText to get the text }
{ strings and replace one string with the other here}
handl ed : = TRUE; {event's been handl ed}
END;

6-96 Using the Dialog Manager

CHAPTER 6

Dialog Manager

| F (key = Char(kEscapeKey)) OR {user pressed Esc key}

(Bool ean(BAnd(event . nodi fiers, cndKey)) AND
(key = Char (kPeriodKey))) THEN {user typed Cmd- pd}

BEA N {handl e as if user clicked Stop}

Cet Di al ogltem(t heDi al og, kStop, itemlype, itenHandl e,
itemRect);
{invert the Stop button for 8 ticks for user feedback}
Hi l'iteControl (Control Handl e(itemHandl €), inButton);
Del ay(kVi sual Del ay, final Ticks);
HiliteControl (Control Handl e(itenHandl e), 0);
{cancel the current operation here}

handl ed := TRUE; {event's been handl ed}

END;

I F NOT handled THEN {let D al ogSel ect handl e keydown events in }

{ editable text itens}
handl ed : = Di al ogSel ect (event, theDi alog, item;
END; {of case kd obal Changesl D}
{handl e ot her nopdel ess and novabl e npbdal di al og boxes here}
END;, {of CASE}
END;

When MyHandl eKeyDownl nMbdel ess determines that the front window is the Global
Changes modeless dialog box, it checks whether the user pressed Return or Enter. If so,
MyHandl eKeyDownl nMbdel ess responds as if the user had clicked the default button:
Change. The MyHandl eKeyDownl nMbdel ess routine uses the Control Manager
procedure Hi | i t eCont rol to highlight the Change button for 8 ticks. (Listing 6-27 on
page 6-88 illustrates how to use Hi | i t eCont r ol to highlight the button from within a
modal dialog box’s event filter function.)

When the user presses Esc or Command-period, MyHandl eKey Downl nMbdel ess
responds as if the user had clicked the Cancel button.

Finally, MyHandl eKeyDownl nMbdel ess uses the Di al ogSel ect function, which in
turn calls TextEdit to handle keystrokes within editable text items.

Responding to Activate and Update Events in Modeless and Movable
Modal Dialog Boxes

If you adopt the previously described strategy of determining—without the aid of the

I sDi al ogEvent function—whether events involve movable modal or modeless dialog
boxes, your application should be prepared to handle activate and update events for
both movable modal and modeless dialog boxes. You can use Di al ogSel ect to assist
you in handling activate and update events. For faster performance, you may instead
want to use the Updat eDi al og function when handling update events. Both

Di al ogSel ect and Updat eDi al og use the QuickDraw procedure Set Port to make
the dialog box the current graphics port before redrawing or updating it.

Using the Dialog Manager 6-97

JabBeuey bojeig n

CHAPTER 6

Dialog Manager

You should use the Control Manager procedure Hi | i t eCont r ol to make the buttons
and other controls inactive in a modeless or movable modal dialog box when you
deactivate it. The Hi | i t eCont r ol procedure dims inactive buttons, radio buttons,
checkboxes, and pop-up menus to indicate to the user that clicking these items has no
effect while the dialog box is in the background. When you activate a modeless or
movable modal dialog box again, you should use Hi | i t eCont r ol to make the controls
active again.

The application-defined DoAct i vat ed obal ChangesDi al og routine shown in
Listing 6-34 illustrates how to use Hi | i t eCont r ol to make the Change button active
when activating a modeless dialog box and how to make the Change and Stop buttons
inactive when deactivating the dialog box.

Listing 6-34 Activating a modeless dialog box

PROCEDURE DoAct i vat ed obal ChangesDi al og (w ndow. W ndowPtr;

event: Event Record);

VAR
activate: Bool ean;
handl ed: Bool ean;
item I nt eger;
i tenlype: I nt eger;
i tenHandl e: Handl e;
i tenRect : Rect ;
BEA N

MyCheckEvent (event); {get a valid event record to pass to Di al ogSel ect}

activate := (BAnd(event.nodifiers, activeFlag) <> 0);
| F activate THEN {activate the nodel ess di al og box}
BEG N

{highlight editable text}
Sel ect Di al ogl t eniTrext (Wi ndow, kFi ndText, 0, 32767);
{make the Change button active (rmake the Stop button active }

{ onl
CGet Di

y during a change operation)}
al ogl ten(Di al ogPtr (wi ndow), kChange, itemlype, itenHandl e,
i tenRect);

HiliteControl (Control Handl e(itenHandl e), 0); {make Change active}
{draw a bold outline around the newy activated Change button}
MyDr awDef aul t But t onQut | i ne(Di al ogPt r (Wi ndow), kChange);

END

ELSE

BEG N
CGet Di

{di mthe Change and Stop buttons for a deactivate dial og box}

al oglten(Di al ogPtr (w ndow), kChange, itenilype, itenHandl e,
itemRect);

Hi liteControl (Control Handl e(itemHandl), 255); {di m Change button}

6-98

Using the Dialog Manager

CHAPTER 6

Dialog Manager

{draw a gray outline around the newly di nmed Change button}
MyDr awDef aul t But t onQut | i ne(Di al ogPt r (wi ndow), kChange);
CGet Di al ogl ten{ Di al ogPtr(wi ndow), kStop, itenType, itenHandl e,

itemRect);

Hi liteControl (Control Handl e(itenmHandl), 255); {dim Stop button}

END;

{l et Dialog Manager handl e activate events}

handl ed

.= Di al ogSel ect (event, w ndow, item;

My Adj ust Menus; {adj ust the menus appropriately}

END;

The DoAct i vat ed obal ChangesDi al og routine uses Di al ogSel ect to handle
activate events in the modeless dialog box. In response to an activate event,

Di al ogSel ect handles the event and returns FALSE. The Di al ogSel ect function sets
the current graphics port to the modeless dialog box whenever the user makes it active.

Because Di al 0ogSel ect expects three parameters, one of which must be an event
record, DoAct i vat ed obal ChangesDi al og uses the application-defined routine
M/CheckEvent to verify that the event is a valid event. If it's not, M\yCheck Event
creates and returns a valid event record for an activate event.

Because Di al ogSel ect doesn’t call any draw procedures for items in response to
activate events, DoAct i vat ed obal ChangesDi al og calls the application-defined
draw routine MyDr awDef aul t But t onQut | i ne to draw either a black outline around
the default button when activating the dialog box or a gray outline when deactivating it.
The MyDr awDef aul t But t onQut | i ne routine is shown in Listing 6-17 on page 6-59.

Because users can switch out of your application when you display a movable modal
dialog box, your application must handle activate events for it, too.

You can also use Di al ogSel ect to handle update events. In response to an update
event, Di al ogSel ect calls the Window Manager procedure Begi nUpdat e, the Dialog
Manager procedure Dr awDi al og to redraw the entire dialog box, and then the Window
Manager procedure EndUpdat e. However, a faster way to update the dialog box is to
use the Updat eDi al og procedure, which redraws only the update region of a dialog
box. As shown in Listing 6-35, you should call Begi hUpdat e before using

Updat eDi al 0g, and then call EndUpdat e.

Listing 6-35 Updating a modeless dialog box

PROCEDURE DoUpdat e (w ndow. W ndowPtr);
VAR
wi ndowType: | nteger;
BEG N
Wi ndowType : = MyGet W ndowType(w ndow) ;
CASE wi ndowType OF
kMyDocW ndow.
; {updat e docurment wi ndows here}

Using the Dialog Manager 6-99

JabBeuey bojeig n

6-100

CHAPTER 6

Dialog Manager

kMyd obal ChangesModel essDi al og:
BEG N
Begi nUpdat e(w ndow) ;
Updat eDi al og(w ndow, w ndow*. vi sRgn);
EndUpdat e(wi ndow) ;
END;
{handl e cases for other wi ndow types here}
END; {of CASE}
END;

Closing Dialog Boxes

When you no longer need a dialog box, you can dispose of it by using either the

d oseDi al og procedure if you allocated the memory for the dialog box or the

Di sposeDi al og procedure if you did not. Or, you can merely make it invisible by
using the Window Manager procedure H deW ndow

Generally, your application should not allocate memory for modal dialog boxes or
movable modal dialog boxes, but it should allocate memory for modeless dialog boxes.
Under these circumstances, your application should use Di sposeDi al og to dispose
of either a fixed or movable modal dialog box when the user clicks the OK or Cancel
button, and it should use Cl oseDi al og to dispose of a modeless dialog box when the
user clicks the close box or chooses Close from the File menu.

You do not close alert boxes; the Dialog Manager does that for you automatically by
calling the Di sposeDi al og procedure after the user responds to the alert box by
clicking any enabled button.

The O oseDi al og procedure removes a dialog box from the screen and deletes it from
the window list. It also releases the memory occupied by

» the data structures associated with the dialog box (such as its structure, content, and
update regions)
» all the items in the dialog box (except for pictures and icons, which might be shared

by other resources) and any data structures associated with them—for example, the
region occupied by the scroll box of a scroll bar

The O oseDi al og procedure does not dispose of the dialog record or the item list
resource. Unlike Get NewDi al og, NewDi al og does not use a copy of the item list
resource. So, if you create a dialog box with NewDi al 0g, you may want to use

C oseDi al og to keep the item list resource in memory even if you didn’t supply a
pointer to the memory.

The Di sposeDi al og procedure calls O oseDi al og and, in addition, releases the
memory occupied by the dialog’s item list resource and the dialog record. If you passed
NI L as a parameter to Get NewDi al og or NewDi al og to let the Dialog Manager allocate
memory in the heap, call Di sposeDi al og when you're done with a dialog box.

For modeless and movable modal dialog boxes, you might find it more efficient to hide
the dialog box rather than remove its data structures. Listing 6-30 on page 6-94 uses the
Window Manager routine Hi deW ndow to hide the Global Changes modeless dialog box

Using the Dialog Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	 Menu Manager, Part 2 (Reference)
	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	Dialog Manager, Part 2 (Using)
	Using the Dialog Man ager
	Using the Dialog Man ager
	Displaying Alert and Dialog Boxes
	Positioning Alert and Dialog Boxes
	Deactivating Windows Behind Alert and Modal Dialog...
	Displaying Modeless Dialog Boxes
	Adjusting Menus for Modal Dialog Boxes
	Adjusting Menus for Movable Modal and Modeless Dia...
	Displaying Multiple Alert and Dialog Boxes
	Displaying Alert and Dialog Boxes From the Backgro...
	Including Color in Your Alert and Dialog Boxes

	Handling Events in Alert and Dialog Boxes
	Responding to Events in Controls
	Responding to Events in Editable Text Items
	Responding to Events in Alert Boxes
	Responding to Events in Modal Dialog Boxes
	Writing an Event Filter Function for Alert and Mod...
	Responding to Mouse Events in Modeless and Movable...
	Responding to Keyboard Events in Modeless and Mova...
	Responding to Activate and Update Events in Modele...
	Closing Dialog Boxes

	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

