

C H A P T E R 3

Menu Manager 3

Here is the structure of a menu record:

TYPE MenuInfo = {menu record}

RECORD

menuID: Integer; {number that identifies the menu}

menuWidth: Integer; {width (in pixels) of the menu}

menuHeight: Integer; {height (in pixels) of the menu}

menuProc: Handle; {menu definition procedure}

enableFlags: LongInt; {indicates whether menu and }

{ menu items are enabled}

menuData: Str255; {title of menu}

{itemDefinitions} {variable-length data that }

{ defines the menu items}

END;

Field descriptions

menuID A number that identifies the menu. Each menu in your application
must have a unique menu ID. Your application specifies the menu
ID when you create the menu. Thereafter you can use the menu ID
and the GetMenuHandle function to get a handle to the menu’s
menu record.
When you define hierarchical menus, you must use a number from
1 through 235 for the menu ID of a submenu of an application; use a
number from 236 through 255 for the submenu of a desk accessory.

menuWidth The horizontal dimensions of the menu, in pixels.
menuHeight The vertical dimensions of the menu, in pixels.
menuProc A handle to the menu definition procedure of the menu. The Menu

Manager uses this menu definition procedure to draw the menu.
enableFlags A value that represents the enabled state of the menu title and

the first 31 items in the menu. All menu items greater than 31
are enabled by default and can be disabled only by disabling the
entire menu.

menuData A string that defines the title of the menu. Although the menuData
field is defined by the data type Str255 in the MenuInfo data
structure, the Menu Manager allocates only the storage necessary
for the title: the number of characters in the title of the string plus 1.

itemDefinitions
Variable-length data that defines the characteristics of each menu
item in the menu. If the menu uses the standard menu definition
procedure, this data can be conceptually defined in this manner:

itemData: ARRAY[1..X] OF
 itemString: String; {text of menu item}
 itemIcon: Byte; {icon number minus 256}
3-96 Menu Manager Reference

C H A P T E R 3

Menu Manager

3

M
enu M

anager

 itemCmd: Char; {keyboard equivalent or }
 { value ($1B) indicating }
 { item has a submenu, or }
 { ($1C) if item has }
 { a script code, or }
 { ($1D) if item's 'ICON' }
 { should be reduced, or }
 { ($1E) if item has an }
 { 'SICN' icon}
 itemMark: Char; {marking character or }
 { menu ID of submenu}
 itemStyle: Style; {style of menu text}
endMarker: Byte; {contains 0 if no }
 { more menu items}

The menu definition procedure maintains the information about the
menu items. You typically define your menu items in 'MENU'
resources, and the Menu Manager stores information describing
your items in the menu’s menu record.

Your application should not directly change the values of any fields in a menu record.
Use Menu Manager routines to change the characteristics of menu items or to make
other changes to a menu.

The Menu List 3

The menu list contains information about the menus in a menu bar, about submenus,
and about pop-up menus. A menu list contains handles to the menu records of zero,
one, or more menus and contains other information that the Menu Manager uses to
manage menus.

The InitMenus procedure creates the current menu list of an application. The current
menu list contains handles to the menu records of all menus currently in the menu bar
and handles to the menu records of any submenus or pop-up menus inserted into the
menu list by your application. The menu bar shows the titles, in order, of all menus
(other than submenus or pop-up menus) in the menu list.

The initial menu list created by InitMenus does not contain handles to any menus. The
Menu Manager dynamically allocates storage in a menu list as menus are added to and
deleted from the menu list.

Your application should not directly change or access the information in a menu list. You
should use Menu Manager routines to create a menu list and to add menus to or remove
menus from the current menu list.

You typically define your application’s menu bar in an 'MBAR' resource and create a
menu list using the GetNewMBar function. The GetNewMBar function returns a handle
to a menu list. You can set the current menu list to the menu list returned by
GetNewMBar using the SetMenuBar procedure.
Menu Manager Reference 3-97

C H A P T E R 3

Menu Manager

The structure of the menu list is private to the Menu Manager. For conceptual purposes,
however, its general structure is defined here.

TYPE DynamicMenuList =

RECORD

lastMenu: Integer; {offset to last pull-down menu}

lastRight: Integer; {pixel location of right edge }

{ of rightmost menu in menu bar}

mbResID: Integer; {upper 13 bits are the resource ID of menu }

{ bar defn function, low 3 bits the variant}

menu: ARRAY[1..X] {variable array with one record for }

OF MenuRec; { each menu}

lastHMenu: Integer; {offset to last submenu or pop-up menu}

menuTitleSave: {handle to bits behind inverted menu title}

pixMapHandle;

hMenu: ARRAY[1..Y] {variable array with one record for }

OF HMenuRec;{ each submenu or pop-up menu}

END;

The Menu Manager dynamically allocates the records that contain handles to the menu
records of menus in the menu bar, submenus, and pop-up menus. These records can be
defined conceptually as the MenuRec and HMenuRec data types. The Menu Manager
uses a data structure similar to that of the MenuRec data type to store information about
pull-down menus in the menu list.

TYPE MenuRec =

RECORD

menuOH: MenuHandle; {handle to menu's menu record}

menuLeft: Integer; {pixel location of left edge }

{ of this menu}

END;

The Menu Manager stores information about submenus and pop-up menus at the end of
a menu list in a data structure similar to that of the HMenuRec data type.

TYPE HMenuRec =

RECORD

menuHOH: MenuHandle; {handle to menu's menu record}

reserved: Integer; {reserved}

END;

The Menu Color Information Table Record 3

Your application’s menu color information table defines the standard color for the
menu bar, titles of menus, text and characteristics of menu items, and background color
of a displayed menu. If you do not add any entries to this table, the Menu Manager
draws your menus using the default colors, black on white. You can add colors to your
3-98 Menu Manager Reference

C H A P T E R 3

Menu Manager

3

M
enu M

anager

menus by adding entries to your application’s menu color information table by using
Menu Manager routines or by defining these entries in an 'mctb' resource. Note that
the menu color information table uses a format that is different from the standard color
table format.

The Menu Manager maintains information about an application’s menu color
information table as an array of menu color entry records.

TYPE MCTable = ARRAY[0..0] OF MCEntry; {menu color table}

MCTablePtr = ^MCTable; {pointer to a menu color table}

MCTableHandle = ^MCTablePtr;{handle to a menu color table}

A menu color entry is defined by the MCEntry data type.

TYPE MCEntry = {menu color entry}

RECORD

mctID: Integer; {menu ID or 0 for menu bar}

mctItem: Integer; {menu item number or 0 for }

{ menu title}

mctRGB1: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB2: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB3: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB4: RGBColor; {usage depends on mctID and }

{ mctItem}

mctreserved:Integer; {reserved}

END;

MCEntryPtr = ^MCEntry; {pointer to a menu color entry}

The first two fields of a menu color entry record, mctID and mctItem, define whether
the entry is a menu bar entry, a menu title entry, or a menu item entry. The following
four fields specify color information for whatever type of entry the mctID and mctItem
fields describe. The value of the mctID field in the last entry in a menu color information
table is –99, and the rest of the fields of the last entry are reserved. The Menu Manager
automatically creates the last entry in a menu color information table; your application
should not use the value –99 as the menu ID of a menu if you wish to add a menu color
entry for it.

The Menu Manager creates your application’s menu color information table the first
time your application calls InitMenus or InitProcMenu. It creates the menu color
information table as initially empty except for the last entry, which indicates the end
of the table.
Menu Manager Reference 3-99

C H A P T E R 3

Menu Manager

Table 3-7 shows how the Menu Manager interprets the mctID and mctItem fields for
each type of menu color entry in a menu color information table.

Table 3-7 Color information for menu entries

A menu bar entry is defined by a menu color entry record that contains 0 in both the
mctID and mctItem fields. You can define only one menu bar entry in a menu color
information table. If you don’t provide a menu bar entry for your application’s menu
color information table, the Menu Manager uses the standard menu bar colors (black text
on a white background), and it uses the standard colors for the other menu elements.
You can provide a menu bar entry to specify default colors for the menu title, the
background of a displayed menu, the items in a menu, and the menu bar. The color
information fields for a menu bar entry are interpreted as follows:

■ mctRGB1 specifies the default color for menu titles. If a menu doesn’t have a menu
title entry, the Menu Manager uses the value in this field as the color of the menu title.

■ mctRGB2 specifies the default color for the background of a displayed menu. If a
menu doesn’t have a menu title entry, the Menu Manager uses the value in this field
as the color of the menu’s background when it is displayed.

■ mctRGB3 specifies the default color for the items in a displayed menu. If a menu item
doesn’t have a menu item entry or a default color defined in a menu title entry, the
Menu Manager uses the value in this field as the color of the menu item.

■ mctRGB4 specifies the default color for the menu bar. If a menu doesn’t have a menu
bar entry (and doesn’t have any menu title entries), the Menu Manager uses the
standard colors for the menu bar.

A menu title entry is defined by a menu color entry record that contains a menu ID in
the mctID field and 0 in the mctItem field. You can define only one menu title entry for
each menu. If you don’t provide a menu title entry for a menu in your application’s
menu color information table, the Menu Manager uses the colors defined by the menu
bar entry. If a menu bar entry doesn’t exist, the Menu Manager uses the standard colors

ID Item RGB1 RGB2 RGB3 RGB4

Menu bar 0 0 Default
menu title
color

Default back-
ground color
of menus

Default
item color

Default bar
color

Menu title N<>0 0 Menu title
color

Bar color Default
item color

Background
color of
menu

Menu item N<>0 M<>0 Mark color Item text
color

Keyboard
equivalent
color

Background
color of
menu

Last entry –99 Reserved Reserved Reserved Reserved Reserved
3-100 Menu Manager Reference

C H A P T E R 3

Menu Manager

3

M
enu M

anager

(black on white). You can provide a menu title entry to specify a color for the title and
background of a specific menu and a default color for its items. The color information
fields for a menu title entry are interpreted as follows:

■ mctRGB1 specifies the color for the menu title of the specified menu. If a menu
doesn’t have a menu title entry, the Menu Manager uses the default value defined
in the menu bar entry.

■ mctRGB2 specifies the default color for the menu bar. If a menu color information
table doesn’t have a menu bar entry, the Menu Manager uses the value in this field as
the color of the menu bar. If a menu bar entry already exists, the Menu Manager
replaces the value in the mctRGB2 field of the menu title entry with the value defined
in the mctRGB4 field of the menu bar entry.

■ mctRGB3 specifies the default color for the items in the menu. If a menu item doesn’t
have a menu item entry or a default color defined in a menu bar entry, the Menu
Manager uses the value in this field as the color of the menu item.

■ mctRGB4 specifies the color for the background of the menu.

A menu item entry is defined by a menu color entry record that contains a menu ID in
the mctID field and an item number in the mctItem field. You can define only one
menu item entry for each menu item. If you don’t provide a menu item entry for an item
in your application’s menu color information table, the Menu Manager uses the colors
defined by the menu title entry (or by the menu bar entry if the menu containing the
item doesn’t have a menu title entry). If neither a menu title entry nor a menu bar entry
exists, the Menu Manager draws the mark, text, and keyboard equivalent in black. You
can provide a menu item entry to specify a color for the mark, text, and keyboard
equivalent of a specific menu item. The color information fields for a menu item entry
are interpreted as follows:

■ mctRGB1 specifies the color for the mark of the menu item. If a menu item doesn’t
have a menu item entry, the Menu Manager uses the default value defined in the
menu title entry or the menu bar entry.

■ mctRGB2 specifies the color for the text of the menu item. If a menu item doesn’t have
a menu item entry, the Menu Manager uses the default value defined in the menu title
entry or the menu bar entry. The Menu Manager also draws a black-and-white icon of
a menu item using the same color as defined by the mctRGB2 field. (Use a 'cicn'
resource to provide a menu item with a color icon.)

■ mctRGB3 specifies the color for the keyboard equivalent of the menu item. If a menu
item doesn’t have a menu item entry, the Menu Manager uses the default value
defined in the menu title entry or the menu bar entry.

■ mctRGB4 specifies the color for the background of the menu. If the menu color
information table doesn’t have a menu title entry for the menu this item is in, or
doesn’t have a menu bar entry, the Menu Manager uses the value in this field as the
background color of the menu. If a menu title entry already exists, the Menu Manager
replaces the value in the mctRGB4 field of the menu item entry with the value defined
in the mctRGB4 field of the menu title entry (or with the mctRGB2 field of the menu
bar entry).
Menu Manager Reference 3-101

C H A P T E R 3

Menu Manager
You can use the GetMCInfo function to get a copy of your application’s menu color
information table and the SetMCEntries procedure to set entries of your application’s
menu color information table, or you can provide 'mctb' resources that define the color
entries for your menus.

The GetMenu, GetNewMBar, and ClearMenuBar routines can also modify the entries in
the menu color information table. The GetMenu function looks for an 'mctb' resource
with a resource ID equal to the value in the menuID parameter. If it finds one, it adds the
entries to the application’s menu color information table.

The GetNewMBar function builds a new menu color information table when it creates
the new menu list. If you want to save the current menu color information table, call
GetMCInfo before calling GetNewMBar.

The ClearMenuBar procedure reinitializes both the current menu list and the menu
color information table.

Menu Manager Routines 3
The Menu Manager includes routines for creating menus, changing the characteristics of
menu items, and handling user choice of menu commands. The Menu Manager also
provides routines for adding items to and deleting items from menus, counting the
number of items in a menu, getting a handle to a menu’s menu record, disposing of
menus, calculating the dimensions of a menu, highlighting the menu bar, and managing
entries in your application’s menu color information table.

Some Menu Manager routines can be accessed using more than one spelling of the
routine’s name, depending on the interface files supported by your development
environment. For example, GetMenuHandle is also available as GetMHandle.
Table 3-8 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 3-8 Mapping between new and previous names of Menu Manager routines

New name Previous name

AppendResMenu AddResMenu

DeleteMCEntries DelMCEntries

DeleteMenuItem DelMenuItem

DisposeMCInfo DispMCInfo

GetMenuHandle GetMHandle

GetMenuItemText GetItem

InsertMenuItem InsMenuItem

SetMenuItemText SetItem
3-102 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Initializing the Menu Manager 3

You can use the InitMenus procedure to initialize the Menu Manager.

You can use the InitProcMenu procedure to set the current menu list so that it uses a
custom menu bar definition function if necessary.

InitMenus 3

The InitMenus procedure allocates space for your application’s current menu list in
your application’s heap. Your application needs to call InitMenus only once to
initialize the Menu Manager and the current menu list for your application.

PROCEDURE InitMenus;

DESCRIPTION

The InitMenus procedure creates the current menu list with no menus, submenus, or
pop-up menus. InitMenus also creates your application’s menu color information
table. After allocating the menu color information table, InitMenus looks for an
'mctb' resource with resource ID 0. You can provide an 'mctb' resource with a
resource ID of 0 as one of your application’s resources if you want to use colors other
than the default colors for your application’s menu bar and menus. If InitMenus finds
and successfully loads an 'mctb' resource, it adds the information contained in that
resource to the menu color information table (using SetMCEntries).

The InitMenus procedure also draws an empty menu bar.

SPECIAL CONSIDERATIONS

Your application must initalize QuickDraw, the Font Manager, and the Window Manager
(using the InitGraf, InitFonts, and InitWindows procedures) before initializing
the Menu Manager.

SEE ALSO

To set up the menus for your application’s menu bar, use GetNewMBar and
SetMenuBar, described on page 3-111 and page 3-112, respectively. You can also add
menus to the current menu list using the InsertMenu procedure, described on
page 3-108.

To remove all menus from the current menu list, use the ClearMenuBar procedure,
described on page 3-110.

If your application uses its own menu bar definition function, use the InitProcMenu
procedure to set the mbResID field of the current menu list to the resource ID of your
custom 'MBDF' resource.
Menu Manager Reference 3-103

C H A P T E R 3

Menu Manager
See “The Menu Color Information Table Resource” on page 3-155 for a description of the
'mctb' resource.

See the chapter “Window Manager” in this book for a description of the InitWindows
procedure. See Inside Macintosh: Imaging and Inside Macintosh: Text for descriptions of the
InitGraf and InitFonts procedures.

InitProcMenu 3

Apple recommends that you use the standard menu bar definition function. However, if
your application provides its own menu bar definition function, use the InitProcMenu
procedure to set the mbResID field of the current menu list to the resource ID of your
custom 'MBDF' resource.

PROCEDURE InitProcMenu (resID: Integer);

resID The resource ID of your application’s menu bar definition function in the
upper 13 bits of this parameter; the variant in the lower 3 bits. You must
use a resource ID greater than $100.

For resources of type 'MBDF', Apple reserves resource IDs $000 through
$100 for its own use.

DESCRIPTION

The InitProcMenu procedure creates the current menu list if it hasn’t already been
created by a previous call to InitMenus. The InitProcMenu procedure stores the
resource ID that you specify in the mbResID field of the current menu list. The Menu
Manager uses the menu bar definition function referred to in this field to draw the menu
bar and to perform basic operations on menus.

SPECIAL CONSIDERATIONS

The resource ID of your application’s menu bar definition function is maintained in the
current menu list until your application next calls InitMenus; InitMenus initializes
the mbResID field with the resource ID of the standard menu bar definition function.
This can affect applications such as development environments that control other
applications that may call InitMenus.

SEE ALSO

See the description of the InitMenus procedure on page 3-103; you should use
InitMenus if your application uses the standard menu bar definition function.
3-104 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Creating Menus 3

You can use the NewMenu or GetMenu function to create a pull-down menu, although
you usually create all the menus in your menu bar at once by providing an 'MBAR'
resource and using the GetNewMBar function. See “Getting and Setting the Menu Bar”
on page 3-112 for information on creating a menu bar. You typically use the NewMenu or
GetMenu function to create submenus or pop-up menus.

The NewMenu function creates a menu with the specified title, assigns it the specified
menu ID, and creates a menu record for the menu. Use AppendMenu,
InsertMenuItem, AppendResMenu, or InsertResMenu to add items to menus you
create with NewMenu.

The GetMenu function creates a menu with the title, items, and characteristics defined in
a specified 'MENU' resource.

Both NewMenu and GetMenu allocate space in your application’s heap for the menu
record and return a handle to the menu’s newly created menu record.

To add menus created by NewMenu or GetMenu to the current menu list, use the
InsertMenu procedure. To update the menu bar with any new menu titles, use
DrawMenuBar.

NewMenu 3

You can use the NewMenu function to create an empty menu with a specified title and
menu ID. In most cases you should store information about your menus (such as their
titles, items, and characteristics) in resources; use the GetMenu or GetNewMBar function
to create menus from resource definitions.

FUNCTION NewMenu (menuID: Integer; menuTitle: Str255): MenuHandle;

menuID The menu ID of the menu. (Note that this is not the resource ID of a
'MENU' resource.) The menu ID is a number that identifies the menu. Use
positive menu IDs for menus belonging to your application. Use negative
menu IDs for desk accessories (except for submenus of a desk accessory).
Submenus must have menu IDs from 1 through 255. For submenus of an
application, use menu IDs from 1 through 235; for submenus of a desk
accessory, use menu IDs from 236 through 255. Apple reserves the menu
ID of 0.

menuTitle The title of the new menu. Note that in most cases you should store
the titles of menus in resources, so that your menu titles can be more
easily localized.
Menu Manager Reference 3-105

C H A P T E R 3

Menu Manager
DESCRIPTION

The NewMenu function creates a menu with the specified title, assigns it the specified
menu ID, creates a menu record for the menu, and returns a handle to the menu record.
It sets up the menu record to use the standard menu definition procedure (and it reads
the standard menu definition procedure into memory if it isn’t already there). The
NewMenu function does not insert the newly created menu into the current menu list.

After creating a menu with NewMenu, use AppendMenu, InsertMenuItem,
AppendResMenu, or InsertResMenu to add menu items to the menu. To add a menu
created by NewMenu to the current menu list, use the InsertMenu procedure. To update
the menu bar with any new menu titles, use the DrawMenuBar procedure.

SPECIAL CONSIDERATIONS

To release the memory associated with a menu that you created using NewMenu, first
call DeleteMenu to remove the menu from the current menu list and to remove any
entries for this menu in your application’s menu color information table; then call
DisposeMenu to dispose of the menu’s menu record. After disposing of a menu, use
DrawMenuBar to update the menu bar.

If the NewMenu function is unable to create the menu record, it returns NIL as its
function result.

SEE ALSO

For information on how to add items to a menu, see the description of AppendMenu on
page 3-124, InsertMenuItem on page 3-126, AppendResMenu on page 3-128, and
InsertResMenu on page 3-129. For information on InsertMenu, see page 3-108. To
dispose of a menu, see the description of DeleteMenu on page 3-109 and DisposeMenu
on page 3-140.

GetMenu 3

Use the GetMenu function to create a menu with the title, items, and other characteristics
defined in a 'MENU' resource with the specified resource ID. You typically use this
function only when you create submenus; you can create all your pull-down menus at
once using the GetNewMBar function, and you can create pop-up menus using the
standard pop-up control definition function.

FUNCTION GetMenu (resourceID: Integer): MenuHandle;

resourceID The resource ID of the 'MENU' resource that defines the characteristics of
the menu. (You usually use the same number for a menu’s resource ID as
the number that you specify for the menu ID in the menu resource.)
3-106 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
DESCRIPTION

The GetMenu function creates a menu according to the specified menu resource, and it
also creates a menu record for the menu. It reads the menu definition procedure
(specified in the menu resource) into memory if it isn’t already in memory, and it stores
a handle to the menu definition procedure in the menu record. The GetMenu function
does not insert the newly created menu into the current menu list.

After reading the 'MENU' resource, the GetMenu function searches for an 'mctb'
resource with the same resource ID as the 'MENU' resource. If GetMenu finds this
'mctb' resource, it uses the information in the 'mctb' resource to add entries for this
menu to the application’s menu color information table. The GetMenu function uses
SetMCEntries to add the entries defined by the 'mctb' resource to the application’s
menu color information table. If GetMenu doesn’t find this 'mctb' resource, it uses the
default colors specified in the menu bar entry of the application’s menu color
information, or, if the menu bar entry doesn’t exist, it uses the standard colors for
the menu.

The GetMenu function returns a handle to the menu record of the menu. You can use the
returned menu handle to refer to this menu in most Menu Manager routines. If GetMenu
is unable to read the menu or menu definition procedure from the resource file,
GetMenu returns NIL.

After creating a menu with GetMenu, you can use AppendMenu, InsertMenuItem,
AppendResMenu, or InsertResMenu to add more menu items to the menu if necessary.

To add a menu created by GetMenu to a menu list, use the InsertMenu procedure. To
update the menu bar with any new menu titles, use the DrawMenuBar procedure.

Storing the definitions of your menus in resources (especially menu titles and menu
items) makes your application easier to localize.

▲ W A R N I N G

Menus in a resource must not be purgeable. ▲

SPECIAL CONSIDERATIONS

To release the memory associated with a menu that you read from a resource file using
GetMenu, first call DeleteMenu to remove the menu from the menu list and to remove
any menu title entry or menu item entries for this menu in the application’s menu color
information table, then call the Resource Manager procedure ReleaseResource to
dispose of the menu’s menu record. Use DrawMenuBar to update the menu bar.

▲ W A R N I N G

Call GetMenu only once for a particular menu. If you need the handle of
a menu currently in the menu list, use GetMenuHandle or the Resource
Manager function GetResource. ▲
Menu Manager Reference 3-107

C H A P T E R 3

Menu Manager
SEE ALSO

For a description of the 'MENU' resource, see “The Menu Resource” on page 3-151; for a
sample 'MENU' resource in Rez format, see Listing 3-2 on page 3-48. For information on
the 'mctb' resource, see “The Menu Color Information Table Resource” on page 3-155.

For details on how to add items to a menu, see the description of AppendMenu on
page 3-124, InsertMenuItem on page 3-126, AppendResMenu on page 3-128, and
InsertResMenu on page 3-129. To remove a menu, see the description of DeleteMenu
on page 3-109. To update the menu bar, use the DrawMenuBar procedure, described on
page 3-113.

Adding Menus to and Removing Menus From the Current Menu List 3

After creating a menu with NewMenu or GetMenu, use the InsertMenu procedure to
insert the menu into the current menu list. Use the DeleteMenu procedure to delete
a menu from the current menu list; use the ClearMenuBar procedure to remove all
menus from the current menu list.

InsertMenu 3

Use the InsertMenu procedure to insert an existing menu into the current menu list.

PROCEDURE InsertMenu (theMenu: MenuHandle; beforeID: Integer);

theMenu A handle to the menu record of the menu. The NewMenu and GetMenu
functions return a handle to a menu record that you can use in this
parameter.

beforeID A number that indicates where in the current menu list the menu should
be inserted. InsertMenu inserts the menu into the current menu list
before the menu whose menu ID equals the number specified in the
beforeID parameter. If the number in the beforeID parameter is 0 (or
it isn’t the ID of any menu in the menu list), InsertMenu adds the new
menu after all others (except before the Help, Keyboard, and Application
menus). If the menu is already in the current menu list or the menu list is
already full, InsertMenu does nothing.

You can specify –1 for the beforeID parameter to insert a submenu into
the current menu list. The submenus in the submenu portion of the menu
list do not have to be currently associated with a hierarchical menu item;
you can store submenus in the menu list and later specify that a menu
item has a submenu if needed. However, note that the MenuKey function
scans all menus in the menu list for keyboard equivalents, including
submenus that are not associated with any menu item. You should not
define keyboard equivalents for submenus that are in the current menu
list but not associated with a menu item.
3-108 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
You can also specify –1 for the beforeID parameter to insert a pop-up
menu into the current menu list. However, if you use the standard
pop-up control definition function, the pop-up control automatically
inserts the menu into the current menu list according to the needs of the
pop-up control.

DESCRIPTION

The InsertMenu procedure inserts into the current menu list the menu identified by the
specified handle to a menu record. To update the menu bar to reflect the new menu, use
DrawMenuBar.

SEE ALSO

For details on how to update your application’s menu bar, see the description of
DrawMenuBar on page 3-113.

DeleteMenu 3

Use the DeleteMenu procedure to delete an existing menu from the current menu list.

PROCEDURE DeleteMenu (menuID: Integer);

menuID The menu ID of the menu to delete from the current menu list. If the
menu list does not contain a menu with the specified menu ID,
DeleteMenu does nothing.

DESCRIPTION

The DeleteMenu procedure deletes the menu identified by the specified menu ID
from the current menu list, and it removes all color entries for that menu from the
application’s menu color information table. DeleteMenu does not release the memory
occupied by the menu’s menu record. To release the memory occupied by the menu’s
associated data structures, use DisposeMenu if you created the menu using NewMenu;
use the Resource Manager procedure ReleaseResource if you created the menu using
GetMenu or you read the resource in using GetNewMBar.

The DeleteMenu procedure first checks the submenu portion of the current menu list
for a menu ID with the specified ID. If it finds such a menu, it deletes that menu and
returns. If DeleteMenu doesn’t find the menu in the submenu portion, it checks the
regular portion of the current menu list. This allows a desk accessory to delete a
submenu without deleting an application’s menu whose menu ID might conflict with
the menu ID defined by a desk accessory.

After deleting a menu, use DrawMenuBar to update the menu bar to reflect the changes
to the current menu list.
Menu Manager Reference 3-109

C H A P T E R 3

Menu Manager
SEE ALSO

For details on how to dispose of a menu’s associated data structures using
DisposeMenu, see “Disposing of Menus” on page 3-140. For information on the
ReleaseResource procedure, see the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.

ClearMenuBar 3

Use the ClearMenuBar procedure to delete all menus from the current menu list.

PROCEDURE ClearMenuBar;

DESCRIPTION

The ClearMenuBar procedure deletes all menus from the current menu list and deletes
all color entries from the application’s menu color information table. ClearMenuBar
does not release the memory occupied by any of the menus’ menu records or the menu
color information table. To release the memory occupied by the data structures
associated with the menus, use DisposeMenu for each menu you created using
NewMenu; use ReleaseResource for each menu you created using GetMenu or if you
read the resource in using GetNewMBar.

After deleting all menus from the current menu list, use DrawMenuBar to update the
appearance of the menu bar.

SEE ALSO

To update your application’s menu bar, see the description of DrawMenuBar on
page 3-113. For information on the ReleaseResource procedure, see the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

Getting a Menu Bar Description From an 'MBAR' Resource 3

You usually create your application’s menu bar by doing the following:

■ defining the order and resource ID of your menus in an 'MBAR' resource

■ defining the menus in 'MENU' resources

■ reading in these descriptions using the GetNewMBar function

■ setting the current menu list to the menu list returned by GetNewMBar

■ updating the menu bar using DrawMenuBar
3-110 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
GetNewMBar 3

Use the GetNewMBar function to read in the definition of a menu bar from an 'MBAR'
resource.

FUNCTION GetNewMBar (menuBarID: Integer): Handle;

menuBarID The resource ID of an 'MBAR' resource that specifies the menus for a
menu bar.

DESCRIPTION

The GetNewMBar function reads in the definition of a menu bar and its associated
menus from an 'MBAR' resource. The 'MBAR' resource identifies the order of menus
contained in its menu bar. For each menu, it also specifies the menu’s resource ID. The
GetNewMBar function reads in each menu from the 'MENU' resource with the resource
ID specified in the 'MBAR' resource.

The GetNewMBar function creates a menu list for the menu bar defined by the 'MBAR'
resource and returns a handle to the menu list. (If the resource isn’t already in memory,
GetNewMBar reads it into memory.) If GetNewMBar can’t read the resource,
GetNewMBar returns NIL. GetNewMBar uses GetMenu to read in each individual menu.

After reading in menus from an 'MBAR' resource, use SetMenuBar to make the menu
list created by GetNewMBar the current menu list. Then use DrawMenuBar to update
the menu bar.

To release the memory occupied by the data structures associated with the menus in a
menu list, use DisposeMenu for each menu you created using NewMenu; use the
Resource Manager procedure ReleaseResource for each menu you created using
GetMenu or if you read the resource in using GetNewMBar. To release the memory
occupied by a menu list, use the Memory Manager procedure DisposeHandle.

SPECIAL CONSIDERATIONS

The GetNewMBar function first saves the current menu list and then clears the current
menu list and your application’s menu color information table. It then creates a
new menu list. Before returning a handle to the new menu list, the GetNewMBar
function restores the current menu list to the previously saved menu list, but
GetNewMBar does not restore the previous menu color information table. To save
and then restore your application’s current menu color information table, call the
GetMCInfo function before GetNewMBar and call the SetMCInfo procedure afterward.

While you supply only the resource ID of an 'MBAR' resource to the GetNewMBar
function, your application often needs to use the menu IDs defined in each of your
menus’ 'MENU' resources. Most Menu Manager routines require either a menu ID
or a handle to a menu record to perform operations on a specific menu. For menus in
the current menu list, you can use the GetMenuHandle function to get the handle to
a menu record of a menu with a given menu ID.
Menu Manager Reference 3-111

C H A P T E R 3

Menu Manager
SEE ALSO

For a description of the 'MENU' resource, see “The Menu Resource” on page 3-151; for a
sample 'MENU' resource in Rez format, see Listing 3-2 on page 3-48. For a description of
the 'MBAR' resource, see “The Menu Bar Resource” on page 3-155; for a sample 'MBAR'
resource in Rez format, see Listing 3-4 on page 3-49. For information on the 'mctb'
resource, see “The Menu Color Information Table Resource” on page 3-155. For
information about the Resource Manager, see Inside Macintosh: More Macintosh Toolbox.

Getting and Setting the Menu Bar 3

You can use the GetMenuBar function to get a handle to a copy of the current menu list.
Use the SetMenuBar procedure to set the current menu bar to a menu list previously
returned by GetMenuBar or GetNewMBar. You can get the height of the menu bar using
the GetMBarHeight function.

GetMenuBar 3

Use the GetMenuBar function to get a handle to a copy of the current menu list.

FUNCTION GetMenuBar: Handle;

DESCRIPTION

The GetMenuBar function creates a copy of the current menu list and returns a handle
to the copy. You can save the returned menu list and then add menus to or remove
menus from the current menu list (using InsertMenu, DeleteMenu, or
ClearMenuBar). You can later restore the saved menu list using SetMenuBar.

To release the memory occupied by a saved menu list, use the Memory Manager’s
DisposeHandle procedure.

▲ W A R N I N G

GetMenuBar doesn’t copy the menu records, just the menu list (which
contains handles to the menu records). Do not dispose of any menus in a
saved menu list if you wish to restore the menu list later. ▲

SetMenuBar 3

Use the SetMenuBar procedure to set the current menu list to a specified menu list.

PROCEDURE SetMenuBar (menuList: Handle);

menuList A handle to a menu list that specifies the menus for a menu bar. You
should specify a handle returned by GetMenuBar or GetNewMBar.
3-112 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
DESCRIPTION

The SetMenuBar procedure copies the given menu list to the current menu list. As with
GetMenuBar, SetMenuBar doesn’t copy the menu records, just the menu list (which
contains handles to the menu records).

You can use SetMenuBar to restore a menu list that you previously saved using
GetMenuBar or to set the current menu list to a menu list created by GetNewMBar.

The SetMenuBar procedure sets only the current menu list; to update the menu bar
according to the new menu list, use the DrawMenuBar procedure.

GetMBarHeight 3

Use the GetMBarHeight function if you need to determine the current height of the
menu bar. When the Roman script system is the current system script, the menu bar is
20 pixels high. If a non-Roman script is the current system script, the menu bar may be
greater than 20 pixels high to accommodate the current system font.

FUNCTION GetMBarHeight: Integer;

DESCRIPTION

The GetMBarHeight function returns the current height, in pixels, of the menu bar.

Drawing the Menu Bar 3

Whenever your application adds menus to or removes menus from the current menu
list, you should update the titles of the menus in the menu bar using the DrawMenuBar
procedure. If you change the enabled state of a menu, you should call DrawMenuBar to
update the menu title accordingly. Alternatively, you can use the InvalMenuBar
procedure instead of DrawMenuBar to invalidate the menu bar; this causes the Event
Manager to redraw the menu bar as part of its normal processing of update events.

DrawMenuBar 3

Use the DrawMenuBar procedure to draw the menu bar based on the current menu list.

PROCEDURE DrawMenuBar;

DESCRIPTION

The DrawMenuBar procedure draws (or redraws) the menu bar according to the current
menu list. You must call DrawMenuBar to update the menu bar after adding menus to or
deleting menus from the current menu list using InsertMenu or DeleteMenu, after
setting the current menu list using SetMenuBar, after changing the enabled state of a
menu, or after any other routine that changes the current menu list.
Menu Manager Reference 3-113

C H A P T E R 3

Menu Manager
InvalMenuBar 3

Use the InvalMenuBar procedure to invalidate the menu bar.

PROCEDURE InvalMenuBar;

DESCRIPTION

The InvalMenuBar procedure marks the menu bar as changed and in need
of updating. When the Event Manager scans update regions for regions that require
updating, the Event Manager also checks to determine whether the menu bar
requires updating (because of a call to InvalMenuBar). If the menu bar needs updating,
the Event Manager calls the DrawMenuBar procedure to draw the menu bar.

You can use InvalMenuBar instead of DrawMenuBar to minimize blinking in the menu
bar. For example, if you have several application-defined routines that can change the
enabled state of a menu and each calls DrawMenuBar, you can replace the calls to
DrawMenuBar with calls to InvalMenuBar. In this way the menu bar is redrawn only
once instead of multiple times in quick succession. If you need to make immediate
changes to the menu bar, use DrawMenuBar. If you want to redraw the menu bar at most
once each time through your event loop, use InvalMenuBar. The InvalMenuBar
procedure is available only in System 7.

Responding to the User’s Choice of a Menu Command 3

When the user presses the mouse button while the cursor is in the menu bar, your
application should call the MenuSelect function to allow the user to choose a
command from the menu bar. If the user presses the mouse button while the cursor is
over a pop-up menu that does not use the standard pop-up control definition function,
your application should call the PopUpMenuSelect function to allow the user to make
a choice from the pop-up menu.

You should also allow the user to choose a menu command by typing a keyboard
equivalent. When the user presses a key on the keyboard, your application should
determine if the Command key was pressed at the same time, and, if so, your application
should call the MenuKey function to map this keyboard combination to any
corresponding Command-key equivalent.

If the user chooses an item, both the MenuSelect and MenuKey functions highlight the
title of the menu containing the chosen item and report the user’s choice to your
application. Your application should perform the corresponding command and, when
finished, should unhighlight the menu title using the HiliteMenu procedure to indicate
to the user that the command is completed.

If the user releases the mouse button while the cursor is over a disabled item or types the
keyboard equivalent of a disabled item, MenuSelect and MenuKey do not report the
menu ID or menu item of the item. To determine if the user chose a disabled item (for
example, so that your application can provide assistance to the user or explain to the
user why the command is disabled), you can use the MenuChoice function to return the
menu ID and menu item of the disabled menu command.
3-114 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Your application should adjust its menus before calling MenuSelect or MenuKey. For
example, you should enable or disable menu items as appropriate and add any
applicable checkmarks or dashes to items that show attributes.

MenuSelect 3

Use the MenuSelect function to allow the user to choose a menu item from the menus
in your application’s menu bar.

FUNCTION MenuSelect (startPt: Point): LongInt;

startPt The point (in global coordinates) representing the location of the cursor at
the time the mouse button was pressed.

DESCRIPTION

When the user presses the mouse button while the cursor is in the menu bar, your
application receives a mouse-down event. To handle mouse-down events in the menu
bar, pass the location of the cursor at the time of the mouse-down event as the startPt
parameter to MenuSelect. The MenuSelect function displays and removes menus as
the user moves the cursor over menu titles in the menu bar, and it handles all user
interaction until the user releases the mouse button.

As the user drags the cursor through the menu bar, the MenuSelect function highlights
the title of the menu the cursor is currently over and displays all items in that menu. If
the user moves the cursor so that it is over a different menu, the MenuSelect function
removes the previous menu and unhighlights its menu title.

The MenuSelect function highlights and unhighlights menu items as the user drags the
cursor over the items in a menu. The MenuSelect function highlights a menu item if
the item is enabled and the cursor is currently over it; it removes such highlighting when
the user moves the cursor to another menu item. The MenuSelect function does not
highlight disabled menu items.

If the user chooses an enabled menu item (including any item from a submenu), the
MenuSelect function returns a value as its function result that indicates which menu
and menu item the user chose. The high-order word of the function result contains the
menu ID of the menu, and the low-order word contains the item number of the menu
item chosen by the user. The MenuSelect function leaves the menu title highlighted;
after performing the chosen task your application should unhighlight the menu title
using the HiliteMenu procedure.

If the user chooses an item from a submenu, MenuSelect returns the menu ID of the
submenu in the high-order word and the item chosen by the user in the low-order word
of its function result. The MenuSelect function also highlights the title of the menu in
the menu bar that the user originally displayed in order to begin traversing to the
submenu. After performing the chosen task, your application should unhighlight the
menu title.
Menu Manager Reference 3-115

C H A P T E R 3

Menu Manager
If the user releases the mouse button while the cursor is over a disabled item, in the
menu bar, or outside of any menu, the MenuSelect function returns 0 in the high-order
word of its function result and the low-order word is undefined. If it is necessary for
your application to find the item number of the disabled item, your application can call
MenuChoice to return the menu ID and menu item.

If the user chooses an enabled item in a menu that a desk accessory has inserted into
your application’s menu list, MenuSelect uses the SystemMenu procedure to process
this occurrence and returns 0 to your application in the high-order word.

SPECIAL CONSIDERATIONS

When the MenuSelect function pulls down a menu, it stores the bits behind the menu
as a relocatable object in the application heap of your application.

ASSEMBLY-LANGUAGE INFORMATION

The InitMenus and InitProcMenu procedures initialize the MenuHook and
MBarHook global variables to 0. If you choose, you can store the addresses of routines
that MenuSelect calls in these global variables. The MenuHook global variable contains
the address (if any) of a routine that MenuSelect calls repeatedly while the mouse
button is down. MenuSelect does not pass any parameters to this routine.

The MBarHook global variable contains the address (if any) of a routine that
MenuSelect calls after a menu title is highlighted and the menu rectangle is calculated
but before the menu is drawn. The menu rectangle is the rectangle (in global
coordinates) in which the menu will be drawn. MenuSelect passes a pointer to the
menu rectangle on the stack. If you provide the address of a routine in the MBarHook
global variable, it should normally return 0 in the D0 register, indicating that
MenuSelect should continue; returning 1 causes MenuSelect to cancel its operation
and return immediately to the application.

The MenuSelect function uses the global variable MBarEnable to determine if all
menus in the current menu bar belong to a desk accessory or an application. If the
MBarEnable global variable is nonzero, then all menus in the current menu bar belong
to a desk accessory. If the MBarEnable global variable is 0, then all menus in the current
menu bar belong to an application. If you’re writing a desk accessory, you may need to
set the MBarEnable global variable to a nonzero value; if you’re writing an application,
you should not change the value of the MBarEnable global variable.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID
of the submenu, not the menu to which the submenu is attached.

SEE ALSO

For information on adjusting your application’s menus before calling MenuSelect, see
“Adjusting the Menus of an Application” beginning on page 3-73.
3-116 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
See the description of the HiliteMenu procedure on page 3-119 for details on how to
unhighlight a menu. For information on how to determine if the user chose a disabled
item, see the description of the MenuChoice function on page 3-118.

MenuKey 3

If the user presses another key while holding down the Command key, call the MenuKey
function to determine if the keyboard combination maps to the keyboard equivalent of a
menu item in a menu in the current menu list.

FUNCTION MenuKey (ch: Char): LongInt;

ch The 1-byte character representing the key pressed by the user in
combination with the Command key.

DESCRIPTION

The MenuKey function maps the given character to the menu and menu item with that
keyboard equivalent. The MenuKey function returns as its function result a value that
indicates the menu ID and menu item that has the keyboard equivalent corresponding to
the given character.

The MenuKey function does not distinguish between uppercase and lowercase letters. It
takes the 1-byte character passed to it and calls the UpperText procedure (which
provides localizable uppercase conversion of the character). Thus, MenuKey translates
any lowercase character to uppercase when comparing a keyboard event to keyboard
equivalents. This allows a user to invoke a keyboard equivalent command, such as the
Copy command, by pressing the Command key and “c” or “C”. For consistency between
applications, you should define the keyboard equivalents of your commands so that they
appear in uppercase in your menus.

If the given character maps to an enabled menu item in the current menu list, MenuKey
highlights the menu title of the chosen menu, returns the menu ID in the high-order
word of its function result, and returns the chosen menu item in the low-order word of
its function result. After performing the chosen task, your application should
unhighlight the menu title using the HiliteMenu procedure.

If the given character does not map to an enabled menu item in the current menu list,
MenuKey returns 0 in its high-order word and the low-order word is undefined.

If the given character maps to a menu item in a menu that a desk accessory has inserted
into your application’s menu list, MenuSelect uses the SystemMenu procedure to
process this occurrence and returns 0 to your application in the high-order word.

You should not define menu items with identical keyboard equivalents. The MenuKey
function scans the menus from right to left and the items from top to bottom. If you have
defined more than one menu item with identical keyboard equivalents, MenuKey returns
the first one it finds.
Menu Manager Reference 3-117

C H A P T E R 3

Menu Manager
The MenuKey function first searches the regular portion of the current menu list for a
menu item with a keyboard equivalent matching the given key. If it doesn’t find one
there, it searches the submenu portion of the current menu list. If the given key maps to
a menu item in a submenu, MenuKey highlights the menu title in the menu bar that the
user would normally pull down to begin traversing to the submenu. Your application
should perform the desired command and then unhighlight the menu title.

You shouldn’t assign a Command–Shift–number key sequence to a menu item as its
keyboard equivalent; Command–Shift–number key sequences are reserved for use as
'FKEY' resources. Command–Shift–number key sequences are not returned to your
application, but instead are processed by the Event Manager. The Event Manager
invokes the 'FKEY' resource with a resource ID that corresponds to the number that
activates it.

Apple reserves the Command-key codes $1B (Control-[) through $1F (Control-_) to
indicate meanings other than keyboard equivalents. MenuKey ignores these character
codes and returns a function result of 0 if you specify any of these values in the ch
parameter. Your application should not use these character codes for its own use.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID
of the submenu, not the menu to which the submenu is attached.

▲ W A R N I N G

Do not define a “circular” hierarchical menu—that is, a hierarchical
menu in which a submenu has a submenu whose submenu is
a hierarchical menu higher in the chain. If MenuKey detects a circular
hierarchical menu, it creates a system error with error number 86. ▲

SEE ALSO

To unhighlight a menu, use the HiliteMenu procedure, described on page 3-119. To
provide support for keyboard equivalents other than Command-key equivalents, see the
discussion of 'KCHR' resources in Inside Macintosh: Text.

MenuChoice 3

If your application needs to find the item number of a disabled menu item that the
user attempted to choose, you can use the MenuChoice function to return the chosen
menu item.

FUNCTION MenuChoice: LongInt;

DESCRIPTION

If the user chooses a disabled menu item, the MenuChoice function returns a value that
indicates which menu and menu item the user chose. The high-order word of the
3-118 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
function result contains the menu ID of the menu, and the low-order word contains the
item number of the menu item chosen by the user.

The MenuChoice function returns 0 as the low-order word of its function result if the
mouse button was released while the cursor was in the menu bar or outside the menu.

SPECIAL CONSIDERATIONS

The Menu Manager updates the global variable MenuDisable whenever a menu is
displayed. As the user moves the cursor over each item, the Menu Manager calls the
menu definition procedure of the menu to update the MenuDisable global variable to
reflect the current menu ID and menu item. The standard menu definition procedure
updates the global variable MenuDisable appropriately. If your application uses its
own menu definition procedure, your menu definition procedure should support this
feature; if you use a menu definition procedure that does not update the global variable
MenuDisable appropriately, the result returned by MenuChoice is undefined.

HiliteMenu 3

You can use the HiliteMenu procedure to highlight or unhighlight menu titles. For
example, after performing a menu command chosen by the user, use the HiliteMenu
procedure to unhighlight the menu title.

PROCEDURE HiliteMenu (menuID: Integer);

menuID The menu ID of the menu whose title should be highlighted. If the menu
title of the specified menu is already highlighted, HiliteMenu does
nothing. If the menu ID is 0 or the specified menu ID isn’t in the current
menu list, HiliteMenu unhighlights whichever menu title is currently
highlighted (if any).

DESCRIPTION

The MenuSelect and MenuKey functions highlight the title of the menu containing
the item chosen by the user. After performing the chosen task, your application
should unhighlight the menu title by calling HiliteMenu and passing 0 in the
menuID parameter.

The HiliteMenu procedure highlights a menu title by first saving the bits behind the
title rectangle and then drawing the highlighted title. HiliteMenu unhighlights a menu
title by restoring the bits behind the menu title.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID
of the submenu, not the menu to which the submenu is attached.
Menu Manager Reference 3-119

C H A P T E R 3

Menu Manager
SEE ALSO

To highlight the entire menu bar, use the FlashMenuBar procedure, described on
page 3-141.

PopUpMenuSelect 3

To display a pop-up menu without using the standard pop-up control definition
function, use the PopUpMenuSelect function to display the pop-up menu anywhere
on the screen. If your application uses the standard pop-up control definition function,
your application does not need to use PopUpMenuSelect.

FUNCTION PopUpMenuSelect (menu: MenuHandle;

Top: Integer; Left: Integer;

PopUpItem: Integer)

: LongInt;

menu A handle to the menu record of the menu. The NewMenu, GetMenu, and
GetMenuHandle functions return a handle to a specified menu’s menu
record.

Top The top coordinate of the pop-up box when it is closed. This value should
be in global coordinates.

Left The left coordinate of the pop-up box when it is closed. This value should
be in global coordinates.

PopUpItem The item number of the current item minus 1. This value should
correspond to the user’s previous choice from this menu. If the user has
not previously made a choice, this value should be set to the default value.

DESCRIPTION

The PopUpMenuSelect function uses the location specified by the Top and Left
parameters to determine where to display the specified item of the pop-up menu. The
PopUpMenuSelect function displays the pop-up menu so that the menu item specified
in the PopUpItem parameter appears highlighted at the specified location. Figure 3-24
on page 3-34 shows the pop-up title and pop-up box of a pop-up menu.

The PopUpMenuSelect function highlights and unhighlights menu items and handles
all user interaction until the user releases the mouse button. The PopUpMenuSelect
function returns the menu ID of the chosen menu in the high-order word of its function
result and the chosen menu item in the low-order word.

Your application is responsible for highlighting the pop-up title, setting the mark of the
current menu item appropriately, and drawing the text and downward-pointing
indicator in the pop-up box before calling PopUpMenuSelect. Your application should
also make sure the pop-up menu is in the submenu portion of the current menu list
before calling PopUpMenuSelect. (You can use the InsertMenu procedure and specify
–1 in the beforeID parameter to insert the pop-up menu into the current menu list.)
3-120 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
After calling PopUpMenuSelect, your application can delete the pop-up menu from the
current menu list or leave it in the current menu list.

Your application is also responsible for storing the current value of the menu item,
drawing the text and downward-pointing indicator in the pop-up box, and
unhighlighting the pop-up title after calling PopUpMenuSelect. If you use the standard
pop-up control definition function, these actions are performed for you by the pop-up
control and your application does not need to call PopUpMenuSelect.

When implementing pop-up menus, you should follow the guidelines for pop-up menus
described in Macintosh Human Interface Guidelines. For example, you should define the
pop-up box of your pop-up menu as a rectangle that is the same height as a menu item,
with a one-pixel drop shadow, and should make the pop-up box wide enough to show
the currently selected item and a downward-pointing indicator.

SystemMenu 3

The MenuSelect and MenuKey functions call the SystemMenu procedure when the
user chooses an item in a menu that belongs to a desk accessory launched in your
application’s partition. Your application should not need to call the SystemMenu
procedure.

PROCEDURE SystemMenu (menuResult: LongInt);

menuResult The value that indicates the menu and menu item chosen by the user. The
menu ID is in the high-order word, and the menu item is in the low-order
word. The menu ID for a menu belonging to a desk accessory is a
negative number.

DESCRIPTION

The SystemMenu procedure directs the desk accessory to perform the appropriate action
for the given menu item by calling the desk accessory’s control routine and passing the
accMenu constant in the csCode parameter. The desk accessory should perform the
desired action and return. See Inside Macintosh: Devices for more information on desk
accessories.

ASSEMBLY-LANGUAGE INFORMATION

If you’re writing a desk accessory, you may need to set the MBarEnable global variable
to appropriate values. If the MBarEnable global variable is nonzero, then all menus in
the current menu bar belong to a desk accessory. If the MBarEnable global variable is 0,
then all menus in the current menu bar belong to an application. If you’re writing an
application, you should not change the value of the MBarEnable global variable.
Menu Manager Reference 3-121

C H A P T E R 3

Menu Manager
SystemEdit 3

When the user chooses one of the standard editing commands in the Edit menu (Undo,
Cut, Copy, Paste, and Clear), call the SystemEdit function to determine whether the
active window belongs to a desk accessory that is launched in your application’s
partition. If so, the SystemEdit function directs the desk accessory to perform the
editing command and returns TRUE. If the active window does not belong to a desk
accessory launched in your application’s partition, SystemEdit returns FALSE and
your application should process the command.

FUNCTION SystemEdit (editCmd: Integer): Boolean;

editCmd The item number of the standard editing command chosen by the user.

Getting a Handle to a Menu Record 3

Most Menu Manager routines that manage menus require that you specify a handle to
the menu record of the menu on which you want to perform an operation. You can use
the HMGetHelpMenuHandle function to get a handle to your application’s Help menu.
Use the GetMenuHandle function to get a handle to the menu record of any of your
application’s other pull-down menus or submenus in the current menu list. For pop-up
menus that use the standard control definition function, you can access the control
record to get the menu’s handle.

GetMenuHandle 3

You can use the GetMenuHandle function to get a handle to the menu record of any of
your application’s menus other than its Help menu. (Use the HMGetHelpMenuHandle
function to get a handle to the menu record of your application’s Help menu.) The
GetMenuHandle function is also available as the GetMHandle function.

FUNCTION GetMenuHandle (menuID: Integer): MenuHandle;

menuID The menu ID of the menu. (Note that this is not the resource ID,
although you often assign the menu ID so that it matches the resource
ID.) You assign a menu ID in the 'MENU' resource of a menu. If you
do not define your menus in 'MENU' resources, you can assign a menu
ID using NewMenu.

DESCRIPTION

The GetMenuHandle function returns a handle to the menu record of the menu having
the specified menu ID. If the menu is in the current menu list, GetMenuHandle returns
a handle to the menu record of the menu as its function result. Otherwise,
GetMenuHandle returns NIL as its function result.
3-122 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
SPECIAL CONSIDERATIONS

To get a handle to a menu record of a pop-up menu that you create using the pop-up
control definition function, dereference the cntrlData field of the pop-up menu’s
control record instead of using GetMenuHandle.

HMGetHelpMenuHandle 3

Use the HMGetHelpMenuHandle function to get a handle to the menu record of your
application’s Help menu.

FUNCTION HMGetHelpMenuHandle (VAR mh: MenuHandle): OSErr;

mh The HMGetHelpMenuHandle function returns a copy of a handle to your
application’s Help menu in this parameter.

DESCRIPTION

The HMGetHelpMenuHandle function returns in the mh parameter a copy of a handle to
the menu record of your application’s Help menu. With this handle, you can append
items to your application’s Help menu by using the AppendMenu procedure or other
related Menu Manager routines. The Help Manager automatically adds the divider that
separates your items from the rest of the Help menu items.

Be sure to define help balloons for your items in the Help menu by creating an 'hmnu'
resource and specifying the kHMHelpMenuID constant as its resource ID.

The Menu Manager functions MenuSelect and MenuKey return a result with the menu
ID in the high-order word and the menu item in the low-order word. The MenuSelect
function (and the MenuKey function, if the user chooses an item with a keyboard
equivalent) returns the kHMHelpMenuID constant in the high-order word when the user
chooses an appended item from the Help menu. The menu item number of the
appended menu item is returned in the low-order word of the function result. Apple
reserves the right to change the number of standard items in the Help menu. To
determine the number of items in the Help menu, call the CountMItems function.

SPECIAL CONSIDERATIONS

Do not use the GetMenuHandle function to get a handle to the menu record of the Help
menu. GetMenuHandle returns a handle to the menu record of the global Help menu,
not the menu record of the Help menu that is specific to your application.

RESULT CODES

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmHelpManagerNotInited –855 Help menu not set up
Menu Manager Reference 3-123

C H A P T E R 3

Menu Manager
SEE ALSO

For examples of how to add items to your application’s Help menu and how to handle
the user’s choice of an item in the Help menu, see Listing 3-14 on page 3-68 and
Listing 3-26 on page 3-81. See the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox for information on creating help balloons for the menus of
your application.

Adding and Deleting Menu Items 3

You can add the names of all resources of a specified type to a menu using the
InsertResMenu or AppendResMenu procedure. You can add menu items that you
define to a menu using the AppendMenu or InsertMenuItem procedure. You can also
delete menu items using the DeleteMenuItem procedure. In most cases you should
not insert or delete individual menu items from an already existing menu unless the user
expects a menu (such as a list of currently open documents) to change.

If you add menu items using the AppendMenu or InsertMenuItem procedure, you
should define in resources the text and other characteristics of the menu items that you
add. This makes your application easier to localize for other regions.

AppendMenu 3

Use the AppendMenu procedure to append one or more items to a menu previously
created using NewMenu, GetMenu, or GetNewMBar.

PROCEDURE AppendMenu (menu: MenuHandle; data: Str255);

menu A handle to the menu record of the menu to which you wish to append
the menu item or items.

data A string that defines the characteristics of the new menu item or items.
Note that in most cases you should store the text of a menu item in a
resource, so that your menu items can be more easily localized. The
AppendMenu procedure appends the menu items in the order in which
they are listed in the data parameter.

DESCRIPTION

The AppendMenu procedure appends any defined menu items to the specified menu.
The menu items are added to the end of the menu. You specify the text of any menu
items and their characteristics in the data parameter. You can embed metacharacters in
the string to define various characteristics of a menu item.
3-124 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Here are the metacharacters that you can specify in the data parameter:

You can specify any, all, or none of these metacharacters in the text string. The
metacharacters that you specify aren’t displayed in the menu item. (To use any of these
metacharacters in the text of a menu item, first use AppendMenu, specifying at least one
character as the item’s text, and then use the SetMenuItemText procedure to set the
item’s text to the desired string.)

Note
If you add menu items using the AppendMenu procedure, you should
define the text and any marks or keyboard equivalents in resources for
easier localization. ◆

You can specify the first character that defines the text of a menu item as a hyphen to
create a divider line. The string in the data parameter can be blank (containing one or
more spaces), but it should not be an empty string.

If you do not define a specific characteristic of a menu item, the AppendMenu procedure
assigns the default characteristic to the menu item. If you do not define any characteristic
other than the text for a menu item, the AppendMenu procedure inserts the menu item so
that it appears in the menu as an enabled item, without an icon or a mark, in the plain
character style, and without a keyboard equivalent.

You can use AppendMenu to append items to a menu regardless of whether the menu is
in the current menu list.

SEE ALSO

See “Adding Items to a Menu” on page 3-64 for examples of appending items to a menu.

Metacharacter Description

; or Return Separates menu items.

^ When followed by an icon number, defines the icon for the item. If the
keyboard equivalent field contains $1C, this number is interpreted as
a script code.

! When followed by a character, defines the mark for the item. If the
keyboard equivalent field contains $1B, this value is interpreted as
the menu ID of a submenu of this menu item.

< When followed by one or more of the characters B, I, U, O, and S,
defines the character style of the item to Bold, Italic, Underline,
Outline, or Shadow, respectively.

/ When followed by a character, defines the keyboard equivalent for
the item. When followed by $1B, specifies that this menu item has a
submenu. To specify that the menu item has a script code, small icon,
or reduced icon, use the SetItemCmd procedure to set the keyboard
equivalent field to $1C, $1D, or $1E, respectively.

(Defines the menu item as disabled.
Menu Manager Reference 3-125

C H A P T E R 3

Menu Manager
InsertMenuItem 3

Use the InsertMenuItem procedure to insert one or more items to a menu previously
created using NewMenu, GetMenu, or GetNewMBar.

The InsertMenuItem procedure is also available as the InsMenuItem procedure.

PROCEDURE InsertMenuItem (theMenu: MenuHandle; itemString: Str255;

afterItem: Integer);

theMenu A handle to the menu record of the menu to which you wish to add the
menu item or items.

itemString
A string that defines the characteristics of the new menu items. Note that
in most cases you should store the text of a menu item in a resource, so
that your menu items can be more easily localized. You can specify the
contents of the itemString parameter using metacharacters; the
InsertMenuItem procedure accepts the same metacharacters as the
AppendMenu procedure. However, if you specify multiple items, the
InsertMenuItem procedure inserts the items in the reverse of their
order in the itemString parameter.

afterItem The item number of the menu item after which the new menu items are to
be added. Specify 0 in the afterItem parameter to insert the new items
before the first menu item; specify the item number of a current menu
item to insert the new menu items after it; specify a number greater than
or equal to the last item in the menu to append the new items to the end
of the menu.

DESCRIPTION

The InsertMenuItem procedure inserts any defined menu items to the specified menu.
The menu items are inserted according to the location specified by the afterItem
parameter. You specify the text of any menu items and their characteristics in the
itemString parameter. You can embed metacharacters in the string you specify to
define various characteristics of a menu item. The metacharacters aren’t displayed in
the menu.

Here are the metacharacters you can specify in the itemString parameter:

Metacharacter Description

; or Return Separates menu items.

^ When followed by an icon number, defines the icon for the item. If the
keyboard equivalent field contains $1C, this number is interpreted as
a script code.

! When followed by a character, defines the mark for the item. If the
keyboard equivalent field contains $1B, this value is interpreted as
the menu ID of a submenu of this menu item.
3-126 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
You can specify any, all, or none of these metacharacters in the text string. The
metacharacters that you specify aren’t displayed in the menu item. To use any of these
metacharacters in the text of a menu item, first use InsertMenuItem, specifying at least
one character as the item’s text, and then use the SetMenuItemText procedure to set
the item’s text to the desired string.

Note
If you add menu items using the InsertMenuItem procedure, you
should define the text and any marks or keyboard equivalents in
resources for easier localization. ◆

You can specify the first character that defines the text of a menu item as a hyphen to
create a divider line. The string in the itemString parameter can be blank (containing
one or more spaces), but it should not be an empty string.

If you do not define a specific characteristic of a menu item, the InsertMenuItem
procedure assigns the default characteristic to the menu item. If you do not define any
characteristic other than the text for a menu item, the InsertMenuItem procedure
inserts the menu item so that it appears in the menu as an enabled item, without an icon
or a mark, in the plain character style, and without a keyboard equivalent.

You can use InsertMenuItem to insert items into a menu regardless of whether the
menu is in the current menu list.

SEE ALSO

See “Adding Items to a Menu” beginning on page 3-64 for examples.

DeleteMenuItem 3

Use the DeleteMenuItem procedure to delete an item from a menu. The
DeleteMenuItem procedure is also available as the DelMenuItem procedure.

PROCEDURE DeleteMenuItem (theMenu: MenuHandle; item: Integer);

Metacharacter Description

< When followed by one or more of the characters B, I, U, O, and S,
defines the character style of the item to Bold, Italic, Underline,
Outline, or Shadow, respectively.

/ When followed by a character, defines the keyboard equivalent for
the item. When followed by $1B, specifies that this menu item has a
submenu. To specify that the menu item has a script code, small icon,
or reduced icon, use the SetItemCmd procedure to set the keyboard
equivalent field to $1C, $1D, or $1E, respectively.

(Defines the menu item as disabled.
Menu Manager Reference 3-127

C H A P T E R 3

Menu Manager
theMenu A handle to the menu record of the menu from which you want to delete
the menu item.

item The item number of the menu item to delete. If you specify 0 or a number
greater than the last item in the menu, DeleteMenuItem does not delete
any item from the menu.

DESCRIPTION

The DeleteMenuItem procedure deletes a specified menu item from a menu. The
DeleteMenuItem procedure also deletes the item’s menu item entry from your
application’s menu color information table (if an entry exists). You should not delete
items from an existing menu unless the user expects the menu (such as a menu that lists
open documents) to change.

AppendResMenu 3

Use the AppendResMenu procedure to search all resource files open to your application
for a given resource type and to append the names of any resources it finds to a specified
menu. The specified menu must have been previously created using NewMenu,
GetMenu, or GetNewMBar.

The AppendResMenu procedure is also available as the AddResMenu procedure.

PROCEDURE AppendResMenu (theMenu: MenuHandle; theType: ResType);

theMenu A handle to the menu record of the menu to which to append the names
of any resources of a given type that AppendResMenu finds.

theType A four-character code that identifies the resource type for which to search.

DESCRIPTION

The AppendResMenu procedure searches all resource files open to your application for
resources of the type defined by the parameter theType. It appends the names of any
resources it finds of the given type to the end of the specified menu. AppendResMenu
appends the names of found resources in alphabetical order; it does not alphabetize
items already in the menu. The AppendResMenu procedure does not add resources with
names that begin with a period (.) or a percent sign (%) to the menu.

The AppendResMenu procedure assigns default characteristics to each menu item. Each
appended menu item appears in the menu as an enabled item, without an icon or a
mark, in the plain character style, and without a keyboard equivalent. To get the name or
to change other characteristics of an item appended by AppendResMenu, use the Menu
Manager routines described in “Getting and Setting the Appearance of Menu Items”
beginning on page 3-130.
3-128 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
If you specify that AppendResMenu add resources of type 'DRVR' to your Apple menu,
AppendResMenu adds the name (and icon) of each item in the Apple Menu Items folder
to the menu.

If you specify that AppendResMenu append resources of type 'FONT' or 'FOND', the
Menu Manager performs special processing for any resources it finds that have font
numbers greater than $4000. If the script system associated with the font name is
installed in the system, AppendResMenu stores information in the itemDefinitions
array (in the itemIcon and itemCmd fields for that item) in the menu’s menu record.
This allows the Menu Manager to display the font name in the correct script.

SPECIAL CONSIDERATIONS

The AppendResMenu procedure calls the Resource Manager procedure SetResLoad
(specifying TRUE in the load parameter) before returning. The AppendResMenu
procedure reads the resource data of the resources it finds into memory. If your
application does not want the Resource Manager to read resource data into memory
when your application calls other routines that read resources, you need to call
SetResLoad and specify FALSE in the load parameter after AppendResMenu returns.

SEE ALSO

Listing 3-15 on page 3-69 shows a sample that adds items from the Apple Menu Items
folder to the Apple menu, and Listing 3-16 on page 3-70 shows a sample that adds font
names to a menu. See Inside Macintosh: More Macintosh Toolbox for information on the
Resource Manager.

InsertResMenu 3

Use the InsertResMenu procedure to search all resource files open to your application
for a given resource type and to insert the names of any resources it finds to a specified
menu. The items are inserted after the specified menu item. The specified menu must
have been previously created using NewMenu, GetMenu, or GetNewMBar.

PROCEDURE InsertResMenu (theMenu: MenuHandle; theType: ResType;

 afterItem: Integer);

theMenu A handle to the menu record of the menu to which to add the names of
any resources of a given type that InsertResMenu finds.

theType A four-character code that identifies the resource type for which to search.

afterItem A number that indicates where in the menu to insert the names of any
resources of the given type that InsertResMenu finds. Specify 0 in the
afterItem parameter to insert the items before the first menu item;
specify the item number of a menu item already in the menu to insert the
items after the specified item number. If you specify a number greater
than or equal to the last item in the menu, the items are inserted at the
end of the menu.
Menu Manager Reference 3-129

C H A P T E R 3

Menu Manager
DESCRIPTION

The InsertResMenu procedure searches all resource files open to your application for
resources of the type defined by the parameter theType. It inserts the names of any
resources it finds of the given type at the specified location in the specified menu.
InsertResMenu adds the names of found resources in alphabetical order; it does not
alphabetize items already in the menu.

The InsertResMenu procedure does not add resources with names that begin with a
period (.) or a percent sign (%) to the menu.

The InsertResMenu procedure assigns default characteristics to each menu item. Each
appended menu item appears in the menu as an enabled item, without an icon or a
mark, in the plain character style, and without a keyboard equivalent. To get the name or
to change other characteristics of an item appended by InsertResMenu, use the Menu
Manager routines described in the next section, “Getting and Setting the Appearance of
Menu Items.”

If you specify that InsertResMenu add resources of type 'DRVR' to your Apple menu,
InsertResMenu adds the name (and icon) of each item in the Apple Menu Items folder
to the menu.

If you specify that InsertResMenu add resources of type 'FONT' or 'FOND', the
Menu Manager performs special processing for any resources it finds that have font
numbers greater than $4000. If the script associated with the font name is currently
active, InsertResMenu stores information in the itemDefinitions array (in the
itemIcon and itemCmd fields for that item) in the menu’s menu record that allows the
Menu Manager to display the font name in the correct script.

SPECIAL CONSIDERATIONS

The InsertResMenu procedure calls the Resource Manager procedure SetResLoad
(specifying TRUE in the load parameter) before returning. The InsertResMenu
procedure reads the resource data of the resources it finds into memory. If your
application does not want the Resource Manager to read resource data into memory
when your application calls other routines that read resources, you need to call
SetResLoad and specify FALSE in the load parameter after InsertResMenu returns.

Getting and Setting the Appearance of Menu Items 3

You can get information about the characteristics of a menu item using Menu Manager
routines. For example, you can get an item’s text, style, mark, keyboard equivalent,
script code, and associated icons. You can also determine if a menu item has a submenu
associated with it and the menu ID of the submenu.

You can set the characteristics of a menu item, including associating a submenu with a
menu item, using Menu Manager routines. Whenever possible, however, you should
define your application’s menu items in 'MENU' resources. This makes your application
easier to localize for other regions.

You can also enable and disable menu items or entire menus using Menu Manager
routines.
3-130 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
EnableItem 3

Use the EnableItem procedure to enable a menu item or a menu.

PROCEDURE EnableItem (theMenu: MenuHandle; item: Integer);

theMenu A handle to the menu record of the menu containing the menu item
to enable.

item The item number of the menu item to enable, or 0 to enable the entire
menu. You cannot individually enable a menu item with an item number
greater than 31.

If you specify 0 in the item parameter, the EnableItem procedure
enables the menu title and all items in the menu that were not previously
individually disabled.

DESCRIPTION

The EnableItem procedure enables a specified menu item so that it no longer appears
dim and so that the user can choose the menu item.

Note that, if you enable a menu, the EnableItem procedure enables the menu title but
only enables those menu items that are not currently disabled as a result of your
application previously calling DisableItem and specifying each item’s item number.
For example, if all items in your application’s Edit menu are enabled, you can disable the
Cut and Copy commands individually using DisableItem. If you choose to disable the
entire menu by passing 0 as the item parameter to DisableItem, the menu and all its
items are disabled. If you then enable the entire menu by passing 0 as the item
parameter to EnableItem, the menu and its items are enabled, except for the Cut and
Copy commands, which remain disabled. In this case, to enable the Cut and Copy
commands you must enable each one individually using EnableItem.

If your application enables a menu using EnableItem, it should call DrawMenuBar to
update the menu bar’s appearance.

SEE ALSO

See “Enabling and Disabling Menu Items” on page 3-58 for examples of enabling items
in a menu.

DisableItem 3

Use the DisableItem procedure to disable a menu item or an entire menu.

PROCEDURE DisableItem (theMenu: MenuHandle; item: Integer);
Menu Manager Reference 3-131

C H A P T E R 3

Menu Manager
theMenu A handle to the menu record of the menu containing the menu item
to disable.

item The item number of the menu item to disable, or 0 to disable the entire
menu. You cannot individually disable a menu item with an item number
greater than 31.

If you specify 0 in the item parameter, the DisableItem procedure
disables the menu title and all items in the menu, including menu items
with item numbers greater than 31.

DESCRIPTION

The DisableItem procedure disables a specified menu item so that it appears dim and
cannot be chosen by the user.

If your application disables a menu using DisableItem, your application should call
DrawMenuBar to update the menu bar’s appearance.

SEE ALSO

See “Enabling and Disabling Menu Items” on page 3-58 for examples of disabling items
in a menu.

GetMenuItemText 3

Use the GetMenuItemText procedure to get the text of a specific menu item. The
GetMenuItemText procedure is also available as the GetItem procedure.

PROCEDURE GetMenuItemText (theMenu: MenuHandle; item: Integer;

VAR itemString: Str255);

theMenu A handle to the menu record of the menu containing the menu item
whose text you wish to get.

item The item number of the menu item. The GetMenuItemText procedure
returns the text of this item.

itemString The GetMenuItemText procedure returns the text of the menu item in
this parameter.

DESCRIPTION

The GetMenuItemText procedure returns the text of the specified menu item in the
itemString parameter. Use other Menu Manager routines to get information about
the other characteristics of a menu item.
3-132 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
SetMenuItemText 3

Use the SetMenuItemText procedure to set the text of a specific menu item to a given
string. The SetMenuItemText procedure is also available as the SetItem procedure.

PROCEDURE SetMenuItemText (theMenu: MenuHandle; item: Integer;

 itemString: Str255);

theMenu A handle to the menu record of the menu containing the menu item
whose text you wish you to set.

item The item number of the menu item. The SetMenuItemText procedure
sets the text of this item.

itemString The SetMenuItemText procedure sets the text of the menu item
according to the string specified in the itemString parameter. The
SetMenuItemText procedure does not recognize metacharacters or set
any other characteristics of the menu item. The itemString parameter
can be blank, but it should not be an empty string.

DESCRIPTION

The SetMenuItemText procedure sets the text of the specified menu item to the text
specified in the itemString parameter. The SetMenuItemText procedure does not
recognize any metacharacters used by the AppendMenu and InsertMenuItem
procedures. Use other Menu Manager routines to set other characteristics of a menu item.

If you set the text of a menu item using the SetMenuItemText procedure, you should
store the text in a string resource so that your application can be more easily localized.

SEE ALSO

See Listing 3-9 on page 3-59 for an example of setting the text of a menu item.

GetItemStyle 3

Use the GetItemStyle procedure to get the style of the text in a specific menu item.

PROCEDURE GetItemStyle (theMenu: MenuHandle; item: Integer;

VAR chStyle: Style);

theMenu A handle to the menu record of the menu containing the menu item
whose style you wish to get.

item The item number of the menu item. The GetItemStyle procedure
returns the style of the text for this item.
Menu Manager Reference 3-133

C H A P T E R 3

Menu Manager
chStyle The GetItemStyle procedure returns the style of the text for this item in
the chStyle parameter. The chStyle parameter is a set defined by the
Style data type.

TYPE
StyleItem = (bold, italic, underline, outline,
 shadow, condense, extend);
Style = SET OF StyleItem;

DESCRIPTION

The GetItemStyle procedure returns the style of the text of the specified menu item in
the chStyle parameter. The returned style can be one or more of the styles defined by
the Style data type, or it is the empty set if the style of the text is Plain.

SetItemStyle 3

Use the SetItemStyle procedure to set the style of the text in a specific menu item.

PROCEDURE SetItemStyle (theMenu: MenuHandle; item: Integer;

chStyle: Style);

theMenu A handle to the menu record of the menu containing the menu item
whose style you wish to set.

item The item number of the menu item. The SetItemStyle procedure sets
the style of the text for this item.

chStyle The SetItemStyle procedure sets the style of the text for this item
according to the style described by the chStyle parameter. The
chStyle parameter is a set defined by the Style data type.

TYPE
StyleItem = (bold, italic, underline, outline,
 shadow, condense, extend);
Style = SET OF StyleItem;

You can set the style to one or more of the styles defined by the Style
data type, or you can set it to Plain by specifying an empty set in the
chStyle parameter.

DESCRIPTION

The SetItemStyle procedure sets the style of the text of the specified menu item to the
style or styles defined by the chStyle parameter.

SEE ALSO

See Listing 3-10 on page 3-60 for examples of setting the style of a menu item.
3-134 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
GetItemMark 3

Use the GetItemMark procedure to get the mark of a specific menu item or the menu ID
of the submenu associated with the menu item.

PROCEDURE GetItemMark (theMenu: MenuHandle; item: Integer;

VAR markChar: Char);

theMenu A handle to the menu record of the menu containing the menu item
whose mark or submenu you wish to get.

item The item number of the menu item. The GetItemMark procedure returns
the mark of this item or, if this item has a submenu associated with it,
returns the menu ID of the submenu in the markChar parameter.

markChar The GetItemMark procedure returns the mark or the submenu of this
item in the markChar parameter. A menu item can have a mark or a
submenu attached to it, but not both. If this menu item has a marking
character, the GetItemMark procedure returns the mark. If this menu
item has a submenu associated with it, the GetItemMark procedure
returns the menu ID of the submenu. If the item doesn’t have a mark or
a submenu, GetItemMark returns 0 in this parameter.

DESCRIPTION

If the item has a mark or submenu, the GetItemMark procedure returns the mark or the
menu ID of the submenu of the specified menu item in the markChar parameter (or 0 if
the item doesn’t have a mark or a submenu).

SetItemMark 3

Use the SetItemMark procedure to set the mark of a specific menu item or to change or
set the submenu associated with a menu item.

PROCEDURE SetItemMark (theMenu: MenuHandle; item: Integer;

markChar: Char);

theMenu A handle to the menu record of the menu containing the menu item
whose mark or submenu you wish to set.

item The item number of the menu item. The SetItemMark procedure sets
the mark or the submenu of this item.

markChar The SetItemMark procedure sets the mark or submenu of this item
according to the information in the markChar parameter.
Menu Manager Reference 3-135

C H A P T E R 3

Menu Manager
To set the mark of a menu item, specify the marking character in the
markChar parameter. You can also use one of these constants to specify
that the item has no mark, has a checkmark as the marking character, or
has the diamond symbol as the marking character:

CONST
noMark = 0; {no marking character}
checkMark = $12; {checkmark}
diamondMark = $13; {diamond symbol}

To set the submenu associated with this menu item, specify the menu ID
of the submenu in the markChar parameter.

DESCRIPTION

The SetItemMark procedure sets the mark or the submenu of the specified menu item.

SEE ALSO

See Listing 3-11 on page 3-61 for examples of setting the mark of a menu item.

CheckItem 3

Use the CheckItem procedure to set the mark of a specific menu item to a checkmark or
to remove a mark from a menu item.

PROCEDURE CheckItem (theMenu: MenuHandle; item: Integer;

checked: Boolean);

theMenu A handle to the menu record of the menu containing the menu item
whose mark you wish to set to a checkmark or whose mark you wish to
remove.

item The item number of the menu item.

checked The CheckItem procedure sets or removes the mark of the item
according to the information in the checked parameter.

To set the mark of a menu item to a checkmark, specify TRUE in the
checked parameter. To remove a checkmark or any other mark from a
menu item, specify FALSE in the checked parameter.

DESCRIPTION

The CheckItem procedure sets the mark of the specified menu item to a checkmark or
removes any mark from the menu item.

SEE ALSO

See Listing 3-11 on page 3-61 for examples of setting the mark of a menu item.
3-136 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
GetItemIcon 3

Use the GetItemIcon procedure to get the icon or script code of a specific menu item. If
the menu item’s keyboard equivalent field contains $1C, the returned number represents
the script code of the menu item. Otherwise, the returned number represents the item’s
icon number.

PROCEDURE GetItemIcon (theMenu: MenuHandle; item: Integer;

VAR iconIndex: Byte);

theMenu A handle to the menu record of the menu containing the menu item
whose icon or script code you wish to get.

item The item number of the menu item. The GetItemIcon procedure returns
the icon number or script code of this item.

iconIndex For menu items that do not specify $1C in the keyboard equivalent field,
the GetItemIcon procedure returns the icon number of the item’s icon
in this parameter. The icon number returned in this parameter is a value
from 1 through 255 if the menu item has an icon associated with it and is
0 otherwise. You can add 256 to the icon number to generate the resource
ID of the 'cicn', 'ICON', or 'SICN' resource that describes the icon of
the menu item. For example, if the GetItemIcon procedure returns 5 in
this parameter, then the icon of the menu item is described by an icon
resource with resource ID 261.

For menu items that contain $1C in the keyboard equivalent field, the
GetItemIcon procedure returns the script code of the menu item. The
Menu Manager displays the menu item using this script code if the
corresponding script system is installed.

DESCRIPTION

The GetItemIcon procedure returns the icon number or script code of the specified
menu item in the iconIndex parameter (or 0 if the item doesn’t have an icon or a
script code).

SetItemIcon 3

Use the SetItemIcon procedure to set the icon number or script code of a specific
menu item. Usually you display menu items in the current system script; however, if
needed, you can use the SetItemIcon procedure to set the script code of a menu item.
For an item’s script code to be set, the keyboard equivalent field of the item must contain
$1C. If the keyboard equivalent field contains any other value, the SetItemIcon
procedure interprets the specified number as the item’s icon number.

PROCEDURE SetItemIcon (theMenu: MenuHandle; item: Integer;

iconIndex: Byte);
Menu Manager Reference 3-137

C H A P T E R 3

Menu Manager
theMenu A handle to the menu record of the menu containing the menu item
whose icon (or script code) you wish to set.

item The item number of the menu item. The SetItemIcon procedure sets
the icon (or script code) of this item.

iconIndex If the menu item’s keyboard equivalent field does not contain $1C, the
SetItemIcon procedure sets the icon number of the item’s icon to the
number defined in this parameter. The icon number you specify should
be a value from 1 through 255 (or from 1 through 254 if the item has a
small or reduced icon) or 0 if the item does not have an icon.

The Menu Manager adds 256 to the icon number to generate the resource
ID of the 'cicn' or 'ICON' resource that describes the icon of the menu
item. For example, if you specify 5 as the value of the iconIndex
parameter, when the Menu Manager needs to draw the item, it looks for
an icon resource with resource ID 261.

If the menu item’s keyboard equivalent field contains $1C, the
SetItemIcon procedure sets the script code of the menu item to the
number defined in the iconIndex parameter. The Menu Manager
displays the menu item using the specified script code if the
corresponding script system is installed.

You can specify 0 in the iconIndex parameter to indicate that the item
uses the current system script and does not have an icon number.

DESCRIPTION

The SetItemIcon procedure sets the icon number or script code of the specified menu
item to the value in the iconIndex parameter.

SEE ALSO

See “Changing the Icon or Script Code of Menu Items” beginning on page 3-62 for
examples of setting the icon of a menu item.

GetItemCmd 3

Use the GetItemCmd procedure to get the value of the keyboard equivalent field of a
menu item.

PROCEDURE GetItemCmd (theMenu: MenuHandle; item: Integer;

 VAR cmdChar: Char);

theMenu A handle to the menu record of the menu containing the menu item
whose keyboard equivalent field you wish to get.

item The item number of the menu item. The GetItemCmd procedure returns
the keyboard equivalent field of this item.
3-138 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
cmdChar The value of the item’s keyboard equivalent field. The Menu Manager
uses this value to map keyboard equivalents to menu commands or to
indicate special characteristics of the menu item.

If the cmdChar parameter contains $1B, the menu item has a submenu; a
value of $1C indicates that the item has a script code; a value of $1D
indicates that the Menu Manager reduces the item’s 'ICON' resource;
and a value of $1E indicates that the item has an 'SICN' resource.

DESCRIPTION

The GetItemCmd procedure returns the value in the keyboard equivalent field of the
specified menu item in the cmdChar parameter (or 0 if the item doesn’t have a keyboard
equivalent, submenu, script code, reduced icon, or small icon).

SetItemCmd 3

Use the SetItemCmd procedure to set the value of the keyboard equivalent field of a
menu item. You usually define the keyboard equivalents and other characteristics of
your menu items in 'MENU' resources rather than using the SetItemCmd procedure.

PROCEDURE SetItemCmd (theMenu: MenuHandle; item: Integer;

 cmdChar: Char);

theMenu A handle to the menu record of the menu containing the menu item
whose keyboard equivalent field you wish to set.

item The item number of the menu item. The SetItemCmd procedure sets the
keyboard equivalent field of this item to the value specified in the
cmdChar parameter.

cmdChar The value of the item’s keyboard equivalent field. The Menu Manager
uses this value to map keyboard equivalents to menu commands or to
define special characteristics of the menu item.

To indicate that the menu item has a submenu, specify $1B in the
cmdChar parameter; specify a value of $1C to indicate that the item has a
script code; specify a value of $1D to indicate that the Menu Manager
should reduce the item’s 'ICON' resource to the size of a small icon; and
specify a value of $1E to indicate that the item has an 'SICN' resource.

The values $01 through $1A, as well as $1F and $20, are reserved for use
by Apple. You should not use any of these reserved values in the
cmdChar parameter.

DESCRIPTION

The SetItemCmd procedure sets the value in the keyboard equivalent field of the
specified menu item in the cmdChar parameter (you can specify 0 if the item doesn’t
have a keyboard equivalent, submenu, script code, reduced icon, or small icon). If you
Menu Manager Reference 3-139

C H A P T E R 3

Menu Manager
specify that the item has a submenu, you should provide the menu ID of the submenu as
the item’s marking character. If you specify that the item has a script code, provide the
script code in the icon field of the menu item. If you specify that the item has an 'SICN'
or a reduced'ICON' resource, provide the icon number in the icon field of the item.

Disposing of Menus 3

If you no longer need a menu in the menu list, you can delete the menu using
DeleteMenu. You should then release the memory associated with that menu using
the DisposeMenu procedure if you created the menu using NewMenu; otherwise,
use the Resource Manager procedure ReleaseResource. See the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox for information on the
ReleaseResource routine.

DisposeMenu 3

To release the memory occupied by a menu’s associated data structures, use either the
DisposeMenu procedure or the Resource Manager procedure ReleaseResource.
Use DisposeMenu if you created the menu using NewMenu; use ReleaseResource if
you created the menu using GetMenu or read the resource in using GetNewMBar.

You should delete the menu from the current menu list using DeleteMenu or
ClearMenuBar before calling the DisposeMenu procedure.

PROCEDURE DisposeMenu (theMenu: MenuHandle);

theMenu A handle to the menu record of the menu you wish to dispose of.

DESCRIPTION

The DisposeMenu procedure releases the memory occupied by the specified menu’s
menu record. The handle that you pass in the parameter theMenu is not valid after
DisposeMenu returns.

SEE ALSO

To delete a menu from the current menu list, see the description of the DeleteMenu
procedure on page 3-109.

Counting the Items in a Menu 3

If your application needs to count the number of items in a menu—for example, in a
menu that can contain a variable number of menu items such as the Font menu or Help
menu—use the CountMItems function.
3-140 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
CountMItems 3

You can count the number of items in a menu using the CountMItems function.

FUNCTION CountMItems (theMenu: MenuHandle): Integer;

theMenu A handle to the menu record of the menu whose items your application
needs to count.

DESCRIPTION

The CountMItems function counts the number of items in the specified menu and
returns as its function result the number of items in the menu.

Highlighting the Menu Bar 3

You can highlight (invert) a menu title or the entire menu bar using the FlashMenuBar
procedure. (The HiliteMenu procedure highlights only menu titles.) In most cases
your application should not highlight the menu bar; use HiliteMenu to highlight a
menu title.

The user sets the number of times an enabled menu item flashes using the General
Controls panel. The SetMenuFlash procedure can be used to control the number of
times that menu items blink when the user chooses an enabled menu item; usually you
should not change the setting chosen by the user.

FlashMenuBar 3

Use the FlashMenuBar procedure to highlight (invert) a menu title or the entire menu
bar. You can call FlashMenuBar twice in a row to make the menu bar blink.

PROCEDURE FlashMenuBar (menuID: Integer);

menuID The menu ID of the menu whose title you want to invert. Use 0 in this
parameter to invert the entire menu bar. If the specified menu ID does not
exist in the current menu list, the FlashMenuBar procedure inverts the
entire menu bar.

DESCRIPTION

The FlashMenuBar procedure inverts the title of the specified menu or inverts the
menu bar. To prevent unexpected colors from appearing in the menu bar, you should
not call FlashMenuBar to invert a menu title while the entire menu bar is inverted.
Menu Manager Reference 3-141

C H A P T E R 3

Menu Manager
Only one menu title can be inverted at a time. If no menus are currently highlighted,
calling FlashMenuBar with a specific menu ID inverts the title of that menu. If you call
FlashMenuBar again specifying another menu ID that is different from that of the
previously inverted menu title, FlashMenuBar restores the previously highlighted
menu to normal and then inverts the title of the specified menu.

SEE ALSO

You can also highlight a menu using the HiliteMenu procedure, described on
page 3-119.

SetMenuFlash 3

Use the SetMenuFlash procedure to set the number of times a menu item blinks when
the user chooses an enabled menu item. The user sets this value using the General
Controls panel, and in most cases your application should not change the value set by
the user.

PROCEDURE SetMenuFlash (count: Integer);

count The number of times an enabled menu item should blink when the user
chooses it. This value is initially set to 3 by the General Controls panel. A
count of 0 disables the blinking. Values greater than 3 can be slow and
distracting to the user.

DESCRIPTION

The SetMenuFlash procedure sets the number of times that the Menu Manager causes
a menu item to blink when the user chooses an enabled menu item.

The appearance of blinking in a menu item is determined by the menu’s menu definition
procedure.

ASSEMBLY-LANGUAGE INFORMATION

The global variable MenuFlash contains the current count (number of times) a menu
item blinks when chosen by the user.

Recalculating Menu Dimensions 3

The Menu Manager uses the CalcMenuSize procedure to recalculate the dimensions of
a menu whenever its contents have changed. In most cases your application does not
need to use the CalcMenuSize procedure.
3-142 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
CalcMenuSize 3

The CalcMenuSize procedure recalculates the horizontal and vertical dimensions of
a menu and stores the new values in the menuWidth and menuHeight fields of the
menu record.

PROCEDURE CalcMenuSize (theMenu: MenuHandle);

theMenu A handle to the menu record of the menu whose dimensions need
recalculating.

DESCRIPTION

The CalcMenuSize procedure uses the menu definition procedure of the specified
menu to calculate the dimensions of the menu.

Managing Entries in the Menu Color Information Table 3

The Menu Manager maintains color information about an application’s menus in a menu
color information table. The standard menu definition procedure defines the standard
color for the menu bar, titles of menus, text and characteristics of a menu item, and
background color of a displayed menu. You can change any of these colors by adding
entries to your application’s menu color information table. However, note that in most
cases your application should use the default colors for its menus.

You can provide an 'mctb' resource with resource ID 0 as one of your application’s
resources if you want to use colors other than the default colors for your application’s
menu bar and menus. (Or you can provide an 'mctb' resource with the same resource
ID as a 'MENU' resource to define the color entries for a single menu.) You can also add
entries to or delete entries from your application’s menu color information table using
the SetMCEntries and DeleteMCEntries procedures. You can get information about
an entry using the GetMCEntry function. To get or set your application’s menu color
information table, use the GetMCInfo function or SetMCInfo procedure. To dispose of
your application’s menu color information table, use the DisposeMCInfo procedure.

Note that the menu color information table uses a format that is different from the
standard color table format. “The Menu Color Information Table Record” beginning on
page 3-98 describes the format of the menu color information table in detail.

GetMCInfo 3

Use the GetMCInfo function to get a handle to a copy of your application’s menu color
information table.

FUNCTION GetMCInfo: MCTableHandle;
Menu Manager Reference 3-143

C H A P T E R 3

Menu Manager
DESCRIPTION

The GetMCInfo function creates a copy of your application’s menu color information
table and returns a handle to the copy. If the copy fails, GetMCInfo returns NIL.

SEE ALSO

See “The Menu Color Information Table Record” beginning on page 3-98 for a
description of the format of the menu color information table.

SetMCInfo 3

Use the SetMCInfo procedure to set your application’s menu color information table.

PROCEDURE SetMCInfo (menuCTbl: MCTableHandle);

menuCTbl A handle to a menu color information table.

DESCRIPTION

The SetMCInfo procedure copies the table specified by the menuCTbl parameter
to your application’s menu color information table. If successful, the SetMCInfo
procedure is responsible for disposing of your application’s current menu color
information table, so your application does not need to explicitly dispose of the
current table.

Your application should call the Memory Manager function MemError to determine
whether the SetMCInfo procedure successfully copied the table. If the SetMCInfo
procedure cannot successfully copy the table, it does not dispose of the current menu
color information table and the MemError function returns a nonzero result code. If the
SetMCInfo procedure is able to successfully copy the table, it disposes of the current
menu color information table and the MemError function returns the noErr result code.

If the menu color information table specifies a new menu bar color or new menu title
colors, your application should call DrawMenuBar after calling SetMCInfo.

Note that GetNewMBar does not save your application’s current menu color information
table. If your application changes menu bars, you can save and restore your application’s
current menu color information table by calling GetMCInfo before GetNewMBar and
calling SetMCInfo afterward.

SEE ALSO

See “The Menu Color Information Table Record” beginning on page 3-98 for a
description of the format of the menu color information table. For an example of using
the GetMCInfo and SetMCInfo routines to save and restore menu color information,
see Listing 3-6 on page 3-52. See Inside Macintosh: Memory for information on the
MemError function
3-144 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
DisposeMCInfo 3

Use the DisposeMCInfo procedure to dispose of a menu color information table. The
DisposeMCInfo procedure is also available as the DispMCInfo procedure.

PROCEDURE DisposeMCInfo (menuCTbl: MCTableHandle);

menuCTbl A handle to a menu color information table.

DESCRIPTION

The DisposeMCInfo procedure disposes of the menu color information table referred
to by the menuCTbl parameter.

GetMCEntry 3

Use the GetMCEntry function to return information about an entry in your application’s
menu color information table. You can get information about the menu bar entry, a menu
title entry, or a menu item entry.

FUNCTION GetMCEntry (menuID: Integer; menuItem: Integer)

 : MCEntryPtr;

menuID The menu ID that the GetMCEntry function should use to return
information about the menu color information table. Specify 0 in the
menuID parameter (and the menuItem parameter) to get the menu bar
entry. Specify the menu ID of a menu in the current menu list in the
menuID parameter and 0 in the menuItem parameter to get a specific
menu title entry. Specify the menu ID of a menu in the current menu list
in the menuID parameter and an item number in the menuItem
parameter to get a specific menu item entry.

menuItem The menu item that the GetMCEntry function should use to return
information about the menu color information table. If you specify 0 in
this parameter, GetMCEntry returns either the menu bar entry or the
menu title entry, depending on the value of the menuID parameter. If you
specify the item number of a menu item in this parameter and the menu
ID of a menu in the current menu list in the menuID parameter,
GetMCEntry returns a specific menu item entry.

DESCRIPTION

The GetMCEntry function returns a menu bar entry, a menu title entry, or a menu item
entry according to the values specified in the menuID and menuItem parameters. If
the GetMCEntry function finds the specified entry in your application’s menu color
information table, it returns a pointer to a record of data type MCEntry. If the specified
entry is not found, GetMCEntry returns NIL.
Menu Manager Reference 3-145

C H A P T E R 3

Menu Manager
▲ W A R N I N G

The menu color information table is relocatable, so the pointer returned
by the GetMCEntry function may not be valid across routines that may
move or purge memory. Your application should make a copy of the
menu color entry record if necessary. ▲

SEE ALSO

“The Menu Color Information Table Record” beginning on page 3-98 describes the
entries in a menu color information table.

SetMCEntries 3

Use the SetMCEntries procedure to set entries in your application’s menu color
information table. You can set any or all of your application’s menu item entries and
menu title entries or the menu bar entry.

PROCEDURE SetMCEntries (numEntries: Integer;

menuCEntries: MCTablePtr);

numEntries The number of entries contained in the array of menu color entry records.

menuCEntries
A pointer to an array of menu color entry records. Specify the number of
records in the array in the numEntries parameter.

DESCRIPTION

The SetMCEntries procedure sets any specified menu bar entry, menu title entry, or
menu item entry according to the values specified in the menu color entry records. If
an entry already exists for a specified menu color entry, the SetMCEntries procedure
updates the entry in your application’s menu color information table with the new
values. If the entry doesn’t exist, it is added to your application’s menu color
information table.

If any of the added entries specify a new menu bar color or new menu title colors, your
application should call DrawMenuBar to update the menu bar with the new colors.

SPECIAL CONSIDERATIONS

The SetMCEntries procedure may move or purge memory. Your application should
make sure that the array specified by the menuCEntries parameter is nonrelocatable
before calling SetMCEntries.
3-146 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
SEE ALSO

“The Menu Color Information Table Record” beginning on page 3-98 describes the
entries in a menu color information table.

DeleteMCEntries 3

Use the DeleteMCEntries procedure to delete one or all entries for a specific menu
from your application’s menu color information table. You can delete a menu item entry,
a menu title entry, the menu bar entry, or all menu item entries of a specific menu. The
DeleteMCEntries procedure is also available as the DelMCEntries procedure.

PROCEDURE DeleteMCEntries (menuID: Integer; menuItem: Integer);

menuID The menu ID that the DeleteMCEntries procedure should use to
determine which entry to delete from the menu color information table.
Specify 0 in the menuID parameter (and the menuItem parameter) to
delete the menu bar entry. Specify the menu ID of a menu in the current
menu list in the menuID parameter and 0 in the menuItem parameter to
delete a specific menu title entry. Specify the menu ID of a menu in the
current menu list in the menuID parameter and an item number in the
menuItem parameter to delete a specific menu item entry.

menuItem The menu item that the DeleteMCEntries procedure should use to
determine which entry to delete from the menu color information table. If
you specify 0 in this parameter, DeleteMCEntries deletes either the
menu bar entry or menu title entry, depending on the value of the
menuID parameter. If you specify the item number of a menu item in this
parameter and the menu ID of a menu in the current menu list in the
menuID parameter, DeleteMCEntries deletes a specific menu item
entry. You can also delete all menu item entries for a specific menu from
your application’s menu color information table using this constant:

CONST
mctAllItems = -98; {delete all menu item entries }
 { for the specified menu}

DESCRIPTION

The DeleteMCEntries procedure deletes a menu bar entry, a menu title entry, a menu
item entry, or all menu item entries of a given menu, according to the values specified in
the menuID and menuItem parameters. If the GetMCEntry function does not find the
specified entry in your application’s menu color information table, it does not delete the
entry. Your application should not delete the last entry in your application’s menu color
information table.

If any of the deleted entries changes the menu bar color or a menu title color, your
application should call DrawMenuBar to update the menu bar.
Menu Manager Reference 3-147

C H A P T E R 3

Menu Manager
Application-Defined Routine 3
Apple provides a standard menu definition procedure and standard menu bar definition
function. The Menu Manager uses the menu definition procedure and menu bar
definition function to display and perform basic operations on menus and the menu bar.
Although the Menu Manager allows you to provide your own menu bar definition
function, Apple recommends that you use the standard menu bar definition function.
Similarly, in most cases the standard menu definition procedure should meet the needs
of most applications. However, if your application has special needs, you can choose to
provide your own menu definition procedure. If you do so, define your menu definition
procedure so that it emulates the standard behavior of menus as much as possible. If you
define your own menus, they should follow the guidelines described in this chapter and
in Macintosh Human Interface Guidelines.

The Menu Definition Procedure 3

The Menu Manager uses the menu definition procedure of a menu to draw the menu
items in the menu, to determine which item the user chose from the menu, and to
calculate the menu’s dimensions. If you provide your own menu definition procedure,
it should also perform these tasks.

Apple provides a standard menu definition procedure, stored as a resource in the System
file. The standard menu definition procedure is the 'MDEF' resource with resource ID 0.
When you define your menus, you specify the menu definition procedure the Menu
Manager should use when managing them. You’ll usually want to use the standard
menu definition procedure for your application. However, if you need a feature not
provided by the standard menu definition procedure (for example, if you want to
include more graphics in your menus), you can choose to write your own menu
definition procedure.

MyMenuDef 3

You can provide your own menu definition procedure if you need special features in a
menu other than those provided by the standard menu definition procedure. This section
describes how to define your own menu definition procedure, defines the parameters
passed to your procedure by the Menu Manager, and describes the general actions your
procedure should perform.

PROCEDURE MyMenuDef (message: Integer; theMenu: MenuHandle;

VAR menuRect: Rect; hitPt: Point;

VAR whichItem: Integer);

message A number that identifies the operation that the menu definition proce-
dure should perform. The message parameter can contain any one of
these values:
3-148 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
CONST
 mDrawMsg = 0; {draw the menu}
 mChooseMsg = 1; {tell which item was chosen }
 { and highlight it}
 mSizeMsg = 2; {calculate menu dimensions}
 mPopUpMsg = 3; {calculate rectangle of }
 { the pop-up box}

Your menu definition procedure should not respond to any value other
than the four constants listed above.

theMenu A handle to the menu record of the menu that the operation should affect.

menuRect The rectangle (in global coordinates) in which the menu is located; the
Menu Manager provides this information to the menu definition
procedure only when the value in the message parameter is the
mDrawMsg or mChooseMsg constant.

When the value in the message parameter is the mPopUpMsg constant,
the menu definition procedure should calculate and then return the
dimensions of the pop-up box in this parameter. When the value in the
message parameter is the mSizeMsg constant, the menu definition
procedure should calculate the horizontal and vertical dimensions of the
menu rectangle and store these values in the menuWidth and
menuHeight fields of the menu record.

hitPt A mouse location (in global coordinates). The Menu Manager provides
information in this parameter to the menu definition procedure when the
value in the message parameter is the mChooseMsg or mPopUpMsg
constant. When the menu definition procedure receives the mChooseMsg
constant in the message parameter, it should determine whether the
mouse location specified in the hitPt parameter is in an enabled menu
item and highlight or unhighlight the item specified in the whichItem
parameter appropriately. When the menu definition procedure receives
the mPopUpMsg constant in the message parameter, the hitPt
parameter contains the top-left coordinates of the closed pop-up box,
which your procedure can use to calculate the rectangle of the open
pop-up box.

whichItem The item number of the last item chosen from this menu (or 0 if an item
hasn’t been chosen). The Menu Manager provides information in this
parameter to the menu definition procedure when the value in the
message parameter is the mChooseMsg constant. When the menu
definition procedure receives the mChooseMsg constant in the
message parameter, it should determine whether the mouse location
specified in the hitPt parameter is in an enabled menu item. If so, the
menu definition procedure should unhighlight the item specified by
the whichItem parameter, highlight the new item, and return the new
item number in whichItem. If the mouse location isn’t in an enabled
menu item, the menu definition procedure should unhighlight the
item specified by the whichItem parameter and return 0 in the
whichItem parameter.
Menu Manager Reference 3-149

C H A P T E R 3

Menu Manager
DESCRIPTION

The Menu Manager calls your menu definition procedure whenever it needs your
definition procedure to perform a certain action on a specific menu. The action
your menu definition procedure should perform depends on the value of the
message parameter.

If you provide your own menu definition procedure, store it in a resource of type
'MDEF' and include its resource ID in the description of each menu that uses your own
definition procedure. If you create a menu using GetMenu (or GetNewMBar), the Menu
Manager reads the menu definition procedure into memory and stores a handle to it in
the menuProc field of the menu’s menu record.

If you create a menu using NewMenu, the Menu Manager stores a handle to the standard
menu definition procedure in the menuProc field of the menu’s menu record. In this
case you must replace the value in the menuProc field with a handle to your own
procedure and then call the CalcMenuSize procedure. If your menu definition
procedure is in a resource file, you can get its handle by using the Resource Manager to
read it from the resource file into memory. However, note that you should usually store
your menus in resources (rather than using NewMenu) to make your application easier to
localize. See the “Resource Manager” chapter in Inside Macintosh: More Macintosh Toolbox
for information on the Resource Manager.

The menu definition procedure is responsible for drawing the contents of the menu and
its menu items, determining whether the cursor is in a displayed menu, highlighting and
unhighlighting menu items, and calculating a menu’s dimensions.

When the Menu Manager requests your menu definition procedure to perform an action
on a menu, it provides your procedure with a handle to its menu record. This allows
your procedure to access the data in the menu record and to use any data in the variable
data portion of the menu record to appropriately handle the menu items.

When the Menu Manager creates a menu as a result of an application calling GetMenu
or GetNewMBar, it fills out the menuID, menuProc, enableFlags, menuTitle, and
itemDefinitions fields of the menu record according to its resource definition. If the
menu is managed by your menu definition procedure, the Menu Manager calls your
procedure (specifying mSizeMsg) to calculate and fill in the menuHeight and
menuWidth fields of the menu record. The menu items are described by a variable
length field (itemDefinitions) in the menu record. Your menu definition procedure
can define and use this variable-length data in any manner it chooses.

For pop-up menus that are not implemented as controls, the Menu Manager uses the
menu definition procedure to support pop-up menus. If your menu definition procedure
supports pop-up menus, it should respond appropriately to the mPopUpMsg constant.

The Menu Manager specifies the mPopUpMsg constant in the message parameter and
calls your menu definition procedure whenever it needs to calculate the rectangle
bounded by the pop-up box for a pop-up menu that is managed by your menu
definition procedure. The parameter theMenu contains a handle to the menu record
of the pop-up menu, the hitPt parameter contains the top-left coordinates of the pop-
up box, and whichItem contains the previously chosen item. Your menu definition
procedure should calculate the rectangle in which the pop-up menu is to appear
3-150 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
and return this rectangle in the menuRect parameter. If the menu is so large that it
scrolls, return the actual top of the menu in the whichItem parameter. For pop-up
menus, your menu definition procedure also must place the pop-up menu’s scrolling
information in the global variables TopMenuItem and AtMenuBottom. Place in
TopMenuItem the pixel value of the top of the scrollable menu, and place in
AtMenuBottom the pixel value of the bottom of the scrollable menu.

Note
Your menu definition procedure should not assume that the A5
register is properly set up, so your procedure can’t refer to any of
the QuickDraw global variables. ◆

SEE ALSO

For additional information on how your menu definition procedure should respond
when it receives the mDrawMsg, mChooseMsg, or mSizeMsg constant in the message
parameter, see “Writing Your Own Menu Definition Procedure” beginning on page 3-87.

Resources 3
This section describes the menu ('MENU') resource, menu bar ('MBAR') resource, and
menu color information table ('mctb') resource. Usually you should define your menus
using 'MENU' resources, define the menus in your menu bar in an 'MBAR' resource, and
use the GetNewMBar function to read in the descriptions of your menus and menu bar.

If you want to use colors other than the default colors in a menu, you can provide an
'mctb' resource with the same resource ID as its corresponding 'MENU' resource, or
you can provide an 'mctb' resource with resource ID 0 to define colors for all your
menus and your menu bar.

If you choose to provide your own menu definition procedure, you should store your
routine in an 'MDEF' resource.

To create a 'MENU', an 'MBAR', or an 'mctb' resource, either you can specify the
resource description in an input file and compile the resource using a resoure compiler,
such as Rez, or you can directly create your resources in a resource file using a tool such
as ResEdit. This section describes the structures of these resources after they are
compiled by the Rez resource compiler. If you are interested in creating the Rez input
files for these resources, see “Using the Menu Manager,” beginning on page 3-41, for
detailed information.

The Menu Resource 3

You can provide descriptions of your menus in 'MENU' resources and use the GetMenu
function or GetNewMBar function (if you also provide an 'MBAR' resource) to read in
the descriptions of your menus. After reading in the resource description, the Menu
Manager stores the information about specific menus in menu records.
Menu Manager Reference 3-151

C H A P T E R 3

Menu Manager
▲ W A R N I N G

Menus in a resource must not be purgeable. ▲

Figure 3-37 shows the format of a compiled 'MENU' resource. See Listing 3-1 on
page 3-43 for a description of a 'MENU' resource in Rez input format.

Figure 3-37 Structure of a compiled menu ('MENU') resource

A compiled version of a 'MENU' resource contains the following elements:

■ Menu ID. Each menu in your application should have a unique menu ID. Note that
the menu ID does not have to match the resource ID, although by convention most
applications assign the same number for a menu’s resource ID and menu ID. A
negative menu ID indicates a menu belonging to a desk accessory (except for
submenus of a desk accessory). A menu ID from 1 through 235 indicates a menu (or
submenu) of an application; a menu ID from 236 through 255 indicates a submenu of
a desk accessory. Apple reserves the menu ID of 0.

■ Placeholder (two integers containing 0) for the menu’s width and height. After
reading in the resource data, the Menu Manager requests the menu’s menu definition
procedure to calculate the width and height of the menu and to store these values in
the menuWidth and menuHeight fields of the menu record.

■ Resource ID of the menu’s menu definition procedure. If the integer 0 appears here (as
specified by the textMenuProc constant in the Rez input file), the Menu Manager
uses the standard menu definition procedure to manage the menu. If you provide
your own menu definition procedure, its resource ID should appear in these bytes.

2

2

2

2

2

'MENU' resource type Bytes

Menu ID

Placeholder for menu width

Placeholder for menu height

Resource ID of menu definition procedure

Placeholder

Initial enabled state of the menu

and menu items

Variable-length data that

defines the menu items

4

1

Characters of menu title

Length (n) of title

 n

variable

1Placeholder
3-152 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
After reading in the menu’s resource data, the Menu Manager reads in the menu
definition procedure, if necessary. The Menu Manager stores a handle to the menu’s
menu definition procedure in the menuProc field of the menu record.

■ Placeholder (an integer containing 0).

■ The initial enabled state of the menu and first 31 menu items. This is a 32-bit value,
where bits 1–31 indicate if the corresponding menu item is disabled or enabled, and
bit 0 indicates whether the menu is enabled or disabled. The Menu Manager
automatically enables menu items greater than 31 when a menu is created.

■ The length (in bytes) of the menu title.

■ The title of the menu.

■ Variable-length data that describes the menu items. If you provide your own menu
definition procedure, you can define and provide this variable-length data according
to the needs of your procedure. The Menu Manager simply reads in the data for each
menu item and stores it as variable data at the end of the menu record. The menu
definition procedure is responsible for interpreting the contents of the data. For
example, the standard menu definition procedure interprets this data according to the
description given in the following paragraphs.

■ Placeholder (a byte containing 0) to indicate the end of the menu item definitions.

If you use the standard menu definition procedure, your 'MENU' resource should
describe the menu items in this manner. For each menu item, you need to provide its
text, the icon number, the keyboard equivalent or other value ($1B to indicate the menu
item has a submenu, $1C to indicate a script code other than the system script for the
item’s text, $1D to indicate the item’s icon should be reduced, or $1E to indicate that an
'SICN' icon should be used), the marking character of the menu item or menu ID of the
menu item’s submenu, and the font style of the menu item’s text. If an item doesn’t have
a particular characteristic, specify 0 for that characteristic. Figure 3-38 shows the
variable-length data portion of a compiled 'MENU' resource that uses the standard menu
definition procedure.

Figure 3-38 The variable-length data that describes menu items as defined by the standard
menu definition procedure

1

Variable-length data in 'MENU' resource

(For each menu item)

Bytes

Text of menu item

 Length (m) of menu item text

Icon number, script code, or 0
Keyboard equivalent, $1B, $1C, $1D, $1E, or 0
Marking character or menu ID of submenu, or 0

Style of the menu item

m

1
1
1
1

Menu Manager Reference 3-153

C H A P T E R 3

Menu Manager
The variable-length data portion of a compiled version of a 'MENU' resource that uses
the standard menu definition procedure contains the following elements:

■ Length (in bytes) of the menu item’s text.

■ Text of the menu item.

■ Icon number, script code, or 0 (as specified by the noicon constant in a Rez input file)
if the menu item doesn’t contain an icon and uses the system script. The icon number
is a number from 1 through 255 (or from 1 through 254 for small or reduced icons).
The Menu Manager adds 256 to the icon number to generate the resource ID of the
menu item’s icon. If a menu item has an icon, you should also provide a 'cicn' or an
'ICON' resource with the resource ID equal to the icon number plus 256. If you want
the Menu Manager to reduce an 'ICON' resource to the size of a small icon, also
provide the value $1D in the keyboard equivalent field. If you provide an 'SICN'
resource, provide $1E in the keyboard equivalent field. Otherwise, the Menu Manager
looks first for a 'cicn' resource with the calculated resource ID and uses that icon. If
you want the Menu Manager to draw the item’s text in a script other than the system
script, specify the script code here and also provide $1C in the keyboard equivalent
field. If the script system for the specified script is installed, the Menu Manager draws
the item’s text using that script. An item that is drawn in a script other than the
system script cannot also have an icon.

■ Keyboard equivalent (specified as a 1-byte character), the value $1B (as specified by
the constant hierarchicalMenu in a Rez input file) if the item has a submenu, the
value $1C if the item uses a script other than the system script, or 0 (as specified by
the nokey constant in a Rez input file) if the item has neither a keyboard equivalent
nor a submenu and uses the system script. A menu item can have a keyboard
equivalent, a submenu, a small icon, a reduced icon, or a script code, but not more
than one of these characteristics. For items containing icons, you can provide $1D in
this field if you want the Menu Manager to reduce an 'ICON' resource to the size
of a small icon. Provide $1E if you want the Menu Manager to use an 'SICN'
resource for the item’s icon. The values $01 through $1A as well as $1F and $20 are
reserved for use by Apple; your application should not use any of these reserved
values in this field.

■ Marking character, the menu ID of the item’s submenu, or 0 (as specified by the
nomark constant in a Rez input file) if the item has neither a mark nor a submenu. A
menu item can have a mark or a submenu, but not both. Submenus of an application
should have menu IDs from 1 through 235; submenus of a desk accessory should have
menu IDs from 236 through 255.

■ Font style of the menu item. The constants bold, italic, plain, outline, and
shadow can be used in a Rez input file to define their corresponding styles.

If you provide your own menu definition procedure, you should use the same format
for your resource descriptions of menus as shown in Figure 3-37. You can use the same
format or a format of your choosing to describe menu items. You can also use bits 1–31
of the enableFlags field of the menu record as you choose; however, bit 0 must still
indicate whether the menu is enabled or disabled.
3-154 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
The Menu Bar Resource 3

You can describe the order and number of menus in your menu bar in an 'MBAR'
resource, and you can describe your menus in 'MENU' resources. If you do so, you can
use the GetNewMBar function to read in the descriptions of your menus and create a
new menu list. The Menu Manager stores information about your application’s menu
bar in a menu list. Figure 3-39 shows the format of a compiled 'MBAR' resource. (See
Listing 3-4 on page 3-49 for a description of an 'MBAR' resource in Rez input format.)

Figure 3-39 Structure of a compiled menu bar ('MBAR') resource

A compiled version of an 'MBAR' resource contains the following elements:

■ Number of menus described by this menu bar.

■ A variable number (the amount should match the number declared in the first 2 bytes)
of resource IDs; each resource ID should identify a 'MENU' resource.

If you use the GetNewMBar function, the Menu Manager places the menus in the menu
bar according to the order that they appear in the 'MBAR' resource.

The Menu Color Information Table Resource 3

To use colors other than the default colors in a menu, provide a menu color information
table ('mctb') resource with the same resource ID as its corresponding 'MENU'
resource. You can also choose to provide an 'mctb' resource with resource ID 0 to
define colors for all your menus and your menu bar. Note that you should usually use
the default colors provided by the Menu Manager.

The Menu Manager stores color information about your application’s menus and menu
bar in a menu color information table. If you provide an 'mctb' resource with resource
ID 0, the Menu Manager reads the resource in when your application calls InitMenus
and stores the information in your application’s menu color information table. If you
provide an 'mctb' resource with the same resource ID as a 'MENU' resource, when you

'MBAR' resource type Bytes

Number of menus

Resource ID of first menu

Resource ID of second menu

Resource ID of next menu

2

2

2

2

2Resource ID of last menu
Menu Manager Reference 3-155

C H A P T E R 3

Menu Manager
use GetMenu to read in the resource description of the menu (or GetNewMBar to read
in all menus in the menu bar), the Menu Manager also reads in any associated 'mctb'
resource (if it exists). “The Menu Color Information Table Record” beginning on
page 3-98 describes the format of the menu color information table.

Figure 3-40 shows the format of a compiled 'mctb' resource.

Figure 3-40 Structure of a compiled menu color information table ('mctb') resource

A compiled version of an 'mctb' resource contains the following elements:

■ a count of the number of menu color entry descriptions

■ a variable number of menu color entries

A color entry defines colors for various parts of the menu and menu bar. Figure 3-41 on
the next page shows the format of a compiled menu color entry in an 'mctb' resource.

Each menu color entry in an 'mctb' resource contains the following:

■ A menu ID to indicate that this entry is either a menu item entry or menu title entry, 0
to indicate that this entry is a menu bar entry, or –99 to indicate that this is the last
entry in this resource.

■ An item number to indicate that this entry is a menu item entry, or 0 to indicate that
this is either a menu title or menu bar entry. Together, the menu ID and menu item
determine how the type of menu color entry is described. See Table 3-7 on page 3-100
for a complete description of how the menu ID and menu item specifications define
the type of menu color entry.

■ RGB1: for a menu bar entry, the default color for menu titles; for a menu title entry, the
title color of a specific menu; for a menu item entry, the mark color for a specific item.

■ RGB2: for a menu bar entry, the default background color of a displayed menu; for a
menu title entry, the default color for the menu bar; for a menu item entry, the color
for the text of a specific item.

'mctb' resource type Bytes

Number of entries 2

Last color entry

First color entry 28

28
3-156 Menu Manager Reference

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Figure 3-41 Structure of a menu color entry in an 'mctb' resource

■ RGB3: for a menu bar entry, the default color of items in a displayed menu; for a
menu title entry, the default color for items in a specific menu; for a menu item entry,
the color for the keyboard equivalent of a specific item.

■ RGB4: for a menu bar entry, the default color of the menu bar; for a menu title entry,
the background color of a specific menu; for a menu item entry, the background color
of a specific menu.

The Menu Definition Procedure Resource 3

If you provide your own menu definition procedure, you should store it in a resource of
type 'MDEF'. Provide as the resource data the compiled or assembled code of your
menu definition procedure. The entry point of your procedure must be at the beginning
of the resource data.

If you define your menus in 'MENU' resources (and use the GetMenu or GetNewMBar
function), you specify the menu definition procedure that the Menu Manager should
use to manage the menu in the 'MENU' resource. If you use the NewMenu function
(instead of 'MENU' resources), your application must explicitly replace the handle to
the standard menu definition procedure in the menuProc field of the menu record with
a handle to the desired menu definition procedure.

Menu color entry Bytes

2ID

Item

RGB4

RGB3

RGB2

RGB1

2

6

6

6

6

Menu Manager Reference 3-157

C H A P T E R 3

Menu Manager
Summary of the Menu Manager 3

Pascal Summary 3

Constants 3

CONST

noMark = 0; {menu item doesn't have a marking character}

{values for the message parameter to the menu definition procedure}

mDrawMsg = 0; {draw the menu items of a menu}

mChooseMsg = 1; {highlight or unhighlight a menu item as }

{ appropriate if the cursor is in a menu item}

mSizeMsg = 2; {calculate the dimensions of a menu}

mPopUpMsg = 3; {calculate the open pop-up box rectangle}

textMenuProc = 0; {resource ID of standard menu definition }

{ procedure}

hMenuCmd = 27; {constant ($1B) specified as keyboard equivalent }

{ to indicate a menu item has a submenu}

hierMenu = -1; {constant used with InsertMenu routine to insert }

{ a submenu or pop-up menu into the submenu }

{ portion of the current menu list}

mctAllItems = -98;{search for all items with the given ID}

mctLastIDIndic = -99;{last menu color table entry has this value }

{ in the ID field of the entry}

Data Types 3

TYPE

MenuInfo = {menu record}

RECORD

menuID: Integer; {number that identifies the menu}

menuWidth: Integer; {width (in pixels) of the menu}

menuHeight: Integer; {height (in pixels) of the menu}

menuProc: Handle; {menu definition procedure}

enableFlags:LongInt; {indicates whether menu and }

{ menu items are enabled}
3-158 Summary of the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
menuData: Str255; {title of menu}

{itemDefinitions} {variable-length data that }

{ defines the menu items}

END;

MenuPtr = ^MenuInfo; {pointer to a menu record}

MenuHandle = ^MenuPtr; {handle to a menu record}

MCEntry = {menu color entry record}

RECORD

mctID: Integer; {menu ID or 0 for menu bar}

mctItem: Integer; {menu item number or 0 for }

{ menu title}

mctRGB1: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB2: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB3: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB4: RGBColor; {usage depends on mctID and }

{ mctItem}

mctReserved:Integer; {reserved}

END;

MCEntryPtr = ^MCEntry; {pointer to a menu color entry record}

MCTable = ARRAY[0..0] OF MCEntry; {menu color table}

MCTablePtr = ^MCTable; {pointer to a menu color table}

MCTableHandle = ^MCTablePtr; {handle to a menu color table}

Menu Manager Routines 3

Initializing the Menu Manager

PROCEDURE InitMenus;

PROCEDURE InitProcMenu (resID: Integer);

Creating Menus

FUNCTION NewMenu (menuID: Integer; menuTitle: Str255)
: MenuHandle;

FUNCTION GetMenu (resourceID: Integer): MenuHandle;
Summary of the Menu Manager 3-159

C H A P T E R 3

Menu Manager
Adding Menus to and Removing Menus From the Current Menu List

PROCEDURE InsertMenu (theMenu: MenuHandle; beforeID: Integer);

PROCEDURE DeleteMenu (menuID: Integer);

PROCEDURE ClearMenuBar;

Getting a Menu Bar Description From an 'MBAR' Resource

FUNCTION GetNewMBar (menuBarID: Integer): Handle;

Getting and Setting the Menu Bar

FUNCTION GetMenuBar: Handle;

PROCEDURE SetMenuBar (menuList: Handle);

FUNCTION GetMBarHeight: Integer;

Drawing the Menu Bar

PROCEDURE DrawMenuBar;

PROCEDURE InvalMenuBar;

Responding to the User’s Choice of a Menu Command

FUNCTION MenuSelect (startPt: Point): LongInt;

FUNCTION MenuKey (ch: Char): LongInt;

FUNCTION MenuChoice: LongInt;

PROCEDURE HiliteMenu (menuID: Integer);

FUNCTION PopUpMenuSelect (menu: MenuHandle;
Top: Integer; Left: Integer;
PopUpItem: Integer): LongInt;

PROCEDURE SystemMenu (menuResult: LongInt);

FUNCTION SystemEdit (editCmd: Integer): Boolean;

Getting a Handle to a Menu Record

{some routines have two spellings, see Table 3-8 for the alternate spelling}

FUNCTION GetMenuHandle (menuID: Integer): MenuHandle;

FUNCTION HMGetHelpMenuHandle
(VAR mh: MenuHandle): OSErr;

Adding and Deleting Menu Items

{some routines have two spellings, see Table 3-8 for the alternate spelling}

PROCEDURE AppendMenu (menu: MenuHandle; data: Str255);

PROCEDURE InsertMenuItem (theMenu: MenuHandle; itemString: Str255;
afterItem: Integer);
3-160 Summary of the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
PROCEDURE DeleteMenuItem (theMenu: MenuHandle; item: Integer);

PROCEDURE AppendResMenu (theMenu: MenuHandle; theType: ResType);

PROCEDURE InsertResMenu (theMenu: MenuHandle; theType: ResType;
afterItem: Integer);

Getting and Setting the Appearance of Menu Items

{some routines have two spellings, see Table 3-8 for the alternate spelling}

PROCEDURE EnableItem (theMenu: MenuHandle; item: Integer);

PROCEDURE DisableItem (theMenu: MenuHandle; item: Integer);

PROCEDURE GetMenuItemText (theMenu: MenuHandle; item: Integer;
VAR itemString: Str255);

PROCEDURE SetMenuItemText (theMenu: MenuHandle; item: Integer;
itemString: Str255);

PROCEDURE GetItemStyle (theMenu: MenuHandle; item: Integer;
VAR chStyle: Style);

PROCEDURE SetItemStyle (theMenu: MenuHandle; item: Integer;
chStyle: Style);

PROCEDURE GetItemMark (theMenu: MenuHandle; item: Integer;
VAR markChar: Char);

PROCEDURE SetItemMark (theMenu: MenuHandle; item: Integer;
markChar: Char);

PROCEDURE CheckItem (theMenu: MenuHandle; item: Integer;
checked: Boolean);

PROCEDURE GetItemIcon (theMenu: MenuHandle; item: Integer;
VAR iconIndex: Byte);

PROCEDURE SetItemIcon (theMenu: MenuHandle; item: Integer;
iconIndex: Byte);

PROCEDURE GetItemCmd (theMenu: MenuHandle; item: Integer;
VAR cmdChar: CHAR);

PROCEDURE SetItemCmd (theMenu: MenuHandle; item: Integer;
cmdChar: CHAR);

Disposing of Menus

PROCEDURE DisposeMenu (theMenu: MenuHandle);

Counting the Items in a Menu

FUNCTION CountMItems (theMenu: MenuHandle): Integer;

Highlighting the Menu Bar

PROCEDURE FlashMenuBar (menuID: Integer);

PROCEDURE SetMenuFlash (count: Integer);
Summary of the Menu Manager 3-161

C H A P T E R 3

Menu Manager
Recalculating Menu Dimensions

PROCEDURE CalcMenuSize (theMenu: MenuHandle);

Managing Entries in the Menu Color Information Table

{some routines have two spellings, see Table 3-8 for the alternate spelling}

FUNCTION GetMCInfo: MCTableHandle;

PROCEDURE SetMCInfo (menuCTbl: MCTableHandle);

PROCEDURE DisposeMCInfo (menuCTbl: MCTableHandle);

FUNCTION GetMCEntry (menuID: Integer; menuItem: Integer)
: MCEntryPtr;

PROCEDURE SetMCEntries (numEntries: Integer;
menuCEntries: MCTablePtr);

PROCEDURE DeleteMCEntries (menuID: Integer; menuItem: Integer);

Application-Defined Routine 3

PROCEDURE MyMenuDef (message: Integer; theMenu: MenuHandle;
VAR menuRect: Rect; hitPt: Point;
VAR whichItem: Integer);

C Summary 3

Constants 3

enum {

#define noMark '\0' /*menu item doesn't have a marking character*/

/*values for the message parameter to the menu definition procedure*/

mDrawMsg = 0, /*draw the menu items of a menu*/

mChooseMsg = 1, /*highlight or unhighlight a menu item as */

/* appropriate if the cursor is in a menu item*/

mSizeMsg = 2, /*calculate the dimensions of a menu*/

mPopUpMsg = 3, /*calculate the open pop-up box rectangle*/

textMenuProc = 0, /*resource ID of standard menu definition */

/* procedure*/

hMenuCmd = 27, /*constant ($1B) specified as keyboard */

/* equivalent to indicate an item has a submenu*/

hierMenu = -1, /*constant used with InsertMenu to insert */

/* a submenu or pop-up menu into the submenu */

/* portion of the current menu list*/
3-162 Summary of the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
mctAllItems = -98,/*search for all items with the given ID*/

mctLastIDIndic = -99 /*last menu color table entry has this value */

/* in the ID field of the entry*/

};

Data Types 3

struct MenuInfo { /*menu record*/

short menuID; /*number that identifies the menu*/

short menuWidth; /*width (in pixels) of the menu*/

short menuHeight; /*height (in pixels) of the menu*/

Handle menuProc; /*menu definition procedure*/

long enableFlags; /*indicates whether menu and */

/* menu items are enabled*/

Str255 menuData; /*title of menu*/

/*itemDefinitions*/ /*variable-length data that */

/* defines the menu items*/

};

typedef struct MenuInfo MenuInfo; /*pointer to a menu record*/

typedef MenuInfo *MenuPtr, **MenuHandle; /*handle to a menu record*/

struct MCEntry { /*menu color entry record*/

short mctID; /*menu ID or 0 for menu bar*/

short mctItem; /*menu item number or 0 for */

/* menu title*/

RGBColor mctRGB1; /*usage depends on mctID and */

/* mctItem*/

RGBColor mctRGB2; /*usage depends on mctID and */

/* mctItem*/

RGBColor mctRGB3; /*usage depends on mctID and */

/* mctItem*/

RGBColor mctRGB4; /*usage depends on mctID and */

/* mctItem*/

short mctReserved; /*reserved*/

};

typedef struct MCEntry MCEntry;

typedef MCEntry *MCEntryPtr; /*pointer to a menu color entry record*/

/*menu color table*/

typedef MCEntry MCTable[1], *MCTablePtr, **MCTableHandle;
Summary of the Menu Manager 3-163

C H A P T E R 3

Menu Manager
Menu Manager Routines 3

Initializing the Menu Manager

pascal void InitMenus (void);

pascal void InitProcMenu (short resID);

Creating Menus

pascal MenuHandle NewMenu (short menuID, const Str255 menuTitle);

pascal MenuHandle GetMenu (short resourceID);

Adding Menus to and Removing Menus From the Current Menu List

pascal void InsertMenu (MenuHandle theMenu, short beforeID);

pascal void DeleteMenu (short menuID);

pascal void ClearMenuBar (void);

Getting a Menu Bar Description From an 'MBAR' Resource

pascal Handle GetNewMBar (short menuBarID);

Getting and Setting the Menu Bar

pascal Handle GetMenuBar (void);

pascal void SetMenuBar (Handle menuList);

#define GetMBarHeight() (* (short*) 0x0BAA)

Drawing the Menu Bar

pascal void DrawMenuBar (void);

pascal void InvalMenuBar (void);

Responding to the User’s Choice of a Menu Command

pascal long MenuSelect (Point startPt);

pascal long MenuKey (short ch);

pascal long MenuChoice (void);

pascal void HiliteMenu (short menuID);

pascal long PopUpMenuSelect (MenuHandle menu, short top, short left,
short popUpItem);

pascal void SystemMenu (long menuResult);

pascal Boolean SystemEdit (short editCmd);
3-164 Summary of the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Getting a Handle to a Menu Record

{some routines have two spellings, see Table 3-8 for the alternate spelling}

pascal MenuHandle GetMenuHandle
(short menuID);

pascal OSErr HMGetHelpMenuHandle
(MenuHandle *mh);

Adding and Deleting Menu Items

{some routines have two spellings, see Table 3-8 for the alternate spelling}

pascal void AppendMenu (MenuHandle menu, ConstStr255Param data);

pascal void InsertMenuItem (MenuHandle theMenu,
ConstStr255Param itemString,
short afterItem);

pascal void DeleteMenuItem (MenuHandle theMenu, short item);

pascal void AppendResMenu (MenuHandle theMenu, ResType theType);

pascal void InsertResMenu (MenuHandle theMenu, ResType theType,
short afterItem);

Getting and Setting the Appearance of Menu Items

{some routines have two spellings, see Table 3-8 for the alternate spelling}

pascal void EnableItem (MenuHandle theMenu, short item);

pascal void DisableItem (MenuHandle theMenu, short item);

pascal void GetMenuItemText (MenuHandle theMenu, short item,
Str255 itemString);

pascal void SetMenuItemText (MenuHandle theMenu, short item,
ConstStr255Param itemString);

pascal void GetItemStyle (MenuHandle theMenu, short item,
Style *chStyle);

pascal void SetItemStyle (MenuHandle theMenu, short item, short chStyle);

pascal void GetItemMark (MenuHandle theMenu, short item,
short *markChar);

pascal void SetItemMark (MenuHandle theMenu, short item,
short markChar);

pascal void CheckItem (MenuHandle theMenu, short item,
Boolean checked);

pascal void GetItemIcon (MenuHandle theMenu, short item,
short *iconIndex);

pascal void SetItemIcon (MenuHandle theMenu, short item,
short iconIndex);
Summary of the Menu Manager 3-165

C H A P T E R 3

Menu Manager
pascal void GetItemCmd (MenuHandle theMenu, short item, short
*cmdChar);

pascal void SetItemCmd (MenuHandle theMenu, short item, short cmdChar);

Disposing of Menus

pascal void DisposeMenu (MenuHandle theMenu);

Counting the Items in a Menu

pascal short CountMItems (MenuHandle theMenu);

Highlighting the Menu Bar

pascal void FlashMenuBar (short menuID);

pascal void SetMenuFlash (short count);

Recalculating Menu Dimensions

pascal void CalcMenuSize (MenuHandle theMenu);

Managing Entries in the Menu Color Information Table

{some routines have two spellings, see Table 3-8 for the alternate spelling}

pascal MCTableHandle GetMCInfo(void);

pascal void SetMCInfo (MCTableHandle menuCTbl);

pascal void DisposeMCInfo (MCTableHandle menuCTbl);

pascal MCEntryPtr GetMCEntry (short menuID, short menuItem);

pascal void SetMCEntries (short numEntries, MCTablePtr menuCEntries);

pascal void DeleteMCEntries (short menuID, short menuItem);

Application-Defined Routine 3

pascal void MyMenuDef (short message, MenuHandle theMenu,
Rect *menuRect, Point hitPt,
short *whichItem);
3-166 Summary of the Menu Manager

C H A P T E R 3

Menu Manager

3
M

enu M
anager
Assembly-Language Summary 3

Data Structures 3

The Menu Information Data Structure

Global Variables 3

Result Codes 3

0 menuID word number that identifies the menu
2 menuWidth word width (in pixels) of the menu
4 menuHeight word height (in pixels) of the menu
6 menuDefHandle long menu definition procedure

10 menuEnable long enable flags
14 menuData 256 bytes menu title followed by menu item information

AtMenuBottom The pixel value at the bottom of the scrollable menu.
MBarEnable Contains 0 if all menus in the current menu bar belong to an application;

contains a nonzero value if all menus belong to a desk accessory.
MBarHeight Contains current height of the menu bar, in pixels.
MBarHook Address of routine that MenuSelect calls repeatedly while the mouse button

is down.
MenuCInfo Contains a handle to application’s menu color information table.
MenuDisable Contains the menu ID and item number of the last item chosen, regardless of

whether the item was disabled or enabled.
MenuFlash Contains the current count (number of times) a menu item blinks when chosen

by the user.
MenuHook Address of routine that MenuSelect calls after a menu title is highlighted and

the menu rectangle is calculated but before the menu is drawn.
TheMenu Contains the menu ID of the highlighted menu in the menu bar.
TopMenuItem The pixel value at the top of the scrollable menu.

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmHelpManagerNotInited –855 Help menu not set up
Summary of the Menu Manager 3-167

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Macintosh Toolbox TOC
	 Introduction to the Macintosh Toolbox
	 Event Manager TOC
	 Event Manager
	 Menu Manager TOC
	 Menu Manager, Part 1 (Introduction, About, and Using)
	Menu Manager, Part 2 (Reference)
	Menu Mana ger Refer ence
	The Menu List
	The Menu Color Information Table Record
	Menu Manager Routines
	Initializing the Menu Manager
	Creating Menus
	Adding Menus to and Removing Menus From the Curren...
	Getting a Menu Bar Description From an 'MBAR' Reso...
	Getting and Setting the Menu Bar
	Drawing the Menu Bar
	Responding to the User’s Choice of a Menu Command
	Getting a Handle to a Menu Record
	Adding and Deleting Menu Items
	Getting and Setting the Appearance of Menu Items
	Disposing of Menus
	Counting the Items in a Menu
	Highlighting the Menu Bar
	Recalculating Menu Dimensions
	Managing Entries in the Menu Color Information Tab...

	Application-Defined Routine
	The Menu Definition Procedure

	Resources
	The Menu Resource
	The Menu Bar Resource
	The Menu Color Information Table Resource
	The Menu Definition Procedure Resource

	Summary of the Menu Manager
	Pascal Summary
	Constants
	Data Types
	Menu Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Menu Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Data Structures
	Global Variables

	Result Codes

	 Window Manager TOC
	 Window Manager, Part 1 (Introduction, About, and Using)
	 Window Manager, Part 2 (Reference)
	 Window Manager, Part 3 (Summary)
	 Control Manager TOC
	 Control Manager, Part 1 (Introduction, About, and Using)
	 Control Manager, Part 2 (Reference)
	 Dialog Manager TOC
	 Dialog Manager, Part 1 (Introduction and About)
	 Dialog Manager, Part 2 (Using)
	 Dialog Manager, Part 3 (Reference and Summary)
	 Finder Interface TOC
	 Finder Interface
	 Glossary
	 Index
	 Colophon

