

C H A P T E R 5

5

D
isk Initialization M

anager

Disk Initialization Manager 5

This chapter describes the Disk Initialization Manager, the part of the Operating System
that allows you to initialize disks and erase the contents of previously initialized disks.
The Disk Initialization Manager provides a routine that allows you to present the
standard user interface for initializing and naming disks. It also provides routines that
allow you to initialize disks without presenting that standard user interface.

You need to read this chapter if your application does not mask out disk-inserted events.
When your application receives a disk-inserted event, it must determine whether the
inserted disk is valid. If the disk is not valid, your application can use the Disk Initializa-
tion Manager to present the user with the standard interface for initializing the disk.

To use this chapter, you should already be familiar with the Event Manager, which sends
your application a disk-inserted event whenever a disk is inserted (unless you have
masked out such events). You need to examine the message field of that event to
determine whether the inserted disk is already initialized. You also need to be familiar
with the File Manager if your application changes the default volume characteristics of
newly initialized volumes.

This chapter begins by describing the operation of the Disk Initialization Manager,
including

■ formatting, verifying, and zeroing a disk

■ the standard user interface for initializing and naming a disk

■ bad block sparing

Then this chapter shows how you can

■ determine whether an inserted disk is valid

■ present the standard user interface to initialize and name an invalid disk

■ present the standard user interface to erase a disk

■ initialize or erase a disk without using the standard user interface

■ change the default volume characteristics of newly initialized volumes

About the Disk Initialization Manager 5

The Disk Initialization Manager is the part of the Macintosh Operating System that
manages the process of initializing disks. This package accepts requests to initialize a
disk and translates them into control calls for the corresponding disk driver. The Disk
Initialization Manager itself does not perform the low-level formatting or verification of
the disk; instead, it simply manages the communication between the software requesting
that a particular disk be initialized and the appropriate disk driver.
About the Disk Initialization Manager 5-3

C H A P T E R 5

Disk Initialization Manager

Note

In theory, you can use the Disk Initialization Manager to initialize any
writable disk drive. In practice, however, most SCSI disk drivers ignore
formatting control calls. Instead, low-level disk operations such as
formatting and verification are usually performed by a utility program
supplied with the disk. As a result, this chapter assumes that the disk to
be initialized is a 3.5-inch floppy disk or an Apple Hard Disk 20SC, all of
which are accessed through the Disk Driver. ◆

Usually, the Finder or the Standard File Package calls the Disk Initialization Manager
when the user inserts an uninitialized disk. Occasionally the user will insert a disk when
your application is frontmost. At that time, the Operating System generates a
disk-inserted event. If your application has not masked out such events, it receives an
event record for that event when it makes an event call and no events with higher
priority are pending. You then need to determine whether the inserted disk is valid (as
indicated by a value in the event record). If the disk is not valid, you should call the Disk
Initialization Manager to allow the user to initialize the disk or, if desired, eject it.

If your application masks out disk-inserted events, the event stays in the event queue
until your application calls the Standard File Package (which automatically processes
disk-inserted events) or until the current application can handle disk-inserted events. In
general, it’s best not to mask out disk-inserted events and to handle them as described
later in this chapter; otherwise, the user is likely to become confused when, after
inserting an uninitialized or damaged disk, no disk icon appears on the desktop and no
standard disk initialization dialog box appears. (Icons of initialized and undamaged
disks always appear on the desktop, even if the current application ignores disk-inserted
events.)

Disk Initialization 5
Disk initialization is the process of making a disk usable by the Macintosh Operating
System. When shipped, most floppy disks are uninitialized because different operating
systems have different initialization requirements. On Macintosh computers, disk
initialization consists of three independent steps:

■ disk formatting

■ disk verification

■ disk zeroing

All three steps must be performed successfully before the disk is considered initialized
(or valid). You can use a single Disk Initialization Manager function, DIBadMount,
to perform all three operations in sequence, or you can perform any one of them by
calling a corresponding low-level function (either DIFormat, DIVerify, or DIZero).
In general, your application should use the standard user interface described in the
following section to initialize a disk.

The first step in the initialization process is disk formatting. Formatting a disk consists
of writing special information onto a disk so that the disk driver can read from and write
to the disk. This involves dividing the total usable space into sectors and tracks. See the
5-4 About the Disk Initialization Manager

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager

chapter “Disk Driver” in Inside Macintosh: Devices for a description of how a disk is
divided into tracks and sectors.

The second step in the disk-initialization process is disk verification. Verifying a disk
consists of reading every bit on the disk to ensure that the disk has been formatted
correctly and contains no bad blocks. If an error occurs during the reading of any single
bit, the verification is considered unsuccessful.

The third and final step in the disk-initialization process is disk zeroing. Zeroing a disk
consists of creating on the disk the data structures and files necessary for the disk to be
recognized as a hierarchical file system (HFS) volume. In particular, zeroing a disk places
a master directory block (MDB), a volume bitmap, and a catalog file in appropriate
locations on the disk. (For information on the locations and sizes of these items, see the
description of the organization of data in a volume in the chapter “File Manager” in
this book.) The volume bitmap and catalog file are set up to represent a volume contain-
ing no user files. As a result, zeroing a disk makes any files previously located on the
disk inaccessible.

Beginning in system software version 7.0, zeroing a disk also causes the Disk
Initialization Manager to attempt to remove any bad blocks (as identified during the
disk-verification process) from the pool of available blocks on the disk. See “Bad Block
Sparing” on page 5-7 for a description of this capability.

The Disk Initialization User Interface 5
The Finder and the Standard File Package both handle disk-inserted events for
uninitialized disks by presenting a disk initialization dialog box asking the user
whether the disk should be ejected or initialized. Your application too can easily call a
Disk Initialization Manager routine that generates such a dialog box when the user
inserts an invalid disk. Figure 5-1 illustrates one configuration of the dialog box.

Figure 5-1 The disk initialization dialog box

The appearance of the disk initialization dialog box changes to reflect changing
conditions. For example, the icon changes to show which drive contains the disk. Also,
the text of the dialog box changes according to what is wrong with the disk. The text
might read “This is not a Macintosh disk” if the Disk Initialization Manager detects that
the disk has been formatted for use on another operating system. Or, it might notify the
user that a high-density disk can be used only on an Apple SuperDrive. Finally, if a user
About the Disk Initialization Manager 5-5

C H A P T E R 5

Disk Initialization Manager

inserts a single-sided disk into any disk drive, or a high-density disk into a high-density
disk drive, then the Disk Initialization Manager changes the buttons in the dialog box, as
illustrated in Figure 5-2, because such disks can be formatted in only one way.

Figure 5-2 Alternate buttons for the disk initialization dialog box

Regardless of the initial appearance of the disk initialization dialog box, it disappears if
the user clicks Eject or Cancel. If, however, the user decides to initialize the disk, the text
in the dialog box changes to warn the user that initialization erases any previous data on
the disk, as illustrated in Figure 5-3.

Figure 5-3 The disk initialization warning

Finally, if the user decides to initialize the disk, the contents of the dialog box change so
that the user can name the new disk, as illustrated in Figure 5-4.

Figure 5-4 The disk naming dialog box

After the user names the disk, the Disk Initialization Manager attempts to initialize it.
If an error occurs and the initialization fails, an alert box notifies the user, and the disk
is ejected.
5-6 About the Disk Initialization Manager

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager

The Disk Initialization Manager also provides a mechanism for using the standard
interface to reinitialize disks that are already formatted. (This mechanism is useful, for
example, when the user wants to reinitialize single-sided disks as double-sided disks.)
The Finder takes advantage of this mechanism with its Erase Disk command, illustrated
in Figure 5-5. After the user selects the erase operation from this dialog box, the reinitial-
ization begins immediately, without further warnings. If desired, your application can
use this same standard interface to allow users to reinitialize mounted disks (other than
the startup volume). Your application can customize the text to be displayed in such a
dialog box. Note that only a few utility applications actually need to provide users with
this capability.

Figure 5-5 The Finder’s disk erasing dialog box

If you are writing a utility program such as a disk-copying application, you might wish
to initialize new disks or reinitialize valid disks without displaying the standard disk
initialization dialog box. For example, your application might allow users to initialize
multiple disks without having to respond to the standard dialog box each time. The Disk
Initialization Manager provides low-level routines that allow you to do so. Unless you
are writing a utility program of this type, you don’t need to use these routines.

Bad Block Sparing 5
Beginning with system software version 7.0, the Disk Initialization Manager tries to
initialize a disk even if it contains some bad blocks; this feature is called bad block
sparing. Without bad block sparing, the Disk Initialization Manager considers a disk
unusable even if just one block is bad. With bad block sparing, however, the Disk
Initialization Manager attempts to work around the bad block by removing it from the
pool of available free blocks. This prevents the File Manager from allocating the block
to a file. Except in cases (described later) involving critical blocks on a disk, the Disk
Initialization Manager can usually initialize a disk that would previously have been
rejected as invalid. This section describes the operation of bad block sparing.

▲ W A R N I N G

Applications that manipulate disks using File Manager routines are
unaffected by bad block sparing. Software that accesses blocks directly
from the disk or that makes assumptions about the physical blocks on a
disk (such as a disk scavenger, recovery, or backup utility) is likely to fail
or cause a loss of data on disks containing spared blocks. ▲
About the Disk Initialization Manager 5-7

C H A P T E R 5

Disk Initialization Manager

The bad block sparing occurs during the disk-zeroing phase of disk initialization. As a
result, sparing occurs only when you call DIZero or DIBadMount (which internally
calls DIZero), never when you call DIFormat or DIVerify. The only visible sign
of the sparing process is an additional dialog box that contains the message
“Re-Verifying Disk.”

Disks without bad blocks are initialized exactly as in previous versions of system soft-
ware. The sparing algorithm is invoked only if the disk verification fails during a call to
the DIBadMount function or if the DIZero function encounters bad blocks during its
zeroing. The sparing algorithm proceeds by making a second pass over the disk, writing
and then reading back a test pattern. This testing is done a single track at a time. If any
retries or errors occur during this test, all the sectors in the track are deemed bad.

If more than 25 percent of the disk is found to contain bad blocks, if the I/O errors
appear to be due to hardware failure rather than media failure, or if certain critical
sectors (described later) are bad, then the initialization fails just as it would have without
the bad block sparing. Otherwise, the HFS volume structure is written to the disk. After
the volume structure has been written, the Disk Initialization Manager performs several
further operations during bad block sparing.

1. It sets the appropriate bits in the volume bitmap to indicate that the bad blocks are
allocated to a file.

2. It creates file extent descriptors for the bad blocks and inserts them into the volume
extents B*-tree so that the free-space scavenging that occurs at volume mount time (or
that is done by disk utilities such as Disk First Aid) does not reintroduce the bad
blocks into the volume bitmap. A special file ID (5) is used for these extents.

3. It sets bit 9 in the drAtrb field of the master directory block to indicate that bad
blocks in the disk have been spared.

4. On 800K floppy disks only, it reduces the number of allocation blocks on the disk
by 1 (from 1594 to 1593), to prevent previous versions of the Finder from doing
disk-to-disk copies physically (that is, sector by sector). This copying operation
would fail during an attempt to copy the bad blocks. The Finder does physical
copies as an optimization only on disks containing exactly 1594 allocation blocks.

The critical sectors (those that must be good even on a spared disk) include the boot
blocks, the master directory block and the spare master directory block, the volume
bitmap, and the initial extents for the catalog and extents B*-tree files of the volume.

Notice that the bad block sparing algorithm does not create any new entries in the
volume’s catalog file. In other words, steps 1 and 2 of the algorithm trick the File
Manager into thinking that the bad blocks have been allocated to some file, although no
file is actually created to contain those blocks. For this reason, directory enumerations
and file-by-file copies can proceed as they would have without bad block sparing. (If a
file were created for the bad blocks, that file would need a parent directory; in that case,
reading the catalog file to determine how many files that directory contains would
produce erroneous results.)
5-8 About the Disk Initialization Manager

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager

Note

The bad block sparing capability described in this section applies
only during disk initialization. The Operating System cannot
correct problems that occur after a disk has been initialized
(except by reinitializing the disk). ◆

Using the Disk Initialization Manager 5

The Disk Initialization Manager provides standard interfaces that allow your application

■ to respond to the user’s insertion of an unformatted or damaged disk by presenting
the standard disk initialization dialog box

■ to reinitialize valid disks, preserving their names but destroying their contents

You can override these standard interfaces by calling low-level Disk Initialization
Manager routines, and you can also override the default volume characteristics that the
Disk Initialization Manager gives to hierarchical volumes.

Responding to Disk-Inserted Events 5
When the user inserts a disk, the Operating System attempts to mount the volume on the
disk by calling the File Manager function PBMountVol. If the volume is successfully
mounted, an icon representing the disk appears on the desktop. The Operating System
then generates a disk-inserted event. If the user is interacting with a standard file dialog
box, the Standard File Package intercepts the disk-inserted event and handles it.
Otherwise, the event is left in the event queue for your application to retrieve.

Your application must either mask out disk-inserted events or process them by checking
to see whether the inserted disk is invalid. If you mask out such events, then each
disk-inserted event needlessly occupies a position in the event queue until the user
brings an application that can handle such events to the foreground or until your
application invokes the Standard File Package. Also, displaying the disk initialization
dialog box long after the disk has been inserted is likely to confuse the user. However,
you might wish to mask out disk-inserted events when you create modal dialog boxes in
which you process events with WaitNextEvent rather than ModalDialog. That way,
your application can process disk-inserted events as soon as the modal dialog box closes.

Note

By default, the Dialog Manager’s ModalDialog procedure
automatically masks out disk-inserted events so that your application
can handle them when dialog boxes close. If you wish to accept
disk-inserted events in a modal dialog box in which you call
ModalDialog, you must supply a filter procedure for the dialog box.
See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information on how to write a filter procedure. ◆
Using the Disk Initialization Manager 5-9

C H A P T E R 5

Disk Initialization Manager

Because handling disk-inserted events is easy, there is no good reason for your
application to mask out the events in its main event loop. Listing 5-1 defines a
procedure that your application can call when it receives a disk-inserted event.

Listing 5-1 Responding to disk-inserted events

PROCEDURE DoDiskEvent (myEvent: EventRecord);

VAR

myPoint: Point;

myErr: OSErr;

BEGIN

IF HiWord(myEvent.message) <> noErr THEN

BEGIN {attempt to mount was unsuccessful}

DILoad; {load Disk Initialization Manager}

SetPt(myPoint, 120, 120); {set top left of dialog box}

myErr := DIBadMount(myPoint, myEvent.message);

{notify the user}

DIUnload; {unload Disk Initialization Manager}

END

ELSE {attempt to mount was successful}

; {do other processing}

END;

The DoDiskEvent procedure in Listing 5-1 checks the high word of the event message
to see if the disk is mounted properly. If it has not been mounted, DoDiskEvent calls
the Disk Initialization Manager’s DIBadMount function, which displays the disk
initialization dialog box. Before doing so, DoDiskEvent calls DILoad to ensure that the
Disk Initialization Manager and its dialog box are loaded into memory. If you did not
call DILoad and the user started up with a floppy system startup disk, the Operating
System might require that the user reinsert the system disk and might then attempt to
initialize that disk. In Listing 5-1, if the user did start up with a floppy system startup
disk on a single floppy-drive system, the DILoad procedure requests that the user insert
the system disk so that it can read the necessary resources, and then it ejects that disk so
that the user can again put the disk to be initialized into the drive. After calling
DIBadMount to handle the uninitialized disk, DoDiskEvent calls DIUnload to release
the resources DILoad read into memory.

Beginning with system software version 7.0, the first parameter to DIBadMount is
ignored, and the disk initialization dialog box is automatically centered on the screen.

The procedure in Listing 5-1 ignores the result code returned by DIBadMount because
ordinarily it does not concern your application. If an error does occur during initializa-
tion, DIBadMount informs the user and ejects the disk.
5-10 Using the Disk Initialization Manager

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager

Erasing Initialized Disks 5
You can use the standard interface provided by the DIBadMount function to reinitialize
disks that are already initialized correctly. Doing so permanently erases their contents,
but does not change their names.

To reinitialize a disk, call DIBadMount with the high word of the event message equal to
the result code noErr. The DIBadMount function presents the standard interface to
initialize the disk in the drive whose number is specified by the low word of the event
message. However, because the Disk Initialization Manager cannot know why your
application wishes to reinitialize a disk, it cannot provide the initial text for the disk
initialization dialog box. Therefore, your application must use the Dialog Manager’s
ParamText procedure to create a customized message, as illustrated in Listing 5-2.

If you need to reinitialize a valid disk but do not have access to the event message from
when the disk was formatted, you can artificially create an event message by setting the
event message to an integer representing the drive number, as follows:

myEvent.message := driveNum;

Doing so sets each of the high-order bits of the artificial event message to 0, which is
desired because the constant noErr is equal to 0.

Listing 5-2 defines a procedure for displaying a disk initialization dialog box that allows
the user to reinitialize the disk in the drive specified by driveNum. The disk initializa-
tion dialog box displays the text specified in the myString parameter. The procedure in
Listing 5-2 in turn calls a procedure named DoError. You must define DoError to
process the result code if the initialization did not successfully complete. The disk initial-
ization dialog box does alert the user if the operation is not successfully completed, and
the disk is ejected. However, your application might need to know that a formerly
mounted disk is no longer mounted because reinitialization failed.

Listing 5-2 Reinitializing a valid disk

PROCEDURE DoEraseDisk (driveNum: Integer; myString: Str255);

VAR

myPoint: Point;

myErr: Integer; {result code}

BEGIN

DILoad; {load Disk Initialization Manager}

ParamText(myString, '', '', ''); {set dialog text}

SetPt(myPoint, 120, 120); {set top left of dialog box}

myErr := DIBadMount(myPoint, driveNum);

{allow user to confirm erase}

IF myErr <> noErr THEN

DoError(myErr); {respond to error, if necessary}

DIUnload; {unload Disk Initialization Manager}

END;
Using the Disk Initialization Manager 5-11

C H A P T E R 5

Disk Initialization Manager
Overriding the Standard Initialization Interface 5
The disk initialization dialog box provides an easy-to-use, standard interface for
initializing and reinitializing disks. However, if you wish, you can use three low-level
Disk Initialization Manager functions that accomplish the three stages of disk
initialization without presenting any user interface. The three functions are DIFormat,
DIVerify, and DIZero. The DIFormat function attempts to format the disk, the
DIVerify function verifies whether the format was successful, and the DIZero
function updates the newly initialized volume’s characteristics and attempts to spare
any bad blocks on the disk.

Listing 5-3 shows how to reinitialize a disk without using the standard interface. The
low-level functions work only if the disk is not already mounted in the disk drive.
Therefore, Listing 5-3 uses high-level File Manager calls to unmount the volume and to
remember the volume’s name, so that it can be restored later. Because you are no longer
using the standard interface, you must define the DoError procedure so that you can
alert the user about an error.

Listing 5-3 Reinitializing a validly formatted disk without using the standard interface

PROCEDURE DoEraseDisk (driveNum: Integer);

VAR

myErr: OSErr; {result code}

volName: Str255; {name of volume}

oldVRefNum: Integer; {to unmount volume}

oldFreeBytes: LongInt; {for GetVInfo call}

BEGIN

DILoad; {load Disk Init. Manager}

myErr := GetVInfo(driveNum, @volName, oldVRefNum, oldFreeBytes);

{remember name of volume}

IF myErr = noErr THEN

myErr := UnmountVol(@volName, oldVRefNum);

{unmount the disk}

IF myErr = noErr THEN

myErr := DIFormat(driveNum); {format the disk}

IF myErr = noErr THEN

myErr := DIVerify(driveNum); {verify format}

IF myErr = noErr THEN

myErr := DIZero(driveNum, volName); {update volume information}

IF myErr <> noErr THEN

DoError(myErr); {respond to error}

DIUnload; {unload Disk Init. Manager}

END;
5-12 Using the Disk Initialization Manager

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager
If you wish, you can also respond to a user’s insertion of an uninitialized or damaged
disk by simply formatting the disk without using the standard interface. Listing 5-4
defines a procedure for this purpose. Listing 5-4 differs from Listing 5-3 only in that it
does not begin by unmounting the volume (because the File Manager does not mount
uninitialized or damaged disks).

Listing 5-4 Initializing an uninitialized disk without using the standard interface

PROCEDURE DoInitDisk (driveNum: Integer; volName: Str255);

VAR

myErr: OSErr; {result code}

BEGIN

DILoad; {load Disk Init. Manager}

myErr := DIFormat(driveNum); {format the disk}

IF myErr = noErr THEN

myErr := DIVerify(driveNum); {verify format}

IF myErr = noErr THEN

myErr := DIZero(driveNum, volName); {update volume information}

IF myErr <> noErr THEN

DoError(myErr); {respond to error}

DIUnload; {unload Disk Init. Manager}

END;

Changing Default Volume Characteristics 5
The Disk Initialization Manager must set certain volume characteristics when it creates
an HFS directory on a volume. Default values for these characteristics are stored in an
HFS defaults record in ROM. If you wish, you can override those default values by
placing a pointer to an HFS defaults record in the low-memory global variable
FmtDefaults. The Disk Initialization Manager uses the record stored in ROM
whenever this low-memory global variable contains NIL.

IMPORTANT

Most applications do not need to alter the default volume characteristics.
This technique is useful primarily for applications, such as backup
utilities, that intelligently adjust the allocation block size and clump
size to maximize the amount of data written to a backup volume. ▲
Using the Disk Initialization Manager 5-13

C H A P T E R 5

Disk Initialization Manager
The HFSDefaults data structure defines the HFS defaults record.

TYPE HFSDefaults =

RECORD

sigWord: PACKED ARRAY[0..1] OF Byte; {signature word}

abSize: LongInt; {allocation block size in bytes}

clpSize: LongInt; {clump size in bytes}

nxFreeFN: LongInt; {next free file number}

btClpSize: LongInt; {B*-tree clump size in bytes}

rsrv1: Integer; {reserved}

rsrv2: Integer; {reserved}

rsrv3: Integer; {reserved}

END;

Field descriptions

sigWord The signature word to be used for newly initialized volumes. By
default, this field is set to 'BD' (hexadecimal $4244). You must set
this field to 'BD' for the volume to be recognized as an HFS
volume.

abSize The number of bytes in each allocation block on newly initialized
volumes. If you set this field to 0, the number of bytes in each
allocation block is computed according to the following formula:

abSize = (1 + (blocks in volume/64K)) * 512 bytes

By default, this field is set to 0.
clpSize The number of bytes to be used for the clump on newly initialized

volumes. By default, this field is set to 4*abSize.
nxFreeFN The next free file number on newly initialized volumes. By default,

this field is set to 16.
btClpSize The number of bytes to be used for the B*-tree clump on newly

initialized volumes. If you set this field to 0, the number of bytes to
be used for the B*-tree clump is computed according to the
following formula:

btClpSize = ((blocks in volume)/128) * 512 bytes

By default, this field is set to 0.
rsrv1 Reserved. Set to 0.
rsrv2 Reserved. Set to 0.
rsrv3 Reserved. Set to 0.

The code in Listing 5-5 fills in an HFSDefaults record, stores it in the system heap (so
that the record remains in memory after the application terminates), and makes the
low-memory global variable FmtDefaults a pointer to that record. Note that changing
the default volume characteristics does not affect volumes that you have already
initialized, but only volumes to be initialized.
5-14 Using the Disk Initialization Manager

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager
Listing 5-5 Changing default volume characteristics

PROCEDURE ChangeHFSDefaults;

CONST

FmtDefaults = $039E; {address of low-memory global}

TYPE

HFSDefaultsPtr = ^HFSDefaults; {pointer to override record}

HFSDefaultsAdd = ^HFSDefaultsPtr; {address of above pointer}

VAR

myDefaults: HFSDefaultsPtr;

BEGIN {allocate record in system heap}

myDefaults := HFSDefaultsPtr(NewPtrSysClear(SizeOf(HFSDefaults)));

WITH myDefaults^ DO

BEGIN

... {set fields of record}

END;

HFSDefaultsAdd(FmtDefaults)^ := myDefaults;

{change value of global}

END;

If you later want to restore the default settings, you can reset the low-memory global
variable FmtDefaults to NIL. Remember to delete any memory you have allocated.

Disk Initialization Manager Reference 5

This section describes the routines that are specific to the Disk Initialization Manager. See
“Changing Default Volume Characteristics” on page 5-13 for a description of the Pascal
data structure for the HFS defaults record.

Routines 5
The Disk Initialization Manager provides two routines (DILoad and DIUnload) that
allow you to load and unload the package. The DIBadMount routine has two uses: to
format uninitialized disks that the user inserts and to reinitialize volumes by erasing
their data without changing their names. Last, three low-level routines (DIFormat,
DIVerify, and DIZero) allow you to perform the steps of formatting, verifying, and
zeroing the disk separately.

Loading and Unloading the Disk Initialization Manager 5

Even a user with a hard disk drive might occasionally use a floppy disk to start up the
computer. When you call the Disk Initialization Manager to initialize a disk, it might
need to read a resource from the System resource file. If the disk containing the System
Disk Initialization Manager Reference 5-15

C H A P T E R 5

Disk Initialization Manager
resource file is not already mounted, the user might need to switch disks, and system
software might accidentally try to reinitialize the startup volume. The DILoad procedure
allows you to avoid this problem by ensuring that the resources the Disk Initialization
Manager needs are preloaded into memory. The DIUnload procedure reverses the
effects of DILoad.

DILoad 5

You can use the DILoad procedure to ensure that the Disk Initialization Manager and its
associated dialog box and dialog items are in memory.

PROCEDURE DILoad;

DESCRIPTION

The DILoad procedure reads the Disk Initialization Manager and its associated dialog
box and dialog items into memory and makes them unpurgeable. Depending on which
Macintosh model the user is using, the Disk Initialization Manager and the dialog box
and dialog items are either in ROM or in the System file.

Ordinarily, you call the DILoad procedure when you anticipate that the user will need to
format a disk. The Standard File Package automatically calls DILoad when you call
StandardGetFile or StandardPutFile. If you are writing a utility program that
frequently needs to initialize disks, such as a disk-copying program, you might call
DILoad at the beginning of your application.

When you use the low-level disk-initialization routines DIFormat, DIVerify, and
DIZero, the Disk Initialization Manager does not need to load a dialog box. Therefore,
if you use only these routines, you can (if you wish) call the Resource Manager to read
just the package resource into memory and the Memory Manager procedure to make
it unpurgeable. To read just the package resource into memory, you can call the
GetResource function with a resource ID of 2 and a resource type of 'PACK'. Then,
you need to use the HNoPurge procedure to make the package resource unpurgeable.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DILoad are

SPECIAL CONSIDERATIONS

Because the DILoad procedure allocates memory, you should not call it at interrupt time.

Trap macro Selector

_Pack2 $0002
5-16 Disk Initialization Manager Reference

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager
DIUnload 5

To free the memory space occupied by the Disk Initialization Manager, you can call the
DIUnload procedure.

PROCEDURE DIUnload;

DESCRIPTION

The DIUnload procedure makes the Disk Initialization Manager and its associated
dialog box and dialog items purgeable. They remain in memory until the Memory
Manager purges the heap zone.

If you are using the low-level disk initialization routines and read just the package
resource into memory, you can free the memory the package occupies by calling the
ReleaseResource procedure.

To force the Memory Manager to purge the heap zone so that it really frees the memory
occupied by the Disk Initialization Manager and its dialog box and dialog items, you
can call one of the Memory Manager routines PurgeMem and MaxMem. For more
information, see the chapter “Memory Manager” in Inside Macintosh: Memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIUnload are

SPECIAL CONSIDERATIONS

Because DIUnload might affect memory, you should not call it at interrupt time.

Initializing a Disk 5

You can use the Disk Initialization Manager to initialize uninitialized disks and to
reinitialize previously initialized disks. The DIBadMount function accomplishes
both tasks.

Trap macro Selector

_Pack2 $0004
Disk Initialization Manager Reference 5-17

C H A P T E R 5

Disk Initialization Manager
DIBadMount 5

To respond to the user’s insertion of an uninitialized or damaged disk, you can call the
DIBadMount function.

FUNCTION DIBadMount (where: Point; evtMessage: LongInt): Integer;

where The desired location, in global coordinates, of the upper-left corner of the
disk initialization dialog box. In system software versions 7.0 and later,
this parameter is ignored, and the dialog box is automatically centered on
the screen.

evtMessage The event message received when the disk is inserted. The high word of
this message contains the result code associated with the disk insertion.
The low word of this message indicates the number of the drive into
which the user inserted the disk.

DESCRIPTION

The DIBadMount function evaluates the result code in the high word of the evtMessage
parameter and responds appropriately. If the result code is noErr, the function allows
the user to erase the contents of the disk. If the result code is ioErr, badMDBErr, or
noMacDskErr, initializing the disk might correct the problem, and so DIBadMount
displays a dialog box that explains the problem and allows the user to initialize the disk.
If the result code is extFSErr, memFullErr, nsDrvErr, paramErr, or volOnLinErr,
then initializing the disk would not correct the problem. In this case, DIBadMount ejects
the disk from the drive and returns the result code.

Before presenting the disk initialization dialog box, DIBadMount checks whether the
drive contains an already mounted volume. If so, it ejects the disk and returns 2 as its
result. This happens rarely and could reflect an error in your application (for example,
you forgot to call DILoad, and the user had to switch to the disk containing the System
resource file).

The DIBadMount function uses just one disk initialization dialog box to cover all disk
initialization situations. The dialog box contains many dialog items, which are hidden
and shown as appropriate. The dialog box always contains an icon indicating the drive
containing the disk to be initialized.

The initial text of the disk initialization dialog box depends on the result code received.
For example, if you pass noMacDskErr to DIBadMount in the evtMessage parameter,
the dialog box displays the text “This is not a Macintosh disk.” If you pass the result
code noErr, you can customize the message by using the Dialog Manager’s ParamText
procedure.

The disk initialization dialog box contains a button allowing the user to cancel the
initialization and one or two buttons allowing the user to request initialization of
the disk. Usually, the cancel button is labeled Eject, but if the result code passed to
DIBadMount within the evtMessage parameter is noErr, then the cancel button is
labeled Cancel. If the user responds to the disk initialization dialog box by clicking
the Eject button, DIBadMount ejects the disk and returns 1 as its result. If the user
clicks the Cancel button, DIBadMount returns 1 but does not eject the disk.
5-18 Disk Initialization Manager Reference

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager
In most cases, the Initialize button is the only alternative to the Eject or Cancel button.
However, if the user inserts a double-sided (but not high-density) disk into a
double-sided or high-density disk drive, DIBadMount presents buttons labeled
One-Sided and Two-Sided. The user can then decide whether to make the disk
single-sided or double-sided. If the user clicks the Initialize button, the One-Sided
button, or the Two-Sided button, DIBadMount warns the user that the initialization
process erases any existing data on the disks. If the user proceeds, DIBadMount allows
the user to name the disk if it is not already named and then updates the text of the
dialog box to inform the user of the progress of the operation. If the operation fails,
DIBadMount alerts the user and ejects the disk, returning an appropriate result code.

You can use DIBadMount to format hard disks as well as floppy disks. However, you
should not attempt to format the startup volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIBadMount are

SPECIAL CONSIDERATIONS

Because the DIBadMount function might allocate memory, you should not call it at
interrupt time.

RESULT CODES

Low-Level Disk Initialization Routines 5

If you do not want to use the standard interface for initializing uninitialized volumes,
you can use the Disk Initialization Manager’s low-level routines. For example, if you are
writing a disk-copying application, initializing a disk might be only part of the copying
process. In this case, you might wish to create your own dialog boxes warning the user
about the repercussions of initializing a disk and giving information on the progress of
the initialization.

Trap macro Selector

_Pack2 $0000

[no name] 2 Disk in specified drive is already mounted
[no name] 1 User canceled initializing
noErr 0 No error
paramErr –50 Drive number specified is bad
volOnLinErr –55 Volume is already online
nsDrvErr –56 No such drive
extFSErr –58 Disk has external file system
lastDskErr –64 Last of the range of low-level disk errors
...
firstDskErr –84 First of the range of low-level disk errors
memFullErr –108 Not enough memory
Disk Initialization Manager Reference 5-19

C H A P T E R 5

Disk Initialization Manager
The three low-level disk-initialization routines are DIFormat, DIVerify, and DIZero.
Ordinarily, you call them in that order to format an uninitialized disk, to verify the
format, and to set the volume’s volume information block and catalog.

DIFormat 5

To format a disk, you can use the DIFormat function.

FUNCTION DIFormat (drvNum: Integer): OSErr;

drvNum The number of the drive containing the disk to be formatted.

DESCRIPTION

The DIFormat function attempts to format the disk in the drive specified by the drvNum
parameter and returns a result code indicating whether it completed the formatting
successfully or failed. Formatting a disk consists of writing special information onto it
so that the disk driver can read from and write to the disk.

You can use DIFormat to format any unlocked disk, including single-sided disks,
double-sided disks, high-density disks, and hard disk drives. It formats both sides
of a double-sided disk.

You have to unmount a disk before calling the DIFormat function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIFormat are

SPECIAL CONSIDERATIONS

You should not call DIFormat at interrupt time.

RESULT CODES

Trap macro Selector

_Pack2 $0006

noErr 0 No error
volOnLinErr –55 Volume is online
lastDskErr –64 Last of the range of low-level disk errors
...
firstDskErr –84 First of the range of low-level disk errors
5-20 Disk Initialization Manager Reference

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager
DIVerify 5

To verify a disk you have formatted, you can use the DIVerify function.

FUNCTION DIVerify (drvNum: Integer): OSErr;

drvNum The number of the drive containing the disk to be verified.

DESCRIPTION

The DIVerify function verifies the format of the disk in the drive specified by the
drvNum parameter. It reads each bit from the disk and returns a result code indicating
whether all bits were read successfully or not. The DIVerify function does not affect
the contents of the disk itself.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIVerify are

SPECIAL CONSIDERATIONS

You should not call DIVerify at interrupt time.

RESULT CODES

DIZero 5

To complete the disk-initialization process, you can use the DIZero function.

FUNCTION DIZero (drvNum: Integer; volName: Str255): OSErr;

drvNum The number of the drive containing the disk to be zeroed.

volName The name of the volume (to be included in the volume information).

DESCRIPTION

On the unmounted volume in the drive specified by the given drive number, the DIZero
function sets the volume information, the volume bitmap, a file directory, and the
desktop database (or desktop file) to the settings corresponding to a volume with no

Trap macro Selector

_Pack2 $0008

noErr 0 No error
lastDskErr –64 Last of the range of low-level disk errors
...
firstDskErr –84 First of the range of low-level disk errors
Disk Initialization Manager Reference 5-21

C H A P T E R 5

Disk Initialization Manager
files. This function completes the process of making any files previously on the volume
permanently inaccessible. If the operation fails, DIZero returns a result code indicating
that a low-level disk error occurred. Otherwise, it mounts the volume by calling the File
Manager function PBMountVol and returns that function’s result code.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for DIZero are

SPECIAL CONSIDERATIONS

You should not call DIZero at interrupt time. In system software version 7.0 and later,
DIZero automatically performs bad block sparing, as described in “Bad Block Sparing,”
beginning on page 5-7.

RESULT CODES

Trap macro Selector

_Pack2 $000A

noErr 0 No error
ioErr –36 I/O error
paramErr –50 Drive number specified is bad
volOnLinErr –55 Volume is already online
nsDrvErr –56 No such drive
noMacDskErr –57 Disk is not a Macintosh disk
extFSErr –58 Disk has external file system
badMDBErr –60 Master directory block is bad
lastDskErr –64 Last of the range of low-level disk errors
...
firstDskErr –84 First of the range of low-level disk errors
memFullErr –108 Not enough memory
5-22 Disk Initialization Manager Reference

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager
Summary of the Disk Initialization Manager 5

Pascal Summary 5

Data Types 5

HFS Defaults Record

TYPE HFSDefaults =

RECORD

sigWord: PACKED ARRAY[0..1] OF Byte; {signature word}

abSize: LongInt; {allocation block size in bytes}

clpSize: LongInt; {clump size in bytes}

nxFreeFN: LongInt; {next free file number}

btClpSize: LongInt; {B*-tree clump size in bytes}

rsrv1: Integer; {reserved}

rsrv2: Integer; {reserved}

rsrv3: Integer; {reserved}

END;

Routines 5

Loading and Unloading the Disk Initialization Manager

PROCEDURE DILoad;

PROCEDURE DIUnload;

Initializing a Disk

FUNCTION DIBadMount (where: Point; evtMessage: LongInt): Integer;

Low-Level Disk-Initialization Routines

FUNCTION DIFormat (drvNum: Integer): OSErr;

FUNCTION DIVerify (drvNum: Integer): OSErr;

FUNCTION DIZero (drvNum: Integer; volName: Str255): OSErr;
Summary of the Disk Initialization Manager 5-23

C H A P T E R 5

Disk Initialization Manager
C Summary 5

Data Types 5

HFS Defaults Record

struct HFSDefaults {

char sigWord[2]; /*signature word*/

long abSize; /*allocation block size in bytes*/

long clpSize; /*clump size in bytes*/

long nxFreeFN; /*next free file number*/

long btClpSize; /*B-Tree clump size in bytes*/

short rsrv1; /*reserved*/

short rsrv2; /*reserved*/

short rsrv3; /*reserved*/

};

typedef struct HFSDefaults HFSDefaults;

Routines 5

Loading and Unloading the Disk Initialization Package

pascal void DILoad (void);

pascal void DIUnload (void);

Initializing a Disk

pascal short DIBadMount (Point where, long evtMessage);

Low-Level Disk-Initialization Routines

pascal OSErr DIFormat (short drvNum);

pascal OSErr DIVerify (short drvNum);

pascal OSErr DIZero (short drvNum, const Str255 volName);
5-24 Summary of the Disk Initialization Manager

C H A P T E R 5

Disk Initialization Manager

5

D
isk Initialization M

anager
Assembly-Language Summary 5

Data Structures 5

HFSDefaults Data Structure

Trap Macros 5

Trap Macro Requiring Routine Selectors

_Pack2

Global Variables 5

Result Codes 5

0 sigWord word signature word
2 abSize long allocation block size in bytes
6 clpSize long clump size in bytes

10 nxFreeFN long next free file number
14 btClpSize long B*-tree clump size in bytes
18 rsrv1 word reserved
20 rsrv2 word reserved
22 rsrv3 word reserved

Selector Routine

$0000 DIBadMount

$0002 DILoad

$0004 DIUnload

$0006 DIFormat

$0008 DIVerify

$000A DIZero

FmtDefaults long Pointer to substitute values for hierarchical volume directories.

[no name] 2 Disk in specified drive is already mounted
[no name] 1 User canceled initializing
noErr 0 No error
ioErr –36 I/O error
paramErr –50 Drive number specified is bad
volOnLinErr –55 Volume is already online
nsDrvErr –56 No such drive
Summary of the Disk Initialization Manager 5-25

C H A P T E R 5

Disk Initialization Manager
noMacDskErr –57 Disk is not a Macintosh disk
extFSErr –58 Disk has external file system
badMDBErr –60 Master directory block is bad
lastDskErr –64 Last of the range of low-level disk errors
firstDskErr –84 First of the range of low-level disk errors
memFullErr –108 Not enough memory
5-26 Summary of the Disk Initialization Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to File Management TOC
	 Introduction to File Management
	 File Manager TOC
	 File Manager
	 Standard File Package TOC
	 Standard File Package
	 Alias Manager TOC
	 Alias Manager
	 Disk Initialization Manager TOC
	Disk Initialization Manager
	About the Disk Initialization Manager
	Disk Initialization
	The Disk Initialization User Interface
	Bad Block Sparing

	Using the Disk Initialization Manager
	Responding to Disk-Inserted Events
	Erasing Initialized Disks
	Overriding the Standard Initialization Interface
	Changing Default Volume Characteristics

	Disk Initialization Manager Reference
	Routines
	Loading and Unloading the Disk Initialization Mana...
	Initializing a Disk
	Low-Level Disk Initialization Routines

	Summary of the Disk Initialization Manager
	Pascal Summary
	Data Types
	Routines

	C Summary
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros
	Global Variables

	Result Codes

	 Glossary
	 Index
	 Colophon

