

C H A P T E R 4

4

A
lias M

anager

Alias Manager 4

This chapter describes how your application can use the Alias Manager to establish and
resolve alias records, which are data structures that describe file system objects (that is,
files, directories, and volumes). You create an alias record to take a “fingerprint” of a file
system object, usually a file, that you might need to locate again later. You can store the
alias record, instead of a file system specification, and then let the Alias Manager find the
file again when it’s needed. The Alias Manager contains algorithms for locating files that
have been moved, renamed, copied, or restored from backup.

Note

The Alias Manager lets you manage alias records. It does not directly
manipulate Finder aliases, which the user creates and manages through
the Finder. The chapter “Finder Interface” in Inside Macintosh: Macintosh
Toolbox Essentials describes Finder aliases and ways to accommodate
them in your application. ◆

The Alias Manager is available only in system software version 7.0 or later. Use the
Gestalt function, described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities, to determine whether the Alias Manager is present.

Read this chapter if you want your application to create and resolve alias records. You
might store an alias record, for example, to identify a customized dictionary from
within a word-processing document. When the user runs a spelling checker on the
document, your application can ask the Alias Manager to resolve the record to find the
correct dictionary.

To use this chapter, you should be familiar with the File Manager’s conventions for
identifying files, directories, and volumes, as described in the chapter “Introduction to
File Management” in this book.

This chapter begins with a description of the Alias Manager, alias records, and the search
strategies that the Alias Manager uses to resolve an alias record. Then this chapter shows
how you can

■ create alias records

■ resolve alias records

■ store alias records as resources

■ get information about the target of an alias record

About the Alias Manager 4

The Alias Manager is the part of the Operating System that helps you to locate specified
files, directories, or volumes at a later time. It stores certain information about the target
object in an alias record. When you later want the Alias Manager to find the target, you
pass it the alias record and other information regarding the type of search to perform.
Sometimes, the Alias Manager can find the original file. In other cases, the Alias Manager
builds a list of potential matches and allows you (or the user) to select the desired file.
About the Alias Manager 4-3

C H A P T E R 4

Alias Manager

The Alias Manager creates and resolves (that is, finds the targets of) alias records. In
general, you should use the Alias Manager to create an alias record whenever you find
yourself storing a specific file description, such as filename and parent directory ID. The
Alias Manager stores this information and more in the alias record, and it also provides a
set of search strategies for resolving the record later. The search strategies are described
in “Search Strategies” beginning on page 4-5. You can use the Alias Manager to create,
resolve, and (if necessary) update alias records. You can also obtain information about
the target of an alias record without actually resolving the alias record.

The Alias Manager can track files and directories across volumes. If the target of an
alias record is on an unmounted AppleShare volume, the Alias Manager automatically
mounts the volume when it resolves the alias. If the target object is on an unmounted
ejectable volume, the Alias Manager prompts the user to insert the volume.

When the Alias Manager creates an alias record, it allocates the storage, fills in the
record, and returns a handle to it. Your application is responsible for storing the record
and retrieving it when needed. Your application must also supply strategies for handling
various alias-resolution problems, described in “Resolving Alias Records” on page 4-10.

To help you understand and use the Alias Manager, this section provides

■ an overview of alias records

■ a description of the search strategies the Alias Manager uses to resolve alias records

Alias Records 4
An alias record is a data structure that describes a file, directory, or volume. The record
contains

■ location information, such as name and parent directory ID

■ verification information, such as creation date, file type, and creator

■ volume mounting information (that is, server and zone), if applicable

By storing alias records, you can allow your users to create a robust connection to a file—
that is, a connection that can survive the moving or renaming of the target file. The
Finder introduced in system software version 7.0, for example, stores alias records in
aliases created by the user to represent other files or folders. The Edition Manager uses
alias records to support data sharing among separate documents.

An alias record is a reliable way to identify a file system object when your application is
communicating with a process that might be running on a different machine.

The creation of an alias record has no effect on the target of the record, except to establish
a file ID reference for the target file if one did not previously exist. (See the chapter “File
Manager” in this book for a description of file IDs and file ID references.)

The alias record contains only two fields of public information available to your
application. The bulk of the record is managed privately by the Alias Manager.
4-4 About the Alias Manager

C H A P T E R 4

Alias Manager

4

A
lias M

anager

TYPE AliasRecord =

RECORD

userType: OSType; {application's signature}

aliasSize: Integer; {size of record when created}

{variable-length private data}

END;

Your application can store, in the userType field, its own signature or any other
data that fits into 4 bytes. When the Alias Manager creates an alias record, it stores 0
in that field.

The Alias Manager stores, in the aliasSize field, the size assigned to the record at the
time of its creation. Knowing the starting size allows you to store and retrieve data of
your own at the end of the record (see “Customizing Alias Records” on page 4-13). An
alias record is typically 200 to 300 bytes long.

The private Alias Manager data includes all of the location, verification, and mounting
information needed to resolve the alias record with the various search strategies
described in this chapter.

Search Strategies 4
Some of the key features of the Alias Manager are the search strategies built into the
alias-resolution functions. The search strategies are designed to find the original target
of an alias record, even if the target has been moved, renamed, copied, or restored from
backup. Which strategy you use to resolve a particular alias record usually depends on a
number of factors, including whether you are willing to sacrifice time to find as many
potential targets as possible and whether the target is known to be in a particular
volume. This section describes the available search strategies.

You can request either a relative or an absolute search. If you request an absolute search,
you can specify whether the search should be either fast or exhaustive. (A relative search
is always a fast search.) As you can see, there are three general search strategies available
to your application for resolving alias records:

■ relative search (always fast)

■ absolute fast search

■ absolute exhaustive search

The following sections describe these search strategies.

Relative Searches 4

During a relative search, the Alias Manager starts in a specified directory and
searches for the target of an alias record by ascending the file system hierarchy to
a predetermined common parent of the target and the starting directory and then
descending the hierarchy from that common parent.
About the Alias Manager 4-5

C H A P T E R 4

Alias Manager

Suppose, for example, that you are writing a word-processing application that allows the
user to build a customized, supplemental dictionary for each document. You might
create the dictionary as a separate document in the same directory as the document it
serves. In this case, the common parent of the document and the dictionary file (that is,
the lowest-level directory that appears in the pathnames of both) is simply the directory
containing both files.

More generally, you might want to store all document-specific dictionary files in their
own directory, as illustrated in Figure 4-1. Here, the common parent of the document file
“File 2” and its associated dictionary file “Dict 2” is the directory named “Sample.”

Figure 4-1 Resolving a relative path

To resolve an alias record using a relative search, the Alias Manager needs several pieces
of information, which are recorded in the alias record at the time you create it. The Alias
Manager needs a relative path, that is, a path to the target from another file or directory
on the same volume. (Relative paths don’t work across volumes.) To record a relative
path, the Alias Manager saves the distances from the target and the starting file or
directory to their common parent. The Alias Manager can later use those distances in
conjunction with the full pathname to conduct a relative search.

When resolving the alias record by using a relative path, the Alias Manager looks at the
directory at the specified distance above the starting file or directory. The Alias Manager
then constructs a partial pathname by extracting one field of the absolute pathname for
each step from the target to the common parent. In Figure 4-1, the distance is 2, so the
partial pathname is “Dictionary:Dict 2”.

Absolute Searches 4

In contrast to a relative search, an absolute search always begins at the root directory
of the file system hierarchy and always descends the hierarchy. The first step in any
absolute search is to identify the volume on which the target resides. When conducting a
volume search, the Alias Manager considers the volume’s name, its creation date (which
acts almost as a unique identifier for a volume), and its type (for example, a hard disk, a
3.5-inch floppy disk, or an AppleShare volume).

File 1

Sample

Distance to

common

parent = 2

Distance to

common

parent = 2

Common

parent

File 2 File 3 Dict1 Dict 2 Dict 3

Documents Dictionary
4-6 About the Alias Manager

C H A P T E R 4

Alias Manager

4

A
lias M

anager

The Alias Manager first looks for a volume that matches all three criteria: name, creation
date, and type. The search succeeds if the volume is mounted and if its name and
creation date have not changed since the record was created. If the search fails, the Alias
Manager attempts to match by creation date and type only. This step locates volumes
that have been renamed. Finally, the Alias Manager attempts to match by volume name
and type only.

If the target is on an unmounted AppleShare volume, the Alias Manager attempts to
mount the volume. It presents a name and password dialog box if appropriate. If the
target is on an unmounted ejectable volume, the Alias Manager displays a dialog box
prompting the user to insert the volume. Your application can suppress the automatic
mounting, as explained in the description of the MatchAlias function on page 4-20.

Note

Any time that your application needs to resolve a large number of
aliases and the resolution of each alias might require user interaction,
you should ensure that if the user cancels any of the dialog boxes, all
remaining user interaction is canceled as well. ◆

In some circumstances, a relative search identifies the correct target when an absolute
search cannot. For example, suppose the user of your word-processing application
creates a working copy of a document and dictionary by copying the entire folder
Sample to another disk. The user later updates the original document and dictionary
by copying the folder from the working disk. All of the underlying file and directory
identifications change, but the filenames and relative path remain the same. When the
user later runs the spelling checker on the document, a relative-path search finds the
correct target dictionary.

Fast Searches 4

A fast search employs an algorithm designed to find the target of an alias record quickly.
Depending on how you invoke it, the fast-search algorithm starts with either a relative
search or an absolute search. The Alias Manager can perform a relative fast search
whether or not it has identified the target volume, but it cannot perform an absolute fast
search unless the volume has been identified.

During an absolute fast search, the Alias Manager first searches by file ID (if the target
is a file) or directory ID (if the target is a directory). (File IDs and directory IDs are
described in the chapter “File Manager” in this book.) Even if a file has been renamed
or moved on a volume, the Alias Manager can find it quickly through its file ID.

If the search by file ID or directory ID fails, the Alias Manager searches by name in the
original parent directory. This search locates the target if its file or directory ID has
changed but it still exists by the same name in the parent directory (for example, if the
target was restored from a backup). The Alias Manager compares file numbers of files
found by name in the correct parent directory. If the file numbers do not match, the file is
treated as a possible match—that is, it is put on the list of candidates—and the search
continues. If the target is not found by name in the parent directory, the Alias Manager
looks for a file by file number in the parent directory. A file with the same file number
but a different name replaces a file with the same name but a different file number in the
list of matches.
About the Alias Manager 4-7

C H A P T E R 4

Alias Manager

If the search by file ID or directory ID fails and if the Alias Manager cannot find the
original parent directory, it searches for the target by full pathname. This search succeeds
if the target resides in the same location on the volume but the directory ID of its parent
directory has changed (for example, if the entire parent directory was restored from
a backup).

If the search by full pathname fails, the Alias Manager attempts to find the file by tracing
partial pathnames up through all parent directories, using parent directory IDs instead
of directory names. For example, consider this full pathname:

MyDisk:Fruits:Tropical:Ackees

If the search by full pathname fails, Alias Manager first looks for the partial pathname
“:Ackees” in the directory with the ID that the directory “MyDisk:Fruits:Tropical” had
when the alias record was created. If that search fails, it looks for “:Tropical:Ackees” in
the directory with the ID that “MyDisk:Fruits” had, and so on.

If you do not ask for a search by relative path first but do provide a starting point for a
relative search, and if the alias record contains relative path information, the Alias
Manager performs a relative search after the absolute search. The relative search
succeeds if the relative path is the same as when the record was created and if the names
of the target and its intervening parent directories have not changed.

Exhaustive Searches 4

An exhaustive search uses an algorithm that scans an entire volume to look for possible
matches. The Alias Manager typically performs an exhaustive search by calling the File
Manager function PBCatSearch, searching for files or directories with a matching
creation date, creator, and type. (See the chapter “File Manager” in this book for a
description of PBCatSearch.)

The PBCatSearch function is available only on volumes that support the HFS routines
and only on systems running system software version 7.0 and later. When
PBCatSearch is not available, an exhaustive search of the entire volume is performed
by making a series of indexed File Manager calls, searching for objects with matching
creation date, type, creator, or file number.

Using the Alias Manager 4

You use the Alias Manager primarily to create and resolve alias records. You can also use
it to get information about and update alias records.

The Alias Manager creates an alias record in memory and provides you with a handle to
the record. When you no longer need a record in memory, free the memory by calling the
Memory Manager’s DisposeHandle procedure. Whenever possible, you should store
and retrieve alias records as resources of type 'alis'.
4-8 Using the Alias Manager

C H A P T E R 4

Alias Manager

4

A
lias M

anager

Alias Manager functions accept and return file specifications in the form of FSSpec
records, which contain a volume reference number, a parent directory ID, and a
target name. See the chapter “File Manager” in this book for a description of file
identification conventions.

Before calling any of the Alias Manager functions, you should verify that the
Alias Manager is available by calling the Gestalt function with a selector of
gestaltAliasMgrAttr. If Gestalt sets the gestaltAliasMgrPresent
bit in the response parameter, the Alias Manager is present.

For more detailed descriptions of the functions described in this section, see “Alias
Manager Reference” beginning on page 4-13.

Creating Alias Records 4
You create a new alias record by calling one of three functions: NewAlias,
NewAliasMinimal, or NewAliasMinimalFromFullPath. The NewAlias function
creates a complete alias record that can make full use of the alias-resolution algorithms.
The other two functions are streamlined variations designed for circumstances when
speed is more important than robust resolution services. All three functions allocate the
memory for the record, fill it in, and return a handle to it.

The NewAlias function always records the name and the file or directory ID of the
target, its creation date, the parent directory name and ID, and the volume name and
creation date. It also records the full pathname of the target and a collection of other
information. You can have NewAlias store relative path information as well by
supplying a starting point for a relative path (see “Relative Searches” on page 4-5 for a
description of relative paths).

Call NewAlias when you want to create an alias record to store for later use. For
example, suppose you are writing a word-processing application that allows the user to
customize a dictionary for use with a single text file. Your application stores the custom
data in a separate dictionary file in the same directory as the document. As soon as you
create the dictionary file, you can call NewAlias to create an alias record for that file,
including path information relative to the user’s text file. Listing 4-1 shows how to use
NewAlias to create a new alias.

Listing 4-1 Creating an alias record

FUNCTION DoCreateAlias (myDoc, myDict: FSSpec): OSErr;

VAR

myAliasHdl: AliasHandle; {handle to created alias}

myErr: OSErr;

BEGIN

myErr := NewAlias(@myDoc, myDict, myAliasHdl); {create alias record}

IF myAliasHdl <> NIL THEN

myErr := DoSaveAlias(myDoc, myAliasHdl); {save it as a resource}

DoCreateAlias := myErr; {return result code}

END;
Using the Alias Manager 4-9

C H A P T E R 4

Alias Manager

The function DoCreateAlias defined in Listing 4-1 takes two FSSpec records as
parameters. The first specifies the document that is to serve as the starting point for a
relative search, in this case the user’s text file. The second FSSpec record specifies the
target of the alias to be created, in this example the dictionary file. The DoCreateAlias
function calls NewAlias to create the alias record; if successful, it calls the application-
defined function DoSaveAlias to save the alias record as a resource in the document
file’s resource fork. See Listing 4-2 on page 4-12 for a definition of DoSaveAlias.

The two variations on the NewAlias function, NewAliasMinimal and
NewAliasMinimalFromFullPath, record only a minimum of information about
the target. The NewAliasMinimal function records only the target’s name, parent
directory ID, volume name and creation date, and volume mounting information. The
NewAliasMinimalFromFullPath function records only the full pathname of the
target, including the volume name.

Use NewAliasMinimal or NewAliasMinimalFromFullPath when you are willing
to give up robust alias-resolution service in return for speed. The Finder, for example,
stores minimal aliases in the Apple events that tell your application to open or print a
document. Because the alias record is resolved almost immediately, the description is
likely to remain valid, and the shorter record is probably safe.

You can use NewAliasMinimalFromFullPath to create an alias record for a target
that doesn’t exist or that resides on an unmounted volume.

Resolving Alias Records 4
The Alias Manager provides two functions that you can use to resolve alias records:

■ the high-level function ResolveAlias, which performs a fast search and identifies
only one target

■ the low-level function MatchAlias, which can perform a fast search, an exhaustive
search, or both and which can return a list of target candidates

In general, when you want to identify only the single most likely target of an alias
record, you call ResolveAlias. You call MatchAlias when you want your program
to control the search.

Identifying a Single Target 4

To resolve an alias record, you usually call the ResolveAlias function. This function
performs a fast search (described earlier in “Fast Searches” on page 4-7) and exits after it
identifies one target. The ResolveAlias function compares some key information
about the identified target with the information stored in the alias record. If any of the
information is different, ResolveAlias automatically updates the record.

Note

Like all other Alias Manager functions, ResolveAlias updates the
record only in memory. Your application is responsible for updating
alias records stored on disk when appropriate. ◆
4-10 Using the Alias Manager

C H A P T E R 4

Alias Manager

4

A
lias M

anager
In the dictionary example illustrated in Figure 4-1 on page 4-6, the application calls
ResolveAlias with a relative path specification when the user runs the spelling
checker on a document with a customized dictionary. If you provide a relative starting
point, ResolveAlias performs the relative search first.

The ResolveAlias function reports, in the wasChanged parameter, whether it
updated the alias record. After ResolveAlias runs, the value of wasChanged is TRUE
if the record was updated and FALSE if it was not. If you are storing the alias record,
check the value of wasChanged (as well as the function’s result code) to see whether to
update the stored record after resolving an alias.

If ResolveAlias can’t resolve the alias record, it returns a nonzero result code. A result
code of fnfErr signals that ResolveAlias has found the correct volume and parent
directory but not the target file or folder. In this case, ResolveAlias constructs a valid
FSSpec record that describes the target. You can use this record to explore possible
solutions to the resolution failure. You can, for example, pass the FSSpec record to the
File Manager function FSpCreate to create a replacement for a missing file.

Identifying Multiple Targets 4

The MatchAlias function is a low-level routine that gives your application control over
the search algorithms.

You can control

■ whether to attempt an automatic mounting of unmounted volumes

■ whether to search on more than one volume

■ whether to perform a fast search, an exhaustive search, or both

■ what the order of the absolute and relative searches in a fast search should be

■ whether to pursue search strategies that require interaction with the user (such as
asking for a password while mounting an AppleShare volume)

You can also specify a maximum number of candidates that MatchAlias can identify.
For details about controlling a search with the MatchAlias function, see its description
beginning on page 4-20.

You can supply an optional filter function that MatchAlias calls

■ each time it identifies a possible match

■ when three seconds have elapsed without a match

The filter function determines whether each candidate is added to the list of possible
targets. It can also terminate the search. See “Filtering Possible Targets” on page 4-25
for a description of the filter function.

The MatchAlias function returns, in an array of file system specification records, all
candidates that it identifies.
Using the Alias Manager 4-11

C H A P T E R 4

Alias Manager
Maintaining Alias Records 4
You can store alias records as resources of type 'alis'.

CONST

rAliasType = 'alis'; {resource type for saved alias records}

To store and retrieve resources, use the standard Resource Manager functions
(AddResource, GetResource, and GetNamedResource) described in the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox. Listing 4-2 illustrates
one way to save an alias record as a resource in a document file’s resource fork.

Listing 4-2 Storing an alias record as a resource

FUNCTION DoSaveAlias (myDoc: FSSpec; myAliasHdl: AliasHandle): OSErr;

VAR

myErr: OSErr;

myFile: Integer; {file ref number of document's resource fork}

CONST

kID = 129;

kName = 'Dictionary Alias';

BEGIN

myFile := FSpOpenResFile(myDoc, fsCurPerm);

IF myFile = -1 THEN {couldn't open the document's resource fork}

BEGIN

DoSaveAlias := ResError;

exit(DoSaveAlias);

END;

AddResource(Handle(myAliasHdl), rAliasType, kID, kName);

myErr := ResError; {check for errors adding resource}

IF myErr = noErr THEN

BEGIN

WriteResource(Handle(myAliasHdl));

myErr := ResError; {check for errors writing resource}

END;

DoSaveAlias := myErr;

END;

Note that DoSaveAlias assumes that the file specified by the myDoc parameter already
has a resource fork and that the file is not yet open. Your application might have
different requirements.

To update an alias record, use the UpdateAlias function. You typically call
UpdateAlias any time you know that the target of an alias record has been renamed
or otherwise changed. You are most likely to call UpdateAlias after a call to the
4-12 Using the Alias Manager

C H A P T E R 4

Alias Manager

4

A
lias M

anager
MatchAlias function. If MatchAlias identifies a single target, it sets a flag telling
you whether or not the key information about the target file matches the information in
the alias record. It is the responsibility of your application to update the record.

The ResolveAlias function automatically updates an alias record if any of the key
information about the identified target does not match the information in the record.

Getting Information From Alias Records 4
To retrieve information from an alias record without actually resolving the record, call
the GetAliasInfo function. You can use GetAliasInfo to retrieve the name of the
target, the names of the target’s parent directories, the name of the target’s volume, or, in
the case of an AppleShare volume, its zone or server name.

The information returned by GetAliasInfo might be stale. GetAliasInfo reads the
information stored in the alias record, which might have changed since the creation of
the record. Because it doesn’t resolve the alias record, GetAliasInfo is most useful for
providing information quickly.

Customizing Alias Records 4
An alias record contains two kinds of information: public information available to your
application and private information available only to the Alias Manager. Your
application can use the first field, userType, to store its own signature or any other data
that fits into 4 bytes. Your application can use the second field, aliasSize, to customize
the alias record for storing additional data.

The Alias Manager stores, in the aliasSize field, the size of the record at the time it is
created or updated. To customize an alias record, you first use the Memory Manager’s
SetHandleSize procedure to increase the size of the record. You can then find the
starting address of your own data in the record by adding the record’s starting address
to the length recorded in the aliasSize field. If you use the Memory Manager to
expand the record, the Alias Manager preserves your data, even if it changes the size of
its own data when updating the record.

Note

In general, you should customize only alias records that you
have created. ◆

Alias Manager Reference 4

This section describes the routines provided by the Alias Manager and the
AliasRecord data structure you must pass when calling those routines.
Alias Manager Reference 4-13

C H A P T E R 4

Alias Manager
Data Structures 4
The Alias Manager uses alias records to store information that allows it to locate an
object in the file system.

Alias Records 4

Alias records are defined by the AliasRecord data type.

TYPE AliasRecord =

RECORD

userType: OSType; {application's signature}

aliasSize: Integer; {size of record when created}

{variable-length private data}

END;

Field descriptions

userType A 4-byte field that can contain application-specific data. When an
alias record is created, this field contains 0. Your application can use
this field for its own purposes. Typically you should store your
application’s signature here.

aliasSize The size, in bytes, assigned to the alias record at the time of its
creation or updating. This is the total size of the record, including
the userType and aliasSize fields, as well as the variable-length
data that is private to the Alias Manager.

Following these two fields is a variable-length block of data maintained privately by the
Alias Manager.

Alias Manager Routines 4

This section describes the routines you use to create, update, resolve, and read alias
records. Alias Manager routines use file system specification records (defined by the
FSSpec data type) to identify files, directories, and volumes. To create an FSSpec
record, call the function FSMakeFSSpec, described in the chapter “File Manager” in
this book.

The Alias Manager routines can return the result codes listed in this section or any other
applicable file system or memory management result codes.

Creating and Updating Alias Records 4

You can use the functions NewAlias, NewAliasMinimal,
NewAliasMinimalFromFullPath, and UpdateAlias to create and
update alias records.
4-14 Alias Manager Reference

C H A P T E R 4

Alias Manager

4

A
lias M

anager
NewAlias 4

You use the NewAlias function to create a complete alias record.

FUNCTION NewAlias (fromFile: FSSpecPtr; target: FSSpec;

 VAR alias: AliasHandle): OSErr;

fromFile The starting point for a relative path, to be used later in a relative search.
If you do not need relative path information in the record, pass a
fromFile value of NIL. If you want NewAlias to record relative path
information, pass a pointer to a valid FSSpec record in this parameter.
The two files or directories, fromFile and target, must reside on the
same volume.

target An FSSpec record for the target of the alias record.

alias A handle to the newly created alias record. If the function fails to create
an alias record, it sets alias to NIL.

DESCRIPTION

The NewAlias function creates an alias record that describes the specified target. It
allocates the storage, fills in the record, and puts a record handle to that storage in the
alias parameter. NewAlias always records the name and file or directory ID of the
target, its creation date, the parent directory name and ID, and the volume name and
creation date. It also records the full pathname of the target and a collection of other
information relevant to locating the target, verifying the target, and mounting the
target’s volume, if necessary. You can have NewAlias store relative path information as
well by supplying a starting point for a relative path (see “Relative Searches” on page 4-5
for a description of relative paths).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for NewAlias are

RESULT CODE

Trap macro Selector

_AliasDispatch $0002

noErr 0 No error
Alias Manager Reference 4-15

C H A P T E R 4

Alias Manager
NewAliasMinimal 4

You use the NewAliasMinimal function to create a short alias record quickly.

FUNCTION NewAliasMinimal (target: FSSpec;

VAR alias: AliasHandle): OSErr;

target An FSSpec record for the target of the alias record.

alias A handle to the newly created alias record. If the function fails to create
an alias record, it sets alias to NIL.

DESCRIPTION

The NewAliasMinimal function creates an alias record that contains only the minimum
information necessary to describe the target: the target name, the parent directory ID, the
volume name and creation date, and the volume mounting information. The
NewAliasMinimal function uses the standard alias record data structure, but it fills in
only parts of the record.

Note

The ResolveAlias function, described on page 4-19, never updates a
minimal alias record. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for NewAliasMinimal are

RESULT CODES

Trap macro Selector

_AliasDispatch $0008

noErr 0 No error
paramErr –50 The value of target or alias parameter, or of both, is

NIL, or the alias record is corrupt
4-16 Alias Manager Reference

C H A P T E R 4

Alias Manager

4

A
lias M

anager
NewAliasMinimalFromFullPath 4

You use the function NewAliasMinimalFromFullPath to quickly create an alias
record that contains only the full pathname of the target.

FUNCTION NewAliasMinimalFromFullPath

(fullPathLength: Integer; fullPath: Ptr;

zoneName: Str32; serverName: Str31;

VAR alias: AliasHandle): OSErr;

fullPathLength
The number of characters in the full pathname of the target.

fullPath A pointer to a buffer that contains the full pathname of the target. The full
pathname starts with the name of the volume, includes all of the directory
names in the path to the target, and ends with the target name. (For a
description of pathnames, see the chapter “File Manager” in this book.)

zoneName The AppleTalk zone name of the AppleShare volume on which the target
resides. Set this parameter to a null string if you do not need it.

serverName The AppleTalk server name of the AppleShare volume on which the
target resides. Set this parameter to a null string if you do not need it.

alias A handle to the newly created alias record. If the function fails to create
an alias record, it sets alias to NIL.

DESCRIPTION

The NewAliasMinimalFromFullPath function creates an alias record that identifies
the target by full pathname. You can call NewAliasMinimalFromFullPath to create
an alias record for a file that doesn’t exist or that resides on an unmounted volume.

The NewAliasMinimalFromFullPath function uses the standard alias record data
structure, but it fills in only the information provided in the input parameters. You can
therefore use NewAliasMinimalFromFullPath to create alias records for targets on
unmounted volumes.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for NewAliasMinimalFromFullPath are

RESULT CODES

Trap macro Selector

_AliasDispatch $0009

noErr 0 No error
paramErr –50 Parameter error
Alias Manager Reference 4-17

C H A P T E R 4

Alias Manager
UpdateAlias 4

You use the UpdateAlias function to update an alias record.

FUNCTION UpdateAlias (fromFile: FSSpecPtr; target: FSSpec;

alias: AliasHandle;

VAR wasChanged: Boolean): OSErr;

fromFile The starting point for a relative path, to be used later in a relative
search. If you do not need relative path information in the record, pass
a fromFile value of NIL. If you want UpdateAlias to record
relative path information, pass a pointer to a valid FSSpec record
in this parameter.

target The target of the alias record. This parameter must be a valid
FSSpec record.

alias A handle to the alias record to be updated.

wasChanged A Boolean value indicating whether the newly constructed alias record is
exactly the same as the old one. If the new record is the same as the old
one, UpdateAlias sets the wasChanged parameter to FALSE.
Otherwise, it sets it to TRUE. Check this parameter to determine whether
you need to save an updated record.

DESCRIPTION

The UpdateAlias function updates the alias record pointed to by the alias parameter
so that it describes the target specified by the target parameter. The UpdateAlias
function rebuilds the entire alias record and fills it in as the NewAlias function would.

The UpdateAlias function always creates a complete alias record. When you use
UpdateAlias to update a minimal alias record, you convert the minimal record to a
complete record.

SPECIAL CONSIDERATIONS

The two files or directories, fromFile and target, must reside on the same volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for UpdateAlias are

RESULT CODES

Trap macro Selector

_AliasDispatch $0006

noErr 0 No error
paramErr –50 The value of the target or alias parameter, or both,

is NIL, or the alias record is corrupt
4-18 Alias Manager Reference

C H A P T E R 4

Alias Manager

4

A
lias M

anager
Resolving and Reading Alias Records 4

You can use the functions ResolveAlias and MatchAlias to resolve or find possible
targets of an alias record. You can use the function GetAliasInfo to get information
about the target of an alias without actually resolving the alias.

ResolveAlias 4

You use the ResolveAlias function to identify the single most likely target of an
alias record.

FUNCTION ResolveAlias (fromFile: FSSpecPtr; alias: AliasHandle;

VAR target: FSSpec;

VAR wasChanged: Boolean): OSErr;

fromFile The starting point for a relative search. If you pass a fromFile parameter
of NIL, ResolveAlias performs only an absolute search. If you pass
a pointer to a valid FSSpec record in the fromFile parameter,
ResolveAlias performs a relative search for the target, followed by
an absolute search only if the relative search fails. If you want to perform
an absolute search followed by a relative search, you must use the
MatchAlias function.

alias A handle to the alias record to be resolved and, if necessary, updated.

target The target of the alias record. This parameter must be a valid
FSSpec record.

wasChanged A Boolean value indicating whether the alias record to be resolved was
updated because it contained some outdated information about the target.

DESCRIPTION

The ResolveAlias function performs a fast search for the target of the alias, as
described in “Fast Searches” on page 4-7. If the resolution is successful, ResolveAlias
returns (in the target parameter) the FSSpec record for the target file system object,
updates the alias record if necessary, and reports (through the wasChanged parameter)
whether the record was updated. If the target is on an unmounted AppleShare volume,
ResolveAlias automatically mounts the volume. If the target is on an unmounted
ejectable volume, ResolveAlias asks the user to insert the volume. The
ResolveAlias function exits after it finds one acceptable target.

After it identifies a target, ResolveAlias compares some key information about the
target with the information in the alias record. (The description of the MatchAlias
function, beginning on page 4-20, lists the key information.) If the information differs,
ResolveAlias updates the record to match the target. If it updates the alias
record, ResolveAlias sets the wasChanged parameter to TRUE. Otherwise, it sets
it to FALSE. (ResolveAlias never updates a minimal alias, so it never sets
wasChanged to TRUE when resolving a minimal alias.)
Alias Manager Reference 4-19

C H A P T E R 4

Alias Manager
When it finds the specified volume and parent directory but fails to find the target file or
directory in that location, ResolveAlias returns a result code of fnfErr and fills in
the target parameter with a complete FSSpec record describing the target (that is, the
volume reference number, parent directory ID, and filename or folder name). The
FSSpec record is valid, although the object it describes does not exist. This information
is intended as a “hint” that lets you explore possible solutions to the resolution failure.
You can, for example, pass the FSSpec record to the File Manager function FSpCreate
to create a replacement for a missing file.

The ResolveAlias function displays the standard dialog boxes when it needs input
from the user, such as a name and password for mounting a remote volume. The user
can cancel the resolution through these dialog boxes.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for ResolveAlias are

RESULT CODES

MatchAlias 4

You use the MatchAlias function to identify a list of possible matches and pass the list
through an optional selection filter. The filter can return more than one possible match.

FUNCTION MatchAlias (fromFile: FSSpecPtr; rulesMask: LongInt;

alias: AliasHandle; VAR aliasCount: Integer;

aliasList: FSSpecArrayPtr;

VAR needsUpdate: Boolean;

aliasFilter: AliasFilterProcPtr;

yourDataPtr: UNIV Ptr): OSErr;

fromFile The starting point for a relative search. If you do not want MatchAlias
to perform a relative search, set fromFile to NIL. If you want
MatchAlias to perform a relative search, pass a pointer to a file system
specification record that describes the starting point for the search.

rulesMask A set of rules to guide the resolution. Pass the sum of all of the rules you
want to invoke.

Trap macro Selector

_AliasDispatch $0003

noErr 0 No error
nsvErr –35 The volume is not mounted
fnfErr –43 Target not found, but volume and parent directory found
paramErr –50 The value of the target or alias parameter, or both, is

NIL, or the alias record is corrupt
dirNFErr –120 Parent directory not found
usrCanceledErr –128 The user canceled the operation
4-20 Alias Manager Reference

C H A P T E R 4

Alias Manager

4

A
lias M

anager
alias A handle to the alias record to be resolved.

aliasCount On input, the maximum number of possible matches to return. On output,
the actual number of matches returned.

aliasList A pointer to the array that holds the results of the search.

needsUpdate
A Boolean flag that indicates whether the alias record to be resolved needs
to be updated.

aliasFilter
An application-defined filter function.

yourDataPtr
A pointer to data to be passed to the filter function.

DESCRIPTION

The MatchAlias function resolves the alias record specified by the alias parameter,
following the rules specified by the rulesMask parameter. Then it returns, in the
structure specified by the aliasList parameter, a list of possible candidates. The
MatchAlias function places, in the aliasCount parameter, the number of
candidates identified.

You specify the matching criteria by passing a sum of these constants in the
rulesMask parameter.

CONST

kARMMountVol = $00000001;{mount volume automatically}

kARMNoUI = $00000002;{suppress user interface}

kARMMultVols = $00000008;{search on multiple volumes}

kARMSearch = $00000100;{do a fast search}

kARMSearchMore = $00000200;{do an exhaustive search}

kARMSearchRelFirst = $00000400;{do a relative search first}

Constant descriptions

kARMMountVol Automatically try to mount the target’s volume if it is not
mounted.

kARMNoUI Stop if a search requires user interaction, such as a password dialog
box when mounting a remote volume. If user interaction is needed
and kARMNoUI is in effect, the search fails.

kARMMultVols Search all mounted volumes. The search begins with the volume on
which the target resided when the record was created. When you
specify a fast search of all mounted volumes, MatchAlias performs
a formal fast search only on the volume described in the alias record.
On all other volumes it looks for the target by ID or by name in the
directory with the specified parent directory ID. When you specify
an exhaustive search of multiple volumes, MatchAlias performs
the same search on all volumes. When resolving an alias record
created by NewAliasMinimalFromFullPath, MatchAlias
ignores this flag.
Alias Manager Reference 4-21

C H A P T E R 4

Alias Manager
kARMSearch Perform a fast search for the alias target. If kARMSearchRelFirst
is not set, perform an absolute search first, followed by a relative
search only if the value of the fromFile parameter is not NIL and
the list of matches is not full.

kARMSearchMore Perform an exhaustive search for the alias target. On HFS volumes,
the exhaustive search uses the File Manager function PBCatSearch
to identify candidates with matching creation date, type, and creator.
The PBCatSearch function is available only on HFS volumes and
only on systems running version 7.0 or later. On MFS volumes or
HFS volumes that do not support PBCatSearch, the exhaustive
search makes a series of indexed calls to File Manager functions,
using the same search criteria. If you set kARMSearchMore and
either or both of kARMSearch and kARMSearchRelFirst,
MatchAlias performs the fast search first.

kARMSearchRelFirst
If kARMSearch is also set, perform a relative search before the
absolute search. (If kARMSearch is also set and the target is found
through the absolute search, MatchAlias sets the needsUpdate
flag to TRUE.) If neither kARMSearch nor kARMSearchMore is set,
perform only a relative search. If kARMSearch is not set but
kARMSearchMore is set, perform a relative search followed by an
exhaustive search.

You must specify at least one of the last three parameters: kARMSearch,
kARMSearchMore, and kARMSearchRelFirst.

Your application can specify a maximum number of possible matches by setting the
aliasCount parameter. MatchAlias changes the aliasCount parameter to the
actual number of candidates identified. If MatchAlias finds the parent directory on the
correct volume but does not find the target, it sets the aliasCount parameter to 1, puts
the file system specification record for the target in the results list, and returns fnfErr.
The FSSpec record is valid, although the object it describes does not exist. This
information is intended as a “hint” that lets you explore possible solutions to the
resolution failure. You can, for example, use the FSSpec record and the File Manager
function FSpCreate to create a replacement for a missing file.

The needsUpdate flag is a signal to your application that the record might need to be
updated. After it identifies a target, MatchAlias compares some key information about
the target with the same information in the record. If the information does not match,
MatchAlias sets the needsUpdate flag to TRUE. The key information is

■ the name of the target

■ the directory ID of the target’s parent

■ the file ID or directory ID of the target

■ the name and creation date of the volume on which the target resides

The MatchAlias function also sets the needsUpdate flag to TRUE if it identifies a list of
possible matches rather than a single match or if kARMsearchRelFirst is set but the
target is identified through either an absolute search or an exhaustive search. Otherwise,
the MatchAlias function sets the needsUpdate flag to FALSE. MatchAlias always
4-22 Alias Manager Reference

C H A P T E R 4

Alias Manager

4

A
lias M

anager
sets the needsUpdate flag to FALSE when resolving an alias created by
NewAliasMinimal. If you want to update the alias record to reflect the final
results of the resolution, call UpdateAlias.

The aliasFilter parameter points to a filter function supplied by your application.
The Alias Manager executes this function each time it identifies a possible match and
after the search has continued for three seconds without a match. Your filter function
returns a Boolean value that determines whether the possible match is discarded (TRUE)
or added to the list of possible targets (FALSE). It can also terminate the search by setting
the variable parameter quitFlag. See “Filtering Possible Targets” on page 4-25 for a
description of the filter function.

The yourDataPtr parameter can point to any data that your application might need in
the filter function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for MatchAlias are

RESULT CODES

GetAliasInfo 4

You use the GetAliasInfo function to get information from an alias record without
actually resolving the record.

FUNCTION GetAliasInfo (alias: AliasHandle; index: AliasInfoType;

VAR theString: Str63): OSErr;

alias A handle to the alias record to be read.

index The kind of information to be retrieved.

theString A string that holds the requested information.

DESCRIPTION

The GetAliasInfo function retrieves the information specified by the index
parameter from the record pointed to by the alias parameter and places that
information in the parameter theString.

Trap macro Selector

_AliasDispatch $0005

noErr 0 No error
nsvErr –35 The volume is not mounted
fnfErr –43 Target not found, but volume and parent directory found
paramErr –50 The value of the target or alias parameter, or both, is

NIL, or the alias record is corrupt
usrCanceledErr –128 The user canceled the operation
Alias Manager Reference 4-23

C H A P T E R 4

Alias Manager
The index parameter specifies the kind of information to be retrieved. If the value of
index is a positive integer, GetAliasInfo retrieves the parent directory that has the
same hierarchical level above the target as the index parameter (for example, an index
value of 2 returns the name of the parent directory of the target’s parent directory). You
can therefore assemble the names of the target and all of its parent directories by making
repeated calls to GetAliasInfo with incrementing index values, starting with a value
of 0. When the value of index is greater than the number of levels between the target
and the root, GetAliasInfo returns an empty string. You can also set the index
parameter to one of the following five values:

CONST

asiZoneName = –3; {get zone name}

asiServerName = –2; {get server name}

asiVolumeName = –1; {get volume name}

asiAliasName = 0; {get target name}

asiParentName = 1; {get parent directory name}

Constant descriptions

asiZoneName If the record represents a target on an AppleShare volume, retrieve
the server’s zone name. Otherwise, return an empty string.

asiServerName If the record represents a target on an AppleShare volume, retrieve
the server name. Otherwise, return an empty string.

asiVolumeName Return the name of the volume on which the target resides.
asiAliasName Return the name of the target.
asiParentName Return the name of the parent directory of the target of the record. If

the target is a volume, return the volume name.

The GetAliasInfo function returns the information stored in the alias record, which
might not be current. To ensure that the information is current, you can resolve and
update the alias record before calling GetAliasInfo.

Note

The GetAliasInfo function cannot provide all kinds of information
about a minimal alias. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for GetAliasInfo are

RESULT CODES

Trap macro Selector

_AliasDispatch $0007

noErr 0 No error
paramErr –50 The value of alias or theString parameter, or both,

is NIL; the value of index is less than the value of
asiZoneName; or the alias record is corrupt
4-24 Alias Manager Reference

C H A P T E R 4

Alias Manager

4

A
lias M

anager
Application-Defined Routines 4
The Alias Manager supports a single application-defined routine, a function for filtering
out possible targets of an alias record.

Filtering Possible Targets 4

You can write your own filter function to examine possible targets identified by the
MatchAlias function. The MatchAlias function calls your filter function each time it
identifies a possible match or when three seconds have elapsed without a match.

MyMatchAliasFilter 4

You can pass the address of an alias-matching filter function to the MatchAlias
function.

FUNCTION MyMatchAliasFilter (cpbPtr: CInfoPBPtr;

VAR quitFlag: Boolean;

myDataPtr: Ptr): Boolean;

cpbPtr A pointer to a catalog information parameter block.

quitFlag On exit, set this to TRUE if you want to terminate the search.

myDataPtr A pointer to custom data.

DESCRIPTION

Your application-defined filter function is called by MatchAlias to filter out possible
matches. When your function is called, the cpbPtr parameter points to the catalog
information parameter block of the possible match (returned by the File Manager
function PBGetCatInfo). The MatchAlias function sets this parameter to NIL if it
is calling your function to give it the periodic chance to terminate the search. (Do not
use this pointer without checking for NIL.) If you want to terminate the search, set the
quitFlag parameter to TRUE.

The myDataPtr parameter points to any customized data that your application passed
when it called MatchAlias. This parameter allows your filter function to access any
data that your application has set up on its own.

Your function should return TRUE to indicate that the possible match is to be discarded,
or FALSE to indicate that the possible match is to be added to the list of possible targets.
Alias Manager Reference 4-25

C H A P T E R 4

Alias Manager
Summary of the Alias Manager 4

Pascal Summary 4

Constants 4

CONST

{Gestalt constants}

gestaltAliasMgrAttr = 'alis'; {Alias Mgr attributes selector}

gestaltAliasMgrPresent = 0; {Alias Mgr is present}

{resource type for saved alias records}

rAliasType = 'alis';

{masks for alias resolution action rules used by MatchAlias}

kARMMountVol = $00000001; {mount volume automatically}

kARMNoUI = $00000002; {suppress user interface}

kARMMultVols = $00000008; {search on multiple volumes}

kARMSearch = $00000100; {do a fast search}

kARMSearchMore = $00000200; {do an exhaustive search}

kARMSearchRelFirst = $00000400; {do a relative search first}

{index values for GetAliasInfo}

asiZoneName = –3; {get zone name}

asiServerName = –2; {get server name}

asiVolumeName = –1; {get volume name}

asiAliasName = 0; {get target name}

asiParentName = 1; {get parent directory name}

Data Types 4

TYPE AliasRecord = {alias record}

RECORD

userType: OSType; {application's signature}

aliasSize: Integer; {size of record when created}

{variable-length private data}

END;
4-26 Summary of the Alias Manager

C H A P T E R 4

Alias Manager

4

A
lias M

anager
AliasPtr = ^AliasRecord;

AliasHandle = ^AliasPtr;

AliasInfoType = Integer; {alias record information type}

AliasFilterProcPtr = ProcPtr; {application-defined routine}

Alias Manager Routines 4

Creating and Updating Alias Records

FUNCTION NewAlias (fromFile: FSSpecPtr; target: FSSpec;
VAR alias: AliasHandle): OSErr;

FUNCTION NewAliasMinimal (target: FSSpec;
VAR alias: AliasHandle): OSErr;

FUNCTION NewAliasMinimalFromFullPath

(fullPathLength: Integer; fullPath: Ptr;
zoneName: Str32; serverName: Str31;
VAR alias: AliasHandle): OSErr;

FUNCTION UpdateAlias (fromFile: FSSpecPtr; target: FSSpec;
alias: AliasHandle;
VAR wasChanged: Boolean): OSErr;

Resolving and Reading Alias Records

FUNCTION ResolveAlias (fromFile: FSSpecPtr; alias: AliasHandle;
VAR target: FSSpec;
VAR wasChanged: Boolean): OSErr;

FUNCTION MatchAlias (fromFile: FSSpecPtr; rulesMask: LongInt;
alias: AliasHandle; VAR aliasCount: Integer;
aliasList: FSSpecArrayPtr;
VAR needsUpdate: Boolean;
aliasFilter: AliasFilterProcPtr;
yourDataPtr: UNIV Ptr): OSErr;

FUNCTION GetAliasInfo (alias: AliasHandle; index: AliasInfoType;
VAR theString: Str63): OSErr;

Application-Defined Routine 4

FUNCTION MyMatchAliasFilter (cpbPtr: CInfoPBPtr; VAR quitFlag: Boolean;
myDataPtr: Ptr): Boolean;
Summary of the Alias Manager 4-27

C H A P T E R 4

Alias Manager
C Summary 4

Constants 4

/*Gestalt constants*/

#define gestaltAliasMgrAttr 'alis' /*Alias Mgr attributes selector*/

#define gestaltAliasMgrPresent 0 /*Alias Mgr is present*/

/*resource type for saved alias records*/

#define rAliasType 'alis'

/*masks for alias resolution action rules used by MatchAlias*/

enum {kARMMountVol = 0x00000001}; /*mount volume automatically*/

enum {kARMNoUI = 0x00000002}; /*suppress user interface*/

enum {kARMMultVols = 0x00000008}; /*search on multiple volumes*/

enum {kARMSearch = 0x00000100}; /*do a fast search*/

enum {kARMSearchMore = 0x00000200}; /*do an exhaustive search*/

enum {kARMSearchRelFirt = 0x00000400}; /*do a relative search first*/

/*index values for GetAliasInfo*/

enum {asiZoneName = –3}; /*get zone name*/

enum {asiServerName = –2}; /*get server name*/

enum {asiVolumeName = –1}; /*get volume name*/

enum {asiAliasName = 0}; /*get target name*/

enum {asiParentName = 1}; /*get parent directory name*/

Data Types 4

typedef struct { /*alias record*/

OSType userType; /*application's signature*/

unsigned short aliasSize; /*size of record when created*/

} AliasRecord;

typedef AliasRecord *AliasPtr;

typedef AliasRecord **AliasHandle;

typedef short AliasInfoType; /*alias record information type*/

typedef pascal Boolean (*AliasFilterProcPtr)(CInfoPBPtr cpbPtr,

Boolean *quitFlag, Ptr yourDataPtr);
4-28 Summary of the Alias Manager

C H A P T E R 4

Alias Manager

4

A
lias M

anager
Alias Manager Routines 4

Creating and Updating Alias Records

pascal OSErr NewAlias (const FSSpec *fromFile, const FSSpec *target,
AliasHandle *alias);

pascal OSErr NewAliasMinimal (const FSSpec *target, AliasHandle *alias);

pascal OSErr NewAliasMinimalFromFullPath

(short fullPathLength,
const unsigned char *fullpath,
const Str32 zoneName, const Str31 serverName,
AliasHandle *alias);

pascal OSErr UpdateAlias (const FSSpec *fromFile, const FSSpec *target,
AliasHandle alias, Boolean *wasChanged);

Resolving and Reading Alias Records

pascal OSErr ResolveAlias (const FSSpec *fromFile, AliasHandle alias,
FSSpec *target, Boolean *wasChanged);

pascal OSErr MatchAlias (const FSSpec *fromFile,
unsigned long rulesMask,
const AliasHandle alias, short *aliasCount,
FSSpecPtr aliasList, Boolean *needsUpdate,
AliasFilterProcPtr aliasFilter,
Ptr yourDataPtr);

pascal OSErr GetAliasInfo (const AliasHandle alias, AliasInfoType index,
Str63 theString);

Application-Defined Routine 4

pascal Boolean MyMatchAliasFilter

(CInfoPBPtr cpbPtr, Boolean *quitFlag,
Ptr myDataPtr);

Assembly-Language Summary 4

Data Structure 4

Alias Record Data Structure

0 userType long file type of target file
4 aliasSize word size, in bytes, of record
Summary of the Alias Manager 4-29

C H A P T E R 4

Alias Manager
Trap Macros 4

Trap Macro Requiring Routine Selectors

_AliasDispatch

Result Codes 4

Selector Routine

$0002 NewAlias

$0003 ResolveAlias

$0005 MatchAlias

$0006 UpdateAlias

$0007 GetAliasInfo

$0008 NewAliasMinimal

$0009 NewAliasMinimalFromFullPath

$000C ResolveAliasFile

noErr 0 No error
nsvErr –35 The volume is not mounted
fnfErr –43 Target not found, but volume and parent directory found
paramErr –50 Parameter error
dirNFErr –120 Parent directory not found
usrCanceledErr –128 The user canceled the operation
4-30 Summary of the Alias Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to File Management TOC
	 Introduction to File Management
	 File Manager TOC
	 File Manager
	 Standard File Package TOC
	 Standard File Package
	 Alias Manager TOC
	Alias Manager
	About the Alias Manager
	Alias Records
	Search Strategies
	Relative Searches
	Absolute Searches
	Fast Searches
	Exhaustive Searches

	Using the Alias Manager
	Creating Alias Records
	Resolving Alias Records
	Identifying a Single Target
	Identifying Multiple Targets

	Maintaining Alias Records
	Getting Information From Alias Records
	Customizing Alias Records

	Alias Manager Reference
	Data Structures
	Alias Records

	Alias Manager Routines
	Creating and Updating Alias Records
	Resolving and Reading Alias Records

	Application-Defined Routines
	Filtering Possible Targets

	Summary of the Alias Manager
	Pascal Summary
	Constants
	Data Types
	Alias Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Alias Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Data Structure
	Trap Macros

	Result Codes

	 Disk Initialization Manager TOC
	 Disk Initialization Manager
	 Glossary
	 Index
	 Colophon

