

C H A P T E R 1

1

Introduction to F
ile M

anagem
ent

Introduction to File Management 1

This chapter is a general introduction to file management on Macintosh computers. It
explains the basic structure of Macintosh files and the hierarchical file system (HFS) used
with Macintosh computers, and it shows how you can use the services provided by the
Standard File Package, the File Manager, the Finder, and other system software
components to create, open, update, and close files.

You should read this chapter if your application implements the commands typically
found in an application’s File menu—except for printing commands and the Quit
command, which are described elsewhere. This chapter describes how to

■ create a new file

■ open an existing file

■ close a file

■ save a document’s data in a file

■ save a document’s data in a file under a new name

■ revert to the last saved version of a file

■ create and read a preferences file

Depending on the requirements of your application, you may be able to accomplish all
your file-related operations by following the instructions given in this chapter. If your
application has more specialized file management needs, you’ll need to read some or all
of the remaining chapters in this book.

This chapter assumes that your application is running in an environment in which the
routines that accept file system specification records (defined by the FSSpec data type)
are available. File system specification records, introduced in system software version 7.0,
simplify the identification of objects in the file system. Your development environment
may provide “glue” that allows you to call those routines in earlier system software
versions. If such glue is not available and you want your application to run in system
software versions earlier than version 7.0, you need to read the discussion of HFS
file-manipulation routines in the chapter “File Manager” in this book.

This chapter begins with a description of files and their organization into directories and
volumes. Then it describes how to test for the presence of the routines that accept FSSpec
records and how to use those routines to perform the file management tasks listed above.
The chapter ends with descriptions of the data structures and routines used to perform
these tasks. The “File Management Reference” and “Summary of File Management”
sections in this chapter are subsets of the corresponding sections of the remaining
chapters in this book.
1-3

C H A P T E R 1

Introduction to File Management

About Files 1

To the user, a file is simply some data stored on a disk. To your application, a file is a
named, ordered sequence of bytes stored on a Macintosh volume, divided into two forks
(as described in the following section, “File Forks”). The information in a file can be used
for any of a variety of purposes. For example, a file might contain the text of a letter or
the numerical data in a spreadsheet; these types of files are usually known as documents.
Typically a document is a file that a user can create and edit. A document is usually
associated with a single application, which the user expects to be able to open by
double-clicking the document’s icon in the Finder.

A file might also contain an application. In that case, the information in the file consists
of the executable code of the application itself and any application-specific resources and
data. Applications typically allow the user to create and manipulate documents. Some
applications also create special files in which they store user-specific settings; such files
are known as preferences files.

The Macintosh Operating System also uses files for other purposes. For example, the File
Manager uses a special file located in a volume to maintain the hierarchical organization
of files and folders in that volume. This special file is called the volume’s catalog file.
Similarly, if virtual memory is in operation, the Operating System stores unused pages of
memory in a disk file called the backing-store file.

No matter what its function, each file shares certain characteristics with every other file.
This section describes these general characteristics of Macintosh files, including

■ file forks

■ file size and access characteristics

■ file system organization

■ file naming and identification

File Forks 1
Many operating systems treat a file simply as a named, ordered sequence of bytes
(possibly terminated by a byte having a special value that indicates the end-of-file). As
illustrated in Figure 1-1, however, each Macintosh file has two forks, known as the data
fork and the resource fork.

A file’s resource fork contains that file’s resources. If the file is an application, the
resource fork typically contains resources that describe the application’s menus, dialog
boxes, icons, and even the executable code of the application itself. A particularly
important resource is the application’s 'SIZE' resource, which contains information
about the capabilities of the application and its run-time memory requirements. If the file
is a document, its resource fork typically contains preference settings, window locations,
and document-specific fonts, icons, and so forth.
1-4 About Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent

Figure 1-1 The two forks of a Macintosh file

A file’s data fork contains the file’s data. It is simply a series of consecutive bytes of data.
In a sense, the data fork of a Macintosh file corresponds to an entire file in operating
systems that treat a file simply as a sequence of bytes. The bytes stored in a file’s data
fork do not have to exhibit any internal structure, unlike the bytes stored in the resource
fork (which consists of a resource map followed by resources). Rather, your application
is responsible for interpreting the bytes in the data fork in whatever manner is appropri-
ate. The data fork of a document file might, for example, contain the text of a letter.

Even though a Macintosh file always contains both a resource fork and a data fork, one
or both of those forks can be empty. Document files sometimes contain only data (in
which case the resource fork is empty). More often, document files contain both
resources and data. Application files generally contain resources only (in which case, the
data fork is empty). Application files can, however, contain data as well.

Whether you store specific data in the data fork or in the resource fork of a file depends
largely on whether that data can usefully be structured as a resource. For example, if you
want to store a small number of names and telephone numbers, you can easily define a
resource type that pairs each name with its telephone number. Then you can read names
and corresponding numbers from the resource file by using Resource Manager routines.
To retrieve the data stored in a resource, you simply specify the resource type and ID;
you don’t need to know, for instance, how many bytes of data are stored in that resource.

In some cases, however, it is not possible or advisable to store your data in resources.
The data might be too difficult to put into the structure required by the Resource
Manager. For example, it is easiest to store a document’s text, which is usually of
variable length, in a file’s data fork. Then you can use File Manager routines to access
any byte or group of bytes individually.

Data
 Resources

Data fork
 Resource fork

Resource map

About Files 1-5

C H A P T E R 1

Introduction to File Management

Even when it is easy to define a resource type for your data, limitations on the Resource
Manager might compel you to store your data in the data fork instead. A resource fork
can contain at most about 2700 resources. More importantly, the Resource Manager
searches linearly through a file’s resource types and resource IDs. If the number of types
or IDs to be searched is large, accessing the resource data can become slow. As a rule of
thumb, if you need to manage data that would occupy more than about 500 resources
total, you should use the data fork instead.

IMPORTANT

In general, you should store data created by the user in a file’s data fork,
unless the data is guaranteed to occupy a small number of resources.
The Resource Manager was not designed to be a general-purpose data
storage and retrieval system. Also, the Resource Manager does not
support multiple access to a file’s resource fork. If you want to store data
that can be accessed by multiple users of a shared volume, use the
data fork. ▲

Because the Resource Manager is of limited use in storing large amounts of
user-generated data, most of the techniques in “Using Files” (beginning on page 1-12)
illustrate the use of File Manager routines to manage information stored in a file’s data
fork. See the section “Using a Preferences File” on page 1-36 for an example of the use of
the Resource Manager to access data stored in a file’s resource fork.

File Size 1
The size of a file is usually limited only by the size of its volume. A volume is a portion
of a storage device that is formatted to contain files. A volume can be an entire disk or
only a part of a disk. A 3.5-inch floppy disk, for instance, is always formatted as one
volume. Other memory devices, such as hard disks and file servers, can contain multiple
volumes.

Note

Actually, a file on an HFS volume can be as large as 2 GB ($7FFFFFFF
bytes). Most volumes are not large enough to hold a file of that size. An
HFS volume currently can be as large as 2 GB. ◆

The size of a volume varies from one type of device to another. Volumes are formatted
into chunks known as logical blocks, each of which can contain up to 512 bytes. A
double-sided 3.5-inch floppy disk, for instance, usually has 1600 logical blocks, or 800 KB.

Generally, however, the size of a logical block on a volume is of interest only to the disk
device driver. This is because the File Manager always allocates space to a file in units
called allocation blocks. An allocation block is a group of consecutive logical blocks. The
File Manager can access a maximum of 65,535 allocation blocks on any volume. For
small volumes, such as volumes on floppy disks, the File Manager uses an allocation
block size of one logical block. To support volumes larger than about 32 MB, the File
1-6 About Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent

Manager needs to use an allocation block size that is at least two logical blocks. To
support volumes larger than about 64 MB, the File Manager needs to use an allocation
block that is at least three allocation blocks. In this way, by progressively increasing
the number of logical blocks in an allocation block, the File Manager can handle
larger and larger volumes. Figure 1-2 illustrates how logical blocks are grouped into
allocation blocks.

Figure 1-2 Logical blocks and allocation blocks

The size of the allocation blocks on a volume is determined when the volume is
initialized and depends on the number of logical blocks it contains. In general, the
Disk Initialization Manager uses the smallest allocation block size that will allow the
File Manager to address the entire volume. A nonempty file fork always occupies at least
one allocation block, no matter how many bytes of data that file fork contains. On a
40 MB volume, for example, a file’s data fork occupies at least 1024 bytes (that is, two
logical blocks), even if it contains only 11 bytes of actual data.

To distinguish between the amount of space allocated to a file and the number of bytes of
actual data in the file, two numbers are used to describe the size of a file. The physical
end-of-file is the number of bytes currently allocated to the file; it’s 1 greater than the
number of the last byte in its last allocation block (since the first byte is byte number 0).
As a result, the physical end-of-file is always an exact multiple of the allocation block
size. The logical end-of-file is the number of those allocated bytes that currently contain
data; it’s 1 greater than the number of the last byte in the file that contains data. For
example, on a volume having an allocation block size of two logical blocks (that is,
1024 bytes), a file with 509 bytes of data has a logical end-of-file of 509 and a physical
end-of-file of 1024 (see Figure 1-3).

0

1

2

3

4

5

6

7

0

1

2

3

2n

2n+1

n

Macintosh volume

Logical

Blocks

Allocation

Blocks

File B

File C

File A

2

About Files 1-7

C H A P T E R 1

Introduction to File Management

Figure 1-3 Logical end-of-file and physical end-of-file

You can move the logical end-of-file to adjust the size of the file. When you move the
logical end-of-file to a position more than one allocation block short of the current
physical end-of-file, the File Manager automatically deletes the unneeded allocation
block from the file. Similarly, you can increase the size of a file by moving the logical
end-of-file past the physical end-of-file. When you move the logical end-of-file past the
physical end-of-file, the File Manager automatically adds one or more allocation blocks
to the file. The number of allocation blocks added to the file is determined by the
volume’s clump size. A clump is a group of contiguous allocation blocks. The purpose of
enlarging files always by adding clumps is to reduce file fragmentation on a volume,
thus improving the efficiency of read and write operations.

If you plan to keep extending a file with multiple write operations and you know in
advance approximately how large the file is likely to become, you should first call the
SetEOF function to set the file to that size (instead of having the File Manager adjust
the size each time you write past the end-of-file). Doing this reduces file fragmentation
and improves I/O performance.

File Access Characteristics 1
A file can be open or closed. Your application can perform certain operations, such as
reading and writing data, only on open files. It can perform other operations, such as
deleting, only on closed files.

When you open a file, the File Manager reads information about the file from its volume
and stores that information in a file control block (FCB). The File Manager also creates
an access path to the file, a description of the route to be followed when accessing the
file. The access path specifies the volume on which the file is located and the location of
the file on the volume. Each access path is assigned a unique file reference number
(some number greater than 0) by which your application refers to the path. Multiple
access paths can be opened to the same file.

511

Logical end-of-file

(byte 509)

Logical block 6

Allocation block 3

Physical end-of-file

(byte 1024)

1023

Logical block 5

Byte: 0
 512

1-8 About Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent

For each open access path to a file, the File Manager maintains a current position marker,
called the file mark, to keep track of where it is in the file during a read or write
operation. The mark is the number of the next byte that will be read or written; each time
a byte is read or written, the mark is moved. When, during a write operation, the mark
reaches the number of the last byte currently allocated to the file, the File Manager adds
another clump to the file.

You can read bytes from and write bytes to a file either singly or in sequences of virtually
unlimited length. You can specify where each read or write operation should begin by
setting the mark or specifying an offset; if you don’t, the operation begins at the current
file mark.

Each time you want to read or write a file’s data, you need to pass the address of a data
buffer, a part of RAM (usually in your application’s heap). The File Manager uses the
buffer when it transfers data to or from your application. You can use a single buffer for
each read or write operation, or change the address and size of the buffer as necessary.

When your application writes data to a file, the File Manager transfers the data from
your application’s data buffer and writes it to the disk cache, a part of RAM (usually in
the System heap). The File Manager uses the disk cache as an intermediate buffer when
reading data from or writing it to the file system. When your application requests
that data be read from a file, the File Manager looks for the data in the disk cache
and transfers it to your application’s data buffer if the data is found in the cache;
otherwise, the File Manager reads the requested bytes from the disk and puts them in
your data buffer.

Note

You can also read a continuous stream of characters or a line of
characters from a file. In the first case, you ask the File Manager to read a
specific number of bytes: When that many have been read, or when the
mark reaches the logical end-of-file, the read operation terminates. In the
second case, called newline mode, the read operation terminates when
either of the above conditions is met or when a specified character, the
newline character, is read. The newline character is usually Return
(ASCII code $0D), but it can be any character. Information about newline
mode is associated with each access path to a file and can differ from
one access path to another. See the chapter “File Manager” in this book
for more information about newline mode. ◆

The Hierarchical File System 1
The Macintosh Operating System uses a method of organizing files called the
hierarchical file system (HFS). In HFS, files are grouped into directories (also called
folders), which themselves are grouped into other directories, as illustrated in
Figure 1-4. The number listed for each directory is its directory ID. The directory ID
is one component of a file system specification, as explained in the next section,
“Identifying Files and Directories.”
About Files 1-9

C H A P T E R 1

Introduction to File Management

Figure 1-4 The Macintosh hierarchical file system

The Finder is responsible for managing the files and folders on the desktop. It works
with the File Manager to maintain the organization of files and folders on a volume. The
hierarchical relationship of folders within folders on the desktop corresponds directly to
the hierarchical directory structure maintained on the volume. The volume is known as
the root directory, and the folders are known as subdirectories, or simply directories.

A volume appears on the desktop only after it has been mounted. Ejectable volumes
(such as 3.5-inch floppy disks) are mounted when they’re inserted into a disk drive;
nonejectable volumes (such as those on hard disks) are mounted automatically at system
startup. When a volume is mounted, the File Manager places information about the
volume in a nonrelocatable block of memory called a volume control block (VCB). The
number of volumes that can be mounted at any time is limited only by the number of
drives attached and available memory.

When a volume is mounted, the File Manager assigns a volume reference number by
which you can refer to the volume for as long as it remains mounted. You can also
identify a volume by its volume name, a sequence of 1 to 27 printing characters,
excluding colons (:). (The File Manager ignores case when comparing names but does
recognize diacritical marks.) Whenever possible, though, you should use the volume
reference number to avoid confusion between volumes with the same name.

Note

A volume reference number is valid only until the volume is
unmounted. If a single volume is mounted and then unmounted, the
File Manager may assign it a different volume reference number when it
is next mounted. ◆

MyVolume

2

21
11
 26

Nuts
 Vegetables
Fruits

Melons
Apples
 Tropical

Coconuts
Bananas
Ackees
 Guavas

Walnuts
 Empty Folder
 Red

Tomatoes

27
 35
 39

1-10 About Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent

When an application ejects a 3.5-inch disk from a drive, the File Manager places the
volume offline. When a volume is offline, the volume control block is kept in memory
and the volume reference number is still valid. If you make a File Manager call that
specifies that volume, the File Manager presents the disk switch dialog box to the user.
Figure 1-5 shows a sample disk switch dialog box.

Figure 1-5 The disk switch dialog box

When the user drags a volume icon to the Trash, that volume is unmounted; the
volume control block is released, and the volume is no longer known to the File
Manager. In particular, the volume reference number previously assigned to the
volume is no longer valid.

Each subdirectory is located within a directory called its parent directory. Typically, the
parent directory is specified by a parent directory ID, which is simply the directory ID of
the parent directory. The File Manager assigns a special parent directory ID to a volume’s
root directory. This is primarily to permit a consistent method of identifying files and
directories using the volume reference number, the parent directory ID, and the file or
directory name. See the next section, “Identifying Files and Directories,” for details.

For the most part, your application does not need to be concerned about, or keep track
of, the location of files in the file system hierarchy. Most of the files your application
opens and saves are specified by the user or another application, and their location is
provided to your application by either the Finder or the Standard File Package. One
notable exception here concerns preferences files, which are typically stored in the
Preferences folder in the currently active System Folder. See “Using a Preferences File”
on page 1-36 for instructions on finding preferences files.

Note

In addition to files, folders, and volumes, a fourth type of object, namely
an alias, might appear on the Finder desktop. An alias is a special kind
of file that represents another file, folder, or volume. The Finder and the
Standard File Package automatically resolve aliases before passing files
to your application, so you generally don’t need to do anything with
aliases. For more information on working with alias files, see the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials and
the chapter “Alias Manager” in this book. ◆
About Files 1-11

C H A P T E R 1

Introduction to File Management

Identifying Files and Directories 1
The hierarchical arrangement of files and directories allows you to identify a file or
directory uniquely by providing just three pieces of information: its volume reference
number, its parent directory ID, and its name within that parent directory. The system
software lets you specify these three items together in a file system specification record,
defined by the FSSpec data type:

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

The FSSpec record provides a simple and standard format for specifying files and
directories. For example, the Standard File Package procedure StandardGetFile uses
an FSSpec record to return information identifying a user-selected file or folder. You can
pass that specification directly to any file-manipulation routines, such as FSpOpenDF
and FSpDelete, that accept FSSpec records. In addition, the Alias Manager, Edition
Manager, and Finder all use FSSpec records to specify files and directories.

Using Files 1

This section describes how to perform typical file operations using some of the services
provided by the Standard File Package, the File Manager, the Finder, and other system
software components. Figure 1-6 shows the typical appearance of an application’s
File menu.

Figure 1-6 A typical File menu
1-12 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
Note that all the commands in this menu, except for the Quit and Page Setup commands,
manipulate files. Your application’s File menu should resemble the menu shown in
Figure 1-6 as closely as possible. In general, whenever the user creates or manipulates
information that is stored in a document, you need to implement all the commands
shown in Figure 1-6.

Note

Some applications allow the user to create or edit information that is not
stored in a document. In those cases, it is inappropriate to put the
commands that create or manipulate that information in the File menu.
Instead, group those commands together in a separate menu. ◆

Listing 1-1 shows one way to handle some of the typical commands in a File menu. Most
of the techniques described in this section are illustrated by means of definitions of the
functions called in Listing 1-1.

Listing 1-1 Handling the File menu commands

PROCEDURE DoHandleFileCommand (menuItem: Integer);

VAR

myErr: OSErr;

BEGIN

CASE menuItem OF

iNew:

myErr := DoNewCmd; {create a new document}

iOpen:

myErr := DoOpenCmd; {open an existing document}

iClose:

myErr := DoCloseCmd; {close the current document}

iSave:

myErr := DoSaveCmd; {save the current document}

iSaveAs:

myErr := DoSaveAsCmd; {save document under new name}

iRevert:

myErr := DoRevertCmd; {revert to last saved version}

OTHERWISE

;

END;

END;

Your application should deactivate any menu commands that do not apply to the
frontmost window. For example, if the frontmost window is not a document window
belonging to your application, then the Close, Save, Save As, and Revert commands
should be dimmed when the menu appears. Similarly, if the document in the frontmost
window does belong to your application but contains data that has not changed since it
Using Files 1-13

C H A P T E R 1

Introduction to File Management
was last saved, then the Save menu command should be dimmed. See “Adjusting the
File Menu” on page 1-37 for details on implementing this feature. The definitions of the
application-defined functions used in Listing 1-1 assume that this feature has been
implemented.

The techniques described in this chapter for manipulating files assume that you identify
files and directories by using file system specification records. Because the routines that
accept FSSpec records are not available on all versions of system software, you may
need to test for the availability of those routines before actually calling any of them. See
the next section, “Testing for File Management Routines,” for details.

Testing for File Management Routines 1
To determine the availability of the routines that operate on FSSpec records, you can
call the Gestalt function with the gestaltFSAttr selector code, as illustrated in
Listing 1-2.

Listing 1-2 Testing for the availability of routines that operate on FSSpec records

FUNCTION FSSpecRoutinesAvail: Boolean;

VAR

myErr: OSErr; {Gestalt result code}

myFeature: LongInt; {Gestalt response}

BEGIN

FSSpecRoutinesAvail := FALSE;

IF gHasGestalt THEN {if Gestalt is available}

BEGIN

myErr := Gestalt(gestaltFSAttr, myFeature);

IF myErr = noErr THEN

IF BTst(myFeature, gestaltHasFSSpecCalls) THEN

FSSpecRoutinesAvail := TRUE;

END;

END;

To use the procedures defined in the following sections to open and save files, you
also need to make sure that the routines StandardGetFile and StandardPutFile
are available. You can do this by passing Gestalt the gestaltStandardFileAttr
selector and verifying that the bit gestaltStandardFile58 is set in the response
value. Also, before using the FindFolder function (as shown, for example, in
Listing 1-10 on page 1-25), you should call the Gestalt function with the
gestaltFindFolderAttr selector and verify that the gestaltFindFolderPresent
bit is set; this indicates that the FindFolder function is available.
1-14 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
If the routines that operate on FSSpec records are not available, you can use
corresponding File Manager and Standard File Package routines. For example, if
you cannot call FSpOpenDF, you can call HOpenDF. That is, instead of writing

myErr := FSpOpenDF(mySpec, fsCurPerm, myFile);

you can write something like

myErr := HOpenDF(myVol, myDirID, myName, fsCurPerm, myFile);

The only difference is that the mySpec parameter is replaced by three parameters
specifying the volume reference number, the parent directory ID, and the filename. With
only a few exceptions, all of the techniques presented in this chapter can be easily
adapted to work with high-level HFS routines in place of the routines that work with
FSSpec records.

Note

One notable exception concerns the Standard File Package procedures
SFGetFile and SFPutFile. The vRefNum field of the reply
record passed to both these functions contains a working directory
reference number, which encodes both the directory ID and the
volume reference number. In general, you should avoid using this
number; instead you can turn it into the corresponding directory ID and
volume reference number by calling the GetWDInfo function. See the
chapter “File Manager” in this book for details on working directory
reference numbers. ◆

Defining a Document Record 1
When a user creates a new document or opens an existing document, your application
displays the contents of the document in a window, which provides a standard interface
for the user to view and possibly edit the document data. It is useful for your application
to define a document record, an application-specific data structure that contains
information about the window, any controls in the window (such as scroll bars), and the
file (if any) whose contents are displayed in the window. Listing 1-3 illustrates a sample
document record for an application that handles text files.

Listing 1-3 A sample document record

TYPE

MyDocRecHnd = ^MyDocRecPtr;

MyDocRecPtr = ^MyDocRec;

MyDocRec =

RECORD

editRec: TEHandle; {handle to TextEdit record}

vScrollBar: ControlHandle; {vertical scroll bar}
Using Files 1-15

C H A P T E R 1

Introduction to File Management
hScrollBar: ControlHandle; {horizontal scroll bar}

fileRefNum: Integer; {ref num for window's file}

fileFSSpec: FSSpec; {file's FSSpec}

windowDirty: Boolean; {has window data changed?}

END;

Some fields in the MyDocRec record hold information about the TextEdit record that
contains the window’s text data. Other fields describe the horizontal and vertical scroll
bars in the window. The myDocRec record also contains a field for the file reference
number of the open file (if any) whose data is displayed in the window and a field for
the file system specification that identifies that file. The file reference number is needed
when the application manipulates the open file (for example, when it reads data from or
writes data to the file, and when it closes the file). The FSSpec record is needed when a
“safe-save” procedure is used to save data in a file.

The last field of the MyDocRec data type is a Boolean value that indicates whether the
contents of the document in the TextEdit record differ from the contents of the document
in the associated file. When your application first reads a file into the window, you
should set this field to FALSE. Then, when any subsequent operations alter the contents
of the document, you should set the field to TRUE. Your application can inspect this field
whenever appropriate to determine if special processing is needed. For example, when
the user closes a document window and the value of the windowDirty flag is TRUE,
your application should ask the user whether to save the changed version of the
document in the file. See Listing 1-16 (page 1-33) for details.

To associate a document record with a particular window, you can simply set a handle to
that record as the reference constant of the window (by using the Window Manager
procedure SetWRefCon). Then you can retrieve the document record by calling the
GetWRefCon function. Listing 1-15 illustrates this process.

Creating a New File 1
The user expects to be able to create a new document using the New command in the
File menu. Listing 1-4 illustrates one way to handle the New menu command.

Listing 1-4 Handling the New menu command

FUNCTION DoNewCmd: OSErr;

VAR

myWindow: WindowPtr; {the new document window; ignored here}

BEGIN

{Create a new window and make it visible.}

DoNewCmd := DoNewDocWindow(TRUE, myWindow);

END;
1-16 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
The DoNewCmd function simply calls the application-defined function DoNewDocWindow
(shown in Listing 1-6). The first parameter to DoNewDocWindow determines whether the
new window should be visible or not; the value TRUE indicates that the new window
should be visible. If DoNewDocWindow completes successfully, it returns a window
pointer to the calling routine in the second parameter. The DoNewCmd function ignores
that returned window pointer.

Listing 1-5 Creating a new document window

FUNCTION DoNewDocWindow (newDocument: Boolean; var myWindow: WindowPtr):

 OSErr;

VAR

myData: MyDocRecHnd; {the window's data record}

CONST

rDocWindow = 1000; {resource ID of window template}

BEGIN

{Allocate a new window; see Window Mgr chapter for details.}

myWindow := GetNewWindow(rDocWindow, NIL, WindowPtr(-1));

IF myWindow = NIL THEN

BEGIN

DoNewDocWindow := MemError;

Exit(DoNewDocWindow);

END;

{Allocate space for the window's data record.}

myData := MyDocRecHnd(NewHandle(SizeOf(MyDocRec)));

IF myData = NIL THEN

BEGIN

DoNewDocWindow := MemError;

DisposeWindow(myWindow);

Exit(DoNewDocWindow);

END;

MoveHHi(Handle(myData)); {move the handle high}

HLock(Handle(myData)); {lock the handle}

WITH myData^^ DO {fill in window data}

BEGIN

editRec := TENew(gDestRect, gViewRect);

vScroll := GetNewControl(rVScroll, myWindow);

hScroll := GetNewControl(rHScroll, myWindow);

fileRefNum := 0; {no file yet!}

windowDirty := FALSE;

IF (editRec = NIL) OR (vScroll = NIL) OR (hScroll = NIL) THEN
Using Files 1-17

C H A P T E R 1

Introduction to File Management
BEGIN

DoNewDocWindow := memFullErr;

DisposeWindow(myWindow);

DisposeControl(vScroll);

DisposeControl(hScroll);

TEDispose(editRec);

DisposeHandle(myData);

Exit(DoNewDocWindow);

END;

END;

IF newDocument THEN {if new document, show it}

ShowWindow(myWindow);

SetWRefCon(myWindow, LongInt(myData)); {link record to window}

HUnlock(Handle(myData)); {unlock the handle}

DoNewDocWindow := noErr;

END;

Note that the DoNewDocWindow function does not actually create a new file. The reason
for this is that it is usually better to wait until the user actually saves a new document
before creating a file (mainly because the user might decide not to save the document).
The DoNewDocWindow function creates a window, allocates a new document record,
and fills out the fields of that record. However, it sets the fileRefNum field of the
document record to 0 to indicate that no file is currently associated with this window.

Opening a File 1
Your application might need to open a file in several different situations. For example, if
the user launches your application by double-clicking one of its document icons in the
Finder, the Finder provides your application with information about the selected file (if
your application receives high-level events, the Finder sends it an Open Documents
event). At that point, you want to create a new window for the document and read the
document data from the file into the window.

Your application also opens files after the user chooses the Open command in the File
menu. In this case, you need to determine which file to open. You can use the Standard
File Package to present a standard dialog box that allows the user to navigate the file
system hierarchy (if necessary) and select a file of the appropriate type. Once you get the
necessary information from the Standard File Package, you can then create a new
window for the document and read the document data from the file into the window.

As you can see, it makes sense to divide the process of opening a document into several
different routines. You can have a routine that elicits a file selection from the user and
another routine that creates a window and reads the file data into it. In the sample
1-18 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
listings given here, the function DoOpenCmd handles the interaction with the user and
DoOpenFile reads a file into a new window.

Listing 1-6 shows one way to handle the Open command in the File menu. It uses the
Standard File Package routine StandardGetFile to determine which file the user
wants to open.

Listing 1-6 Handling the Open menu command

FUNCTION DoOpenCmd: OSErr;

VAR

myReply: StandardFileReply; {Standard File reply record}

myTypes: SFTypeList; {types of files to display}

myErr: OSErr;

BEGIN

myErr := noErr;

myTypes[0] := 'TEXT'; {display text files only}

StandardGetFile(NIL, 1, myTypes, myReply);

IF myReply.sfGood THEN

myErr := DoOpenFile(myReply.sfFile)

ELSE

myErr := usrCanceledErr;

DoOpenCmd := myErr;

END;

The StandardGetFile procedure requires a list of file types to display in an Open
dialog box, as in Figure 1-7. In this case, only text files are to be listed.

Figure 1-7 The default Open dialog box
Using Files 1-19

C H A P T E R 1

Introduction to File Management
The user can scroll through the list of files in the current directory, change the current
directory, select a file to open, or cancel the operation altogether. When the user clicks
either the Cancel or the Open button, StandardGetFile fills out the Standard File
reply record you pass to it, which has this structure:

TYPE StandardFileReply =

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected item}

sfScript: ScriptCode; {script of selected item's name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

In this situation, the relevant fields of the reply record are the sfGood and sfFile
fields. If the user selects a file to open, the sfGood field is set to TRUE and the sfFile
field contains an FSSpec record for the selected file. In Listing 1-6, the returned FSSpec
record is passed directly to the application-defined function DoOpenFile. Listing 1-7
illustrates a way to define the DoOpenFile function.

Listing 1-7 Opening a file

FUNCTION DoOpenFile (mySpec: FSSpec): OSErr;

VAR

myWindow: WindowPtr; {window for file data}

myData: MyDocRecHnd; {handle to window data}

myFileRefNum: Integer; {file reference number}

myErr: OSErr;

BEGIN

{Create a new window, but don't show it yet.}

myErr := DoNewDocWindow(FALSE, myWindow);

IF (myErr <> noErr) OR (myWindow = NIL) THEN

BEGIN

DoOpenFile := myErr;

Exit(DoOpenFile);

END;

SetWTitle(myWindow, mySpec.name); {set window's title}

MySetWindowPosition(myWindow); {set window position}
1-20 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
{Open the file's data fork for reading and writing.}

myErr := FSpOpenDF(mySpec, fsRdWrPerm, myFileRefNum);

IF myErr <> noErr THEN

BEGIN

DisposeWindow(myWindow);

DoOpenFile := myErr;

Exit(DoOpenFile);

END;

{Retrieve handle to window's data record.}

myData := MyDocRecHnd(GetWRefCon(myWindow));

myData^^.fileRefNum := myFileRefNum;{save file information}

myData^^.fileFSSpec := mySpec;

myErr := DoReadFile(myWindow); {read in file data}

ShowWindow(myWindow); {now show the window}

DoOpenFile := myErr;

END;

This function is relatively simple because much of the real work is done by the two
functions DoNewDocWindow and DoReadFile. The DoReadFile function is
responsible for actually reading the file data from the disk into the TextEdit record
associated with the document window. See the next section, “Reading File Data,” for a
sample definition of DoReadFile.

In Listing 1-7, the key step is the call to FSpOpenDF, which opens the data fork of the
specified file. A file reference number—which indicates an access path to the open file—
is returned in the third parameter. As you can see, this reference number is saved in the
document record, from where it can easily be retrieved for future calls to the FSRead
and FSWrite functions.

The second parameter in a call to the FSpOpenDF function specifies the access mode for
opening the file. For each file, the File Manager maintains access mode information that
determines what type of access is available. Most applications support one of two types
of access:

■ A single user is allowed to read from and write to a file.

■ Multiple users are allowed to read from a file, but no one can write to it.

Your application can use the following constants to specify these types of access:

CONST

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}
Using Files 1-21

C H A P T E R 1

Introduction to File Management
To open a file with exclusive read/write access, you can specify fsRdWrPerm. To open a
file with read-only access, specify fsRdPerm. If you want to open a file and don’t know
or care which type of access is available, specify fsCurPerm. When you specify
fsCurPerm, if no access paths are already open, the file is opened with exclusive read/
write access. If other access paths are already open, but they are read-only, another
read-only path is opened.

Reading File Data 1
Once you have opened a file, you can read data from it by calling the FSRead function.
Generally you need to read data from a file when the user first opens a file or when the
user reverts to the last saved version of a document. The DoReadFile function defined
in Listing 1-8 illustrates how to use FSRead to read data from a file into a TextEdit
record in either situation.

Listing 1-8 Reading data from a file

FUNCTION DoReadFile (myWindow: WindowPtr): OSErr;

VAR

myData: MyDocRecHnd; {handle to a document record}

myFile: Integer; {file reference number}

myLength: LongInt; {number of bytes to read from file}

myText: TEHandle; {handle to TextEdit record}

myBuffer: Ptr; {pointer to data buffer}

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow)); {get window's data}

myFile := myData^^.fileRefNum; {get file reference number}

myErr := SetFPos(myFile, fsFromStart, 0); {set file mark at start}

IF myErr <> noErr THEN

BEGIN

DoReadFile := myErr;

Exit(DoReadFile);

END;

myErr := GetEOF(myFile, myLength); {get file length}

myBuffer := NewPtr(myLength); {allocate a buffer}

IF myBuffer = NIL THEN

BEGIN

DoReadFile := MemError;

Exit(DoReadFile);

END;
1-22 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
myErr := FSRead(myFile, myLength, myBuffer); {read data into buffer}

IF (myErr = noErr) OR (myErr = eofErr) THEN

BEGIN {move data into TERec}

HLock(Handle(myData^^.editRec));

TESetText(myBuffer, myLength, myData^^.editRec);

myErr := noErr;

HUnlock(Handle(myData^^.editRec));

END;

DoReadFile := myErr;

END;

The DoReadFile function takes one parameter specifying the window to read data into.
This function first retrieves the handle to that window’s document record and extracts
the file’s reference number from that record. Then DoReadFile calls the SetFPos
function to set the file mark to the beginning of the file having that reference number.
There is no need to check that myFile has a nonzero value, because SetFPos returns an
error if you pass it an invalid file reference number.

The second parameter to SetFPos specifies the file mark positioning mode; it can
contain one of the following values:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

If you specify fsAtMark, the mark is left wherever it’s currently positioned, and the
third parameter of SetFPos is ignored. The next three constants let you position the
mark relative to either the beginning of the file, the logical end-of-file, or the current
mark. If you specify one of these three constants, the third parameter contains the byte
offset (either positive or negative) from the specified point. Here, the appropriate
positioning mode is relative to the beginning of the file.

If DoReadFile successfully positions the file mark, it next determines the number of
bytes in the file by calling the GetEOF function. The key step in the DoReadFile
function is the call to FSRead, which reads the specified number of bytes from the file
into the specified buffer. In this case, the data is read into a temporary buffer; then the
data is moved into the TextEdit record associated with the file. The FSRead function
returns, in the myLength parameter, the number of bytes actually read from the file.

Writing File Data 1
Generally your application writes data to a file in response to the File menu commands
Save or Save As. However, your application might also incorporate a scheme that
automatically saves all open documents to disk every few minutes. It therefore makes
sense to isolate the routines that handle the menu commands from the routines that
Using Files 1-23

C H A P T E R 1

Introduction to File Management
handle the actual writing of data to disk. This section shows how to write the data stored
in a TextEdit record to a file. See “Saving a File” on page 1-26 for instructions on
handling the Save and Save As menu commands.

It is very easy to write data from a specified buffer into a specified file. You simply
position the file mark at the beginning of the file (using SetFPos), write the data into
the file (using FSWrite), and then resize the file to the number of bytes actually written
(using SetEOF). Listing 1-9 illustrates this sequence.

Listing 1-9 Writing data into a file

FUNCTION DoWriteData (myWindow: WindowPtr; myTemp: Integer): OSErr;

VAR

myData: MyDocRecHnd; {handle to a document record}

myLength: LongInt; {number of bytes to write to file}

myText: TEHandle; {handle to TextEdit record}

myBuffer: Handle; {handle to actual text in TERec}

myVol: Integer; {volume reference number of myFile}

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow)); {get window's data record}

myText := myData^^.editRec; {get TERec}

myBuffer := myText^^.hText; {get text buffer}

myLength := myText^^.teLength; {get text buffer size}

myErr := SetFPos(myTemp, fsFromStart, 0); {set file mark at start}

IF myErr = noErr THEN {write buffer into file}

myErr := FSWrite(myTemp, myLength, myBuffer^);

IF myErr = noErr THEN {adjust file size}

myErr := SetEOF(myTemp, myLength);

IF myErr = noErr THEN {find volume file is on}

myErr := GetVRefNum(myTemp, myVol);

IF myErr = noErr THEN {flush volume}

 myErr := FlushVol(NIL, myVol);

IF myErr = noErr THEN {show file is up to date}

myData^^.windowDirty := FALSE;

DoWriteData := myErr;

END;

The DoWriteData function first retrieves the TextEdit record attached to the specified
window and extracts the address and length of the actual text buffer from that record.
Then it calls SetFPos, FSWrite, and SetEOF as just explained. Finally, DoWriteData
determines the volume containing the file (using the GetVRefNum function) and flushes
that volume (using the FlushVol function). This is necessary to ensure that both the
file’s data and the file’s catalog entry are updated.
1-24 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
Notice that the DoWriteData function takes a second parameter, myTemp, which should
be the file reference number of a temporary file, not the file reference number of the file
associated with the window whose data you want to write. If you pass the reference
number of the file associated with the window, you risk corrupting the file, because the
existing file data is overwritten when you position the file mark at the beginning of the
file and call FSWrite. If FSWrite does not complete successfully, it is very likely that
the file on disk does not contain the correct document data.

To avoid corrupting the file containing the saved version of a document, always call
DoWriteData specifying the file reference number of some new, temporary file. Then,
when DoWriteData completes successfully, you can call the FSpExchangeFiles
function to swap the contents of the temporary file and the existing file. Listing 1-10
illustrates how to update a file on disk safely; it shows a sequence of updating,
renaming, saving, and deleting files that preserves the contents of the existing file until
the new version is safely recorded.

Listing 1-10 Updating a file safely

FUNCTION DoWriteFile (myWindow): OSErr;

VAR

myData: MyDocRecHnd; {handle to window's document record}

myFSpec: FSSpec; {FSSpec for file to update}

myTSpec: FSSpec; {FSSpec for temporary file}

myTime: LongInt; {current time; for temporary filename}

myName: Str255; {name of temporary file}

myTemp: Integer; {file reference number of temporary file}

myVRef: Integer; {volume reference number of temporary file}

myDirID: LongInt; {directory ID of temporary file}

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));{get that window's data}

myFSpec := myData^^.fileFSSpec; {get FSSpec for existing file}

GetDateTime(myTime); {create a temporary filename}

NumToString(myTime, myName);

{Find the temporary folder on file's volume; create it if necessary.}

myErr := FindFolder(myFSpec.vRefNum, kTemporaryFolderType,

kCreateFolder, myVRef, myDirID);

IF myErr = noErr THEN {make an FSSpec for temp file}

myErr := FSMakeFSSpec(myVRef, myDirID, myName, myTSpec);

IF (myErr = noErr) OR (myErr = fnfErr) THEN{create a temporary file}

myErr := FSpCreate(myTSpec, 'trsh', 'trsh', smSystemScript);

IF myErr = noErr THEN {open the newly created file}
Using Files 1-25

C H A P T E R 1

Introduction to File Management
myErr := FSpOpenDF(myTSpec, fsRdWrPerm, myTemp);

IF myErr = noErr THEN {write data to the data fork}

myErr := DoWriteData(myWindow, myTemp);

IF myErr = noErr THEN {close the temporary file}

myErr := FSClose(myTemp);

IF myErr = noErr THEN {swap data in the two files}

myErr := FSpExchangeFiles(myTSpec, myFSpec);

IF myErr = noErr THEN {delete the temporary file}

myErr := FSpDelete(myTSpec);

DoWriteFile := myErr;

END;

The essential idea behind this “safe-save” process is to save the data in memory into a
new file and then to exchange the contents of the new file and the old version of the file
by calling FSpExchangeFiles. The FSpExchangeFiles function does not move the
data on the volume; it merely changes the information in the volume’s catalog file and, if
the files are open, in their file control blocks (FCBs). The catalog entry for a file contains

■ fields that describe the physical data, such as the first allocation block, physical end,
and logical end of both the resource and data forks

■ fields that describe the file within the file system, such as file ID and parent
directory ID

Fields that describe the data remain with the data; fields that describe the file remain
with the file. The creation date remains with the file; the modification date remains with
the data. (For a more complete description of the FSpExchangeFiles function, see the
chapter “File Manager” in this book.)

Saving a File 1
There are several ways for a user to indicate that the current contents of a document
should be saved (that is, written to disk). The user can choose the File menu commands
Save or Save As, or the user can click the Save button in a dialog box that you display
when the user attempts to close a “dirty” document (that is, a document whose contents
have changed since the last time it was saved). You can handle the Save menu command
quite easily, as illustrated in Listing 1-11.

Listing 1-11 Handling the Save menu command

FUNCTION DoSaveCmd: OSErr;

VAR

myWindow: WindowPtr; {pointer to the front window}

myData: MyDocRecHnd; {handle to a document record}

myErr: OSErr;
1-26 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
BEGIN

myWindow := FrontWindow; {get front window and its data}

myData := MyDocRecHnd(GetWRefCon(myWindow));

IF myData^^.fileRefNum <> 0 THEN {if window has a file already}

myErr := DoWriteFile(myWindow); {then write contents to disk}

ELSE

myErr := DoSaveAsCmd; {else ask for a filename}

DoSaveCmd := myErr;

END;

The DoSaveCmd function simply checks whether the frontmost window is already
associated with a file. If so, then DoSaveCmd calls DoWriteFile to write the data to
disk (using the “safe-save” process illustrated in the previous section). Otherwise, if no
file exists for that window, DoSaveCmd calls DoSaveAsCmd. Listing 1-12 shows a way to
define the DoSaveAsCmd function.

Listing 1-12 Handling the Save As menu command

FUNCTION DoSaveAsCmd: OSErr;

VAR

myWindow: WindowPtr; {pointer to the front window}

myData: MyDocRecHnd; {handle to a document record}

myReply: StandardFileReply;

myFile: Integer; {file reference number}

myErr: OSErr;

BEGIN

myWindow := FrontWindow; {get front window and its data}

myData := MyDocRecHnd(GetWRefCon(myWindow));

myErr := noErr;

StandardPutFile('Save as:', 'Untitled', myReply);

IF myReply.sfGood THEN {user saves file}

BEGIN

IF NOT myReply.sfReplacing THEN

myErr := FSpCreate(myReply.sfFile, 'MYAP', 'TEXT',

 smSystemScript);

IF myErr <> noErr THEN

Exit(DoSaveAsCmd);

myData^^.fileFSSpec := myReply.sfFile;

IF myData^^.fileRefNum <> 0 THEN {if window already has a file}

myErr := FSClose(myData^^.fileRefNum);{close it}
Using Files 1-27

C H A P T E R 1

Introduction to File Management
{Create document's resource fork and copy Finder resources to it.}

FSpCreateResFile(myData^^.fileFSSpec, 'MYAP', 'TEXT',

 smSystemScript);

myErr := ResError;

IF myErr = noErr THEN

myFile := FSpOpenResFile(myData^^.fileFSSpec, fsRdWrPerm);

IF myFile > 0 THEN {copy Finder resources}

myErr := DoCopyResource('STR ', -16396, gAppsResFile, myFile)

ELSE

myErr := ResError;

IF myErr = noErr THEN

myErr := FSClose(myFile); {close the resource fork}

{Open data fork and leave it open.}

IF myErr = noErr THEN

myErr := FSpOpenDF(myData^^.fileFSSpec, fsRdWrPerm, myFile);

IF myErr = noErr THEN

BEGIN

myData^^.fileRefNum := myFile;

SetWTitle(myWindow, myReply.sfFile.name);

myErr := DoWriteFile(myWindow);

END;

DoSaveAsCmd := myErr;

END;

END;

The StandardPutFile procedure is similar to the StandardGetFile procedure
discussed earlier in this chapter. It manages the user interface for the default Save dialog
box, illustrated in Figure 1-8.

Figure 1-8 The default Save dialog box
1-28 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
If the user clicks the New Folder button, the Standard File Package presents a subsidiary
dialog box like the one shown in Figure 1-9.

Figure 1-9 The new folder dialog box

If the user asks to save a file with a name that already exists at the specified location,
the Standard File Package displays a subsidiary dialog box, like the one shown in
Figure 1-10, to verify that the new file should replace the existing file.

Figure 1-10 The name conflict dialog box

Note in Listing 1-12 that if the user is not replacing an existing file, the DoSaveAsCmd
function creates a new file and records the new FSSpec record in the window’s
document record. Otherwise, if the user is replacing an existing file, DoSaveAsCmd
simply records, in the window’s document record, the FSSpec record returned by
StandardGetFile.

When DoSaveAsCmd creates a new file, it also copies a resource from your application’s
resource fork to the resource fork of the newly created file. This resource (with ID
–16396) identifies the name of your application. (For more details about this resource,
see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials.)
The DoSaveAsCmd function calls the application-defined routine DoCopyResource.
Listing 1-13 shows a simple way to define the DoCopyResource function.
Using Files 1-29

C H A P T E R 1

Introduction to File Management
Listing 1-13 Copying a resource from one resource fork to another

FUNCTION DoCopyResource (theType: ResType; theID: Integer;

source: Integer; dest: Integer): OSErr;

VAR

myHandle: Handle; {handle to resource to copy}

myName: Str255; {name of resource to copy}

myType: ResType; {ignored; used for GetResInfo}

myID: Integer; {ignored; used for GetResInfo}

BEGIN

UseResFile(source); {set the source resource file}

myHandle := GetResource(theType, theID); {open the source resource}

IF myHandle <> NIL THEN

BEGIN

GetResInfo(myHandle, myID, myType, myName); {get resource name}

DetachResource(myHandle); {detach resource}

UseResFile(dest); {set destination resource file}

AddResource(myHandle, theType, theID, myName);

IF ResError = noErr THEN

WriteResource(myHandle); {write resource data}

END;

DoCopyResource := ResError; {return result code}

ReleaseResource(myHandle);

END;

See the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox for
details about the routines used in Listing 1-13.

Reverting to a Saved File 1
Many applications that manipulate files provide a menu command that allows the user
to revert to the last saved version of a document. The technique for handling this
command is relatively simple. First you should display a dialog box asking whether to
revert to the last saved version of the file, as illustrated in Figure 1-11.

Figure 1-11 A Revert to Saved dialog box
1-30 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
If the user clicks the Cancel button, nothing should happen to the current document. If,
however, the user confirms the menu command by clicking OK, you just need to call
DoReadFile to read the disk version of the file back into the window. Listing 1-14
illustrates how to implement a Revert to Saved menu command.

Listing 1-14 Handling the Revert to Saved menu command

FUNCTION DoRevertCmd: OSErr;

VAR

myWindow: WindowPtr; {window for file data}

myData: MyDocRecHnd; {handle to window data}

myFile: Integer; {file reference number}

myName: Str255; {file's name}

myDialog: DialogPtr; {pointer to modal dialog box}

myItem: Integer; {item selected in modal dialog}

myPort: GrafPtr; {the original graphics port}

CONST

kRevertDialog = 128; {resource ID of Revert to Saved dialog}

BEGIN

myWindow := FrontWindow; {get pointer to front window}

{get handle to window's data record}

myData := MyDocRecHnd(GetWRefCon(myWindow));

GetWTitle(myWindow, myName); {get file's name}

ParamText(myName, '', '', '');

myDialog := GetNewDialog(kRevertDialog, NIL, WindowPtr(-1));

GetPort(myPort);

SetPort(myDialog);

REPEAT

ModalDialog(NIL, myItem);

UNTIL (myItem = iOK) OR (myItem = iCancel);

DisposeDialog(myDialog);

SetPort(myPort); {restore previous grafPort}

IF myItem = iOK THEN

DoRevertCmd := DoReadFile(myWindow);

ELSE

DoRevertCmd := noErr;

END;

The DoRevertCmd function retrieves the document record handle from the frontmost
window’s reference constant field and then gets the window’s title (which is also the
name of the file) and inserts it into a modal dialog box.
Using Files 1-31

C H A P T E R 1

Introduction to File Management
If the user clicks the OK button, DoRevertCmd calls the DoReadFile function to read
the data from the file into the window. Otherwise, DoRevertCmd simply exits without
changing the data in the window.

Closing a File 1
In most cases, your application closes a file after a user clicks in a window’s close box or
chooses the Close command in the File menu. The Close menu command should be
active only when there is actually an active window on the desktop. If there is an active
window, you need to determine whether it belongs to your application; if so, you need to
handle dialog windows and document windows differently, as illustrated in Listing 1-15.

Listing 1-15 Handling the Close menu command

FUNCTION DoCloseCmd: OSErr;

VAR

myWindow: WindowPtr;

myData: MyDocRecHnd;

myErr: OSErr;

BEGIN

myErr := FALSE;

myWindow := FrontWindow; {get window to be closed}

CASE MyGetWindowType(myWindow) OF

kDAWindow:

CloseDeskAcc(WindowPeek(myWindow)^.windowKind);

kMyModelessDialog:

HideWindow(myWindow); {for dialogs, hide the window}

kMyDocWindow:

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));

myErr := DoCloseFile(myData);

IF myErr = noErr THEN

DisposeWindow(myWindow);

END;

OTHERWISE

;

END;

DoCloseCmd := myErr;

END;

The DoCloseCmd function determines the type of the frontmost window by calling the
application-defined function MyGetWindowType. (See the chapter “Window Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for a definition of MyGetWindowType.) If
the window to be closed is a window belonging to a desk accessory, DoCloseCmd closes
1-32 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
the desk accessory. If the window to be closed is a dialog window, this procedure just
hides the window. If the window to be closed is a document window, DoCloseCmd
retrieves its document record handle and calls both DoCloseFile (defined in
Listing 1-16) and DisposeWindow. Before you close the file associated with a
window, you should check whether the contents of the window have changed since
the last time the document was saved. If so, you should ask the user whether to save
those changes. Listing 1-16 illustrates one way to do this.

Listing 1-16 Closing a file

FUNCTION DoCloseFile (myData: MyDocRecHnd): OSErr;

VAR

myErr: OSErr;

myDialog: DialogPtr; {pointer to modal dialog box}

myItem: Integer; {item selected in alert box}

myPort: GrafPtr; {the original graphics port}

CONST

kSaveChangesDialog = 129; {resource of Save changes dialog}

BEGIN

IF myData^^.windowDirty THEN {see whether window is dirty}

BEGIN

myItem := CautionAlert(kSaveChangesDialog, NIL);

IF myItem = iCancel THEN{user clicked Cancel}

BEGIN

DoCloseFile := usrCanceledErr;

Exit(DoCloseFile);

END;

IF myItem = iSave THEN

myErr := DoSaveCmd;

END;

IF myData^^.fileRefNum <> 0 THEN

BEGIN

myErr := FSClose(myData^^.fileRefNum);

IF myErr = noErr THEN

BEGIN

myErr := FlushVol(NIL, myData^^.fileFSSpec.vRefNum);

myData^^.fileRefNum := 0; {clear the file reference number}

END;

END;

{Dispose of TextEdit record and controls here (code omitted).}

DisposeHandle(Handle(myData)); {dispose of document record}

DoCloseFile := myErr;

END;
Using Files 1-33

C H A P T E R 1

Introduction to File Management
If the document is an existing file that has not been changed since it was last saved, your
application can simply call the FSClose function. This routine writes to disk any
unwritten data remaining in the volume buffer. The FSClose function also updates the
information maintained on the volume for that file and removes the access path. The
information about the file is not actually written to the disk, however, until the volume is
flushed, ejected, or unmounted. To keep the file information current, it’s a good idea to
follow each call to FSClose with a call to the FlushVol function.

If the contents of an existing file have been changed, or if a new file is being closed for
the first time, your application can call the Dialog Manager routine CautionAlert
(specifying a resource ID of an 'ALRT' template) to ask the user whether or not to save
the changes. If the user decides not to save the file, you can just call FSClose and
dispose of the window. Otherwise, DoCloseFile calls the DoSaveCmd function to save
the file to disk.

Opening Files at Application Startup Time 1
A user often launches your application by double-clicking one of its document icons or
by selecting one or more document icons and choosing the Open command in the
Finder’s File menu. In these cases, your application needs to determine which files the
user selected so that it can open each one and display its contents in a window. There are
two ways in which your application can determine this.

If the user opens a file from the Finder and if your application supports high-level
events, the Finder sends it an Open Documents event. Your application then needs to
determine which file or files to open and react accordingly. For a complete description of
how to process the Open Documents event, see the chapter “Apple Event Manager” in
Inside Macintosh: Interapplication Communication.

IMPORTANT

If at all possible, your application should support high-level events. You
should use the techniques illustrated in this section only if your
application doesn’t support high-level events. ▲

If your application does not support high-level events, you need to ask the Finder at
application launch time whether or not the user launched the application by selecting
some documents. You can do this by calling the CountAppFiles procedure and seeing
whether the count of files is 1 or more. Then you can call the procedures GetAppFiles
and ClrAppFiles to retrieve the information about the selected files. The technique is
illustrated in Listing 1-17.

The CountAppFiles procedure determines how many files, if any, the user selected at
application startup time. If the value of the myNum parameter is nonzero, then myJob
contains a value that indicates whether the files were selected for opening or printing.
Currently, myJob can have one of two values:

CONST

appOpen = 0; {open the document(s)}

appPrint = 1; {print the document(s)}
1-34 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
Listing 1-17 Opening files at application launch time

PROCEDURE DoInitFiles;

VAR

myNum: Integer; {number of files to be opened or printed}

myJob: Integer; {open or print the files?}

index: Integer; {index of current file}

myFile: AppFile; {file info}

mySpec: FSSpec; {file system specification}

myErr: OSErr;

BEGIN

CountAppFiles(myJob, myNum);

IF myNum > 0 THEN {user selected some files}

IF myJob = appOpen THEN {files are to be opened}

FOR index := 1 TO myNum DO

BEGIN

GetAppFiles(index, myFile); {get file info from Finder}

myErr := FSMakeFSSpec(myFile.vRefNum, 0, myFile.fName,

mySpec); {make an FSSpec to hold info}

myErr := DoOpenFile(mySpec); {read in file's data}

ClrAppFiles(index); {show we've got the info}

END;

END;

In Listing 1-17, if the files are to be opened, then DoInitFiles obtains information
about them by calling the GetAppFiles procedure for each one. The GetAppFiles
procedure returns the information in a record of type AppFile.

TYPE AppFile =

RECORD

vRefNum: Integer; {working directory reference number}

fType: OSType; {file type}

versNum: Integer; {version number; ignored}

fName: Str255; {filename}

END;

Because the function DoOpenFile takes an FSSpec record as a parameter,
DoInitFiles next converts the information returned in the myFile parameter into an
FSSpec record, using FSMakeFSSpec. Then DoInitFiles calls DoOpenFile to read
the file data and ClrAppFiles to let the Finder know that it has processed the
information for that file.
Using Files 1-35

C H A P T E R 1

Introduction to File Management
Note

The vRefNum field of an AppFile record does not contain a volume
reference number; instead it contains a working directory reference
number, which encodes both the volume reference number and the
parent directory ID. (That’s why the second parameter passed to
FSMakeFSSpec in Listing 1-17 is 0.) ◆

Using a Preferences File 1
Many applications allow the user to alter various settings that control the operation or
configuration of the application. For example, your application might allow the user to
specify the size and placement of any new windows or the default font used to display
text in those windows. You can create a preferences file in which to record user
preferences, and your application can retrieve that file whenever it is launched.

In deciding how to structure your preferences file, it is important to distinguish
document-specific settings from application-specific settings. Some user-specifiable
settings affect only a particular document. For example, the user might have changed the
text font in a particular window. When you save the text in the window, you also want to
save the current font setting. Generally you can do this by storing the font name in a
resource in the document file’s resource fork. Then, when the user opens that document
again, you check for the presence of such a resource, retrieve the information stored in it,
and set the document font accordingly.

Some settings, such as a default text font, are not specific to a particular document. You
might store such settings in the application’s resource fork, but generally it is better to
store them in a separate preferences file. The main reason for this is to avoid problems
that can arise if an application is located on a server volume. If preferences are stored in
resources in the application’s resource fork, those preferences apply to all users
executing that application. Worse yet, the resources can become corrupted if several
different users attempt to alter the settings at the same time.

Thus, it is best to store application-specific settings in a preferences file. The Operating
System provides a special folder in the System Folder, called Preferences, where you can
store that file. Listing 1-18 illustrates a way to open your application’s preferences file.

Listing 1-18 Opening a preferences file

PROCEDURE DoGetPreferences;

VAR

myErr: OSErr;

myVRef: Integer; {volume ref num of Preferences folder}

myDirID: LongInt; {dir ID of Preferences folder}

mySpec: FSSpec; {FSSpec for the preferences file}

myName: Str255; {name of the application}

myRef: Integer; {ref num of app's resource file; ignored}

myHand: Handle; {handle to Finder information; ignored}

myRefNum: Integer; {file reference number}
1-36 Using Files

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
CONST

kPrefID = 128; {resource ID of STR# with filename}

BEGIN

{Determine the name of the preferences file.}

GetIndString(myName, kPrefID, 1);

{Find the Preferences folder in the System Folder.}

myErr := FindFolder(kOnSystemDisk, kPreferencesFolderType,

 kDontCreateFolder, myVRef, myDirID);

IF myErr = noErr THEN

myErr := FSMakeFSSpec(myVRef, myDirID, myName, mySpec);

IF myErr = noErr THEN

myRefNum := FSpOpenResFile(mySpec, fsCurPerm);

{Read your preference settings here.}

CloseResFile(myRefNum);

END;

The DoGetPreferences procedure first determines the name of the preferences file it is
to open and read. To allow easy localization, you should store the name in a resource of
type 'STR#' in your application’s resource file. The DoGetPreferences procedure
assumes that the name is stored as the first string in the resource having ID kPrefID.

The technique shown here assumes that your preference settings can all be stored in
resources. As a result, Listing 1-18 calls the Resource Manager function FSpOpenResFile
to open the resource fork of your preferences file. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for complete details on opening resource files and
reading resources from them.

Adjusting the File Menu 1
Your application should dim any File menu commands that are not available at the time
the user pulls down the File menu. For example, if your application does not yet have a
document window open, then the Save, Save As, and Revert commands should be
dimmed. You can adjust the File menu easily using the technique shown in Listing 1-19.

Listing 1-19 Adjusting the File menu

PROCEDURE DoAdjustFileMenu;

VAR

myWindow: WindowPtr;

myMenu: MenuHandle;

myData: MyDocRecHnd; {handle to window data}
Using Files 1-37

C H A P T E R 1

Introduction to File Management
BEGIN

myWindow := FrontWindow;

IF myWindow = NIL THEN

BEGIN

myMenu := GetMHandle(mFile);

DisableItem(myMenu, iSave); {disable Save}

DisableItem(myMenu, iSaveAs); {disable Save As}

DisableItem(myMenu, iRevert); {disable Revert}

DisableItem(myMenu, iClose); {disable Close}

END

ELSE IF MyGetWindowType(myWindow) = kMyDocWindow THEN

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));

myMenu := GetMHandle(mFile);

EnableItem(myMenu, iSaveAs); {enable Save As}

EnableItem(myMenu, iClose); {enable Close}

IF myData^^.windowDirty THEN

BEGIN

EnableItem(myMenu, iSave); {enable Save}

EnableItem(myMenu, iRevert); {enable Revert}

END

ELSE

BEGIN

DisableItem(myMenu, iSave); {disable Save}

DisableItem(myMenu, iRevert); {disable Revert}

END;

END;

END;

Your application should call DoAdjustFileMenu whenever it receives a mouse-down
event in the menu bar. (No doubt you want to include code appropriate for enabling and
disabling other menu items too.) See the chapter “Menu Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for details on the menu enabling and disabling procedures
used in Listing 1-19.

File Management Reference 1

This section describes the data structures and routines used in this chapter to illustrate
basic file management operations. The section “Data Structures” shows the Pascal data
structures for the file system specification record and the standard file reply record. The
sections that follow describe the Standard File Package routines for opening and saving
1-38 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
documents and the File Manager routines for accessing files, manipulating files and
directories, accessing volumes, and getting information about documents to be opened
when your application is launched.

For a description of other file-related data structures and routines, see the chapters “File
Manager” and “Standard File Package” in this book.

Data Structures 1
This section describes the data structures that your application can use to exchange
information with the File Manager and the Standard File Package. The techniques
described in this chapter use file system specification records and standard file reply
records.

File System Specification Record 1

The file system specification record for files and directories is defined by the FSSpec
data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

Field descriptions

vRefNum The volume reference number of the volume containing the
specified file or directory.

parID The directory ID of the directory containing the specified file
or directory.

name The name of the specified file or directory.

Standard File Reply Records 1

The procedures StandardGetFile and StandardPutFile both return information
to your application using a standard file reply record, which is defined by the
StandardFileReply data type. The reply record identifies selected files with a file
system specification record, which you can pass directly to many of the File Manager
functions described in the sections that follow. The reply record also contains fields that
support several Finder features.
File Management Reference 1-39

C H A P T E R 1

Introduction to File Management
TYPE StandardFileReply =

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected file, folder, or volume}

sfScript: ScriptCode; {script of file, folder, or volume name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

Field descriptions

sfGood Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the sfGood field contains TRUE.

sfReplacing Reports whether a file to be saved replaces an existing file of
the same name. This field is valid only after a call to the
StandardPutFile or CustomPutFile procedure. When
the user assigns a name that duplicates that of an existing file,
the Standard File Package asks for verification by displaying a
subsidiary dialog box (illustrated in Figure 1-10). If the user
verifies the name, the Standard File Package sets the sfReplacing
field to TRUE and returns to your application; if the user cancels
the overwriting of the file, the Standard File Package returns
to the main dialog box. If the name does not conflict with an
existing name, the Standard File Package sets the field to FALSE
and returns.

sfType Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.) Only StandardGetFile and CustomGetFile return a
file type in this field.

sfFile Describes the selected file, folder, or volume with a file system
specification record, which contains a volume reference number,
parent directory ID, and name. (See the chapter “File Manager” in
this book for a complete description of the file system specification
record.) If the selected item is an alias for another item, the Standard
File Package resolves the alias and places the file system
specification record for the target in the sfFile field when the user
completes the dialog box. If the selected file is a stationery pad, the
reply record describes the file itself, not a copy of the file.

sfScript Identifies the script in which the name of the document is to be
displayed. (This information is used by the Finder and by the
Standard File Package.) A script code of smSystemScript (–1)
represents the default system script.
1-40 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
sfFlags Contains the Finder flags from the Finder information record in the
catalog entry for the selected file. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for a description of
the Finder flags.) This field is returned only by StandardGetFile
and CustomGetFile. If your application supports stationery, it
should check the stationery bit in the Finder flags to determine
whether to treat the selected file as stationery. Unlike the Finder, the
Standard File Package does not automatically create a document
from a stationery pad and pass your application the new document.
If the user opens a stationery document from within an application
that does not support stationery, the Standard File Package displays
a dialog box warning the user that the master copy is being opened.

sfIsFolder Reports whether the selected item is a folder (TRUE) or a file or
volume (FALSE). This field is meaningful only during the execution
of a dialog hook function.

sfIsVolume Reports whether the selected item is a volume (TRUE) or a file or
folder (FALSE). This field is meaningful only during the execution
of a dialog hook function.

sfReserved1 Reserved.
sfReserved2 Reserved.

Application Files Records 1

The GetAppFiles procedure returns information about files opened at application
launch time in an application files record, defined by the AppFile data type:

TYPE AppFile =

RECORD

vRefNum: Integer; {working directory reference number}

fType: OSType; {file type}

versNum: Integer; {version number; ignored}

fName: Str255; {filename}

END;

Field descriptions

vRefNum A working directory reference number that encodes the volume and
parent directory of the file.

fType The file type.
versNum Reserved.
fName The filename.
File Management Reference 1-41

C H A P T E R 1

Introduction to File Management
File Specification Routines 1
If your application has no special user interface requirements, you can use the
StandardGetFile and StandardPutFile procedures to display the default dialog
boxes for opening and saving documents. For a description of more advanced file
specification routines, see the chapter “Standard File Package” in this book.

StandardGetFile 1

You can use the StandardGetFile procedure to display the default Open dialog box
when the user is opening a file.

PROCEDURE StandardGetFile (fileFilter: FileFilterProcPtr;

numTypes: Integer;

typeList: SFTypeList;

VAR reply: StandardFileReply);

fileFilter A pointer to an optional file filter function, provided by your application,
through which StandardGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

reply The reply record, which StandardGetFile fills in before returning.

DESCRIPTION

The StandardGetFile procedure presents a dialog box through which the user
specifies the name and location of a file to be opened. While the dialog box is active,
StandardGetFile gets and handles events until the user completes the interaction,
either by selecting a file to open or by canceling the operation. StandardGetFile
returns the user’s input in a record of type StandardFileReply.

The fileFilter, numTypes, and typeList parameters together determine which
files appear in the displayed list. The first filtering is by file type, which you specify in
the numTypes and typeList parameters. The numTypes parameter specifies the
number of file types to be displayed. You can specify one or more types. If you specify a
numTypes value of –1, the first filtering passes files of all types.

The fileFilter parameter points to an optional file filter function, provided by your
application, through which StandardGetFile passes files of the specified types. See
the chapter “Standard File Package” in this book for a complete description of how you
specify this filter function.
1-42 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
SPECIAL CONSIDERATIONS

The StandardGetFile procedure is not available in all versions of system software.
Use the Gestalt function to determine whether StandardGetFile is available before
calling it.

Because StandardGetFile may move memory, you should not call it at interrupt time.

StandardPutFile 1

You can use the StandardPutFile procedure to display the default Save dialog box
when the user is saving a file.

PROCEDURE StandardPutFile (prompt: Str255; defaultName: Str255;

VAR reply: StandardFileReply);

prompt The prompt message to be displayed over the text field.

defaultName
The initial name of the file.

reply The reply record, which StandardPutFile fills in before returning.

DESCRIPTION

The StandardPutFile procedure presents a dialog box through which the user
specifies the name and location of a file to be written to. The dialog box is centered on
the screen. While the dialog box is active, StandardPutFile gets and handles events
until the user completes the interaction, either by selecting a name and authorizing the
save or by canceling the save. The StandardPutFile procedure returns the user’s
input in a record of type StandardFileReply.

SPECIAL CONSIDERATIONS

The StandardPutFile procedure is not available in all versions of system software.
Use the Gestalt function to determine whether StandardPutFile is available before
calling it.

Because StandardPutFile may move memory, you should not call it at interrupt time.

File Access Routines 1
This section describes the File Manager’s file access routines. When you call one of these
routines, you specify a file by a path reference number (which the File Manager returns
to your application when your application opens the file). Unless your application has
very specialized needs, you should be able to manage all file access (for example, writing
data to the file) using the routines described in this section. Typically you use these
routines to operate on a file’s data fork, but in certain circumstances you might want to
use them on a file’s resource fork as well.
File Management Reference 1-43

C H A P T E R 1

Introduction to File Management
Reading, Writing, and Closing Files 1

You can use the functions FSRead, FSWrite, and FSClose to read data from a file,
write data to a file, and close an open file. All three of these functions operate on open
files. You can use any one of a variety of routines to open a file (for example,
FSpOpenDF).

FSRead 1

You can use the FSRead function to read any number of bytes from an open file.

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;

buffPtr: Ptr): OSErr;

refNum The file reference number of an open file.

count On input, the number of bytes to read; on output, the number of bytes
actually read.

buffPtr A pointer to the data buffer into which the bytes are to be read.

DESCRIPTION

The FSRead function attempts to read the requested number of bytes from the specified
file into the specified buffer. The buffPtr parameter points to that buffer; this buffer is
allocated by your application and must be at least as large as the count parameter.

Because the read operation begins at the current mark, you might want to set the mark
first by calling the SetFPos function. If you try to read past the logical end-of-file,
FSRead reads in all the data up to the end-of-file, moves the mark to the end-of-file, and
returns eofErr as its function result. Otherwise, FSRead moves the file mark to the byte
following the last byte read and returns noErr.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
fLckdErr -45 File is locked
paramErr –50 Negative count
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file
1-44 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
FSWrite 1

You can use the FSWrite function to write any number of bytes to an open file.

FUNCTION FSWrite (refNum: Integer; VAR count: LongInt;

buffPtr: Ptr): OSErr;

refNum The file reference number of an open file.

count On input, the number of bytes to write to the file; on output, the number
of bytes actually written.

buffPtr A pointer to the data buffer from which the bytes are to be written.

DESCRIPTION

The FSWrite function takes the specified number of bytes from the specified data buffer
and attempts to write them to the specified file. Because the write operation begins at the
current mark, you might want to set the mark first by calling the SetFPos function.

If the write operation completes successfully, FSWrite moves the file mark to the
byte following the last byte written and returns noErr. If you try to write past the
logical end-of-file, FSWrite moves the logical end-of-file. If you try to write past
the physical end-of-file, FSWrite adds one or more clumps to the file and moves the
physical end-of-file accordingly.

RESULT CODES

FSClose 1

You can use the FSClose function to close an open file.

FUNCTION FSClose (refNum: Integer): OSErr;

refNum The file reference number of an open file.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
posErr –40 Attempt to position mark before start of file
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
paramErr –50 Negative count
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
File Management Reference 1-45

C H A P T E R 1

Introduction to File Management
DESCRIPTION

The FSClose function removes the access path for the specified file and writes the
contents of the volume buffer to the volume.

Note

The FSClose function calls PBFlushFile internally to write the file’s
bytes onto the volume. To ensure that the file’s catalog entry is updated,
you should call FlushVol after you call FSClose. ◆

▲ W A R N I N G

Make sure that you do not call FSClose with a file reference number
of a file that has already been closed. Attempting to close the same file
twice may result in loss of data on a volume. See the description of
file control blocks in the chapter “File Manager” in this book for a
discussion of how this can happen. ▲

RESULT CODES

Manipulating the File Mark 1

You can use the functions GetFPos and SetFPos to get or set the current position of the
file mark.

GetFPos 1

You can use the GetFPos function to determine the current position of the mark before
reading from or writing to an open file.

FUNCTION GetFPos (refNum: Integer; VAR filePos: LongInt): OSErr;

refNum The file reference number of an open file.

filePos On output, the current position of the mark.

DESCRIPTION

The GetFPos function returns, in the filePos parameter, the current position of the file
mark for the specified open file. The position value is zero-based; that is, the value of
filePos is 0 if the file mark is positioned at the beginning of the file.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
fnfErr –43 File not found
rfNumErr –51 Bad reference number
1-46 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
RESULT CODES

SetFPos 1

You can use the SetFPos function to set the position of the file mark before reading
from or writing to an open file.

FUNCTION SetFPos (refNum: Integer; posMode: Integer;

posOff: LongInt): OSErr;

refNum The file reference number of an open file.

posMode The positioning mode.

posOff The positioning offset.

DESCRIPTION

The SetFPos function sets the file mark of the specified file. The posMode parameter
indicates how to position the mark; it must contain one of the following values:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

If you specify fsAtMark, the mark is left wherever it’s currently positioned, and the
posOff parameter is ignored. The next three constants let you position the mark relative
to either the beginning of the file, the logical end-of-file, or the current mark. If you
specify one of these three constants, you must also pass in posOff a byte offset (either
positive or negative) from the specified point. If you specify fsFromLEOF, the value in
posOff must be less than or equal to 0.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
gfpErr –52 Error during GetFPos

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
rfNumErr –51 Bad reference number
File Management Reference 1-47

C H A P T E R 1

Introduction to File Management
Manipulating the End-of-File 1

You can use the functions GetEOF and SetEOF to get or set the logical end-of-file of an
open file.

GetEOF 1

You can use the GetEOF function to determine the current logical end-of-file of an open
file.

FUNCTION GetEOF (refNum: Integer; VAR logEOF: LongInt): OSErr;

refNum The file reference number of an open file.

logEOF On output, the logical end-of-file.

DESCRIPTION

The GetEOF function returns, in the logEOF parameter, the logical end-of-file of the
specified file.

RESULT CODES

SEE ALSO

For a description of the logical and physical end-of-file, see the section “File Access
Characteristics” on page 1-8.

SetEOF 1

You can use the SetEOF function to set the logical end-of-file of an open file.

FUNCTION SetEOF (refNum: Integer; logEOF: LongInt): OSErr;

refNum The file reference number of an open file.

logEOF The logical end-of-file.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file
1-48 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
DESCRIPTION

The SetEOF function sets the logical end-of-file of the specified file. If you attempt to set
the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set 1
byte beyond the end of the next free allocation block; if there isn’t enough space on the
volume, no change is made, and SetEOF returns dskFulErr as its function result.

If you set the logEOF parameter to 0, all space occupied by the file on the volume is
released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0 is
therefore not the same as deleting the file (which removes both file forks at once).

RESULT CODES

SEE ALSO

For a description of the logical and physical end-of-file, see the section “File Access
Characteristics” on page 1-8.

File and Directory Manipulation Routines 1
The File Manager includes a set of file and directory manipulation routines that accept
FSSpec records as parameters. Depending on the requirements of your application and
on the environment in which it is running, you may be able to accomplish all your file
and directory operations by using these routines.

Before calling any of these routines, however, you should call the Gestalt function to
ensure that they are available in the operating environment. (See “Testing for File
Management Routines” on page 1-14 for an illustration of calling Gestalt.) If these
routines are not available, you can call the corresponding HFS routines.

Opening, Creating, and Deleting Files 1

The File Manager provides the FSpOpenDF, FSpCreate, and FSpDelete routines,
which allow you to open, create, and delete files.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
File Management Reference 1-49

C H A P T E R 1

Introduction to File Management
FSpOpenDF 1

You can use the FSpOpenDF function to open a file’s data fork.

FUNCTION FSpOpenDF (spec: FSSpec; permission: SignedByte;

VAR refNum: Integer): OSErr;

spec An FSSpec record specifying the file whose data fork is to be opened.

permission
A constant indicating the desired file access permissions.

refNum A reference number of an access path to the file’s data fork.

DESCRIPTION

The FSpOpenDF function opens the data fork of the file specified by the spec parameter
and returns a file reference number in the refNum parameter. You can pass that reference
number as a parameter to any of the low- or high-level file access routines.

The permission parameter specifies the kind of access permission mode you want. You
can specify one of these constants:

CONST

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

In most cases, you can simply set the permission parameter to fsCurPerm. Some
applications request fsRdWrPerm, to ensure that they can both read from and write to a
file.

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
1-50 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
FSpCreate 1

You can use the FSpCreate function to create a new file.

FUNCTION FSpCreate (spec: FSSpec; creator: OSType;

fileType: OSType; scriptTag: ScriptCode):

OSErr;

spec An FSSpec record specifying the file to be created.

creator The creator of the new file.

fileType The file type of the new file.

scriptTag The code of the script system in which the filename is to be displayed. If
you have established the name and location of the new file using either
the StandardPutFile or CustomPutFile procedure, specify the script
code returned in the reply record. (See the chapter “Standard File
Package” in this book for a description of StandardPutFile and
CustomPutFile.) Otherwise, specify the system script by setting the
scriptTag parameter to the value smSystemScript.

DESCRIPTION

The FSpCreate function creates a new file (both forks) with the specified type, creator,
and script code. The new file is unlocked and empty. The date and time of creation and
last modification are set to the current date and time.

See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for
information on file types and creators.

Files created using FSpCreate are not automatically opened. If you want to write
data to the new file, you must first open the file using a file access routine (such
as FSpOpenDF).

Note

The resource fork of the new file exists but is empty. You’ll need to call
one of the Resource Manager procedures CreateResFile,
HCreateResFile, or FSpCreateResFile to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFile, HOpenResFile, or FSpOpenResFile). ◆
File Management Reference 1-51

C H A P T E R 1

Introduction to File Management
RESULT CODES

FSpDelete 1

You can use the FSpDelete function to delete files and directories.

FUNCTION FSpDelete (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file or directory to delete.

DESCRIPTION

The FSpDelete function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. The file ID reference, if any, is removed.

A file must be closed before you can delete it. Similarly, a directory must be empty before
you can delete it. If you attempt to delete an open file or a nonempty directory,
FSpDelete returns the result code fBsyErr. FSpDelete also returns the result code
fBsyErr if the directory has an open working directory associated with it.

RESULT CODES

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 A directory exists with that name

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File busy, directory not empty, or working directory

control block open
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
1-52 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
Exchanging the Data in Two Files 1

The function FSpExchangeFiles allows you to exchange the data in two files.

FSpExchangeFiles 1

You can use the FSpExchangeFiles function to exchange the data stored in two files
on the same volume.

FUNCTION FSpExchangeFiles (source: FSSpec; dest: FSSpec): OSErr;

source The source file. The contents of this file and its file information are placed
in the file specified by the dest parameter.

dest The destination file. The contents of this file and its file information are
placed in the file specified by the source parameter.

DESCRIPTION

The FSpExchangeFiles function swaps the data in two files by changing the
information in the volume’s catalog and, if the files are open, in the file control blocks.
You should use FSpExchangeFiles when updating an existing file, so that the file ID
remains valid in case the file is being tracked through its file ID. The FSpExchangeFiles
function changes the fields in the catalog entries that record the location of the data and
the modification dates. It swaps both the data forks and the resource forks.

The FSpExchangeFiles function works on both open and closed files. If either file is
open, FSpExchangeFiles updates any file control blocks associated with the file.
Exchanging the contents of two files requires essentially the same access permissions as
opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do
not, FSpExchangeFiles returns the result code diffVolErr.

RESULT CODES

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
wrgVolTypErr –123 Not an HFS volume
diffVolErr –1303 Files on different volumes
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object is a directory, not a file
afpSameObjectErr –5038 Source and destination files are the same
File Management Reference 1-53

C H A P T E R 1

Introduction to File Management
Creating File System Specifications 1

The FSMakeFSSpec function allows you to create FSSpec records.

FSMakeFSSpec 1

You can use the FSMakeFSSpec function to initialize an FSSpec record to particular
values for a file or directory.

FUNCTION FSMakeFSSpec (vRefNum: Integer; dirID: LongInt;

fileName: Str255; VAR spec: FSSpec):

OSErr;

vRefNum A volume specification. This parameter can contain a volume reference
number, a working directory reference number, a drive number, or 0 (to
specify the default volume).

dirID A directory specification. This parameter usually specifies the parent
directory ID of the target object. If the directory is sufficiently specified by
either the vRefNum or fileName parameter, dirID can be set to 0. If you
explicitly specify dirID (that is, if it has any value other than 0), and if
vRefNum specifies a working directory reference number, dirID
overrides the directory ID included in vRefNum. If the fileName
parameter contains an empty string, FSMakeFSSpec creates an FSSpec
record for a directory specified by either the dirID or vRefNum
parameter.

fileName A full or partial pathname. If fileName specifies a full pathname,
FSMakeFSSpec ignores both the vRefNum and dirID parameters. A
partial pathname might identify only the final target, or it might include
one or more parent directory names. If fileName specifies a partial
pathname, then vRefNum, dirID, or both must be valid.

spec A file system specification to be filled in by FSMakeFSSpec.

DESCRIPTION

The FSMakeFSSpec function fills in the fields of the spec parameter using the
information contained in the other three parameters. Call FSMakeFSSpec whenever
you want to create an FSSpec record.

You can pass the input to FSMakeFSSpec in several ways. The chapter “File
Manager” in this book explains how FSMakeFSSpec interprets its input.

If the specified volume is mounted and the specified parent directory exists, but the
target file or directory doesn’t exist in that location, FSMakeFSSpec fills in the record
and then returns fnfErr instead of noErr. The record is valid, but it describes a target
that doesn’t exist. You can use the record for other operations, such as creating a file with
the FSpCreate function.
1-54 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
In addition to the result codes that follow, FSMakeFSSpec can return a number of other
File Manager error codes. If your application receives any result code other than noErr
or fnfErr, all fields of the resulting FSSpec record are set to 0.

RESULT CODES

Volume Access Routines 1
This section describes the high-level volume access routines. Unless your application has
very specialized needs, you should be able to manage all volume access using the
routines described in this section. In fact, most applications are likely to need only the
FlushVol function described in the next section, “Updating Volumes.”

When you call one of these routines, you specify a volume by a volume reference
number (which you can obtain, for example, by calling the GetVInfo function, or from
the reply record returned by the Standard File Package). You can also specify a volume
by name, but this is generally discouraged, because there is no guarantee that volume
names are unique.

Updating Volumes 1

When you close a file, you should call FlushVol to ensure that any changed contents of
the file are written to the volume.

FlushVol 1

You can use the FlushVol function to write the contents of the volume buffer and
update information about the volume.

FUNCTION FlushVol (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a mounted volume.

vRefNum A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

DESCRIPTION

On the specified volume, the FlushVol function writes the contents of the associated
volume buffer and descriptive information about the volume (if they’ve changed since
the last time FlushVol was called). This information is written to the volume.

noErr 0 No error
nsvErr –35 Volume doesn’t exist
fnfErr –43 File or directory does not exist (FSSpec is still valid)
File Management Reference 1-55

C H A P T E R 1

Introduction to File Management
RESULT CODES

Obtaining Volume Information 1

You can get information about a volume by calling the GetVInfo or GetVRefNum
function.

GetVInfo 1

You can use the GetVInfo function to get information about a mounted volume.

FUNCTION GetVInfo (drvNum: Integer; volName: StringPtr;

VAR vRefNum: Integer;

VAR freeBytes: LongInt): OSErr;

drvNum The drive number of the volume for which information is requested.

volName On output, a pointer to the name of the specified volume.

vRefNum The volume reference number of the specified volume.

freeBytes The available space (in bytes) on the specified volume.

DESCRIPTION

The GetVInfo function returns the name, volume reference number, and available
space (in bytes) for the specified volume. You specify a volume by providing its drive
number in the drvNum parameter. You can pass 0 in the drvNum parameter to get
information about the default volume.

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive

noErr 0 No error
nsvErr –35 No such volume
paramErr –50 No default volume
1-56 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
GetVRefNum 1

You can use the GetVRefNum function to get a volume reference number from a file
reference number.

FUNCTION GetVRefNum (refNum: Integer; VAR vRefNum: Integer):

OSErr;

refNum The file reference number of an open file.

vRefNum On exit, the volume reference number of the volume containing the file
specified by refNum.

DESCRIPTION

The GetVRefNum function returns the volume reference number of the volume
containing the specified file. If you also want to determine the directory ID of the
specified file’s parent directory, call the PBGetFCBInfo function.

RESULT CODES

Application Launch File Routines 1
You can call GetAppParms to determine your application’s name and the reference
number of its resource file. When your application starts up, you can call
CountAppFiles to determine whether the user selected any documents to open or
print. If so, you can call GetAppFiles and ClrAppFiles to process the information
passed to your application by the Finder.

Note

If your application supports high-level events, you receive this
information from the Finder in an Open Documents or Print
Documents event. ◆

noErr 0 No error
rfNumErr –51 Bad reference number
File Management Reference 1-57

C H A P T E R 1

Introduction to File Management
GetAppParms 1

You can use the GetAppParms procedure to get information about the current
application and about files selected by the user for opening or printing.

PROCEDURE GetAppParms(VAR apName: Str255; VAR apRefNum: Integer;

 VAR apParam: Handle);

apName On output, the name of the calling application.

apRefNum On output, the reference number of the application’s resource file.

apParam On output, a handle to the Finder information about files to open or print.

DESCRIPTION

The GetAppParms procedure returns information about the current application. You can
call GetAppParms at application launch time to determine which files, if any, the user
has selected in the Finder for opening or printing. You can call GetAppParms at any
time to determine the current application’s name and the reference number of the
application’s resource fork.

The GetAppParms procedure returns the application’s name in the apName parameter
and the reference number of its resource fork in the apRefNum parameter. A handle to
the Finder information is returned in apParam. This information consists of a word that
encodes the message or action to be performed, a word that indicates how many files to
process, and a list of Finder information about each such file. The Finder information has
the structure of an AppFile record, except that the filename occupies only as many
bytes as are required to hold the name (padded to an even number of bytes, if
necessary). In general, it is easier to use the GetAppFiles procedure to access the
Finder information.

SPECIAL CONSIDERATIONS

If you simply want to determine the application’s resource file reference number, you
can call the Resource Manager function CurResFile when your application starts up.

If you need more extensive information about the application than GetAppParms
provides, you can use the Process Manager function GetCurrentProcess.

ASSEMBLY-LANGUAGE INFORMATION

You can get the application’s name, reference number, and handle to the Finder
information directly from the global variables CurApName, CurApRefNum, and
AppParmHandle.
1-58 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
CountAppFiles 1

You can use the CountAppFiles procedure to determine how many documents (if any)
the user has selected at application launch time for opening or printing.

PROCEDURE CountAppFiles (VAR message: Integer;

 VAR count: Integer);

message The action to be performed on the selected files.

count The number of files selected.

DESCRIPTION

The CountAppFiles procedure deciphers the Finder information passed to your
application and returns information about the files that were selected when your
application was started up. On exit, the count parameter contains the number of
selected files, and the message parameter contains an integer that indicates whether the
files are to be opened or printed. The message parameter contains one of these
constants:

CONST

appOpen = 0; {open the document(s)}

appPrint = 1; {print the document(s)}

GetAppFiles 1

You can use the GetAppFiles procedure to retrieve information about each file selected
at application startup for opening or printing.

PROCEDURE GetAppFiles (index: Integer; VAR theFile: AppFile);

index The index of the file whose information is returned.

theFile A structure containing the returned information.

DESCRIPTION

The GetAppFiles procedure returns information about a file that was selected when
your application was started up (as listed in the Finder information). The index
parameter indicates the file for which information should be returned; it must be
between 1 and the number returned by CountAppFiles, inclusive.
File Management Reference 1-59

C H A P T E R 1

Introduction to File Management
ClrAppFiles 1

You can use the ClrAppFiles procedure to notify the Finder that you have processed
the information about a file selected for opening or printing at application startup.

PROCEDURE ClrAppFiles (index: Integer);

index The index of the file whose information is to be cleared.

DESCRIPTION

The ClrAppFiles procedure changes the Finder information passed to your
application about the specified file so that the Finder knows you’ve processed the file.
The index parameter must be between 1 and the number returned by CountAppFiles,
inclusive. You should call ClrAppFiles for every document your application opens or
prints, so that the information returned by CountAppFiles and GetAppFiles is
always correct. The ClrAppFiles procedure sets the file type in the Finder information
to 0.
1-60 File Management Reference

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
Summary of File Management 1

Pascal Summary 1

Constants 1

CONST

{Gestalt constants}

gestaltFSAttr = 'fs '; {file system attributes selector}

gestaltHasFSSpecCalls = 1; {supports FSSpec records}

gestaltStandardFileAttr = 'stdf'; {Standard File attributes selector}

gestaltStandardFile58 = 0; {supports StandardPutFile etc.}

gestaltFindFolderAttr = 'fold'; {FindFolder attributes selector}

gestaltFindFolderPresent= 0; {FindFolder is present}

{access modes for opening files}

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

{file mark positioning modes}

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

rdVerify = 64; {add to above for read-verify}

{messages from CountAppFiles}

appOpen = 0; {open the document(s)}

appPrint = 1; {print the document(s)}
Summary of File Management 1-61

C H A P T E R 1

Introduction to File Management
Data Types 1

File System Specification Record

TYPE FSSpec =

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

FSSpecPtr = ^FSSpec;

FSSpecHandle = ^FSSpecPtr;

Standard File Reply Record

TYPE StandardFileReply=

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected item}

sfScript: ScriptCode; {script of selected item's name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

Application Files Record

TYPE AppFile =

RECORD

vRefNum: Integer; {working directory reference number}

fType: OSType; {file type}

versNum: Integer; {version number; ignored}

fName: Str255; {filename}

END;

SFTypeList = ARRAY[0..3] OF OSType;

FileFilterProcPtr = ProcPtr; {file filter function}
1-62 Summary of File Management

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
File Specification Routines 1

Opening Files

PROCEDURE StandardGetFile (fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
VAR reply: StandardFileReply);

Saving Files

PROCEDURE StandardPutFile (prompt: Str255; defaultName: Str255;
VAR reply: StandardFileReply);

File Access Routines 1

Reading, Writing, and Closing Files

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION FSWrite (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION FSClose (refNum: Integer): OSErr;

Manipulating the File Mark

FUNCTION GetFPos (refNum: Integer; VAR filePos: LongInt): OSErr;

FUNCTION SetFPos (refNum: Integer; posMode: Integer;
posOff: LongInt): OSErr;

Manipulating the End-of-File

FUNCTION GetEOF (refNum: Integer; VAR logEOF: LongInt): OSErr;

FUNCTION SetEOF (refNum: Integer; logEOF: LongInt): OSErr;

File and Directory Manipulation Routines 1

Opening, Creating, and Deleting Files

FUNCTION FSpOpenDF (spec: FSSpec; permission: SignedByte;
VAR refNum: Integer): OSErr;

FUNCTION FSpCreate (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
OSErr;

FUNCTION FSpDelete (spec: FSSpec): OSErr;
Summary of File Management 1-63

C H A P T E R 1

Introduction to File Management
Exchanging the Data in Two Files

FUNCTION FSpExchangeFiles (source: FSSpec; dest: FSSpec): OSErr;

Creating File System Specifications

FUNCTION FSMakeFSSpec (vRefNum: Integer; dirID: LongInt;
fileName: Str255; VAR spec: FSSpec): OSErr;

Volume Access Routines 1

Updating Volumes

FUNCTION FlushVol (volName: StringPtr; vRefNum: Integer): OSErr;

Obtaining Volume Information

FUNCTION GetVInfo (drvNum: Integer; volName: StringPtr;
VAR vRefNum: Integer; VAR freeBytes: LongInt):
OSErr;

FUNCTION GetVRefNum (refNum: Integer; VAR vRefNum: Integer): OSErr;

Application Launch File Routines 1

PROCEDURE GetAppParms (VAR apName: Str255; VAR apRefNum: Integer;
VAR apParam: Handle);

PROCEDURE CountAppFiles (VAR message: Integer; VAR count: Integer);

PROCEDURE GetAppFiles (index: Integer; VAR theFile: AppFile);

PROCEDURE ClrAppFiles (index: Integer);

C Summary 1

Constants 1

/*Gestalt constants*/

#define gestaltFSAttr 'fs ' /*file system attributes selector*/

#define gestaltFullExtFSDispatching 0 /*exports HFSDispatch traps*/

#define gestaltHasFSSpecCalls 1 /*supports FSSpec records*/

#define gestaltFindFolderAttr 'fold' /*FindFolder attributes selector*/

#define gestaltFindFolderPresent 0 /*FindFolder is present*/
1-64 Summary of File Management

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
/*Gestalt Standard File attributes selector and reply*/

#define gestaltStandardFileAttr 'stdf'

#define gestaltStandardFile58 0

/*values for requesting file read/write permissions*/

enum {

fsCurPerm = 0, /*whatever permission is allowed*/

fsRdPerm = 1, /*read permission*/

fsWrPerm = 2, /*write permission*/

fsRdWrPerm = 3, /*exclusive read/write permission*/

fsRdWrShPerm = 4}; /*shared read/write permission*/

/*file mark positioning modes*/

enum {

fsAtMark = 0, /*at current mark}

fsFromStart = 1, /*set mark relative to beginning of file*/

fsFromLEOF = 2, /*set mark relative to logical end-of-file*/

fsFromMark = 3, /*set mark relative to current mark*/

rdVerify = 64}; /*add to above for read-verify*/

/*messages from CountAppFiles*/

enum {

appOpen = 0, /*open the document(s)*/

appPrint = 1}; /*print the document(s)*/

Data Types 1

File System Specification Record

struct FSSpec { /*file system specification*/

short vRefNum; /*volume reference number*/

long parID; /*directory ID of parent directory*/

Str63 name; /*filename or directory name*/

};

typedef struct FSSpec FSSpec;

typedef FSSpec *FSSpecPtr;

typedef FSSpecPtr *FSSpecHandle;
Summary of File Management 1-65

C H A P T E R 1

Introduction to File Management
Standard File Reply Record

struct StandardFileReply { /*enhanced standard file reply record*/

Boolean sfGood; /*TRUE if user did not cancel*/

Boolean sfReplacing;/*TRUE if replacing file with same name*/

OSType sfType; /*file type*/

FSSpec sfFile; /*selected file, folder, or volume*/

ScriptCode sfScript; /*script of file, folder, or volume name*/

short sfFlags; /*Finder flags of selected item*/

Boolean sfIsFolder; /*selected item is a folder*/

Boolean sfIsVolume; /*selected item is a volume*/

long sfReserved1;/*reserved*/

short sfReserved2;/*reserved*/

};

typedef struct StandardFileReply StandardFileReply;

Application Files Record

struct AppFile {

short vRefNum; /*working directory reference number*/

OSType fType; /*file type*/

short versNum; /*version number; ignored*/

Str255 fName; /*filename*/

END;

typedef struct AppFile AppFile;

Standard File Type List

typedef OSType SFTypeList[4];

Callback Routine Pointer Types
/*file filter function*/

typedef pascal Boolean (*FileFilterProcPtr)

(ParmBlkPtr PB);

File Specification Routines 1

Opening Files

pascal void StandardGetFile (const Str255 prompt,
FileFilterProcPtr fileFilter,
short numTypes, SFTypeList typeList,
StandardFileReply *reply);
1-66 Summary of File Management

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
Saving Files

pascal void StandardPutFile (const Str255 prompt, const Str255 defaultName,
StandardFileReply *reply);

File Access Routines 1

Reading, Writing, and Closing Files

pascal OSErr FSRead (short refNum, long *count, Ptr buffPtr);

pascal OSErr FSWrite (short refNum, long *count, Ptr buffPtr);

pascal OSErr FSClose (short refNum);

Manipulating the File Mark

pascal OSErr GetFPos (short refNum, long *filePos);

pascal OSErr SetFPos (short refNum, short posMode, long posOff);

Manipulating the End-of-File

pascal OSErr GetEOF (short refNum, long *logEOF);

pascal OSErr SetEOF (short refNum, long logEOF);

File and Directory Manipulation Routines 1

Opening, Creating, and Deleting Files

pascal OSErr FSpOpenDF (const FSSpec *spec, char permission,
short *refNum);

pascal OSErr FSpCreate (const FSSpec *spec, OSType creator,
OSType fileType, ScriptCode scriptTag);

pascal OSErr FSpDelete (const FSSpec *spec);

Exchanging the Data in Two Files

pascal OSErr FSpExchangeFiles

(const FSSpec *source, const FSSpec *dest);

Creating File System Specifications

pascal OSErr FSMakeFSSpec (short vRefNum, long dirID,
ConstStr255Param fileName, FSSpecPtr spec);
Summary of File Management 1-67

C H A P T E R 1

Introduction to File Management
Volume Access Routines 1

Updating Volumes

pascal OSErr FlushVol (StringPtr volName, short vRefNum);

Obtaining Volume Information

pascal OSErr GetVInfo (short drvNum, StringPtr volName,
short *vRefNum, long *freeBytes);

pascal OSErr GetVRefNum (short refNum, short *vRefNum);

Application Launch File Routines 1

pascal void GetAppParms (Str255 apName, short *apRefNum,
Handle *apParam);

pascal void CountAppFiles (short *message, short *count);

pascal void GetAppFiles (short index, AppFile *theFile);

pascal void ClrAppFiles (short index);

Assembly-Language Summary 1

Global Variables 1

AppParmHandle long Handle to Finder information.
CurApName 32 bytes Name of current application (length byte followed by up to

31 characters).
CurApRefNum word Reference number of current application’s resource file.
1-68 Summary of File Management

C H A P T E R 1

Introduction to File Management

1

Introduction to F
ile M

anagem
ent
Result Codes 1
noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 All allocation blocks on the volume are full
nsvErr –35 Volume not found
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File locked
vLckdErr –46 Software volume lock
fBsyErr –47 File is busy; one or more files are open; directory not

empty or working directory control block is open
dupFNErr –48 A file with the specified name and version number

already exists
opWrErr –49 File already open for writing
paramErr –50 Parameter error
rfNumErr –51 Reference number specifies nonexistent access path
gfpErr –52 Error during GetFPos
volOfflinErr –53 Volume is offline
permErr –54 Attempt to open locked file for writing
nsDrvErr –56 Specified drive number doesn’t match any number in

the drive queue
wrPermErr –61 Read/write permission doesn’t allow writing
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Not an HFS volume
notAFileErr –1302 Specified file is a directory
diffVolErr –1303 Files are on different volumes
sameFileErr –1306 Source and destination files are the same
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Object is a directory, not a file; a directory exists with

that name
afpSameObjectErr –5038 Source and destination files are the same
Summary of File Management 1-69

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to File Management TOC
	Introduction to File Management
	About Files
	File Forks
	File Size
	File Access Characteristics
	The Hierarchical File System
	Identifying Files and Directories

	Using Files
	Testing for File Management Routines
	Defining a Document Record
	Creating a New File
	Opening a File
	Reading File Data
	Writing File Data
	Saving a File
	Reverting to a Saved File
	Closing a File
	Opening Files at Application Startup Time
	Using a Preferences File
	Adjusting the File Menu

	File Management Reference
	Data Structures
	File System Specification Record
	Standard File Reply Records
	Application Files Records

	File Specification Routines
	File Access Routines
	Reading, Writing, and Closing Files
	Manipulating the File Mark
	Manipulating the End-of-File

	File and Directory Manipulation Routines
	Opening, Creating, and Deleting Files
	Exchanging the Data in Two Files
	Creating File System Specifications

	Volume Access Routines
	Updating Volumes
	Obtaining Volume Information

	Application Launch File Routines

	Summary of File Management
	Pascal Summary
	Constants
	Data Types
	File Specification Routines
	File Access Routines
	File and Directory Manipulation Routines
	Volume Access Routines
	Application Launch File Routines

	C Summary
	Constants
	Data Types
	File Specification Routines
	File Access Routines
	File and Directory Manipulation Routines
	Volume Access Routines
	Application Launch File Routines

	Assembly-Language Summary
	Global Variables

	Result Codes

	 File Manager TOC
	 File Manager
	 Standard File Package TOC
	 Standard File Package
	 Alias Manager TOC
	 Alias Manager
	 Disk Initialization Manager TOC
	 Disk Initialization Manager
	 Glossary
	 Index
	 Colophon

