CHAPTER 1

Introduction to File Management

This chapter is a general introduction to file management on Macintosh computers. It
explains the basic structure of Macintosh files and the hierarchical file system (HFS) used
with Macintosh computers, and it shows how you can use the services provided by the
Standard File Package, the File Manager, the Finder, and other system software
components to create, open, update, and close files.

You should read this chapter if your application implements the commands typically
found in an application’s File menu—except for printing commands and the Quit
command, which are described elsewhere. This chapter describes how to

» create a new file

= open an existing file

» close a file

= save a document’s data in a file

= save a document’s data in a file under a new name
= revert to the last saved version of a file

= create and read a preferences file

Depending on the requirements of your application, you may be able to accomplish all
your file-related operations by following the instructions given in this chapter. If your
application has more specialized file management needs, you’'ll need to read some or all
of the remaining chapters in this book.

This chapter assumes that your application is running in an environment in which the
routines that accept file system specification records (defined by the FSSpec data type)
are available. File system specification records, introduced in system software version 7.0,
simplify the identification of objects in the file system. Your development environment
may provide “glue” that allows you to call those routines in earlier system software
versions. If such glue is not available and you want your application to run in system
software versions earlier than version 7.0, you need to read the discussion of HFS
file-manipulation routines in the chapter “File Manager” in this book.

This chapter begins with a description of files and their organization into directories and
volumes. Then it describes how to test for the presence of the routines that accept FSSpec
records and how to use those routines to perform the file management tasks listed above.
The chapter ends with descriptions of the data structures and routines used to perform
these tasks. The “File Management Reference” and “Summary of File Management”
sections in this chapter are subsets of the corresponding sections of the remaining
chapters in this book.

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

About Files

To the user, a file is simply some data stored on a disk. To your application, a file is a
named, ordered sequence of bytes stored on a Macintosh volume, divided into two forks
(as described in the following section, “File Forks”). The information in a file can be used
for any of a variety of purposes. For example, a file might contain the text of a letter or
the numerical data in a spreadsheet; these types of files are usually known as documents.
Typically a document is a file that a user can create and edit. A document is usually
associated with a single application, which the user expects to be able to open by
double-clicking the document’s icon in the Finder.

A file might also contain an application. In that case, the information in the file consists
of the executable code of the application itself and any application-specific resources and
data. Applications typically allow the user to create and manipulate documents. Some
applications also create special files in which they store user-specific settings; such files
are known as preferences files.

The Macintosh Operating System also uses files for other purposes. For example, the File
Manager uses a special file located in a volume to maintain the hierarchical organization
of files and folders in that volume. This special file is called the volume’s catalog file.
Similarly, if virtual memory is in operation, the Operating System stores unused pages of
memory in a disk file called the backing-store file.

No matter what its function, each file shares certain characteristics with every other file.
This section describes these general characteristics of Macintosh files, including

» file forks
» file size and access characteristics
s file system organization

s file naming and identification

File Forks

Many operating systems treat a file simply as a named, ordered sequence of bytes
(possibly terminated by a byte having a special value that indicates the end-of-file). As
illustrated in Figure 1-1, however, each Macintosh file has two forks, known as the data
fork and the resource fork.

A file’s resource fork contains that file’s resources. If the file is an application, the
resource fork typically contains resources that describe the application’s menus, dialog
boxes, icons, and even the executable code of the application itself. A particularly
important resource is the application’s ' SI ZE' resource, which contains information
about the capabilities of the application and its run-time memory requirements. If the file
is a document, its resource fork typically contains preference settings, window locations,
and document-specific fonts, icons, and so forth.

About Files

CHAPTER 1

Introduction to File Management

Figure 1-1 The two forks of a Macintosh file
. ﬁ ﬂ
— Resource map
—
Data— — Resources
N -/

Data fork Resource fork

A file’s data fork contains the file’s data. It is simply a series of consecutive bytes of data.
In a sense, the data fork of a Macintosh file corresponds to an entire file in operating
systems that treat a file simply as a sequence of bytes. The bytes stored in a file’s data
fork do not have to exhibit any internal structure, unlike the bytes stored in the resource
fork (which consists of a resource map followed by resources). Rather, your application
is responsible for interpreting the bytes in the data fork in whatever manner is appropri-
ate. The data fork of a document file might, for example, contain the text of a letter.

Even though a Macintosh file always contains both a resource fork and a data fork, one
or both of those forks can be empty. Document files sometimes contain only data (in
which case the resource fork is empty). More often, document files contain both
resources and data. Application files generally contain resources only (in which case, the
data fork is empty). Application files can, however, contain data as well.

Whether you store specific data in the data fork or in the resource fork of a file depends
largely on whether that data can usefully be structured as a resource. For example, if you
want to store a small number of names and telephone numbers, you can easily define a
resource type that pairs each name with its telephone number. Then you can read names
and corresponding numbers from the resource file by using Resource Manager routines.
To retrieve the data stored in a resource, you simply specify the resource type and ID;
you don’t need to know, for instance, how many bytes of data are stored in that resource.

In some cases, however, it is not possible or advisable to store your data in resources.
The data might be too difficult to put into the structure required by the Resource
Manager. For example, it is easiest to store a document’s text, which is usually of
variable length, in a file’s data fork. Then you can use File Manager routines to access
any byte or group of bytes individually.

About Files 1-5

juswabeue 9|l 0] uondnpou| .
=

1-6

CHAPTER 1

Introduction to File Management

Even when it is easy to define a resource type for your data, limitations on the Resource
Manager might compel you to store your data in the data fork instead. A resource fork
can contain at most about 2700 resources. More importantly, the Resource Manager
searches linearly through a file’s resource types and resource IDs. If the number of types
or IDs to be searched is large, accessing the resource data can become slow. As a rule of
thumb, if you need to manage data that would occupy more than about 500 resources
total, you should use the data fork instead.

IMPORTANT

In general, you should store data created by the user in a file’s data fork,
unless the data is guaranteed to occupy a small number of resources.
The Resource Manager was not designed to be a general-purpose data
storage and retrieval system. Also, the Resource Manager does not
support multiple access to a file’s resource fork. If you want to store data
that can be accessed by multiple users of a shared volume, use the

data fork. a

Because the Resource Manager is of limited use in storing large amounts of
user-generated data, most of the techniques in “Using Files” (beginning on page 1-12)
illustrate the use of File Manager routines to manage information stored in a file’s data
fork. See the section “Using a Preferences File” on page 1-36 for an example of the use of
the Resource Manager to access data stored in a file’s resource fork.

File Size

The size of a file is usually limited only by the size of its volume. A volume is a portion
of a storage device that is formatted to contain files. A volume can be an entire disk or
only a part of a disk. A 3.5-inch floppy disk, for instance, is always formatted as one
volume. Other memory devices, such as hard disks and file servers, can contain multiple
volumes.

Note

Actually, a file on an HFS volume can be as large as 2 GB ($7FFFFFFF
bytes). Most volumes are not large enough to hold a file of that size. An
HFS volume currently can be as large as 2 GB. O

The size of a volume varies from one type of device to another. Volumes are formatted
into chunks known as logical blocks, each of which can contain up to 512 bytes. A
double-sided 3.5-inch floppy disk, for instance, usually has 1600 logical blocks, or 800 KB.

Generally, however, the size of a logical block on a volume is of interest only to the disk
device driver. This is because the File Manager always allocates space to a file in units
called allocation blocks. An allocation block is a group of consecutive logical blocks. The
File Manager can access a maximum of 65,535 allocation blocks on any volume. For
small volumes, such as volumes on floppy disks, the File Manager uses an allocation
block size of one logical block. To support volumes larger than about 32 MB, the File

About Files

CHAPTER 1

Introduction to File Management

Manager needs to use an allocation block size that is at least two logical blocks. To
support volumes larger than about 64 MB, the File Manager needs to use an allocation
block that is at least three allocation blocks. In this way, by progressively increasing
the number of logical blocks in an allocation block, the File Manager can handle
larger and larger volumes. Figure 1-2 illustrates how logical blocks are grouped into
allocation blocks.

Figure 1-2 Logical blocks and allocation blocks
Logical . Allocation
Blocks Macintosh volume Blocks

File A ——— 0

7File87}1
e
——— FileC ———

~N~NoOo o~ WNEO

2n n
2n+1 2

The size of the allocation blocks on a volume is determined when the volume is
initialized and depends on the number of logical blocks it contains. In general, the

Disk Initialization Manager uses the smallest allocation block size that will allow the
File Manager to address the entire volume. A nonempty file fork always occupies at least
one allocation block, no matter how many bytes of data that file fork contains. On a

40 MB volume, for example, a file’s data fork occupies at least 1024 bytes (that is, two
logical blocks), even if it contains only 11 bytes of actual data.

To distinguish between the amount of space allocated to a file and the number of bytes of
actual data in the file, two numbers are used to describe the size of a file. The physical
end-of-file is the number of bytes currently allocated to the file; it’s 1 greater than the
number of the last byte in its last allocation block (since the first byte is byte number 0).
As aresult, the physical end-of-file is always an exact multiple of the allocation block
size. The logical end-of-file is the number of those allocated bytes that currently contain
data; it’s 1 greater than the number of the last byte in the file that contains data. For
example, on a volume having an allocation block size of two logical blocks (that is,

1024 bytes), a file with 509 bytes of data has a logical end-of-file of 509 and a physical
end-of-file of 1024 (see Figure 1-3).

About Files 1-7

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Figure 1-3 Logical end-of-file and physical end-of-file

Allocation block 3
|

Logical block 5 Logical block 6
\ \

N A

Byte: 0

a m |
511 512 1023

J

Logical end-of-file Physical end-of-file
(byte 509) (byte 1024)

1-8

You can move the logical end-of-file to adjust the size of the file. When you move the
logical end-of-file to a position more than one allocation block short of the current
physical end-of-file, the File Manager automatically deletes the unneeded allocation
block from the file. Similarly, you can increase the size of a file by moving the logical
end-of-file past the physical end-of-file. When you move the logical end-of-file past the
physical end-of-file, the File Manager automatically adds one or more allocation blocks
to the file. The number of allocation blocks added to the file is determined by the
volume’s clump size. A clump is a group of contiguous allocation blocks. The purpose of
enlarging files always by adding clumps is to reduce file fragmentation on a volume,
thus improving the efficiency of read and write operations.

If you plan to keep extending a file with multiple write operations and you know in
advance approximately how large the file is likely to become, you should first call the
Set ECF function to set the file to that size (instead of having the File Manager adjust
the size each time you write past the end-of-file). Doing this reduces file fragmentation
and improves I/O performance.

File Access Characteristics

A file can be open or closed. Your application can perform certain operations, such as
reading and writing data, only on open files. It can perform other operations, such as
deleting, only on closed files.

When you open a file, the File Manager reads information about the file from its volume
and stores that information in a file control block (FCB). The File Manager also creates
an access path to the file, a description of the route to be followed when accessing the
file. The access path specifies the volume on which the file is located and the location of
the file on the volume. Each access path is assigned a unique file reference number
(some number greater than 0) by which your application refers to the path. Multiple
access paths can be opened to the same file.

About Files

CHAPTER 1

Introduction to File Management

For each open access path to a file, the File Manager maintains a current position marker,
called the file mark, to keep track of where it is in the file during a read or write
operation. The mark is the number of the next byte that will be read or written; each time
a byte is read or written, the mark is moved. When, during a write operation, the mark
reaches the number of the last byte currently allocated to the file, the File Manager adds
another clump to the file.

You can read bytes from and write bytes to a file either singly or in sequences of virtually
unlimited length. You can specify where each read or write operation should begin by
setting the mark or specifying an offset; if you don’t, the operation begins at the current
file mark.

Each time you want to read or write a file’s data, you need to pass the address of a data
buffer, a part of RAM (usually in your application’s heap). The File Manager uses the
buffer when it transfers data to or from your application. You can use a single buffer for
each read or write operation, or change the address and size of the buffer as necessary.

When your application writes data to a file, the File Manager transfers the data from
your application’s data buffer and writes it to the disk cache, a part of RAM (usually in
the System heap). The File Manager uses the disk cache as an intermediate buffer when
reading data from or writing it to the file system. When your application requests

that data be read from a file, the File Manager looks for the data in the disk cache

and transfers it to your application’s data buffer if the data is found in the cache;
otherwise, the File Manager reads the requested bytes from the disk and puts them in
your data buffer.

Note

You can also read a continuous stream of characters or a line of
characters from a file. In the first case, you ask the File Manager to read a
specific number of bytes: When that many have been read, or when the
mark reaches the logical end-of-file, the read operation terminates. In the
second case, called newline mode, the read operation terminates when
either of the above conditions is met or when a specified character, the
newline character, is read. The newline character is usually Return
(ASCII code $0D), but it can be any character. Information about newline
mode is associated with each access path to a file and can differ from
one access path to another. See the chapter “File Manager” in this book
for more information about newline mode. O

The Hierarchical File System

The Macintosh Operating System uses a method of organizing files called the
hierarchical file system (HFS). In HFS, files are grouped into directories (also called
folders), which themselves are grouped into other directories, as illustrated in
Figure 1-4. The number listed for each directory is its directory ID. The directory ID
is one component of a file system specification, as explained in the next section,
“Identifying Files and Directories.”

About Files 1-9

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

1-10

Figure 1-4 The Macintosh hierarchical file system
2
MyVolume
[]
11 21 26
Fruits Nuts Vegetables

SN E—— 2
j j 27 35 39

Apples Melons Tropical Walnuts Empty Folder Red

\
[\ \ A

J L)L

Ackees Bananas Coconuts Guavas Tomatoes

The Finder is responsible for managing the files and folders on the desktop. It works
with the File Manager to maintain the organization of files and folders on a volume. The
hierarchical relationship of folders within folders on the desktop corresponds directly to
the hierarchical directory structure maintained on the volume. The volume is known as
the root directory, and the folders are known as subdirectories, or simply directories.

A volume appears on the desktop only after it has been mounted. Ejectable volumes
(such as 3.5-inch floppy disks) are mounted when they’re inserted into a disk drive;
nonejectable volumes (such as those on hard disks) are mounted automatically at system
startup. When a volume is mounted, the File Manager places information about the
volume in a nonrelocatable block of memory called a volume control block (VCB). The
number of volumes that can be mounted at any time is limited only by the number of
drives attached and available memory.

When a volume is mounted, the File Manager assigns a volume reference number by
which you can refer to the volume for as long as it remains mounted. You can also
identify a volume by its volume name, a sequence of 1 to 27 printing characters,
excluding colons (:). (The File Manager ignores case when comparing names but does
recognize diacritical marks.) Whenever possible, though, you should use the volume
reference number to avoid confusion between volumes with the same name.

Note

A volume reference number is valid only until the volume is
unmounted. If a single volume is mounted and then unmounted, the
File Manager may assign it a different volume reference number when it
is next mounted. O

About Files

CHAPTER 1

Introduction to File Management

When an application ejects a 3.5-inch disk from a drive, the File Manager places the
volume offline. When a volume is offline, the volume control block is kept in memory
and the volume reference number is still valid. If you make a File Manager call that
specifies that volume, the File Manager presents the disk switch dialog box to the user.
Figure 1-5 shows a sample disk switch dialog box.

Figure 1-5 The disk switch dialog box

Please insert the disk:
BE

L Mathan's Games

ik
[d

When the user drags a volume icon to the Trash, that volume is unmounted; the
volume control block is released, and the volume is no longer known to the File
Manager. In particular, the volume reference number previously assigned to the
volume is no longer valid.

Each subdirectory is located within a directory called its parent directory. Typically, the
parent directory is specified by a parent directory ID, which is simply the directory ID of
the parent directory. The File Manager assigns a special parent directory ID to a volume’s
root directory. This is primarily to permit a consistent method of identifying files and
directories using the volume reference number, the parent directory ID, and the file or
directory name. See the next section, “Identifying Files and Directories,” for details.

For the most part, your application does not need to be concerned about, or keep track
of, the location of files in the file system hierarchy. Most of the files your application
opens and saves are specified by the user or another application, and their location is
provided to your application by either the Finder or the Standard File Package. One
notable exception here concerns preferences files, which are typically stored in the
Preferences folder in the currently active System Folder. See “Using a Preferences File”
on page 1-36 for instructions on finding preferences files.

Note

In addition to files, folders, and volumes, a fourth type of object, namely
an alias, might appear on the Finder desktop. An alias is a special kind
of file that represents another file, folder, or volume. The Finder and the
Standard File Package automatically resolve aliases before passing files
to your application, so you generally don’t need to do anything with
aliases. For more information on working with alias files, see the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials and
the chapter “Alias Manager” in this book. O

About Files 1-11

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Identifying Files and Directories

The hierarchical arrangement of files and directories allows you to identify a file or
directory uniquely by providing just three pieces of information: its volume reference
number, its parent directory ID, and its name within that parent directory. The system
software lets you specify these three items together in a file system specification record,
defined by the FSSpec data type:

TYPE FSSpec = {file system specification}

RECORD
vRef Num I nt eger; {vol urmre reference nunber}
par | D: Longl nt; {directory ID of parent directory}
nane: Str63; {filename or directory nane}

END;

The FSSpec record provides a simple and standard format for specifying files and
directories. For example, the Standard File Package procedure St andar dCet Fi | e uses
an FSSpec record to return information identifying a user-selected file or folder. You can
pass that specification directly to any file-manipulation routines, such as FSpOpenDF
and FSpDel et e, that accept FSSpec records. In addition, the Alias Manager, Edition
Manager, and Finder all use FSSpec records to specify files and directories.

Using Files

This section describes how to perform typical file operations using some of the services
provided by the Standard File Package, the File Manager, the Finder, and other system
software components. Figure 1-6 shows the typical appearance of an application’s

File menu.

Figure 1-6 A typical File menu

1-12

New 3EN
open... 30
Close =W
Save S
Save As...

Revert to Saved

Page Setup...
Print... P
Quit 0

Using Files

CHAPTER 1

Introduction to File Management

Note that all the commands in this menu, except for the Quit and Page Setup commands,
manipulate files. Your application’s File menu should resemble the menu shown in
Figure 1-6 as closely as possible. In general, whenever the user creates or manipulates
information that is stored in a document, you need to implement all the commands
shown in Figure 1-6.

Note

Some applications allow the user to create or edit information that is not
stored in a document. In those cases, it is inappropriate to put the
commands that create or manipulate that information in the File menu.
Instead, group those commands together in a separate menu. O

Listing 1-1 shows one way to handle some of the typical commands in a File menu. Most
of the techniques described in this section are illustrated by means of definitions of the
functions called in Listing 1-1.

Listing 1-1 Handling the File menu commands

PROCEDURE DoHandl eFi | eConmmand (nenultem | nteger);

VAR
nmyErr: OSErr;
BEG N
CASE nmenultem OF
i New:
nyErr : = DoNewCnd,; {create a new docunent}
i Open:
myErr : = DoCpenCnd; {open an exi sting docunent}
i d ose:
nyErr := Dod oseCnd; {cl ose the current docunent}
i Save:
nyErr := DoSaveCnd, {save the current docunent}
i SaveAs:
myErr : = DoSaveAsCnd; {save docunent under new nane}
i Revert:
nyErr := DoRevert Cnd; {revert to |ast saved version}
OTHERW SE
END;
END;

Your application should deactivate any menu commands that do not apply to the
frontmost window. For example, if the frontmost window is not a document window
belonging to your application, then the Close, Save, Save As, and Revert commands
should be dimmed when the menu appears. Similarly, if the document in the frontmost
window does belong to your application but contains data that has not changed since it

Using Files 1-13

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

was last saved, then the Save menu command should be dimmed. See “Adjusting the
File Menu” on page 1-37 for details on implementing this feature. The definitions of the
application-defined functions used in Listing 1-1 assume that this feature has been
implemented.

The techniques described in this chapter for manipulating files assume that you identify
files and directories by using file system specification records. Because the routines that
accept FSSpec records are not available on all versions of system software, you may
need to test for the availability of those routines before actually calling any of them. See
the next section, “Testing for File Management Routines,” for details.

Testing for File Management Routines

To determine the availability of the routines that operate on FSSpec records, you can
call the Gest al t function with the gest al t FSAt t r selector code, as illustrated in
Listing 1-2.

Listing 1-2 Testing for the availability of routines that operate on FSSpec records

1-14

FUNCTI ON FSSpecRout i nesAvai |l : Bool ean;
VAR
nyErr: CSErr; {Gestalt result code}
myFeat ur e: Longl nt ; {Gestalt response}
BEG N
FSSpecRout i nesAvai |l := FALSE;
| F gHasGestalt THEN {if Gestalt is avail abl e}
BEG N
nyErr := CGestalt(gestaltFSAttr, myFeature);
IF nyErr = noErr THEN
| F BTst (nyFeature, gestaltHasFSSpecCalls) THEN
FSSpecRout i nesAvai |l : = TRUE;
END;
END;

To use the procedures defined in the following sections to open and save files, you

also need to make sure that the routines St andar dGet Fi | e and St andar dPut Fi | e
are available. You can do this by passing Gest al t the gestal t St andar dFi | eAttr
selector and verifying that the bit gest al t St andar dFi | €58 is set in the response
value. Also, before using the Fi ndFol der function (as shown, for example, in

Listing 1-10 on page 1-25), you should call the Gest al t function with the

gest al t Fi ndFol der At t r selector and verify that the gest al t Fi ndFol der Pr esent
bit is set; this indicates that the Fi ndFol der function is available.

Using Files

CHAPTER 1

Introduction to File Management

If the routines that operate on FSSpec records are not available, you can use
corresponding File Manager and Standard File Package routines. For example, if
you cannot call FSpOpenDF, you can call HOpenDF. That is, instead of writing

nyErr : = FSpOpenDF(nySpec, fsCurPerm nyFile);
you can write something like
nyErr := HOpenDF(nyVol, nyDirlD, nyNane, fsCurPerm nyFile);

The only difference is that the my Spec parameter is replaced by three parameters
specifying the volume reference number, the parent directory ID, and the filename. With
only a few exceptions, all of the techniques presented in this chapter can be easily
adapted to work with high-level HFS routines in place of the routines that work with
FSSpec records.

Note

One notable exception concerns the Standard File Package procedures
SFCet Fi | e and SFPut Fi | e. The vRef Numfield of the reply

record passed to both these functions contains a working directory
reference number, which encodes both the directory ID and the

volume reference number. In general, you should avoid using this
number; instead you can turn it into the corresponding directory ID and
volume reference number by calling the Get WDI nf 0 function. See the
chapter “File Manager” in this book for details on working directory
reference numbers. O

Defining a Document Record

When a user creates a new document or opens an existing document, your application
displays the contents of the document in a window, which provides a standard interface
for the user to view and possibly edit the document data. It is useful for your application
to define a document record, an application-specific data structure that contains
information about the window, any controls in the window (such as scroll bars), and the
file (if any) whose contents are displayed in the window. Listing 1-3 illustrates a sample
document record for an application that handles text files.

Listing 1-3 A sample document record
TYPE
MyDocRecHnd = "MyDocRecPtr;
MyDocRecPt r = "MyDocRec;
MyDocRec =
RECORD
edi t Rec: TEHandl e; {handl e to TextEdit record}
vScrol | Bar: Cont r ol Handl e; {vertical scroll bar}

Using Files 1-15

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

hScrol | Bar: Cont r ol Handl e; {hori zontal scroll bar}

fil eRef Num I nt eger; {ref numfor w ndow s file}

fil eFSSpec: FSSpec; {file's FSSpec}

Wi ndowDi rty: Bool ean; {has wi ndow dat a changed?}
END;

Some fields in the MyDoc Rec record hold information about the TextEdit record that
contains the window’s text data. Other fields describe the horizontal and vertical scroll
bars in the window. The myDocRec record also contains a field for the file reference
number of the open file (if any) whose data is displayed in the window and a field for
the file system specification that identifies that file. The file reference number is needed
when the application manipulates the open file (for example, when it reads data from or
writes data to the file, and when it closes the file). The FSSpec record is needed when a
“safe-save” procedure is used to save data in a file.

The last field of the MyDocRec data type is a Boolean value that indicates whether the
contents of the document in the TextEdit record differ from the contents of the document
in the associated file. When your application first reads a file into the window, you
should set this field to FALSE. Then, when any subsequent operations alter the contents
of the document, you should set the field to TRUE. Your application can inspect this field
whenever appropriate to determine if special processing is needed. For example, when
the user closes a document window and the value of the wi ndowDi r t y flag is TRUE,
your application should ask the user whether to save the changed version of the
document in the file. See Listing 1-16 (page 1-33) for details.

To associate a document record with a particular window, you can simply set a handle to
that record as the reference constant of the window (by using the Window Manager
procedure Set WRef Con). Then you can retrieve the document record by calling the

Get WRef Con function. Listing 1-15 illustrates this process.

Creating a New File

The user expects to be able to create a new document using the New command in the
File menu. Listing 1-4 illustrates one way to handle the New menu command.

Listing 1-4 Handling the New menu command

1-16

FUNCTI ON DoNewCrd: OSErr;
VAR
nmyW ndow. W ndowPtr; {the new docunment w ndow, ignored here}
BEG N
{Create a new wi ndow and nake it visible.}
DoNewCnd : = DoNewbDocW ndow(TRUE, nyW ndow) ;
END;

Using Files

CHAPTER 1

Introduction to File Management

The DoNewCnd function simply calls the application-defined function DoNewDocW ndow
(shown in Listing 1-6). The first parameter to DoNewDocW ndow determines whether the

new window should be visible or not; the value TRUE indicates that the new window
should be visible. If DoNewDoc W ndow completes successfully, it returns a window

pointer to the calling routine in the second parameter. The DoONewCnd function ignores

that returned window pointer.

Listing 1-5 Creating a new document window

VAR

CONST

CSErr;
my Dat a: MyDocRecHnd; {the wi ndow s data record}
r DocW ndow = 1000; {resource | D of wi ndow tenpl at e}

BEG N

{Al'l ocate a new wi ndow, see Wndow Myr chapter for details.}
nmyW ndow : = Get NewW ndow(r DocW ndow, NI L, WndowPtr(-1));
| F myWndow = NI L THEN
BEG N
DoNewDocW ndow : = MenError;
Exi t (DoNewDocW ndow) ;
END;

{All ocate space for the window s data record.}
nyData : = MyDocRecHnd(NewHandl e(Si zeOf (MyDocRec))) ;
IF nyData = NIL THEN
BEG N
DoNewDocW ndow : = MenError;
Di sposeW ndow(myW ndow) ;
Exi t (DoNewDocW ndow) ;
END;

MoveHH (Handl e(nyDat a)) ; {move the handl e hi gh}

HLock(Handl e(nyDat a)) ; {lock the handl e}
W TH nyDat a** DO {fill in wi ndow dat a}
BEG N
edi t Rec : = TENew(gDest Rect, gVi ewRect);

vScroll := GetNewControl (rVScroll, myWndow);

hScroll := Get NewControl (rHScroll, myW ndow);

fileRef Num:= 0; {no file yet!}

wi ndowDirty : = FALSE;

IF (editRec = NIL) OR (vScroll = NIL) OR (hScroll = NL)

Using Files

FUNCTI ON DoNewDocW ndow (newDocunent: Bool ean; var nyW ndow. W ndowPtr):

THEN

1-17

juswabeue 9|l 0] uondnpou| .
=

1-18

CHAPTER 1

Introduction to File Management

BEG N
DoNewDocW ndow : = nentul | Err;
Di sposeW ndow(myW ndow) ;
Di sposeControl (vScrol |');
Di sposeControl (hScrol l);
TED spose(editRec);
Di sposeHandl| e(nmyDat a) ;
Exi t (DoNewDocW ndow) ;
END;

| F newDocurent THEN {if new docunment, show it}
ShowwW ndow(myW ndow) ;

Set WRef Con(nyW ndow, Longlnt(nyData)); {link record to w ndow}
HUnl ock(Handl e(nyData)) ; {unl ock the handl e}
DoNewDocW ndow : = noErr;

END;

Note that the DoNewDocW ndow function does not actually create a new file. The reason
for this is that it is usually better to wait until the user actually saves a new document
before creating a file (mainly because the user might decide not to save the document).
The DoNewDocW ndow function creates a window, allocates a new document record,
and fills out the fields of that record. However, it sets the f i | eRef Numfield of the
document record to 0 to indicate that no file is currently associated with this window.

Opening a File

Your application might need to open a file in several different situations. For example, if
the user launches your application by double-clicking one of its document icons in the
Finder, the Finder provides your application with information about the selected file (if
your application receives high-level events, the Finder sends it an Open Documents
event). At that point, you want to create a new window for the document and read the
document data from the file into the window.

Your application also opens files after the user chooses the Open command in the File
menu. In this case, you need to determine which file to open. You can use the Standard
File Package to present a standard dialog box that allows the user to navigate the file
system hierarchy (if necessary) and select a file of the appropriate type. Once you get the
necessary information from the Standard File Package, you can then create a new
window for the document and read the document data from the file into the window.

As you can see, it makes sense to divide the process of opening a document into several
different routines. You can have a routine that elicits a file selection from the user and
another routine that creates a window and reads the file data into it. In the sample

Using Files

CHAPTER 1

Introduction to File Management

listings given here, the function DoOpenCnd handles the interaction with the user and
DoOpenkFi | e reads a file into a new window.

Listing 1-6 shows one way to handle the Open command in the File menu. It uses the
Standard File Package routine St andar dGet Fi | e to determine which file the user
wants to open.

Listing 1-6 Handling the Open menu command

FUNCTI ON DoQpenCnd: OSErr;

VAR
nyRepl y: St andar dFi | eRepl vy; {Standard File reply record}
nyTypes: SFTypeli st ; {types of files to display}
nmyErr: OSErr;

BEG N
myErr : = noErr,;
myTypes[0] :="'TEXT ; {display text files only}

StandardGetFile(NIL, 1, nmyTypes, nyReply);
| F nyReply. sf Good THEN
myErr : = DoOpenFil e(nmyReply.sfFile)
ELSE
nyErr := usrCancel edErr;
DoOpenCnd : = nyErr;
END;

The St andar dGet Fi | e procedure requires a list of file types to display in an Open
dialog box, as in Figure 1-7. In this case, only text files are to be listed.

Figure 1-7 The default Open dialog box

= Tropical ¥ — 80 5C
D fckees S
0 Bananas

[0 Coconuts Desktop

0 Guavas

I Open I

<

Using Files 1-19

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

The user can scroll through the list of files in the current directory, change the current
directory, select a file to open, or cancel the operation altogether. When the user clicks
either the Cancel or the Open button, St andar dGet Fi | e fills out the Standard File
reply record you pass to it, which has this structure:

TYPE StandardFil eReply =

RECORD
sf Good: Bool ean; {TRUE if user did not cancel}
sf Repl aci ng: Bool ean; {TRUE if replacing file with sane nane}
sf Type: OSType,; {file type}
sfFile: FSSpec; {sel ected itent
sfScript: Scri pt Code; {script of selected item s nane}
sf Fl ags: I nt eger; {Finder flags of selected iten}
sf | sFol der: Bool ean; {selected itemis a folder}
sfl sVol une: Bool ean; {selected itemis a vol une}
sf Reservedl: Longl nt; {reserved}
sf Reserved2: I nt eger; {reserved}
END;

In this situation, the relevant fields of the reply record are the sf Good and sf Fi | e

fields. If the user selects a file to open, the sf Good field is set to TRUE and the sf Fi | e
field contains an FSSpec record for the selected file. In Listing 1-6, the returned FSSpec
record is passed directly to the application-defined function DoOpenFi | e. Listing 1-7
illustrates a way to define the DoOpenFi | e function.

Listing 1-7 Opening a file

1-20

FUNCTI ON DoQpenFil e (nySpec: FSSpec): OSErr;

VAR
ny W ndow: W ndowPt r; {wi ndow for file data}
nmyDat a: MyDocRecHnd; {handl e to wi ndow dat a}
nyFi | eRef Num | nteger; {file reference nunber}
myErr: OSErr;

BEG N

{Create a new wi ndow, but don't show it yet.}
nyErr : = DoNewDocW ndow(FALSE, nyW ndow) ;
IF (myErr <> noErr) OR (nyWndow = NIL) THEN
BEG N
DoOpenFile := nyErr;
Exit (DoOpenFil e);
END;

Set WIi t | e(myW ndow, nySpec. nane); {set window s title}
My Set W ndowPosi ti on(myW ndow) ; {set wi ndow position}

Using Files

CHAPTER 1

Introduction to File Management

{Open the file's data fork for reading and witing.}
myErr := FSpQOpenDF(nySpec, fsRAW Perm nyFil eRef Num ;
I F nyErr <> noErr THEN
BEG N
Di sposeW ndow(myW ndow) ;
DoOpenFile := nyErr;
Exi t (DoOpenFil e);
END;

{Retrieve handle to window s data record.}

myDat a : = MyDocRecHnd(Get WRef Con(myW ndow)) ;

nyDat a””. fil eRef Num : = nyFi | eRef Num {save file infornmation}
nyDat a*”. fi |l eFSSpec : = nySpec;

nyErr : = DoReadFil e(nyW ndow); {read in file data}
ShowW ndow(myW ndow) ; {now show t he wi ndow}
DoQpenFile := nyErr;

END;

This function is relatively simple because much of the real work is done by the two
functions DoNewDocW ndowand DoReadFi | e. The DoReadFi | e function is
responsible for actually reading the file data from the disk into the TextEdit record
associated with the document window. See the next section, “Reading File Data,” for a
sample definition of DoReadFi | e.

In Listing 1-7, the key step is the call to FSpOpenDF, which opens the data fork of the
specified file. A file reference number—which indicates an access path to the open file—
is returned in the third parameter. As you can see, this reference number is saved in the
document record, from where it can easily be retrieved for future calls to the FSRead
and FSW i t e functions.

The second parameter in a call to the FSpQpenDF function specifies the access mode for
opening the file. For each file, the File Manager maintains access mode information that
determines what type of access is available. Most applications support one of two types
of access:

= Asingle user is allowed to read from and write to a file.

= Multiple users are allowed to read from a file, but no one can write to it.

Your application can use the following constants to specify these types of access:

CONST
f sCur Perm = 0 {what ever perm ssion is allowed}
f sRdPer m = 1 {read permni ssion}
f sWPerm = 2 {write perm ssion}
f SRAW Per m = 3 {exclusive read/wite perm ssion}
f SRAW ShPerm = 4; {shared read/wite perm ssion}

Using Files 1-21

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

To open a file with exclusive read / write access, you can specify f SRAW Per m To open a
file with read-only access, specify f sRdPer m If you want to open a file and don’t know
or care which type of access is available, specify f sCur Per m When you specify

f sCur Per m if no access paths are already open, the file is opened with exclusive read/
write access. If other access paths are already open, but they are read-only, another
read-only path is opened.

Reading File Data

Once you have opened a file, you can read data from it by calling the FSRead function.
Generally you need to read data from a file when the user first opens a file or when the
user reverts to the last saved version of a document. The DoReadFi | e function defined
in Listing 1-8 illustrates how to use FSRead to read data from a file into a TextEdit
record in either situation.

Listing 1-8 Reading data from a file

FUNCTI ON DoReadFi | e (nyW ndow. W ndowPtr): OSErr;

VAR
nyDat a: MyDocRecHnd; {handl e to a docunent record}
nmyFil e: I nt eger; {file reference nunber}
nyLengt h: Longl nt; {nunber of bytes to read fromfile}
nmy Text : TEHandl e; {handl e to TextEdit record}
myBuf f er : Ptr; {pointer to data buffer}
myErr: CSErr;
BEG N

myDat a : = MyDocRecHnd(Get WRef Con(myW ndow)); {get w ndow s dat a}
nyFile := nyData”". fil eRef Num {get file reference nunber}
nyErr := SetFPos(nyFile, fsFronttart, 0); {set file mark at start}
IF nyErr <> noErr THEN

BEG N

DoReadFil e := nyErr;
Exi t (DoReadFi | e);

END;
myErr := Get EOF(nyFile, nyLength); {get file |l ength}
nyBuffer := NewPtr(nyLength); {all ocate a buffer}
| F nyBuffer = NIL THEN

BEG N

DoReadFile := MenError;
Exi t (DoReadFi | e);
END;

1-22 Using Files

CHAPTER 1

Introduction to File Management

nyErr := FSRead(nyFile, myLength, nmyBuffer); {read data into buffer}
IF (nyErr = noErr) OR (nyErr = eof Err) THEN
BEG N {nove data into TERec}
HLock(Handl e(nyDat a*". edi t Rec)) ;
TESet Text (nyBuf fer, nmyLength, myData””". editRec);
myErr := noErr;
HUnl ock(Handl e(nyDat a*”. edi t Rec)) ;
END;
DoReadFil e : = nyErr;
END;

The DoReadFi | e function takes one parameter specifying the window to read data into.
This function first retrieves the handle to that window’s document record and extracts
the file’s reference number from that record. Then DoReadFi | e calls the Set FPos
function to set the file mark to the beginning of the file having that reference number.
There is no need to check that nyFi | e has a nonzero value, because Set FPos returns an
error if you pass it an invalid file reference number.

The second parameter to Set FPos specifies the file mark positioning mode; it can
contain one of the following values:

CONST
f sAt Mar k = 0; {at current nark}
fsFrontStart = 1; {set mark relative to beginning of file}
fsFromLEOF = 2; {set mark relative to |logical end-of-file}
fsFromvark = 3; {set mark relative to current nark}

If you specify f sAt Mar k, the mark is left wherever it’s currently positioned, and the
third parameter of Set FPos is ignored. The next three constants let you position the
mark relative to either the beginning of the file, the logical end-of-file, or the current
mark. If you specify one of these three constants, the third parameter contains the byte
offset (either positive or negative) from the specified point. Here, the appropriate
positioning mode is relative to the beginning of the file.

If DoReadFi | e successfully positions the file mark, it next determines the number of
bytes in the file by calling the Get EOF function. The key step in the DoReadFi | e
function is the call to FSRead, which reads the specified number of bytes from the file
into the specified buffer. In this case, the data is read into a temporary buffer; then the
data is moved into the TextEdit record associated with the file. The FSRead function
returns, in the nyLengt h parameter, the number of bytes actually read from the file.

Writing File Data

Generally your application writes data to a file in response to the File menu commands
Save or Save As. However, your application might also incorporate a scheme that
automatically saves all open documents to disk every few minutes. It therefore makes
sense to isolate the routines that handle the menu commands from the routines that

Using Files 1-23

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

handle the actual writing of data to disk. This section shows how to write the data stored
in a TextEdit record to a file. See “Saving a File” on page 1-26 for instructions on
handling the Save and Save As menu commands.

It is very easy to write data from a specified buffer into a specified file. You simply
position the file mark at the beginning of the file (using Set FPos), write the data into
the file (using FSW i t e), and then resize the file to the number of bytes actually written
(using Set ECF). Listing 1-9 illustrates this sequence.

Listing 1-9 Writing data into a file

FUNCTI ON DoWiteData (nmyW ndow. W ndowPtr; nyTenp: Integer): OSErr;
VAR

nyDat a: MyDocRecHnd; {handl e to a docunent record}
myLengt h: Longl nt ; {nunmber of bytes to wite to file}
nyText : TEHandl e; {handl e to TextEdit record}
nmyBuf f er : Handl e; {handl e to actual text in TERec}
myVol : I nt eger; {volunme reference nunber of nyFile}
myErr: CSErr;
BEG N
myDat a : = MyDocRecHnd(Get WRef Con(myW ndow)); {get w ndow s data record}
nmyText := nyData””. editRec; {get TERec}
nmyBuf fer := nyText ", hText; {get text buffer}
myLength : = nyText " . telLength; {get text buffer size}
nyErr := SetFPos(nyTenp, fsFronttart, 0); {set file mark at start}
I F nyErr = noErr THEN {wite buffer into file}
nyErr := FSWite(myTenp, myLength, nyBuffer”);
| F nyErr = noErr THEN {adjust file size}
myErr := Set EOF(nyTenp, nyLength);
I F nyErr = noErr THEN {find volune file is on}
nyErr := GetVRef Nun{nyTenp, nyVol);
I F nyErr = noErr THEN {flush vol une}
nyErr := FlushVol (NIL, nyVol);
| F nyErr = noErr THEN {show file is up to date}

myDat a**. wi ndowDi rty : = FALSE;
DoWiteData : = nyErr;
END;

The DoW i t eDat a function first retrieves the TextEdit record attached to the specified
window and extracts the address and length of the actual text buffer from that record.
Then it calls Set FPos, FSW i t e, and Set EOF as just explained. Finally, DoW i t eDat a
determines the volume containing the file (using the Get VRef Numfunction) and flushes
that volume (using the FI ushVol function). This is necessary to ensure that both the
file’s data and the file’s catalog entry are updated.

1-24 Using Files

CHAPTER 1

Introduction to File Management

Notice that the DoW i t eDat a function takes a second parameter, my Tenp, which should
be the file reference number of a temporary file, not the file reference number of the file
associated with the window whose data you want to write. If you pass the reference
number of the file associated with the window, you risk corrupting the file, because the
existing file data is overwritten when you position the file mark at the beginning of the
file and call FSWi t e. If FSW i t e does not complete successfully, it is very likely that
the file on disk does not contain the correct document data.

To avoid corrupting the file containing the saved version of a document, always call
DoW i t eDat a specifying the file reference number of some new, temporary file. Then,
when DoW i t eDat a completes successfully, you can call the FSpExchangeFi | es
function to swap the contents of the temporary file and the existing file. Listing 1-10
illustrates how to update a file on disk safely; it shows a sequence of updating,
renaming, saving, and deleting files that preserves the contents of the existing file until
the new version is safely recorded.

Listing 1-10 Updating a file safely

FUNCTI ON DoWiteFile (myWndow): OSErr;

VAR
nyDat a: MyDocRecHnd; {handl e to wi ndow s docunent record}
nmyFSpec: FSSpec; {FSSpec for file to update}
nmyTSpec: FSSpec; {FSSpec for tenporary file}
nyTi me: Longl nt; {current tine; for tenporary fil enane}
nmy Narne: Str 255; {nane of tenporary file}
ny Tenp: I nt eger; {file reference nunber of tenporary file}
ny VRef : I nt eger; {vol umre reference nunber of tenporary file}
nyDirl D: Longl nt ; {directory ID of tenporary file}
nmyErr: CSErr;

BEG N
nyData : = MyDocRecHnd(Get WRef Con(nyW ndow)) ; {get that w ndow s dat a}
nmyFSpec : = nyData™”.fil eFSSpec; {get FSSpec for existing file}
CGet Dat eTi ne(nyTi me) ; {create a tenporary fil enane}
NumroSt ri ng(nyTi me, nyNane);

{Find the tenporary folder on file's volume; create it if necessary.}

nmyErr :=

| F nyErr
nmyErr
I F (nmyEr

myErr
IF nyErr

Fi ndFol der (myFSpec. vRef Num kTenpor ar yFol der Type,

kCr eat eFol der, nyVRef, nyDiriD);
= noErr THEN {make an FSSpec for tenp file}
FSMakeFSSpec(nyVRef, myDirl D, nmyNanme, nyTSpec);
noErr) OR (nmyErr = fnfErr) THEN{create a tenmporary file}
FSpCreate(nyTSpec, 'trsh', 'trsh', snBystenfcript);
= noErr THEN {open the newly created file}

r

Using Files 1-25

juswabeue 9|l 0] uondnpou| .
=

nmyErr
I F nyErr

myErr
I F nyErr

nmyErr
| F nmyErr

nmyErr
I F nyErr

myErr

CHAPTER 1

Introduction to File Management

.= FSpOpenDF(nyTSpec, fsRdWPerm nyTenp);

= noErr THEN {wite data to the data fork}
:= DoWiteDat a(myW ndow, myTenp);

= noErr THEN {close the tenmporary file}

.= FSC ose(nyTenp);

= noErr THEN {swap data in the two files}
. = FSpExchangeFi | es(myTSpec, nyFSpec);

= noErr THEN {del ete the tenporary file}

: = FSpDel et e(nyTSpec) ;

DoWiteFile := nyErr;

END;

The essential idea behind this “safe-save” process is to save the data in memory into a
new file and then to exchange the contents of the new file and the old version of the file
by calling FSpExchangeFi | es. The FSpExchangeFi | es function does not move the
data on the volume; it merely changes the information in the volume’s catalog file and, if
the files are open, in their file control blocks (FCBs). The catalog entry for a file contains

= fields that describe the physical data, such as the first allocation block, physical end,
and logical end of both the resource and data forks

= fields that describe the file within the file system, such as file ID and parent
directory ID

Fields that describe the data remain with the data; fields that describe the file remain
with the file. The creation date remains with the file; the modification date remains with
the data. (For a more complete description of the FSpExchangeFi | es function, see the
chapter “File Manager” in this book.)

Saving a File

There are several ways for a user to indicate that the current contents of a document
should be saved (that is, written to disk). The user can choose the File menu commands
Save or Save As, or the user can click the Save button in a dialog box that you display
when the user attempts to close a “dirty” document (that is, a document whose contents
have changed since the last time it was saved). You can handle the Save menu command
quite easily, as illustrated in Listing 1-11.

Listing 1-11 Handling the Save menu command

FUNCTI ON DoSaveCnd: OSErr;

VAR
nmyW ndow. W ndowPt r; {pointer to the front w ndow}
nyDat a: MyDocRecHnd; {handl e to a docunent record}
myErr: OSErr;

1-26 Using Files

CHAPTER 1

Introduction to File Management

BEG N
myW ndow : = Front W ndow, {get front wi ndow and its data}
nyData : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
| F nyData”™.fil eRef Num <> 0 THEN {if window has a file already}
myErr := DoWiteFile(myWndow); {then wite contents to di sk}
ELSE
nyErr DoSaveAsCnd; {el se ask for a fil enane}
DoSaveCnd : = nyErr;
END;

The DoSaveCnd function simply checks whether the frontmost window is already
associated with a file. If so, then DoSaveCnd calls DoW i t eFi | e to write the data to
disk (using the “safe-save” process illustrated in the previous section). Otherwise, if no
file exists for that window, DoSaveCnd calls DoSaveAs Cnd. Listing 1-12 shows a way to
define the DoSaveAsCrd function.

Listing 1-12 Handling the Save As menu command

FUNCTI ON DoSaveAsCnd: OSErr;

VAR
nyW ndow. W ndowPt r; {pointer to the front w ndow}
nyDat a: MyDocRecHnd; {handl e to a docunent record}
nyRepl y: St andar dFi | eRepl y;
nyFi | e: I nt eger; {file reference nunber}
nmyErr: CSErr;

BEG N
nyW ndow : = Front W ndow;, {get front wi ndow and its data}

nyDat a : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
nmyErr : = noErr,

StandardPut Fil e(' Save as:', '"Untitled , nyReply);
| F nyReply. sf Good THEN {user saves file}
BEG N

I F NOT nyReply. sf Repl aci ng THEN
nyErr := FSpCreate(nyReply.sfFile, 'MAP , 'TEXT,
snBystentcri pt);
IF nyErr <> noErr THEN
Exi t (DoSaveAsCnd) ;
nyDat a™. fil eFSSpec : = nyReply.sfFile;

| F nyData”™.fil eRef Num <> 0 THEN {if window already has a file}
nyErr := FSC ose(nyData”™.fil eRef Num;{close it}

Using Files 1-27

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

{Create docunment's resource fork and copy Finder resources to it.}
FSpCr eat eResFi | e(nyDat a”™. fi | eFSSpec, ' MYAP' , ' TEXT',
snBystentcri pt);
nmyErr := ResError,
IF nyErr = noErr THEN
nyFile := FSpOpenResFil e(nmyDat a*”. fil eFSSpec, fsRAW Pernj;

IF nyFile > 0 THEN {copy Fi nder resources}
myErr : = DoCopyResource(' STR ', -16396, gAppsResFile, nyFile)
ELSE
nmyErr := ResError,
IF nyErr = noErr THEN
nyErr := FSC ose(nyFile); {close the resource fork}

{Open data fork and | eave it open.}

I F nyErr = noErr THEN

nyErr := FSpOpenDF(nyDat a””. fil eFSSpec, fsRdW Perm nyFile);
IF nyErr = noErr THEN

BEG N

nyDat a*”. fil eRef Num : = nyFil e;
Set Wi t | e(myW ndow, nyReply.sfFile.nane);
nyErr := DoWiteFile(nyWndow);
END;
DoSaveAsCnd : = nyErr;
END;
END;

The St andar dPut Fi | e procedure is similar to the St andar dGet Fi | e procedure

discussed earlier in this chapter. It manages the user interface for the default Save dialog
box, illustrated in Figure 1-8.

Figure 1-8 The default Save dialog box

i Tropical ™ — 80 5C
L fiekeas 7| g ipni
D Bannnas
0 foranuts Desktop
D Bungas
i [
save as:

1-28 Using Files

CHAPTER 1

Introduction to File Management

If the user clicks the New Folder button, the Standard File Package presents a subsidiary
dialog box like the one shown in Figure 1-9.

Figure 1-9 The new folder dialog box

= Tropical ¥ — 80 5C
0 finkeas |ﬁ| i

fmannny
fananuis Mame of new folder:

L By = -
[untitiea forder]

| tmwe]

Save as:

|Untitled |

If the user asks to save a file with a name that already exists at the specified location,
the Standard File Package displays a subsidiary dialog box, like the one shown in
Figure 1-10, to verify that the new file should replace the existing file.

Figure 1-10 The name conflict dialog box

Replace existing “Ackees™
?

Note in Listing 1-12 that if the user is not replacing an existing file, the DoSaveAsCnd
function creates a new file and records the new FSSpec record in the window’s
document record. Otherwise, if the user is replacing an existing file, DoSaveAs Crd
simply records, in the window’s document record, the FSSpec record returned by

St andardGet Fi | e.

When DoSaveAsCnd creates a new file, it also copies a resource from your application’s
resource fork to the resource fork of the newly created file. This resource (with ID
-16396) identifies the name of your application. (For more details about this resource,
see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials.)

The DoSaveAsCnd function calls the application-defined routine DoCopyResour ce.
Listing 1-13 shows a simple way to define the DoCopyResour ce function.

Using Files 1-29

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Listing 1-13 Copying a resource from one resource fork to another

FUNCTI ON DoCopyResource (theType: ResType; thelD: |nteger
source: Integer; dest: Integer): OSErr

VAR
myHandl e: Handl e; {handl e to resource to copy}
nmy Nare: Str 255; {nane of resource to copy}
nyType: ResType; {ignored; used for GetReslnfo}
nyl D: I nt eger; {ignored; used for CetReslnfo}
BEG N
UseResFi |l e(source); {set the source resource file}

myHandl e : = Get Resource(theType, thelD); {open the source resource}
| F myHandl e <> NIL THEN

BEG N
Cet Resl nfo(nyHandl e, nmyl D, nyType, nyNane); {get resource nane}
Det achResour ce(nyHandl e) ; {detach resource}
UseResFi | e(dest); {set destination resource file}

AddResour ce(myHandl e, theType, thel D, nyNane);
I F ResError = noErr THEN

Wit eResource(myHandl e) ; {write resource data}
END;
DoCopyResource : = ResError; {return result code}
Rel easeResour ce(myHandl e) ;

END;

See the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox for
details about the routines used in Listing 1-13.

Reverting to a Saved File

Many applications that manipulate files provide a menu command that allows the user
to revert to the last saved version of a document. The technique for handling this
command is relatively simple. First you should display a dialog box asking whether to
revert to the last saved version of the file, as illustrated in Figure 1-11.

Figure 1-11 A Revert to Saved dialog box

Revert to the last saved version of the file
named "Coconuts”?

ok]

1-30 Using Files

CHAPTER 1

Introduction to File Management

If the user clicks the Cancel button, nothing should happen to the current document. If,
however, the user confirms the menu command by clicking OK, you just need to call
DoReadFi | e to read the disk version of the file back into the window. Listing 1-14
illustrates how to implement a Revert to Saved menu command.

Listing 1-14 Handling the Revert to Saved menu command

FUNCTI ON DoRevert Cnd: OSErr;

VAR

nyW ndow: W ndowPt r; {wi ndow for file data}

nyDat a: MyDocRecHnd; {handl e to wi ndow dat a}

myFil e: I nt eger; {file reference nunber}

nmy Nare: Str 255; {file's nane}

nyDi al og: Di al ogPtr; {poi nter to nodal dial og box}

myltem I nt eger; {item sel ected in nodal dial og}

myPort: Gafbtr; {the original graphics port}
CONST

kRevertDi al og = 128; {resource ID of Revert to Saved di al og}
BEG N

nyW ndow : = Front W ndow;, {get pointer to front w ndow}

{get handle to wi ndow s data record}

nyData : = MyDocRecHnd(Get WRef Con(myW ndow)) ;

Get WIi t | e(myW ndow, nyNane) ; {get file's nane}

Par anText (nyName, "', "', '');

nyDi al og : = Get NewDi al og(kRevertDi al og, NIL, WndowPtr(-1));
Get Port (myPort);

Set Port (nyDi al og) ;

REPEAT

Mbdal Di al og(NI'L, nyltem;

UNTIL (nyltem = iOK) OR (nyltem = i Cancel);

Di sposeDi al og(nyDi al og) ;
Set Port (myPort); {restore previous grafPort}

I F

myltem = i K THEN
DoRevert Crd : = DoReadFi | e(nyW ndow) ;

ELSE

END;

DoRevert Cnd : = noFErr;

The DoRever t Crd function retrieves the document record handle from the frontmost
window’s reference constant field and then gets the window’s title (which is also the
name of the file) and inserts it into a modal dialog box.

Using Files 1-31

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

If the user clicks the OK button, DoRever t Cnd calls the DoReadFi | e function to read
the data from the file into the window. Otherwise, DoRever t Cnd simply exits without
changing the data in the window.

Closing a File

In most cases, your application closes a file after a user clicks in a window’s close box or
chooses the Close command in the File menu. The Close menu command should be
active only when there is actually an active window on the desktop. If there is an active
window, you need to determine whether it belongs to your application; if so, you need to
handle dialog windows and document windows differently, as illustrated in Listing 1-15.

Listing 1-15 Handling the Close menu command

1-32

FUNCTI ON DoCl oseCnd: OSErr;
VAR
nyW ndow: W ndowPt r;
nmyDat a: MyDocRecHnd;
nmyErr: OSErr;
BEG N
myErr := FALSE;
nyW ndow : = Front W ndow;, {get window to be cl osed}
CASE MyGet W ndowType(myW ndow) OF
k DAW ndow:
Cl oseDeskAcc(W ndowPeek(myW ndow) . wi ndowKi nd) ;
kMyModel essDi al og:
H deW ndow(nyW ndow) ; {for dialogs, hide the w ndow}
kMyDocW ndow:.
BEG N
nyDat a : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
nyErr := DoC oseFil e(nyData);
| F nyErr = noErr THEN
Di sposeW ndow(myW ndow) ;
END;
OTHERW SE
END;
DoCl oseCrd : = nyErr;
END;

The DoC oseCnd function determines the type of the frontmost window by calling the
application-defined function MyGet W ndowType. (See the chapter “Window Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for a definition of My Get W ndowType.) If
the window to be closed is a window belonging to a desk accessory, DoCl oseCnd closes

Using Files

CHAPTER 1

Introduction to File Management

the desk accessory. If the window to be closed is a dialog window, this procedure just
hides the window. If the window to be closed is a document window, DoCl oseCnd
retrieves its document record handle and calls both DoCl oseFi | e (defined in
Listing 1-16) and Di sposeW ndow Before you close the file associated with a
window, you should check whether the contents of the window have changed since
the last time the document was saved. If so, you should ask the user whether to save
those changes. Listing 1-16 illustrates one way to do this.

Listing 1-16 Closing a file

FUNCTI ON DoCdl oseFil e (nyData: MyDocRecHnd): OSErr;

VAR
nmyErr: OSErr;
nyDi al og: Di al ogPtr; {pointer to nodal dial og box}
nyltem I nt eger; {itemselected in alert box}
nmyPort : Gafbtr; {the original graphics port}
CONST
kSaveChangesDi al og = 129; {resource of Save changes di al og}
BEG N
| F nyDat a®”. wi ndowDi rty THEN {see whether w ndow is dirty}
BEG N
nyltem : = CautionAl ert (kSaveChangesDi al og, N L);
IF nyltem = i Cancel THEN{user clicked Cancel}
BEG N
Dod oseFil e : = usrCancel edErr;
Exit (Dod oseFil e);
END;
IF nyltem = i Save THEN
nyErr := DoSaveCnd;
END;
| F nyData”™.fil eRef Num <> 0 THEN
BEG N
nyErr := FSC ose(nyDat a””. fil eRef Nunj;
IF nyErr = noErr THEN
BEG N
nyErr := FlushVol (NIL, nyData””.fil eFSSpec.vRef Nun;
nyDat a®.fileRefNum:= 0; {clear the file reference nunber}
END;
END;
{Di spose of TextEdit record and controls here (code onmtted).}
Di sposeHandl e(Handl e(nyDat a)) ; {di spose of docunent record}
DoCl oseFile := nyErr;
END;

Using Files 1-33

juswabeue 9|l 0] uondnpou| .
=

1-34

CHAPTER 1

Introduction to File Management

If the document is an existing file that has not been changed since it was last saved, your
application can simply call the FSCl ose function. This routine writes to disk any
unwritten data remaining in the volume buffer. The FSCl ose function also updates the
information maintained on the volume for that file and removes the access path. The
information about the file is not actually written to the disk, however, until the volume is
flushed, ejected, or unmounted. To keep the file information current, it’s a good idea to
follow each call to FSC ose with a call to the Fl ushVol function.

If the contents of an existing file have been changed, or if a new file is being closed for
the first time, your application can call the Dialog Manager routine Caut i onAl ert
(specifying a resource ID of an' ALRT' template) to ask the user whether or not to save
the changes. If the user decides not to save the file, you can just call FSCl ose and
dispose of the window. Otherwise, DoCl oseFi | e calls the DoSaveCnd function to save
the file to disk.

Opening Files at Application Startup Time

A user often launches your application by double-clicking one of its document icons or
by selecting one or more document icons and choosing the Open command in the
Finder’s File menu. In these cases, your application needs to determine which files the
user selected so that it can open each one and display its contents in a window. There are
two ways in which your application can determine this.

If the user opens a file from the Finder and if your application supports high-level
events, the Finder sends it an Open Documents event. Your application then needs to
determine which file or files to open and react accordingly. For a complete description of
how to process the Open Documents event, see the chapter “Apple Event Manager” in
Inside Macintosh: Interapplication Communication.

IMPORTANT

If at all possible, your application should support high-level events. You
should use the techniques illustrated in this section only if your
application doesn’t support high-level events. a

If your application does not support high-level events, you need to ask the Finder at
application launch time whether or not the user launched the application by selecting
some documents. You can do this by calling the Count AppFi | es procedure and seeing
whether the count of files is 1 or more. Then you can call the procedures Get AppFi | es
and O r AppFi | es to retrieve the information about the selected files. The technique is
illustrated in Listing 1-17.

The Count AppFi | es procedure determines how many files, if any, the user selected at
application startup time. If the value of the my Numparameter is nonzero, then nyJob
contains a value that indicates whether the files were selected for opening or printing.
Currently, myJob can have one of two values:

CONST
appOpen = O0; {open the docunent (s)}
appPrint = 1; {print the docunent(s)}

Using Files

CHAPTER 1

Introduction to File Management

Listing 1-17 Opening files at application launch time

PROCEDURE Dol ni t Fi | es;

VAR
myNum I nt eger; {nunber of files to be opened or printed}
myJob: I nt eger; {open or print the files?}
i ndex: I nt eger; {index of current file}
nyFile: AppFile; {file info}
mySpec: FSSpec; {file system specification}
myErr: CSErr;
BEG N
Count AppFi | es(nyJob, myNum ;
I F myNum > 0 THEN {user selected sone files}
| F nyJob = appQpen THEN {files are to be opened}

END;

FOR index := 1 TO nmyNum DO

BEG N
CGet AppFi | es(i ndex, nyFile); {get file info from Fi nder}
myErr : = FSMakeFSSpec(nyFil e.vRef Num 0, nyFile.fNane,
nmySpec); {nake an FSSpec to hold info}
nyErr := DoQpenFile(nySpec); {read in file's data}
C r AppFi | es(i ndex); {show we' ve got the info}
END;

In Listing 1-17, if the files are to be opened, then Dol ni t Fi | es obtains information
about them by calling the Get AppFi | es procedure for each one. The Get AppFi | es
procedure returns the information in a record of type AppFi | e.

TYPE AppFile =
RECORD
vRef Num I nt eger; {working directory reference nunber}
f Type: CSType; {file type}
ver sNum I nt eger; {version nunber; ignored}
f Narne: Str 255; {fil enane}
END;

Because the function DoOpenFi | e takes an FSSpec record as a parameter,

Dol ni t Fi | es next converts the information returned in the nyFi | e parameter into an
FSSpec record, using FSMakeFSSpec. Then Dol ni t Fi | es calls DoOpenFi | e to read
the file data and C r AppFi | es to let the Finder know that it has processed the
information for that file.

Using Files 1-35

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Note

The vRef Numfield of an AppFi | e record does not contain a volume
reference number; instead it contains a working directory reference
number, which encodes both the volume reference number and the
parent directory ID. (That's why the second parameter passed to
FSMakeFSSpec in Listing 1-17 is 0.) O

Using a Preferences File

Many applications allow the user to alter various settings that control the operation or
configuration of the application. For example, your application might allow the user to
specify the size and placement of any new windows or the default font used to display
text in those windows. You can create a preferences file in which to record user
preferences, and your application can retrieve that file whenever it is launched.

In deciding how to structure your preferences file, it is important to distinguish
document-specific settings from application-specific settings. Some user-specifiable
settings affect only a particular document. For example, the user might have changed the
text font in a particular window. When you save the text in the window, you also want to
save the current font setting. Generally you can do this by storing the font name in a
resource in the document file’s resource fork. Then, when the user opens that document
again, you check for the presence of such a resource, retrieve the information stored in it,
and set the document font accordingly.

Some settings, such as a default text font, are not specific to a particular document. You
might store such settings in the application’s resource fork, but generally it is better to
store them in a separate preferences file. The main reason for this is to avoid problems
that can arise if an application is located on a server volume. If preferences are stored in
resources in the application’s resource fork, those preferences apply to all users
executing that application. Worse yet, the resources can become corrupted if several
different users attempt to alter the settings at the same time.

Thus, it is best to store application-specific settings in a preferences file. The Operating
System provides a special folder in the System Folder, called Preferences, where you can
store that file. Listing 1-18 illustrates a way to open your application’s preferences file.

Listing 1-18 Opening a preferences file

PROCEDURE DoGet Pr ef er ences;

VAR
myErr: OSErr;
ny VRef : I nteger; {volume ref num of Preferences folder}
nyDirl D; Longlint; {dir ID of Preferences folder}
nmy Spec: FSSpec; {FSSpec for the preferences file}
nyNane: Str255; {name of the application}
ny Ref : Integer; {ref numof app's resource file; ignored}
nmyHand: Handl e; {handle to Finder information; ignored}
nyRef Num Integer; {file reference nunber}

1-36 Using Files

CHAPTER 1

Introduction to File Management

CONST

kPrefI D = 128; {resource ID of STR# with fil enane}
BEG N

{Determ ne the nanme of the preferences file.}

Cet I ndString(myName, kPreflD, 1);

{Find the Preferences folder in the System Fol der.}
myErr : = Fi ndFol der (kOnSyst enDi sk, kPreferencesFol der Type,
kDont Cr eat eFol der, mnmyVRef, nyDirlD);
IF nyErr = noErr THEN
myErr := FSMakeFSSpec(nyVRef, nyDirl D, mnmyNanme, nySpec);
I F nyErr = noErr THEN
nmyRef Num : = FSpOpenResFi | e(mySpec, fsCurPerm;

{Read your preference settings here.}

Cl oseResFi | e(myRef Num ;
END;

The DoGet Pr ef er ences procedure first determines the name of the preferences file it is
to open and read. To allow easy localization, you should store the name in a resource of
type ' STR#' in your application’s resource file. The DoCet Pr ef er ences procedure
assumes that the name is stored as the first string in the resource having ID kPr ef | D.

The technique shown here assumes that your preference settings can all be stored in
resources. As a result, Listing 1-18 calls the Resource Manager function FSpQpenResFi | e
to open the resource fork of your preferences file. See the chapter “Resource Manager” in
Inside Macintosh: More Macintosh Toolbox for complete details on opening resource files and
reading resources from them.

Adjusting the File Menu

Your application should dim any File menu commands that are not available at the time
the user pulls down the File menu. For example, if your application does not yet have a
document window open, then the Save, Save As, and Revert commands should be

dimmed. You can adjust the File menu easily using the technique shown in Listing 1-19.

Listing 1-19 Adjusting the File menu

PROCEDURE DoAd]j ust Fi | eMenu;

VAR
nmyW ndow. W ndowPt r
nmy Menu: MenuHandl e;
nmyDat a: MyDocRecHnd; {handl e to wi ndow dat a}

Using Files 1-37

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

BEG N
myW ndow : = Front W ndow,
| F myWndow = NIL THEN

BEG N
myMenu : = Get MHandl e(nFile);
Di sabl el ten{nyMenu, i Save); {di sabl e Save}
Di sabl el ten{nyMenu, i SaveAs); {di sabl e Save As}
Di sabl el tem(myMenu, i Revert); {di sabl e Revert}
Di sabl el ten{nyMenu, i d ose); {di sabl e Cl ose}
END
ELSE | F MyGet W ndowType(myW ndow) = kMyDocW ndow THEN
BEG N
nyData : = MyDocRecHnd(Get WRef Con(myW ndow)) ;
myMenu : = Get MHandl e(nFile);
Enabl el t em(myMenu, i SaveAs); {enabl e Save As}
Enabl el t em(myMenu, i d ose); {enabl e C ose}

| F nmyDat a*™. wi ndowDi rty THEN

BEG N
Enabl el t em{ nyMenu, i Save); {enabl e Save}
Enabl el t em(nyMenu, i Revert); {enabl e Revert}
END
ELSE
BEG N
Di sabl el ten{nyMenu, i Save); {di sabl e Save}
Di sabl el tem(myMenu, i Revert); {di sabl e Revert}
END;

END;
END;

Your application should call DoAdj ust Fi | eMenu whenever it receives a mouse-down
event in the menu bar. (No doubt you want to include code appropriate for enabling and
disabling other menu items too.) See the chapter “Menu Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for details on the menu enabling and disabling procedures
used in Listing 1-19.

File Management Reference

This section describes the data structures and routines used in this chapter to illustrate
basic file management operations. The section “Data Structures” shows the Pascal data
structures for the file system specification record and the standard file reply record. The
sections that follow describe the Standard File Package routines for opening and saving

1-38 File Management Reference

CHAPTER 1

Introduction to File Management

documents and the File Manager routines for accessing files, manipulating files and
directories, accessing volumes, and getting information about documents to be opened
when your application is launched.

For a description of other file-related data structures and routines, see the chapters “File
Manager” and “Standard File Package” in this book.

Data Structures

This section describes the data structures that your application can use to exchange
information with the File Manager and the Standard File Package. The techniques
described in this chapter use file system specification records and standard file reply
records.

File System Specification Record

The file system specification record for files and directories is defined by the FSSpec

data type.

TYPE FSSpec = {file system specification}

RECORD
vRef Num I nt eger; {vol urmre reference nunber}
par | D: Longl nt; {directory ID of parent directory}
nane: Str63; {filename or directory nane}

END;

Field descriptions

vRef Num The volume reference number of the volume containing the
specified file or directory.

parlD The directory ID of the directory containing the specified file
or directory.

nane The name of the specified file or directory.

Standard File Reply Records

The procedures St andar dGet Fi | e and St andar dPut Fi | e both return information
to your application using a standard file reply record, which is defined by the

St andar dFi | eRepl y data type. The reply record identifies selected files with a file
system specification record, which you can pass directly to many of the File Manager
functions described in the sections that follow. The reply record also contains fields that
support several Finder features.

File Management Reference 1-39

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

TYPE StandardFil eReply =
RECORD

sf Good:

sf Repl aci ng:

sf Type:
sfFile:
sfScript:
sf Fl ags:

sf | sFol der:
sf | sVol une:

sf Reservedl:
sf Reserved2:

END;

1-40

Bool ean;
Bool ean;
GSType;
FSSpec;

Scri pt Code;

I nt eger;
Bool ean;
Bool ean;
Longl nt;
I nt eger;

Field descriptions

sf Good

sf Repl aci ng

sf Type

sfFile

sf Scri pt

{TRUE if user did not cancel}

{TRUE if replacing file with same nane}
{file type}

{selected file, folder, or vol une}
{script of file, folder, or volune nane}
{Finder flags of selected itent
{selected itemis a fol der}

{selected itemis a vol une}

{reserved}

{reserved}

Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the sf Good field contains TRUE.

Reports whether a file to be saved replaces an existing file of
the same name. This field is valid only after a call to the

St andar dPut Fi | e or Cust onPut Fi | e procedure. When

the user assigns a name that duplicates that of an existing file,
the Standard File Package asks for verification by displaying a
subsidiary dialog box (illustrated in Figure 1-10). If the user
verifies the name, the Standard File Package sets the sf Repl aci ng
field to TRUE and returns to your application; if the user cancels
the overwriting of the file, the Standard File Package returns

to the main dialog box. If the name does not conflict with an
existing name, the Standard File Package sets the field to FALSE
and returns.

Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.) Only St andar dGet Fi | e and Cust onGet Fi | e return a
file type in this field.

Describes the selected file, folder, or volume with a file system
specification record, which contains a volume reference number,
parent directory ID, and name. (See the chapter “File Manager” in
this book for a complete description of the file system specification
record.) If the selected item is an alias for another item, the Standard
File Package resolves the alias and places the file system
specification record for the target in the sf Fi | e field when the user
completes the dialog box. If the selected file is a stationery pad, the
reply record describes the file itself, not a copy of the file.

Identifies the script in which the name of the document is to be
displayed. (This information is used by the Finder and by the
Standard File Package.) A script code of snSyst enScri pt (1)
represents the default system script.

File Management Reference

CHAPTER 1

Introduction to File Management

sf Fl ags

sf | sFol der

sflsVol une

sf Reservedl
sf Reserved?2

Application Files Records

Contains the Finder flags from the Finder information record in the
catalog entry for the selected file. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for a description of
the Finder flags.) This field is returned only by St andar dGet Fi | e
and Cust omCet Fi | e. If your application supports stationery, it
should check the stationery bit in the Finder flags to determine
whether to treat the selected file as stationery. Unlike the Finder, the
Standard File Package does not automatically create a document
from a stationery pad and pass your application the new document.
If the user opens a stationery document from within an application
that does not support stationery, the Standard File Package displays
a dialog box warning the user that the master copy is being opened.

Reports whether the selected item is a folder (TRUE) or a file or
volume (FALSE). This field is meaningful only during the execution
of a dialog hook function.

Reports whether the selected item is a volume (TRUE) or a file or
folder (FALSE). This field is meaningful only during the execution
of a dialog hook function.

Reserved.
Reserved.

The Get AppFi | es procedure returns information about files opened at application
launch time in an application files record, defined by the AppFi | e data type:

TYPE AppFile
RECORD

vRef Num

f Type:

ver sNum

f Nare:
END;

Field descriptions
vRef Num

f Type
ver sNum
f Name

I nt eger; {working directory reference nunber}
CSType; {file type}

I nt eger; {version nunber; ignored}

Str 255; {fil enane}

A working directory reference number that encodes the volume and
parent directory of the file.

The file type.
Reserved.
The filename.

File Management Reference 1-41

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

File Specification Routines

If your application has no special user interface requirements, you can use the

St andar dGet Fi | e and St andar dPut Fi | e procedures to display the default dialog
boxes for opening and saving documents. For a description of more advanced file
specification routines, see the chapter “Standard File Package” in this book.

StandardGetFile

DESCRIPTION

1-42

You can use the St andar dGet Fi | e procedure to display the default Open dialog box
when the user is opening a file.

PROCEDURE St andardGetFile (fileFilter: FileFilterProcPtr;
numlypes: | nteger,
typeLi st: SFTypeli st;
VAR reply: StandardFil eReply);

fileFilter A pointertoan optional file filter function, provided by your application,
through which St andar dGet Fi | e passes files of the specified types.

nunlfypes The number of file types to be displayed. If you specify a nunilypes
value of -1, the first filtering passes files of all types.

t ypeli st Alist of file types to be displayed.
reply The reply record, which St andar dGet Fi | e fills in before returning.

The St andar dGet Fi | e procedure presents a dialog box through which the user
specifies the name and location of a file to be opened. While the dialog box is active,
St andar dGet Fi | e gets and handles events until the user completes the interaction,
either by selecting a file to open or by canceling the operation. St andar dGet Fi | e
returns the user’s input in a record of type St andar dFi | eRepl y.

Thefil eFilter, nunTypes, andt ypelLi st parameters together determine which
files appear in the displayed list. The first filtering is by file type, which you specify in
the nunTypes and t ypelLi st parameters. The nuniTypes parameter specifies the
number of file types to be displayed. You can specify one or more types. If you specify a
nunTypes value of -1, the first filtering passes files of all types.

Thefil eFi |t er parameter points to an optional file filter function, provided by your
application, through which St andar dGet Fi | e passes files of the specified types. See
the chapter “Standard File Package” in this book for a complete description of how you
specify this filter function.

File Management Reference

CHAPTER 1

Introduction to File Management

SPECIAL CONSIDERATIONS

The St andar dGet Fi | e procedure is not available in all versions of system software.
Use the Gest al t function to determine whether St andar dGet Fi | e is available before
calling it.

Because St andar dCet Fi | @ may move memory, you should not call it at interrupt time.

StandardPutFile

DESCRIPTION

You can use the St andar dPut Fi | e procedure to display the default Save dialog box
when the user is saving a file.

PROCEDURE St andar dPut Fil e (pronpt: Str255; defaul t Nane: Str255
VAR reply: StandardFil eReply);

pr onpt The prompt message to be displayed over the text field.

def aul t Name
The initial name of the file.

reply The reply record, which St andar dPut Fi | e fills in before returning.

The St andar dPut Fi | e procedure presents a dialog box through which the user
specifies the name and location of a file to be written to. The dialog box is centered on
the screen. While the dialog box is active, St andar dPut Fi | e gets and handles events
until the user completes the interaction, either by selecting a name and authorizing the
save or by canceling the save. The St andar dPut Fi | e procedure returns the user’s
input in a record of type St andar dFi | eRepl y.

SPECIAL CONSIDERATIONS

The St andar dPut Fi | e procedure is not available in all versions of system software.
Use the Gest al t function to determine whether St andar dPut Fi | e is available before
calling it.

Because St andar dPut Fi | e may move memory, you should not call it at interrupt time.

File Access Routines

This section describes the File Manager’s file access routines. When you call one of these
routines, you specify a file by a path reference number (which the File Manager returns
to your application when your application opens the file). Unless your application has
very specialized needs, you should be able to manage all file access (for example, writing
data to the file) using the routines described in this section. Typically you use these
routines to operate on a file’s data fork, but in certain circumstances you might want to
use them on a file’s resource fork as well.

File Management Reference 1-43

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Reading, Writing, and Closing Files

You can use the functions FSRead, FSW i t e, and FSC ose to read data from a file,
write data to a file, and close an open file. All three of these functions operate on open
files. You can use any one of a variety of routines to open a file (for example,
FSpQpenDF).

FSRead
You can use the FSRead function to read any number of bytes from an open file.
FUNCTI ON FSRead (ref Num Integer; VAR count: Longlnt;
buffPtr: Ptr): OSErr;
ref Num The file reference number of an open file.
count On input, the number of bytes to read; on output, the number of bytes
actually read.
buf f Ptr A pointer to the data buffer into which the bytes are to be read.
DESCRIPTION
The FSRead function attempts to read the requested number of bytes from the specified
file into the specified buffer. The buf f Pt r parameter points to that buffer; this buffer is
allocated by your application and must be at least as large as the count parameter.
Because the read operation begins at the current mark, you might want to set the mark
first by calling the Set FPos function. If you try to read past the logical end-of-file,
FSRead reads in all the data up to the end-of-file, moves the mark to the end-of-file, and
returns eof Er r as its function result. Otherwise, FSRead moves the file mark to the byte
following the last byte read and returns noErr.
RESULT CODES
nokErr 0 No error
i oErr -36 1/Oerror
fnCpnErr -38 File not open
eof Err -39 Logical end-of-file reached
poSsErr —40 Attempt to position mark before start of file
f LckdErr -45 File is locked
par anmkrr =50 Negative count
rf Numerr -51 Bad reference number
af pAccessDeni ed -5000 User does not have the correct access to the file

1-44 File Management Reference

CHAPTER 1

Introduction to File Management

FSWrite

You can use the FSW i t e function to write any number of bytes to an open file.

FUNCTION FSWite (ref Num Integer; VAR count: Longlnt;

buffPtr: Ptr): OSErr;
ref Num The file reference number of an open file.
count On input, the number of bytes to write to the file; on output, the number
of bytes actually written.

buf f Pt r A pointer to the data buffer from which the bytes are to be written.
DESCRIPTION

The FSW i t e function takes the specified number of bytes from the specified data buffer

and attempts to write them to the specified file. Because the write operation begins at the

current mark, you might want to set the mark first by calling the Set FPos function.

If the write operation completes successfully, FSW i t e moves the file mark to the

byte following the last byte written and returns noEr r. If you try to write past the

logical end-of-file, FSW i t e moves the logical end-of-file. If you try to write past

the physical end-of-file, FSW i t e adds one or more clumps to the file and moves the

physical end-of-file accordingly.
RESULT CODES

noErr 0 No error

dskFul Err -34 Disk full

i OErr -36 1/Oerror

fnCpnErr -38 File not open

posErr —40 Attempt to position mark before start of file

wWPr Er r —44 Hardware volume lock

fLckdErr —45 File is locked

vLckdErr —46 Software volume lock

parantrr -50 Negative count

rf Numérr -51 Bad reference number

wr Per nEr r 61 Read /write permission doesn’t allow writing
FSClose

You can use the FSCl ose function to close an open file.
FUNCTI ON FSCl ose (ref Num Integer): OSErr;

ref Num The file reference number of an open file.

File Management Reference 1-45

juswabeue 9|l 0] uondnpou| .
=

DESCRIPTION

RESULT CODES

CHAPTER 1

Introduction to File Management

The FSCl ose function removes the access path for the specified file and writes the
contents of the volume buffer to the volume.

Note
The FSO ose function calls PBFI ushFi | e internally to write the file’s

bytes onto the volume. To ensure that the file’s catalog entry is updated,
you should call Fl ushVol after you call FSCl ose. O

WARNING

Make sure that you do not call FSCl ose with a file reference number
of a file that has already been closed. Attempting to close the same file
twice may result in loss of data on a volume. See the description of
file control blocks in the chapter “File Manager” in this book for a
discussion of how this can happen. a

noErr 0 No error

i oErr -36 I/0 error

f nCpnEr r -38 File not open

fnfErr —43 File not found

rf Nunerr -51 Bad reference number

Manipulating the File Mark

You can use the functions Get FPos and Set FPos to get or set the current position of the
file mark.

GetFPos
You can use the Get FPos function to determine the current position of the mark before
reading from or writing to an open file.
FUNCTI ON Get FPos (ref Num Integer; VAR filePos: Longint): OSErr;
ref Num The file reference number of an open file.
filePos On output, the current position of the mark.

DESCRIPTION
The Get FPos function returns, in the f i | ePos parameter, the current position of the file
mark for the specified open file. The position value is zero-based; that is, the value of
fil ePos is 0 if the file mark is positioned at the beginning of the file.

1-46 File Management Reference

RESULT CODES

SetFPos

CHAPTER 1

Introduction to File Management

noErr 0 No error

i oErr -36 I/0O error

fnCpnErr -38 File not open

rf Nunerr -51 Bad reference number
of pErr -52 Error during Get FPos

DESCRIPTION

RESULT CODES

You can use the Set FPos function to set the position of the file mark before reading
from or writing to an open file.

FUNCTI ON Set FPos (ref Num | nteger; poshMde: Integer;
posOf: Longlnt): OSErr;

ref Num The file reference number of an open file.
poshMbde The positioning mode.
posCr f The positioning offset.

The Set FPos function sets the file mark of the specified file. The posMbde parameter
indicates how to position the mark; it must contain one of the following values:

CONST
f SAt Mar k = 0; {at current mark}
fsFronStart = 1; {set mark relative to beginning of file}
fsFromLEOF = 2; {set mark relative to |ogical end-of-file}
fsFromvark = 3; {set mark relative to current nark}

If you specify f sAt Mar k, the mark is left wherever it’s currently positioned, and the
posCf f parameter is ignored. The next three constants let you position the mark relative
to either the beginning of the file, the logical end-of-file, or the current mark. If you
specify one of these three constants, you must also pass in posOf f a byte offset (either
positive or negative) from the specified point. If you specify f sFr onLECF, the value in
posCOf f must be less than or equal to 0.

noErr 0 No error

i oErr -36 I/0O error

f nOpnEr r -38 File not open

eof Err -39 Logical end-of-file reached

posErr —40 Attempt to position mark before start of file
rf Nunmerr -51 Bad reference number

File Management Reference 1-47

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Manipulating the End-of-File

You can use the functions Get EOF and Set ECF to get or set the logical end-of-file of an
open file.

GetEOF
You can use the Get ECF function to determine the current logical end-of-file of an open
file.
FUNCTI ON Get EOF (ref Num Integer; VAR | ogEOF: Longlnt): OSErr;
ref Num The file reference number of an open file.
| ogECF On output, the logical end-of-file.
DESCRIPTION
The Get ECF function returns, in the | 0gEOF parameter, the logical end-of-file of the
specified file.
RESULT CODES
noErr 0 No error
i oErr -36 1/Oerror
fnCpnErr -38 File not open
rf Nunerr -51 Bad reference number
af pAccessDeni ed -5000 User does not have the correct access to the file
SEE ALSO
For a description of the logical and physical end-of-file, see the section “File Access
Characteristics” on page 1-8.
SetEOF
You can use the Set EOF function to set the logical end-of-file of an open file.
FUNCTI ON Set EOF (ref Num Integer; |ogEOF: Longlnt): OSErr;
ref Num The file reference number of an open file.
| ogEOF The logical end-of-file.
1-48 File Management Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 1

Introduction to File Management

The Set ECF function sets the logical end-of-file of the specified file. If you attempt to set
the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set 1
byte beyond the end of the next free allocation block; if there isn’t enough space on the
volume, no change is made, and Set ECF returns dskFul Err as its function result.

If you set the | 0gECF parameter to 0, all space occupied by the file on the volume is
released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0 is
therefore not the same as deleting the file (which removes both file forks at once).

noErr 0 No error

dskFul Err -34 Disk full

i oErr -36 I/0O error

f nOpnEr r -38 File not open

WPr Er r —44 Hardware volume lock

f LckdErr —45 File is locked

vLckdErr —46 Software volume lock

rf Nunerr -51 Bad reference number

wr Per nEr r -61 Read /write permission doesn’t allow writing

For a description of the logical and physical end-of-file, see the section “File Access
Characteristics” on page 1-8.

File and Directory Manipulation Routines

The File Manager includes a set of file and directory manipulation routines that accept
FSSpec records as parameters. Depending on the requirements of your application and
on the environment in which it is running, you may be able to accomplish all your file
and directory operations by using these routines.

Before calling any of these routines, however, you should call the Gest al t function to
ensure that they are available in the operating environment. (See “Testing for File
Management Routines” on page 1-14 for an illustration of calling Gest al t .) If these
routines are not available, you can call the corresponding HFS routines.

Opening, Creating, and Deleting Files

The File Manager provides the FSpOpenDF, FSpCr eat e, and FSpDel et e routines,
which allow you to open, create, and delete files.

File Management Reference 1-49

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

FSpOpenDF

DESCRIPTION

RESULT CODES

1-50

You can use the FSpOpenDF function to open a file’s data fork.

FUNCTI ON FSpOpenDF (spec: FSSpec; perm ssion: SignedByte;
VAR ref Num Integer): OSErr;

spec An FSSpec record specifying the file whose data fork is to be opened.

perm ssi on
A constant indicating the desired file access permissions.

ref Num A reference number of an access path to the file’s data fork.

The FSpOpenDF function opens the data fork of the file specified by the spec parameter
and returns a file reference number in the r ef Numparameter. You can pass that reference
number as a parameter to any of the low- or high-level file access routines.

The per mi ssi on parameter specifies the kind of access permission mode you want. You
can specify one of these constants:

CONST
fsCur Perm = 0 {what ever perm ssion is allowed}
f sRdPer m = 1 {read pernission}
fsW Perm 2; {write pernmission}
f SRAW Per m = 3 {exclusive read/wite perm ssion}
f SRAW ShPerm = 4; {shared read/wite perni ssion}

In most cases, you can simply set the permission parameter to f sCur Per m Some
applications request f SRAW Per m to ensure that they can both read from and write to a
file.

noErr 0 No error

NsVvErr -35 No such volume

i oErr -36 I/0O error

bdNantr r =37 Bad filename

t nf oErr —42 Too many files open

fnfErr —43 File not found

OpW Err -49 File already open for writing

per nErr —54 Attempt to open locked file for writing

di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file
File Management Reference

CHAPTER 1

Introduction to File Management

FSpCreate
You can use the FSpCr eat e function to create a new file.
FUNCTI ON FSpCreate (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
OSErr;
spec An FSSpec record specifying the file to be created.
creator The creator of the new file.
fileType The file type of the new file.
scriptTag The code of the script system in which the filename is to be displayed. If
you have established the name and location of the new file using either
the St andar dPut Fi | e or Cust onPut Fi | e procedure, specify the script
code returned in the reply record. (See the chapter “Standard File
Package” in this book for a description of St andar dPut Fi | e and
Cust onPut Fi | e.) Otherwise, specify the system script by setting the
Scri pt Tag parameter to the value snSyst enScri pt .
DESCRIPTION

The FSpCr eat e function creates a new file (both forks) with the specified type, creator,
and script code. The new file is unlocked and empty. The date and time of creation and
last modification are set to the current date and time.

See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for
information on file types and creators.

Files created using FSpCr eat e are not automatically opened. If you want to write
data to the new file, you must first open the file using a file access routine (such
as FSpQpenDF).

Note

The resource fork of the new file exists but is empty. You'll need to call
one of the Resource Manager procedures Cr eat eResFi | e,

HCr eat eResFi | e, or FSpCr eat eResFi | e to create a resource map in

the file before you can open it (by calling one of the Resource Manager
functions OpenResFi | e, HOpenResFi | e, or FSpOpenResFi | e). O

File Management Reference 1-51

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

RESULT CODES
nokErr 0 No error
di r Ful Err -33 File directory full
dskFul Err -34 Disk is full
NSVErr -35 No such volume
i oErr -36 I/Oerror
bdNanEr r =37 Bad filename
fnfErr —43 Directory not found or incomplete pathname
wPr Er r —44 Hardware volume lock
vLckdErr —46 Software volume lock
dupFNEr r —48 Duplicate filename and version
di r NFErr =120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access
af pQbj ect TypeErr -5025 A directory exists with that name
FSpDelete
You can use the FSpDel et e function to delete files and directories.
FUNCTI ON FSpDel ete (spec: FSSpec): OSErr;
spec An FSSpec record specifying the file or directory to delete.
DESCRIPTION
The FSpDel et e function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. The file ID reference, if any, is removed.
A file must be closed before you can delete it. Similarly, a directory must be empty before
you can delete it. If you attempt to delete an open file or a nonempty directory,
FSpDel et e returns the result code f BsyEr r. FSpDel et e also returns the result code
f BsyErr if the directory has an open working directory associated with it.
RESULT CODES
nokErr 0 No error
NsvErr -35 No such volume
i OErr -36 I/0O error
bdNanEr r =37 Bad filename
fnfErr —43 File not found
wPr Er r —44 Hardware volume lock
f LckdErr —45 File is locked
vLckdErr —46 Software volume lock
f BsyErr —47 File busy, directory not empty, or working directory
control block open
di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access
1-52 File Management Reference

CHAPTER 1

Introduction to File Management

Exchanging the Data in Two Files

The function FSpExchangeFi | es allows you to exchange the data in two files.

FSpExchangeFiles

DESCRIPTION

RESULT CODES

You can use the FSpExchangeFi | es function to exchange the data stored in two files
on the same volume.

FUNCTI ON FSpExchangeFi |l es (source: FSSpec; dest: FSSpec): OSErr;

source The source file. The contents of this file and its file information are placed
in the file specified by the dest parameter.

dest The destination file. The contents of this file and its file information are
placed in the file specified by the sour ce parameter.

The FSpExchangeFi | es function swaps the data in two files by changing the
information in the volume’s catalog and, if the files are open, in the file control blocks.
You should use FSpExchangeFi | es when updating an existing file, so that the file ID
remains valid in case the file is being tracked through its file ID. The FSpExchangeFi | es
function changes the fields in the catalog entries that record the location of the data and
the modification dates. It swaps both the data forks and the resource forks.

The FSpExchangeFi | es function works on both open and closed files. If either file is
open, FSpExchangeFi | es updates any file control blocks associated with the file.
Exchanging the contents of two files requires essentially the same access permissions as
opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do
not, FSpExchangeFi | es returns the result code di f f Vol Err.

nokErr 0 No error

nsvEerr -35 Volume not found

i oErr -36 I/0O error

fnfErr —43 File not found

f LckdErr —45 File is locked

vLckdErr —46 Volume is locked or read-only

par ankr r -50 Function not supported by volume
vol OFflinErr -53 Volume is offline

wr gVol TypErr -123 Not an HFS volume

di ffVol Err -1303 Files on different volumes

af pAccessDeni ed -5000 User does not have the correct access
af pQbj ect TypeErr -5025 Object is a directory, not a file

af pSamebj ect Err -5038 Source and destination files are the same

File Management Reference 1-53

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Creating File System Specifications

The FSMakeFSSpec function allows you to create FSSpec records.

FSMakeFSSpec

DESCRIPTION

1-54

You can use the FSMakeFSSpec function to initialize an FSSpec record to particular
values for a file or directory.

FUNCTI ON FSMakeFSSpec (vRef Num |Integer; dirlD: Longlnt;
fileNane: Str255; VAR spec: FSSpec):
OSErr;

vRef Num A volume specification. This parameter can contain a volume reference
number, a working directory reference number, a drive number, or 0 (to
specify the default volume).

dirlD A directory specification. This parameter usually specifies the parent
directory ID of the target object. If the directory is sufficiently specified by
either the vRef Numor f i | eName parameter, di r | Dcan be set to 0. If you
explicitly specify di r | D(that is, if it has any value other than 0), and if
vRef Numspecifies a working directory reference number, di r | D
overrides the directory ID included in vRef Num If the f i | eNane
parameter contains an empty string, FSMakeFSSpec creates an FSSpec
record for a directory specified by either the di r | Dor vRef Num
parameter.

fileNane Afull or partial pathname. If f i | eNarre specifies a full pathname,
FSMakeFSSpec ignores both the vRef Numand di r | D parameters. A
partial pathname might identify only the final target, or it might include
one or more parent directory names. If f i | eName specifies a partial
pathname, then vRef Num di r | D, or both must be valid.

spec A file system specification to be filled in by FSMakeFSSpec.

The FSMakeFSSpec function fills in the fields of the spec parameter using the
information contained in the other three parameters. Call FSMakeFSSpec whenever
you want to create an FSSpec record.

You can pass the input to FSMakeFSSpec in several ways. The chapter “File
Manager” in this book explains how FSMakeFSSpec interprets its input.

If the specified volume is mounted and the specified parent directory exists, but the
target file or directory doesn’t exist in that location, FSMakeFSSpec fills in the record
and then returns f nf Er r instead of noEr r. The record is valid, but it describes a target
that doesn’t exist. You can use the record for other operations, such as creating a file with
the FSpCr eat e function.

File Management Reference

RESULT CODES

CHAPTER 1

Introduction to File Management

In addition to the result codes that follow, FSMakeFSSpec can return a number of other
File Manager error codes. If your application receives any result code other than noEr r
or f nf Err, all fields of the resulting FSSpec record are set to 0.

noErr 0 No error
nsvErr -35 Volume doesn’t exist
fnfErr -43 File or directory does not exist (FSSpec is still valid)

Volume Access Routines

This section describes the high-level volume access routines. Unless your application has
very specialized needs, you should be able to manage all volume access using the
routines described in this section. In fact, most applications are likely to need only the

Fl ushVol function described in the next section, “Updating Volumes.”

When you call one of these routines, you specify a volume by a volume reference
number (which you can obtain, for example, by calling the Get VI nf o function, or from
the reply record returned by the Standard File Package). You can also specify a volume
by name, but this is generally discouraged, because there is no guarantee that volume
names are unique.

Updating Volumes

When you close a file, you should call Fl ushVol to ensure that any changed contents of
the file are written to the volume.

Flush Vol
You can use the FI ushVol function to write the contents of the volume buffer and
update information about the volume.
FUNCTI ON Fl ushVol (vol Nanme: StringPtr; vRefNum |Integer): OSErr;
vol Nare A pointer to the name of a mounted volume.
vRef Num A volume reference number, a working directory reference number, a

drive number, or 0 for the default volume.
DESCRIPTION

On the specified volume, the FI ushVol function writes the contents of the associated
volume buffer and descriptive information about the volume (if they’ve changed since
the last time Fl ushVol was called). This information is written to the volume.

File Management Reference 1-55

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i oErr -36 I/O error
bdNantr r -37 Bad volume name
par antrr -50 No default volume
nsDrvErr -56 No such drive

Obtaining Volume Information

You can get information about a volume by calling the Get VI nf 0 or Get VRef Num
function.

GetVInfo
You can use the Get VI nf 0 function to get information about a mounted volume.
FUNCTI ON GetVIinfo (drvNum |nteger; vol Nane: StringPtr;
VAR vRef Num I nt eger;
VAR freeBytes: Longlnt): OSErr;
dr vNum The drive number of the volume for which information is requested.
vol Nanme On output, a pointer to the name of the specified volume.
vRef Num The volume reference number of the specified volume.
freeBytes The available space (in bytes) on the specified volume.
DESCRIPTION
The Get VI nf 0 function returns the name, volume reference number, and available
space (in bytes) for the specified volume. You specify a volume by providing its drive
number in the dr vNumparameter. You can pass 0 in the dr vNumparameter to get
information about the default volume.
RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
par anerr =50 No default volume

1-56 File Management Reference

CHAPTER 1

Introduction to File Management

GetVRefNum

DESCRIPTION

RESULT CODES

You can use the Get VRef Numfunction to get a volume reference number from a file
reference number.

FUNCTI ON Get VRef Num (ref Num | nteger; VAR vRef Num |Integer):

CSErr,
ref Num The file reference number of an open file.
vRef Num On exit, the volume reference number of the volume containing the file

specified by r ef Num

The Get VRef Numfunction returns the volume reference number of the volume
containing the specified file. If you also want to determine the directory ID of the
specified file’s parent directory, call the PBGet FCBI nf o function.

noErr 0 No error
rf Nunerr -51 Bad reference number

Application Launch File Routines

You can call Get AppPar s to determine your application’s name and the reference
number of its resource file. When your application starts up, you can call

Count AppFi | es to determine whether the user selected any documents to open or
print. If so, you can call Get AppFi | es and Cl r AppFi | es to process the information
passed to your application by the Finder.

Note

If your application supports high-level events, you receive this
information from the Finder in an Open Documents or Print
Documents event. [

File Management Reference 1-57

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

GetAppParms

DESCRIPTION

You can use the Get AppPar s procedure to get information about the current
application and about files selected by the user for opening or printing.

PROCEDURE Get AppPar ms(VAR apName: Str255; VAR apRef Num | nt eger;
VAR apParam Handl e);

apNarre On output, the name of the calling application.
apRef Num On output, the reference number of the application’s resource file.

apPar am On output, a handle to the Finder information about files to open or print.

The Get AppPar s procedure returns information about the current application. You can
call Get AppPar s at application launch time to determine which files, if any, the user
has selected in the Finder for opening or printing. You can call Get AppPar s at any
time to determine the current application’s name and the reference number of the
application’s resource fork.

The Get AppPar ns procedure returns the application’s name in the apNane parameter
and the reference number of its resource fork in the apRef Numparameter. A handle to
the Finder information is returned in apPar am This information consists of a word that
encodes the message or action to be performed, a word that indicates how many files to
process, and a list of Finder information about each such file. The Finder information has
the structure of an AppFi | e record, except that the filename occupies only as many
bytes as are required to hold the name (padded to an even number of bytes, if
necessary). In general, it is easier to use the Get AppFi | es procedure to access the
Finder information.

SPECIAL CONSIDERATIONS

If you simply want to determine the application’s resource file reference number, you
can call the Resource Manager function Cur ResFi | e when your application starts up.

If you need more extensive information about the application than Get AppPar s
provides, you can use the Process Manager function Get Cur r ent Pr ocess.

ASSEMBLY-LANGUAGE INFORMATION

1-58

You can get the application’s name, reference number, and handle to the Finder
information directly from the global variables Cur ApNane, Cur ApRef Num and
AppPar nHandl e.

File Management Reference

CHAPTER 1

Introduction to File Management

CountAppFiles

DESCRIPTION

You can use the Count AppFi | es procedure to determine how many documents (if any)
the user has selected at application launch time for opening or printing.

PROCEDURE Count AppFi |l es (VAR message: |nteger;
VAR count: | nteger);

nmessage The action to be performed on the selected files.

count The number of files selected.

The Count AppFi | es procedure deciphers the Finder information passed to your
application and returns information about the files that were selected when your
application was started up. On exit, the count parameter contains the number of
selected files, and the nessage parameter contains an integer that indicates whether the
files are to be opened or printed. The message parameter contains one of these
constants:

CONST
appOpen = O0; {open the docunent (s)}
appPrint = 1; {print the docunent(s)}
GetAppFiles

DESCRIPTION

You can use the Get AppFi | es procedure to retrieve information about each file selected
at application startup for opening or printing.

PROCEDURE Get AppFil es (index: Integer; VAR theFile: AppFile);

i ndex The index of the file whose information is returned.

theFile A structure containing the returned information.

The Get AppFi | es procedure returns information about a file that was selected when
your application was started up (as listed in the Finder information). The i ndex
parameter indicates the file for which information should be returned; it must be
between 1 and the number returned by Count AppFi | es, inclusive.

File Management Reference 1-59

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

ClrAppFiles

DESCRIPTION

1-60

You can use the C r AppFi | es procedure to notify the Finder that you have processed
the information about a file selected for opening or printing at application startup.

PROCEDURE Cl r AppFi l es (index: Integer);

i ndex The index of the file whose information is to be cleared.

The O r AppFi | es procedure changes the Finder information passed to your
application about the specified file so that the Finder knows you’ve processed the file.
The i ndex parameter must be between 1 and the number returned by Count AppFi | es,
inclusive. You should call O r AppFi | es for every document your application opens or
prints, so that the information returned by Count AppFi | es and Get AppFi | es is
always correct. The Cl r AppFi | es procedure sets the file type in the Finder information
to 0.

File Management Reference

CHAPTER 1

Introduction to File Management

Summary of File Management

Pascal Summary

Constants

CONST
{Gestalt constants}
gestal t FSAttr = 'fs '; {file systemattributes sel ector}
gest al t HasFSSpecCal | s = 1; {supports FSSpec records}
gestal tStandardFil eAttr = 'stdf'; {Standard File attributes sel ector}
gest al t St andar dFi | e58 = 0 {supports StandardPutFile etc.}
gestal t Fi ndFol der Attr = 'fold'; {FindFolder attributes selector}

gest al t Fi ndFol der Present= O;

{access nmodes for opening files}

fsCurPerm = 0
f sRdPerm = 1
fsWPerm = 2
f SRAW Per m = 3
f sSRAW ShPer m = 4

{file mark positioning nodes}

f sAt Mar k = 0;
fsFronttart = 1; {set
f sFromLECF = 2 {set
f sFromvar k = 3 {set
rdverify = 64,

{messages from Count AppFi | es}

appQOpen = 0
appPri nt = 1;

Summary of File Management

{what ever
; {read permn ssion}
; {write pernmission}

{at current

{add to above for

{Fi ndFol der is present}

perm ssion is all owed}

; {excl usive read/wite perm ssion}
; {shared read/wite perm ssion}

mar k}

mark relative to beginning of file}
mark relative to logical end-of-file}
mark relative to current mark}
read-verify}

{open the docunent (s)}
{print the docunent(s)}

1-61

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Data Types

File System Specification Record

TYPE FSSpec =

RECORD
vRef Num I nt eger; {vol une reference nunber}
par | D: Longl nt; {directory I D of parent directory}
nane: Str63; {filename or directory nane}
END;
FSSpecPt r = A"FSSpec;
FSSpecHandl e = A"FSSpecPtr;
Standard File Reply Record
TYPE St andar dFi | eRepl y=
RECORD
sf Good: Bool ean; {TRUE if user did not cancel}
sf Repl aci ng: Bool ean; {TRUE if replacing file with sanme nane}
sf Type: OSType; {file type}
sfFile: FSSpec; {selected itent
sfScript: Scri pt Code; {script of selected item s nane}
sf Fl ags: I nt eger; {Finder flags of selected iten}
sf | sFol der: Bool ean; {selected itemis a folder}
sf 1 sVol une: Bool ean; {selected itemis a vol une}
sf Reservedl: Longl nt; {reserved}
sf Reserved2: I nt eger; {reserved}
END;
Application Files Record
TYPE AppFile =
RECORD
vRef Num I nt eger; {working directory reference nunber}
f Type: OSType; {file type}
ver sNum I nt eger; {version nunber; ignored}
f Nane: Str 255; {fil enane}
END;
SFTypelLi st = ARRAY[O..3] OF OSType;

FileFilterProcPtr

ProcPtr; {file filter function}

1-62 Summary of File Management

CHAPTER 1

Introduction to File Management

File Specification Routines

Opening Files

PROCEDURE St andar dGet Fil e (fileFilter: FileFilterProcPtr;
nuniTypes: |Integer; typelList: SFTypelist;
VAR reply: StandardFil eReply);

Saving Files

PROCEDURE St andar dPut Fil e (pronpt: Str255; defaultName: Str255;
VAR reply: StandardFil eReply);

File Access Routines

Reading, Writing, and Closing Files

FUNCTI ON FSRead (refNum Integer; VAR count: Longlnt;
buffPtr: Ptr): OCSErr;

FUNCTI ON FSWite (ref Num |Integer; VAR count: Longlnt;
buffPtr: Ptr): OSErr;

FUNCTI ON FSO ose (refNum Integer): OSErr;

Manipulating the File Mark

FUNCTI ON Cet FPos (ref Num Integer; VAR filePos: Longlnt): OSErr;

FUNCTI ON Set FPos (ref Num I nteger; posMode: Integer;
posOf: Longlnt): OSErr;

Manipulating the End-of-File

FUNCTI ON Get EOF (refNum Integer; VAR | ogEOF: Longlnt): OSErr;
FUNCTI ON Set EOF (refNum Integer; |ogECF. Longlnt): OSErr;

File and Directory Manipulation Routines

Opening, Creating, and Deleting Files

FUNCTI ON FSpOpenDF (spec: FSSpec; pernission: SignedByte;
VAR ref Num Integer): OSErr;

FUNCTI ON FSpCreat e (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
CSErr;

FUNCTI ON FSpDel et e (spec: FSSpec): OSErr;

Summary of File Management 1-63

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Exchanging the Data in Two Files

FUNCTI ON FSpExchangeFi | es (source: FSSpec; dest: FSSpec): CSErr;
Creating File System Specifications
FUNCTI ON FSMakeFSSpec (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; VAR spec: FSSpec): OSErr;
Volume Access Routines
Updating Volumes
FUNCTI ON Fl ushVol (vol Name: StringPtr; vRefNum Integer): OSErr;
Obtaining Volume Information
FUNCTI ON Get VI nfo (drvNum | nteger; vol Nane: StringPtr;
VAR vRef Num Integer; VAR freeBytes: Longlnt):
OSErr;
FUNCTI ON Get VRef Num (refNum Integer; VAR vRef Num Integer): OSErr;
Application Launch File Routines
PROCEDURE Get AppPar s (VAR apNanme: Str255; VAR apRef Num | nteger;
VAR apParam Handl e);
PROCEDURE Count AppFi | es (VAR nmessage: |nteger; VAR count: Integer);
PROCEDURE Get AppFi | es (index: Integer; VAR theFile: AppFile);
PROCEDURE C r AppFi | es (i ndex: Integer);
C Summary
Constants
/*Cestalt constants*/
#define gestaltFSAttr "fs /*file systemattributes sel ector*/
#def i ne gestalt Ful | Ext FSDi spat ching 0 /*exports HFSDi spatch traps*/
#defi ne gestal t HasFSSpecCal | s 1 / *supports FSSpec records*/
#defi ne gestaltFi ndFol derAttr "fold / *Fi ndFol der attributes sel ector*/
#def i ne gestal t Fi ndFol der Present 0 /*Fi ndFol der is present*/
1-64 Summary of File Management

CHAPTER 1

Introduction to File Management

/*Cestalt Standard File attributes selector and reply*/

#define gestaltStandardFil eAttr
#defi ne gestalt StandardFil e58

"stdf’
0

/*values for requesting file read/wite perm ssions*/

enum {
fsCur Perm =0
f sRdPerm =1
fsW Perm = 2,
f sSRAW Per m =3
f sSRAW ShPer m = 4};

/*file mark positioning nodes*/
enum {
f sAt Mar k =0
f sFronft art =1
f sFronLECF = 2,
f sFromvar k =3
rdverify =6

/ *messages from Count AppFi | es*/

enum {
appOpen = 0,
appPri nt = 1}
Data Types

/*what ever perm ssion is allowed*/
/*read perm ssion*/

/*write pernission*/

/*excl usive read/wite perm ssion*/
/*shared read/wite perm ssion*/

/*at current mark}

/*set mark relative to beginning of file*/
/*set mark relative to |ogical end-of-file*/
/*set mark relative to current mark*/

/*add to above for read-verify*/

/*open the docunent (s)*/
/*print the docunent(s)*/

File System Specification Record

struct FSSpec {

short vRef Num
| ong par | D;
Str63 nane;

1
typedef struct FSSpec FSSpec;

t ypedef FSSpec *FSSpecPtr;
t ypedef FSSpecPtr *FSSpecHandl e;

Summary of File Management

[*file system specification*/

/*vol ume reference nunber*/
/*directory I D of parent directory*/
/[*filenane or directory nane*/

1-65

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Standard File Reply Record

struct StandardFil eReply {

/*enhanced standard file reply record*/

Bool ean sf Good; /*TRUE if user did not cancel */

Bool ean sfReplacing;/*TRUE if replacing file with same nanme*/
OSType sf Type; /*file type*/

FSSpec sfFile; /*selected file, folder, or vol une*/

Scri pt Code sf Scri pt; /[*script of file, folder, or volunme name*/
short sf Fl ags; /*Finder flags of selected itent/

Bool ean sflsFolder; /*selected itemis a folder*/

Bool ean sflsVolunme; /*selected itemis a vol une*/

| ong sf Reservedl;/*reserved*/

short sf Reserved?2;/ *reserved*/

b

typedef struct StandardFil eReply StandardFil eReply;

Application Files Record

struct AppFile {

short vRef Num

OSType f Type;

short ver sNum

St r 255 f Narre;
END;

typedef struct AppFile AppFile;

Standard File Type List

typedef OSType SFTypelist[4];

Callback Routine Pointer Types
/*file filter function*/

/*wor ki ng directory reference nunber*/
[*file type*/

/*version nunber; ignored*/

[*fil enane*/

t ypedef pascal Boolean (*FileFilterProcPtr)
(ParnBl kPtr PB);

File Specification Routines

Opening Files

pascal void StandardGetFile (const Str255 pronpt,
FileFilterProcPtr fileFilter,
short nuniTypes, SFTypelLi st typelist,
StandardFi |l eReply *reply);

1-66 Summary of File Management

CHAPTER 1

Introduction to File Management

Saving Files

pascal void StandardPutFile (const Str255 pronpt, const Str255 defaul t Nane,
St andardFi | eReply *reply);

File Access Routines

Reading, Writing, and Closing Files

pascal OSErr FSRead (short refNum long *count, Ptr buffPtr);
pascal OSErr FSWite (short refNum long *count, Ptr buffPtr);
pascal OSErr FSC ose (short ref Num;

Manipulating the File Mark

pascal OSErr Get FPos (short refNum long *fil ePos);
pascal OSErr Set FPos (short ref Num short posMbde, |ong posOif);

Manipulating the End-of-File

pascal OSErr Get ECF (short refNum |ong *| ogeOF);
pascal OSErr Set EOF (short refNum |ong | ogEOF);

File and Directory Manipulation Routines

Opening, Creating, and Deleting Files

pascal OSErr FSpQOpenDF (const FSSpec *spec, char perm ssion,
short *refNum;
pascal OSErr FSpCreate (const FSSpec *spec, OSType creator,

CSType fil eType, ScriptCode scriptTag);
pascal OSErr FSpDel ete (const FSSpec *spec);

Exchanging the Data in Two Files

pascal OSErr FSpExchangeFil es
(const FSSpec *source, const FSSpec *dest);

Creating File System Specifications

pascal OSErr FSMakeFSSpec (short vRef Num Ilong dirlD,
Const Str255Param fi |l eNane, FSSpecPtr spec);

Summary of File Management 1-67

juswabeue 9|l 0] uondnpou| .
=

CHAPTER 1

Introduction to File Management

Volume Access Routines

Updating Volumes
pascal OSErr Fl ushVol (StringPtr vol Nanme, short vRefNun);

Obtaining Volume Information

pascal OSErr GetVinfo (short drvNum StringPtr vol Nane,
short *vRef Num |ong *freeBytes);
pascal OSErr Get VRef Num (short refNum short *vRefNun);

Application Launch File Routines

pascal voi d Cet AppPar ns (Str255 apNanme, short *apRef Num
Handl e *apParamn ;

pascal void Count AppFil es (short *message, short *count);
pascal void Get AppFil es (short index, AppFile *theFile);
pascal void O rAppFiles (short index);

Assembly-Language Summary

Global Variables

AppPar mHandl e long Handle to Finder information.

Cur ApNane 32 bytes Name of current application (length byte followed by up to
31 characters).

Cur ApRef Num word Reference number of current application’s resource file.

1-68 Summary of File Management

CHAPTER 1

Introduction to File Management

Result Codes

noErr
dirFul Err
dskFul Err
nsvErr

i oErr
bdNantr r
fnCpnErr
eof Err
posErr

t nf oErr
fnfErr
wPr Er r

f LckdErr
vLckdErr
f BsyErr

dupFNEr r

OpW Err
parantrr

rf Numerr

of pErr

vol OFfl i nErr
per nerr
nsDrvErr

wr Per nEr r

di r NFErr

wr gVol TypErr

not AFi | eErr

di ffVol Err
sameFi | eErr

af pAccessDeni ed
af pQbj ect TypeErr

af pSamebj ect Err

-33
-34
-35
-36
=37
-38
-39
—40
—42
—43
—44
—45
—46
—47

—48

—49
-50
51
-52
-53
—54
56

—61
-120
-123

-1302
-1303
-1306
-5000
-5025

-5038

No error

File directory full

All allocation blocks on the volume are full

Volume not found

1/0 error

Bad filename or volume name

File not open

Logical end-of-file reached

Attempt to position mark before start of file

Too many files open

File not found

Hardware volume lock

File locked

Software volume lock

File is busy; one or more files are open; directory not
empty or working directory control block is open
A file with the specified name and version number
already exists

File already open for writing

Parameter error

Reference number specifies nonexistent access path
Error during CGet FPos

Volume is offline

Attempt to open locked file for writing

Specified drive number doesn’t match any number in
the drive queue

Read /write permission doesn’t allow writing
Directory not found or incomplete pathname

Not an HFS volume

Specified file is a directory

Files are on different volumes

Source and destination files are the same

User does not have the correct access to the file
Object is a directory, not a file; a directory exists with
that name

Source and destination files are the same

Summary of File Management

1-69

juswabeue 9|l 0] uondnpou| .
=

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to File Management TOC
	Introduction to File Management
	About Files
	File Forks
	File Size
	File Access Characteristics
	The Hierarchical File System
	Identifying Files and Directories

	Using Files
	Testing for File Management Routines
	Defining a Document Record
	Creating a New File
	Opening a File
	Reading File Data
	Writing File Data
	Saving a File
	Reverting to a Saved File
	Closing a File
	Opening Files at Application Startup Time
	Using a Preferences File
	Adjusting the File Menu

	File Management Reference
	Data Structures
	File System Specification Record
	Standard File Reply Records
	Application Files Records

	File Specification Routines
	File Access Routines
	Reading, Writing, and Closing Files
	Manipulating the File Mark
	Manipulating the End-of-File

	File and Directory Manipulation Routines
	Opening, Creating, and Deleting Files
	Exchanging the Data in Two Files
	Creating File System Specifications

	Volume Access Routines
	Updating Volumes
	Obtaining Volume Information

	Application Launch File Routines

	Summary of File Management
	Pascal Summary
	Constants
	Data Types
	File Specification Routines
	File Access Routines
	File and Directory Manipulation Routines
	Volume Access Routines
	Application Launch File Routines

	C Summary
	Constants
	Data Types
	File Specification Routines
	File Access Routines
	File and Directory Manipulation Routines
	Volume Access Routines
	Application Launch File Routines

	Assembly-Language Summary
	Global Variables

	Result Codes

	 File Manager TOC
	 File Manager
	 Standard File Package TOC
	 Standard File Package
	 Alias Manager TOC
	 Alias Manager
	 Disk Initialization Manager TOC
	 Disk Initialization Manager
	 Glossary
	 Index
	 Colophon

