CHAPTER 3

Standard File Package

This chapter describes how your application can use the Standard File Package to
manage the user interface for naming and identifying files. The Standard File Package
displays the dialog boxes that let the user specify the names and locations of files to be
saved or opened, and it reports the user’s choices to your application.

The Standard File Package supports both standard and customized dialog boxes. The
standard dialog boxes are sulfficient for applications that do not require additional
controls or other elements in the user interface. The chapter “Introduction to File
Management” earlier in this book provides a detailed description of how to display
the standard dialog boxes by calling two of the enhanced Standard File Package
routines introduced in system software version 7.0. You need to read this chapter if
your application needs to use features not described in that earlier chapter (such as
customized dialog boxes or a special file filter function). You also need to read this
chapter if you want your application to run in an environment where the new routines
are not available and your development system does not provide glue code that allows
you to call the enhanced routines in earlier system software versions.

To use this chapter, you should be familiar with the Dialog Manager, the Control
Manager, and the Finder. You need to know about the Dialog Manager if you want to
provide a modal-dialog filter function that handles events received from the Event
Manager before they are passed to the Modal Di al og procedure (which the Standard
File Package uses to manage both standard and customized dialog boxes). You need to
know about the Control Manager if you want to customize the user interface by adding
controls (such as radio buttons or pop-up menus). You need to know about the Finder
if your application supports stationery documents. See the appropriate chapters in
Inside Macintosh: Macintosh Toolbox Essentials for specific information about these system
software components.

This chapter provides an introduction to the Standard File Package and then discusses
= how you can display the standard file selection dialog boxes

= how the Standard File Package interprets user actions in those dialog boxes

= how to manage customized dialog boxes

» how to set the directory whose contents are listed in a dialog box

= how to allow the user to select a volume or directory

» how to use the original Standard File Package routines

About the Standard File Package

Macintosh applications typically have a File menu from which the user can save and
open documents, via the Save, Save As, and Open commands. When the user chooses
Open to open an existing document, your application needs to determine which
document to open. Similarly, when the user chooses Save As, or Save when the
document is untitled, your application needs to ask the user for the name and location
of the file in which the document is to be saved.

About the Standard File Package 3-3

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

The Standard File Package provides a number of routines that handle the user interface
between the user and your application when the user saves or opens a document. It
displays dialog boxes through which the user specifies the name and location of the
document to be saved or opened. It also allows your application to customize the dialog
boxes and, through callback routines, to handle user actions during the dialogs. The
Standard File Package procedures return information about the user’s choices to your
application through a reply record.

The Standard File Package is available in all versions of system software. However,
significant improvements were made to the package in system software version 7.0. The
Standard File Package in version 7.0 introduces

= a pair of simplified procedures (St andar dGet Fi | e and St andar dPut Fi | e) that
you call to display and handle the standard Open and Save dialog boxes

= a pair of customizable procedures (Cust onGet Fi | e and Cust onPut Fi | e) that you
call when you need more control over the interaction

= anew reply record (St andar dFi | eRepl y) that identifies files and folders with a file
system specification record and that accommodates the new Finder features
introduced in system software version 7.0

a new layout for the standard dialog boxes

This section describes in detail the standard and customized user interfaces provided by
the enhanced Standard File Package in system software version 7.0 and later. If your
application is to run in earlier system software versions as well, you should read the
section “Using the Original Procedures” on page 3-40.

IMPORTANT

If you use the enhanced routines introduced in system software
version 7.0, you must also support the Open Documents Apple event. a

Standard User Interfaces

If your application has no special interface requirements, you can use the
St andar dGet Fi | e and St andar dPut Fi | e procedures to display the standard dialog
boxes for opening and saving documents.

Opening Files

You use the St andar dGet Fi | e procedure when you want to let the user select a file to
be opened. Figure 3-1 illustrates a sample dialog box displayed by St andar dCet Fi | e.

The directory whose contents are listed in the display list in the dialog box displayed by
St andar dGet Fi | e is known as the current directory. In Figure 3-1, the current
directory is named “Tropical.” The user can change the current directory in several ways.
To ascend the directory hierarchy from the current directory, the user can click the
directory pop-up menu and select a new directory from among those in the menu. To
ascend one level of the directory hierarchy, the user can click the volume icon. To ascend
immediately to the top of the directory hierarchy, the user can click the Desktop button.

About the Standard File Package

CHAPTER 3

Standard File Package

Figure 3-1 The default Open dialog box

< Tropical ¥ — 80 §C

[0 Bananas

O Coconuts Desktop

0O Guavas

!

I Open I

<

To descend the directory hierarchy, the user can double-click any of the folder names in
the list (or select a folder by clicking its name once and then clicking the Open button).
Whenever the current directory changes, the list of folders and files is updated to reflect
the contents of the new current directory.

The volume on which the current directory is located is the current volume (or current
disk), whose name is displayed to the right of the directory pop-up menu. If the current
volume is a removable volume, the Eject button is active. The user can click Eject to eject
the current volume and insert another, which then becomes the current volume. If the
user inserts an uninitialized or otherwise unreadable disk, the Standard File Package
calls the Disk Initialization Manager to provide the standard user interface for
initializing and naming a disk. See the chapter “Disk Initialization Manager” in this
book for details.

Note that the list of files and folders always contains all folders in the current
directory, but it might not contain all files in the current directory. When you call

St andar dGet Fi | e, you can supply a list of the file types that your application

can open. The St andar dGet Fi | e procedure then displays only files of the specified
types. You can also supply your own file filter function to help determine which files
are displayed. (See “Writing a File Filter Function” on page 3-20 for details.)

When the user is opening a document, St andar dGet Fi | e interprets some keystrokes
as selectors in the displayed list. If the user presses A, for example, St andar dGet Fi | e
selects the first item in the list that starts with the letter a (or, if no items in the list start
with the letter g, the item that starts with the letter closest to a). The Standard File
Package sets a timer on keystrokes: keystrokes in rapid succession form a string;
keystrokes spaced in time are processed separately. See “Keyboard Equivalents” on
page 3-7 for a complete list of keyboard equivalents recognized by St andar dGet Fi | e.

Saving Files

You use the St andar dPut Fi | e procedure when you want to let the user specify a
name and location for a file to be saved. Figure 3-2 illustrates a sample dialog box
displayed by St andar dPut Fi | e.

About the Standard File Package 3-5

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

Figure 3-2 The default Save dialog box

3 Tropical ™ — 80 5C

T fie -

D ekees ki § oot

0 Bannnags

0 Eonanuls Desktop

o Bunuas
Q, ..

Save as: Cancel

The dialog box displayed by St andar dPut Fi | e is similar to that displayed by
St andar dGet Fi | e, but includes three additional items. The Save dialog box
includes a filename field in which the user can type the name under which to save
the file. This filename field is a TextEdit field that permits all the standard editing
operations (cut, copy, paste, and so forth). Above the filename field is a line of text

specified by your application.

When the user is saving a document, St andar dPut Fi | e can direct keystrokes to either
of two targets: the filename field or the displayed list. When the dialog box first appears,
keystrokes are directed to the filename field. If the user presses the Tab key or clicks to
select an item in the displayed list, subsequent keystrokes are interpreted as selectors in
the displayed list. Each time the user presses the Tab key, keyboard input shifts between

the two targets.

The third additional item in the Save dialog is the New Folder button. When the user
clicks the New Folder button, the Standard File Package presents a subsidiary dialog

box like the one shown in Figure 3-3.

Figure 3-3 The New Folder dialog box

3-6

5 Tropical * — 80 SC

0y finkass [[e)

D Bansnas

D fpnanuts NWame of new folder:

L BHaEES [untitied folder |
Save as:

Untitled | PO

About the Standard File Package

CHAPTER 3

Standard File Package

If the user asks to save a file under a name that already exists at the specified location,
the Standard File Package displays a subsidiary dialog box to verify that the new file
should replace the existing file, as illustrated in Figure 3-4.

Figure 3-4

Replace existing “Ackees”

?
Cancel Replace

The name conflict dialog box

The St andar dGet Fi | e and St andar dPut Fi | e procedures always display the new
dialog boxes. The procedures available before version 7.0 (SFGet Fi | e, SFPut Fi | e,
SFPCet Fi | e, and SFPPut Fi | e) also display the new dialog boxes when running in
version 7.0, unless your application has customized the dialog box. For more details on
how the version 7.0 Standard File Package handles earlier procedures, see “Using the
Original Procedures” on page 3-40.

Keyboard Equivalents

The Standard File Package recognizes a long list of keyboard equivalents during dialogs.

Keystrokes

Up Arrow

Down Arrow
Command-Up Arrow
Command-Down Arrow
Command-Left Arrow
Command-Right Arrow
Command-Shift-Up Arrow
Command-Shift-1
Command-Shift-2

Tab

Return or Enter

Escape or Command-.
Command-O
Command-D
Command-N

Option-Command-O or
Option-[click Open]

About the Standard File Package

Action
Scroll up (backward) through displayed list

Scroll down (forward) through displayed list
Display contents of parent directory

Display contents of selected directory or volume
Display contents of previous volume

Display contents of next volume

Display contents of desktop

Eject disk in drive 1

Eject disk in drive 2

Move to next keyboard target

Invoke the default option for the dialog box
(Open or Save)

Cancel

Open the selected item
Display contents of desktop
Create a new folder

Select the target of the selected alias item instead
of opening it

3-7

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

When the user uses a keyboard equivalent to select a button in the dialog box, the
button blinks.

Customized User Interfaces

The standard user interfaces provided by the St andar dGet Fi | e and St andar dPut Fi | e
procedures might not be adequate for the needs of certain applications. To handle such
cases, the Standard File Package provides several routines that you can use to present a
customized user interface when opening or saving files. This section gives some simple
examples of how you might want to customize the user interfaces and suggests some
guidelines you should follow when doing so.

IMPORTANT

You should alter the standard user interfaces only if necessary. Apple
Computer, Inc., does not guarantee future compatibility for your
application if you use a customized dialog box. a

Saving Files

Perhaps the most common reason to customize one of the Standard File Package dialog
boxes is to allow the user to save a document in one of several file formats supported by
the application. For example, a word-processing application might let the user save a
document in the application’s own format, in an interchange format, as a file of type

" TEXT' , and so on.

It is usually best to allow the user to select a file format from within the dialog box
displayed in response to a Save or Save As menu command. To do this, you need to
add items to the standard dialog box and process user actions in those new items.

If your application supports only a few file formats, you could simply add the required
number of radio buttons to the standard dialog box, as illustrated in Figure 3-5. The
application presenting this dialog box supports only two file formats, its own proprietary
format (SurfDraw) and the format used for startup screens.

3-8

Figure 3-5 The Save dialog box customized with radio buttons

i) Tropical v = 80 SC
\ frkans [
0 Baaanas
0 fopanuls Desktop
L Bununs

5 I,
File Format: @ Surflraw
1 Startup screen

About the Standard File Package

CHAPTER 3

Standard File Package

If your application supports more than a couple of alternate file formats, you could add a
pop-up menu, as shown in Figure 3-6.

Figure 3-6 The Save dialog box customized with a pop-up menu

i) Tropical v = 80 SC

0 Bekees
0 Bananay

H

[l
0 foranuts
0 Bunuas _
[New [|

Save as: Cancel

File Format: | Startup screen vl

b
oo
s

Opening Files

Your application might also allow the user to open a number of different types of files. In
this case, there is less need to customize the Open dialog box than the Save dialog box
because you can simply list all the kinds of files your application supports. To avoid clutter
in the list of files and folders, however, you might wish to filter out all but one of those
types. In this way, the user can dynamically select which type of file to view in the list.

Once again, you might accomplish this by adding radio buttons or a pop-up menu to
the Open dialog box, depending on the number of different file types your application
supports. Figure 3-7 illustrates a customized Open dialog box that contains a pop-up
menu. Only files of the indicated type (and, of course, folders) appear in the list of items
available to open.

—~~

Figure 3-7 The Open dialog box customized with a pop-up menu

=) Tropical ¥ = 80 SC
D fickees C

0 Bananas

0O Coconuts Desktop

O Guavas

;

File Format: | SurfDraw - |

About the Standard File Package 3-9

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

For details on some techniques you can use to add items to the standard user interface
and process user actions with those additional items, see “Customizing the User
Interface” on page 3-16. Note in particular that Listing 3-3, Listing 3-8, and Listing 3-9
together provide a fairly complete implementation of the pop-up menu illustrated in
Figure 3-7.

Note

Remember that the user might also open one of your application’s
documents from the Finder (by double-clicking its icon, for example). As
a result, you should in general avoid customizing the Open dialog box
for files. O

Selecting Volumes and Directories

Sometimes you need to allow the user to select a directory or a volume, not a file. For
example, the user might want to select a directory as a first step in searching all the files
in the directory for some important information. Similarly, the user might need to select
a volume before backing up all the files on that volume.

The standard Open dialog box, however, is designed for selecting files, not volumes or
directories. When the user selects a volume or directory from the items in the displayed
list and clicks the Open button, the volume or directory is opened and its contents are
displayed in the list. The standard Open dialog boxes provide no obvious mechanism for
choosing a selected directory instead of opening it.

To allow the user to select a directory—including the volume’s root directory, the volume
itself—you can add an additional button to the standard Open dialog box. By clicking
this button, the user can select a highlighted directory, not open it. This button gives the
user an obvious way to select a directory while preserving the well-known mechanism
for opening directories to search for the desired directory. Figure 3-8 illustrates the
standard Open dialog box modified to include a Select button and a prompt informing
the user of the type of action required.

Figure 3-8 The Open dialog box customized to allow selection of a directory

3-10

Select a Folder:

=80 SC
O Tropical ity ¥

g

Desktop

Cancel

1y e

Open

<

[Select "Tropical”]

About the Standard File Package

CHAPTER 3

Standard File Package

The Select button should display the name of the directory that is selected if the user
clicks the button. This, together with the prompt displayed at the top of the dialog box,
helps the user differentiate this directory selection dialog box from the standard file
opening dialog box. All the other items in the dialog box should maintain their standard
appearance and behavior. Any existing keyboard equivalents (in particular, the use of
Return and Enter to select the default button) should be preserved. Command-S is
recommended as a keyboard equivalent for the new Select button, paralleling the use of
Command-D to select the Desktop button and Command-O to select the Open button.

To help maintain consistency among applications using this scheme for selecting
directories, your application should open the folder displayed in the pop-up menu if
there is no selected item and the user clicks the Select button. In addition, you should
disable the Open button if no directory is currently selected. Figure 3-9 illustrates the
recommended appearance of the directory selection dialog box in this case.

Figure 3-9 The Open dialog box when no directory is selected

Select a Folder:

3 Tropical ™ — 80 5C

3 Eiend
Desktop
] FHES

([Select "Tropical"]

If the name of the directory is too long to fit in the Select button, you should abbreviate
the name using an ellipsis character, as shown in Figure 3-10.

Figure 3-10 The Open dialog box with a long directory name abbreviated

Select a Folder:

=80 SC

[0 Fermentable Fruits fipat
[Tropical

;

(Select "Ferment...Fruits"]

About the Standard File Package 3-11

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

See “Selecting a Directory” beginning on page 3-34 for details on how you can create and
manage a directory selection dialog box.

The directory selection dialog boxes illustrated here allow the user to specify the root
directory in a volume, which effectively selects the volume itself. However, you might
want to limit the user’s selections to the available volumes. To do that, you can create a
volume selection dialog box, shown in Figure 3-11.

Figure 3-11 A volume selection dialog box

3-12

Select a Molume:

E@ Desktop = Int FH
=50 5C <
iE frauh frasking

o I Select l

Notice that the volume selection dialog box uses a prompt specific to selecting a volume
and that the Open button is now a Select button. There is no need for a separate Select
button, because the user should not be allowed to open any of the listed volumes. (For
this same reason, the pop-up menu should not pop up if clicked.) See “Selecting a
Volume” on page 3-38 for instructions on implementing a volume selection dialog box.

User Interface Guidelines

In general, you should customize the user interface only if necessary. If you do modify
the standard dialog boxes presented by the Standard File Package, you should keep
these user interface guidelines in mind:

= Customize a dialog box only by adding items to the standard dialog boxes. Avoid
removing existing items from the standard boxes or altering the operation of existing
items. In particular, you should avoid modifying the keyboard equivalents recognized
by the Standard File Package.

= Add only those items that are necessary for your application to complete the
requested action successfully. Avoid adding items that provide unnecessary
information or items that provide no information at all (such as logos, icons, or
other “window-dressing”).

s Whenever possible, use controls such as radio buttons or pop-up menus whose effects
are visible within the dialog box itself. Avoid controls whose use calls subsidiary
modal dialog boxes that the user must dismiss before continuing.

= Use controls or other items that are already familiar to the user. Avoid using
customized controls that are not also used elsewhere in your application.

About the Standard File Package

CHAPTER 3

Standard File Package

Your overriding concern should be to make the customized file identification dialog
boxes in your application as similar to the standard dialog boxes as possible while
providing the additional capabilities you need.

Using the Standard File Package

You use the Standard File Package to handle the user interface when the user must
specify a file to be saved or opened. You typically call the Standard File Package after
the user chooses Save, Save As, or Open from the File menu.

When saving a document, you call one of the Put Fi | e procedures; when opening a
document, you call one of the Get Fi | e procedures. The Standard File Package in
version 7.0 introduces two pairs of enhanced procedures:

» Standar dPut Fi | e and St andar dCet Fi | e, for presenting the standard interface

= CustonPut Fi | e and Cust onCet Fi | e, for presenting a customized interface

Before calling the enhanced Standard File Package procedures, verify that they are
available by calling the Gest al t function with the gest al t St andar dFi | eAttr
selector. If Gest al t sets the gest al t St andar dFi | €58 bit in the reply, the four
enhanced procedures are available.

If the enhanced procedures are not available, you need to use the original Standard File
Package procedures that are available in all system software versions:

= SFPut Fi | e and SFCGet Fi | e, for presenting the standard interface
= SFPPut Fi | e and SFPCet Fi | e, for presenting a customized interface

This section focuses on the enhanced procedures introduced in system software
version 7.0. If you need to use the original procedures, see “Using the Original
Procedures” on page 3-40. You can adapt most of the techniques shown in this section
for use with the original procedures. In general, however, the original procedures are
slightly harder to use and somewhat less powerful than their enhanced counterparts.

All the enhanced procedures return the results of the dialog boxes in a new reply record,
St andar dFi | eRepl y.

TYPE StandardFil eReply =

RECORD
sf Good: Bool ean; {TRUE if user did not cancel}
sf Repl aci ng: Bool ean; {TRUE if replacing file with same nane}
sf Type: CSType; {file type}
sfFile: FSSpec; {sel ected file, folder, or vol une}
sfScript: Scri pt Code; {script of file, folder, or volunme nane}
sf Fl ags: I nt eger; {Finder flags of selected iteni
sf 1 sFol der: Bool ean; {selected itemis a fol der}
sf | sVol une: Bool ean; {selected itemis a vol une}
sf Reservedl: Longl nt; {reserved}
sf Reserved2: I nt eger; {reserved}
END;

Using the Standard File Package 3-13

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

The reply record identifies selected files with a file system specification (FSSpec) record.
You can pass the FSSpec record directly to the File Manager functions that recognize
FSSpec records, such as FSpOpenDF or FSpCr eat e. The reply record also contains
additional fields that support the Finder features introduced in system software

version 7.0.

The sf Good field reports whether the reply record is valid—that is, whether your
application can use the information in the other fields. The field is set to TRUE after the
user clicks Save or Open, and to FALSE after the user clicks Cancel.

Your application needs to look primarily at the sf Fi | e and sf Repl aci ng fields when
the sf Good field contains TRUE. The sf Fi | e field contains a file system specification
record that describes the selected file or folder. If the selected file is a stationery pad, the
reply record describes the file itself, not a copy of the file.

The sf Repl aci ng field reports whether a file to be saved replaces an existing file

of the same name. This field is valid only after a call to the St andar dPut Fi | e or

Cust onPut Fi | e procedure. Your application can rely on the value of this field instead
of checking for and handling name conflicts itself.

Note

See “Enhanced Standard File Reply Record” on page 3-42 for a complete
description of the fields of the St andar dFi | eRepl y record. O

The Standard File Package fills in the reply record and returns when the user completes
one of its dialog boxes—either by selecting a file and clicking Save or Open, or by
clicking Cancel. Your application checks the values in the reply record to see what action
to take, if any. If the selected item is an alias for another item, the Standard File Package
resolves the alias and places a file system specification record for the target in the

sf Fi | e field when the user completes the dialog box. (See the chapter “Finder
Interface” of Inside Macintosh: Macintosh Toolbox Essentials for a description of aliases.)

Presenting the Standard User Interface

You can use the standard dialog boxes provided by the Standard File Package to prompt
the user for the name of a file to open or a filename and location to use when saving a
document. Use St andar dGet Fi | e to present the standard interface when opening a
file and St andar dPut Fi | e to present the standard interface when saving a file.

Listing 3-1 illustrates how your application can use St andar dCet Fi | e to elicit a file
specification after the user chooses Open from the File menu.

Listing 3-1 Handling the Open menu command

3-14

FUNCTI ON DoQpenCnd: OSErr;

VAR
myRepl y: St andar dFi | eRepl y; {Standard File reply record}
nyTypes: SFTypeli st; {types of files to display}
myErr: OSErr;

Using the Standard File Package

CHAPTER 3

Standard File Package

BEG N
myTypes[0] :="'TEXT ; {display text files only}
StandardCGetFil e(NIL, 1, nmyTypes, nyReply);
| F nyReply. sf Good THEN
myErr : = DoOpenFil e(nmyReply.sfFile)
ELSE
nyErr := UsrCancel edErr;
DoOpenCnd : = nyErr;
END;

If the user dismisses the dialog box by clicking the Open button, the reply record field
myRepl y. sf Good is set to TRUE; in that case, the function defined in Listing 3-1 calls
the application-defined function DoOpenFi | e, passing it the file system specification
record contained in the reply record. For a sample definition of the DoOpenFi | e
function, see the chapter “Introduction to File Management” in this book.

The third parameter to St andar dGet Fi | e is a list of file types that are to appear in the
list of files and folders; the second parameter is the number of items in that list of file
types. The list of file types is of type SFTypeLi st .

TYPE SFTypelList = ARRAY[O..3] OF OSType;

If you need to display more than four types of files, you can define a new data type that
is large enough to hold all the types you need. For example, you can define the data type
My TypelLi st to hold ten file types:

TYPE MTypeli st
MyTLi stPtr

ARRAY[0. . 9] OF OSType;
"My Typeli st ;

Listing 3-2 shows how to call St andar dGet Fi | e using an expanded type list.

Listing 3-2 Specifying more than four file types

FUNCTI ON DoOpenCnd: OSErr;

VAR
nyRepl y: St andar dFi | eRepl y; {Standard File reply record}
nyTypes: MyTypelLi st ; {types of files to display}
nmyErr: CSErr;

BEG N
nmyTypes[0] :="'TEXT ; {first file type to display}
{Put other assignnents here.}
nyTypes[9] :="'RTFT; {tenth file type to display}

StandardCGetFil e(NIL, 1, MTListPtr(nyTypes)”, nyReply);
I F nyRepl y. sf Good THEN
nyErr := DoQpenFil e(nyReply.sfFile)

Using the Standard File Package 3-15

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

ELSE
myErr := UsrCancel edErr;
DoCpenCnd : = nyErr;
END;

Note

To display all file types in the dialog box, pass -1 as the second
parameter. Invisible files and folders are not shown in the dialog box
unless you pass -1 in that parameter. If you pass —1 as the second
parameter when calling Cust onGet Fi | e, the dialog box also lists
folders; this is not true when you call St andar dGet Fi | e. O

The first parameter passed to St andar dGet Fi | e is the address of a file filter function,
a function that helps determine which files appear in the list of files to open. (In

Listing 3-1, this address is NI L, indicating that all files of the specified type are to be
listed.) See “Writing a File Filter Function” on page 3-20 for details on defining a filter
function for use with St andar dGet Fi | e.

Customizing the User Interface

If your application requires it, you can customize the user interface for identifying files.
To customize a dialog box, you should

» design your dialog box and create the resources that describe it

» write callback routines, if necessary, to process user actions in the dialog box

s call the Standard File Package using the Cust onPut Fi | e and Cust onGet Fi | e
procedures, passing the resource IDs of the customized dialog boxes and pointers to
the callback routines

Depending on the level of customizing you require in your dialog box, you may need to
write as many as four different callback routines:

= a file filter function for determining which files the user can open
» a dialog hook function for handling user actions in the dialog boxes

» a modal-dialog filter function for handling user events received from the
Event Manager

» an activation procedure for highlighting the display when keyboard input is directed
at a customized field defined by your application

To provide the interface illustrated in Figure 3-7, for example, you could replace the
definition of DoOpenCnd given earlier in Listing 3-1 by the definition given in Listing 3-3.

In addition to the information passed to St andar dGet Fi | e, Cust onGet Fi | e requires
the resource ID of the customized dialog box, the location of the dialog box on the
screen, and pointers to any callback routines and private data you are using.

3-16 Using the Standard File Package

CHAPTER 3

Standard File Package

Listing 3-3 Presenting a customized Open dialog box

FUNCTI ON DoOpenCnd: OSErr;

VAR
nyRepl y: St andar dFi | eRepl y; {Standard File reply record}
myTypes: SFTypelLi st ; {types of files to display}
nmy Poi nt : Poi nt ; {upper-left corner of box}
myErr: OSErr;
CONST
kCust onCet Di al og = 4000; {resource I D of custom dial og}
BEG N
nmyErr = noErr;
Set Pt (nyPoint, -1, -1); {center the dial og}
nmyTypes[0] :='SRFD ; {SurfDraw fil es}
myTypes[1] :="'STUP'; {startup screens}
nyTypes[2] :="PICT"; {picture files}
nyTypes[3] :="'RTFT"; {rich text format}

Customet Fil e(@WCustontileFilter, 4, nyTypes, nyReply,
kCust onet Di al og, nyPoi nt, @D gHook,
NIL, NIL, NIL, NL);
| F nyReply. sf Good THEN
nyErr : = DoQpenFil e(nyReply.sfFile);
DoOpenCnd : = nyErr;
END;

In Listing 3-3, Cust onGet Fi | e is passed two callback routines, a file filter function
(MyCust onFi | eFi | t er) and a dialog hook function (MyDI gHooKk). See Listing 3-8
(page 3-21) and Listing 3-9 (page 3-27) for sample definitions of these functions.

You can also supply data of your own to the callback routines through a new parameter,
your Dat aPt r, which you pass to Cust onGet Fi | e and Cust onPut Fi | e.

Customizing Dialog Boxes

To describe a dialog box, you supply a' DLOG resource that defines the box itself and a
"DI TL' resource that defines the items in the dialog box.

Listing 3-4 shows the resource definition of the default Open dialog box, in Rez input
format. (Rez is the resource compiler provided with Apple’s Macintosh Programmer’s
Workshop [MPW]. For a description of Rez format, see the manual that accompanies the
MPW software, MPW: Macintosh Programmer’s Development Environment.)

Using the Standard File Package 3-17

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

Listing 3-4 The definition of the default Open dialog box

resource 'DLOG (-6042, purgeable)

{
{0, 0, 166, 344}, dBoxProc, invisible, noGoAway, O,
—-6042, "", noAutoCenter

b

Listing 3-5 shows the resource definition of the default Save dialog box, in Rez
input format.

Listing 3-5 The definition of the default Save dialog box

resource 'DLOG (-6043, purgeable)

{
{0, 0, 188, 344}, dBoxProc, invisible, noGoAway, O,
—-6043, "", noAutoCenter
1
Note

You can also use the stand-alone resource editor ResEdit, available from
Apple Computer, Inc., or other resource-editing utilities available from
third-party developers to create customized dialog box and dialog item
list resources. O

You must provide an item list (ina "' DI TL' resource with the ID specified in the

" DLOG resource) for each dialog box you define. Add new items to the end of the
default lists. Cust onCet Fi | e expects the first 9 items in a customized dialog box to
have the same functions as the corresponding items in the St andar dGet Fi | e dialog
box; Cust onrPut Fi | e expects the first 12 items to have the same functions as the
corresponding items in the St andar dPut Fi | e dialog box. If you want to eliminate
one of the standard items from the display, leave it in the item list but place its
coordinates outside the bounds of the dialog box rectangle.

Listing 3-6 shows the dialog item list for the default Open dialog box, in Rez input
format. See “Writing a Dialog Hook Function” beginning on page 3-21 for a list of the
dialog box elements these items represent.

Listing 3-6 The item list for the default Open dialog box

resource 'DITL' (-6042)
{ {
{135, 252, 155, 332}, Button { enabled, "QOpen" },
{104, 252, 124, 332}, Button { enabled, "Cancel" },
{0, 0, O, 0}, Helpltem{ disabled, HMScanhdl g {-6042}},
{8, 235, 24, 337}, Userltem{ enabled },

3-18 Using the Standard File Package

CHAPTER 3

Standard File Package

{32, 252, 52, 332}, Button { enabled, "Eect" },
{60, 252, 80, 332}, Button { enabl ed, "Desktop" },
{29, 12, 159, 230}, Userltem{ enabled },

{6, 12, 25, 230}, Userltem { enabled },

{91, 251, 92, 333}, Picture { disabled, 11 },

ooy

Listing 3-7 shows the dialog item list for the default Save dialog box, in Rez input format.

Listing 3-7 The item list for the default Save dialog box

resource 'DITL' (-6043)
{ A

{161, 252, 181, 332}, Button { enabled, "Save" },
{130, 252, 150, 332}, Button { enabled, "Cancel" },
{0, 0, 0, 0}, Helpltem{ disabled, HVscanhdl g {-6043}},
{8, 235, 24, 337}, Userltem{ enabled },
{32, 252, 52, 332}, Button { enabled, "Eect" },
{60, 252, 80, 332}, Button { enabl ed, "Desktop" },
{29, 12, 127, 230}, Userltem{ enabled },
{6, 12, 25, 230}, Userltem{ enabled },
{119, 250, 120, 334}, Picture { disabled, 11 },
{157, 15, 173, 227}, EditText { enabled, "" },
{136, 15, 152, 227}, StaticText { disabled, "Save as:" },
{88, 252, 108, 332}, Userltem { disabled },

ooy

abexoed 3|14 prepuels .
w

The third item in each list (Hel pl t em) supplies Apple’s Balloon Help for items in the
dialog box. This third item specifies the resource ID of the ' hdl g' resource that contains
the help strings for the standard dialog items. If you want to modify the help text of an
existing dialog item, you should copy the original' hdl g' resource from the System

file into your application’s resource fork and modify the text in the copied resource as
desired; then you must change the resource ID specified in Hel pl t emto the resource ID
of the copied and modified resource. To provide Balloon Help for your own items,
supply a second ' hdl g' resource and reference it with another help item at the end

of the list. The existing items retain their default text (unless you change that text,

as described).

The default dialog item lists used by the original Standard File Package routines do not
contain help items, but the Standard File Package does provide Balloon Help when you
call those routines in system software version 7.0 and later. If you call one of the original
routines and the specified dialog item list does not contain any help items, the Standard
File Package uses its default help text for the standard dialog items. If, however, the
dialog item list does contain a help item, the Standard File Package assumes that your
application provides the text for all help items, including the standard dialog items.

Using the Standard File Package 3-19

3-20

CHAPTER 3

Standard File Package

Note

The default Standard File Package dialog boxes support color. The
System file contains ' dct b' resources with the same resource IDs as
the default dialog boxes, so that the Dialog Manager uses color graphics
ports for the default dialog boxes. (See the chapter “Dialog Manager”

of Inside Macintosh: Macintosh Toolbox Essentials for a description of

the' dct b' resource.) If you create your own dialog boxes, include
"dctb' resources. O

Writing a File Filter Function

A file filter function determines which files appear in the displayed list when the user
is opening a file. Both St andar dGet Fi | e and Cust onGet Fi | e recognize file
filter functions.

When the Standard File Package is displaying the contents of a volume or folder, it
checks the file type of each file and filters out files whose types do not match your
application’s specifications. (Your application can specify which file types are to be
displayed through the t ypeLi st parameter to either St andar dCet Fi | e or

Cust ontGet Fi | e, as described in “Presenting the Standard User Interface” beginning on
page 3-14.) If your application also supplies a file filter function, the Standard File
Package calls that function each time it identifies a file of an acceptable type.

The file filter function receives a pointer to the file’s catalog information record
(described in the chapter “File Manager” in this book). The function evaluates the
catalog entry and returns a Boolean value that determines whether the file is filtered
(that is, a value of TRUE suppresses display of the filename, and a value of FALSE
allows the display). If you do not supply a file filter function, the Standard File Package
displays all files of the specified types.

A file filter function to be called by St andar dGet Fi | e must use this syntax:
FUNCTI ON MySt andardFil eFilter (pb: ClnfoPBPtr): Bool ean;

The single parameter passed to your standard file filter function is the address of a
catalog information parameter block; see the chapter “File Manager” in this book for a
description of the fields of that parameter block.

When Cust onGet Fi | e calls your file filter function, it can also receive a pointer to any
data that you passed in through the call to Cust onGet Fi | e. A file filter function to be
called by Cust onCet Fi | e must use this syntax:

FUNCTI ON MyCustonFil eFilter (pb: ClnfoPBPtr; nyDataPtr: Ptr):
Bool ean;

Listing 3-8 shows a sample file filter function to be called by Cust onCet Fi | e. You
might define a file filter function like this to support the custom dialog box illustrated in
Figure 3-7, which lists files of the type shown in the pop-up box.

Using the Standard File Package

CHAPTER 3

Standard File Package

Listing 3-8 A sample file filter function

FUNCTI ON MyCustonFileFilter (pb: CinfoPBPtr; nyDataPtr: Ptr): Bool ean;
BEG N

MyCustontil eFilter := TRUE {default: don't show the file}
I F pb™.ioFl Fndrinfo.fdType = gTypesArray[gCurrent Type] THEN
MyCustonFil eFil ter : = FALSE; {show the file}
END;

In Listing 3-8, the application global variable gCur r ent Type contains the index in

the array gTypesAr r ay of the currently selected file type. If the type of a file passed in
for evaluation matches the current file type, the filter returns FALSE, indicating that

St andar dGet Fi | e should put it in the list. See Listing 3-9 (page 3-27) for an example
of how you can use a dialog hook function to change the value of gCur r ent Type
according to user selections in the pop-up menu control.

Writing a Dialog Hook Function

A dialog hook function handles item selections in a dialog box. It receives a pointer to
the dialog record and an item number from the Mbdal Di al og procedure via the
Standard File Package each time the user selects one of the dialog items. Your dialog
hook function checks the item number of each selected item, and then either handles the
selection or passes it back to the Standard File Package.

If you provide a dialog hook function, Cust onPut Fi | e and Cust onGet Fi | e call
your function immediately after calling Modal Di al og. They pass your function the
item number returned by Modal Di al 0g, a pointer to the dialog record, and a pointer
to the data received from your application, if any. The dialog hook function must use
this syntax:

FUNCTI ON MyDl gHook (item Integer; theDi al og: Dial ogPtr;
nyDataPtr: Ptr): |nteger;

Your dialog hook function returns as its function result an integer that is either the item
number passed to it or some other item number. If it returns one of the item numbers in
the following list of constants, the Standard File Package handles the selected item as
described later in this section. If your dialog hook function does not handle a selection, it
should pass the item number back to the Standard File Package for processing by setting
its return value equal to the item number.

CONST {itenms that appear in both the Open and Save di al og boxes}
sfltemOpenButton = 1; {Save or Open button}
sfltemCancel Button ; {Cancel button}
sfltenBal | oonHel p ; {Bal | oon Hel p}
sfltemvol umeUser = {vol ume icon and nane}
sfltenkj ect Button = {Ej ect button}
sfltenmDeskt opButton {Deskt op button}
sfltenFil eLi st User {display list}

non
N aR LN

Using the Standard File Package 3-21

abexoed 3|14 prepuels .
w

sf |t emPopUpMenuUser
sfltenDi vi der Li nePi ct

CHAPTER 3

Standard File Package

11
(o]

; {directory pop-up nenu}
= 09 {dividing |ine between buttons}

{itens that appear in Save di al og boxes only}
sfltenfFi|l eNaneTextEdit = 10; {filename field}
sfltenmPronpt St ati cText
sf It enNewfol der User

11; {filename pronpt text area}
12; {New Fol der button}

You must write your own dialog hook function to handle any items you have added to
the dialog box.

Note

The constants that represent disabled items (sf | t enBal | oonHel p,
sfltenDi vi derLi nePi ct,and sf | t enPr onpt St ati cText) have no
effect, but they are defined in the header files for the sake of completeness. O

The Standard File Package also recognizes a number of constants that do not represent
any actual item in the dialog list; these constants are known as pseudo-items. There are
two kinds of pseudo-items:

» pseudo-items passed to your dialog hook function by the Standard File Package

» pseudo-items passed to the Standard File Package by your dialog hook function

The sf HookFi r st Cal | constant is an example of the first kind of pseudo-item. The
Standard File Package sends this pseudo-item to your dialog hook function immediately
before it displays the dialog box. Your function typically reacts to this item number by
performing any necessary initialization.

You can pass back other pseudo-items to indicate that you’ve handled the user selection
or to request some action by the Standard File Package. For example, if the list of

files and folders must be rebuilt because of a user selection, you can pass back the
pseudo-item sf HookRebui | dLi st . Similarly, when your application handles the
selection and needs no further action by the Standard File Package, it should return

sf HookNul | Event . When the dialog hook function passes either sf HookNul | Event
or an item number that the Standard File Package doesn’t recognize, it does nothing.

The Standard File Package recognizes these pseudo-item numbers:

CONST {pseudo-itens available prior to version 7.0}

sf HookFi rst Cal | = -1, {initialize display}

sf HookChar O f set = $1000; {of fset for character input}

sf HookNul | Event = 100; {null event}

sf HookRebui | dLi st = 101; {redisplay list}

sf HookFol der PopUp = 102; {di spl ay parent-directory nmenu}
sf HookOpenFol der = 103; {di splay contents of }

{ selected folder or vol une}

{addi tional pseudo-itens introduced in version 7.0}
sf HookLast Cal | = -2 {clean up after display}

3-22

Using the Standard File Package

CHAPTER 3

Standard File Package

sf HookOpenAl i as = 104, {resol ve alias}

sf HookGoToDeskt op = 105; {di splay contents of desktop}

sf HookGoToAl i asTar get = 106; {sel ect target of alias}

sf HookGoToPar ent = 107; {di splay contents of parent}

sf HookGoToNext Dri ve = 108; {di splay contents of next drive}

sf HookGoToPr evDri ve = 109; {display contents of previous drive}
sf HookChangeSel ect i on = 110; {sel ect target of reply record}

sf HookSet Acti veOF f set = 200; {switch active itent

The Standard File Package uses a set of modal-dialog filter functions (described in
“Writing a Modal-Dialog Filter Function” on page 3-28) to map user actions during
the dialog onto the defined item numbers. Some of the mapping is indirect. A click of
the Open button, for example, is mapped to sf | t enOpenBut t on only if a file is
selected in the display list. If a folder or volume is selected, the Standard File Package
maps the selection onto the pseudo-item sf HookOpenFol der.

The lists that follow summarize when various items and pseudo-items are generated
and how they are handled. The descriptions indicate the simplest mouse action that
generates each item; many of the items can also be generated by keyboard actions, as
described in “Keyboard Equivalents” on page 3-7.

Note

Any indicated effects of passing back these constants do not occur until
the Standard File Package receives the constant back from your dialog
hook function. O

Constant descriptions

sfltemOpenButton
Generated when the user clicks Open or Save while a filename is
selected. The Standard File Package fills in the reply record (setting
sf Good to TRUE), removes the dialog box, and returns.

sfltenCancel Button
Generated when the user clicks Cancel. The Standard File Package
sets sf Good to FALSE, removes the dialog box, and returns.

sf I tenVvol umeUser
Generated when the user clicks the volume icon or its name. The
Standard File Package rebuilds the display list to show the contents
of the folder that is one level up the hierarchy (that is, the parent
directory of the current parent directory).

sfltenkj ect Button
Generated when the user clicks Eject. The Standard File Package
ejects the volume that is currently selected.

sfltemDeskt opButton
Generated when the user clicks the Drive button in a customized
dialog box defined by one of the earlier procedures. You never
receive this item number with the new procedures; when the user
clicks the Desktop button, the action is mapped to the item
sf HookGoToDeskt op, described later in this section. The Standard
File Package displays the contents of the next drive.

Using the Standard File Package 3-23

abexoed 3|14 prepuels .
w

3-24

CHAPTER 3

Standard File Package

sfltenFil eListUser
Generated when the user clicks an item in the display list. The
Standard File Package updates the selection and generates this
item for your information.

sfltemPopUpMenuUser
Never generated. The Standard File Package’s modal-dialog filter
function maps clicks on the directory pop-up menu to
sf HookFol der PopUp, described later in this section.
sfltenFil eNameText Edi t
Generated when the user clicks the filename field. TextEdit and the
Standard File Package process mouse clicks in the filename field,
but the item number is generated for your information.
sf It emNewFol der User
Generated when the user clicks New Folder. The Standard File
Package displays the New Folder dialog box.

The pseudo-items are messages that allow your application and the Standard File
Package to communicate and support various features added since the original design
of the Standard File Package.

The Standard File Package generates three pseudo-items that give your application the
chance to control a customized display.

Constant descriptions

sf HookFi r st Cal |
Generated by the Standard File Package as a signal to your dialog
hook function that it is about to display a dialog box. If you
want to initialize the display, do so when you receive this item.
You can specify the current directory either by returning
sf HookGoToDeskt op or by changing the reply record and
returning sf HookChangeSel ect i on.

sf HookLast Cal | Generated by the Standard File Package as a signal to your dialog
hook function that it is about to remove a dialog box. If you created
any structures when the dialog box was first displayed, remove
them when you receive this item.

sf HookNul | Event
Issued periodically by the Standard File Package if no user action
has taken place. Your application can use this null event to perform
any updating or periodic processing that might be necessary.

Your application can generate three pseudo-items to request services from the Standard
File Package.

Constant descriptions

sf HookRebui | dLi st
Returned by your dialog hook function to the Standard File Package
when it needs to redisplay the file list. Your application might need
to redisplay the list if, for example, it allows the user to change the
file types to be displayed. The Standard File Package rebuilds and
displays the list of files that can be opened.

Using the Standard File Package

CHAPTER 3

Standard File Package

sf HookChangeSel ect i on
Returned by your application to the Standard File Package after
your application changes the reply record so that it describes a
different file or folder. (You'll need to pass the address of the reply
record in the your Dat aPt r field if you want to do this.) The
Standard File Package rebuilds the display list to show the contents
of the folder or volume containing the object described in the reply
record. It selects the item described in the reply record.

sf HookSet Acti veOl f set
Your application adds this constant to an item number and sends
the result to the Standard File Package. The Standard File Package
activates that item in the dialog box, making it the target of
keyboard input. This constant allows your application to activate a
specific field in the dialog box without explicit input from the user.

The Standard File Package’s own modal-dialog filter functions generate a number of
pseudo-items that allow its dialog hook functions to support various features introduced
since the original design of the standard file dialog boxes. Except under extraordinary
circumstances, your dialog hook function always passes any of these item numbers back
to the Standard File Package for processing.

Constant descriptions

sf HookChar O f set
The Standard File Package adds this constant to the value of an
ASCII character when it’s using keyboard input for item selection.
The Standard File Package uses the decoded ASCII character to
select an entry in the display list.

sf HookFol der PopUp
Generated when the user clicks the directory pop-up menu. The
Standard File Package displays the pop-up menu showing all
parent directories.

sf HookOpenFol der
Generated when the user clicks the Open button while a folder
or volume is selected in the display list. The Standard File Package
rebuilds the display list to show the contents of the folder
or volume.

sf HookOpenAl i as
Generated by the Standard File Package as a signal that the selected
item is an alias for another file, folder, or volume. If the selected
item is an alias for a file, the Standard File Package resolves the
alias, places the file system specification record of the target in the
reply record, and returns.
If the selected item is an alias for a folder or volume, the Standard
File Package resolves the alias and rebuilds the display list to show
the contents of the alias target.

sf HookGoToDeskt op
Generated when the user clicks the Desktop button. The Standard
File Package displays the contents of the desktop in the display list.

Using the Standard File Package 3-25

abexoed 3|14 prepuels .
w

3-26

CHAPTER 3

Standard File Package

sf HookGoToAl i asTar get
Generated when the user presses the Option key while opening an
item that is an alias. The Standard File Package rebuilds the display
list to display the volume or folder containing the alias target and
selects the target.

sf HookGoToPar ent
Generated when the user presses Command-Up Arrow (or
clicks the volume icon). The Standard File Package rebuilds the
display list to show the contents of the folder that is one level
up the hierarchy (that is, the parent directory of the current
parent directory).

sf HookGoToNext Dri ve
Generated when the user presses Command-Right Arrow. The
Standard File Package displays the contents of the next volume.

sf HookGoToPrevDri ve
Generated when the user presses Command-Left Arrow. The
Standard File Package displays the contents of the previous volume.

The Cust onGet Fi | e and Cust onPut Fi | e procedures call your dialog hook
function for item selections in both the main dialog box and any subsidiary dialog
boxes (such as the dialog box for naming a new folder while saving a document
through Cust onPut Fi | e). To determine whether the dialog record describes the
main dialog box or a subsidiary dialog box, check the value of the r ef Con field in
the window record in the dialog record.

Note

Prior to system software version 7.0, the Standard File Package did not
call your dialog hook function during subsidiary dialog boxes. Dialog
hook functions for the new Cust onGet Fi | e and Cust onPut Fi | e
procedures must check the dialog window’s r ef Con field to determine
the target of the dialog record. O

The defined values for the r ef Con field represent the Standard File dialog boxes.

CONST
sf Mai nDi al ogRef Con = ‘'stdf'; {main dialog box}
sf NewFol der Di al ogRef Con = ' nfdr'; {New Fol der dial og box}
sf Repl aceDi al ogRef Con = ‘'rplc'; {name conflict dialog box}
sf St at WarnDi al ogRef Con = ‘'stat'; {stationery warning}
sf Error Di al ogRef Con = ‘'err '; {general error report}
sf LockWar nDi al ogRef Con = 'lock'; {software |ock warning}
Constant descriptions
sf Mai nDi al ogRef Con The main dialog box, either Open or Save.
sf NewFol der Di al ogRef Con The New Folder dialog box.
sf Repl aceDi al ogRef Con The dialog box requesting verification for replacing a

file of the same name.

sf St at War nDi al ogRef Con The dialog box warning that the user is opening
the master copy of a stationery pad, not a piece
of stationery.

Using the Standard File Package

CHAPTER 3

Standard File Package

sf Error Di al ogRef Con A dialog box reporting a general error.
sf LockWar nDi al ogRef Con The dialog box warning that the user is opening a
locked file and won’t be allowed to save any changes.

Listing 3-9 defines a dialog hook function that handles user selections in the customized
Open dialog box illustrated in Figure 3-7. Note that this dialog hook function handles
selections only in the main dialog box, not in any subsidiary dialog boxes.

Listing 3-9 A sample dialog hook function

FUNCTI ON MyDl gHook (item Integer; theDialog: DialogPtr; nyDataPtr: Ptr):

I nt eger;

VAR

nyType: I nt eger; {menu item sel ect ed}

nmyHandl e: Handl e; {needed for GetDIten}

nmyRect : Rect ; {needed for GetDIten}

nyl gnor e: I nt eger; {needed for GetDIteny ignored}
CONST

kMyPopUpltem = 10; {item nunber of File Type pop-up menu}
BEG N

MyDl gHook : = item {by default, return the item passed in}

| F Get WRef Con(W ndowPt r (t heDi al og)) <> Longl nt (sf Mai nDi al ogRef Con) THEN

Exi t (MyDl gHook) ; {this function is only for nmain dial og}

{Do processing of pseudo-itens and your own additional item}
CASE item OF
sf HookFi rst Cal I : {pseudo-item first tine function call ed}
BEG N
Get DI ten(theDi al og, kPopUpltem nyType, nyHandl e, nyRect);
Set Ct | Val ue(Cont r ol Handl e(myHandl e), gCurrent Type);
MyDl gHook : = sfHookNul | Event;
END;
kMyPopUpl t em {user selected File Type pop-up nenu}
BEG N
GetDiten(theDi al og, item nmylgnore, myHandl e, nyRect);
nmyType : = Get Ctl Val ue(Control Handl e(nyHandl e));
I F nyType <> gCurrent Type THEN
BEG N
gCurrent Type : = nyType;
MyDl gHook : = sfHookRebui | dLi st ;
END;
END;
OTHERW SE
: {ignore all other itens}
END;
END;

Using the Standard File Package 3-27

abexoed 3|14 prepuels .
w

3-28

CHAPTER 3

Standard File Package

The pop-up menu is stored as a control in the application’s resource fork. Values stored
in the resource determine the appearance of the control, such as the pop-up title text and
the menu associated with the control. The Dialog Manager’s Mbdal Di al og procedure
takes care of drawing the box around the pop-up menu and the title of the dialog box.
When the dialog hook function is first called, it simply retrieves a handle to that control
and sets the value of the pop-up control to the current menu item (stored in the global
variable gCur r ent Type). The MyDl gHook function then returns sf HookNul | Event to
indicate that no further processing is required.

When the user clicks the pop-up menu control, Modal Di al og calls the standard control
definition function associated with it. If the user makes a selection in the pop-up menu,
MyDl gHook is called with the i t emparameter equal to KPopUpl t em Your dialog hook
function needs simply to determine the current value of the control and respond
accordingly. In this case, if the user has selected a new file type, the global variable

gCur r ent Type is updated to reflect the new selection, and MyDI gHook returns

sf HookRebui | dLi st to cause the Standard File Package to rebuild the list of files and
folders displayed in the dialog box.

For complete details on handling pop-up menus, see the chapters “Control Manager”
and “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Writing a Modal-Dialog Filter Function

A modal-dialog filter function controls events closer to their source by filtering the
events received from the Event Manager. The Standard File Package itself contains
an internal modal-dialog filter function that maps keypresses and other user input
onto the equivalent dialog box items. If you also want to process events at this level,
you can supply your own filter function.

Note

You can supply a modal-dialog filter function only when you use one of
the procedures that displays a customized dialog box (that is,
Cust onCet Fi | e, Cust onPut Fi | e, SFPGet Fi | e, or SFPPut Fi |). O

Your modal-dialog filter function determines how the Dialog Manager procedure
Modal Di al og filters events. The Mbdal Di al 0og procedure retrieves events by calling
the Event Manager function Get Next Event . As just indicated, the Standard File
Package contains an internal filter function that performs some preliminary processing
on each event it receives. If you provide a modal-dialog filter function, Modal Di al og
calls your filter function after it calls the internal Standard File Package filter function
and before it sends the event to your dialog hook function.

You might provide a modal-dialog filter function for several reasons. If you have
customized the Open or Save dialog boxes by adding one or more items, you might want
to map some of the user’s keypresses to those items in the same way that the internal
filter function maps certain keypresses to existing items.

Using the Standard File Package

CHAPTER 3

Standard File Package

Another reason to provide a modal-dialog filter function is to avoid a problem that
can arise if an update event is received for one of your application’s windows while
a Standard File Package dialog box is displayed.

Note

The problem described in the following paragraph occurs only in system
software versions earlier than version 7.0. The internal modal-dialog
filter function installed by the Standard File Package when running in
version 7.0 and later avoids the problem by passing the update event to
your dialog filter and, if your filter doesn’t handle the event, mapping it
to anull event. O

When Mbdal Di al og calls Get Next Event and receives the update event,

Modal Di al og does not know how to respond to it and therefore passes the update
event to the Standard File Package’s internal filter function. The internal filter function
cannot handle the update event either. As a result, if you do not provide your own
modal-dialog filter function that handles the update event, that event is never cleared.
The next time Mbdal Di al og calls Get Next Event, it receives the same update event.
Modal Di al og never receives a null event, so your dialog hook function never performs
any processing in response to the sf HookNul | Event pseudo-item. You can solve this
problem by providing a modal-dialog filter function that handles the update event or
changes it to a null event. See Listing 3-10 for details.

A modal-dialog filter function used with SFPGet Fi | e and SFPPut Fi | e is declared like
any filter function passed to Modal Di al 0g. Your function is passed a pointer to the
dialog record, a pointer to the event record, and the item number. (The modal-dialog
filter function is described in the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.)

FUNCTI ON MyMbdal Fil ter (theDi al og: Dial ogPtr;
VAR t heEvent: Event Record;
VAR itenH t: Integer): Bool ean;

The modal-dialog filter function used with Cust onGet Fi | e and Cust onPut Fi | e
requires an additional parameter, a pointer (myDat aPt r) to the data received from
your application, if any.

FUNCTI ON MyModal Filter YD (t heDi al og: Dial ogPtr;
VAR t heEvent: Event Record;
VAR itenmHi t: Integer;
nyDataPtr: Ptr): Bool ean;

Your modal-dialog filter function returns a Boolean value that reports whether it
handled the event. If your function returns a value of FALSE, Modal Di al og
processes the event through its own filters. If your function returns a value of TRUE,
Modal Di al og returns with no further action.

Using the Standard File Package 3-29

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

The Cust onGet Fi | e and Cust onPut Fi | e procedures call your filter function to
process events in both the main dialog box and any subsidiary dialog boxes (such as the
dialog box for naming a new folder while saving a document through Cust onPut Fi | e).
To determine whether the dialog record describes the main dialog box or a subsidiary
dialog box, check the value of the r ef Con field in the window record in the dialog record,
as described in “Writing a Dialog Hook Function” beginning on page 3-21.

Listing 3-10 shows how to define a modal-dialog filter function that prevents update
events from clogging the event queue.

Listing 3-10 A sample modal-dialog filter function

FUNCTI ON MyModal Filter (theDi al og: Dial ogPtr; VAR theEvent: EventRecord;

BEG N
MyModal Fi l ter := FALSE; {we haven't handl ed the event yet}
| F theEvent . what = updateEvt THEN
| F 1 sAppW ndow(W ndowPt r (t heEvent . nessage)) THEN

END;

3-30

VAR itenHit: Integer): Bool ean;

BEG N
DoUpdat eEvent (W ndowPt r (t heEvent . nessage)) ;
MyModal Filter := TRUE; {we have handl ed the event}

END;

If this filter function receives an update event for a window other than the Standard File
Package dialog box, it calls the application’s routine for handling update events
(DoUpdat eEvent) and returns TRUE to indicate that the event has been handled. See
the chapters “Event Manager” and “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for complete details on handling update events.

Writing an Activation Procedure

The activation procedure controls the highlighting of dialog items that are defined by
your application and can receive keyboard input. Ordinarily, you need to supply an
activation procedure only if your application builds a list from which the user can select
entries. The Standard File Package supplies the activation procedure for the file display
list and for all TextEdit fields. You can also use the activation procedure to keep track of
which field is receiving keyboard input, if your application needs that information.

The target of keyboard input is called the active field. The two standard keyboard-input
fields are the filename field (present only in Save dialog boxes) and the display list. Unless
you override it through your own dialog hook function, the Standard File Package
handles the highlighting of its own items and TextEdit fields. When the user changes the
keyboard target by pressing the mouse button or the Tab key, the Standard File Package
calls your activation procedure twice: the first call specifies which field is being

Using the Standard File Package

CHAPTER 3

Standard File Package

deactivated, and the second specifies which field is being activated. Your application is
responsible for removing the highlighting when one of its fields becomes inactive and
for adding the highlighting when one of its fields becomes active. The Standard File
Package can handle the highlighting of all TextEdit fields, even those defined by your
application.

The activation procedure receives four parameters: a dialog pointer, a dialog item
number, a Boolean value that specifies whether the field is being activated (TRUE) or
deactivated (FALSE), and a pointer to your own data.

PROCEDURE MyActivateProc (theDialog: DialogPtr; itemNo: |nteger;
activating: Boolean; mnmyDataPtr: Ptr);

Setting the Current Directory

The first time your application calls one of the Standard File Package routines, the
default current directory (that is, the directory whose contents are listed in the dialog
box) is determined by the way in which your application was launched.

» If the user launched your application directly (perhaps by double-clicking its icon in
the Finder), the default directory is the directory in which your application is located.

» If the user launched your application indirectly (perhaps by double-clicking one of
your application’s document icons), the default directory is the directory in which that
document is located.

At each subsequent call to one of the Standard File Package routines, the default current
directory is simply the directory that was current when the user completed the previous
dialog box. You can use the function Get SFCur Di r defined in Listing 3-11 to determine
the current directory.

Listing 3-11 Determining the current directory

FUNCTI ON Get SFCurDir: Longl nt;

TYPE
Longl ntPtr = “~Longl nt;
CONST
CurDirStore = $398;
BEG N
Cet SFCurDir := LonglntPtr(CurDirStore)”;
END;

Using the Standard File Package 3-31

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

You can use the Get SFCur Vol function defined in Listing 3-12 to determine the
current volume.

Listing 3-12 Determining the current volume

FUNCTI ON Get SFCur Vol : | nt eger;

TYPE
IntPtr = ~lnteger,;
CONST
SFSaveDi sk = $214;
BEG N
Get SFCur Vol : = -IntPtr(SFSavebi sk)”;
END;

If necessary, you can change the default current directory and volume. For example,
when the user needs to select a dictionary file for a spell-checking application, the
application might set the current directory to a directory containing document-specific
dictionary files. This saves the user from having to navigate the directory hierarchy from
the directory containing documents to that containing dictionary files. You can use the
procedure Set SFCur Di r defined in Listing 3-13 to set the current directory.

Listing 3-13 Setting the current directory

PROCEDURE Set SFCurDir (dirlID: Longlnt);

TYPE
Longl ntPtr = “~Longl nt;
CONST
CurDirStore = $398;
BEG N
LonglntPtr(CurDirStore)™ := dirl D
END;

You can use the procedure Set SFCur Vol defined in Listing 3-14 to set the current volume.

Listing 3-14 Setting the current volume

PROCEDURE Set SFCur Vol (vRef Num | nteger);
TYPE
IntPtr = “lnteger;
CONST
SFSaveDi sk = $214;
BEG N
IntPtr(SFSaveDi sk)” := -vRef Num
END;

3-32 Using the Standard File Package

CHAPTER 3

Standard File Package

Note
Most applications don’t need to alter the default current directory
or volume. O

If you are using the enhanced Standard File Package routines, you can set the current
directory by filling in the fields of the file system specification in the reply record passed
to Cust onGet Fi | e or Cust onPut Fi | e. You do this within your dialog hook function.
Listing 3-15 defines a dialog hook function that makes the currently active System Folder
the current directory.

Listing 3-15 Setting the current directory

FUNCTI ON MyDl gHook (item Integer; theDialog: DialogPtr; nyDataPtr: Ptr):
I nt eger;
VAR
nyRepl yPtr: St andar dFi | eRepl yPtr;
foundVRef Num | nt eger;
foundDir | D Longl nt ;
nmyErr: OSErr;
BEG N
MyDl gHook : = item {by default, return the item passed in}
| F Get WRef Con(W ndowPt r (t heDi al og)) <> Longl nt (sf Mai nDi al ogRef Con) THEN
Exi t (MyDl gHook) ; {this function is only for main dial og box}

CASE item OF
sf HookFi rst Cal I : {pseudo-item first tine function call ed}
BEG N
nyRepl yPtr : = StandardFil eRepl yPtr(nmyDataPtr);
nyErr : = FindFol der (kOnSyst enDi sk, kSyst entol der Type,
kDont Cr eat eFol der, foundVRef Num foundDirlD);
IF nyErr = noErr THEN
BEG N
nyReplyPtr~. sfFile.parlD := foundDirl D
nyRepl yPtr. sfFil e. vRef Num : = f oundVRef Num
MyDl gHook : = sfHookChangeSel ecti on;
END;
END;
OTHERW SE
: {ignore all other itens}
END;
END;

Using the Standard File Package 3-33

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

This dialog hook function installs the System Folder’s volume reference number and
parent directory ID into the file system specification whose address is passed in the
nmyDat aPt r parameter. Because the dialog hook function returns the constant

sf HookChangeSel ect i on the first time it is called (that is, in response to the

sf HookFi r st Cal | pseudo-item), the Standard File Package sets the current directory
to the indicated directory when the dialog box is displayed.

Selecting a Directory

You can present the recommended user interface for selecting a directory by calling the
Cust ontGet Fi | e procedure and passing it the addresses of a custom file filter function
and a dialog hook function. See “Selecting Volumes and Directories” on page 3-10 for a
description of the appearance and behavior of the directory selection dialog box.

The file filter function used to select directories is quite simple; it ensures that only
directories, not files, are listed in the dialog box displayed by Cust onCet Fi | e.
Listing 3-16 defines a file filter function you can use for this purpose.

Listing 3-16 A file filter function that lists only directories

FUNCTI ON MyCustontFil eFilter (pb: CinfoPBPtr; myDataPtr: Ptr): Bool ean;
CONST

kFol derBit = 4; {bit set in ioFlAttrib for a directory}
BEG N {list directories only}

MyCustontil eFilter := NOT BTst(pb”.ioFl Attrib, kFolderBit);
END;

The function MyCust onFi | eFi | t er simply inspects the appropriate bit in the file
attributes (i oFl At t ri b) field of the catalog information parameter block passed to it. If
the directory bit is set, the file filter function returns FALSE, indicating that the item
should appear in the list; otherwise, the file filter function returns TRUE to exclude the
item from the list. Because a volume is identified via its root directory, volumes also
appear in the list of items in the dialog box.

The title of the Select button should identify which directory is available for selection.
You can use the Set But t onTi t | e procedure defined in Listing 3-17 to set the title
of a button.

Your dialog hook function calls the Set But t onTi t | e procedure to copy the truncated
title of the selected item into the Select button. This title eliminates possible user
confusion about which directory is available for selection. If no item in the list is selected,
the dialog hook function uses the name of the directory shown in the pop-up menu as
the title of the Select button.

3-34 Using the Standard File Package

CHAPTER 3

Standard File Package

Listing 3-17 Setting a button’s title

PROCEDURE SetButtonTitle (ButtonHdl: Handle; name: Str255; ButtonRect: Rect);
VAR

result: |nteger; {result of TruncString}

wi dt h: I nt eger; {wi dth available for nanme of directory}
BEG N

gPrevSel ect edNane : = nane;

W TH ButtonRect DO
width := (right - left) - (StringWdth('Select ""') + CharWdth(' "));

result := TruncString(w dth, nane, snTruncM ddle);
Set CTitl e(Control Handl e(ButtonHdl), CONCAT(' Select "', nane, ""'));
Val i dRect (Butt onRect) ;

END;

The Set But t onTi t | e procedure is passed a handle to the button whose title is to be
changed, the name of the directory available for selection, and the button’s enclosing
rectangle. The global variable gPr evSel ect edName holds the full directory name,
before truncation.

A dialog hook function manages most of the process of letting the user select a director.
Listing 3-18 defines a dialog hook function that handles user selections in the dialog box.

Listing 3-18 Handling user selections in the directory selection dialog box

FUNCTI ON MyDl gHook (item Integer; theDialog: DialogPtr; nyDataPtr: Ptr):

I nt eger;
CONST
kCGet Di r BTN = 10; {Sel ect directory button}
TYPE
SFRPt r = ~Standar dFi | eRepl y;
VAR
myType: I nt eger; {menu item sel ect ed}
nmyHandl e: Handl e; {needed for GetDIten}
nyRect : Rect ; {needed for CetDltent
my Name: St r 255;
ny PB: Cl nf oPBRec;
mySFRPt 1 : SFRPt 1 ;
nmyErr: OSErr;
BEG N
MyDl gHook := item {default, except in special cases bel ow}
| F Get WRef Con(W ndowPt r (t heDi al og)) <> Longl nt (sf Mai nDi al ogRef Con) THEN
Exi t (MyDl gHook) ; {this function is only for nain dial og box}

CetDiten(t heDi al og, kCGetDirBTN, nyType, myHandl e, nyRect);
| F item = sfHookFirstCall THEN

Using the Standard File Package 3-35

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

BEG N
{Determ ne current folder nane and set title of Select button.}
W TH nyPB DO
BEG N
i oCompl etion := NL;
i oNamePtr : = @ryNane;

i oVRef Num : = Get SFCur Vol ;
ioFDirlndex := - 1;
ioDirID := GetSFCurDir;

END;
nyErr := PBCet Cat | nfo(@wyPB, FALSE);
Set ButtonTitl e(myHandl e, nyName, nyRect);
END
ELSE
BEG N
{Get nySFRPtr from 3rd paraneter to hook function.}
nySFRPtr : = SFRPtr(nyDataPtr);
{Track nane of folder that can be selected.}
IF (mySFRPtr~. sflsFolder) OR (nmySFRPtr~. sflsVolunme) THEN
nyName : = nySFRPtr”. sfFile. nane

ELSE
BEG N
W TH nyPB DO
BEG N
i oConmpl etion := NL;
i oNamePtr : = @ryNane;
i oOVRef Num : = nySFRPt r~. sfFi | e. vRef Num
i oFDi rl ndex := -1;
ioDrDirID := nmySFRPtr~. sfFile.parl D
END;
nyErr := PBGet Catl nfo(@vyPB, FALSE);
END;

{Change directory nane in button title as needed.}
| F nyName <> gPrevSel ect edNamre THEN
Set ButtonTitl e(myHandl e, nyName, nyRect);

CASE item OF
kCGet Di r BTN; {force return by faking a cancel}
MyDl gHook : = sfltemCancel Button;
sfltemCancel Butt on:
gbhir Sel ectionFl ag : = FALSE; {flag no directory was sel ect ed}
OTHERW SE

END; { CASE}

END;
END;

3-36 Using the Standard File Package

CHAPTER 3

Standard File Package

The MyDl gHook dialog hook function defined in Listing 3-18 calls the File Manager

function PBCet Cat | nf 0 to retrieve the name of the directory to be selected. When the

dialog hook function is first called (that is, when i t emis set to sf HookFi r st Cal |),
M/Dl gHook determines the current volume and directory by calling the functions

Cet SFCur Vol and Get SFCur Di r. When MyDl gHook is called each subsequent time,
MyDI gHook calls PBGet Cat | nf 0 with the volume reference number and directory ID
of the previously opened directory.

When the user clicks the Select button, MyDl gHook returns the item

sf |t emCancel But t on. When the user clicks the real Cancel button, MyDl gHook
sets the global variable gDi r Sel ect i onFl ag to FALSE, indicating that the user
didn’t select a directory. The function DoGet Di r ect or y uses that variable to
distinguish between clicks of Cancel and clicks of Select.

The function DoGet Di r ect or y defined in Listing 3-19 uses the file filter function
and the dialog hook functions defined above to manage the directory selection dialog
box. On exit, DoGet Di r ect or y returns a standard file reply record describing the
selected directory.

Listing 3-19 Presenting the directory selection dialog box

FUNCTI ON DoCet Di rectory: StandardFil eReply;

VAR
myRepl y: St andar dFi | eRepl y;
nyTypes: SFTypeli st ; {types of files to display}
nmyPoi nt : Poi nt ; {upper-1eft corner of box}
myNunirypes: I nt eger;
nmyModal Fil ter: Modal Fi | t er YDProcPtr;
nmyActi veli st : Ptr;
myActi vat eProc: Acti vat eYDProcPtr;
my Nane: St r 255;
CONST
rGetDirectoryDLOG = 128; {resource ID of customdial og box}
BEG N
gPrevSel ectedNane :=""; {initialize nane of previous selection}
ghi r Sel ectionFl ag : = TRUE; {initialize directory selection flag}
nyNumlypes : = -1, {pass all types of files to file filter}
nyPoint.h := -1; {center dialog box on screen}
myPoint.v := -1,

nmyModal Filter := NL;
nmyActivelList := NL;
myActivateProc := NL;

Custontet Fil e(@WCustontil eFilter, nyNunflypes, nmyTypes, nyReply,

rGetDirectoryDLOG nyPoint, @D gHook, nyModal Filter,
nyActi veLi st, nyActivateProc, @wReply);

Using the Standard File Package 3-37

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

{Get the nane of the directory.}

I F

gDi r Sel ecti onFl ag AND nyRepl y. sflsVol ume THEN
nyNane : = Concat(myReply.sfFile.name, ':")

ELSE

I F

myName : = nyReply. sfFile.nane;

gDi r Sel ecti onFl ag AND nyRepl y. sflsVol une THEN
myRepl y. sf Fil e. nane : = nyNane

ELSE | F gDirSel ecti onFl ag THEN

nyReply. sfFile.name : = gPrevSel ect edNane;

ghi r Sel ecti onFl ag : = FALSE;
DoCGetDirectory : = nyReply;

END;

The DoCet Di r ect or y function initializes the two global variables

gPrevSel ect edNanme and gDi r Sel ecti onFl ag. As you have seen, these two
variables are used by the custom dialog hook function. Then DoGet Di r ect ory
calls Cust onGet Fi | e to display the directory selection dialog box and handle user
selections. When the user selects a directory or clicks the Cancel button, the dialog
hook function returns sf | t enCancel But t on and Cust onGet Fi | e exits. At that
point, the reply record contains information about the last item selected in the list of
available items.

Selecting a Volume

You can present the recommended user interface for selecting a volume by calling the
Cust onGet Fi | e procedure and passing it the addresses of a custom file filter function
and a dialog hook function. See “Selecting Volumes and Directories” on page 3-10 for a
description of the appearance and behavior of the volume selection dialog box.

The file filter function used to select volumes is quite simple; it ensures that only
volumes, not files or directories, are listed in the dialog box displayed by
Cust ontet Fi | e. Listing 3-16 defines a file filter function you can use to do this.

Listing 3-20 A file filter function that lists only volumes

FUNCTI ON MyCustontil eFilter (pb: ClnfoPBPtr; myDataPtr: Ptr): Bool ean;

CONST

kFol derBit = 4; {bit set in ioFlAttrib for a directory}
BEG N {l'ist volunes only}

MyCustontil eFilter := TRUE {assume you don't list the itent

| F BTst (pb™.ioFl Attrib, kFolderBit) AND (pb*.ioDrParlD = fsRtParl D) THEN

END;

3-38

MyCust onti | eFilter := FALSE;

Using the Standard File Package

CHAPTER 3

Standard File Package

The function MyCust onFi | eFi | t er inspects the appropriate bit in the file attributes

(i oFl Attri b) field of the catalog information parameter block passed to it. If the
directory bit is set, MyCust onfi | eFi | t er checks whether the parent directory ID of
the directory is equal to f sRt Par | D, which is always the parent directory ID of a
volume’s root directory. If it is, the file filter function returns FALSE, indicating that the
item should appear in the list of volumes; otherwise, the file filter function returns TRUE
to exclude the item from the list.

A dialog hook function for handling the items in the volume selection dialog box is
defined in Listing 3-21.

Listing 3-21 Handling user selections in the volume selection dialog box

FUNCTI ON MyDl gHook (item Integer; theDialog: DialogPtr; nyDataPtr: Ptr):

I nt eger;
VAR
nyType: I nt eger; {menu item sel ect ed}
nmyHandl e: Handl e; {needed for GetDIten}
nyRect : Rect ; {needed for GetDlten}
ny Nane: Str 255; {new title for Qpen button}
BEG N
MyDl gHook : = item {default, except in special cases bel ow}
| F Get WRef Con(W ndowPt r (t heDi al og)) <> Longl nt (sf Mai nDi al ogRef Con) THEN
Exi t (MyDI gHook) ; {this function is only for main dial og box}
CASE item OF
sf HookFi rst Cal I :
BEG N
{Set button title and go to desktop.}
nyName : = 'Select';
CGetDIten(theDi al og, sfltenpenButton, nyType, nyHandl e, nyRect);
Set CTi t | e(Cont r ol Handl e(myHandl e), nyNane) ;
MyDl gHook : = sfHookGoToDeskt op;
END;
sf HookGoToDeskt op: {map Cd-D to a null event}
MyDl gHook : = sfHookNul | Event;
sf HookChangeSel ecti on:
MyDl gHook : = sfHookGoToDeskt op;
sf HookGoToNext Dri ve: {map Cnd-Left Arrowto a null event}
MyDl gHook : = sfHookNul | Event;
sf HookGoToPr evDri ve: {map Cnd-Right Arrow to a null event}
MyDl gHook : = sfHookNul | Event;
sfltemOpenButton, sfHookOpenFol der:
MyDl gHook : = sfltenpenButton;
OTHERW SE
END;
END;

Using the Standard File Package 3-39

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

You can prompt the user to select a volume by calling the function DoGet Vol une
defined in Listing 3-22.

Listing 3-22 Presenting the volume selection dialog box

FUNCTI ON DoCet Vol une: St andar dFi | eRepl y;

VAR
myRepl y: St andar dFi | eRepl y;
nyTypes: SFTypeli st ; {types of files to display}
nmyPoi nt : Poi nt ; {upper-1eft corner of box}
myNunirypes: I nt eger;
nmyModal Fil ter: Modal Fi | t er YDProcPtr;
nmyActi veli st : Ptr;
myActi vat eProc: Acti vat eYDProcPtr;
CONST
r Get Vol umeDLOG = 129; {resource I D of customdial og box}
BEG N
nmyNunmTypes : = -1; {pass all types of files}
nmyPoint.h := -1; {center dialog box on screen}
myPoint.v := -1,
nmyModal Filter := N L;
nmyActivelList := NL;

myActivateProc := NIL;

Custontet Fil e(@WCustontil eFilter, nyNunflypes, nyTypes, nyReply,
r Get Vol umeDLOG, nyPoi nt, @D gHook, myModal Filter,
nyActiveLi st, nyActivateProc, @wReply);

DoGet Vol unme : = nyReply;
END;

Using the Original Procedures

The Standard File Package still recognizes all procedures available before system
software version 7.0 (SFCet Fi | e, SFPut Fi | e, SFPCet Fi | e, and SFPPut Fi | e). It
displays the new interface for all applications that don’t customize the dialog boxes in
incompatible ways (that is, applications that specify both the dialog hook and the
modal-dialog filter pointers as NI L and that specify no alternative dialog ID).

3-40 Using the Standard File Package

CHAPTER 3

Standard File Package

When the Standard File Package can’t use the enhanced dialog box layout because an
application customized the dialog box with the earlier procedures, it nevertheless makes
some changes to the display:

» It changes the label of the Drive button to Desktop and makes the desktop the root of
the display.

» It moves the volume icon slightly to the right, to make room for selection highlighting
around the display list field.

If, however, a customized dialog box has suppressed the file display list (by specifying
coordinates outside of the dialog box), the Standard File Package uses the earlier interface,
on the assumption that the dialog box is designed for volume selection.

If you need to use the procedures available before system software version 7.0, you need
to be aware of a number of differences between those procedures and the enhanced
procedures. These are the most important differences:

= The original procedures do not recognize some pseudo-items under previous system
software versions. For example, the pseudo-item sf HookLast Cal | is not used
before version 7.0. See the comments under “Constants” in “Summary of the Standard
File Package” (beginning on page 3-60) for information on which pseudo-items are
universally available.

= The original standard file reply record (type SFRepl y) returns a working directory
reference number, not a volume reference number. Typically, you should immediately
convert that number to a volume reference number and directory ID using Get VDI nf o
or PBGet VDI nf 0. Then close the working directory by calling CI oseWD or
PBCl oseWD. For details on these functions, see the chapter “File Manager” in this book.

= Dialog hook functions used with the original procedures are not passed a
nyDat aPt r parameter.

Standard File Package Reference

abexoed 3|14 prepuels .
w

This section describes the data structures and routines that are specific to the Standard
File Package. The “Data Structures” section shows the Pascal data structures for

the original and the enhanced Standard File reply records. The section “Standard File
Package Routines” describes routines for opening and saving files. The section
“Application-Defined Routines” describes the routines that your application can define
to customize the operations of the Standard File Package routines.

Data Structures

The Standard File Package exchanges information with your application using a standard
file reply record. If you use the procedures introduced in system software version 7.0, you
use a reply record of type St andar dFi | eRepl y. If you use the procedures available
before version 7.0, you must use a reply record of type SFRepl y.

Standard File Package Reference 3-41

CHAPTER 3

Standard File Package

Enhanced Standard File Reply Record

3-42

When you use one of the procedures St andar dPut Fi | e, St andar dGet Fi | e,
Cust onPut Fi | e, or Cust onGet Fi | e, you pass a reply record of type
St andar dFi | eRepl y.

sf Good:

sf Repl aci ng:

sf Type:
sfFile:
sfScri pt:
sf Fl ags:
sfl sFol der:
sf 1 sVol une:

sf Reservedl:
sf Reserved2:
END;

TYPE St andardFil eReply =
RECORD

Bool ean;
Bool ean;
OSType;
FSSpec;

Scri pt Code;

I nt eger;
Bool ean;
Bool ean;
Longl nt;
I nt eger;

Field descriptions

sf Good

sf Repl aci ng

sf Type

sfFile

{TRUE i f user did not cancel}
{TRUE if replacing file with same nane}

{file type}

{selected file, folder, or vol une}
{script of file, folder, or volunme nane}
{Finder flags of selected iten}
{selected itemis a fol der}

{selected itemis a vol une}

{reserved}

{reserved}

Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the sf Good field contains TRUE.

Reports whether a file to be saved replaces an existing file of the same
name. This field is valid only after a call to the St andar dPut Fi | e or
Cust onPut Fi | e procedure. When the user assigns a name that
duplicates that of an existing file, the Standard File Package asks for
verification by displaying a subsidiary dialog box (illustrated in
Figure 3-4, page 3-7). If the user verifies the name, the Standard File
Package sets the sf Repl aci ng field to TRUE and returns to your
application; if the user cancels the overwriting of the file, the
Standard File Package returns to the main dialog box. If the name
does not conflict with an existing name, the Standard File Package
sets the field to FALSE and returns.

Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox

Essentials.) Only St andar dGet Fi | e and Cust onGet Fi | e return a
file type in this field.

Describes the selected file, folder, or volume with a file system
specification record, which contains a volume reference number,
parent directory ID, and name. (See the chapter “File Manager” in
this book for a complete description of the file system specification
record.) If the selected item is an alias for another item, the Standard

Standard File Package Reference

CHAPTER 3

Standard File Package

sf Scri pt

sf Fl ags

sf | sFol der

sflsVol une

sf Reservedl
sf Reserved?2

File Package resolves the alias and places the file system
specification record for the target in the sf Fi | e field when the
user completes the dialog box. If the selected file is a stationery
pad, the reply record describes the file itself, not a copy of the file.

Identifies the script in which the name of the document is to be
displayed. (This information is used by the Finder and by the
Standard File Package.) A script code of snSyst enScri pt (1)
represents the default system script.

Contains the Finder flags from the Finder information record in the
catalog entry for the selected file. (See the chapter “Finder Interface’
in Inside Macintosh: Macintosh Toolbox Essentials for a description of
the Finder flags.) This field is returned only by St andar dGet Fi | e
and Cust omCet Fi | e. If your application supports stationery, it
should check the stationery bit in the Finder flags to determine
whether to treat the selected file as stationery. Unlike the Finder, the
Standard File Package does not automatically create a document
from a stationery pad and pass your application the new document.
If the user opens a stationery document from within an application
that does not support stationery, the Standard File Package displays
a dialog box warning the user that the master copy is being opened.

Reports whether the selected item is a folder (TRUE) or a file or

volume (FALSE). This field is meaningful only during the execution
of a dialog hook function.

4

Reports whether the selected item is a volume (TRUE) or a file or
folder (FALSE). This field is meaningful only during the execution
of a dialog hook function.

Reserved.
Reserved.

Original Standard File Reply Record

When you use one of the original Standard File Package procedures SFPut Fi | e,
SFCet Fi | e, SFPPut Fi | e, or SFPCet Fi | e, you pass a reply record of type SFRepl y.

SFReply =

RECORD
good:
copy:
f Type:
vRef Num
versi on:
f Name:

END;

Bool ean; {TRUE if user did not cancel}

Bool ean; {reserved}

OSType; {file type}

I nt eger; {working directory reference nunber}
I nt eger; {reserved}

Str63; {fil enane}

Standard File Package Reference 3-43

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

Field descriptions

good Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the value of good is TRUE.

copy Reserved.

f Type Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” of Inside Macintosh: Macintosh Toolbox
Essentials.) Only SFGet Fi | e and SFPGet Fi | e return a file type in

this field.
vRef Num Contains the working directory reference number of the selected file.
versi on Reserved.
f Narme Contains the name of the selected file.

Note

In spite of its name, the vRef Numfield does not contain a volume
reference number. Instead, it contains a working directory reference
number, which encodes both the volume reference number and the
parent directory ID of the selected file. You can obtain the volume
reference number and directory ID of the file by calling Get WDI nf o or
PBGet VDI nf 0. See the chapter “File Manager” in this book for details
about working directory reference numbers. O

Standard File Package Routines

This section describes the routines you can use to prompt the user for a file’s name and
location after a request to save or open a file. If your application is designed to run in
system software versions prior to version 7.0, you must use either SFCet Fi | e or
SFPCet Fi | e when opening a file and either SFPut Fi | e or SFPPut Fi | e when saving
a file.

If your application is designed to take advantage of features introduced in system
software version 7.0 or later, you can use the new routines intended to simplify
the code required to elicit a filename from the user. The St andar dPut Fi | e and
St andar dCet Fi | e procedures are simplified versions of the original procedures
for handling the user interface during the storing and retrieving of files. The

Cust onPut Fi | e and Cust onet Fi | e procedures are customizable versions of
the same procedures.

Saving Files

You can use the St andar dPut Fi | e procedure to present the standard user interface
when the user asks to save a file. If you need to add elements to the default dialog boxes
or exercise greater control over user actions in the dialog box, use Cust onPut Fi | e.

3-44 Standard File Package Reference

CHAPTER 3

Standard File Package

If your application is designed to execute in system software versions earlier than
version 7.0, you can use the corresponding procedures SFPut Fi | e and SFPPut Fi | e.

StandardPutFile

You can use the St andar dPut Fi | e procedure to display the default Save dialog box
when the user is saving a file.

PROCEDURE St andar dPut Fil e (pronpt: Str255; defaul t Nane: Str255;
VAR reply: StandardFil eReply);

pr onpt The prompt message to be displayed over the text field.

def aul t Nane
The initial name of the file.

reply The reply record, which St andar dPut Fi | e fills in before returning.

DESCRIPTION

The St andar dPut Fi | e procedure presents a dialog box through which the user
specifies the name and location of a file to be written to. The dialog box is centered on
the screen. While the dialog box is active, St andar dPut Fi | e gets and handles events
until the user completes the interaction, either by selecting a name and authorizing the
save or by canceling the save. The St andar dPut Fi | e procedure returns the user’s
input in a record of type St andar dFi | eRepl y.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for St andar dPut Fi | e are

Trap macro Selector
_Pack3 $0005

SPECIAL CONSIDERATIONS

The St andar dPut Fi | e procedure is not available in all versions of system software.
Use the Gest al t function to determine whether St andar dPut Fi | e is available before
calling it.

Because St andar dPut Fi | e may move memory, you should not call it at interrupt time.

Standard File Package Reference 3-45

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

CustomPutFile

3-46

Use the Cust onPut Fi | e procedure when your application requires more control over
the Save dialog box than is possible using St andar dPut Fi | e.

PROCEDURE CustonPut File (pronpt: Str255; defaultName: Str255;
VAR reply: StandardFil eReply;
dl gl D. Integer; where: Point;
dl gHook: DI gHookYDPr ocPtr ;
filterProc: Moddal FilterYDProcPtr;
activeList: Ptr;
activateProc: ActivateYDProcPtr;
yourDataPtr: UNIV Ptr);

pr onpt The prompt message to be displayed over the text field.
def aul t Nane
The initial name of the file.
reply The reply record, which Cust onPut Fi | e fills in before returning.
dl gl D The resource ID of a customized dialog template. To use the standard

template, set this parameter to 0.

wher e The upper-left corner of the dialog box, in global coordinates. If you
specify the point (-1,-1), Cust onPut Fi | e automatically centers the
dialog box on the screen.

dl gHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NI L if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

filterProc A pointer to your modal-dialog filter function, which determines how the
Modal Di al og procedure filters events when called by the Cust onPut Fi | e
procedure. Specify a value of NI L if you are not supplying your own
function. See “Writing a Modal-Dialog Filter Function” on page 3-28 for a
description of the modal-dialog filter function.

activeLi st A pointer to a list of all dialog items that can be activated—that is, can be
the target of keyboard input. If you supply an act i veLi st parameter of
NI L, Cust onrPut Fi | e uses the default targets (the filename field and the
list of files and folders). If you have added any fields that can accept
keyboard input, you must modify the list. The list is stored as an array of
16-bit integers. The first integer is the number of items in the list. The
remaining integers are the item numbers of all possible keyboard targets,
in the order that they are activated by the Tab key.

Standard File Package Reference

DESCRIPTION

CHAPTER 3

Standard File Package

activateProc
A pointer to your activation procedure, which controls the highlighting of
dialog items that are defined by your application and that can receive
keyboard input. See “Writing an Activation Procedure” on page 3-30 for a
description of the activation procedure.

your Dat aPt r
Any 4-byte value; usually, a pointer to optional data supplied by your
application. When Cust onPut Fi | e calls any of your callback routines,
it adds this parameter, making the data available to your callback
routines. If you are not supplying any data of your own, you can specify
avalue of NI L.

The Cust onPut Fi | e procedure is an alternative to St andar dPut Fi | e when you want
to display a customized Save dialog box or handle the default dialog box in a custom-
ized way. During the dialog, Cust onPut Fi | e gets and handles events (possibly with
the assistance of application-defined callback routines) until the user completes the inter-
action, either by selecting a name and authorizing the save operation or by canceling the
save operation. The Cust onPut Fi | e procedure returns the user’s input in a record of
type St andar dFi | eRepl y.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for Cust onPut Fi | e are

Trap macro Selector
_Pack3 $0007

SPECIAL CONSIDERATIONS

SFPutFile

The Cust orrPut Fi | e procedure is not available in all versions of system software.
Use the Gest al t function to determine whether Cust onPut Fi | e is available before
calling it.

Because Cust onPut Fi | e may move memory, you should not call it at interrupt time.

Use the SFPut Fi | e procedure to display the standard Save dialog box when the user is
saving a file.

PROCEDURE SFPut File (where: Point; pronmpt: Str255;
ori gName: Str255; dl gHook: DI gHookProcPtr;
VAR reply: SFReply);

Standard File Package Reference 3-47

abexoed 3|14 prepuels .
w

DESCRIPTION

CHAPTER 3

Standard File Package

wher e The upper-left corner of the dialog box, in global coordinates.
pr onpt The prompt message to be displayed over the text field.
ori gName The initial name of the file.

dl gHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NI L if you want
the standard items handled in the standard ways. See “Writing a Dialog
Hook Function” on page 3-21 for a description of the dialog
hook function.

reply The reply record, which SFPut Fi | e fills in before returning.

The SFPut Fi | e procedure presents a dialog box through which the user specifies the
name and location of a file to be written to. During the dialog, SFPut Fi | e gets and
handles events until the user completes the interaction, either by selecting a name and
authorizing the save or by canceling the save. The SFPut Fi | e procedure returns the
user’s input in a record of type SFRepl y.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPut Fi | e are

Trap macro Selector
_Pack3 $0001

SPECIAL CONSIDERATIONS

SFPPutFile

Because SFPut Fi | e may move memory, you should not call it at interrupt time.

3-48

Use the SFPPut Fi | e procedure when your application requires more control over the
Save dialog box than is possible using SFPut Fi | e.

PROCEDURE SFPPut Fil e (where: Point; pronpt: Str255;
ori gName: Str255; dl gHook: DI gHookProcPtr;
VAR reply: SFReply; dlglD |nteger;
filterProc: Modal FilterProchktr);

wher e The upper-left corner of the dialog box, in global coordinates.
pr onpt The prompt message to be displayed over the text field.
ori gName The initial name of the file, if any.

Standard File Package Reference

DESCRIPTION

CHAPTER 3

Standard File Package

dl gHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NI L if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

reply The reply record, which SFPPut Fi | e fills in before returning.

diglD The resource ID of a customized dialog template. To use the standard
template, set this parameter to -3999.

filterProc A pointer to your modal-dialog filter function, which determines how the
Modal Di al og procedure filters events when called by the SFPPut Fi | e
procedure. Specify a value of NI L if you are not supplying your own
function. See “Writing a Modal-Dialog Filter Function” on page 3-28 for a
description of the modal-dialog filter function.

The SFPPut Fi | e procedure is an alternative to SFPut Fi | € when you want to display
a customized Save dialog box or handle the default dialog box in a customized way.
During the dialog, SFPPut Fi | e gets and handles events (possibly with the assistance of
application-defined callback routines) until the user completes the interaction, either by
selecting a name and authorizing the save operation or by canceling the save operation.
SFPPut Fi | e returns the user’s input in a record of type SFRepl y.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPPut Fi | e are

Trap macro Selector
__Pack3 $0003

SPECIAL CONSIDERATIONS

Because SFPPut Fi | e may move memory, you should not call it at interrupt time.

Opening Files

You can use the St andar dCet Fi | e procedure to present the standard user interface
when the user asks to open a file. If you need to add elements to the default dialog boxes
or exercise greater control over user actions in the dialog box, use Cust omGet Fi | e.

If your application is designed to execute in system software versions earlier than
version 7.0, you can use the corresponding procedures SFGet Fi | e and SFPGet Fi | e.

Standard File Package Reference 3-49

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

StandardGetFile

DESCRIPTION

You can use the St andar dGet Fi | e procedure to display the default Open dialog box
when the user is opening a file.

PROCEDURE St andardGetFile (fileFilter: FileFilterProcPtr;
numlypes: | nteger,
typeLi st: SFTypelLi st;
VAR reply: StandardFil eReply);

fileFilter A pointertoan optional file filter function, provided by your application,
through which St andar dGet Fi | e passes files of the specified types.

nunlypes The number of file types to be displayed. If you specify a nunilypes
value of -1, the first filtering passes files of all types.

t ypeli st Alist of file types to be displayed.
reply The reply record, which St andar dCet Fi | e fills in before returning.

The St andar dGet Fi | e procedure presents a dialog box through which the user
specifies the name and location of a file to be opened. While the dialog box is active,
St andar dGet Fi | e gets and handles events until the user completes the interaction,
either by selecting a file to open or by canceling the operation. St andar dGet Fi | e
returns the user’s input in a record of type St andar dFi | eRepl y.

Thefil eFilter, nunTypes, andt ypeLi st parameters together determine which
files appear in the displayed list. The first filtering is by file type, which you specify in
the nunTypes and t ypelLi st parameters. The nuniTypes parameter specifies the
number of file types to be displayed. You can specify one or more types. If you specify a
nuniTypes value of -1, the first filtering passes files of all types.

ThefileFilter parameter points to an optional file filter function, provided by your
application, through which St andar dGet Fi | e passes files of the specified types. See
“Writing a File Filter Function” on page 3-20 for a description of the file filter function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for St andar dGet Fi | e are

Trap macro Selector
_Pack3 $0006

SPECIAL CONSIDERATIONS

3-50

The St andar dGet Fi | e procedure is not available in all versions of system software.
Use the Gest al t function to determine whether St andar dGet Fi | e is available before
calling it.

Because St andar dCet Fi | e may move memory, you should not call it at interrupt time.

Standard File Package Reference

CHAPTER 3

Standard File Package

CustomGetFile

Call the Cust onGet Fi | e procedure when your application requires more control over
the Open dialog box than is possible using St andar dGet Fi | e.

PROCEDURE CustontetFile (fileFilter: FileFilterYDProcPtr;

fileFilter
numlypes

t ypelLi st

reply
dl gl D

wher e

dl gHook

filterProc

acti veLi st

numlypes: | nteger,;

typeLi st: SFTypelLi st;

VAR reply: StandardFil eReply;

dl gl D: Integer;

where: Point;

dl gHook: DI gHookYDPr ocPtr ;
filterProc: Mddal FilterYDProcPtr;
activeList: Ptr;

activateProc: ActivateYDProcPtr;
yourDataPtr: UNIV Ptr);

A pointer to an optional file filter function, provided by your application,
through which Cust onGet Fi | e passes files of the specified types.

The number of file types to be displayed. If you specify a nunTypes
value of -1, the first filtering passes files of all types.

Alist of file types to be displayed.
The reply record, which Cust onGet Fi | e fills in before returning.

The resource ID of a customized dialog template. To use the standard
template, set this parameter to 0.

The upper-left corner of the dialog box in global coordinates. If you
specify the point (-1,-1), Cust onCet Fi | e automatically centers the
dialog box on the screen.

A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NI L if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

A pointer to your modal-dialog filter function, which determines how
Modal Di al og filters events when called by Cust onGet Fi | e. Specify a
value of NI L if you are not supplying your own function. See “Writing a
Modal-Dialog Filter Function” on page 3-28 for a description of the
modal-dialog filter function.

A pointer to a list of all dialog items that can be activated—that is, made
the target of keyboard input. The list is stored as an array of 16-bit
integers. The first integer is the number of items in the list. The remaining
integers are the item numbers of all possible keyboard targets, in the
order that they are activated by the Tab key. If you supply an

acti veli st parameter of NI L, Cust onet Fi | e directs all keyboard
input to the displayed list.

Standard File Package Reference 3-51

abexoed 3|14 prepuels .
w

DESCRIPTION

CHAPTER 3

Standard File Package

activateProc
A pointer to your activation procedure, which controls the highlighting of
dialog items that are defined by your application and that can receive
keyboard input. See “Writing an Activation Procedure” on page 3-30 for a
description of the activation procedure.

your Dat aPt r
A pointer to optional data supplied by your application. When
Cust onGet Fi | e calls any of your callback routines, it pushes this
parameter on the stack, making the data available to your callback
routines. If you are not supplying any data of your own, specify a
value of NI L.

The Cust onGet Fi | e procedure is an alternative to St andar dGet Fi | e when you want
to use a customized dialog box or handle the default Open dialog box in a customized
way. Cust onet Fi | e presents a dialog box through which the user specifies the name
and location of a file to be opened. While the dialog box is active, Cust onGet Fi | e gets
and handles events until the user completes the interaction, either by selecting a file to
open or by canceling the operation. Cust onCet Fi | e returns the user’s input in a record
of type St andar dFi | eRepl y.

The first four parameters are similar to the same parameters in St andar dGet Fi | e.
Thefil eFilter, nuniTypes, andt ypeLi st parameters determine which files

appear in the list of choices. If you specify a value of -1 in the nunTypes parameter,
Cust onGet Fi | e displays or passes to your file filter function all files and folders (not
just the files) at the current level of the display hierarchy. If you provide a filter function,
Cust ontGet Fi | e passes it both the pointer to the catalog entry for each file to be
processed and also a pointer to the optional data passed by your application in its call
to Cust onGet Fi | e.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for Cust omGet Fi | e are

Trap macro Selector
__Pack3 $0008

SPECIAL CONSIDERATIONS

3-52

The Cust onGet Fi | e procedure is not available in all versions of system software.
Use the Gest al t function to determine whether Cust onGet Fi | e is available before
calling it.

Because Cust onGet Fi | e may move memory, you should not call it at interrupt time.

Standard File Package Reference

SFGetFile

CHAPTER 3

Standard File Package

DESCRIPTION

Use the SFGet Fi | e procedure to display the default Open dialog box when the user is
opening a file.

PROCEDURE SFCet File (where: Point; pronmpt: Str255;
fileFilter: FileFilterProcPtr;
nunTypes: |Integer; typeList: SFTypelist;
dl gHook: DI gHookProcPtr; VAR reply: SFReply);

wher e The upper-left corner of the dialog box, in global coordinates.
pr onpt Ignored.

fileFilter A pointertoan optional file filter function, provided by your application,
through which SFGet Fi | e passes files of the specified types.

nunTypes The number of file types to be displayed. If you specify a nunTypes
value of -1, the first filtering passes files of all types.

t ypeli st Alist of file types to be displayed.
dl gHook A pointer to your dialog hook function, which handles item selections

received from the Dialog Manager. Specify a value of NI L if you want the
standard items handled in the standard ways.

reply The reply record, which SFCet Fi | e fills in before returning.

The SFCet Fi | e procedure displays a dialog box listing the names of a specific
group of files from which the user can select one to be opened (as during an Open
menu command). During the dialog, SFGet Fi | e gets and handles events (possibly
with the assistance of application-defined callback routines) until the user completes
the interaction, either by selecting a file to open or by canceling the open operation.
SFGet Fi | e returns the user’s input in a record of type SFRepl y.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFGet Fi | e are

Trap macro Selector
_Pack3 $0002

SPECIAL CONSIDERATIONS

Because SFGet Fi | e may move memory, you should not call it at interrupt time.

Standard File Package Reference 3-53

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

SFPGetFile

Call the SFPCet Fi | e procedure when your application requires more control over the

Open dialog box than is possible using SFGet Fi | e.

PROCEDURE SFPGet Fil e (where: Point; pronpt: Str255;

fileFilter: FileFilterProcPtr;

nunTypes: Integer; typeList: SFTypelist;
dl gHook: DI gHookProchPtr;

VAR reply: SFReply; dlglD |Integer;
filterProc: Modal FilterProchktr);

wher e The upper-left corner of the dialog box, in global coordinates.

pr onpt Ignored.

fileFilter A pointertoan optional file filter function, provided by your application,
through which SFPGet Fi | e passes files of the specified types.

numrypes The number of file types to be displayed. If you specify a nunilypes
value of -1, the first filtering passes files of all types.

t ypelLi st Alist of file types to be displayed.

dl gHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NI L if you have not
added any items to the dialog box and want the standard items handled
in the standard ways.

reply The reply record, which SFPGet Fi | e fills in before returning.

dl gl D The resource ID of a customized dialog template.

filterProc A pointer to your modal-dialog filter function, which determines how
the Modal Di al og procedure filters events when called by the
SFPCet Fi | e procedure. Specify a value of NI L if you are not supplying
your own function.

DESCRIPTION

The SFPCet Fi | e procedure is an alternative to SFGet Fi | e when you want to display
a customized Open dialog box or handle the default dialog box in a customized way.
During the dialog, SFPCet Fi | e gets and handles events (possibly with the assistance of
application-defined callback routines) until the user completes the interaction, either by
selecting a file to open or by canceling the open operation. SFPGet Fi | e returns the
user’s input in a record of type SFRepl y.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPCet Fi | e are

Trap macro Selector
__Pack3 $0004

SPECIAL CONSIDERATIONS

3-54

Because SFPGet Fi | e may move memory, you should not call it at interrupt time.

Standard File Package Reference

CHAPTER 3

Standard File Package

Application-Defined Routines

This section describes the application-defined routines whose addresses you pass to
some of the Standard File Package routines. You can define

= a file filter function for determining which files the user can open
= adialog hook function for handling user actions in the dialog boxes

= a modal-dialog filter function for handling user events received from the Event
Manager

= an activation procedure for highlighting the display when keyboard input is directed
at a customized field defined by your application

File Filter Functions

You specify a file filter function to determine which files appear in the displayed list of
files and folders when the user is opening a file. You can define a standard or custom
file filter.

MyStandardFileFilter

DESCRIPTION

SEE ALSO

A file filter function whose address is passed to St andar dCet Fi | e should have the
following form:

FUNCTI ON MySt andardFil eFilter (pb: ClnfoPBPtr): Bool ean;

pb A pointer to a catalog information parameter block.

When St andar dGet Fi | e is displaying the contents of a volume or folder, it checks the
file type of each file and filters out files whose types do not match your application’s
specifications. If your application also supplies a file filter function, the Standard File
Package calls that function each time it identifies a file of an acceptable type.

When your file filter function is called, it is passed, in the pb parameter, a pointer to a
catalog information parameter block. See the chapter “File Manager” in this book for a
description of the fields of this parameter block.

Your function evaluates the catalog information parameter block and returns a Boolean
value that determines whether the file is filtered (that is, a value of TRUE suppresses
display of the filename, and a value of FALSE allows the display). If you do not supply a
file filter function, the Standard File Package displays all files of the specified types.

See “Writing a File Filter Function” on page 3-20 for a sample file filter function.

Standard File Package Reference 3-55

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

MyCustomFileFilter

DESCRIPTION

SEE ALSO

A file filter function whose address is passed to Cust onGet Fi | e should have the
following form:

FUNCTI ON MyCustontFil eFilter (pb: CinfoPBPtr; myDataPtr: Ptr):
Bool ean;

pb A pointer to a catalog information parameter block.

myDat aPtr A pointer to the optional data whose address is passed to
Cust onGet Fi | e.

When Cust onGet Fi | e is displaying the contents of a volume or folder, it checks the file
type of each file and filters out files whose types do not match your application’s
specifications. If your application also supplies a file filter function, the Standard File
Package calls that function each time it identifies a file of an acceptable type.

When your file filter function is called, it is passed, in the pb parameter, a pointer to a
catalog information parameter block. See the chapter “File Manager” in this book for
a description of the fields of this parameter block.

Your function evaluates the catalog information parameter block and returns a Boolean
value that determines whether the file is filtered (that is, a value of TRUE suppresses
display of the filename, and a value of FALSE allows the display). If you do not supply a
file filter function, the Standard File Package displays all files of the specified types.

See “Writing a File Filter Function” on page 3-20 for a sample file filter function.

Dialog Hook Functions

A dialog hook function handles user selections in a dialog box.

MyDlIlgHook

3-56

A dialog hook function should have the following form:
FUNCTI ON MyDl gHook (item Integer; theDi al og: DialogPtr;
nyDataPtr: Ptr): |nteger;

item The number of the item selected.
t heDi al og A pointer to the dialog record of the dialog box.

myDat aPtr A pointer to the optional data whose address is passed to
CustonGet Fi | e or Cust onPut Fi | e.

Standard File Package Reference

DESCRIPTION

SEE ALSO

CHAPTER 3

Standard File Package

You supply a dialog hook function to handle user selections of items that you added
to a dialog box. If you provide a dialog hook function, Cust onPut Fi | e and

Cust onGet Fi | e call your function immediately after calling Modal Di al og. They
pass your function the item number returned by Mbdal Di al og, a pointer to the
dialog record, and a pointer to the data received from your application, if any.

Your dialog hook function returns as its function result an integer that is either the item
number passed to it or some other item number. If your dialog hook function does not
handle a selection, it should pass the item number back to the Standard File Package for
processing by setting its return value equal to the item number. If your dialog hook
function does handle the selection, it should pass back sf HookNul | Event or the
number of some other pseudo-item.

See “Writing a Dialog Hook Function” on page 3-21 for a sample dialog hook function.

Modal-Dialog Filter Functions

A modal-dialog filter function controls events closer to their source by filtering the
events received from the Event Manager. The Standard File Package itself contains an
internal modal-dialog filter function that maps keypresses and other user input onto the
equivalent dialog box items. If you also want to process events at this level, you can
supply your own filter function.

MyModalFilter

DESCRIPTION

A modal-dialog filter function whose address is passed to SFPGet Fi | e or SFPPut Fi | e
should have the following form:

FUNCTI ON MyMbdal Fil ter (theDi al og: Dial ogPtr;
VAR t heEvent: Event Record;
VAR itenHit: Integer): Bool ean;

t heDi al og A pointer to the dialog record of the dialog box.
t heEvent The event record for the event.
itenHt The number of the item selected.

Your modal-dialog filter function determines how the Dialog Manager procedure
Modal Di al og filters events. The Mbdal Di al og procedure retrieves events by calling
the Event Manager function Get Next Event . The Standard File Package contains an
internal filter function that performs some preliminary processing on each event it

Standard File Package Reference 3-57

abexoed 3|14 prepuels .
w

SEE ALSO

CHAPTER 3

Standard File Package

receives. If you provide a modal-dialog filter function, Modal Di al og calls your filter
function after it calls the internal Standard File Package filter function and before it sends
the event to your dialog hook function.

Your modal-dialog filter function returns a Boolean value that reports whether it
handled the event. If your function returns a value of FALSE, Mbdal Di al og processes
the event through its own filters. If your function returns a value of TRUE,

Mbdal Di al og returns with no further action.

See “Writing a Modal-Dialog Filter Function” on page 3-28 for a sample modal-dialog
filter function.

MyModalFilterYD

DESCRIPTION

3-58

A modal-dialog filter function whose address is passed to Cust onGet Fi | e or
Cust onPut Fi | e should have the following form:

FUNCTI ON MyModal Filter YD (t heDi al og: Dial ogPtr;
VAR t heEvent: Event Recor d;
VAR itenHit: |nteger;
nyDataPtr: Ptr): Bool ean;

t heDi al og A pointer to the dialog record of the dialog box.
t heEvent The event record for the event.
itenmHt The number of the item selected.

nyDat aPtr A pointer to the optional data whose address is passed to
CustonGet Fi | e or Cust onPut Fi | e.

Your modal-dialog filter function determines how the Dialog Manager procedure

Modal Di al og filters events. The Modal Di al 0og procedure retrieves events by calling
the Event Manager function Get Next Event . The Standard File Package contains an
internal filter function that performs some preliminary processing on each event it
receives. If you provide a modal-dialog filter function, Modal Di al og calls your filter
function after it calls the internal Standard File Package filter function and before it sends
the event to your dialog hook function.

Your modal-dialog filter function returns a Boolean value that reports whether it
handled the event. If your function returns a value of FALSE, Modal Di al og processes
the event through its own filters. If your function returns a value of TRUE,

Modal Di al og returns with no further action.

Standard File Package Reference

SEE ALSO

CHAPTER 3

Standard File Package

See “Writing a Modal-Dialog Filter Function” on page 3-28 for a sample modal-dialog
filter function.

Activation Procedures

An activation procedure controls the highlighting of dialog items that are defined by
your application and can receive keyboard input.

MyActivateProc

DESCRIPTION

An activation procedure should have the following form:

PROCEDURE MyActivateProc (theDi alog: DialogPtr; itemNo: |nteger;
activating: Boolean; nyDataPtr: Ptr);

t heDi al og A pointer to the dialog record of the dialog box.
i temNo The number of the item selected.
activating

A Boolean value that specifies whether the field is being activated (TRUE)
or deactivated (FALSE).

myDat aPtr A pointer to the optional data whose address is passed to
Cust onGet Fi | e or Cust onPut Fi | e.

Your activation procedure controls the highlighting of dialog items that are defined by
your application and can receive keyboard input. Ordinarily, you need to supply an
activation procedure only if your application builds a list from which the user can select
entries. The Standard File Package supplies the activation procedure for the file display
list and for all TextEdit fields. You can also use the activation procedure to keep track of
which field is receiving keyboard input, if your application needs that information.

Your application is responsible for removing the highlighting when one of its fields
becomes inactive and for adding the highlighting when one of its fields becomes active.
The Standard File Package can handle the highlighting of all TextEdit fields, even those
defined by your application.

Standard File Package Reference 3-59

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

Summary of the Standard File Package

Pascal Summary

Constants

CONST
{Gestalt selector and reply}
gestal tStandardFil eAttr = 'stdf’
gest al t St andar dFi | e58 = 0

{standard di al og resource |Ds}
sf Put Di al ogl D = -6043;
sf Get Di al ogl D = -6042;

{itens that appear in both the Open
sfltemOpenButton =
sfltemCancel Button =
sfltenBal | oonHel p =
sfltenvol uneUser =
sfltenkj ect Button =
sf |t emDeskt opButton
sfltenFil eLi st User

sf |t emPopUpMenuUser
sfltenDi vi der Li nePi ct

{Save di al og box}
{Open di al og box}

and Save di al og boxes}

{Save or Open button}

{Cancel button}

{Bal | oon Hel p}

{vol ume icon and nane}

{Ej ect button}

{Deskt op button}

{display list}

{directory pop-up nenu}
{dividing line between buttons}

{items that appear in Save di al og boxes only}

sfltenFi |l eNameText BEdit = 10;
sfltemPronpt StaticText = 11
sf |t enNewFol der User = 12;

{filename field}
{filenanme pronpt text area}
{New Fol der button}

{pseudo-itens available prior to version 7.0}

sf HookFi r st Cal | = -1
sf HookChar Of f set = $1000;
sf HookNul | Event = 100;
sf HookRebui | dLi st = 101
sf HookFol der PopUp = 102;
sf HookOpenFol der = 103;

3-60 Summary of the Standard File Package

{initialize display}

{offset for character input}
{null event}

{redisplay list}

{di spl ay parent-directory nenu}
{di splay contents of selected }
{ folder or vol une}

CHAPTER 3

Standard File Package

{addi ti onal

sf HookLast Cal | = -2
sf HookOpenAl i as = 104,
sf HookGoToDeskt op = 105;
sf HookGoToAl i asTar get = 106;
sf HookGoToPar ent = 107;
sf HookGoToNext Dri ve = 108;
sf HookGoToPrevDri ve = 109;
sf HookChangeSel ect i on = 110;
sf HookSet Acti veO! f set = 200

{refCon field in the w ndow

pseudo-itens introduced in version 7.0}

{clean up after
{resol ve alias}
{di splay contents
{sel ect target of
{di splay contents
{di splay contents
{di splay contents
{sel ect target of

di spl ay}

of deskt op}

al i as}

of parent}

of next drive}

of previous drive}
reply record}

{switch active itent

{mai n di al og box}

record in the dialog record}

{New Fol der di al og box}
{nane conflict dialog box}
{stationery warning}

sf Mai nDi al ogRef Con = ‘'stdf';
sf NewFol der Di al ogRef Con = ' nfdr';
sf Repl aceDi al ogRef Con = ‘'rplc';
sf St at War nDi al ogRef Con = 'stat';
sf Error Di al ogRef Con = ‘'err ';
sf LockWar nDi al ogRef Con = 'l ock';

{resource IDs and item nunbers of

put DI gl D
put Save
put Cancel
put Ej ect
put Drive
put Name

getDl gl D
get Open

get Cancel
get Ej ect
getDrive
get Nnii st
get Scrol |

Summary of the Standard File Package

-3999;

{general error

report}

{sof tware | ock war ni ng}

{Save di al og box}
{Save button}
{Cancel button}
{Ej ect button}
{Drive button}
{filenanme field}

{Open di al og box}
{Open button}
{Cancel button}
{Ej ect button}
{Drive button}
{l'ist of names}
{scroll bar}

pre-7.0 di al og boxes}

3-61

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

Data Types

Standard File Reply Records

TYPE St andardFil eReply = {enhanced standard file reply record}
RECORD
sf Good: Bool ean; {TRUE i f user did not cancel}
sf Repl aci ng: Bool ean; {TRUE if replacing file with same nane}
sf Type: CSType; {file type}
sfFile: FSSpec; {selected file, folder, or vol une}
sfScri pt: Scri pt Code; {script of file, folder, or volunme nane}
sf Fl ags: I nt eger; {Finder flags of selected iten}
sf | sFol der: Bool ean; {selected itemis a fol der}
sf 1 sVol une: Bool ean; {selected itemis a vol une}
sf Reservedl: Longl nt; {reserved}
sf Reserved2: I nt eger; {reserved}
END;
SFRepl y = {original standard file reply record}
RECORD
good: Bool ean; {TRUE if user did not cancel}
copy: Bool ean; {reserved}
f Type: CSType; {file type}
vRef Num I nt eger; {working directory reference nunber}
ver si on: I nt eger; {reserved}
f Nane: Str63; {fil enane}
END;
Standard File Type List
SFTypelLi st = ARRAY[O0..3] OF OSType;

Callback Routine Pointer Types

Dl gHookPr ocPt r = Prochktr; {di al og hook function}
Dl gHook YDPr ocPt r = Prochktr; {di al og hook function w th data}
FileFilterProcPtr = Procktr; {file filter function}
FileFilterYDProcPtr = ProcPktr; {file filter function w th data}
Modal Fi | t er ProcPtr = Prochktr; {nodal -dialog filter}
Modal Fil ter YDProcPtr = ProcPtr; {nodal -dialog filter with data}
Acti vat eYDProcPtr = Prochktr; {activation procedure}

3-62 Summary of the Standard File Package

CHAPTER 3

Standard File Package

Standard File Package Routines

Saving Files
PROCEDURE St andar dPut Fi | e

PROCEDURE CustomPut Fil e

PROCEDURE SFPut Fi |l e

PROCEDURE SFPPut Fi | e

Opening Files
PROCEDURE St andardCet Fi | e

PROCEDURE Custontet Fil e

PROCEDURE SFGet Fi |l e

PROCEDURE SFPCet Fi | e

(pronpt: Str255; defaul t Name: Str255;
VAR reply: StandardFil eReply);

(prompt: Str255; defaul t Name: Str255;

VAR reply: StandardFil eReply; dlglD: Integer;

where: Point; dl gHook: Dl gHookYDProcPtr;
filterProc: Modal FilterYDProcPtr;
activeList: Ptr;
activateProc: ActivateYDProcPktr;
yourDataPtr: UNIV Ptr);

(where: Point; pronpt: Str255;
ori gNane: Str255; dl gHook: DI gHookProchPtr;
VAR reply: SFReply);

(where: Point; pronpt: Str255;
ori gNane: Str255; dl gHook: DI gHookProcPtr;
VAR reply: SFReply; dlglD |nteger;
filterProc: Modal FilterProcPkPtr);

(fileFilter: FileFilterProcPtr;
nunTypes: |Integer; typelList: SFTypelist;
VAR reply: StandardFil eReply);

(fileFilter: FileFilterYDProcPtr;

nunTypes: |Integer; typelList: SFTypelist;

VAR reply: StandardFil eReply; dlglD: |Integer
where: Point; dl gHook: DI gHookYDProcPtr;
filterProc: Modal FilterYDProcPktr;
activelList: Ptr;

acti vateProc: ActivateYDProcPtr;

yourDataPtr: UNIV Ptr);

(where: Point; pronpt: Str255;
fileFilter: FileFilterProcPtr;
nuniTypes: |Integer; typelList: SFTypelist;
dl gHook: DI gHookProcPtr; VAR reply: SFReply)

(where: Point; pronpt: Str255;
fileFilter: FileFilterProcPktr;
nunTypes: |Integer; typeList: SFTypelist;
dl gHook: DI gHookProcPtr; VAR reply: SFReply;
dl gl D. Integer;
filterProc: Modal FilterProcPkPtr);

Summary of the Standard File Package

3-63

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

Application-Defined Routines

FUNCTI ON MySt andardFi |l eFilter

(pb: CinfoPBPtr): Bool ean
FUNCTI ON MyCustontil eFilter (pb: CinfoPBPtr; nyDataPtr: Ptr): Bool ean
FUNCTI ON MyDl gHook (item Integer; theDi alog: DialogPtr
myDataPtr: Ptr): Integer;
FUNCTI ON MyModal Fi | ter (theDi al og: Dial ogPtr
VAR t heEvent: Event Record;
VAR itenHit: Integer): Bool ean;
FUNCTI ON MyModal Fi l ter YD (theDi al og: Dial ogPtr
VAR t heEvent: Event Record;
VAR itenmHit: Integer; nyDataPtr: Ptr): Bool ean;
PROCEDURE MyAct i vat ePr oc (theDi al og: DialogPtr; itemNo: Integer
activating: Boolean; nyDataPtr: Ptr);

C Summary

Constants

/*Cestalt selector and reply*/

#define gestaltStandardFileAttr 'stdf

#def i ne gestalt St andar dFi | e58 0

/*standard dial og resource |Ds*/

enum { sf Put Di al ogl D = (-6043)}; /*Save dial og box*/
enum {sf Get Di al ogl D = (-6042)}; /*QOpen dial og box*/

/*itens that appear in both the

enum {sfltenmOpenButton = 1};
enum {sfltemCancel Button = 2};
enum {sfltenBal | oonHel p = 3};
enum {sfltemvol umeUser = 4};
enum {sfltenkj ect Button = 5};
enum {sfltenmDeskt opButton = 6};
enum {sfltenFil eLi stUser = 7};
enum {sfltemPopUpMenuUser = 8};
enum {sfltenDi vi der Li nePi ct = 9};

=3

/*itens that appear in Save d

enum {sfltenFil eNameText Edit = 10};
enum {sfltenPronpt Stati cText = 11};
enum {sf |t enNewFol der User = 12};

3-64 Summary of the Standard File Package

Open and Save di al og boxes/*

/*Save or Qpen button*/

/*Cancel button*/

/*Bal | oon Hel p*/

/*vol ume icon and nane*/

/*Ej ect button*/

/ *Deskt op button*/

/*display list*/

/*directory pop-up nmenu*/
/*dividing |line between buttons*/

og boxes onl y*/

/*filenane field*/
/*filenanme pronpt text area*/
/*New Fol der button*/

CHAPTER 3

Standard File Package

/*pseudo-itens available prior to version 7.0%/

enum {sf HookFi r st Cal | =
enum { sf HookChar Of f set =
enum { sf HookNul | Event =
enum { sf HookRebui | dLi st
enum { sf HookFol der PopUp
enum { sf HookOpenFol der =

/*addi tional
enum { sf HookLast Cal | =
enum { sf HookOpenAl i as

enum { sf HookGoToDeskt op
enum {sf HookGoToAl i asTar get
enum { sf HookGoToPar ent =
enum { sf HookGoToNext Dri ve
enum { sf HookGoToPrevDri ve
enum { sf HookChangeSel ecti on
enum { sf HookSet Acti veOf f set

(-1}

100};
101};
102};
103};

(-2)};

= 104};

105} ;
106} ;
107};
108} ;
109};
110};
200} ;

/*initialize display*/
0x1000};/*of fset for character
[*nul |
/*redisplay list*/

/*di splay parent-directory menu*/
/*di splay contents of selected */
/* folder or vol ume*/

i nput */
event */

pseudo-itens introduced in version 7.0*/

/*clean up after display*/
/*resolve alias*/

/*di splay contents of desktop*/
/*sel ect target of alias*/

/*di spl ay contents of
/*di spl ay contents of
/*di spl ay contents of
/*sel ect target of
/*switch active itent/

par ent */

next drive*/
previous drive*/
reply record*/

/*refCon field in the window record in the dialog record*/

#def i ne sf Mai nDi al ogRef Con
#defi ne sf Newkol der Di al ogRef Con
#defi ne sf Repl aceDi al ogRef Con
#def i ne sf St at War nDi al ogRef Con
#define sfErrorDi al ogRef Con
#def i ne sfLockWar nDi al ogRef Con

/*resource IDs and item nunbers
enum {putDi gl D =
enum { put Save =
enum { put Cancel =
enum { put Ej ect
enum {putDri ve =
enum { put Nare =

enum {getDi gl D =
enum { get Open =
enum { get Cancel =
enum { get Ej ect =
enum {getDrive =
enum { get NmLi st
enum { get Scr ol | =

"stdf'
"'nfdr’
"rplc
stat'
err '
| ock'

/*mai n dial og box*/

/ *New Fol der di al og box*/
/*nane conflict dialog box*/
/*stationery warning*/
/*general error report*/
/*sof tware | ock warni ng*/

of pre-7.0 dial og boxes*/

-3999};
1};
2};

:5};

6};
7},

- 4000} ;
1};
3}
S}
6};

:7};

8};

Summary of the Standard File Package

/*Save di al og box*/
/*Save button*/
/*Cancel button*/
/*Ej ect button*/
/*Drive button*/
[*filenane field*/

/*Open di al og box*/
/*QOpen button*/
/*Cancel button*/
/*Ej ect button*/
/*Drive button*/
/*list of names*/
/*scroll bar*/

3-65

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

Data Types

Standard File Reply Records

struct StandardFil eReply { / *enhanced standard file reply record*/
Bool ean sf Good,; /*TRUE if user did not cancel */
Bool ean sfReplacing;/*TRUE if replacing file with same nane*/
OSType sf Type; [*file type*/
FSSpec sfFile; /*selected file, folder, or volume*/
Scri pt Code sf Script; /*script of file, folder, or volunme nane*/
short sf Fl ags; /*Finder flags of selected itent/
Bool ean sflsFolder; /*selected itemis a fol der*/
Bool ean sflsVolune; /*selected itemis a vol une*/
| ong sf Reservedl; / *reserved*/
short sf Reserved2; / *reserved*/
b

typedef struct StandardFil eReply StandardFil eReply;

struct SFReply { /*original standard file reply record*/
Bool ean good; /*TRUE if user did not cancel */
Bool ean copy; /*reserved*/
OSType f Type; [*file type*/
short vRef Num /*wor ki ng directory reference nunber*/
short ver si on; [*reserved*/
Str63 f Nane; [*fil enane*/

b

typedef struct SFReply SFReply;

Standard File Type List

typedef OSType SFTypeli st[4];

Callback Routine Pointer Types

/*di al og hook function*/

t ypedef pascal short (*D gHookProcPtr)
(short item DialogPtr thebDialog);

/*di al og hook function with data*/

t ypedef pascal short (*Dl gHookYDProcPtr)
(short item DialogPtr theD al og,
voi d *yourDataPtr);

3-66 Summary of the Standard File Package

CHAPTER 3

Standard File Package

[*file filter function*/

t ypedef pascal Boolean (*FileFilterProcPtr)

(ParnBl kPtr PB);

/*file filter function wth data*/

t ypedef pascal Bool ean (*Fil eFilterYDProcPtr)

(ParmBl kPtr PB, void *yourDataPtr);

/*modal -dialog filter*/
typedef pascal ProcPtr Modal FilterProcPtr;

(Dial ogPtr thebDial og, EventRecord *theEvent,
short *itenHit);

/*nodal -dialog filter with data*/
typedef pascal Bool ean (*Modal FilterYDProcPtr)

(Di al ogPtr theDi al og, Event Record *theEvent,
short *itenmHit, void *yourDataPtr);

/*activation procedure*/

t ypedef pascal void (*ActivateYDProcPtr)

(Di al ogPtr thebDi al og,
short itemNo, Bool ean activating,
void *yourDataPtr);

Standard File Package Routines

Saving Files

pascal

pascal

pascal

pascal

void StandardPutFile (const Str255 pronpt, const Str255 defaul t Nane,
StandardFi |l eReply *reply);

void CustonPutFile (const Str255 pronpt, const Str255 defaul t Nane,
StandardFi |l eReply *reply, short dl glD,
Poi nt where, D gHookYDProcPtr dl gHook,
Modal Fi |l ter YDProcPtr filterProc,
short *activeli st,
Acti vat eYDProcPtr activateProc,
voi d *yourDataPtr);
void SFPutFile (Poi nt where, const Str255 pronpt,
const Str255 origNanme, D gHookProcPtr dl gHook,
SFReply *reply);
void SFPPutFile (Poi nt where, const Str255 pronpt,
const Str255 origNanme, D gHookProcPtr dl gHook,
SFReply *reply, short dlglD,
Modal FilterProcPtr filterProc);

Summary of the Standard File Package 3-67

abexoed 3|14 prepuels .
w

CHAPTER 3

Standard File Package

Opening Files

pascal

pascal

pascal

pascal

void StandardGetFile (const Str255 pronpt,
FileFilterProcPtr fileFilter,
short nuniTypes, SFTypelLi st typelist,
StandardFi | eReply *reply);

void CustontetFile (FileFilterYDProcPtr fileFilter,
short nuniTypes, SFTypelLi st typelist,
StandardFi | eReply *reply, short dlglD,
Poi nt where, D gHookYDProcPtr dl gHook,
Modal Fi |l t er YDProcPtr filterProc,
short *activeli st,
Activat eYDProcPtr activateProc,
void *yourDataPtr);

void SFGetFile (Poi nt where, const Str255 pronpt,

FileFilterProcPtr fileFilter, short nunTypes,
SFTypelLi st typelList, D gHookProcPtr dl gHook,

SFReply *reply);
void SFPGetFil e (Poi nt where, const Str255 pronpt,
FileFilterProcPtr fileFilter,
short nuniTypes, SFTypeList typelList,
Dl gHookProcPtr dl gHook, SFReply *reply,

short dlglD, Mdal FilterProcPtr filterProc);

Application-Defined Routines

pascal

pascal

pascal

pascal

pascal

pascal

3-68

Bool ean MySt andar dFil eFilter
(Cl nfoPBPtr pb);

Bool ean MyCustontileFilter
(ClnfoPBPtr pb, Ptr nyDataPtr);
short MyDI gHook (short item DialogPtr theD al og,
Ptr nyDataPtr);
Bool ean MyModal Filter (Di al ogPtr thebDi al og,
Event Record *theEvent, short *itenHit);

Bool ean MyModal Fi |l t er YD
(Di al ogPtr thebDi al og,
Event Record *t heEvent, short *itenHit,
Ptr nyDataPtr);

void MyActivateProc (DialogPtr thebi alog, short itenNo,
Bool ean activating, Ptr nyDataPtr);

Summary of the Standard File Package

CHAPTER 3

Standard File Package

Assembly-Language Summary

Data Structures

New Standard File Reply Record

0 sf Good byte command-valid flag
1 sf Repl aci ng byte replace existing file flag
2 sf Type long file type
6 sfFile 70 bytes selected item
76 sf Scri pt word display script
78 sf Fl ags word Finder flags from catalog
80 sf | sFol der byte folder flag
81 sfl sVol une byte volume flag
82 sf Reservedl long reserved
86 sf Reserved2 word reserved

Old Standard File Reply Record

0 good byte command-valid flag
1 copy byte reserved
2 f Type long file type
6 vRef Num word working directory reference number
8 versi on word reserved
10 fNane 64 bytes name of file (length byte followed by up to

63 characters)

Trap Macros

Trap Macro Requiring Routine Selector

_Pack3

Selector Routine

$0001 SFPutFil e

$0002 SFGetFil e

$0003 SFPPut Fi | e

$0004 SFPCGet Fi l e

$0005 StandardPut Fil e
$0006 StandardGet Fil e
$0007 CustonPutFil e
$0008 CustonmCet Fil e

Global Variables

CurDirStore long The directory ID of the current directory.
SFSaveDi sk word The negative of the volume reference number of the current volume.

Summary of the Standard File Package 3-69

abexoed 3|14 prepuels .
w

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to File Management TOC
	 Introduction to File Management
	 File Manager TOC
	 File Manager
	 Standard File Package TOC
	Standard File Package
	About the Standard File Package
	Standard User Interfaces
	Opening Files
	Saving Files
	Keyboard Equivalents

	Customized User Interfaces
	Saving Files
	Opening Files
	Selecting Volumes and Directories
	User Interface Guidelines

	Using the Standard File Package
	Presenting the Standard User Interface
	Customizing the User Interface
	Customizing Dialog Boxes
	Writing a File Filter Function
	Writing a Dialog Hook Function
	Writing a Modal-Dialog Filter Function
	Writing an Activation Procedure

	Setting the Current Directory
	Selecting a Directory
	Selecting a Volume
	Using the Original Procedures

	Standard File Package Reference
	Data Structures
	Enhanced Standard File Reply Record
	Original Standard File Reply Record

	Standard File Package Routines
	Saving Files
	Opening Files

	Application-Defined Routines
	File Filter Functions
	Dialog Hook Functions
	Modal-Dialog Filter Functions
	Activation Procedures

	Summary of the Standard File Package
	Pascal Summary
	Constants
	Data Types
	Standard File Package Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Standard File Package Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros
	Global Variables

	 Alias Manager TOC
	 Alias Manager
	 Disk Initialization Manager TOC
	 Disk Initialization Manager
	 Glossary
	 Index
	 Colophon

