

C H A P T E R 3

3

S
tandard F

ile P
ackage

Standard File Package 3

This chapter describes how your application can use the Standard File Package to
manage the user interface for naming and identifying files. The Standard File Package
displays the dialog boxes that let the user specify the names and locations of files to be
saved or opened, and it reports the user’s choices to your application.

The Standard File Package supports both standard and customized dialog boxes. The
standard dialog boxes are sufficient for applications that do not require additional
controls or other elements in the user interface. The chapter “Introduction to File
Management” earlier in this book provides a detailed description of how to display
the standard dialog boxes by calling two of the enhanced Standard File Package
routines introduced in system software version 7.0. You need to read this chapter if
your application needs to use features not described in that earlier chapter (such as
customized dialog boxes or a special file filter function). You also need to read this
chapter if you want your application to run in an environment where the new routines
are not available and your development system does not provide glue code that allows
you to call the enhanced routines in earlier system software versions.

To use this chapter, you should be familiar with the Dialog Manager, the Control
Manager, and the Finder. You need to know about the Dialog Manager if you want to
provide a modal-dialog filter function that handles events received from the Event
Manager before they are passed to the ModalDialog procedure (which the Standard
File Package uses to manage both standard and customized dialog boxes). You need to
know about the Control Manager if you want to customize the user interface by adding
controls (such as radio buttons or pop-up menus). You need to know about the Finder
if your application supports stationery documents. See the appropriate chapters in
Inside Macintosh: Macintosh Toolbox Essentials for specific information about these system
software components.

This chapter provides an introduction to the Standard File Package and then discusses

■ how you can display the standard file selection dialog boxes

■ how the Standard File Package interprets user actions in those dialog boxes

■ how to manage customized dialog boxes

■ how to set the directory whose contents are listed in a dialog box

■ how to allow the user to select a volume or directory

■ how to use the original Standard File Package routines

About the Standard File Package 3

Macintosh applications typically have a File menu from which the user can save and
open documents, via the Save, Save As, and Open commands. When the user chooses
Open to open an existing document, your application needs to determine which
document to open. Similarly, when the user chooses Save As, or Save when the
document is untitled, your application needs to ask the user for the name and location
of the file in which the document is to be saved.
About the Standard File Package 3-3

C H A P T E R 3

Standard File Package

The Standard File Package provides a number of routines that handle the user interface
between the user and your application when the user saves or opens a document. It
displays dialog boxes through which the user specifies the name and location of the
document to be saved or opened. It also allows your application to customize the dialog
boxes and, through callback routines, to handle user actions during the dialogs. The
Standard File Package procedures return information about the user’s choices to your
application through a reply record.

The Standard File Package is available in all versions of system software. However,
significant improvements were made to the package in system software version 7.0. The
Standard File Package in version 7.0 introduces

■ a pair of simplified procedures (StandardGetFile and StandardPutFile) that
you call to display and handle the standard Open and Save dialog boxes

■ a pair of customizable procedures (CustomGetFile and CustomPutFile) that you
call when you need more control over the interaction

■ a new reply record (StandardFileReply) that identifies files and folders with a file
system specification record and that accommodates the new Finder features
introduced in system software version 7.0

■ a new layout for the standard dialog boxes

This section describes in detail the standard and customized user interfaces provided by
the enhanced Standard File Package in system software version 7.0 and later. If your
application is to run in earlier system software versions as well, you should read the
section “Using the Original Procedures” on page 3-40.

IMPORTANT

If you use the enhanced routines introduced in system software
version 7.0, you must also support the Open Documents Apple event. ▲

Standard User Interfaces 3
If your application has no special interface requirements, you can use the
StandardGetFile and StandardPutFile procedures to display the standard dialog
boxes for opening and saving documents.

Opening Files 3

You use the StandardGetFile procedure when you want to let the user select a file to
be opened. Figure 3-1 illustrates a sample dialog box displayed by StandardGetFile.

The directory whose contents are listed in the display list in the dialog box displayed by
StandardGetFile is known as the current directory. In Figure 3-1, the current
directory is named “Tropical.” The user can change the current directory in several ways.
To ascend the directory hierarchy from the current directory, the user can click the
directory pop-up menu and select a new directory from among those in the menu. To
ascend one level of the directory hierarchy, the user can click the volume icon. To ascend
immediately to the top of the directory hierarchy, the user can click the Desktop button.
3-4 About the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage

Figure 3-1 The default Open dialog box

To descend the directory hierarchy, the user can double-click any of the folder names in
the list (or select a folder by clicking its name once and then clicking the Open button).
Whenever the current directory changes, the list of folders and files is updated to reflect
the contents of the new current directory.

The volume on which the current directory is located is the current volume (or current
disk), whose name is displayed to the right of the directory pop-up menu. If the current
volume is a removable volume, the Eject button is active. The user can click Eject to eject
the current volume and insert another, which then becomes the current volume. If the
user inserts an uninitialized or otherwise unreadable disk, the Standard File Package
calls the Disk Initialization Manager to provide the standard user interface for
initializing and naming a disk. See the chapter “Disk Initialization Manager” in this
book for details.

Note that the list of files and folders always contains all folders in the current
directory, but it might not contain all files in the current directory. When you call
StandardGetFile, you can supply a list of the file types that your application
can open. The StandardGetFile procedure then displays only files of the specified
types. You can also supply your own file filter function to help determine which files
are displayed. (See “Writing a File Filter Function” on page 3-20 for details.)

When the user is opening a document, StandardGetFile interprets some keystrokes
as selectors in the displayed list. If the user presses A, for example, StandardGetFile
selects the first item in the list that starts with the letter a (or, if no items in the list start
with the letter a, the item that starts with the letter closest to a). The Standard File
Package sets a timer on keystrokes: keystrokes in rapid succession form a string;
keystrokes spaced in time are processed separately. See “Keyboard Equivalents” on
page 3-7 for a complete list of keyboard equivalents recognized by StandardGetFile.

Saving Files 3

You use the StandardPutFile procedure when you want to let the user specify a
name and location for a file to be saved. Figure 3-2 illustrates a sample dialog box
displayed by StandardPutFile.
About the Standard File Package 3-5

C H A P T E R 3

Standard File Package

Figure 3-2 The default Save dialog box

The dialog box displayed by StandardPutFile is similar to that displayed by
StandardGetFile, but includes three additional items. The Save dialog box
includes a filename field in which the user can type the name under which to save
the file. This filename field is a TextEdit field that permits all the standard editing
operations (cut, copy, paste, and so forth). Above the filename field is a line of text
specified by your application.

When the user is saving a document, StandardPutFile can direct keystrokes to either
of two targets: the filename field or the displayed list. When the dialog box first appears,
keystrokes are directed to the filename field. If the user presses the Tab key or clicks to
select an item in the displayed list, subsequent keystrokes are interpreted as selectors in
the displayed list. Each time the user presses the Tab key, keyboard input shifts between
the two targets.

The third additional item in the Save dialog is the New Folder button. When the user
clicks the New Folder button, the Standard File Package presents a subsidiary dialog
box like the one shown in Figure 3-3.

Figure 3-3 The New Folder dialog box
3-6 About the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage

If the user asks to save a file under a name that already exists at the specified location,
the Standard File Package displays a subsidiary dialog box to verify that the new file
should replace the existing file, as illustrated in Figure 3-4.

Figure 3-4 The name conflict dialog box

The StandardGetFile and StandardPutFile procedures always display the new
dialog boxes. The procedures available before version 7.0 (SFGetFile, SFPutFile,
SFPGetFile, and SFPPutFile) also display the new dialog boxes when running in
version 7.0, unless your application has customized the dialog box. For more details on
how the version 7.0 Standard File Package handles earlier procedures, see “Using the
Original Procedures” on page 3-40.

Keyboard Equivalents 3

The Standard File Package recognizes a long list of keyboard equivalents during dialogs.

Keystrokes Action

Up Arrow Scroll up (backward) through displayed list

Down Arrow Scroll down (forward) through displayed list

Command–Up Arrow Display contents of parent directory

Command–Down Arrow Display contents of selected directory or volume

Command–Left Arrow Display contents of previous volume

Command–Right Arrow Display contents of next volume

Command–Shift–Up Arrow Display contents of desktop

Command-Shift-1 Eject disk in drive 1

Command-Shift-2 Eject disk in drive 2

Tab Move to next keyboard target

Return or Enter Invoke the default option for the dialog box
(Open or Save)

Escape or Command-. Cancel

Command-O Open the selected item

Command-D Display contents of desktop

Command-N Create a new folder

Option-Command-O or
Option-[click Open]

Select the target of the selected alias item instead
of opening it
About the Standard File Package 3-7

C H A P T E R 3

Standard File Package

When the user uses a keyboard equivalent to select a button in the dialog box, the
button blinks.

Customized User Interfaces 3
The standard user interfaces provided by the StandardGetFile and StandardPutFile
procedures might not be adequate for the needs of certain applications. To handle such
cases, the Standard File Package provides several routines that you can use to present a
customized user interface when opening or saving files. This section gives some simple
examples of how you might want to customize the user interfaces and suggests some
guidelines you should follow when doing so.

IMPORTANT

You should alter the standard user interfaces only if necessary. Apple
Computer, Inc., does not guarantee future compatibility for your
application if you use a customized dialog box. ▲

Saving Files 3

Perhaps the most common reason to customize one of the Standard File Package dialog
boxes is to allow the user to save a document in one of several file formats supported by
the application. For example, a word-processing application might let the user save a
document in the application’s own format, in an interchange format, as a file of type
'TEXT', and so on.

It is usually best to allow the user to select a file format from within the dialog box
displayed in response to a Save or Save As menu command. To do this, you need to
add items to the standard dialog box and process user actions in those new items.

If your application supports only a few file formats, you could simply add the required
number of radio buttons to the standard dialog box, as illustrated in Figure 3-5. The
application presenting this dialog box supports only two file formats, its own proprietary
format (SurfDraw) and the format used for startup screens.

Figure 3-5 The Save dialog box customized with radio buttons
3-8 About the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage

If your application supports more than a couple of alternate file formats, you could add a
pop-up menu, as shown in Figure 3-6.

Figure 3-6 The Save dialog box customized with a pop-up menu

Opening Files 3

Your application might also allow the user to open a number of different types of files. In
this case, there is less need to customize the Open dialog box than the Save dialog box
because you can simply list all the kinds of files your application supports. To avoid clutter
in the list of files and folders, however, you might wish to filter out all but one of those
types. In this way, the user can dynamically select which type of file to view in the list.

Once again, you might accomplish this by adding radio buttons or a pop-up menu to
the Open dialog box, depending on the number of different file types your application
supports. Figure 3-7 illustrates a customized Open dialog box that contains a pop-up
menu. Only files of the indicated type (and, of course, folders) appear in the list of items
available to open.

Figure 3-7 The Open dialog box customized with a pop-up menu
About the Standard File Package 3-9

C H A P T E R 3

Standard File Package

For details on some techniques you can use to add items to the standard user interface
and process user actions with those additional items, see “Customizing the User
Interface” on page 3-16. Note in particular that Listing 3-3, Listing 3-8, and Listing 3-9
together provide a fairly complete implementation of the pop-up menu illustrated in
Figure 3-7.

Note

Remember that the user might also open one of your application’s
documents from the Finder (by double-clicking its icon, for example). As
a result, you should in general avoid customizing the Open dialog box
for files. ◆

Selecting Volumes and Directories 3

Sometimes you need to allow the user to select a directory or a volume, not a file. For
example, the user might want to select a directory as a first step in searching all the files
in the directory for some important information. Similarly, the user might need to select
a volume before backing up all the files on that volume.

The standard Open dialog box, however, is designed for selecting files, not volumes or
directories. When the user selects a volume or directory from the items in the displayed
list and clicks the Open button, the volume or directory is opened and its contents are
displayed in the list. The standard Open dialog boxes provide no obvious mechanism for
choosing a selected directory instead of opening it.

To allow the user to select a directory—including the volume’s root directory, the volume
itself—you can add an additional button to the standard Open dialog box. By clicking
this button, the user can select a highlighted directory, not open it. This button gives the
user an obvious way to select a directory while preserving the well-known mechanism
for opening directories to search for the desired directory. Figure 3-8 illustrates the
standard Open dialog box modified to include a Select button and a prompt informing
the user of the type of action required.

Figure 3-8 The Open dialog box customized to allow selection of a directory
3-10 About the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage

The Select button should display the name of the directory that is selected if the user
clicks the button. This, together with the prompt displayed at the top of the dialog box,
helps the user differentiate this directory selection dialog box from the standard file
opening dialog box. All the other items in the dialog box should maintain their standard
appearance and behavior. Any existing keyboard equivalents (in particular, the use of
Return and Enter to select the default button) should be preserved. Command-S is
recommended as a keyboard equivalent for the new Select button, paralleling the use of
Command-D to select the Desktop button and Command-O to select the Open button.

To help maintain consistency among applications using this scheme for selecting
directories, your application should open the folder displayed in the pop-up menu if
there is no selected item and the user clicks the Select button. In addition, you should
disable the Open button if no directory is currently selected. Figure 3-9 illustrates the
recommended appearance of the directory selection dialog box in this case.

Figure 3-9 The Open dialog box when no directory is selected

If the name of the directory is too long to fit in the Select button, you should abbreviate
the name using an ellipsis character, as shown in Figure 3-10.

Figure 3-10 The Open dialog box with a long directory name abbreviated
About the Standard File Package 3-11

C H A P T E R 3

Standard File Package
See “Selecting a Directory” beginning on page 3-34 for details on how you can create and
manage a directory selection dialog box.

The directory selection dialog boxes illustrated here allow the user to specify the root
directory in a volume, which effectively selects the volume itself. However, you might
want to limit the user’s selections to the available volumes. To do that, you can create a
volume selection dialog box, shown in Figure 3-11.

Figure 3-11 A volume selection dialog box

Notice that the volume selection dialog box uses a prompt specific to selecting a volume
and that the Open button is now a Select button. There is no need for a separate Select
button, because the user should not be allowed to open any of the listed volumes. (For
this same reason, the pop-up menu should not pop up if clicked.) See “Selecting a
Volume” on page 3-38 for instructions on implementing a volume selection dialog box.

User Interface Guidelines 3

In general, you should customize the user interface only if necessary. If you do modify
the standard dialog boxes presented by the Standard File Package, you should keep
these user interface guidelines in mind:

■ Customize a dialog box only by adding items to the standard dialog boxes. Avoid
removing existing items from the standard boxes or altering the operation of existing
items. In particular, you should avoid modifying the keyboard equivalents recognized
by the Standard File Package.

■ Add only those items that are necessary for your application to complete the
requested action successfully. Avoid adding items that provide unnecessary
information or items that provide no information at all (such as logos, icons, or
other “window-dressing”).

■ Whenever possible, use controls such as radio buttons or pop-up menus whose effects
are visible within the dialog box itself. Avoid controls whose use calls subsidiary
modal dialog boxes that the user must dismiss before continuing.

■ Use controls or other items that are already familiar to the user. Avoid using
customized controls that are not also used elsewhere in your application.
3-12 About the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Your overriding concern should be to make the customized file identification dialog
boxes in your application as similar to the standard dialog boxes as possible while
providing the additional capabilities you need.

Using the Standard File Package 3
You use the Standard File Package to handle the user interface when the user must
specify a file to be saved or opened. You typically call the Standard File Package after
the user chooses Save, Save As, or Open from the File menu.

When saving a document, you call one of the PutFile procedures; when opening a
document, you call one of the GetFile procedures. The Standard File Package in
version 7.0 introduces two pairs of enhanced procedures:

■ StandardPutFile and StandardGetFile, for presenting the standard interface

■ CustomPutFile and CustomGetFile, for presenting a customized interface

Before calling the enhanced Standard File Package procedures, verify that they are
available by calling the Gestalt function with the gestaltStandardFileAttr
selector. If Gestalt sets the gestaltStandardFile58 bit in the reply, the four
enhanced procedures are available.

If the enhanced procedures are not available, you need to use the original Standard File
Package procedures that are available in all system software versions:

■ SFPutFile and SFGetFile, for presenting the standard interface

■ SFPPutFile and SFPGetFile, for presenting a customized interface

This section focuses on the enhanced procedures introduced in system software
version 7.0. If you need to use the original procedures, see “Using the Original
Procedures” on page 3-40. You can adapt most of the techniques shown in this section
for use with the original procedures. In general, however, the original procedures are
slightly harder to use and somewhat less powerful than their enhanced counterparts.

All the enhanced procedures return the results of the dialog boxes in a new reply record,
StandardFileReply.

TYPE StandardFileReply =
RECORD

sfGood: Boolean; {TRUE if user did not cancel}
sfReplacing: Boolean; {TRUE if replacing file with same name}
sfType: OSType; {file type}
sfFile: FSSpec; {selected file, folder, or volume}
sfScript: ScriptCode; {script of file, folder, or volume name}
sfFlags: Integer; {Finder flags of selected item}
sfIsFolder: Boolean; {selected item is a folder}
sfIsVolume: Boolean; {selected item is a volume}
sfReserved1: LongInt; {reserved}
sfReserved2: Integer; {reserved}

END;
Using the Standard File Package 3-13

C H A P T E R 3

Standard File Package
The reply record identifies selected files with a file system specification (FSSpec) record.
You can pass the FSSpec record directly to the File Manager functions that recognize
FSSpec records, such as FSpOpenDF or FSpCreate. The reply record also contains
additional fields that support the Finder features introduced in system software
version 7.0.

The sfGood field reports whether the reply record is valid—that is, whether your
application can use the information in the other fields. The field is set to TRUE after the
user clicks Save or Open, and to FALSE after the user clicks Cancel.

Your application needs to look primarily at the sfFile and sfReplacing fields when
the sfGood field contains TRUE. The sfFile field contains a file system specification
record that describes the selected file or folder. If the selected file is a stationery pad, the
reply record describes the file itself, not a copy of the file.

The sfReplacing field reports whether a file to be saved replaces an existing file
of the same name. This field is valid only after a call to the StandardPutFile or
CustomPutFile procedure. Your application can rely on the value of this field instead
of checking for and handling name conflicts itself.

Note

See “Enhanced Standard File Reply Record” on page 3-42 for a complete
description of the fields of the StandardFileReply record. ◆

The Standard File Package fills in the reply record and returns when the user completes
one of its dialog boxes—either by selecting a file and clicking Save or Open, or by
clicking Cancel. Your application checks the values in the reply record to see what action
to take, if any. If the selected item is an alias for another item, the Standard File Package
resolves the alias and places a file system specification record for the target in the
sfFile field when the user completes the dialog box. (See the chapter “Finder
Interface” of Inside Macintosh: Macintosh Toolbox Essentials for a description of aliases.)

Presenting the Standard User Interface 3
You can use the standard dialog boxes provided by the Standard File Package to prompt
the user for the name of a file to open or a filename and location to use when saving a
document. Use StandardGetFile to present the standard interface when opening a
file and StandardPutFile to present the standard interface when saving a file.

Listing 3-1 illustrates how your application can use StandardGetFile to elicit a file
specification after the user chooses Open from the File menu.

Listing 3-1 Handling the Open menu command

FUNCTION DoOpenCmd: OSErr;

VAR

myReply: StandardFileReply; {Standard File reply record}

myTypes: SFTypeList; {types of files to display}

myErr: OSErr;
3-14 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
BEGIN

myTypes[0] := 'TEXT'; {display text files only}

StandardGetFile(NIL, 1, myTypes, myReply);

IF myReply.sfGood THEN

myErr := DoOpenFile(myReply.sfFile)

ELSE

myErr := UsrCanceledErr;

DoOpenCmd := myErr;

END;

If the user dismisses the dialog box by clicking the Open button, the reply record field
myReply.sfGood is set to TRUE; in that case, the function defined in Listing 3-1 calls
the application-defined function DoOpenFile, passing it the file system specification
record contained in the reply record. For a sample definition of the DoOpenFile
function, see the chapter “Introduction to File Management” in this book.

The third parameter to StandardGetFile is a list of file types that are to appear in the
list of files and folders; the second parameter is the number of items in that list of file
types. The list of file types is of type SFTypeList.

TYPE SFTypeList = ARRAY[0..3] OF OSType;

If you need to display more than four types of files, you can define a new data type that
is large enough to hold all the types you need. For example, you can define the data type
MyTypeList to hold ten file types:

TYPE MyTypeList = ARRAY[0..9] OF OSType;

MyTListPtr = ^MyTypeList;

Listing 3-2 shows how to call StandardGetFile using an expanded type list.

Listing 3-2 Specifying more than four file types

FUNCTION DoOpenCmd: OSErr;

VAR

myReply: StandardFileReply; {Standard File reply record}

myTypes: MyTypeList; {types of files to display}

myErr: OSErr;

BEGIN

myTypes[0] := 'TEXT'; {first file type to display}

{Put other assignments here.}

myTypes[9] := 'RTFT'; {tenth file type to display}

StandardGetFile(NIL, 1, MyTListPtr(myTypes)^, myReply);

IF myReply.sfGood THEN

myErr := DoOpenFile(myReply.sfFile)
Using the Standard File Package 3-15

C H A P T E R 3

Standard File Package
ELSE

myErr := UsrCanceledErr;

DoOpenCmd := myErr;

END;

Note

To display all file types in the dialog box, pass –1 as the second
parameter. Invisible files and folders are not shown in the dialog box
unless you pass –1 in that parameter. If you pass –1 as the second
parameter when calling CustomGetFile, the dialog box also lists
folders; this is not true when you call StandardGetFile. ◆

The first parameter passed to StandardGetFile is the address of a file filter function,
a function that helps determine which files appear in the list of files to open. (In
Listing 3-1, this address is NIL, indicating that all files of the specified type are to be
listed.) See “Writing a File Filter Function” on page 3-20 for details on defining a filter
function for use with StandardGetFile.

Customizing the User Interface 3
If your application requires it, you can customize the user interface for identifying files.
To customize a dialog box, you should

■ design your dialog box and create the resources that describe it

■ write callback routines, if necessary, to process user actions in the dialog box

■ call the Standard File Package using the CustomPutFile and CustomGetFile
procedures, passing the resource IDs of the customized dialog boxes and pointers to
the callback routines

Depending on the level of customizing you require in your dialog box, you may need to
write as many as four different callback routines:

■ a file filter function for determining which files the user can open

■ a dialog hook function for handling user actions in the dialog boxes

■ a modal-dialog filter function for handling user events received from the
Event Manager

■ an activation procedure for highlighting the display when keyboard input is directed
at a customized field defined by your application

To provide the interface illustrated in Figure 3-7, for example, you could replace the
definition of DoOpenCmd given earlier in Listing 3-1 by the definition given in Listing 3-3.

In addition to the information passed to StandardGetFile, CustomGetFile requires
the resource ID of the customized dialog box, the location of the dialog box on the
screen, and pointers to any callback routines and private data you are using.
3-16 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Listing 3-3 Presenting a customized Open dialog box

FUNCTION DoOpenCmd: OSErr;

VAR

myReply: StandardFileReply; {Standard File reply record}

myTypes: SFTypeList; {types of files to display}

myPoint: Point; {upper-left corner of box}

myErr: OSErr;

CONST

kCustomGetDialog = 4000; {resource ID of custom dialog}

BEGIN

myErr := noErr;

SetPt(myPoint, -1, -1); {center the dialog}

myTypes[0] := 'SRFD'; {SurfDraw files}

myTypes[1] := 'STUP'; {startup screens}

myTypes[2] := 'PICT'; {picture files}

myTypes[3] := 'RTFT'; {rich text format}

CustomGetFile(@MyCustomFileFilter, 4, myTypes, myReply,

kCustomGetDialog, myPoint, @MyDlgHook,

NIL, NIL, NIL, NIL);

IF myReply.sfGood THEN

myErr := DoOpenFile(myReply.sfFile);

DoOpenCmd := myErr;

END;

In Listing 3-3, CustomGetFile is passed two callback routines, a file filter function
(MyCustomFileFilter) and a dialog hook function (MyDlgHook). See Listing 3-8
(page 3-21) and Listing 3-9 (page 3-27) for sample definitions of these functions.

You can also supply data of your own to the callback routines through a new parameter,
yourDataPtr, which you pass to CustomGetFile and CustomPutFile.

Customizing Dialog Boxes 3

To describe a dialog box, you supply a 'DLOG' resource that defines the box itself and a
'DITL' resource that defines the items in the dialog box.

Listing 3-4 shows the resource definition of the default Open dialog box, in Rez input
format. (Rez is the resource compiler provided with Apple’s Macintosh Programmer’s
Workshop [MPW]. For a description of Rez format, see the manual that accompanies the
MPW software, MPW: Macintosh Programmer’s Development Environment.)
Using the Standard File Package 3-17

C H A P T E R 3

Standard File Package
Listing 3-4 The definition of the default Open dialog box

resource 'DLOG' (-6042, purgeable)

{

{0, 0, 166, 344}, dBoxProc, invisible, noGoAway, 0,

 –6042, "", noAutoCenter

};

Listing 3-5 shows the resource definition of the default Save dialog box, in Rez
input format.

Listing 3-5 The definition of the default Save dialog box

resource 'DLOG' (-6043, purgeable)

{

{0, 0, 188, 344}, dBoxProc, invisible, noGoAway, 0,

 –6043, "", noAutoCenter

};

Note

You can also use the stand-alone resource editor ResEdit, available from
Apple Computer, Inc., or other resource-editing utilities available from
third-party developers to create customized dialog box and dialog item
list resources. ◆

You must provide an item list (in a 'DITL' resource with the ID specified in the
'DLOG' resource) for each dialog box you define. Add new items to the end of the
default lists. CustomGetFile expects the first 9 items in a customized dialog box to
have the same functions as the corresponding items in the StandardGetFile dialog
box; CustomPutFile expects the first 12 items to have the same functions as the
corresponding items in the StandardPutFile dialog box. If you want to eliminate
one of the standard items from the display, leave it in the item list but place its
coordinates outside the bounds of the dialog box rectangle.

Listing 3-6 shows the dialog item list for the default Open dialog box, in Rez input
format. See “Writing a Dialog Hook Function” beginning on page 3-21 for a list of the
dialog box elements these items represent.

Listing 3-6 The item list for the default Open dialog box

resource 'DITL'(-6042)

{ {

{135, 252, 155, 332}, Button { enabled, "Open" },

{104, 252, 124, 332}, Button { enabled, "Cancel" },

{0, 0, 0, 0}, HelpItem { disabled, HMScanhdlg {-6042}},

{8, 235, 24, 337}, UserItem { enabled },
3-18 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
{32, 252, 52, 332}, Button { enabled, "Eject" },

{60, 252, 80, 332}, Button { enabled, "Desktop" },

{29, 12, 159, 230}, UserItem { enabled },

{6, 12, 25, 230}, UserItem { enabled },

{91, 251, 92, 333}, Picture { disabled, 11 },

} };

Listing 3-7 shows the dialog item list for the default Save dialog box, in Rez input format.

Listing 3-7 The item list for the default Save dialog box

resource 'DITL'(-6043)

{ {

{161, 252, 181, 332}, Button { enabled, "Save" },

{130, 252, 150, 332}, Button { enabled, "Cancel" },

{0, 0, 0, 0}, HelpItem { disabled, HMScanhdlg {-6043}},

{8, 235, 24, 337}, UserItem { enabled },

{32, 252, 52, 332}, Button { enabled, "Eject" },

{60, 252, 80, 332}, Button { enabled, "Desktop" },

{29, 12, 127, 230}, UserItem { enabled },

{6, 12, 25, 230}, UserItem { enabled },

{119, 250, 120, 334}, Picture { disabled, 11 },

{157, 15, 173, 227}, EditText { enabled, "" },

{136, 15, 152, 227}, StaticText { disabled, "Save as:" },

{88, 252, 108, 332}, UserItem { disabled },

} };

The third item in each list (HelpItem) supplies Apple’s Balloon Help for items in the
dialog box. This third item specifies the resource ID of the 'hdlg' resource that contains
the help strings for the standard dialog items. If you want to modify the help text of an
existing dialog item, you should copy the original 'hdlg' resource from the System
file into your application’s resource fork and modify the text in the copied resource as
desired; then you must change the resource ID specified in HelpItem to the resource ID
of the copied and modified resource. To provide Balloon Help for your own items,
supply a second 'hdlg' resource and reference it with another help item at the end
of the list. The existing items retain their default text (unless you change that text,
as described).

The default dialog item lists used by the original Standard File Package routines do not
contain help items, but the Standard File Package does provide Balloon Help when you
call those routines in system software version 7.0 and later. If you call one of the original
routines and the specified dialog item list does not contain any help items, the Standard
File Package uses its default help text for the standard dialog items. If, however, the
dialog item list does contain a help item, the Standard File Package assumes that your
application provides the text for all help items, including the standard dialog items.
Using the Standard File Package 3-19

C H A P T E R 3

Standard File Package
Note

The default Standard File Package dialog boxes support color. The
System file contains 'dctb' resources with the same resource IDs as
the default dialog boxes, so that the Dialog Manager uses color graphics
ports for the default dialog boxes. (See the chapter “Dialog Manager”
of Inside Macintosh: Macintosh Toolbox Essentials for a description of
the 'dctb' resource.) If you create your own dialog boxes, include
'dctb' resources. ◆

Writing a File Filter Function 3

A file filter function determines which files appear in the displayed list when the user
is opening a file. Both StandardGetFile and CustomGetFile recognize file
filter functions.

When the Standard File Package is displaying the contents of a volume or folder, it
checks the file type of each file and filters out files whose types do not match your
application’s specifications. (Your application can specify which file types are to be
displayed through the typeList parameter to either StandardGetFile or
CustomGetFile, as described in “Presenting the Standard User Interface” beginning on
page 3-14.) If your application also supplies a file filter function, the Standard File
Package calls that function each time it identifies a file of an acceptable type.

The file filter function receives a pointer to the file’s catalog information record
(described in the chapter “File Manager” in this book). The function evaluates the
catalog entry and returns a Boolean value that determines whether the file is filtered
(that is, a value of TRUE suppresses display of the filename, and a value of FALSE
allows the display). If you do not supply a file filter function, the Standard File Package
displays all files of the specified types.

A file filter function to be called by StandardGetFile must use this syntax:

FUNCTION MyStandardFileFilter (pb: CInfoPBPtr): Boolean;

The single parameter passed to your standard file filter function is the address of a
catalog information parameter block; see the chapter “File Manager” in this book for a
description of the fields of that parameter block.

When CustomGetFile calls your file filter function, it can also receive a pointer to any
data that you passed in through the call to CustomGetFile. A file filter function to be
called by CustomGetFile must use this syntax:

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr):

 Boolean;

Listing 3-8 shows a sample file filter function to be called by CustomGetFile. You
might define a file filter function like this to support the custom dialog box illustrated in
Figure 3-7, which lists files of the type shown in the pop-up box.
3-20 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Listing 3-8 A sample file filter function

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr): Boolean;

BEGIN

MyCustomFileFilter := TRUE; {default: don't show the file}

IF pb^.ioFlFndrInfo.fdType = gTypesArray[gCurrentType] THEN

MyCustomFileFilter := FALSE; {show the file}

END;

In Listing 3-8, the application global variable gCurrentType contains the index in
the array gTypesArray of the currently selected file type. If the type of a file passed in
for evaluation matches the current file type, the filter returns FALSE, indicating that
StandardGetFile should put it in the list. See Listing 3-9 (page 3-27) for an example
of how you can use a dialog hook function to change the value of gCurrentType
according to user selections in the pop-up menu control.

Writing a Dialog Hook Function 3

A dialog hook function handles item selections in a dialog box. It receives a pointer to
the dialog record and an item number from the ModalDialog procedure via the
Standard File Package each time the user selects one of the dialog items. Your dialog
hook function checks the item number of each selected item, and then either handles the
selection or passes it back to the Standard File Package.

If you provide a dialog hook function, CustomPutFile and CustomGetFile call
your function immediately after calling ModalDialog. They pass your function the
item number returned by ModalDialog, a pointer to the dialog record, and a pointer
to the data received from your application, if any. The dialog hook function must use
this syntax:

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr;

 myDataPtr: Ptr): Integer;

Your dialog hook function returns as its function result an integer that is either the item
number passed to it or some other item number. If it returns one of the item numbers in
the following list of constants, the Standard File Package handles the selected item as
described later in this section. If your dialog hook function does not handle a selection, it
should pass the item number back to the Standard File Package for processing by setting
its return value equal to the item number.

CONST {items that appear in both the Open and Save dialog boxes}

sfItemOpenButton = 1; {Save or Open button}

sfItemCancelButton = 2; {Cancel button}

sfItemBalloonHelp = 3; {Balloon Help}

sfItemVolumeUser = 4; {volume icon and name}

sfItemEjectButton = 5; {Eject button}

sfItemDesktopButton = 6; {Desktop button}

sfItemFileListUser = 7; {display list}
Using the Standard File Package 3-21

C H A P T E R 3

Standard File Package
sfItemPopUpMenuUser = 8; {directory pop-up menu}

sfItemDividerLinePict = 9; {dividing line between buttons}

{items that appear in Save dialog boxes only}

sfItemFileNameTextEdit = 10; {filename field}

sfItemPromptStaticText = 11; {filename prompt text area}

sfItemNewFolderUser = 12; {New Folder button}

You must write your own dialog hook function to handle any items you have added to
the dialog box.

Note

The constants that represent disabled items (sfItemBalloonHelp,
sfItemDividerLinePict, and sfItemPromptStaticText) have no
effect, but they are defined in the header files for the sake of completeness. ◆

The Standard File Package also recognizes a number of constants that do not represent
any actual item in the dialog list; these constants are known as pseudo-items. There are
two kinds of pseudo-items:

■ pseudo-items passed to your dialog hook function by the Standard File Package

■ pseudo-items passed to the Standard File Package by your dialog hook function

The sfHookFirstCall constant is an example of the first kind of pseudo-item. The
Standard File Package sends this pseudo-item to your dialog hook function immediately
before it displays the dialog box. Your function typically reacts to this item number by
performing any necessary initialization.

You can pass back other pseudo-items to indicate that you’ve handled the user selection
or to request some action by the Standard File Package. For example, if the list of
files and folders must be rebuilt because of a user selection, you can pass back the
pseudo-item sfHookRebuildList. Similarly, when your application handles the
selection and needs no further action by the Standard File Package, it should return
sfHookNullEvent. When the dialog hook function passes either sfHookNullEvent
or an item number that the Standard File Package doesn’t recognize, it does nothing.

The Standard File Package recognizes these pseudo-item numbers:

CONST {pseudo-items available prior to version 7.0}

sfHookFirstCall = -1; {initialize display}

sfHookCharOffset = $1000; {offset for character input}

sfHookNullEvent = 100; {null event}

sfHookRebuildList = 101; {redisplay list}

sfHookFolderPopUp = 102; {display parent-directory menu}

sfHookOpenFolder = 103; {display contents of }

{ selected folder or volume}

{additional pseudo-items introduced in version 7.0}

sfHookLastCall = -2; {clean up after display}
3-22 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
sfHookOpenAlias = 104; {resolve alias}

sfHookGoToDesktop = 105; {display contents of desktop}

sfHookGoToAliasTarget = 106; {select target of alias}

sfHookGoToParent = 107; {display contents of parent}

sfHookGoToNextDrive = 108; {display contents of next drive}

sfHookGoToPrevDrive = 109; {display contents of previous drive}

sfHookChangeSelection = 110; {select target of reply record}

sfHookSetActiveOffset = 200; {switch active item}

The Standard File Package uses a set of modal-dialog filter functions (described in
“Writing a Modal-Dialog Filter Function” on page 3-28) to map user actions during
the dialog onto the defined item numbers. Some of the mapping is indirect. A click of
the Open button, for example, is mapped to sfItemOpenButton only if a file is
selected in the display list. If a folder or volume is selected, the Standard File Package
maps the selection onto the pseudo-item sfHookOpenFolder.

The lists that follow summarize when various items and pseudo-items are generated
and how they are handled. The descriptions indicate the simplest mouse action that
generates each item; many of the items can also be generated by keyboard actions, as
described in “Keyboard Equivalents” on page 3-7.

Note

Any indicated effects of passing back these constants do not occur until
the Standard File Package receives the constant back from your dialog
hook function. ◆

Constant descriptions

sfItemOpenButton
Generated when the user clicks Open or Save while a filename is
selected. The Standard File Package fills in the reply record (setting
sfGood to TRUE), removes the dialog box, and returns.

sfItemCancelButton
Generated when the user clicks Cancel. The Standard File Package
sets sfGood to FALSE, removes the dialog box, and returns.

sfItemVolumeUser
Generated when the user clicks the volume icon or its name. The
Standard File Package rebuilds the display list to show the contents
of the folder that is one level up the hierarchy (that is, the parent
directory of the current parent directory).

sfItemEjectButton
Generated when the user clicks Eject. The Standard File Package
ejects the volume that is currently selected.

sfItemDesktopButton
Generated when the user clicks the Drive button in a customized
dialog box defined by one of the earlier procedures. You never
receive this item number with the new procedures; when the user
clicks the Desktop button, the action is mapped to the item
sfHookGoToDesktop, described later in this section. The Standard
File Package displays the contents of the next drive.
Using the Standard File Package 3-23

C H A P T E R 3

Standard File Package
sfItemFileListUser
Generated when the user clicks an item in the display list. The
Standard File Package updates the selection and generates this
item for your information.

sfItemPopUpMenuUser
Never generated. The Standard File Package’s modal-dialog filter
function maps clicks on the directory pop-up menu to
sfHookFolderPopUp, described later in this section.

sfItemFileNameTextEdit
Generated when the user clicks the filename field. TextEdit and the
Standard File Package process mouse clicks in the filename field,
but the item number is generated for your information.

sfItemNewFolderUser
Generated when the user clicks New Folder. The Standard File
Package displays the New Folder dialog box.

The pseudo-items are messages that allow your application and the Standard File
Package to communicate and support various features added since the original design
of the Standard File Package.

The Standard File Package generates three pseudo-items that give your application the
chance to control a customized display.

Constant descriptions

sfHookFirstCall
Generated by the Standard File Package as a signal to your dialog
hook function that it is about to display a dialog box. If you
want to initialize the display, do so when you receive this item.
You can specify the current directory either by returning
sfHookGoToDesktop or by changing the reply record and
returning sfHookChangeSelection.

sfHookLastCall Generated by the Standard File Package as a signal to your dialog
hook function that it is about to remove a dialog box. If you created
any structures when the dialog box was first displayed, remove
them when you receive this item.

sfHookNullEvent
Issued periodically by the Standard File Package if no user action
has taken place. Your application can use this null event to perform
any updating or periodic processing that might be necessary.

Your application can generate three pseudo-items to request services from the Standard
File Package.

Constant descriptions

sfHookRebuildList
Returned by your dialog hook function to the Standard File Package
when it needs to redisplay the file list. Your application might need
to redisplay the list if, for example, it allows the user to change the
file types to be displayed. The Standard File Package rebuilds and
displays the list of files that can be opened.
3-24 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
sfHookChangeSelection
Returned by your application to the Standard File Package after
your application changes the reply record so that it describes a
different file or folder. (You’ll need to pass the address of the reply
record in the yourDataPtr field if you want to do this.) The
Standard File Package rebuilds the display list to show the contents
of the folder or volume containing the object described in the reply
record. It selects the item described in the reply record.

sfHookSetActiveOffset
Your application adds this constant to an item number and sends
the result to the Standard File Package. The Standard File Package
activates that item in the dialog box, making it the target of
keyboard input. This constant allows your application to activate a
specific field in the dialog box without explicit input from the user.

The Standard File Package’s own modal-dialog filter functions generate a number of
pseudo-items that allow its dialog hook functions to support various features introduced
since the original design of the standard file dialog boxes. Except under extraordinary
circumstances, your dialog hook function always passes any of these item numbers back
to the Standard File Package for processing.

Constant descriptions

sfHookCharOffset
The Standard File Package adds this constant to the value of an
ASCII character when it’s using keyboard input for item selection.
The Standard File Package uses the decoded ASCII character to
select an entry in the display list.

sfHookFolderPopUp
Generated when the user clicks the directory pop-up menu. The
Standard File Package displays the pop-up menu showing all
parent directories.

sfHookOpenFolder
Generated when the user clicks the Open button while a folder
or volume is selected in the display list. The Standard File Package
rebuilds the display list to show the contents of the folder
or volume.

sfHookOpenAlias
Generated by the Standard File Package as a signal that the selected
item is an alias for another file, folder, or volume. If the selected
item is an alias for a file, the Standard File Package resolves the
alias, places the file system specification record of the target in the
reply record, and returns.
If the selected item is an alias for a folder or volume, the Standard
File Package resolves the alias and rebuilds the display list to show
the contents of the alias target.

sfHookGoToDesktop
Generated when the user clicks the Desktop button. The Standard
File Package displays the contents of the desktop in the display list.
Using the Standard File Package 3-25

C H A P T E R 3

Standard File Package
sfHookGoToAliasTarget
Generated when the user presses the Option key while opening an
item that is an alias. The Standard File Package rebuilds the display
list to display the volume or folder containing the alias target and
selects the target.

sfHookGoToParent
Generated when the user presses Command–Up Arrow (or
clicks the volume icon). The Standard File Package rebuilds the
display list to show the contents of the folder that is one level
up the hierarchy (that is, the parent directory of the current
parent directory).

sfHookGoToNextDrive
Generated when the user presses Command–Right Arrow. The
Standard File Package displays the contents of the next volume.

sfHookGoToPrevDrive
Generated when the user presses Command–Left Arrow. The
Standard File Package displays the contents of the previous volume.

The CustomGetFile and CustomPutFile procedures call your dialog hook
function for item selections in both the main dialog box and any subsidiary dialog
boxes (such as the dialog box for naming a new folder while saving a document
through CustomPutFile). To determine whether the dialog record describes the
main dialog box or a subsidiary dialog box, check the value of the refCon field in
the window record in the dialog record.

Note

Prior to system software version 7.0, the Standard File Package did not
call your dialog hook function during subsidiary dialog boxes. Dialog
hook functions for the new CustomGetFile and CustomPutFile
procedures must check the dialog window’s refCon field to determine
the target of the dialog record. ◆

The defined values for the refCon field represent the Standard File dialog boxes.

CONST

sfMainDialogRefCon = 'stdf'; {main dialog box}

sfNewFolderDialogRefCon = 'nfdr'; {New Folder dialog box}

sfReplaceDialogRefCon = 'rplc'; {name conflict dialog box}

sfStatWarnDialogRefCon = 'stat'; {stationery warning}

sfErrorDialogRefCon = 'err '; {general error report}

sfLockWarnDialogRefCon = 'lock'; {software lock warning}

Constant descriptions

sfMainDialogRefCon The main dialog box, either Open or Save.
sfNewFolderDialogRefCon The New Folder dialog box.
sfReplaceDialogRefCon The dialog box requesting verification for replacing a

file of the same name.
sfStatWarnDialogRefCon The dialog box warning that the user is opening

the master copy of a stationery pad, not a piece
of stationery.
3-26 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
sfErrorDialogRefCon A dialog box reporting a general error.
sfLockWarnDialogRefCon The dialog box warning that the user is opening a

locked file and won’t be allowed to save any changes.

Listing 3-9 defines a dialog hook function that handles user selections in the customized
Open dialog box illustrated in Figure 3-7. Note that this dialog hook function handles
selections only in the main dialog box, not in any subsidiary dialog boxes.

Listing 3-9 A sample dialog hook function

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr; myDataPtr: Ptr):

 Integer;

VAR

myType: Integer; {menu item selected}

myHandle: Handle; {needed for GetDItem}

myRect: Rect; {needed for GetDItem}

myIgnore: Integer; {needed for GetDItem; ignored}

CONST

kMyPopUpItem = 10; {item number of File Type pop-up menu}

BEGIN

MyDlgHook := item; {by default, return the item passed in}

IF GetWRefCon(WindowPtr(theDialog)) <> LongInt(sfMainDialogRefCon) THEN

Exit(MyDlgHook); {this function is only for main dialog}

{Do processing of pseudo-items and your own additional item.}

CASE item OF

sfHookFirstCall: {pseudo-item: first time function called}

BEGIN

GetDItem(theDialog, kPopUpItem, myType, myHandle, myRect);

SetCtlValue(ControlHandle(myHandle), gCurrentType);

MyDlgHook := sfHookNullEvent;

END;

kMyPopUpItem: {user selected File Type pop-up menu}

BEGIN

GetDItem(theDialog, item, myIgnore, myHandle, myRect);

myType := GetCtlValue(ControlHandle(myHandle));

IF myType <> gCurrentType THEN

BEGIN

gCurrentType := myType;

MyDlgHook := sfHookRebuildList;

END;

END;

OTHERWISE

; {ignore all other items}

END;

END;
Using the Standard File Package 3-27

C H A P T E R 3

Standard File Package
The pop-up menu is stored as a control in the application’s resource fork. Values stored
in the resource determine the appearance of the control, such as the pop-up title text and
the menu associated with the control. The Dialog Manager’s ModalDialog procedure
takes care of drawing the box around the pop-up menu and the title of the dialog box.
When the dialog hook function is first called, it simply retrieves a handle to that control
and sets the value of the pop-up control to the current menu item (stored in the global
variable gCurrentType). The MyDlgHook function then returns sfHookNullEvent to
indicate that no further processing is required.

When the user clicks the pop-up menu control, ModalDialog calls the standard control
definition function associated with it. If the user makes a selection in the pop-up menu,
MyDlgHook is called with the item parameter equal to kPopUpItem. Your dialog hook
function needs simply to determine the current value of the control and respond
accordingly. In this case, if the user has selected a new file type, the global variable
gCurrentType is updated to reflect the new selection, and MyDlgHook returns
sfHookRebuildList to cause the Standard File Package to rebuild the list of files and
folders displayed in the dialog box.

For complete details on handling pop-up menus, see the chapters “Control Manager”
and “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Writing a Modal-Dialog Filter Function 3

A modal-dialog filter function controls events closer to their source by filtering the
events received from the Event Manager. The Standard File Package itself contains
an internal modal-dialog filter function that maps keypresses and other user input
onto the equivalent dialog box items. If you also want to process events at this level,
you can supply your own filter function.

Note

You can supply a modal-dialog filter function only when you use one of
the procedures that displays a customized dialog box (that is,
CustomGetFile, CustomPutFile, SFPGetFile, or SFPPutFile). ◆

Your modal-dialog filter function determines how the Dialog Manager procedure
ModalDialog filters events. The ModalDialog procedure retrieves events by calling
the Event Manager function GetNextEvent. As just indicated, the Standard File
Package contains an internal filter function that performs some preliminary processing
on each event it receives. If you provide a modal-dialog filter function, ModalDialog
calls your filter function after it calls the internal Standard File Package filter function
and before it sends the event to your dialog hook function.

You might provide a modal-dialog filter function for several reasons. If you have
customized the Open or Save dialog boxes by adding one or more items, you might want
to map some of the user’s keypresses to those items in the same way that the internal
filter function maps certain keypresses to existing items.
3-28 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Another reason to provide a modal-dialog filter function is to avoid a problem that
can arise if an update event is received for one of your application’s windows while
a Standard File Package dialog box is displayed.

Note

The problem described in the following paragraph occurs only in system
software versions earlier than version 7.0. The internal modal-dialog
filter function installed by the Standard File Package when running in
version 7.0 and later avoids the problem by passing the update event to
your dialog filter and, if your filter doesn’t handle the event, mapping it
to a null event. ◆

When ModalDialog calls GetNextEvent and receives the update event,
ModalDialog does not know how to respond to it and therefore passes the update
event to the Standard File Package’s internal filter function. The internal filter function
cannot handle the update event either. As a result, if you do not provide your own
modal-dialog filter function that handles the update event, that event is never cleared.
The next time ModalDialog calls GetNextEvent, it receives the same update event.
ModalDialog never receives a null event, so your dialog hook function never performs
any processing in response to the sfHookNullEvent pseudo-item. You can solve this
problem by providing a modal-dialog filter function that handles the update event or
changes it to a null event. See Listing 3-10 for details.

A modal-dialog filter function used with SFPGetFile and SFPPutFile is declared like
any filter function passed to ModalDialog. Your function is passed a pointer to the
dialog record, a pointer to the event record, and the item number. (The modal-dialog
filter function is described in the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.)

FUNCTION MyModalFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

The modal-dialog filter function used with CustomGetFile and CustomPutFile
requires an additional parameter, a pointer (myDataPtr) to the data received from
your application, if any.

FUNCTION MyModalFilterYD (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer;

myDataPtr: Ptr): Boolean;

Your modal-dialog filter function returns a Boolean value that reports whether it
handled the event. If your function returns a value of FALSE, ModalDialog
processes the event through its own filters. If your function returns a value of TRUE,
ModalDialog returns with no further action.
Using the Standard File Package 3-29

C H A P T E R 3

Standard File Package
The CustomGetFile and CustomPutFile procedures call your filter function to
process events in both the main dialog box and any subsidiary dialog boxes (such as the
dialog box for naming a new folder while saving a document through CustomPutFile).
To determine whether the dialog record describes the main dialog box or a subsidiary
dialog box, check the value of the refCon field in the window record in the dialog record,
as described in “Writing a Dialog Hook Function” beginning on page 3-21.

Listing 3-10 shows how to define a modal-dialog filter function that prevents update
events from clogging the event queue.

Listing 3-10 A sample modal-dialog filter function

FUNCTION MyModalFilter (theDialog: DialogPtr; VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

BEGIN

MyModalFilter := FALSE; {we haven't handled the event yet}

IF theEvent.what = updateEvt THEN

IF IsAppWindow(WindowPtr(theEvent.message)) THEN

BEGIN

DoUpdateEvent(WindowPtr(theEvent.message));

MyModalFilter := TRUE; {we have handled the event}

END;

END;

If this filter function receives an update event for a window other than the Standard File
Package dialog box, it calls the application’s routine for handling update events
(DoUpdateEvent) and returns TRUE to indicate that the event has been handled. See
the chapters “Event Manager” and “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for complete details on handling update events.

Writing an Activation Procedure 3

The activation procedure controls the highlighting of dialog items that are defined by
your application and can receive keyboard input. Ordinarily, you need to supply an
activation procedure only if your application builds a list from which the user can select
entries. The Standard File Package supplies the activation procedure for the file display
list and for all TextEdit fields. You can also use the activation procedure to keep track of
which field is receiving keyboard input, if your application needs that information.

The target of keyboard input is called the active field. The two standard keyboard-input
fields are the filename field (present only in Save dialog boxes) and the display list. Unless
you override it through your own dialog hook function, the Standard File Package
handles the highlighting of its own items and TextEdit fields. When the user changes the
keyboard target by pressing the mouse button or the Tab key, the Standard File Package
calls your activation procedure twice: the first call specifies which field is being
3-30 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
deactivated, and the second specifies which field is being activated. Your application is
responsible for removing the highlighting when one of its fields becomes inactive and
for adding the highlighting when one of its fields becomes active. The Standard File
Package can handle the highlighting of all TextEdit fields, even those defined by your
application.

The activation procedure receives four parameters: a dialog pointer, a dialog item
number, a Boolean value that specifies whether the field is being activated (TRUE) or
deactivated (FALSE), and a pointer to your own data.

PROCEDURE MyActivateProc (theDialog: DialogPtr; itemNo: Integer;

activating: Boolean; myDataPtr: Ptr);

Setting the Current Directory 3
The first time your application calls one of the Standard File Package routines, the
default current directory (that is, the directory whose contents are listed in the dialog
box) is determined by the way in which your application was launched.

■ If the user launched your application directly (perhaps by double-clicking its icon in
the Finder), the default directory is the directory in which your application is located.

■ If the user launched your application indirectly (perhaps by double-clicking one of
your application’s document icons), the default directory is the directory in which that
document is located.

At each subsequent call to one of the Standard File Package routines, the default current
directory is simply the directory that was current when the user completed the previous
dialog box. You can use the function GetSFCurDir defined in Listing 3-11 to determine
the current directory.

Listing 3-11 Determining the current directory

FUNCTION GetSFCurDir: LongInt;

TYPE

LongIntPtr = ^LongInt;

CONST

CurDirStore = $398;

BEGIN

GetSFCurDir := LongIntPtr(CurDirStore)^;

END;
Using the Standard File Package 3-31

C H A P T E R 3

Standard File Package
You can use the GetSFCurVol function defined in Listing 3-12 to determine the
current volume.

Listing 3-12 Determining the current volume

FUNCTION GetSFCurVol: Integer;

TYPE

IntPtr = ^Integer;

CONST

SFSaveDisk = $214;

BEGIN

GetSFCurVol := -IntPtr(SFSaveDisk)^;

END;

If necessary, you can change the default current directory and volume. For example,
when the user needs to select a dictionary file for a spell-checking application, the
application might set the current directory to a directory containing document-specific
dictionary files. This saves the user from having to navigate the directory hierarchy from
the directory containing documents to that containing dictionary files. You can use the
procedure SetSFCurDir defined in Listing 3-13 to set the current directory.

Listing 3-13 Setting the current directory

PROCEDURE SetSFCurDir (dirID: LongInt);

TYPE

LongIntPtr = ^LongInt;

CONST

CurDirStore = $398;

BEGIN

LongIntPtr(CurDirStore)^ := dirID;

END;

You can use the procedure SetSFCurVol defined in Listing 3-14 to set the current volume.

Listing 3-14 Setting the current volume

PROCEDURE SetSFCurVol (vRefNum: Integer);

TYPE

IntPtr = ^Integer;

CONST

SFSaveDisk = $214;

BEGIN

IntPtr(SFSaveDisk)^ := -vRefNum;

END;
3-32 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Note

Most applications don’t need to alter the default current directory
or volume. ◆

If you are using the enhanced Standard File Package routines, you can set the current
directory by filling in the fields of the file system specification in the reply record passed
to CustomGetFile or CustomPutFile. You do this within your dialog hook function.
Listing 3-15 defines a dialog hook function that makes the currently active System Folder
the current directory.

Listing 3-15 Setting the current directory

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr; myDataPtr: Ptr):

 Integer;

VAR

myReplyPtr: StandardFileReplyPtr;

foundVRefNum: Integer;

foundDirID: LongInt;

myErr: OSErr;

BEGIN

MyDlgHook := item; {by default, return the item passed in}

IF GetWRefCon(WindowPtr(theDialog)) <> LongInt(sfMainDialogRefCon) THEN

Exit(MyDlgHook); {this function is only for main dialog box}

CASE item OF

sfHookFirstCall: {pseudo-item: first time function called}

BEGIN

myReplyPtr := StandardFileReplyPtr(myDataPtr);

myErr := FindFolder(kOnSystemDisk, kSystemFolderType,

 kDontCreateFolder, foundVRefNum, foundDirID);

IF myErr = noErr THEN

BEGIN

myReplyPtr^.sfFile.parID := foundDirID;

myReplyPtr^.sfFile.vRefNum := foundVRefNum;

MyDlgHook := sfHookChangeSelection;

END;

END;

OTHERWISE

; {ignore all other items}

END;

END;
Using the Standard File Package 3-33

C H A P T E R 3

Standard File Package
This dialog hook function installs the System Folder’s volume reference number and
parent directory ID into the file system specification whose address is passed in the
myDataPtr parameter. Because the dialog hook function returns the constant
sfHookChangeSelection the first time it is called (that is, in response to the
sfHookFirstCall pseudo-item), the Standard File Package sets the current directory
to the indicated directory when the dialog box is displayed.

Selecting a Directory 3
You can present the recommended user interface for selecting a directory by calling the
CustomGetFile procedure and passing it the addresses of a custom file filter function
and a dialog hook function. See “Selecting Volumes and Directories” on page 3-10 for a
description of the appearance and behavior of the directory selection dialog box.

The file filter function used to select directories is quite simple; it ensures that only
directories, not files, are listed in the dialog box displayed by CustomGetFile.
Listing 3-16 defines a file filter function you can use for this purpose.

Listing 3-16 A file filter function that lists only directories

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr): Boolean;

CONST

kFolderBit = 4; {bit set in ioFlAttrib for a directory}

BEGIN {list directories only}

MyCustomFileFilter := NOT BTst(pb^.ioFlAttrib, kFolderBit);

END;

The function MyCustomFileFilter simply inspects the appropriate bit in the file
attributes (ioFlAttrib) field of the catalog information parameter block passed to it. If
the directory bit is set, the file filter function returns FALSE, indicating that the item
should appear in the list; otherwise, the file filter function returns TRUE to exclude the
item from the list. Because a volume is identified via its root directory, volumes also
appear in the list of items in the dialog box.

The title of the Select button should identify which directory is available for selection.
You can use the SetButtonTitle procedure defined in Listing 3-17 to set the title
of a button.

Your dialog hook function calls the SetButtonTitle procedure to copy the truncated
title of the selected item into the Select button. This title eliminates possible user
confusion about which directory is available for selection. If no item in the list is selected,
the dialog hook function uses the name of the directory shown in the pop-up menu as
the title of the Select button.
3-34 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Listing 3-17 Setting a button’s title

PROCEDURE SetButtonTitle (ButtonHdl: Handle; name: Str255; ButtonRect: Rect);

VAR

result: Integer; {result of TruncString}

width: Integer; {width available for name of directory}

BEGIN

gPrevSelectedName := name;

WITH ButtonRect DO

width := (right - left) - (StringWidth('Select ""') + CharWidth(' '));
result := TruncString(width, name, smTruncMiddle);

SetCTitle(ControlHandle(ButtonHdl), CONCAT('Select "', name, '"'));

ValidRect(ButtonRect);

END;

The SetButtonTitle procedure is passed a handle to the button whose title is to be
changed, the name of the directory available for selection, and the button’s enclosing
rectangle. The global variable gPrevSelectedName holds the full directory name,
before truncation.

A dialog hook function manages most of the process of letting the user select a director.
Listing 3-18 defines a dialog hook function that handles user selections in the dialog box.

Listing 3-18 Handling user selections in the directory selection dialog box

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr; myDataPtr: Ptr):
 Integer;

CONST
kGetDirBTN = 10; {Select directory button}

TYPE
SFRPtr = ^StandardFileReply;

VAR
myType: Integer; {menu item selected}
myHandle: Handle; {needed for GetDItem}
myRect: Rect; {needed for GetDItem}
myName: Str255;
myPB: CInfoPBRec;
mySFRPtr: SFRPtr;
myErr: OSErr;

BEGIN
MyDlgHook := item; {default, except in special cases below}
IF GetWRefCon(WindowPtr(theDialog)) <> LongInt(sfMainDialogRefCon) THEN

Exit(MyDlgHook); {this function is only for main dialog box}

GetDItem(theDialog, kGetDirBTN, myType, myHandle, myRect);
IF item = sfHookFirstCall THEN
Using the Standard File Package 3-35

C H A P T E R 3

Standard File Package
BEGIN
{Determine current folder name and set title of Select button.}
WITH myPB DO

BEGIN
ioCompletion := NIL;
ioNamePtr := @myName;
ioVRefNum := GetSFCurVol;
ioFDirIndex := - 1;
ioDirID := GetSFCurDir;

END;
myErr := PBGetCatInfo(@myPB, FALSE);
SetButtonTitle(myHandle, myName, myRect);

END
ELSE

BEGIN
{Get mySFRPtr from 3rd parameter to hook function.}
mySFRPtr := SFRPtr(myDataPtr);
{Track name of folder that can be selected.}
IF (mySFRPtr^.sfIsFolder) OR (mySFRPtr^.sfIsVolume) THEN

myName := mySFRPtr^.sfFile.name
ELSE

BEGIN
WITH myPB DO

BEGIN
ioCompletion := NIL;
ioNamePtr := @myName;
ioVRefNum := mySFRPtr^.sfFile.vRefNum;
ioFDirIndex := -1;
ioDrDirID := mySFRPtr^.sfFile.parID;

END;
myErr := PBGetCatInfo(@myPB, FALSE);

END;
{Change directory name in button title as needed.}
IF myName <> gPrevSelectedName THEN

SetButtonTitle(myHandle, myName, myRect);

CASE item OF
kGetDirBTN: {force return by faking a cancel}

MyDlgHook := sfItemCancelButton;
sfItemCancelButton:

gDirSelectionFlag := FALSE;{flag no directory was selected}
OTHERWISE

;
END; {CASE}

END;
END;
3-36 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
The MyDlgHook dialog hook function defined in Listing 3-18 calls the File Manager
function PBGetCatInfo to retrieve the name of the directory to be selected. When the
dialog hook function is first called (that is, when item is set to sfHookFirstCall),
MyDlgHook determines the current volume and directory by calling the functions
GetSFCurVol and GetSFCurDir. When MyDlgHook is called each subsequent time,
MyDlgHook calls PBGetCatInfo with the volume reference number and directory ID
of the previously opened directory.

When the user clicks the Select button, MyDlgHook returns the item
sfItemCancelButton. When the user clicks the real Cancel button, MyDlgHook
sets the global variable gDirSelectionFlag to FALSE, indicating that the user
didn’t select a directory. The function DoGetDirectory uses that variable to
distinguish between clicks of Cancel and clicks of Select.

The function DoGetDirectory defined in Listing 3-19 uses the file filter function
and the dialog hook functions defined above to manage the directory selection dialog
box. On exit, DoGetDirectory returns a standard file reply record describing the
selected directory.

Listing 3-19 Presenting the directory selection dialog box

FUNCTION DoGetDirectory: StandardFileReply;

VAR

myReply: StandardFileReply;

myTypes: SFTypeList; {types of files to display}

myPoint: Point; {upper-left corner of box}

myNumTypes: Integer;

myModalFilter: ModalFilterYDProcPtr;

myActiveList: Ptr;

myActivateProc: ActivateYDProcPtr;

myName: Str255;

CONST

rGetDirectoryDLOG = 128; {resource ID of custom dialog box}

BEGIN

gPrevSelectedName := ''; {initialize name of previous selection}

gDirSelectionFlag := TRUE; {initialize directory selection flag}

myNumTypes := -1; {pass all types of files to file filter}

myPoint.h := -1; {center dialog box on screen}

myPoint.v := -1;

myModalFilter := NIL;

myActiveList := NIL;

myActivateProc := NIL;

CustomGetFile(@MyCustomFileFilter, myNumTypes, myTypes, myReply,

rGetDirectoryDLOG, myPoint, @MyDlgHook, myModalFilter,

myActiveList, myActivateProc, @myReply);
Using the Standard File Package 3-37

C H A P T E R 3

Standard File Package
{Get the name of the directory.}

IF gDirSelectionFlag AND myReply.sfIsVolume THEN

myName := Concat(myReply.sfFile.name, ':')

ELSE

myName := myReply.sfFile.name;

IF gDirSelectionFlag AND myReply.sfIsVolume THEN

myReply.sfFile.name := myName

ELSE IF gDirSelectionFlag THEN

myReply.sfFile.name := gPrevSelectedName;

gDirSelectionFlag := FALSE;

DoGetDirectory := myReply;

END;

The DoGetDirectory function initializes the two global variables
gPrevSelectedName and gDirSelectionFlag. As you have seen, these two
variables are used by the custom dialog hook function. Then DoGetDirectory
calls CustomGetFile to display the directory selection dialog box and handle user
selections. When the user selects a directory or clicks the Cancel button, the dialog
hook function returns sfItemCancelButton and CustomGetFile exits. At that
point, the reply record contains information about the last item selected in the list of
available items.

Selecting a Volume 3
You can present the recommended user interface for selecting a volume by calling the
CustomGetFile procedure and passing it the addresses of a custom file filter function
and a dialog hook function. See “Selecting Volumes and Directories” on page 3-10 for a
description of the appearance and behavior of the volume selection dialog box.

The file filter function used to select volumes is quite simple; it ensures that only
volumes, not files or directories, are listed in the dialog box displayed by
CustomGetFile. Listing 3-16 defines a file filter function you can use to do this.

Listing 3-20 A file filter function that lists only volumes

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr): Boolean;

CONST

kFolderBit = 4; {bit set in ioFlAttrib for a directory}

BEGIN {list volumes only}

MyCustomFileFilter := TRUE; {assume you don't list the item}

IF BTst(pb^.ioFlAttrib, kFolderBit) AND (pb^.ioDrParID = fsRtParID) THEN

MyCustomFileFilter := FALSE;

END;
3-38 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
The function MyCustomFileFilter inspects the appropriate bit in the file attributes
(ioFlAttrib) field of the catalog information parameter block passed to it. If the
directory bit is set, MyCustomFileFilter checks whether the parent directory ID of
the directory is equal to fsRtParID, which is always the parent directory ID of a
volume’s root directory. If it is, the file filter function returns FALSE, indicating that the
item should appear in the list of volumes; otherwise, the file filter function returns TRUE
to exclude the item from the list.

A dialog hook function for handling the items in the volume selection dialog box is
defined in Listing 3-21.

Listing 3-21 Handling user selections in the volume selection dialog box

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr; myDataPtr: Ptr):
 Integer;

VAR
myType: Integer; {menu item selected}
myHandle: Handle; {needed for GetDItem}
myRect: Rect; {needed for GetDItem}
myName: Str255; {new title for Open button}

BEGIN
MyDlgHook := item; {default, except in special cases below}
IF GetWRefCon(WindowPtr(theDialog)) <> LongInt(sfMainDialogRefCon) THEN

Exit(MyDlgHook); {this function is only for main dialog box}

CASE item OF
sfHookFirstCall:

BEGIN
{Set button title and go to desktop.}
myName := 'Select';
GetDItem(theDialog, sfItemOpenButton, myType, myHandle, myRect);
SetCTitle(ControlHandle(myHandle), myName);
MyDlgHook := sfHookGoToDesktop;

END;
sfHookGoToDesktop: {map Cmd-D to a null event}

MyDlgHook := sfHookNullEvent;
sfHookChangeSelection:

MyDlgHook := sfHookGoToDesktop;
sfHookGoToNextDrive: {map Cmd-Left Arrow to a null event}

MyDlgHook := sfHookNullEvent;
sfHookGoToPrevDrive: {map Cmd-Right Arrow to a null event}

MyDlgHook := sfHookNullEvent;
sfItemOpenButton, sfHookOpenFolder:

MyDlgHook := sfItemOpenButton;
OTHERWISE

;
END;

END;
Using the Standard File Package 3-39

C H A P T E R 3

Standard File Package
You can prompt the user to select a volume by calling the function DoGetVolume
defined in Listing 3-22.

Listing 3-22 Presenting the volume selection dialog box

FUNCTION DoGetVolume: StandardFileReply;

VAR

myReply: StandardFileReply;

myTypes: SFTypeList; {types of files to display}

myPoint: Point; {upper-left corner of box}

myNumTypes: Integer;

myModalFilter: ModalFilterYDProcPtr;

myActiveList: Ptr;

myActivateProc: ActivateYDProcPtr;

CONST

rGetVolumeDLOG = 129; {resource ID of custom dialog box}

BEGIN

myNumTypes := -1; {pass all types of files}

myPoint.h := -1; {center dialog box on screen}

myPoint.v := -1;

myModalFilter := NIL;

myActiveList := NIL;

myActivateProc := NIL;

CustomGetFile(@MyCustomFileFilter, myNumTypes, myTypes, myReply,

rGetVolumeDLOG, myPoint, @MyDlgHook, myModalFilter,

myActiveList, myActivateProc, @myReply);

DoGetVolume := myReply;

END;

Using the Original Procedures 3
The Standard File Package still recognizes all procedures available before system
software version 7.0 (SFGetFile, SFPutFile, SFPGetFile, and SFPPutFile). It
displays the new interface for all applications that don’t customize the dialog boxes in
incompatible ways (that is, applications that specify both the dialog hook and the
modal-dialog filter pointers as NIL and that specify no alternative dialog ID).
3-40 Using the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
When the Standard File Package can’t use the enhanced dialog box layout because an
application customized the dialog box with the earlier procedures, it nevertheless makes
some changes to the display:

■ It changes the label of the Drive button to Desktop and makes the desktop the root of
the display.

■ It moves the volume icon slightly to the right, to make room for selection highlighting
around the display list field.

If, however, a customized dialog box has suppressed the file display list (by specifying
coordinates outside of the dialog box), the Standard File Package uses the earlier interface,
on the assumption that the dialog box is designed for volume selection.

If you need to use the procedures available before system software version 7.0, you need
to be aware of a number of differences between those procedures and the enhanced
procedures. These are the most important differences:

■ The original procedures do not recognize some pseudo-items under previous system
software versions. For example, the pseudo-item sfHookLastCall is not used
before version 7.0. See the comments under “Constants” in “Summary of the Standard
File Package” (beginning on page 3-60) for information on which pseudo-items are
universally available.

■ The original standard file reply record (type SFReply) returns a working directory
reference number, not a volume reference number. Typically, you should immediately
convert that number to a volume reference number and directory ID using GetWDInfo
or PBGetWDInfo. Then close the working directory by calling CloseWD or
PBCloseWD. For details on these functions, see the chapter “File Manager” in this book.

■ Dialog hook functions used with the original procedures are not passed a
myDataPtr parameter.

Standard File Package Reference 3

This section describes the data structures and routines that are specific to the Standard
File Package. The “Data Structures” section shows the Pascal data structures for
the original and the enhanced Standard File reply records. The section “Standard File
Package Routines” describes routines for opening and saving files. The section
“Application-Defined Routines” describes the routines that your application can define
to customize the operations of the Standard File Package routines.

Data Structures 3
The Standard File Package exchanges information with your application using a standard
file reply record. If you use the procedures introduced in system software version 7.0, you
use a reply record of type StandardFileReply. If you use the procedures available
before version 7.0, you must use a reply record of type SFReply.
Standard File Package Reference 3-41

C H A P T E R 3

Standard File Package
Enhanced Standard File Reply Record 3

When you use one of the procedures StandardPutFile, StandardGetFile,
CustomPutFile, or CustomGetFile, you pass a reply record of type
StandardFileReply.

TYPE StandardFileReply =

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected file, folder, or volume}

sfScript: ScriptCode; {script of file, folder, or volume name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

Field descriptions

sfGood Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the sfGood field contains TRUE.

sfReplacing Reports whether a file to be saved replaces an existing file of the same
name. This field is valid only after a call to the StandardPutFile or
CustomPutFile procedure. When the user assigns a name that
duplicates that of an existing file, the Standard File Package asks for
verification by displaying a subsidiary dialog box (illustrated in
Figure 3-4, page 3-7). If the user verifies the name, the Standard File
Package sets the sfReplacing field to TRUE and returns to your
application; if the user cancels the overwriting of the file, the
Standard File Package returns to the main dialog box. If the name
does not conflict with an existing name, the Standard File Package
sets the field to FALSE and returns.

sfType Contains the file type of the selected file. (File types are described in
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.) Only StandardGetFile and CustomGetFile return a
file type in this field.

sfFile Describes the selected file, folder, or volume with a file system
specification record, which contains a volume reference number,
parent directory ID, and name. (See the chapter “File Manager” in
this book for a complete description of the file system specification
record.) If the selected item is an alias for another item, the Standard
3-42 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
File Package resolves the alias and places the file system
specification record for the target in the sfFile field when the
user completes the dialog box. If the selected file is a stationery
pad, the reply record describes the file itself, not a copy of the file.

sfScript Identifies the script in which the name of the document is to be
displayed. (This information is used by the Finder and by the
Standard File Package.) A script code of smSystemScript (–1)
represents the default system script.

sfFlags Contains the Finder flags from the Finder information record in the
catalog entry for the selected file. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for a description of
the Finder flags.) This field is returned only by StandardGetFile
and CustomGetFile. If your application supports stationery, it
should check the stationery bit in the Finder flags to determine
whether to treat the selected file as stationery. Unlike the Finder, the
Standard File Package does not automatically create a document
from a stationery pad and pass your application the new document.
If the user opens a stationery document from within an application
that does not support stationery, the Standard File Package displays
a dialog box warning the user that the master copy is being opened.

sfIsFolder Reports whether the selected item is a folder (TRUE) or a file or
volume (FALSE). This field is meaningful only during the execution
of a dialog hook function.

sfIsVolume Reports whether the selected item is a volume (TRUE) or a file or
folder (FALSE). This field is meaningful only during the execution
of a dialog hook function.

sfReserved1 Reserved.
sfReserved2 Reserved.

Original Standard File Reply Record 3

When you use one of the original Standard File Package procedures SFPutFile,
SFGetFile, SFPPutFile, or SFPGetFile, you pass a reply record of type SFReply.

SFReply =

RECORD

good: Boolean; {TRUE if user did not cancel}

copy: Boolean; {reserved}

fType: OSType; {file type}

vRefNum: Integer; {working directory reference number}

version: Integer; {reserved}

fName: Str63; {filename}

END;
Standard File Package Reference 3-43

C H A P T E R 3

Standard File Package
Field descriptions

good Reports whether the reply record is valid. The value is TRUE after
the user clicks Save or Open; FALSE after the user clicks Cancel.
When the user has completed the dialog box, the other fields in the
reply record are valid only if the value of good is TRUE.

copy Reserved.
fType Contains the file type of the selected file. (File types are described in

the chapter “Finder Interface” of Inside Macintosh: Macintosh Toolbox
Essentials.) Only SFGetFile and SFPGetFile return a file type in
this field.

vRefNum Contains the working directory reference number of the selected file.
version Reserved.
fName Contains the name of the selected file.

Note

In spite of its name, the vRefNum field does not contain a volume
reference number. Instead, it contains a working directory reference
number, which encodes both the volume reference number and the
parent directory ID of the selected file. You can obtain the volume
reference number and directory ID of the file by calling GetWDInfo or
PBGetWDInfo. See the chapter “File Manager” in this book for details
about working directory reference numbers. ◆

Standard File Package Routines 3
This section describes the routines you can use to prompt the user for a file’s name and
location after a request to save or open a file. If your application is designed to run in
system software versions prior to version 7.0, you must use either SFGetFile or
SFPGetFile when opening a file and either SFPutFile or SFPPutFile when saving
a file.

If your application is designed to take advantage of features introduced in system
software version 7.0 or later, you can use the new routines intended to simplify
the code required to elicit a filename from the user. The StandardPutFile and
StandardGetFile procedures are simplified versions of the original procedures
for handling the user interface during the storing and retrieving of files. The
CustomPutFile and CustomGetFile procedures are customizable versions of
the same procedures.

Saving Files 3

You can use the StandardPutFile procedure to present the standard user interface
when the user asks to save a file. If you need to add elements to the default dialog boxes
or exercise greater control over user actions in the dialog box, use CustomPutFile.
3-44 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
If your application is designed to execute in system software versions earlier than
version 7.0, you can use the corresponding procedures SFPutFile and SFPPutFile.

StandardPutFile 3

You can use the StandardPutFile procedure to display the default Save dialog box
when the user is saving a file.

PROCEDURE StandardPutFile (prompt: Str255; defaultName: Str255;

VAR reply: StandardFileReply);

prompt The prompt message to be displayed over the text field.

defaultName
The initial name of the file.

reply The reply record, which StandardPutFile fills in before returning.

DESCRIPTION

The StandardPutFile procedure presents a dialog box through which the user
specifies the name and location of a file to be written to. The dialog box is centered on
the screen. While the dialog box is active, StandardPutFile gets and handles events
until the user completes the interaction, either by selecting a name and authorizing the
save or by canceling the save. The StandardPutFile procedure returns the user’s
input in a record of type StandardFileReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for StandardPutFile are

SPECIAL CONSIDERATIONS

The StandardPutFile procedure is not available in all versions of system software.
Use the Gestalt function to determine whether StandardPutFile is available before
calling it.

Because StandardPutFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0005
Standard File Package Reference 3-45

C H A P T E R 3

Standard File Package
CustomPutFile 3

Use the CustomPutFile procedure when your application requires more control over
the Save dialog box than is possible using StandardPutFile.

PROCEDURE CustomPutFile (prompt: Str255; defaultName: Str255;

VAR reply: StandardFileReply;

dlgID: Integer; where: Point;

dlgHook: DlgHookYDProcPtr;

filterProc: ModalFilterYDProcPtr;

activeList: Ptr;

activateProc: ActivateYDProcPtr;

yourDataPtr: UNIV Ptr);

prompt The prompt message to be displayed over the text field.

defaultName
The initial name of the file.

reply The reply record, which CustomPutFile fills in before returning.

dlgID The resource ID of a customized dialog template. To use the standard
template, set this parameter to 0.

where The upper-left corner of the dialog box, in global coordinates. If you
specify the point (–1,–1), CustomPutFile automatically centers the
dialog box on the screen.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

filterProc A pointer to your modal-dialog filter function, which determines how the
ModalDialog procedure filters events when called by the CustomPutFile
procedure. Specify a value of NIL if you are not supplying your own
function. See “Writing a Modal-Dialog Filter Function” on page 3-28 for a
description of the modal-dialog filter function.

activeList A pointer to a list of all dialog items that can be activated—that is, can be
the target of keyboard input. If you supply an activeList parameter of
NIL, CustomPutFile uses the default targets (the filename field and the
list of files and folders). If you have added any fields that can accept
keyboard input, you must modify the list. The list is stored as an array of
16-bit integers. The first integer is the number of items in the list. The
remaining integers are the item numbers of all possible keyboard targets,
in the order that they are activated by the Tab key.
3-46 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
activateProc
A pointer to your activation procedure, which controls the highlighting of
dialog items that are defined by your application and that can receive
keyboard input. See “Writing an Activation Procedure” on page 3-30 for a
description of the activation procedure.

yourDataPtr
Any 4-byte value; usually, a pointer to optional data supplied by your
application. When CustomPutFile calls any of your callback routines,
it adds this parameter, making the data available to your callback
routines. If you are not supplying any data of your own, you can specify
a value of NIL.

DESCRIPTION

The CustomPutFile procedure is an alternative to StandardPutFile when you want
to display a customized Save dialog box or handle the default dialog box in a custom-
ized way. During the dialog, CustomPutFile gets and handles events (possibly with
the assistance of application-defined callback routines) until the user completes the inter-
action, either by selecting a name and authorizing the save operation or by canceling the
save operation. The CustomPutFile procedure returns the user’s input in a record of
type StandardFileReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for CustomPutFile are

SPECIAL CONSIDERATIONS

The CustomPutFile procedure is not available in all versions of system software.
Use the Gestalt function to determine whether CustomPutFile is available before
calling it.

Because CustomPutFile may move memory, you should not call it at interrupt time.

SFPutFile 3

Use the SFPutFile procedure to display the standard Save dialog box when the user is
saving a file.

PROCEDURE SFPutFile (where: Point; prompt: Str255;

origName: Str255; dlgHook: DlgHookProcPtr;

VAR reply: SFReply);

Trap macro Selector

_Pack3 $0007
Standard File Package Reference 3-47

C H A P T E R 3

Standard File Package
where The upper-left corner of the dialog box, in global coordinates.

prompt The prompt message to be displayed over the text field.

origName The initial name of the file.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you want
the standard items handled in the standard ways. See “Writing a Dialog
Hook Function” on page 3-21 for a description of the dialog
hook function.

reply The reply record, which SFPutFile fills in before returning.

DESCRIPTION

The SFPutFile procedure presents a dialog box through which the user specifies the
name and location of a file to be written to. During the dialog, SFPutFile gets and
handles events until the user completes the interaction, either by selecting a name and
authorizing the save or by canceling the save. The SFPutFile procedure returns the
user’s input in a record of type SFReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPutFile are

SPECIAL CONSIDERATIONS

Because SFPutFile may move memory, you should not call it at interrupt time.

SFPPutFile 3

Use the SFPPutFile procedure when your application requires more control over the
Save dialog box than is possible using SFPutFile.

PROCEDURE SFPPutFile (where: Point; prompt: Str255;

origName: Str255; dlgHook: DlgHookProcPtr;

VAR reply: SFReply; dlgID: Integer;

filterProc: ModalFilterProcPtr);

where The upper-left corner of the dialog box, in global coordinates.

prompt The prompt message to be displayed over the text field.

origName The initial name of the file, if any.

Trap macro Selector

_Pack3 $0001
3-48 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

reply The reply record, which SFPPutFile fills in before returning.

dlgID The resource ID of a customized dialog template. To use the standard
template, set this parameter to –3999.

filterProc A pointer to your modal-dialog filter function, which determines how the
ModalDialog procedure filters events when called by the SFPPutFile
procedure. Specify a value of NIL if you are not supplying your own
function. See “Writing a Modal-Dialog Filter Function” on page 3-28 for a
description of the modal-dialog filter function.

DESCRIPTION

The SFPPutFile procedure is an alternative to SFPutFile when you want to display
a customized Save dialog box or handle the default dialog box in a customized way.
During the dialog, SFPPutFile gets and handles events (possibly with the assistance of
application-defined callback routines) until the user completes the interaction, either by
selecting a name and authorizing the save operation or by canceling the save operation.
SFPPutFile returns the user’s input in a record of type SFReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPPutFile are

SPECIAL CONSIDERATIONS

Because SFPPutFile may move memory, you should not call it at interrupt time.

Opening Files 3

You can use the StandardGetFile procedure to present the standard user interface
when the user asks to open a file. If you need to add elements to the default dialog boxes
or exercise greater control over user actions in the dialog box, use CustomGetFile.

If your application is designed to execute in system software versions earlier than
version 7.0, you can use the corresponding procedures SFGetFile and SFPGetFile.

Trap macro Selector

_Pack3 $0003
Standard File Package Reference 3-49

C H A P T E R 3

Standard File Package
StandardGetFile 3

You can use the StandardGetFile procedure to display the default Open dialog box
when the user is opening a file.

PROCEDURE StandardGetFile (fileFilter: FileFilterProcPtr;

numTypes: Integer;

typeList: SFTypeList;

VAR reply: StandardFileReply);

fileFilter A pointer to an optional file filter function, provided by your application,
through which StandardGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

reply The reply record, which StandardGetFile fills in before returning.

DESCRIPTION

The StandardGetFile procedure presents a dialog box through which the user
specifies the name and location of a file to be opened. While the dialog box is active,
StandardGetFile gets and handles events until the user completes the interaction,
either by selecting a file to open or by canceling the operation. StandardGetFile
returns the user’s input in a record of type StandardFileReply.

The fileFilter, numTypes, and typeList parameters together determine which
files appear in the displayed list. The first filtering is by file type, which you specify in
the numTypes and typeList parameters. The numTypes parameter specifies the
number of file types to be displayed. You can specify one or more types. If you specify a
numTypes value of –1, the first filtering passes files of all types.

The fileFilter parameter points to an optional file filter function, provided by your
application, through which StandardGetFile passes files of the specified types. See
“Writing a File Filter Function” on page 3-20 for a description of the file filter function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for StandardGetFile are

SPECIAL CONSIDERATIONS

The StandardGetFile procedure is not available in all versions of system software.
Use the Gestalt function to determine whether StandardGetFile is available before
calling it.

Because StandardGetFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0006
3-50 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
CustomGetFile 3

Call the CustomGetFile procedure when your application requires more control over
the Open dialog box than is possible using StandardGetFile.

PROCEDURE CustomGetFile (fileFilter: FileFilterYDProcPtr;

numTypes: Integer;

typeList: SFTypeList;

VAR reply: StandardFileReply;

dlgID: Integer;

where: Point;

dlgHook: DlgHookYDProcPtr;

filterProc: ModalFilterYDProcPtr;

activeList: Ptr;

activateProc: ActivateYDProcPtr;

yourDataPtr: UNIV Ptr);

fileFilter A pointer to an optional file filter function, provided by your application,
through which CustomGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

reply The reply record, which CustomGetFile fills in before returning.

dlgID The resource ID of a customized dialog template. To use the standard
template, set this parameter to 0.

where The upper-left corner of the dialog box in global coordinates. If you
specify the point (–1,–1), CustomGetFile automatically centers the
dialog box on the screen.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you have not
added any items to the dialog box and want the standard items handled
in the standard ways. See “Writing a Dialog Hook Function” on page 3-21
for a description of the dialog hook function.

filterProc A pointer to your modal-dialog filter function, which determines how
ModalDialog filters events when called by CustomGetFile. Specify a
value of NIL if you are not supplying your own function. See “Writing a
Modal-Dialog Filter Function” on page 3-28 for a description of the
modal-dialog filter function.

activeList A pointer to a list of all dialog items that can be activated—that is, made
the target of keyboard input. The list is stored as an array of 16-bit
integers. The first integer is the number of items in the list. The remaining
integers are the item numbers of all possible keyboard targets, in the
order that they are activated by the Tab key. If you supply an
activeList parameter of NIL, CustomGetFile directs all keyboard
input to the displayed list.
Standard File Package Reference 3-51

C H A P T E R 3

Standard File Package
activateProc
A pointer to your activation procedure, which controls the highlighting of
dialog items that are defined by your application and that can receive
keyboard input. See “Writing an Activation Procedure” on page 3-30 for a
description of the activation procedure.

yourDataPtr
A pointer to optional data supplied by your application. When
CustomGetFile calls any of your callback routines, it pushes this
parameter on the stack, making the data available to your callback
routines. If you are not supplying any data of your own, specify a
value of NIL.

DESCRIPTION

The CustomGetFile procedure is an alternative to StandardGetFile when you want
to use a customized dialog box or handle the default Open dialog box in a customized
way. CustomGetFile presents a dialog box through which the user specifies the name
and location of a file to be opened. While the dialog box is active, CustomGetFile gets
and handles events until the user completes the interaction, either by selecting a file to
open or by canceling the operation. CustomGetFile returns the user’s input in a record
of type StandardFileReply.

The first four parameters are similar to the same parameters in StandardGetFile.
The fileFilter, numTypes, and typeList parameters determine which files
appear in the list of choices. If you specify a value of –1 in the numTypes parameter,
CustomGetFile displays or passes to your file filter function all files and folders (not
just the files) at the current level of the display hierarchy. If you provide a filter function,
CustomGetFile passes it both the pointer to the catalog entry for each file to be
processed and also a pointer to the optional data passed by your application in its call
to CustomGetFile.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for CustomGetFile are

SPECIAL CONSIDERATIONS

The CustomGetFile procedure is not available in all versions of system software.
Use the Gestalt function to determine whether CustomGetFile is available before
calling it.

Because CustomGetFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0008
3-52 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
SFGetFile 3

Use the SFGetFile procedure to display the default Open dialog box when the user is
opening a file.

PROCEDURE SFGetFile (where: Point; prompt: Str255;

fileFilter: FileFilterProcPtr;

numTypes: Integer; typeList: SFTypeList;

dlgHook: DlgHookProcPtr; VAR reply: SFReply);

where The upper-left corner of the dialog box, in global coordinates.

prompt Ignored.

fileFilter A pointer to an optional file filter function, provided by your application,
through which SFGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you want the
standard items handled in the standard ways.

reply The reply record, which SFGetFile fills in before returning.

DESCRIPTION

The SFGetFile procedure displays a dialog box listing the names of a specific
group of files from which the user can select one to be opened (as during an Open
menu command). During the dialog, SFGetFile gets and handles events (possibly
with the assistance of application-defined callback routines) until the user completes
the interaction, either by selecting a file to open or by canceling the open operation.
SFGetFile returns the user’s input in a record of type SFReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFGetFile are

SPECIAL CONSIDERATIONS

Because SFGetFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0002
Standard File Package Reference 3-53

C H A P T E R 3

Standard File Package
SFPGetFile 3

Call the SFPGetFile procedure when your application requires more control over the
Open dialog box than is possible using SFGetFile.

PROCEDURE SFPGetFile (where: Point; prompt: Str255;
fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: DlgHookProcPtr;
VAR reply: SFReply; dlgID: Integer;
filterProc: ModalFilterProcPtr);

where The upper-left corner of the dialog box, in global coordinates.

prompt Ignored.

fileFilter A pointer to an optional file filter function, provided by your application,
through which SFPGetFile passes files of the specified types.

numTypes The number of file types to be displayed. If you specify a numTypes
value of –1, the first filtering passes files of all types.

typeList A list of file types to be displayed.

dlgHook A pointer to your dialog hook function, which handles item selections
received from the Dialog Manager. Specify a value of NIL if you have not
added any items to the dialog box and want the standard items handled
in the standard ways.

reply The reply record, which SFPGetFile fills in before returning.

dlgID The resource ID of a customized dialog template.

filterProc A pointer to your modal-dialog filter function, which determines how
the ModalDialog procedure filters events when called by the
SFPGetFile procedure. Specify a value of NIL if you are not supplying
your own function.

DESCRIPTION

The SFPGetFile procedure is an alternative to SFGetFile when you want to display
a customized Open dialog box or handle the default dialog box in a customized way.
During the dialog, SFPGetFile gets and handles events (possibly with the assistance of
application-defined callback routines) until the user completes the interaction, either by
selecting a file to open or by canceling the open operation. SFPGetFile returns the
user’s input in a record of type SFReply.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SFPGetFile are

SPECIAL CONSIDERATIONS

Because SFPGetFile may move memory, you should not call it at interrupt time.

Trap macro Selector

_Pack3 $0004
3-54 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Application-Defined Routines 3
This section describes the application-defined routines whose addresses you pass to
some of the Standard File Package routines. You can define

■ a file filter function for determining which files the user can open

■ a dialog hook function for handling user actions in the dialog boxes

■ a modal-dialog filter function for handling user events received from the Event
Manager

■ an activation procedure for highlighting the display when keyboard input is directed
at a customized field defined by your application

File Filter Functions 3

You specify a file filter function to determine which files appear in the displayed list of
files and folders when the user is opening a file. You can define a standard or custom
file filter.

MyStandardFileFilter 3

A file filter function whose address is passed to StandardGetFile should have the
following form:

FUNCTION MyStandardFileFilter (pb: CInfoPBPtr): Boolean;

pb A pointer to a catalog information parameter block.

DESCRIPTION

When StandardGetFile is displaying the contents of a volume or folder, it checks the
file type of each file and filters out files whose types do not match your application’s
specifications. If your application also supplies a file filter function, the Standard File
Package calls that function each time it identifies a file of an acceptable type.

When your file filter function is called, it is passed, in the pb parameter, a pointer to a
catalog information parameter block. See the chapter “File Manager” in this book for a
description of the fields of this parameter block.

Your function evaluates the catalog information parameter block and returns a Boolean
value that determines whether the file is filtered (that is, a value of TRUE suppresses
display of the filename, and a value of FALSE allows the display). If you do not supply a
file filter function, the Standard File Package displays all files of the specified types.

SEE ALSO

See “Writing a File Filter Function” on page 3-20 for a sample file filter function.
Standard File Package Reference 3-55

C H A P T E R 3

Standard File Package
MyCustomFileFilter 3

A file filter function whose address is passed to CustomGetFile should have the
following form:

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr):

 Boolean;

pb A pointer to a catalog information parameter block.

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFile.

DESCRIPTION

When CustomGetFile is displaying the contents of a volume or folder, it checks the file
type of each file and filters out files whose types do not match your application’s
specifications. If your application also supplies a file filter function, the Standard File
Package calls that function each time it identifies a file of an acceptable type.

When your file filter function is called, it is passed, in the pb parameter, a pointer to a
catalog information parameter block. See the chapter “File Manager” in this book for
a description of the fields of this parameter block.

Your function evaluates the catalog information parameter block and returns a Boolean
value that determines whether the file is filtered (that is, a value of TRUE suppresses
display of the filename, and a value of FALSE allows the display). If you do not supply a
file filter function, the Standard File Package displays all files of the specified types.

SEE ALSO

See “Writing a File Filter Function” on page 3-20 for a sample file filter function.

Dialog Hook Functions 3

A dialog hook function handles user selections in a dialog box.

MyDlgHook 3

A dialog hook function should have the following form:

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr;

 myDataPtr: Ptr): Integer;

item The number of the item selected.

theDialog A pointer to the dialog record of the dialog box.

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFile or CustomPutFile.
3-56 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
DESCRIPTION

You supply a dialog hook function to handle user selections of items that you added
to a dialog box. If you provide a dialog hook function, CustomPutFile and
CustomGetFile call your function immediately after calling ModalDialog. They
pass your function the item number returned by ModalDialog, a pointer to the
dialog record, and a pointer to the data received from your application, if any.

Your dialog hook function returns as its function result an integer that is either the item
number passed to it or some other item number. If your dialog hook function does not
handle a selection, it should pass the item number back to the Standard File Package for
processing by setting its return value equal to the item number. If your dialog hook
function does handle the selection, it should pass back sfHookNullEvent or the
number of some other pseudo-item.

SEE ALSO

See “Writing a Dialog Hook Function” on page 3-21 for a sample dialog hook function.

Modal-Dialog Filter Functions 3

A modal-dialog filter function controls events closer to their source by filtering the
events received from the Event Manager. The Standard File Package itself contains an
internal modal-dialog filter function that maps keypresses and other user input onto the
equivalent dialog box items. If you also want to process events at this level, you can
supply your own filter function.

MyModalFilter 3

A modal-dialog filter function whose address is passed to SFPGetFile or SFPPutFile
should have the following form:

FUNCTION MyModalFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

theDialog A pointer to the dialog record of the dialog box.

theEvent The event record for the event.

itemHit The number of the item selected.

DESCRIPTION

Your modal-dialog filter function determines how the Dialog Manager procedure
ModalDialog filters events. The ModalDialog procedure retrieves events by calling
the Event Manager function GetNextEvent. The Standard File Package contains an
internal filter function that performs some preliminary processing on each event it
Standard File Package Reference 3-57

C H A P T E R 3

Standard File Package
receives. If you provide a modal-dialog filter function, ModalDialog calls your filter
function after it calls the internal Standard File Package filter function and before it sends
the event to your dialog hook function.

Your modal-dialog filter function returns a Boolean value that reports whether it
handled the event. If your function returns a value of FALSE, ModalDialog processes
the event through its own filters. If your function returns a value of TRUE,
ModalDialog returns with no further action.

SEE ALSO

See “Writing a Modal-Dialog Filter Function” on page 3-28 for a sample modal-dialog
filter function.

MyModalFilterYD 3

A modal-dialog filter function whose address is passed to CustomGetFile or
CustomPutFile should have the following form:

FUNCTION MyModalFilterYD (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer;

myDataPtr: Ptr): Boolean;

theDialog A pointer to the dialog record of the dialog box.

theEvent The event record for the event.

itemHit The number of the item selected.

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFile or CustomPutFile.

DESCRIPTION

Your modal-dialog filter function determines how the Dialog Manager procedure
ModalDialog filters events. The ModalDialog procedure retrieves events by calling
the Event Manager function GetNextEvent. The Standard File Package contains an
internal filter function that performs some preliminary processing on each event it
receives. If you provide a modal-dialog filter function, ModalDialog calls your filter
function after it calls the internal Standard File Package filter function and before it sends
the event to your dialog hook function.

Your modal-dialog filter function returns a Boolean value that reports whether it
handled the event. If your function returns a value of FALSE, ModalDialog processes
the event through its own filters. If your function returns a value of TRUE,
ModalDialog returns with no further action.
3-58 Standard File Package Reference

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
SEE ALSO

See “Writing a Modal-Dialog Filter Function” on page 3-28 for a sample modal-dialog
filter function.

Activation Procedures 3

An activation procedure controls the highlighting of dialog items that are defined by
your application and can receive keyboard input.

MyActivateProc 3

An activation procedure should have the following form:

PROCEDURE MyActivateProc (theDialog: DialogPtr; itemNo: Integer;

activating: Boolean; myDataPtr: Ptr);

theDialog A pointer to the dialog record of the dialog box.

itemNo The number of the item selected.

activating
A Boolean value that specifies whether the field is being activated (TRUE)
or deactivated (FALSE).

myDataPtr A pointer to the optional data whose address is passed to
CustomGetFile or CustomPutFile.

DESCRIPTION

Your activation procedure controls the highlighting of dialog items that are defined by
your application and can receive keyboard input. Ordinarily, you need to supply an
activation procedure only if your application builds a list from which the user can select
entries. The Standard File Package supplies the activation procedure for the file display
list and for all TextEdit fields. You can also use the activation procedure to keep track of
which field is receiving keyboard input, if your application needs that information.

Your application is responsible for removing the highlighting when one of its fields
becomes inactive and for adding the highlighting when one of its fields becomes active.
The Standard File Package can handle the highlighting of all TextEdit fields, even those
defined by your application.
Standard File Package Reference 3-59

C H A P T E R 3

Standard File Package
Summary of the Standard File Package 3

Pascal Summary 3

Constants 3

CONST

{Gestalt selector and reply}

gestaltStandardFileAttr = 'stdf';

gestaltStandardFile58 = 0;

{standard dialog resource IDs}

sfPutDialogID = -6043; {Save dialog box}

sfGetDialogID = -6042; {Open dialog box}

{items that appear in both the Open and Save dialog boxes}

sfItemOpenButton = 1; {Save or Open button}

sfItemCancelButton = 2; {Cancel button}

sfItemBalloonHelp = 3; {Balloon Help}

sfItemVolumeUser = 4; {volume icon and name}

sfItemEjectButton = 5; {Eject button}

sfItemDesktopButton = 6; {Desktop button}

sfItemFileListUser = 7; {display list}

sfItemPopUpMenuUser = 8; {directory pop-up menu}

sfItemDividerLinePict = 9; {dividing line between buttons}

{items that appear in Save dialog boxes only}

sfItemFileNameTextEdit = 10; {filename field}

sfItemPromptStaticText = 11; {filename prompt text area}

sfItemNewFolderUser = 12; {New Folder button}

{pseudo-items available prior to version 7.0}

sfHookFirstCall = -1; {initialize display}

sfHookCharOffset = $1000; {offset for character input}

sfHookNullEvent = 100; {null event}

sfHookRebuildList = 101; {redisplay list}

sfHookFolderPopUp = 102; {display parent-directory menu}

sfHookOpenFolder = 103; {display contents of selected }

{ folder or volume}
3-60 Summary of the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
{additional pseudo-items introduced in version 7.0}

sfHookLastCall = -2; {clean up after display}

sfHookOpenAlias = 104; {resolve alias}

sfHookGoToDesktop = 105; {display contents of desktop}

sfHookGoToAliasTarget = 106; {select target of alias}

sfHookGoToParent = 107; {display contents of parent}

sfHookGoToNextDrive = 108; {display contents of next drive}

sfHookGoToPrevDrive = 109; {display contents of previous drive}

sfHookChangeSelection = 110; {select target of reply record}

sfHookSetActiveOffset = 200; {switch active item}

{refCon field in the window record in the dialog record}

sfMainDialogRefCon = 'stdf'; {main dialog box}

sfNewFolderDialogRefCon = 'nfdr'; {New Folder dialog box}

sfReplaceDialogRefCon = 'rplc'; {name conflict dialog box}

sfStatWarnDialogRefCon = 'stat'; {stationery warning}

sfErrorDialogRefCon = 'err '; {general error report}

sfLockWarnDialogRefCon = 'lock'; {software lock warning}

{resource IDs and item numbers of pre-7.0 dialog boxes}

putDlgID = -3999; {Save dialog box}

putSave = 1; {Save button}

putCancel = 2; {Cancel button}

putEject = 5; {Eject button}

putDrive = 6; {Drive button}

putName = 7; {filename field}

getDlgID = -4000; {Open dialog box}

getOpen = 1; {Open button}

getCancel = 3; {Cancel button}

getEject = 5; {Eject button}

getDrive = 6; {Drive button}

getNmList = 7; {list of names}

getScroll = 8; {scroll bar}
Summary of the Standard File Package 3-61

C H A P T E R 3

Standard File Package
Data Types 3

Standard File Reply Records

TYPE StandardFileReply = {enhanced standard file reply record}

RECORD

sfGood: Boolean; {TRUE if user did not cancel}

sfReplacing: Boolean; {TRUE if replacing file with same name}

sfType: OSType; {file type}

sfFile: FSSpec; {selected file, folder, or volume}

sfScript: ScriptCode; {script of file, folder, or volume name}

sfFlags: Integer; {Finder flags of selected item}

sfIsFolder: Boolean; {selected item is a folder}

sfIsVolume: Boolean; {selected item is a volume}

sfReserved1: LongInt; {reserved}

sfReserved2: Integer; {reserved}

END;

SFReply = {original standard file reply record}

RECORD

good: Boolean; {TRUE if user did not cancel}

copy: Boolean; {reserved}

fType: OSType; {file type}

vRefNum: Integer; {working directory reference number}

version: Integer; {reserved}

fName: Str63; {filename}

END;

Standard File Type List

SFTypeList = ARRAY[0..3] OF OSType;

Callback Routine Pointer Types

DlgHookProcPtr = ProcPtr; {dialog hook function}

DlgHookYDProcPtr = ProcPtr; {dialog hook function with data}

FileFilterProcPtr = ProcPtr; {file filter function}

FileFilterYDProcPtr = ProcPtr; {file filter function with data}

ModalFilterProcPtr = ProcPtr; {modal-dialog filter}

ModalFilterYDProcPtr = ProcPtr; {modal-dialog filter with data}

ActivateYDProcPtr = ProcPtr; {activation procedure}
3-62 Summary of the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Standard File Package Routines 3

Saving Files

PROCEDURE StandardPutFile (prompt: Str255; defaultName: Str255;
VAR reply: StandardFileReply);

PROCEDURE CustomPutFile (prompt: Str255; defaultName: Str255;
VAR reply: StandardFileReply; dlgID: Integer;
where: Point; dlgHook: DlgHookYDProcPtr;
filterProc: ModalFilterYDProcPtr;
activeList: Ptr;
activateProc: ActivateYDProcPtr;
yourDataPtr: UNIV Ptr);

PROCEDURE SFPutFile (where: Point; prompt: Str255;
origName: Str255; dlgHook: DlgHookProcPtr;
VAR reply: SFReply);

PROCEDURE SFPPutFile (where: Point; prompt: Str255;
origName: Str255; dlgHook: DlgHookProcPtr;
VAR reply: SFReply; dlgID: Integer;
filterProc: ModalFilterProcPtr);

Opening Files

PROCEDURE StandardGetFile (fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
VAR reply: StandardFileReply);

PROCEDURE CustomGetFile (fileFilter: FileFilterYDProcPtr;
numTypes: Integer; typeList: SFTypeList;
VAR reply: StandardFileReply; dlgID: Integer;
where: Point; dlgHook: DlgHookYDProcPtr;
filterProc: ModalFilterYDProcPtr;
activeList: Ptr;
activateProc: ActivateYDProcPtr;
yourDataPtr: UNIV Ptr);

PROCEDURE SFGetFile (where: Point; prompt: Str255;
fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: DlgHookProcPtr; VAR reply: SFReply);

PROCEDURE SFPGetFile (where: Point; prompt: Str255;
fileFilter: FileFilterProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: DlgHookProcPtr; VAR reply: SFReply;
dlgID: Integer;
filterProc: ModalFilterProcPtr);
Summary of the Standard File Package 3-63

C H A P T E R 3

Standard File Package
Application-Defined Routines 3

FUNCTION MyStandardFileFilter
(pb: CInfoPBPtr): Boolean;

FUNCTION MyCustomFileFilter (pb: CInfoPBPtr; myDataPtr: Ptr): Boolean;

FUNCTION MyDlgHook (item: Integer; theDialog: DialogPtr;
myDataPtr: Ptr): Integer;

FUNCTION MyModalFilter (theDialog: DialogPtr;
VAR theEvent: EventRecord;
VAR itemHit: Integer): Boolean;

FUNCTION MyModalFilterYD (theDialog: DialogPtr;
VAR theEvent: EventRecord;
VAR itemHit: Integer; myDataPtr: Ptr): Boolean;

PROCEDURE MyActivateProc (theDialog: DialogPtr; itemNo: Integer;
activating: Boolean; myDataPtr: Ptr);

C Summary 3

Constants 3

/*Gestalt selector and reply*/

#define gestaltStandardFileAttr 'stdf'

#define gestaltStandardFile58 0

/*standard dialog resource IDs*/

enum {sfPutDialogID = (-6043)}; /*Save dialog box*/

enum {sfGetDialogID = (-6042)}; /*Open dialog box*/

/*items that appear in both the Open and Save dialog boxes/*
enum {sfItemOpenButton = 1}; /*Save or Open button*/
enum {sfItemCancelButton = 2}; /*Cancel button*/
enum {sfItemBalloonHelp = 3}; /*Balloon Help*/
enum {sfItemVolumeUser = 4}; /*volume icon and name*/
enum {sfItemEjectButton = 5}; /*Eject button*/
enum {sfItemDesktopButton = 6}; /*Desktop button*/
enum {sfItemFileListUser = 7}; /*display list*/
enum {sfItemPopUpMenuUser = 8}; /*directory pop-up menu*/
enum {sfItemDividerLinePict = 9}; /*dividing line between buttons*/

/*items that appear in Save dialog boxes only*/

enum {sfItemFileNameTextEdit = 10}; /*filename field*/

enum {sfItemPromptStaticText = 11}; /*filename prompt text area*/

enum {sfItemNewFolderUser = 12}; /*New Folder button*/
3-64 Summary of the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
/*pseudo-items available prior to version 7.0*/

enum {sfHookFirstCall = (-1)}; /*initialize display*/

enum {sfHookCharOffset = 0x1000};/*offset for character input*/

enum {sfHookNullEvent = 100}; /*null event*/

enum {sfHookRebuildList = 101}; /*redisplay list*/

enum {sfHookFolderPopUp = 102}; /*display parent-directory menu*/

enum {sfHookOpenFolder = 103}; /*display contents of selected */

/* folder or volume*/

/*additional pseudo-items introduced in version 7.0*/

enum {sfHookLastCall = (-2)}; /*clean up after display*/

enum {sfHookOpenAlias = 104}; /*resolve alias*/

enum {sfHookGoToDesktop = 105}; /*display contents of desktop*/

enum {sfHookGoToAliasTarget = 106}; /*select target of alias*/

enum {sfHookGoToParent = 107}; /*display contents of parent*/

enum {sfHookGoToNextDrive = 108}; /*display contents of next drive*/

enum {sfHookGoToPrevDrive = 109}; /*display contents of previous drive*/

enum {sfHookChangeSelection = 110}; /*select target of reply record*/

enum {sfHookSetActiveOffset = 200}; /*switch active item*/

/*refCon field in the window record in the dialog record*/

#define sfMainDialogRefCon 'stdf' /*main dialog box*/

#define sfNewFolderDialogRefCon 'nfdr' /*New Folder dialog box*/

#define sfReplaceDialogRefCon 'rplc' /*name conflict dialog box*/

#define sfStatWarnDialogRefCon 'stat' /*stationery warning*/

#define sfErrorDialogRefCon 'err ' /*general error report*/

#define sfLockWarnDialogRefCon 'lock' /*software lock warning*/

/*resource IDs and item numbers of pre-7.0 dialog boxes*/

enum {putDlgID = -3999}; /*Save dialog box*/

enum {putSave = 1}; /*Save button*/

enum {putCancel = 2}; /*Cancel button*/

enum {putEject = 5}; /*Eject button*/

enum {putDrive = 6}; /*Drive button*/

enum {putName = 7}; /*filename field*/

enum {getDlgID = -4000}; /*Open dialog box*/

enum {getOpen = 1}; /*Open button*/

enum {getCancel = 3}; /*Cancel button*/

enum {getEject = 5}; /*Eject button*/

enum {getDrive = 6}; /*Drive button*/

enum {getNmList = 7}; /*list of names*/

enum {getScroll = 8}; /*scroll bar*/
Summary of the Standard File Package 3-65

C H A P T E R 3

Standard File Package
Data Types 3

Standard File Reply Records

struct StandardFileReply { /*enhanced standard file reply record*/

Boolean sfGood; /*TRUE if user did not cancel*/

Boolean sfReplacing;/*TRUE if replacing file with same name*/

OSType sfType; /*file type*/

FSSpec sfFile; /*selected file, folder, or volume*/

ScriptCode sfScript; /*script of file, folder, or volume name*/

short sfFlags; /*Finder flags of selected item*/

Boolean sfIsFolder; /*selected item is a folder*/

Boolean sfIsVolume; /*selected item is a volume*/

long sfReserved1;/*reserved*/

short sfReserved2;/*reserved*/

};

typedef struct StandardFileReply StandardFileReply;

struct SFReply { /*original standard file reply record*/

Boolean good; /*TRUE if user did not cancel*/

Boolean copy; /*reserved*/

OSType fType; /*file type*/

short vRefNum; /*working directory reference number*/

short version; /*reserved*/

Str63 fName; /*filename*/

};

typedef struct SFReply SFReply;

Standard File Type List

typedef OSType SFTypeList[4];

Callback Routine Pointer Types

/*dialog hook function*/

typedef pascal short (*DlgHookProcPtr)
(short item, DialogPtr theDialog);

/*dialog hook function with data*/

typedef pascal short (*DlgHookYDProcPtr)
(short item, DialogPtr theDialog,
void *yourDataPtr);
3-66 Summary of the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
/*file filter function*/

typedef pascal Boolean (*FileFilterProcPtr)
(ParmBlkPtr PB);

/*file filter function with data*/

typedef pascal Boolean (*FileFilterYDProcPtr)
(ParmBlkPtr PB, void *yourDataPtr);

/*modal-dialog filter*/

typedef pascal ProcPtr ModalFilterProcPtr;
(DialogPtr theDialog, EventRecord *theEvent,
short *itemHit);

/*modal-dialog filter with data*/

typedef pascal Boolean (*ModalFilterYDProcPtr)
(DialogPtr theDialog, EventRecord *theEvent,
short *itemHit, void *yourDataPtr);

/*activation procedure*/

typedef pascal void (*ActivateYDProcPtr)
(DialogPtr theDialog,
short itemNo, Boolean activating,
void *yourDataPtr);

Standard File Package Routines 3

Saving Files

pascal void StandardPutFile (const Str255 prompt, const Str255 defaultName,
StandardFileReply *reply);

pascal void CustomPutFile (const Str255 prompt, const Str255 defaultName,
StandardFileReply *reply, short dlgID,
Point where, DlgHookYDProcPtr dlgHook,
ModalFilterYDProcPtr filterProc,
short *activeList,
ActivateYDProcPtr activateProc,
void *yourDataPtr);

pascal void SFPutFile (Point where, const Str255 prompt,
const Str255 origName, DlgHookProcPtr dlgHook,
SFReply *reply);

pascal void SFPPutFile (Point where, const Str255 prompt,
const Str255 origName, DlgHookProcPtr dlgHook,
SFReply *reply, short dlgID,
ModalFilterProcPtr filterProc);
Summary of the Standard File Package 3-67

C H A P T E R 3

Standard File Package
Opening Files

pascal void StandardGetFile (const Str255 prompt,
FileFilterProcPtr fileFilter,
short numTypes, SFTypeList typeList,
StandardFileReply *reply);

pascal void CustomGetFile (FileFilterYDProcPtr fileFilter,
short numTypes, SFTypeList typeList,
StandardFileReply *reply, short dlgID,
Point where, DlgHookYDProcPtr dlgHook,
ModalFilterYDProcPtr filterProc,
short *activeList,
ActivateYDProcPtr activateProc,
void *yourDataPtr);

pascal void SFGetFile (Point where, const Str255 prompt,
FileFilterProcPtr fileFilter, short numTypes,
SFTypeList typeList, DlgHookProcPtr dlgHook,
SFReply *reply);

pascal void SFPGetFile (Point where, const Str255 prompt,
FileFilterProcPtr fileFilter,
short numTypes, SFTypeList typeList,
DlgHookProcPtr dlgHook, SFReply *reply,
short dlgID, ModalFilterProcPtr filterProc);

Application-Defined Routines 3

pascal Boolean MyStandardFileFilter
(CInfoPBPtr pb);

pascal Boolean MyCustomFileFilter
(CInfoPBPtr pb, Ptr myDataPtr);

pascal short MyDlgHook (short item, DialogPtr theDialog,
Ptr myDataPtr);

pascal Boolean MyModalFilter (DialogPtr theDialog,
EventRecord *theEvent, short *itemHit);

pascal Boolean MyModalFilterYD
(DialogPtr theDialog,
EventRecord *theEvent, short *itemHit,
Ptr myDataPtr);

pascal void MyActivateProc (DialogPtr theDialog, short itemNo,
Boolean activating, Ptr myDataPtr);
3-68 Summary of the Standard File Package

C H A P T E R 3

Standard File Package

3

S
tandard F

ile P
ackage
Assembly-Language Summary 3

Data Structures 3

New Standard File Reply Record

Old Standard File Reply Record

Trap Macros 3

Trap Macro Requiring Routine Selector

_Pack3

Global Variables 3

0 sfGood byte command-valid flag
1 sfReplacing byte replace existing file flag
2 sfType long file type
6 sfFile 70 bytes selected item

76 sfScript word display script
78 sfFlags word Finder flags from catalog
80 sfIsFolder byte folder flag
81 sfIsVolume byte volume flag
82 sfReserved1 long reserved
86 sfReserved2 word reserved

0 good byte command-valid flag
1 copy byte reserved
2 fType long file type
6 vRefNum word working directory reference number
8 version word reserved

10 fName 64 bytes name of file (length byte followed by up to
63 characters)

Selector Routine

$0001 SFPutFile

$0002 SFGetFile

$0003 SFPPutFile

$0004 SFPGetFile

$0005 StandardPutFile

$0006 StandardGetFile

$0007 CustomPutFile

$0008 CustomGetFile

CurDirStore long The directory ID of the current directory.
SFSaveDisk word The negative of the volume reference number of the current volume.
Summary of the Standard File Package 3-69

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to File Management TOC
	 Introduction to File Management
	 File Manager TOC
	 File Manager
	 Standard File Package TOC
	Standard File Package
	About the Standard File Package
	Standard User Interfaces
	Opening Files
	Saving Files
	Keyboard Equivalents

	Customized User Interfaces
	Saving Files
	Opening Files
	Selecting Volumes and Directories
	User Interface Guidelines

	Using the Standard File Package
	Presenting the Standard User Interface
	Customizing the User Interface
	Customizing Dialog Boxes
	Writing a File Filter Function
	Writing a Dialog Hook Function
	Writing a Modal-Dialog Filter Function
	Writing an Activation Procedure

	Setting the Current Directory
	Selecting a Directory
	Selecting a Volume
	Using the Original Procedures

	Standard File Package Reference
	Data Structures
	Enhanced Standard File Reply Record
	Original Standard File Reply Record

	Standard File Package Routines
	Saving Files
	Opening Files

	Application-Defined Routines
	File Filter Functions
	Dialog Hook Functions
	Modal-Dialog Filter Functions
	Activation Procedures

	Summary of the Standard File Package
	Pascal Summary
	Constants
	Data Types
	Standard File Package Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Standard File Package Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros
	Global Variables

	 Alias Manager TOC
	 Alias Manager
	 Disk Initialization Manager TOC
	 Disk Initialization Manager
	 Glossary
	 Index
	 Colophon

