

C H A P T E R 2

2

S
lot M

anager

Slot Manager 2

This chapter describes how your application or device driver can use the Slot Manager to
identify expansion cards and communicate with the firmware on a card.

You need to use the Slot Manager only if you are writing an application or a device
driver that must address an expansion card directly. For example, you need to use the
Slot Manager if you are writing a driver for a video card, but not if you only want to
display information on a monitor for which a device driver already exists.

The Slot Manager provides functions to help you search through the data structures that
expansion cards use to organize the information in their firmware. The meaning of the
information in the data structures varies from card to card; you need to know the
specifics of a card in order to interpret its data structures. To interpret these data
structures, you need to know the information in Designing Cards and Drivers for the
Macintosh Family, third edition, as well as information specific to the expansion card
you’re using.

This chapter begins with a brief introduction to Apple’s implementation of the NuBus
expansion interface . The NuBus interface provides a 32-bit-wide synchronous, multislot
expansion bus for adding expansion cards to Macintosh computers. This introduction
explains the firmware data structures of NuBus expansion cards, but does not provide
much detail about the information these data structures contain. If you are designing an
expansion card, you must read Designing Cards and Drivers for the Macintosh Family, third
edition. If you are writing a driver for a device on a card, you should also read the
chapter “Device Manager” in this book.

After introducing the NuBus architecture and expansion card design, this chapter
discusses how you can

■ enable and disable NuBus cards

■ delete, restore, enable, disable, and find information in an expansion card’s firmware

■ install and remove slot interrupt handlers

Introduction to Slots and Cards 2

The Macintosh Operating System provides a standardized interface to expansion cards
through the Slot Manager. The Slot Manager supports two types of expansion cards:
NuBus and processor-direct slot (PDS). Most Macintosh computers include one or both
of these expansion systems. Although the discussion and examples in this chapter use
NuBus, the information also applies to PDS expansion cards.

Processor-direct slot expansion cards connect directly to the processor bus, giving them
direct access to the microprocessor and therefore a speed advantage over NuBus cards.
However, because the PDS expansion interface is an extension of the processor bus, the
configuration of the slot depends on which microprocessor is used by the computer.
Refer to Designing Cards and Drivers for the Macintosh Family, third edition, for
information specific to PDS expansion cards.
Introduction to Slots and Cards 2-3

C H A P T E R 2

Slot Manager

Macintosh computers that include the NuBus expansion interface contain one or more
identical NuBus slots. Each slot is identified by slot a number in the range $1 through $E.
(Slot $0 corresponds to the main logic board, and slot $F is reserved for NuBus address
translation.)

Note
For convenience, this chapter refers to a NuBus configuration with six
slots numbered $9 through $E. Keep in mind that Macintosh computers
may have more or fewer slots. Refer to the appropriate Macintosh
Developer Note or Guide to the Macintosh Family Hardware, second
edition, for information about specific models. ◆

In Macintosh computers, the processor bus (which connects the microprocessor to RAM,
ROM, and the FPU) and the NuBus (which connects the NuBus slots) are connected by a
bus interface , as shown in Figure 2-1.

Figure 2-1 Simplified processor-bus and NuBus architecture

Both the processor bus and the NuBus are 4 bytes (32 bits) wide. The bus interface
transfers data between the buses in byte lanes. A byte lane is any of the 4 bytes that
make up the 32-bit bus. Because the processor bus and the NuBus interpret the
significance of bytes within words differently, the bus interface must perform byte-lane
swapping between the two buses.

The bus interface also performs some address translation between the two buses. It maps
certain address ranges on each bus to different address ranges on the other bus.
Designing Cards and Drivers for the Macintosh Family, third edition, discusses byte lanes
and address translation in more detail.

The next section,“Slot Address Allocations,” discusses the address ranges assigned by
the Macintosh architecture to each NuBus slot.

The section “Firmware” on page 2-7 introduces the data structures that cards use to
organize information in their firmware.

NuBus slots

NuBusProcessor bus
Translates between

processor bus

and NuBus

9 A B C D E

Bus

interface

RAM ROMFPU

CPU
2-4 Introduction to Slots and Cards

C H A P T E R 2

Slot Manager

2

S
lot M

anager

Slot Address Allocations 2
The Macintosh architecture assigns certain address ranges to each slot. The
microprocessor communicates with an expansion card in a particular slot by reading
or writing to memory in the slot’s address range. Expansion cards can also communicate
with each other in this manner.

The NuBus architecture supports 32-bit addressing, providing 4 gigabytes of address
space. All Macintosh computers that use Motorola 68030, 68040, or PowerPC processors
support 32-bit addressing under System 7. Macintosh computers that use Motorola
68000 or 68020 processors, and those running System 6, use 24-bit addressing. This
section describes address space allocation in both the 32-bit and 24-bit modes.

In 32-bit mode, the Macintosh architecture assigns two address ranges to each NuBus
slot: a 256-megabyte super slot space and a 16-megabyte standard slot space.

The 4 gigabytes of 32-bit address space contain 16 regions of 256 megabytes apiece. Each
region constitutes the super slot space for one possible slot ID. Each super slot space
spans an address range of $s000 0000 through $sFFF FFFF, where s is a hexadecimal digit
$1 through $E, corresponding to the slot ID. For example, the address range $9000 0000
through $9FFF FFFF constitutes the super slot space for slot $9.

The standard slot spaces are 16 megabytes apiece and have address ranges of the form
$Fs00 0000 through $FsFF FFFF, where s is the slot ID. The standard slot space for slot $9,
for example, is $F900 0000 through $F9FF FFFF. Figure 2-2 shows the super slot and
standard slot subdivisions of the 32-bit address space.

In 24-bit mode, software can address only a fraction of each card’s allocated address
range. In this mode, the Operating System assigns each slot a 1-megabyte minor slot
space. The bus interface translates 24-bit addresses on the processor bus with the form
$sx xxxx (where s is a slot ID and x is any hexadecimal digit) into 32-bit NuBus addresses
of the form $Fs0x xxxx, which is the first megabyte of the slot’s standard slot space.

For example, 24-bit addresses in the range $90 0000 through $9F FFFF constitute the
minor slot space corresponding to slot $9. The hardware translates these addresses into
the NuBus address range $F900 0000 through $F90F FFFF.
Introduction to Slots and Cards 2-5

C H A P T E R 2

Slot Manager

Figure 2-2 The NuBus 32-bit address space

Table 2-1 shows the address allocations for each slot ID.

Table 2-1 Slot address allocations by slot ID

Slot ID
24-bit minor
slot space (1 MB)

32-bit minor
slot space (1 MB)

Standard slot
space (16 MB)

Super slot
space (256 MB)

$1 $1x xxxx $F10x xxxx $F1xx xxxx $1xxx xxxx

$2 $2x xxxx $F20x xxxx $F2xx xxxx $2xxx xxxx

$3 $3x xxxx $F30x xxxx $F3xx xxxx $3xxx xxxx

$4 $4x xxxx $F40x xxxx $F4xx xxxx $4xxx xxxx

$5 $5x xxxx $F50x xxxx $F5xx xxxx $5xxx xxxx

$6 $6x xxxx $F60x xxxx $F6xx xxxx $6xxx xxxx

$7 $7x xxxx $F70x xxxx $F7xx xxxx $7xxx xxxx

$8 $8x xxxx $F80x xxxx $F8xx xxxx $8xxx xxxx

continued

$E

$D

$C

$B

$A

$9

Super slot space
$FFFF FFFF

$8

$7

$6

$5

$4

$3

$2

$1

$F000 0000

$E000 0000

$D000 0000

$C000 0000

$B000 0000

$A000 0000

$9000 0000

$8000 0000

$7000 0000

$6000 0000

$5000 0000

$4000 0000

$3000 0000

$2000 0000

$1000 0000

$0000 0000

$E

$D

$C

$B

$A

$9

Standard slot space
$FFFF FFFF

$8

$7

$6

$5

$4

$3

$2

$1

$FF00 0000

$FE00 0000

$FD00 0000

$FC00 0000

$FB00 0000

$FA00 0000

$F900 0000

$F800 0000

$F700 0000

$F600 0000

$F500 0000

$F400 0000

$F300 0000

$F200 0000

$F100 0000

$F000 0000
2-6 Introduction to Slots and Cards

C H A P T E R 2

Slot Manager

2

S
lot M

anager

Firmware 2
The firmware of a NuBus expansion card contains information that identifies the card
and its functions. Your application uses the Slot Manager to communicate with this
firmware. This firmware, called the declaration ROM, may also include other
information, such as initialization code or code for drivers that communicate with
devices on the card. The sole purpose of many Slot Manager routines is to provide access
to the information in the declaration ROM.

This section discusses the data structures used to store information in the declaration
ROM. You’ll need to understand these structures in order to use the Slot Manager
routines. To create firmware for an expansion card, you’ll need to read Designing Cards
and Drivers for the Macintosh Family, third edition.

The declaration ROM includes these elements:

■ The sResources . An sResource is a data structure in the firmware of an expansion
card’s declaration ROM that defines a function or capability of the card. An sResource
typically contains information about a single function or capability, although some
sResources may contain other data—for example, device drivers, icons, fonts, code,
or vendor-specific information.

■ The sResource directory . The sResource directory is a special sResource that contains
offsets to all of the other sResources in the declaration ROM.

■ The format block . The format block is a data structure that allows the Slot Manager to
find the declaration ROM and to validate it. It contains some identification
information and an offset to the sResource directory.

The next few sections discuss these data structures in more detail.

The sResource 2
An sResource consists of a list of 4-byte entries. The first byte of each entry is an ID field
that identifies the type of data contained in the entry. The next 3 bytes contain either data
for the sResource or an offset to additional data such as icon definitions, code, or device
drivers relating to the sResource.

$9 $9x xxxx $F90x xxxx $F9xx xxxx $9xxx xxxx

$A $Ax xxxx $FA0x xxxx $FAxx xxxx $Axxx xxxx

$B $Bx xxxx $FB0x xxxx $FBxx xxxx $Bxxx xxxx

$C $Cx xxxx $FC0x xxxx $FCxx xxxx $Cxxx xxxx

$D $Dx xxxx $FD0x xxxx $FDxx xxxx $Dxxx xxxx

$E $Ex xxxx $FE0x xxxx $FExx xxxx $Exxx xxxx

Table 2-1 Slot address allocations by slot ID (continued)

Slot ID
24-bit minor
slot space (1 MB)

32-bit minor
slot space (1 MB)

Standard slot
space (16 MB)

Super slot
space (256 MB)
Introduction to Slots and Cards 2-7

C H A P T E R 2

Slot Manager

Note
An sResource is sometimes referred to as a slot resource. Note, however,
that an sResource is a data structure in the firmware of a NuBus
expansion card and not the type of Macintosh resource associated
with the Resource Manager (which is described in Inside Macintosh:
More Macintosh Toolbox). ◆

The last entry in an sResource must contain an end-of-list marker—a 4-byte series with
the value $FF 00 00 00. Figure 2-3 shows the format of a typical sResource.

Figure 2-3 The structure of a typical sResource

The ID field of each sResource entry indicates the type of information in the offset field
of the entry. Apple reserves the range 0 through 127 for common sResource IDs.
Designing Cards and Drivers for the Macintosh Family, third edition, includes a complete list
of the Apple-defined sResource IDs and their meanings.

The offset field of each entry can contain a byte or word of data, or an offset to a larger
block of data. This field takes one of three possible forms:

■ two $00 bytes followed by an 8-bit byte of data

■ a single $00 byte followed by a 16-bit word of data

■ a signed 24-bit offset to a larger data structure; the offset is relative to the address of
the preceding ID field

sResource Bytes

1

3

1

3

sRsrcType offset

sRsrcName offset

sRsrcType ID (value = 1)

sRsrcName ID (value = 2)

1

3Other sResource offset

Other sResource ID

4End-of-list marker

(value = $FF00 0000)

ID fields

Offset fields
2-8 Introduction to Slots and Cards

C H A P T E R 2

Slot Manager

2

S
lot M

anager

Table 2-2 lists the kinds of large data types commonly used in sResources.

The sBlock and sExecBlock data structures begin with a size field, which contains
the physical size of the block (including the size field). In the sBlock structure, the
size field is followed by data. The sExecBlock structure includes additional fields and
a code block. Figure 2-4 shows these structures.

Figure 2-4 The format of the sBlock and sExecBlock data structures

Type and Name Entries 2

As shown in Figure 2-3, the Slot Manager requires that each sResource contain an
sRsrcType entry, which identifies the sResource type, and an sRsrcName entry, which
provides the sResource name.

The sRsrcType entry contains an ID value of 1 and an offset to an sRsrcType entry.
Figure 2-5 shows the format of an sRsrcType entry.

Table 2-2 Large data types used in sResources

Data type Description

Long 32 bits, signed or unsigned

Pointer 32 bits, signed or unsigned

cString One-dimensional array of bytes, ending with 0

sBlock A sized block of data (see Figure 2-4)

sExecBlock A sized block of code (see Figure 2-4)

sBlock sExecBlock

4Physical block size

1Revision level

2

CPU ID

Reserved

Code offset

Code

4

Variable

4Physical block size

Data Variable 1

Bytes Bytes
Introduction to Slots and Cards 2-9

C H A P T E R 2

Slot Manager

Figure 2-5 The sRsrcType entry format

The fields of the sRsrcType entry are as follows:

Every card has a unique sRsrcType entry that must be assigned by Apple Computer,
Inc. If you are developing a card, refer to Designing Cards and Drivers for the Macintosh
Family, third edition, for information on obtaining an sRsrcType entry.

The sRsrcName entry in an sResource contains an ID value of 2 and an offset to a
cString data structure containing the sResource name. By convention, the sRsrcName
field is derived by stripping the prefixes from the sRsrcType values and separating
the fields by underscores. For example, the sRsrcName field for an sResource whose
sRsrcType values are catDisplay, typeVideo, DrSwApple, and DrHwTFB becomes
'Display_Video_Apple_TFB'.

Designing Cards and Drivers for the Macintosh Family, third edition, provides information
about these and other sResource entry types.

Field Description

Category The most general classification of card functions. Examples of categories
are catDisplay and catNetwork.

cType The subclass of the category. For example, within the catDisplay
category there is a typeVideo subcategory; within the catNetwork
category, there is a typeEtherNet subcategory.

DrSW The driver software interface to the card. (This provides the calling
interface for applications and system software.) For example, under the
catDisplay category and the typeVideo subcategory, there is a
drSwApple software interface that indicates the Apple-defined interface
to work with QuickDraw using Macintosh Operating System frame
buffers.

DrHW The identification of the specific hardware device associated with the
driver software interface. Generally, only the driver interacts with
the hardware specified here.

Category

cType

DrSW

DrHW

2

2

2

2

BytessRsrcType
2-10 Introduction to Slots and Cards

C H A P T E R 2

Slot Manager

2
S

lot M
anager
The Board sResource and Functional sResources 2

Every card must have a single board sResource that contains information about the card
as a whole. An sResource relating to a specific function is called a functional sResource ,
and a card may have as many of them as necessary. For example, a video card may have
separate functional sResources for every pixel depth it supports. (See Figure 2-8 on
page 2-14 for an example of a functional sResources for a video card, and see Designing
Cards and Drivers for the Macintosh Family, third edition, for additional examples that
include code listings.)

The entries in the board sResource provide the Slot Manager with a card’s identification
number, vendor information, board flags, and initialization code. Like all sResources, the
board sResource must include an sRsrcType entry and an sRsrcName entry. The board
sRsrcType entry must contain the constants CatBoard ($0001), TypBoard ($0000),
DrSWBoard ($0000), and DrHWBoard ($0000). The sRsrcName entry for the board
sResource name does not follow the same convention as other sResources: the
sRsrcName entry for the board sResource contains the name of the entire card (for
example, 'Macintosh Display Card').

The board sResource must also contain a BoardId entry, a word that contains the card
design identification number assigned by Apple Computer, Inc. Designing Cards and
Drivers for the Macintosh Family, third edition, describes other Apple-defined entries
specifically for board sResources.

Figure 2-6 shows a sample board sResource. It shows an sRsrcType entry and an
sRsrcName entry and also includes three entry types, BoardID, PRAMInitData,
and PrimaryInit, which are discussed in Designing Cards and Drivers for the
Macintosh Family, third edition.
Introduction to Slots and Cards 2-11

C H A P T E R 2

Slot Manager
Figure 2-6 A sample board sResource

The sResource Directory 2

The sResource directory lists all the sResources in the declaration ROM and provides an
offset to each one. The sResource directory has the same structure as an sResource—that
is, an sResource directory consists of a series of 4-byte entries, where the first byte is an
ID field and the next 3 bytes contain an offset to additional data. Figure 2-7 shows the
format of the sResource directory.

Board sResource Bytes

1

3

1

3

sRsrcType offset

sRsrcName offset

sRsrcType ID (value = 1)

sRsrcName ID (value = 2)

1

3BoardId data

CatBoard

TypBoard

DrSWBoard

DrHWBoard

cString

2

2

2

2

BytesBoard sResource data

Variable

1

3PRAMInitData offset

1

3PrimaryInit offset

PrimaryInit ID (value = 34)

4

4Physical block size

1Revision level

2

CPU ID

Reserved

Code offset

Code

4

Variable

4Physical block size

BoardId ID (value = 32)

PRAMInitData ID (value = 33)

End-of-list marker

(value = $FF00 0000)

1Value = $00

1Value = $00

1Byte 1

1Byte 2

1Byte 3

1Byte 4

1Byte 5

1Byte 6

1

2-12 Introduction to Slots and Cards

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Figure 2-7 The structure of the sResource directory

The sResource ID field of an entry in the sResource directory always identifies an
sResource on the card. Each sResource in the card firmware requires a unique ID defined
by the card designer, and the ID must be in the range 1 through 254. For example, an
entry for the board sResource must appear first in a card’s sResource directory, so card
designers typically assign an sResource ID value of 1 to the board sResource. The
sResource ID numbers must appear in the sResource directory in ascending order. An
sResource directory must conclude with the end-of-list marker ($FF 00 00 00).

The offset field of each entry contains a signed 24-bit offset to the sResource
corresponding to the sResource ID field. The offset value counts only those bytes
accessible by valid byte lanes, and is relative to the address of the sResource ID field.

The Format Block 2
The format block always resides at the highest address in the standard slot space of a
declaration ROM. At startup, the Slot Manager locates installed cards by searching each
slot space for a valid format block. The format block contains information about the
declaration ROM and an offset to the sResource directory. The Slot Manager uses the
format block to validate the declaration ROM and locate the sResources.

The format block also contains a value that specifies which of the four byte lanes are
occupied by the declaration ROM. These byte lanes are called the valid byte lanes. Some
declaration ROMs do not appear on all four byte lanes, so software cannot read
meaningful data at every memory location in the address space for the byte lanes.

sResource directory Bytes

1

3

1

3

sResource offset

sResource offset

sResource ID0

sResource ID1

1

3sResource offset

sResource ID2

1

3sResource offset

sResource IDn

4End-of-list marker

(value = $FF00 0000)

ID fields

Offset fields
Introduction to Slots and Cards 2-13

C H A P T E R 2

Slot Manager
IMPORTANT

The format block defines which byte lanes are valid for the declaration
ROM only. The valid byte lanes are determined by card design, and may
be different for other memory-mapped devices on the card. ▲

Designing Cards and Drivers for the Macintosh Family, third edition, defines the structure of
the format block and gives examples of how the valid byte lanes affect communication
with a declaration ROM.

Figure 2-8 illustrates the relationship of the format block, the sResource directory,
and the sResources for a sample video card. For every entry in the sResource directory
and in the sResources, its ID number is shown on the left side of the entry. As shown in
this figure, the board sResource is the first sResource listed in the sResource directory.
Each functional sResource that follows in turns defines a display capability provided by
the card. (To simplify this figure, only one complete functional sResource is shown.)

Figure 2-8 The format block and sResources for a sample video card

Directory offset
Length
CRC

Revision level
Format

Test pattern
Reserved
Byte lanes

Board sResource
Functional sResource
Functional sResource

1
128
129

sRsrcType
sRsrcName
BoardId

1
2
32

PrimaryInit34
VendorInfo36

sRsrcType
sRsrcName

sRsrcDrvrDir

1
2
4

sRsrcHWDevId8
MinorBaseOS10
MinorLength
OneBitMode4

11
128

TwoBitMode4129
FourBitMode4130

sRsrcType1

CatBoard (Category)
TypBoard (cType)
DrSWBoard (DrSW)
DrHWBoard (DrHW)

cString

cString

VendorID
RevLevel
PartNumber

1
3
4

cString

cString

cString

CatDisplay (Category)
TypVideo (cType)
DrSWApple (DrSW)
DrHWTFB (DrHW)

cString

Driver

Video RAM Base

Video RAM Length

OneBitParms
PageCount
DeviceType

1
3
4

sBlock

TwoBitParms
PageCount
DeviceType

1
3
4

sBlock

FourBitParms
PageCount
DeviceType

1
3
4

sBlock

Format block

Board sResource

Code or data

sResource directory Functional

sResource 128

Functional

sResource 129
2-14 Introduction to Slots and Cards

C H A P T E R 2

Slot Manager

2
S

lot M
anager
About the Slot Manager 2

The Slot Manager provides three basic services:

■ On startup, it examines each slot and initializes any expansion cards it finds.

■ It maintains data structures that contain information about each slot and every
available sResource.

■ It provides functions that allow you to get information about expansion cards and
their sResources.

There are two variations of the System 7 Slot Manager: version 1 and version 2. Version 1
of the Slot Manager is RAM based and is installed by the user with the System 7 upgrade
kit. Version 2 is included in the ROM of newer Macintosh computers.

At startup, the version of the Slot Manager in ROM searches each slot for a declaration
ROM and creates a slot information record for each slot. See “Slot Information Record”
on page 2-24 for the definition of the SInfoRecord data type.

As the Slot Manager searches the slots, it identifies all of the sResources in each
declaration ROM and creates a table—the slot resource table (SRT)—that lists all of the
sResources currently available to the system. The slot resource table is a private data
structure maintained by the Slot Manager. Applications and device drivers use Slot
Manager routines to get information from the slot resource table.

After building the slot resource table, the Slot Manager initializes the 6 bytes reserved for
each slot in parameter RAM. If the slot has an expansion card with a PRAMInitData
entry in its board sResource, the Slot Manager uses the values in that entry to initialize
the parameter RAM; otherwise, it clears those bytes in parameter RAM.

Next, the Slot Manager disables interrupts and executes the code in the PrimaryInit
entry of the board sResource for each card. Note that at this point in the startup, the
keyboard and the mouse are not initialized and that a card’s PrimaryInit code has
only limited control over the functionality of the card itself.

If certain values (defined by the Start Manager) are set in a card’s parameter RAM, a
card with an sRsrcBootRec entry may take over the system startup process. The Start
Manager passes control to the code in the sRsrcBootRec early in the startup sequence,
before system patches are installed. Refer to the chapter “Start Manager” in Inside
Macintosh: Operating System Utilities for more information about the startup process.

Designing Cards and Drivers for the Macintosh Family, third edition, describes the
PRAMInitData, PrimaryInit, and sRsrcBootRec entry types.

If no card takes over, the normal system startup continues. After version 1 of the Slot
Manager is loaded, it conducts a second search for declaration ROMs, this time in 32-bit
mode. If the Slot Manager finds any additional NuBus cards, it adds their sResources to
the slot resource table and executes the code in their PrimaryInit entries. (Version 2 of
the Slot Manager, which resides in ROM, does not need to conduct a second search.)
About the Slot Manager 2-15

C H A P T E R 2

Slot Manager
Note
Some versions of the Slot Manager prior to System 7 address NuBus
cards in 24-bit mode and may not be able to identify all cards. After
version 1 of the Slot Manager is loaded, it locates these cards. ◆

After all system patches have been installed, version 1 or later of the Slot Manager
executes the code in any SecondaryInit entries it finds in the declaration ROMs.
It does not reexecute the code from PrimaryInit entries, reinitialize parameter RAM,
or restore any sResources deleted by the PrimaryInit code.

Note
Most versions of the Slot Manager prior to System 7 do not execute code
from SecondaryInit entries. ◆

After the Slot Manager executes SecondaryInit code, it searches for sResources that
have an sRsrcFlags entry with the fOpenAtStart flag set. When the Slot Manager
finds an sResource with this flag set, it loads the device driver from the sRsrcDrvrDir
entry of the sResource, or calls the code in the sResource’s sRsrcLoadRec entry, which
loads the sResource’s device driver.

Finally, the system executes initialization resources of type 'INIT'.

See Designing Cards and Drivers for the Macintosh Family, third edition, for details about
the sRsrcFlags, sRsrcDrvrDir, and sRsrcLoadRec entry types.

Using the Slot Manager 2

The Slot Manager allows you to enable and disable NuBus cards, manipulate the slot
resource table, get information from slot information records, get status information,
and read and change expansion cards’ parameter RAM. However, the majority of Slot
Manager routines search for sResources in the slot resource table or provide information
from these structures.

The Slot Manager provides a variety of methods to find an sResource. These methods
include searching for an sResource with a particular sResource ID, searching for an
sResource with a particular sResource type, searching through all sResources, searching
through only the enabled sResources, and so on.

The Slot Manager also provides a number of routines that return information from
sResources. Some of these routines, like the SReadByte and SGetCString functions,
return one particular type of data structure. Others, like the SFindStruct function, can
return information about any data structure. Functions such as SGetDriver and SExec
not only return information from an sResource, they also perform additional operations
like loading the sResource’s driver or executing the code of an sExecBlock data
structure.

You can use the SVersion function, described on page 2-30, to determine if the Slot
Manager is version 1, version 2, or a version that predates System 7.
2-16 Using the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Enabling and Disabling NuBus Cards 2
Version 1 and later of the Slot Manager allows you to temporarily disable your NuBus
card. You might want to do this if, for example, you are designing a NuBus card that
must be addressed in 32-bit mode or that requires RAM-based system software patches
to be loaded into memory before the card is initialized. Your PrimaryInit code can
disable the card temporarily and the SecondaryInit code can reenable it.

To disable a NuBus card temporarily, the initialization routine in your PrimaryInit
record should return in the seStatus field of the SEBlock data structure (described in
“Slot Execution Parameter Block” on page 2-27) an error code with a value in the range
svTempDisable ($8000) through svDisabled ($8080). The Slot Manager places this
code in the siInitStatusV field of the slot information record for the slot, and places
the fatal error smInitStatVErr (–316) in the siInitStatusA field of the slot
information record. The card and its sResources are then unavailable for use by the
Operating System.

After the Operating System loads RAM patches, the Slot Manager checks the value of the
siInitStatusA field of each slot information record. If this value is greater than or
equal to 0, indicating no error, the Slot Manager executes the SecondaryInit code for
the slot, if any. If the value in the siInitStatusA field is smInitStatVErr, the Slot
Manager checks the siInitStatusV field. If the value of the siInitStatusV field is
in the range svTempDisable through svDisabled, the Slot Manager sets the
siInitStatusA field to 0 and runs the SecondaryInit code.

For examples of PrimaryInit and SecondaryInit code, see Designing Cards and
Drivers for the Macintosh Family, third edition.

Deleting and Restoring sResources 2
Some NuBus cards have sResources to support a variety of system configurations or
modes. The Slot Manager loads all of the sResources during system initialization, and
then the card’s PrimaryInit code can delete from the slot resource table any
sResources that are not appropriate for the system as configured. If the user changes the
system configuration or selects a different mode of operation, your card can reinstall a
deleted sResource. The SDeleteSRTRec function deletes sResources; the
InsertSRTRec function reinstalls them.

Because none of the Slot Manager functions can search for sResources that have been
deleted from the slot resource table, you must keep a record of all sResources you delete
so that you will have the appropriate parameter values when you want to reinstall one.

When you reinstall an sResource, it may be necessary to update the dCtlSlotId and
dCtlDevBase fields in the slot device driver’s device control entry. You need to update
the dCtlSlotId field if you change the sResource ID. The dCtlDevBase field holds
the base address of the slot device. For a video card this is the base address for the pixel
map in the card’s GDevice record (which is described in Inside Macintosh: Imaging With
QuickDraw). The InsertSRTRec function updates the dCtlDevBase field
automatically if you supply a valid driver reference number.
Using the Slot Manager 2-17

C H A P T E R 2

Slot Manager
Enabling and Disabling sResources 2
Under certain circumstances, you might want to disable an sResource while it remains
listed in the slot resource table. For example, a NuBus card might provide several modes
of operation, only one of which can be active at a given time. Your application might
want to disable the sResources associated with all but the active mode, but still list all
available modes in a menu. When the user selects a new mode, your application can
then disable the currently active sResource and enable the one the user selected.

You use the SetSRsrcState function to enable or disable an sResource. Listing 2-1
disables the sResource in slot $A with an sResource ID of 128 and enables the sResource
in the same slot with an sResource ID of 131.

Listing 2-1 Disabling and enabling an sResource

PROCEDURE MyDisableAndEnableSResource;

VAR

mySpBlk: SpBlock;

myErr: OSErr;

BEGIN

WITH mySpBlk DO {set required values in parameter block}

BEGIN

spParamData := 1; {disable}

spSlot := $A; {slot number}

spID := 128; {sResource ID}

spExtDev := 0; {ID of external device}

END;

myErr := SetSRsrcState(@mySpBlk);

IF myErr = noErr THEN

BEGIN

WITH mySpBlk DO

BEGIN

spParamData := 0; {enable}

spSlot := $A; {slot number}

spID := 131; {sResource ID}

spExtDev := 0; {ID of external device}

END;

myErr := SetSRsrcState(@mySpBlk);

END;

END;
2-18 Using the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Searching for sResources 2
The Slot Manager provides several functions that search for sResources in the slot
resource table. These functions allow you to specify which sResources to search, but
each function provides slightly different options.

The SNextSRsrc and SNextTypeSRsrc functions allow you to search for enabled
sResources by slot. The SGetSRsrc and SGetTypeSRsrc functions, available only with
the System 7 Slot Manager (that is, version 1 and version 2 of the Slot Manager), allow
you to search for disabled sResources as well as enabled ones. Table 2-3 summarizes the
Slot Manager search routines and the options available for each.

Listing 2-2 shows how to use the SGetTypeSRsrc function to search all slots for both
enabled and disabled sResources with an sResource type category of catDisplay and
an sResource type subcategory of typeVideo.

Listing 2-2 Searching for a specified type of sResource

PROCEDURE MySResourceSearch;

VAR

mySpBlk: SpBlock;

myErr: OSErr;

* Available only with the System 7 Slot Manager (that is, version 1 and version 2 of the Slot Manager)

Table 2-3 The Slot Manager search routines

Function

State of
sResources for
which it searches

Slots it
searches

Which
sResources it
searches for

Type of
sResource it
searches for

SNextSRsrc Enabled only Specified slot
and higher slots

Next sResource
only

Any type

SGetSRsrc* Your choice of
enabled only or
both enabled
and disabled

Your choice of
one slot only or
specified slot
and higher slots

Your choice
of specified
sResource or
next sResource

Any type

SNextTypeSRsrc Enabled only Specified slot
and higher slots

Next sResource
only

Specified type
only

SGetTypeSRsrc* Your choice of
enabled only or
both enabled
and disabled

Your choice of
one slot only or
specified slot
and higher slots

Next sResource
only

Specified type
only
Using the Slot Manager 2-19

C H A P T E R 2

Slot Manager
BEGIN

WITH mySpBlk DO {set required values in parameter block}

BEGIN

spParamData := fAll; {fAll flag = 1: search all sResources}

spCategory := catDisplay; {search for Category catDisplay}

spCType := typeVideo; {search for cType typeVideo}

spDrvrSW := 0; {this field not being matched}

spDrvrHW := 0; {this field not being matched}

spTBMask := 3; {match only Category and cType fields}

spSlot := 1; {start search from slot 1}

spID := 1; {start search from sResource ID 1}

spExtDev := 0; {external device ID (card-specific)}

END;

myErr := noErr;

WHILE myErr = noErr DO {loop to search sResources}

BEGIN

myErr := SGetTypeSRsrc(@mySpBlk);

MySRsrcProcess(mySpBlk); {routine to process results}

END;

IF myErr <> smNoMoresRsrcs THEN {all search functions return this value }

MyHandleError(myErr); { when search is complete}

END;

Obtaining Information From sResources 2
If you are writing a driver for a card device, you will most likely want access to the
information in an sResource.

The Slot Manager provides many functions that return information from the entries
of an sResource. The SOffsetData, SReadByte, and SReadWord functions return
information from the offset field of an sResource entry. The SReadLong, SGetCString,
and SGetBlock functions return copies of the standard data structures pointed to by the
offset field of an sResource entry. The SFindStruct and SReadStruct functions allow
access to other data structures pointed to by sResource entries.

Listing 2-3 shows an example of searching for a board sResource and obtaining its
name. This example starts at a particular slot number and then searches for the board
sResource in that slot or, if necessary, in higher slots. Once it finds the board sResource,
Listing 2-3 calls the SGetCString function, which returns a pointer to a buffer
containing the name string for the card.
2-20 Using the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Listing 2-3 Searching for the name of a board sResource

PROCEDURE FindBoardsResource (VAR slotNumber: Integer;

 VAR finished: Boolean);

VAR

mySpBlk: SpBlock;

myErr: OSErr;

BEGIN

{First, get a pointer to the board sResource for the slot.}

WITH mySpBlk DO BEGIN

spSlot := slotNumber; {start searching in this slot, }

 { and continue until found}

spID := 0;

spCategory := 1; {sRsrcType values for a board sResource}

spCType := 0;

spDrvrSw := 0;

spDrvrHw := 0;

END;

myErr := SNextTypeSRsrc(@mySpBlk);

IF myErr <> noErr THEN

MyHandleError(myErr) {quit searching if no more sResources}

ELSE

gTheSlot := mySpBlk.spSlot; {the slot in which the sResource was found}

{The spsPointer field of mySpBlock now contains a pointer to the }

{ board sResource list. The SGetCString function uses this field }

{ as one of two input fields.}

mySpBlk.spID := 2; {sRsrcName entry}

myErr := SGetCString(@mySpBlk);

IF myErr <> noErr THEN

MyHandleError(myErr)

ELSE BEGIN

{The spResult field now points to a copy of the cString.}

MyProcessCardName(gTheSlot, Ptr(mySpBlk.spResult));

{Free memory allocated by SGetCString.}

DisposePtr(Ptr(mySpBlk.spResult));

END;

END;

Because the SGetCString function allocates memory for a buffer, your application
must dispose of the buffer afterward, using the Memory Manager procedure
DisposePtr (which is described in Inside Macintosh: Memory).
Using the Slot Manager 2-21

C H A P T E R 2

Slot Manager
Installing and Removing Slot Interrupt Handlers 2

If your card generates hardware interrupts, you can install a slot interrupt handler to
process interrupts from the card. The Slot Manager maintains an interrupt queue for
each slot. You use the SIntInstall function, described on page 2-70, to install an
interrupt handler in the slot interrupt queue. The SIntRemove function, described
on page 2-71, removes an interrupt handler from the slot interrupt queue.

The SlotIntQElement data type, described on page 2-28, defines a slot interrupt
queue element. The queue elements are ordered by priority and contain pointers
to interrupt handlers. When a slot interrupt occurs, the Slot Manager calls the
highest-priority interrupt handler in the slot’s interrupt queue. If the interrupt
handler returns without servicing the interrupt, the Slot Manager calls the next
interrupt handler in the queue, in order of priority, until the interrupt is serviced.
If the interrupt is not serviced by any interrupt handler, a system error dialog box
is displayed.

Before returning to the Slot Manager, your interrupt handler should set a result code
in register D0 to indicate whether the interrupt was serviced. If the interrupt was not
serviced, your interrupt handler must return 0. Any value other than 0 indicates that
the interrupt was serviced.

The Slot Manager returns to the interrupted task when your interrupt handler indicates
that the interrupt was serviced; otherwise, it calls the next lower-priority interrupt
handler for that slot. A system error is generated if the last interrupt handler returns
to the Slot Manager without servicing the interrupt.

Slot Manager Reference 2

This section describes the data structures and routines you use to get information about
the Slot Manager, expansion cards, and sResources.

Data Structures 2

This section describes the Slot Manager parameter block structure, the slot information
record, the format header record, the slot parameter RAM record, the slot execution
parameter block, and the slot interrupt queue element.

Many Slot Manager routines return information from data structures contained in the
firmware of cards. See “Firmware,” beginning on page 2-7, for a general discussion of
these data structures, and see Designing Cards and Drivers for the Macintosh Family, third
edition, for more detailed information.
2-22 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Slot Manager Parameter Block 2

Every Slot Manager function requires a pointer to a Slot Manager parameter block as a
parameter and returns an OSErr result code. Each routine uses only a subset of the fields
of the parameter block. See the individual routine descriptions for a list of the fields used
with each routine. The Slot Manager parameter block is defined by the SpBlock data
type.

TYPE SpBlock =

PACKED RECORD {Slot Manager parameter block}

spResult: LongInt; {result}

spsPointer: Ptr; {structure pointer}

spSize: LongInt; {size of structure}

spOffsetData: LongInt; {offset or data}

spIOFileName: Ptr; {reserved for Slot Manager}

spsExecPBlk: Ptr; {pointer to SEBlock data structure}

spParamData: LongInt; {flags}

spMisc: LongInt; {reserved for Slot Manager}

spReserved: LongInt; {reserved for Slot Manager}

spIOReserved: Integer; {ioReserved field from SRT}

spRefNum: Integer; {driver reference number}

spCategory: Integer; {Category field of sRsrcType entry}

spCType: Integer; {cType field of sRsrcType entry}

spDrvrSW: Integer; {DrSW field of sRsrcType entry}

spDrvrHW: Integer; {DrHW field of sRsrcType entry}

spTBMask: SignedByte; {sRsrcType entry bit mask}

spSlot: SignedByte; {slot number}

spID: SignedByte; {sResource ID}

spExtDev: SignedByte; {external device ID}

spHwDev: SignedByte; {hardware device ID}

spByteLanes: SignedByte; {valid byte lanes}

spFlags: SignedByte; {flags used by Slot Manager}

spKey: SignedByte; {reserved for Slot Manager}

END;

Field descriptions

spResult A general-purpose field used to contain the results returned by
several different routines.

spsPointer A pointer to a data structure. The field can point to an sResource, a
data block, or a declaration ROM, depending on the routine being
executed.

spSize The size of the data pointed to in the spsPointer field.
spOffsetData The contents of the offset field of an sResource entry. Some routines

use this field for other offsets or data.
spIOFileName Reserved for use by the Slot Manager.
Slot Manager Reference 2-23

C H A P T E R 2

Slot Manager
spsExecPBlk A pointer to an SEBlock data structure, which is described on
page 2-27.

spParamData On input, a long word containing flags that determine what
sResources the Slot Manager searches. When set, bit 0 (the fAll
flag) indicates that disabled sResources should be included. When
set, bit 1 (the fOneSlot flag) restricts the search to sResources on
a single card. Bit 2 (the fNext flag) indicates when set that the
routine finds the next sResource. The rest of the bits must be cleared
to 0.
On output, this field indicates whether the sResource is enabled or
disabled (if 0, the sResource is enabled; if 1, it is disabled).

spMisc Reserved for use by the Slot Manager.
spReserved Reserved for future use.
spIOReserved The value of the ioReserved field from the sResource’s entry in

the slot resource table.
spRefNum The driver reference number of the driver associated with an

sResource, if there is one.
spCategory The Category field of the sRsrcType entry (which is described

on page 2-10).
spCType The cType field of the sRsrcType entry.
spDrvrSW The DrSW field of the sRsrcType entry.
spDrvrHW The DrHW field of the sRsrcType entry.
spTBMask A mask that determines which sRsrcType fields the Slot Manager

examines when searching for sResources.
spSlot The number of the slot with the NuBus card containing the

requested, or returned, sResource.
spID The sResource ID of the requested, or returned, sResource.
spExtDev The external device identifier. This field allows you to distinguish

between devices on a card.
spHwDev The hardware device identifier from the sRsrcHWDevID field of the

sResource.
spByteLanes The byte lanes used by a declaration ROM.
spFlags Flags typically used by the Slot Manager.
spKey Reserved for use by the Slot Manager.

Listing 2-1 on page 2-18 illustrates how to set values in an SpBlock record to disable
and enable an sResource. Listing 2-2 on page 2-19 illustrates how to use the values in an
SpBlock record for searching for sResources.

Slot Information Record 2

The Slot Manager creates a slot information record for each slot. This structure is defined
by the SInfoRecord data type.
2-24 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
TYPE SInfoRecord = {slot information record}

PACKED RECORD

siDirPtr: Ptr; {pointer to sResource directory}

siInitStatusA: Integer; {initialization status}

siInitStatusV: Integer; {status returned by vendor }

{ initialization routine}

siState: SignedByte; {initialization state}

siCPUByteLanes: SignedByte; {byte lanes used}

siTopOfROM: SignedByte; {highest valid address in ROM}

siStatusFlags: SignedByte; {status flags}

siTOConstant: Integer; {timeout constant for bus error}

siReserved: PACKED ARRAY [0..1] OF SignedByte;

{reserved}

siROMAddr: Ptr; {address of top of ROM}

siSlot: Char; {slot number}

siPadding: PACKED ARRAY [0..2] OF SignedByte; {reserved}

END;

Field descriptions

siDirPtr A pointer to the sResource directory (described in “The sResource
Directory” on page 2-12).

siInitStatusA The initialization status code set by the Slot Manager. A value of 0
indicates the card is installed and operational. Any other value is a
Slot Manager error code indicating why the initialization failed.

siInitStatusV The initialization status code returned by the card’s PrimaryInit
routine in the seStatus field of the SEBlock parameter block
(described on page 2-27). Negative values cause the card
initialization to fail. Values in the range svTempDisable ($8000)
through svDisabled ($8080) are used to temporarily disable a
card. See “Enabling and Disabling NuBus Cards” on page 2-17 for
more information.

siState Reserved for use by the Slot Manager.
siCPUByteLanes The byte lanes used by the declaration ROM.
siTopOfROM The least significant byte of the address stored in siROMAddr.
siStatusFlags Slot status flag field set by the Slot Manager. If the

fCardIsChanged flag (bit 1) is set, the board ID of the installed
card does not match the board ID stored in parameter RAM. Other
flag bits are reserved.

siTOConstant The number of retries that will be performed when a bus error
occurs while accessing the declaration ROM. The default is 100.

siReserved Reserved for use by the Slot Manager.
siROMAddr The highest address in the declaration ROM.
siSlot The slot number.
siPadding Reserved for use by the Slot Manager.
Slot Manager Reference 2-25

C H A P T E R 2

Slot Manager
Format Header Record 2

The Slot Manager uses a format header record to describe the structure of a card’s format
block, which is located at the highest address in the slot’s NuBus address space. By
reading information from the format header record, the Slot Manager can locate and
validate the card’s declaration ROM. The format header record is defined by the
FHeaderRec data type.

Note
For more information about the format block, see Designing Cards and
Drivers for the Macintosh Family, third edition. ◆

TYPE FHeaderRec = {format header record}

PACKED RECORD

fhDirOffset: LongInt; {offset to sResource directory}

fhLength: LongInt; {length in bytes of declaration ROM}

fhCRC: LongInt; {cyclic redundancy check}

fhROMRev: SignedByte; {declaration ROM revision}

fhFormat: SignedByte; {declaration ROM format}

fhTstPat: LongInt; {test pattern}

fhReserved: SignedByte; {reserved; must be 0}

fhByteLanes: SignedByte; {byte lanes used by declaration ROM}

END;

Field descriptions

fhDirOffset A self-relative signed offset to the sResource directory. This field
specifies only bytes accessible by valid byte lanes; as a result, the
value in this field might not be the absolute address difference.

fhLength The number of valid bytes in the declaration ROM. The Slot
Manager uses this value when computing the checksum.

fhCRC A checksum that allows the Slot Manager to validate the entire
declaration ROM.

fhROMRev The current ROM revision level. This field should contain a value
in the range 1–9; values greater than 9 cause the Slot Manager to
generate the error smRevisionErr.

fhFormat The format of the declaration ROM. A value of 1 designates the
Apple format.

fhTstPat A test pattern. This field must contain the value $5A932BC7.
fhReserved Reserved. This field must be 0.
fhByteLanes A signed byte that specifies which of the four byte lanes to use

when communicating with the declaration ROM. Refer to Designing
Cards and Drivers for the Macintosh Family, third edition, for a list of
valid values.
2-26 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Slot Parameter RAM Record 2

The Macintosh Operating System reserves eight bytes of parameter RAM for each
slot. Six of these bytes are available for card designers to store information. The
SPRAMRecord data type defines the organization of these bytes of data in parameter
RAM. This data structure includes the Apple-defined BoardID and six bytes of
vendor-specific information.

TYPE SPRAMRecord = {slot parameter RAM record}

PACKED RECORD

boardID: Integer; {Apple-defined board ID}

vendorUse1: SignedByte; {available for vendor use}

vendorUse2: SignedByte; {available for vendor use}

vendorUse3: SignedByte; {available for vendor use}

vendorUse4: SignedByte; {available for vendor use}

vendorUse5: SignedByte; {available for vendor use}

vendorUse6: SignedByte; {available for vendor use}

END;

Field descriptions

boardID The card identification number assigned by Apple Computer, Inc.
vendorUse General-purpose fields that may be used by the card designer.

Slot Execution Parameter Block 2

The SGetDriver and SExec functions load and execute code from an sResource. These
routines use the slot execution parameter block to exchange information with this code.
The slot execution parameter block is defined by the SEBlock data type.

TYPE SEBlock = {slot execution parameter block}

PACKED RECORD

seSlot: SignedByte; {slot number}

sesRsrcID: SignedByte; {sResource ID}

seStatus: Integer; {status of sExecBlock code}

seFlags: SignedByte; {flags}

seFiller0: SignedByte; {filler for word alignment}

seFiller1: SignedByte; {filler}

seFiller2: SignedByte; {filler}

seResult: LongInt; {result of SLoadDriver}

seIOFileName: LongInt; {pointer to driver name}

seDevice: SignedByte; {device to read from}

sePartition: SignedByte; {the partition}

seOSType: SignedByte; {type of OS}

seReserved: SignedByte; {reserved}

seRefNum: SignedByte; {driver reference number}
Slot Manager Reference 2-27

C H A P T E R 2

Slot Manager
seNumDevices: SignedByte; {number of devices to load}

seBootState: SignedByte; {state of StartBoot code}

END;

Field descriptions

seSlot The slot number containing the code to be executed.
sesRsrcID The sResource containing the code to be executed.
seStatus The status returned by the executed code. A card’s PrimaryInit

routine returns its initialization status in this field, and the value is
stored in the siInitStatusV field of the slot information record.

seFlags Flags passed to or returned by the executed code.

seFiller0–2 Reserved.
seResult A result value returned by the executed code. Normally used to

return a pointer or handle to a device driver.
seIOFileName An optional pointer to a device driver name.
seDevice The device number containing the code to be executed. This field is

used when loading code from a device attached to a card.
sePartition The partition number containing the code to be executed. This field

is used when loading code from a device attached to a card.
seOSType The operating system type identifier obtained from parameter RAM.

This field is used when loading code from a device attached to a card.
seReserved Additional information from parameter RAM, used when loading

code from a device attached to a card.
seRefNum The driver reference number returned by the loaded device driver.
seNumDevices Unused.
seBootState A value indicating the relative state of the boot process. During

initialization, the Slot Manager passes one of the following constant
values in this field:

Slot Interrupt Queue Element 2

The Slot Manager maintains a queue of interrupt handlers for each slot. You use the
SIntInstall and SIntRemove functions (described on page 2-70 and page 2-71,
respectively) to install and remove routines in the queue. The SlotIntQElement
data type defines a slot interrupt queue element.

Name Bit Meaning

fWarmStart 2 Set if a restart is being performed.

dRAMBased 6 Set if the seResult field contains a
handle to a device driver.

Name Value Meaning

sbState0 0 State 0 of the boot process.

sbState1 1 State 1 the boot process.
2-28 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
TYPE SlotIntQElement = {slot interrupt queue element}

RECORD

sqLink: Ptr; {pointer to next queue element}

sqType: Integer; {queue type ID; must be sIQType}

sqPrio: Integer; {priority value in low byte}

sqAddr: ProcPtr; {interrupt handler}

sqParm: LongInt; {optional A1 parameter}

END;

Field descriptions

sqLink A pointer to the next queue element. This field is maintained by the
Slot Manager.

sqType The queue type identifier, which you set to the defined type
sIQType.

sqPrio The relative priority level of the interrupt handler. Only the low-
order byte of this field is used. The high-order byte must be set to 0.
Valid priority levels are 0 through 199. Priority levels 200 through
255 are reserved for Apple devices.

sqAddr A pointer to the interrupt handler.
sqParm An optional value that the Slot Manager places in register A1 before

calling the interrupt handler. This field is typically used to store a
handle to a driver’s device control entry.

Slot Manager Routines 2
This section describes the routines provided by the Slot Manager. Most of the routines in
this section are used to locate sResources or read information from an entry in an
sResource. Some of the routines allow you to read and set information about expansion
cards, such as their parameter RAM values, and others allow you to manipulate Slot
Manager data structures, like the slot resource table.

Because the SGetCString, SGetBlock, SGetDriver, SExec, InitSDeclMgr,
SInitPRAMRecs, SInitSRsrcTable, and SPrimaryInit functions may allocate
memory, your application should not call them at interrupt time; however, your can call
any other Slot Manager function at interrupt time.

Because each routine uses a subset of the Slot Manager parameter block fields, each
routine reference section includes a list of pertinent fields and how they are used.

Parameter block

The arrows show whether you provide a value in the field, the routine returns a value in
the field, or both. The ✕ symbol designates fields that may be affected by the execution

→ fieldName FieldType Input field.
← fieldName FieldType Output field.
↔ fieldName FieldType Input/output field.
✕ fieldName FieldType Affected field.
Slot Manager Reference 2-29

C H A P T E R 2

Slot Manager
of the routine. Any value you store in one of these affected fields may be lost. Also, the
meaning of these fields upon completion of the routine is undefined; your application
should not depend on these values.

Assembly-Language Note

You can call Slot Manager routines using either the _SlotManager trap
macro with a selector or an individual macro name consisting of the
routine name preceded by an underscore. For example, you can call the
SVersion function using the _SVersion macro. Because every routine
name macro is equivalent to the _SlotManager trap macro that specifies
the corresponding routine selector, you will need to know the routine
selectors to trace your code in MacsBug. The _SlotManager trap macro
selector for each routine is included in the routine description and
summarized in “Trap Macros,” beginning on page 2-99. ◆

Determining the Version of the Slot Manager 2

Unlike other system software managers, which use the Gestalt function to return
version information, the Slot Manager includes its own function for providing this
information.

SVersion 2

You can use the SVersion function to determine which version of the Slot Manager is in
use by the Macintosh Operating System.

FUNCTION SVersion (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SVersion function returns the version number of the Slot Manager in the
spResult field of the Slot Manager parameter block that you point to in the spBlkPtr
parameter. Version number 1 corresponds to the RAM-based Slot Manager and version
number 2 corresponds to the ROM-based Slot Manager. Versions of the Slot Manager
prior to System 7 do not recognize the SVersion function and return the result code
smSelOOBErr. The spsPointer field is reserved for future use as a pointer to
additional information.

← spResult LongInt The Slot Manager version number.
← spsPointer Ptr A pointer to additional information.
2-30 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SVersion function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information on the different versions of the Slot Manager, see “About the Slot
Manager” on page 2-15.

Finding sResources 2

The functions in this section locate sResources in the slot resource table and return
pointers to them and additional information about them. The SRsrcInfo function is
useful for finding the driver reference number of an SResource. The SGetSRsrc and
SGetTypeSRsrc functions are the preferred routines for searching sResources. You can
use these functions to step through the sResources and to find disabled as well as
enabled sResources. Use the SNextSRsrc and SNextTypeSRsrc functions with
System 6 and earlier versions of the Slot Manager.

SRsrcInfo 2

You can use the SRsrcInfo function to find an sResource. This function also provides
additional information about the sResource, such as the driver reference number of the
slot device driver.

FUNCTION SRsrcInfo (spBlkPtr: SpBlockPtr): OSErr;

Trap macro
Selecto
r

_SlotManager $0008

Registers on entry

A0 Address of the parameter block

D0 $0008

Registers on exit

D0 Result code

noErr 0 No error
smSelOOBErr –338 Selector out of bounds or function not implemented
Slot Manager Reference 2-31

C H A P T E R 2

Slot Manager
spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SRsrcInfo function allows you to find an sResource from the slot resource table
and provides additional information, including its driver reference number and the
values contained in its sRsrcType entry.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot
Manager parameter block you point to in the spBlkPtr parameter.

The SRsrcInfo function returns a pointer to the sResource in the spsPointer field
and returns information about the sResource type in the spRefNum, spCType,
spDrvrSW, spDrvrHW fields. The function returns other information about the
sResource in the spIOReserved, spRefNum, and spHwDev fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SRsrcInfo function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

← spIOReserved Integer The value of the slot resource table
ioReserved field.

← spRefNum Integer The device driver reference number.
← spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
← spCType Integer The cType field of the sRsrcType entry.
← spDrvrSW Integer The DrSW field of the sRsrcType entry.
← spDrvrHW Integer The DrHW field of the sRsrcType entry.
→ spSlot SignedByte The slot number of the requested sResource.
→ spId SignedByte The sResource ID of the requested

sResource.
→ spExtDev SignedByte The external device identifier.
← spHwDev SignedByte The hardware device identifier.

Trap macro Selector

_SlotManager $0016

Registers on entry

A0 Address of the parameter block

D0 $0016

Registers on exit

D0 Result code
2-32 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
RESULT CODES

SEE ALSO

For more control in finding sResources, you can use the SGetSRsrc function, described
next, and the SGetTypeSRsrc function, described on page 2-35.

SGetSRsrc 2

You can use the SGetSRsrc function to find any sResource, even one that has been
disabled.

FUNCTION SGetSRsrc (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetSRsrc function allows you to specify whether the function should
include disabled sResources, whether it should continue looking for sResources in
higher-numbered slots, and whether it should return information about the specified
sResource or the one that follows it.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot
Manager parameter block you point to in the spBlkPtr parameter. You must also
include flags in bits 0, 1, and 2 of the spParamData field as follows:

■ Set the fAll flag (bit 0) to search both enabled and disabled sResources. Clear this
flag to search only enabled sResources.

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

↔ spParamData LongInt On input: parameter flags.
On output: 0 if the sResource is enabled or
1 if disabled.

← spRefNum Integer The slot resource table reference number.
← spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
← spCType Integer The cType field of the sRsrcType entry.
← spDrvrSW Integer The DrSW field of the sRsrcType entry.
← spDrvrHW Integer The DrHW field of the sRsrcType entry.
↔ spSlot SignedByte The slot number.
↔ spId SignedByte The sResource ID.
↔ spExtDev SignedByte The external device identifier.
← spHWDev SignedByte The hardware device identifier.
Slot Manager Reference 2-33

C H A P T E R 2

Slot Manager
■ Set the fOneSlot flag (bit 1) to search only the specified slot. Clear this flag to search
all slots.

■ Set the fNext flag (bit 2) to return information about the sResource with the next
higher sResource ID than the specified sResource (or the first one on the next card if
the fAll flag is set). Clear this flag to return data about the specified sResource.

The SGetSRsrc function returns values in the spSlot, spID, and spExtDev fields
corresponding to the sResource that it found. If you cleared the fNext flag, these fields
retain the values you specified when calling the function. In addition, the function
returns 0 in the spParamData field if the sResource is enabled or 1 if it is disabled.
If you cleared the fAll bit, the spParamData field always returns the value 0.

The SGetSRsrc function also returns a pointer to the sResource in the spsPointer
field and returns other information about the sResource in the spRefNum, spCategory,
spCType, spDrvrSW, spDrvrHW, and spHwDev fields.

SPECIAL CONSIDERATIONS

The SGetSRsrc function is available only with version 1 or later of the Slot Manager.
You can use the SVersion function, described on page 2-30, to determine whether the
Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetSRsrc function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more control in finding sResources, you can also use the SGetTypeSRsrc function,
described next.

Trap macro Selector

_SlotManager $000B

Registers on entry

A0 Address of the parameter block

D0 $000B

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
2-34 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
SGetTypeSRsrc 2

You can use the SGetTypeSRsrc function to step through sResources of one type,
including disabled ones.

FUNCTION SGetTypeSRsrc (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetTypeSRsrc function allows you to find the next sResource of a certain type, as
does the SNextTypeSRsrc function, but the SGetTypeSRsrc function also allows you
to find disabled sResources and to limit searching to a single slot.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot
Manager parameter block you point to in the spBlkPtr parameter, and you specify the
type of the sResource with the spCategory, spCType, spDrvrSW, and spDrvrHW
fields. You must also use the spTBMask field to specify which of these sRsrcType fields
should not be included in the search:

■ Set bit 0 to ignore the DrHW field.

■ Set bit 1 to ignore the DrSW field.

■ Set bit 2 to ignore the cType field.

■ Set bit 3 to ignore the Category field.

You must also set the fAll flag of the spParamData field (bit 0) to search both enabled
and disabled sResources or clear this flag to search only enabled ones. Set the fOneSlot
flag (bit 1) to search only the specified slot, or clear this flag to search all slots. The

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

↔ spParamData LongInt On input: parameter flags.
On output: 0 if the sResource is enabled or
1 if disabled.

← spRefNum Integer The slot resource table reference number.
↔ spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
↔ spCType Integer The cType field of the sRsrcType entry.
↔ spDrvrSW Integer The DrSW field of the sRsrcType entry.
↔ spDrvrHW Integer The DrHW field of the sRsrcType entry.
→ spTBMask SignedByte The type bit mask for sRsrcType fields.
↔ spSlot SignedByte The slot number.
↔ spId SignedByte The sResource ID.
↔ spExtDev SignedByte The external device identifier.
← spHWDev SignedByte The hardware device identifier.
Slot Manager Reference 2-35

C H A P T E R 2

Slot Manager
SGetTypeSRsrc function does not use the fNext flag (bit 2) because it always searches
for the next sResource of the given type.

The SGetTypeSRsrc function returns values in the spSlot, spID, and spExtDev
fields corresponding to the sResource that it found, and it returns 0 in the spParamData
field if that sResource is enabled or 1 if it is disabled.

The SGetTypeSRsrc function also returns a pointer to the sResource in the
spsPointer field and returns other information about the sResource in the spRefNum,
spCategory, spCType, spDrvrSW, spDrvrHW, and spHwDev fields.

SPECIAL CONSIDERATIONS

The SGetTypeSRsrc function is available only with version 1 or later of the Slot
Manager. You can use the SVersion function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetTypeSRsrc function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For information on enabling and disabling sResources, see “Enabling and Disabling
sResources” on page 2-18 and the description of the SetSRsrcState function in the
next section.

Trap macro Selector

_SlotManager $000C

Registers on entry

A0 Address of the parameter block

D0 $000C

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
2-36 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
SNextSRsrc 2

You can use the SNextSRsrc function to step through the sResources on a card or from
one card to the next.

FUNCTION SNextSRsrc (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SNextSRsrc function is similar to the SRsrcInfo function, except the
SNextSRsrc function returns information about the sResource that follows the
requested one—that is, the one with the next entry in the sResource directory or the first
sResource on the next card. The SNextSRsrc function skips disabled sResources.

You specify a particular sResource with the spSlot, spID, and spExtDev fields of the
Slot Manager parameter block you point to in the spBlkPtr parameter. The
SNextSRsrc function finds the next sResource, returns a pointer to it in the
spsPointer field, and updates the spSlot, spID, and spExtDev fields to correspond
to the sResource it found. If there are no more sResources, the SNextSRsrc function
returns the smNoMoresRsrcs result code.

The SNextSRsrc function returns other information about the sResource in the
spRefNum, spCategory, spCType, spDrvrSW, and spDrvrHW fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SNextSRsrc function are

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

← spIOReserved Integer The value of the slot resource table
ioReserved field.

← spRefNum Integer The driver reference number.
← spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
← spCType Integer The cType field of the sRsrcType entry.
← spDrvrSW Integer The DrSW field of the sRsrcType entry.
← spDrvrHW Integer The DrHW field of the sRsrcType entry.
↔ spSlot SignedByte The slot number.
↔ spId SignedByte The sResource ID.
↔ spExtDev SignedByte The external device identifier.
← spHWDev SignedByte The hardware device identifier.

Trap macro Selector

_SlotManager $0014
Slot Manager Reference 2-37

C H A P T E R 2

Slot Manager
You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more control in finding sResources, you can use the SGetSRsrc function, described
on page 2-33, and the SGetTypeSRsrc function, described on page 2-35.

SNextTypeSRsrc 2

You can use the SNextTypeSRsrc function to step through sResources of one type.

FUNCTION SNextTypeSRsrc (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Registers on entry

A0 Address of the parameter block

D0 $0014

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

← spRefNum Integer The slot resource table reference number.
↔ spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
↔ spCType Integer The cType field of the sRsrcType entry.
↔ spDrvrSW Integer The DrSW field of the sRsrcType entry.
↔ spDrvrHW Integer The DrHW field of the sRsrcType entry.
→ spTBMask SignedByte The type bit mask for sRsrcType fields.
↔ spSlot SignedByte The slot number.
↔ spId SignedByte The sResource ID.
↔ spExtDev SignedByte The external device identifier.
← spHWDev SignedByte The hardware device identifier.
2-38 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
DESCRIPTION

The SNextTypeSRsrc function allows you to find the next sResource, as does the
SNextSRsrc function, but the SNextTypeSRsrc function skips disabled sResources.

You indicate the sResource you want returned by identifying the slot number, sResource
ID, and device ID in the spSlot, spID, and spExtDev fields of the Slot Manager
parameter block you point to in the spBlkPtr parameter. You specify the type of the
sResource with the spCategory, spCType, spDrvrSW, and spDrvrHW fields. You must
also use the spTBMask to specify which of these sRsrcType entry fields should not be
included in the search:

■ Set bit 0 to ignore the DrHW field.

■ Set bit 1 to ignore the DrSW field.

■ Set bit 2 to ignore the cType field.

■ Set bit 3 to ignore the Category field.

The SNextTypeSRsrc function returns values in the spSlot, spID, and spExtDev
fields corresponding to the sResource that it found.

The SNextTypeSRsrc function also returns a pointer to the sResource in the
spsPointer field and returns other information about the sResource in the
spIOReserved, spRefNum, spCategory, spCType, spDrvrSW, and spDrvrHW fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SNextTypeSRsrc function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

Trap macro Selector

_SlotManager $0015

Registers on entry

A0 Address of the parameter block

D0 $0015

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
Slot Manager Reference 2-39

C H A P T E R 2

Slot Manager
SEE ALSO

For information on enabling and disabling sResources, see “Enabling and Disabling
sResources” on page 2-18 and the description of the SetSRsrcState function on
page 2-51.

Getting Information From sResources 2

The Slot Manager provides a number of routines that simplify access to the information
in sResources. Most of these routines simply return the value of an sResource entry.

The SReadDrvrName function returns the name of an sResource, formatted as a Pascal
string and prefixed with a period. You can pass this string to the Device Manager’s
OpenSlot function to open the driver.

The SReadByte, SReadWord, and SReadLong functions return byte, word, or long
values from an sResource entry. The SGetCString, SGetBlock, SReadStruct, and
SFindStruct functions return pointers to larger data types.

SReadDrvrName 2

You can use the SReadDrvrName function to read the name of an sResource in a format
you can use to open the driver with Device Manager routines.

FUNCTION SReadDrvrName (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SReadDrvrName function reads the name of an sResource, prefixes a period to the
value, and converts it to type Str255. The final driver name is compatible with the
Device Manager’s OpenDriver function.

You indicate an sResource by identifying the slot number and sResource ID in the
spSlot and spID fields of the Slot Manager parameter block you point to in the
spBlkPtr parameter. In your program, you should declare a Pascal string variable
and pass a pointer to it in the spResult field.

The SReadDrvrName function returns the driver name by copying it into the string
pointed to by the spResult field.

→ spSlot SignedByte The slot number.
→ spID SignedByte The sResource ID.
→ spResult Ptr A pointer to the driver name.
✕ spSize LongInt
✕ spsPointer Ptr
2-40 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
SPECIAL CONSIDERATIONS

This function may alter the values of the spSize and spsPointer fields of the
parameter block. Your application should not depend on the values returned in these
fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadDrvrName function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about the device control entry and device driver reference
numbers, see the chapter “Device Manager” in this book.

SReadByte 2

You can use the SReadByte function to determine the value of the low-order byte of an
sResource entry.

FUNCTION SReadByte (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Trap macro Selector

_SlotManager $0019

Registers on entry

A0 Address of the parameter block

D0 $0019

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
Slot Manager Reference 2-41

C H A P T E R 2

Slot Manager
Parameter block

DESCRIPTION

The SReadByte function returns the low-order byte of the offset field of an entry in an
sResource. You provide a pointer to the sResource in the spsPointer field and the ID of
the entry in the spID field. The SReadByte function returns the value in the low-order
byte of the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spOffsetData and spByteLanes fields of
the parameter block. Your application should not depend on the values returned in these
fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadByte function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

← spResult LongInt The contents of the entry byte.
→ spsPointer Ptr A pointer to an sResource (described in

“The sResource,” beginning on page 2-7).
→ spID SignedByte The ID of the sResource entry.
✕ spOffsetData LongInt
✕ spByteLanes SignedByte

Trap macro Selector

_SlotManager $0000

Registers on entry

A0 Address of the parameter block

D0 $0000

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
2-42 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
SReadWord 2

You can use the SReadWord function to determine the value of the low-order word of an
sResource entry.

FUNCTION SReadWord (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SReadWord function returns the low-order word of the offset field of an entry in an
sResource. You provide a pointer to the sResource in the spsPointer field of the Slot
Manager parameter block you point to in the spBlkPtr parameter, and you provide the
ID of the entry in the spID field. The SReadWord function returns the value in the low-
order word of the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spOffsetData and spByteLanes fields of
the parameter block. Your application should not depend on the values returned in these
fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadWord function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

← spResult LongInt The contents of the entry word.
→ spsPointer Ptr A pointer to an sResource (described in

“The sResource,” beginning on page 2-7).
→ spID SignedByte The ID of the sResource entry.
✕ spOffsetData LongInt
✕ spByteLanes SignedByte

Trap macro Selector

_SlotManager $0001

Registers on entry

A0 Address of the parameter block

D0 $0001

Registers on exit

D0 Result code
Slot Manager Reference 2-43

C H A P T E R 2

Slot Manager
RESULT CODES

SReadLong 2

You can use the SReadLong function to determine the value of a long word pointed to
by the offset field of an sResource entry.

FUNCTION SReadLong (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SReadLong function returns the 32-bit value pointed to by the offset field of an
sResource entry. In the Slot Manager parameter block you point to in the spBlkPtr
parameter, you provide a pointer to the sResource in the spsPointer field and specify
the ID of the entry in the spID field. The SReadLong function returns the long word
value in the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spSize, spOffsetData, and spByteLanes
fields of the parameter block. Your application should not depend on the values returned
in these fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadLong function are

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spResult LongInt The contents of the long word.
→ spsPointer Ptr A pointer to an sResource (described in

“The sResource,” beginning on page 2-7).
→ spID SignedByte The ID of the sResource entry.
✕ spSize LongInt
✕ spOffsetData LongInt
✕ spByteLanes SignedByte

Trap macro Selector

_SlotManager $0002
2-44 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SGetCString 2

You can use the SGetCString function to determine the value of a string pointed to by
the offset field of an sResource entry.

FUNCTION SGetCString (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetCString function returns a copy of the cString data structure pointed to by
the offset field of an sResource entry.

You provide a pointer to the sResource in the spsPointer field and specify the ID of
the entry in the spID field.

The SGetCString function allocates a memory buffer, copies the value of the cString
data structure into it, and returns a pointer to it in the spResult field. You should
dispose of this pointer by using the Memory Manager procedure DisposePtr.

Registers on entry

A0 Address of the parameter block

D0 $0002

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spResult Ptr A pointer to a copy of the cString data
structure.

→ spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

→ spID SignedByte The ID of the sResource entry.
✕ spSize LongInt
✕ spOffsetData LongInt
✕ spByteLanes SignedByte
✕ spFlags SignedByte
Slot Manager Reference 2-45

C H A P T E R 2

Slot Manager
SPECIAL CONSIDERATIONS

The SGetCString function may alter the values of the spSize, spOffsetData,
spByteLanes, and spFlags fields of the parameter block. Your application should not
depend on the values returned in these fields.

SPECIAL CONSIDERATIONS

The SGetCString function allocates memory; your application should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetCString function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about the cString data structure, see “Firmware,” beginning on
page 2-7.

Trap macro Selector

_SlotManager $0003

Registers on entry

A0 Address of the parameter block

D0 $0003

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
2-46 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
SGetBlock 2

You can use the SGetBlock function to obtain a copy of an sBlock data structure
pointed to by the offset field of an sResource entry.

FUNCTION SGetBlock (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetBlock function returns a copy of the sBlock data structure pointed to by the
offset field of an sResource entry.

In the parameter block you point to in the spBlkPtr parameter, you provide a pointer
to the sResource in the spsPointer field and specify the ID of the entry in the spID
field.

The SGetBlock function allocates a memory buffer, copies the contents of the sBlock
data structure into it, and returns a pointer to it in the spResult field. You should
dispose of this pointer by using the Memory Manager procedure DisposePtr.

SPECIAL CONSIDERATIONS

The SGetBlock function may alter the values of the spSize, spOffsetData,
spByteLanes, and spFlags fields of the parameter block. Your application should not
depend on the values returned in these fields.

The SGetBlock function allocates memory; your application should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetBlock function are

← spResult Ptr A pointer to a copy of an sBlock data
structure (described on page 2-9).

→ spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

→ spID SignedByte The ID of the sResource entry.
✕ spSize LongInt
✕ spOffsetData LongInt
✕ spByteLanes SignedByte
✕ spFlags SignedByte

Trap macro Selector

_SlotManager $0005
Slot Manager Reference 2-47

C H A P T E R 2

Slot Manager
You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SFindStruct 2

You can use the SFindStruct function to obtain a pointer to any data structure pointed
to by the offset field of an sResource entry. You might want to use this function, for
example, when the data structure type is defined by the card designer.

FUNCTION SFindStruct (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

You provide a pointer to the sResource in the spsPointer field, and the ID of the entry
in the spID field. The SFindStruct function returns a pointer to the data structure in
the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the value of the spByteLanes field of the parameter block. Your
application should not depend on the value returned in this field.

Registers on entry

A0 Address of the parameter block

D0 $0005

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

↔ spsPointer Ptr On input: a pointer to an sResource.
On output: a pointer to a data structure.

→ spID SignedByte The ID of the sResource entry.
✕ spByteLanes SignedByte
2-48 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindStruct function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For information about obtaining a copy of a data structure pointed to by the offset field
of an sResource entry, rather than a pointer to the data structure, see the next section,
which describes the SReadStruct function.

SReadStruct 2

You can use the SReadStruct function to obtain a copy of any data structure pointed to
by an sResource entry. You might want to use this function, for example, when the data
structure type is defined by the card designer.

FUNCTION SReadStruct (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0006

Registers on entry

A0 Address of the parameter block

D0 $0006

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spResult Ptr A pointer to a memory block.
→ spsPointer Ptr A pointer to the structure.
→ spSize LongInt The length in bytes of the structure.
✕ spByteLanes SignedByte
Slot Manager Reference 2-49

C H A P T E R 2

Slot Manager
DESCRIPTION

The SReadStruct function copies any arbitrary data structure from the declaration
ROM of an expansion card into memory.

You provide a pointer to the structure in the spsPointer field and specify the size of
the structure in the spSize field. You must also allocate a memory block for the result
and send a pointer to it in the spResult field.

The SReadStruct function copies the data structure into the memory block pointed to
by the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the value of the spByteLanes field of the parameter block. Your
application should not depend on the value returned in this field.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadStruct function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For information about obtaining a pointer to a data structure pointed to by the offset
field of an sResource entry, rather than a copy of the data structure, see the description of
the SFindStruct function on page 2-48.

Trap macro Selector

_SlotManager $0007

Registers on entry

A0 Address of the parameter block

D0 $0007

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
2-50 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Enabling, Disabling, Deleting, and Restoring sResources 2

The functions in this section are primarily for use by device drivers. The
SetSRsrcState function enables and disables sResources. The next two functions,
SDeleteSRTRec and InsertSRTRec, delete sResources from and restore them to the
slot resource table. The SUpdateSRT function updates the slot resource table record for
an existing sResource.

SetSRsrcState 2

You can use the SetSRsrcState function to select which sResources are enabled.

FUNCTION SetSRsrcState (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SetSRsrcState function enables or disables an sResource. All of the Slot Manager
functions recognize enabled sResources, while only the SGetSRsrc and
SGetTypeSRsrc functions (described on page 2-33 and page 2-35, respectively)
can recognize disabled ones.

You specify the sResource to enable or disable with the spSlot, spID, and spExtDev
fields of the Slot Manager parameter block you point to in the spBlkPtr parameter, and
you specify whether to enable or disable it in the spParamData field. The Slot Manager
enables the sResource when the spParamData field has a value of 0 and disables it
when the field has a value of 1.

SPECIAL CONSIDERATIONS

The SetSRsrcState function is available only with version 1 or later of the Slot
Manager. You can use the SVersion function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

→ spParamData LongInt Either a value of 0 to enable the sResource or
a value of 1 to disable it.

→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
→ spExtDev SignedByte The external device identifier.
Slot Manager Reference 2-51

C H A P T E R 2

Slot Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSRsrcState function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information on enabling and disabling sResources, see “Enabling and
Disabling sResources” on page 2-18.

For information on finding disabled sResources, see the description of the SGetSRsrc
function on page 2-33 and the description of the SGetTypeSRsrc function on page 2-35.

SDeleteSRTRec 2

You can use the SDeleteSRTRec function to remove an sResource from the slot
resource table.

FUNCTION SDeleteSRTRec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0009

Registers on entry

A0 Address of the parameter block

D0 $0009

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
→ spExtDev SignedByte The external device identifier.
2-52 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
DESCRIPTION

The SDeleteSRTRec function deletes an sResource from the slot resource table. This
routine is typically called by a card’s PrimaryInit code to delete any sResources that
are not appropriate for the system as configured.

SPECIAL CONSIDERATIONS

The SDeleteSRTRec function is available only with Manager. You can use the
SVersion function, described on page 2-30, to determine whether the Slot Manager is
version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SDeleteSRTRec function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

SEE ALSO

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15. For information about restoring an sResource to the slot resource table, see
the InsertSRTRec function, described next. For more information on deleting and
restoring sResources, see “Deleting and Restoring sResources” on page 2-17.

Trap macro Selector

_SlotManager $0031

Registers on entry

A0 Address of the parameter block

D0 $0031

Registers on exit

D0 Result code
Slot Manager Reference 2-53

C H A P T E R 2

Slot Manager
InsertSRTRec 2

You can use the InsertSRTRec function to add an sResource to the slot resource table.

FUNCTION InsertSRTRec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The InsertSRTRec function installs an sResource from the firmware of a NuBus card
into the slot resource table. For example, if the user makes a selection in the Monitors
control panel that requires your video card to switch to a new sResource that was
deleted by PrimaryInit code, you can use the InsertSRTRec function to restore
that sResource.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot
Manager parameter block you point to in the spBlkPtr parameter. You must set the
spsPointer field to NIL. Set the spParamData field to 1 to disable the restored
sResource or to 0 to enable it.

If you place a valid device driver reference number in the spRefNum field, the
Slot Manager updates the dCtlDevBase field in that device driver’s device control
entry (that is, in the device control entry that has that driver reference number in the
dCtlRefNum field). The dCtlDevBase field contains the base address of the slot device.
For a video card this is the base address for the pixel map in the card’s GDevice record
(which is described in Inside Macintosh: Imaging With QuickDraw). For other types of
cards the base address is optional and defined by the card designer.

The base address consists of the card’s slot address plus an optional offset that the card
designer can specify using the MinorBaseOS or MajorBaseOS entries of the sResource.
The Slot Manager calculates the base address by using bit 2 (the f32BitMode flag)
of the sRsrcFlags entry of the sResource. As shown in Table 2-4, the Slot Manager
first checks the value of bit 2 of the sRsrcFlags field, and then it checks for a
MinorBaseOS entry. If it finds one, it uses this value to create a 32-bit value to store
in the dCtlDevBase field. If it does not find a MinorBaseOS entry, it uses the value in
the MajorBaseOS entry, if any.

→ spsPointer Ptr A NIL pointer.
→ spParamData LongInt Either a value of 0 to enable the sResource

or a value of 1 to disable it.
→ spRefNum Integer The device driver reference number.
→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
→ spExtDev SignedByte The external device identifier.
2-54 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Note
In this table, x represents any hexadecimal digit and s represents a slot
number. ◆

SPECIAL CONSIDERATIONS

The InsertSRTRec function is available only with version 1 or later of the Slot
Manager. You can use the SVersion function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the InsertSRTRec function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

Table 2-4 How the Slot Manager determines the base address of a slot device

sRsrcFlags MinorBaseOS MajorBaseOS Address format

Field missing $x xxxx Any or none $Fs0x xxxx

Field missing None $xx xxxx $sxxx xxxx

Bit 2 is 0 $x xxxx Any or none $Fs0x xxxx

Bit 2 is 0 None $xx xxxx $sxxx xxxx

Bit 2 is 1 $x xxxx Any or none $Fsxx xxxx

Bit 2 is 1 None $xx xxxx $sxxx xxxx

Trap macro Selector

_SlotManager $000A

Registers on entry

A0 Address of the parameter block

D0 $000A

Registers on exit

D0 Result code
Slot Manager Reference 2-55

C H A P T E R 2

Slot Manager
RESULT CODES

SEE ALSO

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15.

For information about deleting an sResource from the slot resource table, see the
SDeleteSRTRec function, described on page 2-52. For more information on deleting
and restoring sResources, see “Deleting and Restoring sResources” on page 2-17.

For more information about the device control entry and device driver reference
numbers, see the chapter “Device Manager” in this book.

SUpdateSRT 2

For system software versions earlier than System 7, you can use the SUpdateSRT
function to update the slot resource table record for an existing sResource. A new record
will be added if the sResource does not already exist in the slot resource table.

FUNCTION SUpdateSRT (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SUpdateSRT function adds or updates an record in the slot resource table. You
specify an sResource with the spSlot, spID, and spExtDev fields of the Slot Manager
parameter block you point to in the spBlkPtr parameter. If a matching record is found

noErr 0 No error
memFullErr –108 Not enough room in heap
smUnExBusErr –308 Bus error
smBadRefId –330 Reference ID not found in list
smBadsList –331 Bad sResource: Id1 < Id2 < Id3 ... format is not followed
smReservedErr –332 Reserved field not zero
smSlotOOBErr –337 Slot number out of bounds
smNoMoresRsrcs –344 Specified sResource not found
smBadsPtrErr –346 Bad pointer was passed to SCalcSPointer
smByteLanesErr –347 ByteLanes field in card’s format block was determined

to be zero

→ spIOReserved Integer The value to be stored in the IOReserved
field of the slot resource table.

→ spRefNum Integer The device driver reference number.
→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
→ spExtDev SignedByte The external device identifier.
2-56 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
in the slot resource table, the RefNum and IOReserved fields of the table are updated. If
the record is not found, the sResource is added to the table by reading the appropriate
declaration ROM. Updates may be made to enabled sResources only.

SPECIAL CONSIDERATIONS

In System 7, this function was replaced by the InsertSRTRec function (described on
page 2-54). You should use the SUpdateSRT function only if version 1 or later of the Slot
Manager is not available. You can use the SVersion function, described on page 2-30, to
determine whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SUpdateSRT function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15.

For information about the preferred routine for adding an sResource to the slot resource
table, see the InsertSRTRec function, described on page 2-54. For information about
deleting an sResource from the slot resource table, see the SDeleteSRTRec function,
described on page 2-52.

Trap macro Selector

_SlotManager $002B

Registers on entry

A0 Address of the parameter block

D0 $002B

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough room in heap
smEmptySlot –300 No card in this slot
smUnExBusErr –308 Bus error
smBadRefId –330 Reference ID not found in list
smSlotOOBErr –337 Slot number out of bounds
smNoMoresRsrcs –344 Specified sResource not found
Slot Manager Reference 2-57

C H A P T E R 2

Slot Manager
Loading Drivers and Executing Code From sResources 2

The functions in this section allow you to load the device driver associated with an
sResource or execute code from an sExecBlock data structure. Both of the functions in
this section require you to provide extra information in a structure of type SEBlock. See
“Slot Execution Parameter Block” on page 2-27 for information about the fields of this
structure.

SGetDriver 2

You can use the SGetDriver function to load an sResource’s device driver.

FUNCTION SGetDriver (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetDriver function loads a device driver from an sResource into a relocatable
block in the system heap.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot
Manager parameter block you point to in the spBlkPtr parameter, and provide a
pointer to a slot execution parameter block in the spsExecPBlk field.

The SGetDriver function searches the sResource for an sRsrcLoadRec entry. If it
finds one, it loads the sLoadDriver record and executes it. If no sRsrcLoadRec entry
exists, the SGetDriver function looks for an sRsrcDrvrDir entry. If it finds one, it
loads the driver into memory.

The SGetDriver function returns a handle to the driver in the spResult field of the
parameter block.

SPECIAL CONSIDERATIONS

The SGetDriver function allocates memory; your application should not call this
function at interrupt time.

← spResult Handle A handle to the device driver.
→ spsExecPBlk Ptr A pointer to the SEBlock.
→ spSlot SignedByte The slot number.
→ spID SignedByte The sResource ID.
→ spExtDev SignedByte The external device ID.
✕ spSize SignedByte
✕ spFlags SignedByte
2-58 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetDriver function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register A0 contains a
handle to the loaded driver, and register D0 contains the result code.

RESULT CODES

SEE ALSO

For more information about sResources, including the sRsrcDrvrDir and
sRsrcLoadRec entry types, see Designing Cards and Drivers for the Macintosh Family,
third edition.

SExec 2

You can use the SExec function to execute code stored in an sExecBlock data structure.

FUNCTION SExec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $002D

Registers on entry

A0 Address of the parameter block

D0 $002D

Registers on exit

A0 Handle to loaded driver

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

→ spsExecPBlk Ptr A pointer to the SEBlock.
→ spID SignedByte The ID of the sExecBlock entry in the

sResource.
✕ spResult LongInt
Slot Manager Reference 2-59

C H A P T E R 2

Slot Manager
DESCRIPTION

The SExec function loads sExecBlock code from an sResource into the current heap
zone, checks its revision level, and executes the code.

You specify the sExecBlock by providing a pointer to the sResource in the
spsPointer field and the ID of the sExecBlock entry in the spID field. You must also
provide in the spsExecPBlk field a pointer to a slot execution parameter block. The
SEBlock structure allows you to provide information about the execution of the
sExecBlock code.

The SExec function passes the sExecBlock code a pointer to the SEBlock structure in
register A0.

SPECIAL CONSIDERATIONS

The SExec function allocates memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SExec function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about the sExecBlock data structure, see page 2-9.

Trap macro Selector

_SlotManager $0023

Registers on entry

A0 Address of the parameter block

D0 $0023

Registers on exit

D0 Result code

noErr 0 No error
smCodeRevErr –333 The revision of the code to be executed by sExec was

wrong
smCPUErr –334 The CPU field of the code to be executed by sExec was

wrong
smNoMoresRsrcs –344 Requested sResource not found
2-60 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Getting Information About Expansion Cards and Declaration ROMs 2

The functions in this section return information about slot status or about entire
declaration ROMs, instead of single sResources. The SReadInfo function returns
information from the slot information record maintained by the Slot Manager for a
particular slot. See “Slot Information Record,” beginning on page 2-24 for a description
of the slot information record.

The SReadFHeader functions returns a copy of the information in the format block of
a card’s declaration ROM. The SCkCardStat function returns a card’s initialization
status. The SCardChanged function reports whether the card in a particular slot has
changed.

The SFindDevBase function returns the base address of a slot device.

SReadInfo 2

You can use the SReadInfo function to obtain a copy of the slot information record for a
particular slot.

FUNCTION SReadInfo (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The Slot Manager maintains a slot information record for each slot. The SReadInfo
function copies the information from this data structure for the requested slot.

You specify the slot with the spSlot parameter. You must also allocate a slot
information record, and provide a pointer to it in the spResult field. The SReadInfo
function copies the information in the slot information record maintained by the Slot
Manager into the data structure pointed to by the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spSize field. Your application should not
depend on the value returned in this field.

→ spResult Pointer A pointer to a slot information record.
→ spSlot SignedByte The slot number.
✕ spSize LongInt
Slot Manager Reference 2-61

C H A P T E R 2

Slot Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadInfo function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For general information about the slot information record, see “About the Slot Manager”
on page 2-15. To obtain a pointer to the SInfoRecord data structure, instead of a copy
of it, see the next section, which describes the SReadFHeader function.

SReadFHeader 2

You can use the SReadFHeader function to obtain a copy of the information in the
format block of a declaration ROM.

FUNCTION SReadFHeader (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0010

Registers on entry

A0 Address of the parameter block

D0 $0010

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

→ spResult Pointer A pointer to an FHeaderRec data
structure (described on page 2-26).

→ spSlot SignedByte The slot number.
✕ spsPointer Ptr
✕ spSize LongInt
✕ spOffsetData LongInt
✕ spByteLanes SignedByte
2-62 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
DESCRIPTION

The SReadFHeader function copies the information from the format block of the
expansion card in the requested slot to an FHeaderRec data structure you provide.

You specify the slot with the spSlot parameter. You must also allocate an FHeaderRec
data structure and provide a pointer to it in the spResult field.

The SReadInfo function copies the information in the format block into the data
structure pointed to by the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spsPointer, spSize, spOffsetData, and
spByteLanes fields. Your application should not depend on the values returned in
these fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadFHeader function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For general information about the format block, see “The Format Block,” beginning on
page 2-13. For information about the fields of the format block, see Designing Cards and
Drivers for the Macintosh Family, third edition.

Trap macro Selector

_SlotManager $0013

Registers on entry

A0 Address of the parameter block

D0 $0013

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot
Slot Manager Reference 2-63

C H A P T E R 2

Slot Manager
SCkCardStat 2

You can use the SCkCardStat function to check the initialization status of an expansion
card.

FUNCTION SCkCardStat (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SCkCardStat function checks the InitStatusA field of the slot information
record for the expansion card in the designated slot. You specify the slot in the spSlot
field of the Slot Manager parameter block you point to in the spBlkPtr parameter. The
SCkCardStat function returns the noErr result code if the InitStatusA field
contains a nonzero value.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spResult field. Your application should not
depend on the values returned in this field.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCkCardStat function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

→ spSlot SignedByte The slot number.
✕ spResult LongInt

Trap macro Selector

_SlotManager $0018

Registers on entry

A0 Address of the parameter block

D0 $0018

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot
2-64 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
SEE ALSO

For more information about card initialization, see “About the Slot Manager,” beginning
on page 2-15.

SCardChanged 2

You can use the SCardChanged function to determine if the card in a particular slot has
been changed.

FUNCTION SCardChanged (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SCardChanged function checks if the expansion card in a slot has been changed
(that is, if the card’s sPRAMInit record has been initialized). You specify the slot in the
spSlot field of the Slot Manager parameter block you point to in the spBlkPtr
parameter.

The SCardChanged function returns a value of TRUE in the spResult field of the
parameter block if the card has been changed.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCardChanged function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

→ spSlot SignedByte The slot number.
← spResult LongInt A Boolean signifying whether the card was

changed.

Trap macro Selector

_SlotManager $0022

Registers on entry

A0 Address of the parameter block

D0 $0022

Registers on exit

D0 Result code
Slot Manager Reference 2-65

C H A P T E R 2

Slot Manager
RESULT CODES

SFindDevBase 2

You can use the SFindDevBase function to determine the base address of a slot device.

FUNCTION SFindDevBase (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SFindDevBase function returns the base address of a device, using information
contained in the sResource. Use of the base address is optional (except for video cards)
and device-specific. For a video card this must be the base address for the pixel map in
the card’s GDevice record (which is described in Inside Macintosh: Imaging With
QuickDraw.) For other types of cards, the base address is defined by the card designer.
The Slot Manager makes no use of this information.

The base address consists of the card’s slot address plus an optional offset that the card
designer can specify using the MinorBaseOS or MajorBaseOS entries of the sResource.
See Table 2-4 on page 2-55 for a description of how the Slot Manager calculates the base
address.

You specify the slot in the spSlot field of the Slot Manager parameter block you
point to in the spBlkPtr parameter, and the sResource ID with the spId field.
The SFindDevBase function returns the base address in the spResult field of the
parameter block.

Note
The base address of a slot device is also stored in the dCtlDevBase
field of the device control entry. The InsertSRTRec function
automatically updates the dCtlDevBase field when a new record is
added to the slot resource table. You need to call SFindDevBase only
if you used the SUpdateSRTRec function to update the slot resource
table. ◆

noErr 0 No error
smEmptySlot –300 No card in this slot

→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
← spResult LongInt The device base address.
2-66 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindDevBase function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about how the device base address is calculated, see the
description of the InsertSRTRec function on page 2-54.

Accessing Expansion Card Parameter RAM 2

The Macintosh Operating System reserves six bytes of parameter RAM per slot for any
card-specific information that the card designer chooses to store. The functions in this
section allow you to read or change the value of these bytes. Both of the functions in
this section use the slot parameter RAM record to return the parameter RAM values.

SReadPRAMRec 2

You can use the SReadPRAMRec function to read the parameter RAM information for a
particular slot.

FUNCTION SReadPRAMRec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Trap macro Selector

_SlotManager $001B

Registers on entry

A0 Address of the parameter block

D0 $001B

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot
Slot Manager Reference 2-67

C H A P T E R 2

Slot Manager
Parameter block

DESCRIPTION

The Macintosh Operating System allocates one SPRAMRecord data structure for each
slot in the system parameter RAM. The Slot Manager initializes this structure with the
data from the sPRAMInit record on the firmware of the expansion card. The
SReadPRAMRec function provides a copy of this information to your application.

You specify the slot number in the spSlot field of the Slot Manager parameter block
you point to in the spBlkPtr parameter. You must also allocate a SPRAMRecord data
structure and store a pointer to it in the spResult field. The SReadPRAMRec function
copies the appropriate parameter RAM information into this data structure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadPRAMRec function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about the sPRAMInit record, see Designing Cards and Drivers for
the Macintosh Family, third edition.

→ spSlot SignedByte The slot number.
→ spResult Pointer A pointer to an SPRAMRecord data structure

(described on page 2-27).
✕ spSize LongInt

Trap macro Selector

_SlotManager $0011

Registers on entry

A0 Address of the parameter block

D0 $0011

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot
2-68 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
SPutPRAMRec 2

You can use the SPutPRAMRec function to change the values stored in a slot’s parameter
RAM.

FUNCTION SPutPRAMRec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SPutPRAMRec function allows you to change the values stored in the parameter
RAM of a slot.

In the parameter block you point to in the spBlkPtr parameter, you specify the slot
number with the spSlot field and provide the new parameter RAM values in a
SPRAMRecord data structure pointed to by the spsPointer field.

The SPutPRAMRec function copies the information from the six vendor-use fields into
the parameter RAM for the slot. This function does not copy the boardID field, which is
Apple-defined.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPutPRAMRec function are

You must set up register D0 with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

→ spsPointer Ptr A pointer to an SPRAMRecord data structure
(described on page 2-27).

→ spSlot SignedByte The slot number.

Trap macro Selector

_SlotManager $0012

Registers on entry

A0 Address of the parameter block

D0 $0012

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot
Slot Manager Reference 2-69

C H A P T E R 2

Slot Manager
Managing the Slot Interrupt Queue 2

The Slot Manager maintains an interrupt queue for each slot. If your card generates
interrupts, you can install a slot interrupt handler to process the interrupts. You use the
SIntInstall function to install an interrupt handler in the slot interrupt queue, and
the SIntRemove function to remove an interrupt handler from the queue.

SIntInstall 2

You use the SIntInstall function to install an interrupt handler in the slot interrupt
queue for a designated slot.

FUNCTION SIntInstall (sIntQElemPtr: SQElemPtr;

 theSlot: Integer) : OsErr;

sIntQElemPtr
A pointer to a slot interrupt queue element record, described on page 2-28.

theSlot The slot number.

DESCRIPTION

The SIntInstall function adds a new element to the interrupt queue for a slot. You
provide a pointer to a slot interrupt queue element in the sIntQElemPtr parameter and
specify the slot number in theSlot.

The Slot Manager calls your interrupt handler using a JSR instruction. Your routine
must preserve the contents of all registers except A1 and D0, and return to the Slot
Manager with an RTS instruction. Register D0 should be set to 0 if your routine did
not service the interrupt, or any other value if the interrupt was serviced. Your routine
should not set the processor priority below 2, and must return with the processor
priority equal to 2.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the SIntInstall function is _SIntInstall ($A075).

You must set up register D0 with the slot number and register A0 with the address of the
slot queue element. When _SIntInstall returns, register D0 contains the result code.

Registers on entry

A0 address of the slot queue element

D0 slot number

Registers on exit

D0 Result code
2-70 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
RESULT CODES

SIntRemove 2

You use the SIntRemove function to remove an interrupt handler from a slot’s interrupt
queue.

FUNCTION SIntRemove (sIntQElemPtr: SQElemPtr;

theSlot: Integer) : OsErr;

sIntQElemPtr
A pointer to a slot interrupt queue element record, described on page 2-28.

theSlot The slot number.

DESCRIPTION

The SIntRemove function removes an element from the interrupt queue for a slot. You
provide a pointer to a slot interrupt queue element in the sIntQElemPtr parameter and
specify the slot number in theSlot.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the SIntRemove function is _SIntRemove ($A076).

You must set up register D0 with the slot number and register A0 with the address of the
slot queue element. When _SIntRemove returns, register D0 contains the result code.

RESULT CODES

SEE ALSO

For a description of the slot interrupt queue element record, see “Slot Interrupt Queue
Element” on page 2-28.

noErr 0 No error

Registers on entry

A0 address of the slot queue element

D0 slot number

Registers on exit

D0 Result code

noErr 0 No error
Slot Manager Reference 2-71

C H A P T E R 2

Slot Manager
Low-Level Routines 2
The routines in this section are used internally by the Macintosh Operating System
during startup, and as needed by the Slot Manager. They are included here for reference
only, and as an aid to debugging. These routines are not required or supported for
application-level programming. Applications and device drivers should rely only on
the high-level routines described in the previous section, “Slot Manager Routines.”

▲ W A R N I N G

The routines in this section are internal Macintosh Operating System
functions that may be changed without notice by Apple Computer, Inc.
These routines may not be supported by future versions of the
Operating System. ▲

InitSDeclMgr 2

This function is used only by the Macintosh Operating System.

FUNCTION InitSDeclMgr (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

DESCRIPTION

The InitSDeclMgr function initializes the Slot Manager. The contents of the parameter
block are undefined. This function allocates the slot information record and checks each
slot for a card. If a card is present, the Slot Manager validates the card’s firmware and the
resulting information is placed in the slot’s sInfoRecord. For empty slots, or cards that
fail to initialize, the Slot Manager stores the appropriate error code in the initStatusA
field of the sInfoRecord for the slot.

SPECIAL CONSIDERATIONS

The InitSDeclMgr function allocates memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the InitSDeclMgr function are

Trap macro Selector

_SlotManager $0020
2-72 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”
beginning on page 2-15.

SCalcSPointer 2

This function is used only by the Macintosh Operating System.

FUNCTION SCalcSPointer (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SCalcSPointer function returns a pointer to a given byte in the declaration ROM
of an expansion card.

Registers on entry

A0 Address of the parameter block

D0 $0020

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smDisposePErr –312 An error occurred during execution of DisposePtr
smBadsPtrErr –346 Bad spsPointer value
smByteLanesErr –347 Bad spByteLanes value

↔ spsPointer Ptr A pointer to a byte in declaration ROM.
→ spOffsetData LongInt The offset in bytes to desired pointer.
→ spByteLanes SignedByte The byte lanes used.
Slot Manager Reference 2-73

C H A P T E R 2

Slot Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCalcSPointer function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SCalcStep 2

This function is used only by the Macintosh Operating System.

FUNCTION SCalcStep (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SCalcStep function calculates the field sizes in the block pointed to by spBlkPtr.
It is used for stepping through the card firmware one field at a time. If the
fConsecBytes flag is set the function calculates the step value for consecutive bytes;
otherwise it calculates it for consecutive IDs.

Trap macro Selector

_SlotManager $002C

Registers on entry

A0 Address of the parameter block

D0 $002C

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spResult LongInt The function result.
→ spsPointer Ptr A pointer to a byte in declaration ROM.
→ spByteLanes SignedByte The byte lanes used.
→ spFlags SignedByte Flags.
2-74 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCalcStep function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SFindBigDevBase 2

This function is obsolete.

FUNCTION SFindBigDevBase (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SFindBigDevBase function has been superseded by the SFindDevBase function.
Currently, both functions execute the same code and return the same result. However,
for future compatibility you should use only the SFindDevBase function described on
page 2-66.

Trap macro Selector

_SlotManager $0028

Registers on entry

A0 Address of the parameter block

D0 $0028

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
← spResult LongInt The device base address.
Slot Manager Reference 2-75

C H A P T E R 2

Slot Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindBigDevBase function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For information about the supported function for finding a device base address, see the
description of the SFindDevBase function on page 2-66.

SFindSInfoRecPtr 2

This function is used only by the Macintosh Operating System.

FUNCTION SFindSInfoRecPtr (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SFindSInfoRecPtr function returns a pointer to the slot information record for a
particular slot.

Trap macro Selector

_SlotManager $001C

Registers on entry

A0 Address of the parameter block

D0 $001C

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

← spResult LongInt A pointer to the slot information record.
→ spSlot SignedByte The slot number.
2-76 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindSInfoRecPtr function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For information about the high-level routine for reading the slot information record, see
the description of the SReadInfo function on page 2-61.

SFindSRsrcPtr 2

This function is used only by the Macintosh Operating System.

FUNCTION SFindSRsrcPtr (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SFindSRsrcPtr function finds an sResource given its slot number and sResource
ID. This function ignores disabled sResources.

Trap macro Selector

_SlotManager $002F

Registers on entry

A0 Address of the parameter block

D0 $002F

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

→ spSlot SignedByte The slot number of the requested sResource.
→ spId SignedByte The sResource ID of the requested sResource.
✕ spResult LongInt
Slot Manager Reference 2-77

C H A P T E R 2

Slot Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindSRsrcPtr function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For information about the high-level routines for locating sResources, see “Finding
sResources,” beginning on page 2-31.

SGetSRsrcPtr 2

This function is used only by the Macintosh Operating System.

FUNCTION SGetSRsrcPtr (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetSRsrcPtr function finds an sResource given its slot number and sResource ID.
This function can search disabled sResources.

Trap macro Selector

_SlotManager $0030

Registers on entry

A0 Address of the parameter block

D0 $0030

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

→ spParamData LongInt The parameter flags.
→ spSlot SignedByte The slot number of the requested sResource.
→ spID SignedByte The sResource ID of the requested sResource.
→ spExtDev SignedByte The external device identifier.
2-78 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetSRsrcPtr function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For information about the high-level routines for locating sResources, see “Finding
sResources,” beginning on page 2-31.

SInitPRAMRecs 2

This function is used only by the Macintosh Operating System.

FUNCTION SInitPRAMRecs (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

DESCRIPTION

The SInitPRAMRecs function scans every slot and checks its BoardId value against
the value stored in PRAM. If the values do not match, the fCardIsChanged flag is
set and the board sResource is searched for a PRAMInitData entry. If one is found, the
sPRAMRecord for the slot is initialized with the data from the card’s sPRAMInit record;
otherwise it is initialized to 0. The contents of the parameter block are undefined.

SPECIAL CONSIDERATIONS

The SInitPRAMRecs function may move memory.

Trap macro Selector

_Slot Manager $001D

Registers on entry

A0 Address of the parameter block

D0 $001D

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
Slot Manager Reference 2-79

C H A P T E R 2

Slot Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SInitPRAMRecs function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”
beginning on page 2-15.

SInitSRsrcTable 2

This function is used only by the Macintosh Operating System.

FUNCTION SInitSRsrcTable (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

DESCRIPTION

The SInitSRsrcTable function initializes the slot resource table. The contents of the
parameter block are undefined.

SPECIAL CONSIDERATIONS

The SInitSRsrcTable function allocates memory.

Trap macro Selector

_SlotManager $0025

Registers on entry

A0 Address of the parameter block

D0 $0025

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smDisposePErr –312 An error occurred during execution of DisposePtr
2-80 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SInitSRsrcTable function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”
beginning on page 2-15.

SOffsetData 2

This function is used only by the Macintosh Operating System.

FUNCTION SOffsetData (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SOffsetData function returns the value of the offset field of an sResource entry.

Trap macro Selector

_SlotManager $0029

Registers on entry

A0 Address of the parameter block

D0 $0029

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smDisposePErr –312 An error occurred during execution of DisposePtr

↔ spsPointer Ptr On output: A pointer to the sResource
entry.

← spOffsetData LongInt The contents of the offset field.
→ spID SignedByte The ID of the sResource entry.
← spByteLanes SignedByte The byte lanes from the card’s format block.
Slot Manager Reference 2-81

C H A P T E R 2

Slot Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SOffsetData function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For information about high-level routines for getting information from sResources, see
the descriptions of the SReadByte, SReadWord, SReadLong, SGetCString,
SGetBlock, SReadStruct, and SFindStruct functions in “Getting Information From
sResources,” beginning on page 2-40.

SPrimaryInit 2

This function is used only by the Macintosh Operating System.

FUNCTION SPrimaryInit (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

Called by the Slot Manager during system startup, the SPrimaryInit function
executes the code in the PrimaryInit entry of each card’s board sResource. It passes
the spFlags byte to the PrimaryInit code via the seFlags field of the SEBlock. The
fWarmStart bit is set if a restart is being performed.

Trap macro Selector

_SlotManager $0024

Registers on entry

A0 Address of the parameter block

D0 $0024

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spFlags SignedByte Flags passed to the card’s PrimaryInit code.
2-82 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
SPECIAL CONSIDERATIONS

The SPrimaryInit function may move memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPrimaryInit function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”
beginning on page 2-15.

SPtrToSlot 2

This function is used only by the Macintosh Operating System.

FUNCTION SPtrToSlot (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0021

Registers on entry

A0 Address of the parameter block

D0 $0021

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smDisposePErr –312 An error occurred during execution of DisposePtr
smBadsPtrErr –346 Bad spsPointer value
smByteLanesErr –347 Bad spByteLanes value

→ spsPointer Ptr A pointer to a byte in declaration ROM.
← spSlot SignedByte The slot number.
Slot Manager Reference 2-83

C H A P T E R 2

Slot Manager
DESCRIPTION

The SPtrToSlot function returns the slot number of the card whose declaration ROM
is pointed to by spsPointer. The value of spsPointer must have the form
$Fsxx xxxx, where s is a slot number and x is a hexadecimal number.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPtrToSlot function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SReadPBSize 2

This function is used only by the Macintosh Operating System.

FUNCTION SReadPBSize (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $002E

Registers on entry

A0 Address of the parameter block

D0 $002E

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smBadsPtrErr –346 Bad spsPointer value

↔ spsPointer Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

← spSize LongInt The size of the sBlock data structure.
→ spID SignedByte The ID of the sBlock in the sResource.
← spByteLanes SignedByte The byte lanes from the card’s format block.
→ spFlags SignedByte Flags.
2-84 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
DESCRIPTION

The SReadPBSize function returns the size of an sBlock data structure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadPBSize function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

SEE ALSO

For more information about the high-level routine for obtaining information from an
sBlock data structure, see the description of the SGetBlock function on page 2-47.

SSearchSRT 2

This function is used only by the Macintosh Operating System.

FUNCTION SSearchSRT (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0026

Registers on entry

A0 Address of the parameter block

D0 $00026

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to a record in the slot resource table.
→ spID SignedByte The ID of the sResource entry.
→ spExtDev SignedByte The external device identifier.
→ spSlot SignedByte The slot.
→ spFlags SignedByte Flags.
Slot Manager Reference 2-85

C H A P T E R 2

Slot Manager
DESCRIPTION

The SSearchSRT function searches the slot resource table for the record corresponding
to the sResource in slot spSlot with list spId and external device identifier spExtDev,
and returns a pointer to it in spsPointer. If the fCkForNext bit of spFlags is 0, the
function searches for the specified record; if the flag is 1, it searches for the next record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SSearchSRT function are

On entry, register D0 contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SlotManager returns, register D0 contains
the result code.

RESULT CODES

Trap macro Selector

_SlotManager $002A

Registers on entry

A0 Address of the parameter block

D0 $002A

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
smRecNotFnd –351 Record not found in the slot resource table
2-86 Slot Manager Reference

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Summary of the Slot Manager 2

Pascal Summary 2

Constants 2

CONST

{siStatusFlags field of SInfoRecord}

fCardIsChanged = 1; {card has changed}

{flags for SSearchSRT}

fCkForSame = 0; {check for same sResource in table}

fCkForNext = 1; {check for next sResource in table}

{flag passed to card by SPrimaryInit during startup or restart}

fWarmStart = 2; {warm start if set; else cold start}

{constants for siState field of sInfoRecord}

stateNil = 0; {state}

stateSDMInit = 1; {slot declaration manager init}

statePRAMInit = 2; {sPRAM record init}

statePInit = 3; {primary init}

stateSInit = 4; {secondary init}

{bit flags for spParamData field of SpBlock}

fAll = 0; {if set, search all sResources}

fOneSlot = 1; {if set, search in given slot only}

fNext = 2; {if set, search for next sResource}

Data Types 2

TYPE SpBlock = {Slot Manager parameter block}

PACKED RECORD

spResult: LongInt; {function result}

spsPointer: Ptr; {structure pointer}

spSize: LongInt; {size of structure}

spOffsetData: LongInt; {offset or data}

spIOFileName: Ptr; {reserved for Slot Manager}

spsExecPBlk: Ptr; {pointer to SEBlock data structure}

spParamData: LongInt; {flags}
Summary of the Slot Manager 2-87

C H A P T E R 2

Slot Manager
spMisc: LongInt; {reserved for Slot Manager}

spReserved: LongInt; {reserved for Slot Manager}

spIOReserved: Integer; {ioReserved field from SRT}

spRefNum: Integer; {driver reference number}

spCategory: Integer; {Category field of sRsrcType entry}

spCType: Integer; {cType field of sRsrcType entry}

spDrvrSW: Integer; {DrSW field of sRsrcType entry}

spDrvrHW: Integer; {DrHW field of sRsrcType entry}

spTBMask: SignedByte; {sRsrcType entry bit mask}

spSlot: SignedByte; {slot number}

spID: SignedByte; {sResource ID}

spExtDev: SignedByte; {external device ID}

spHwDev: SignedByte; {hardware device ID}

spByteLanes: SignedByte; {valid byte lanes}

spFlags: SignedByte; {flags used by Slot Manager}

spKey: SignedByte; {reserved for Slot Manager}

END;

SpBlockPtr = ^SpBlock;

SInfoRecord = {slot information record}

PACKED RECORD

siDirPtr: Ptr; {pointer to sResource directory}

siInitStatusA: Integer; {initialization error}

siInitStatusV: Integer; {status returned by vendor }

{ initialization routine}

siState: SignedByte; {initialization state}

siCPUByteLanes: SignedByte; {byte lanes used}

siTopOfROM: SignedByte; {highest valid address in ROM}

siStatusFlags: SignedByte; {status flags}

siTOConstant: Integer; {timeout constant for bus error}

siReserved: PACKED ARRAY [0..1] OF SignedByte; {reserved}

siROMAddr: Ptr; {address of top of ROM}

siSlot: Char; {slot number}

siPadding: PACKED ARRAY [0..2] OF SignedByte; {reserved}

END;

SInfoRecPtr = ^SInfoRecord;

FHeaderRec = {format header record}

PACKED RECORD

fhDirOffset: LongInt; {offset to sResource directory}

fhLength: LongInt; {length in bytes of declaration ROM}

fhCRC: LongInt; {cyclic redundancy check}

fhROMRev: SignedByte; {declaration ROM revision}

fhFormat: SignedByte; {declaration ROM format}
2-88 Summary of the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
fhTstPat: LongInt; {test pattern}

fhReserved: SignedByte; {reserved; must be 0}

fhByteLanes: SignedByte; {byte lanes used by declaration ROM}

END;

FHeaderRecPtr = ^FHeaderRec;

SPRAMRecord = {slot parameter RAM record}

PACKED RECORD

boardID: Integer; {Apple-defined card ID}

vendorUse1: SignedByte; {reserved for vendor use}

vendorUse2: SignedByte; {reserved for vendor use}

vendorUse3: SignedByte; {reserved for vendor use}

vendorUse4: SignedByte; {reserved for vendor use}

vendorUse5: SignedByte; {reserved for vendor use}

vendorUse6: SignedByte; {reserved for vendor use}

END;

SPRAMRecPtr = ^SPRAMRecord;

SEBlock = {slot execution parameter block}

PACKED RECORD

seSlot: SignedByte; {slot number}

sesRsrcId: SignedByte; {sResource ID}

seStatus: Integer; {status of sExecBlock code}

seFlags: SignedByte; {flags}

seFiller0: SignedByte; {filler for word alignment}

seFiller1: SignedByte; {filler}

seFiller2: SignedByte; {filler}

seResult: LongInt; {result of SLoadDriver}

seIOFileName: LongInt; {pointer to driver name}

seDevice: SignedByte; {device to read from}

sePartition: SignedByte; {partition}

seOSType: SignedByte; {type of OS}

seReserved: SignedByte; {reserved}

seRefNum: SignedByte; {driver reference number}

seNumDevices: SignedByte; {number of devices to load}

seBootState: SignedByte; {state of StartBoot code}

END;
Summary of the Slot Manager 2-89

C H A P T E R 2

Slot Manager
SlotIntQElement = {slot interrupt queue element}

RECORD

sqLink: Ptr; {pointer to next queue element}

sqType: Integer; {queue type ID; must be sIQType}

sqPrio: Integer; {priority value in low byte}

sqAddr: ProcPtr; {interrupt handler}

sqParm: LongInt; {optional A1 parameter}

END;

SQElemPtr = ^SlotIntQElement;

Slot Manager Routines 2

Determining the Version of the Slot Manager

FUNCTION SVersion (spBlkPtr: SpBlockPtr): OSErr;

Finding sResources
FUNCTION SRsrcInfo (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetSRsrc (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetTypeSRsrc (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SNextSRsrc (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SNextTypeSRsrc (spBlkPtr: SpBlockPtr): OSErr;

Getting Information From sResources

FUNCTION SReadDrvrName (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadByte (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadWord (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadLong (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetCString (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetBlock (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindStruct (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadStruct (spBlkPtr: SpBlockPtr): OSErr;

Enabling, Disabling, Deleting, and Restoring sResources

FUNCTION SetSRsrcState (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SDeleteSRTRec (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION InsertSRTRec (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SUpdateSRT (spBlkPtr: SpBlockPtr): OSErr;
2-90 Summary of the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Loading Drivers and Executing Code From sResources

FUNCTION SGetDriver (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SExec (spBlkPtr: SpBlockPtr): OSErr;

Getting Information About Expansion Cards and Declaration ROMs
FUNCTION SReadInfo (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadFHeader (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SCkCardStat (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SCardChanged (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindDevBase (spBlkPtr: SpBlockPtr): OSErr;

Accessing Expansion Card Parameter RAM

FUNCTION SReadPRAMRec (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SPutPRAMRec (spBlkPtr: SpBlockPtr): OSErr;

Managing the Slot Interrupt Queue

FUNCTION SIntInstall (sIntQElemPtr: SQElemPtr;
theSlot: Integer) : OsErr;

FUNCTION SIntRemove (sIntQElemPtr: SQElemPtr;
theSlot: Integer) : OsErr;

Low-Level Routines 2

FUNCTION InitSDeclMgr (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SCalcSPointer (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SCalcStep (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindBigDevBase (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindSInfoRecPtr (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindSRsrcPtr (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetSRsrcPtr (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SInitPRAMRecs (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SInitSRsrcTable (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SOffsetData (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SPrimaryInit (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SPtrToSlot (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadPBSize (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SSearchSRT (spBlkPtr: SpBlockPtr): OSErr;
Summary of the Slot Manager 2-91

C H A P T E R 2

Slot Manager
C Summary 2

Constants 2

enum {

/* StatusFlags field of sInfoArray */

fCardIsChanged = 1, /* card has changed */

/* flags for SearchSRT */

fCkForSame = 0, /* check for same sResource in table */

fCkForNext = 1, /* check for next sResource in table */

/* flag passed to card by SPrimaryInit during startup or restart */

fWarmStart = 2, /* warm start if set; else cold start */

/* constants for siState field of sInfoRecord */

stateNil = 0, /* state */

stateSDMInit = 1, /* slot declaration manager init */

statePRAMInit = 2, /* sPRAM record init */

statePInit = 3, /* primary init */

stateSInit = 4, /* secondary init */

/* bit flags for spParamData field of SpBlock */

fall = 0, /* if set, search all sResources */

foneslot = 1, /* if set, search in given slot only */

fnext = 2 /* if set, search for next sResource */

};

Data Types 2

typedef struct SpBlock { /* Slot Manager parameter block */

long spResult; /* function result */

Ptr spsPointer; /* structure pointer */

long spSize; /* size of structure */

long spOffsetData; /* offset or data */

Ptr spIOFileName; /* reserved for Slot Manager */

Ptr spsExecPBlk; /* pointer to SEBlock structure */

long spParamData; /* flags */

long spMisc; /* reserved for Slot Manager */

long spReserved; /* reserved for Slot Manager */

short spIOReserved; /* ioReserved field from SRT */

short spRefNum; /* driver reference number */
2-92 Summary of the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
short spCategory; /* Category field of sRsrcType entry */

short spCType; /* cType field of sRsrcType entry */

short spDrvrSW; /* DrSW field of sRsrcType entry */

short spDrvrHW; /* DrHW field of sRsrcType entry */

char spTBMask; /* sRsrcType entry bit mask */

char spSlot; /* slot number */

char spID; /* sResource ID */

char spExtDev; /* external device ID */

char spHwDev; /* hardware device ID */

char spByteLanes; /* valid byte lanes */

char spFlags; /* flags used by Slot Manager */

char spKey; /* reserved for Slot Manager */

} SpBlock;

typedef SpBlock *SpBlockPtr;

typedef struct SInfoRecord { /* slot information record */

Ptr siDirPtr; /* pointer to sResource directory */

short siInitStatusA; /* initialization error */

short siInitStatusV; /* status returned by vendor

initialization routine */

char siState; /* initialization state */

char siCPUByteLanes; /* byte lanes used */

char siTopOfROM; /* highest valid address in ROM */

char siStatusFlags; /* status flags */

short siTOConst; /* timeout constant for bus error */

char siReserved[2]; /* reserved */

Ptr siROMAddr; /* address of top of ROM */

char siSlot; /* slot number */

char siPadding[3]; /* reserved */

} SInfoRecord;

typedef SInfoRecord *SInfoRecPtr;

typedef struct FHeaderRec { /* format header record */

long fhDirOffset; /* offset to sResource directory */

long fhLength; /* length in bytes of declaration ROM */

long fhCRC; /* cyclic redundancy check */

char fhROMRev; /* declaration ROM revision */

char fhFormat; /* declaration ROM format */

long fhTstPat; /* test pattern */

char fhReserved; /* reserved; must be 0 */

char fhByteLanes; /* byte lanes used by declaration ROM */

} FHeaderRec;

typedef FHeaderRec *FHeaderRecPtr;
Summary of the Slot Manager 2-93

C H A P T E R 2

Slot Manager
typedef struct SPRAMRecord { /* slot parameter RAM record */

short boardID; /* Apple-defined card ID */

char vendorUse1; /* reserved for vendor use */

char vendorUse2; /* reserved for vendor use */

char vendorUse3; /* reserved for vendor use */

char vendorUse4; /* reserved for vendor use */

char vendorUse5; /* reserved for vendor use */

char vendorUse6; /* reserved for vendor use */

} SPRAMRecord;

typedef SPRAMRecord *SPRAMRecPtr;

typedef struct SEBlock { /* slot execution parameter block */

unsigned char seSlot; /* slot number */

unsigned char sesRsrcId; /* sResource ID */

short seStatus; /* status of sExecBlock code */

unsigned char seFlags; /* flags */

unsigned char seFiller0; /* filler for word alignment */

unsigned char seFiller1; /* filler */

unsigned char seFiller2; /* filler */

long seResult; /* result of SLoadDriver */

long seIOFileName; /* pointer to driver name */

unsigned char seDevice /* device to read from */

unsigned char sePartition; /* partition */

unsigned char seOSType; /* type of OS */

unsigned char seReserved; /* reserved */

unsigned char seRefNum; /* driver reference number */

unsigned char seNumDevices; /* number of devices to load */

unsigned char seBootState; /* state of StartBoot code */

} SEBlock;

typedef struct SlotIntQElement { /* slot interrupt queue element */

Ptr sqLink; /* pointer to next queue element */

short sqType; /* queue type ID; must be sIQType */

short sqPrio; /* priority value in low byte */

ProcPtr sqAddr; /* interrupt handler */

long sqParm; /* optional A1 parameter */

} SlotIntQElement;

typedef SlotIntQElement *SQElemPtr;

Slot Manager Functions 2

Determining the Version of the Slot Manager

pascal OSErr SVersion (SpBlockPtr spBlkPtr);
2-94 Summary of the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Finding sResources

pascal OSErr SRsrcInfo (SpBlockPtr spBlkPtr);

pascal OSErr SGetSRsrc (SpBlockPtr spBlkPtr);

pascal OSErr SGetTypeSRsrc (SpBlockPtr spBlkPtr);

pascal OSErr SNextSRsrc (SpBlockPtr spBlkPtr);

pascal OSErr SNextTypeSRsrc (SpBlockPtr spBlkPtr);

Getting Information From sResources

pascal OSErr SReadDrvrName (SpBlockPtr spBlkPtr);

pascal OSErr SReadByte (SpBlockPtr spBlkPtr);

pascal OSErr SReadWord (SpBlockPtr spBlkPtr);

pascal OSErr SReadLong (SpBlockPtr spBlkPtr);

pascal OSErr SGetCString (SpBlockPtr spBlkPtr);

pascal OSErr SGetBlock (SpBlockPtr spBlkPtr);

pascal OSErr SFindStruct (SpBlockPtr spBlkPtr);

pascal OSErr SReadStruct (SpBlockPtr spBlkPtr);

Enabling, Disabling, Deleting, and Restoring sResources

pascal OSErr SetSRsrcState (SpBlockPtr spBlkPtr);

pascal OSErr SDeleteSRTRec (SpBlockPtr spBlkPtr);

pascal OSErr InsertSRTRec (SpBlockPtr spBlkPtr);

pascal OSErr SUpdateSRT (SpBlockPtr spBlkPtr);

Loading Drivers and Executing Code From sResources

pascal OSErr SGetDriver (SpBlockPtr spBlkPtr);

pascal OSErr SExec (SpBlockPtr spBlkPtr);

Getting Information About Expansion Cards and Declaration ROMs

pascal OSErr SReadInfo (SpBlockPtr spBlkPtr);

pascal OSErr SReadFHeader (SpBlockPtr spBlkPtr);

pascal OSErr SCkCardStat (SpBlockPtr spBlkPtr);

pascal OSErr SCardChanged (SpBlockPtr spBlkPtr);

pascal OSErr SFindDevBase (SpBlockPtr spBlkPtr);

Accessing Expansion Card Parameter RAM

pascal OSErr SReadPRAMRec (SpBlockPtr spBlkPtr);

pascal OSErr SPutPRAMRec (SpBlockPtr spBlkPtr);
Summary of the Slot Manager 2-95

C H A P T E R 2

Slot Manager
Managing the Slot Interrupt Queue

pascal OSErr SIntInstall (SQElemPtr sIntQElemPtr, short theSlot);

pascal OSErr SIntRemove (SQElemPtr sIntQElemPtr, short theSlot);

Low-Level Functions 2

pascal OSErr InitSDeclMgr (SpBlockPtr spBlkPtr);

pascal OSErr SCalcSPointer (SpBlockPtr spBlkPtr);

pascal OSErr SCalcStep (SpBlockPtr spBlkPtr);

pascal OSErr SFindBigDevBase (SpBlockPtr spBlkPtr);

pascal OSErr SFindSInfoRecPtr(SpBlockPtr spBlkPtr);

pascal OSErr SFindSRsrcPtr (SpBlockPtr spBlkPtr);

pascal OSErr SGetSRsrcPtr (SpBlockPtr spBlkPtr);

pascal OSErr SInitPRAMRecs (SpBlockPtr spBlkPtr);

pascal OSErr SInitSRsrcTable (SpBlockPtr spBlkPtr);

pascal OSErr SOffsetData (SpBlockPtr spBlkPtr);

pascal OSErr SPrimaryInit (SpBlockPtr spBlkPtr);

pascal OSErr SPtrToSlot (SpBlockPtr spBlkPtr);

pascal OSErr SReadPBSize (SpBlockPtr spBlkPtr);

pascal OSErr SSearchSRT (SpBlockPtr spBlkPtr);
2-96 Summary of the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Assembly-Language Summary 2

Data Structures 2

Slot Manager Parameter Block

Slot Information Record

0 spResult long function result
4 spsPointer long structure pointer
8 spSize long size of structure

12 SpOffsetData long offset or data
16 spIOFileName long reserved for Slot Manager
20 spsExecPBlk long pointer to SEBlock data structure
24 spParamData long flags
28 spMisc long reserved for Slot Manager
32 spReserved long reserved for Slot Manager
36 spIOReserved word ioReserved field from SRT
38 spRefNum word driver reference number
40 spCategory word Category field of sRsrcType entry
42 spCType word cType field of sRsrcType entry
44 spDrvrSW word DrSW field of sRsrcType entry
46 spDrvrHW word DrHW field of sRsrcType entry
48 spTBMask byte sRsrcType entry bit mask
49 spSlot byte slot number
50 spID byte sResource ID
51 spExtDev byte external device ID
52 spHwDev byte hardware device ID
53 spByteLanes byte valid byte lanes
54 spFlags byte flags used by Slot Manager
55 spKey byte reserved for Slot Manager

0 siDirPtr long pointer to sResource directory
4 siInitStatusA word initialization error
6 siInitStatusV word status returned by vendor initialization routine
8 siState byte initialization state
9 siCPUByteLanes byte byte lanes used

10 siTopOfROM byte highest valid address in ROM
11 siStatusFlags byte status flags
12 siTOConst word timeout constant for bus error
14 siReserved word reserved
16 siROMAddr long address of top of ROM
20 siSlot byte slot number
21 siPadding 3 bytes reserved
Summary of the Slot Manager 2-97

C H A P T E R 2

Slot Manager
Format Header Record

Slot Parameter RAM Record

Slot Execution Parameter Block

Slot Interrupt Queue Element

0 fhDirOffset long offset to sResource directory
4 fhLength long length in bytes of declaration ROM
8 fhCRC long cyclic redundancy check

12 fhROMRev byte declaration ROM revision
13 fhFormat byte declaration ROM format
14 fhTstPat long test pattern
18 fhReserved byte reserved; must be 0
19 fhByteLanes byte byte lanes used by declaration ROM

0 boardID word Apple-defined card ID
2 vendorUse1 byte reserved for vendor use
3 vendorUse2 byte reserved for vendor use
4 vendorUse3 byte reserved for vendor use
5 vendorUse4 byte reserved for vendor use
6 vendorUse5 byte reserved for vendor use
7 vendorUse6 byte reserved for vendor use

0 seSlot byte slot number
1 sesRsrcId byte sResource ID
2 seStatus word status of sExecBlock code
4 seFlags byte flags
5 seFiller0 byte filler for word alignment
6 seFiller1 byte filler
7 seFiller2 byte filler
8 seResult long result of SLoadDriver

12 seIOFileName long pointer to driver name
16 seDevice byte device to read from
17 sePartition byte partition
18 seOSType byte type of operating system
19 seReserved byte reserved
20 seRefNum byte driver reference number
21 seNumDevices byte number of devices to load
22 seBootState byte state of StartBoot code

0 sqLink long pointer to next queue element
4 sqType word queue type ID; must be sIQType
6 sqPrio word priority value in low byte
8 sqAddr long pointer to interrupt handler

12 sqParm long optional A1 parameter
2-98 Summary of the Slot Manager

C H A P T E R 2

Slot Manager

2
S

lot M
anager
Trap Macros 2

Trap Macros Requiring Routine Selectors

_SlotManager

Selector Routine

$0000 SReadByte

$0001 SReadWord

$0002 SReadLong

$0003 SGetCString

$0005 SGetBlock

$0006 SFindStruct

$0007 SReadStruct

$0008 SVersion

$0009 SetSRsrcState

$000A InsertSRTRec

$000B SGetSRsrc

$000C SGetTypeSRsrc

$0010 SReadInfo

$0011 SReadPRAMRec

$0012 SPutPRAMRec

$0013 SReadFHeader

$0014 SNextSRsrc

$0015 SNextTypeSRsrc

$0016 SRsrcInfo

$0018 SCkCardStat

$0019 SReadDrvrName

$001B SFindDevBase

$001C SFindBigDevBase

$001D SGetSRsrcPtr

$0020 InitSDeclMgr

$0021 SPrimaryInit

$0022 SCardChanged

$0023 SExec

$0024 SOffsetData

$0025 SInitPRAMRecs

$0026 SReadPBSize

$0028 SCalcStep
Summary of the Slot Manager 2-99

C H A P T E R 2

Slot Manager
Result Codes 2

$0029 SInitSRsrcTable

$002A SSearchSRT

$002B SUpdateSRT

$002C SCalcSPointer

$002D SGetDriver

$002E SPtrToSlot

$002F SFindSInfoRecPtr

$0030 SFindSRsrcPtr

$0031 SDeleteSRTRec

noErr 0 No error
memFullErr –108 Not enough room in heap
smEmptySlot –300 No card in this slot
smCRCFail –301 CRC check failed
smFormatErr –302 The format of the declaration ROM is wrong
smUnExBusErr –308 A bus error occurred
smBLFieldBad –309 A valid fhByteLanes field was not found
smDisposePErr –312 An error occurred during execution of DisposePtr
smNoBoardsRsrc –313 There is no board sResource
smNoBoardId –315 There is no board ID
smInitStatVErr –316 The InitStatusV field was negative after PrimaryInit
smBadRefId –330 Reference ID was not found in the given list
smBadsList –331 The IDs are not in ascending order
smReservedErr –332 A reserved field was not zero
smCodeRevErr –333 The revision of the code to be executed by sExec was wrong
smCPUErr –334 The CPU field of the code to be executed by sExec was wrong
smsPointerNil –335 The spsPointer value is NIL: no list is specified
smNilsBlockErr –336 The physical block size of an sBlock was zero
smSlotOOBErr –337 The given slot was out of bounds or does not exist
smSelOOBErr –338 Selector out of bounds or function not implemented
smCkStatusErr –341 Status of slot is bad
smGetDrvrNamErr –342 An error occurred during execution of _sGetDrvrName
smNoMoresRsrcs –344 Requested sResource not found
smBadsPtrErr –346 Bad spsPointer value
smByteLanesErr –347 Bad spByteLanes value
smRecNotFnd –351 Record not found in the slot resource table

Selector Routine
2-100 Summary of the Slot Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	Slot Manager
	Introduction to Slots and Cards
	Slot Address Allocations
	Firmware
	The sResource
	Type and Name Entries
	The Board sResource and Functional sResources
	The sResource Directory

	The Format Block

	About the Slot Manager
	Using the Slot Manager
	Enabling and Disabling NuBus Cards
	Deleting and Restoring sResources
	Enabling and Disabling sResources
	Searching for sResources
	Obtaining Information From sResources
	Installing and Removing Slot Interrupt Handlers

	Slot Manager Reference
	Data Structures
	Slot Manager Parameter Block
	Slot Information Record
	Format Header Record
	Slot Parameter RAM Record
	Slot Execution Parameter Block
	Slot Interrupt Queue Element

	Slot Manager Routines
	Determining the Version of the Slot Manager
	Finding sResources
	Getting Information From sResources
	Enabling, Disabling, Deleting, and Restoring sReso...
	Loading Drivers and Executing Code From sResources...
	Getting Information About Expansion Cards and Decl...
	Accessing Expansion Card Parameter RAM
	Managing the Slot Interrupt Queue

	Low-Level Routines

	Summary of the Slot Manager
	Pascal Summary
	Constants
	Data Types
	Slot Manager Routines
	Low-Level Routines

	C Summary
	Constants
	Data Types
	Slot Manager Functions
	Low-Level Functions

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

