

C H A P T E R 6

6

P
ow

er M
anager

Power Manager 6

This chapter describes the Power Manager, the part of the Macintosh Operating System
that controls power to the internal hardware devices of battery-powered Macintosh
computers (such as the Macintosh Portable, the Macintosh PowerBook computers, and
the Macintosh Duo computers)

The Power Manager automatically shuts off power to internal devices to conserve power
whenever the computer has not been used for a predetermined amount of time. In
addition, the Power Manager allows your application or other software to

■ install a procedure that is executed when power to internal devices is about to be shut
off or when power has just been restored

■ set a timer to wake up the computer at some time in the future

■ set or disable the wakeup timer and read its current setting

■ enable, disable, or delay the CPU idle feature

■ read the current CPU clock speed

■ control power to the internal modem and serial ports

■ read the status of the internal modem

■ read the state of the battery charge and the status of the battery charger

Most applications do not need to know whether they are executing on a battery-powered
Macintosh computer because the transition between power states is largely invisible. As
a result, most applications do not need to use Power Manager routines. You need the
information in this chapter only if you are writing a program—such as a device driver—
that must control power to some subsystem of a battery-powered Macintosh computer
or that might be affected by the idle or sleep state. See “About the Power Manager,”
beginning on page 6-4, for a complete description of these power conservation states.

The Power Manager is available only in system software version 6.0.4 and later versions.
You should use the Gestalt function to determine whether the Power Manager is
available before calling it. See “Determining Whether the Power Manager Is Present,” on
page 6-14, for more information.

To use this chapter, you might need to be familiar with techniques for accessing
information in your application’s A5 world. The chapter “Introduction to Memory
Management” in Inside Macintosh: Memory describes the A5 world and the routines you
can use to manipulate the A5 register. This chapter provides complete code samples that
illustrate how to access your application’s A5 world in a sleep procedure. If you wish to
display a dialog box from a sleep procedure, you also need to know about the Dialog
Manager. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter begins with a preliminary description of the power conservation states
controlled by the Power Manager and of the relationship between the power
management hardware and software in portable Macintosh computers. It then discusses
the power conservation states and the sleep queue in greater detail. The section “Using
the Power Manager,” beginning on page 6-13, describes how to use Power Manager
routines to control the power conservation states and how to write and install sleep
procedures.
6-3

C H A P T E R 6

Power Manager

The reference section is divided into three sections. The first section describes the data
structures used by Power Manager routines. The second section, “Power Manager
Routines,” beginning on page 6-28, describes low-level Power Manager routines that
you can use to control a variety of Power Manager functions. The third section, “Power
Manager Dispatch Routines,” beginning on page 6-40, describes high-level Power Manager
routines that isolate you from the need to read or write directly to the Power Manager’s
private data structures and to parameter RAM. The Power Manager dispatch routines
provide access to most of the Power Manager’s internal parameters. Where a Power
Manager dispatch routine duplicates the function of another Power Manager routine,
the dispatch routine provides the preferred interface.

Whereas the Pascal programming language interface is used to describe the Power
Manager routines in “Power Manager Routines,” the C language interface is used for
the newer routines described in “Power Manager Dispatch Routines.” The section
“Summary of the Power Manager,” beginning on page 6-67, includes both Pascal and
C interfaces for both sets of routines.

About the Power Manager 6

Battery-operated Macintosh computers (also known as portable Macintosh computers)
draw power from a built-in battery that can be charged from a voltage converter
plugged into an electric socket. In order to prolong the battery charge and thereby
increase the amount of time the computer can be operated from the battery, portable
Macintosh computers contain software and hardware components that can put the
computer into various power conservation states, known as the power-saver, idle, and
sleep states.

The software that controls power to the internal devices of portable Macintosh
computers is the Power Manager. The Power Manager provides a software interface
to the available power controlling hardware. On the Macintosh Portable computer,
the power-management hardware is the 50753 microprocessor (known as the Power
Manager integrated circuit or Power Manager IC). On other portable Macintosh
computers, other hardware may be used.

The Power Manager also provides some services unique to portable Macintosh
computers—such as reading the current clock speed—that are not directly related to
power control. The power management circuits and the microcode in the on-chip ROM
of the Power Manager IC are described in the Guide to the Macintosh Family Hardware,
second edition. The Power Manager provides routines that your program can use to
enable and disable the idle state, to control power to some of the subsystems of the
computer, and to ensure that your program is not adversely affected when the Power
Manager puts the computer into the sleep state.

The power-saver state is a low power-consumption state of several portable Macintosh
computers in which the processor slows from its normal clock speed to some slower
clock speed. On the PowerBook 170 computer, for example, the CPU clock speed can be
reduced from 25 MHz to 16 MHz in order to conserve power.
6-4 About the Power Manager

C H A P T E R 6

Power Manager

6

P
ow

er M
anager

In the idle state, the Power Manager slows the computer even further, from its current
clock speed to a 1 MHz clock speed. The Power Manager puts a portable Macintosh
computer in the idle state when the system has been inactive for 15 seconds. When the
computer has been inactive for an additional period of time (the user can set the length
of this period), the Power Manager and the various device drivers shut off power or
remove clocks from the computer’s various subsystems, including the CPU, RAM, ROM,
and I/O ports. This condition is known as the sleep state.

No data is lost from RAM when a portable Macintosh computer is in the sleep state.
Most applications can be interrupted by the idle and sleep states without any adverse
effects. When the user resumes use of the computer (by pressing a key, for example),
most of the applications that were running before the computer entered the sleep state
are still loaded in memory and resume running as if nothing had happened. If your
application or device driver cannot tolerate the sleep state, however, you can add an
entry to an operating-system queue called the sleep queue. The Power Manager calls
every sleep queue routine before the computer goes into the sleep state.

The user can also use the Battery desk accessory or a Finder menu item to cause a
portable Macintosh computer to go into the sleep state immediately. If the user chooses
Sleep from the Battery desk accessory (or from the Special menu in the Finder), the
Power Manager checks to see if any network communications will be interrupted by
going into the sleep state. If network communications will be affected, a built-in sleep
procedure displays a dialog box (shown in Figure 6-1) giving the user the option of
canceling the Sleep command.

Figure 6-1 A network driver’s sleep dialog box

Note
Some portable Macintosh computers (for example, the Macintosh
Portable) do not have a power switch. On these computers, if the
user chooses Shut Down from Special menu in the Finder, the Power
Manager puts the computer into the sleep state regardless of whether
any network communication routines are running at the time. ◆

The power management circuits in portable Macintosh computers include a
battery-voltage monitor, a voltage regulator and battery-charging circuit, and (on certain
portable computers) the Power Manager IC. The Power Manager IC controls the clocks
and power lines to the various internal components and external ports of the computer.
About the Power Manager 6-5

C H A P T E R 6

Power Manager

The microcode in the Power Manager IC implements many of the computer’s power
management features, such as power and clock control and the wakeup timer. A user or
an application can set the wakeup timer to return the computer from the sleep state to
the operating state at a specific time.

Note
The wakeup timer is not available on all portable Macintosh
computers. ◆

The Power Manager firmware in the ROM of the computer provides an interface that
allows your application to control some of the functions of the power control hardware.
The power management hardware charges the battery, provides the voltages needed
by the system, and automatically shuts down all power and clocks to the system if the
battery voltage falls below a certain threshold. The automatic shutdown function helps
to prevent possible damage to the battery resulting from low voltage.

At any given time, a portable Macintosh computer is in one of five power-consumption
states:

■ normal state

■ power-saver state

■ idle state

■ sleep state

■ shutdown state

When the computer is in its normal state, the CPU is running at its full clock speed and
no measures are being taken to conserve power. The computer behaves exactly like any
Macintosh computer that is not operated from a battery. Similarly, the shutdown state
on a portable Macintosh computer is exactly like the shutdown state on any nonportable
Macintosh computer, except that there is a very small drain on the battery to maintain
the settings of the computer’s parameter RAM.

The following sections provide more information about the three power conservation
states (power-saver, idle, and sleep) managed by the Power Manager.

IMPORTANT

The exact implementation details—and indeed the very existence of one
or more of the three power conservation states—is subject to variation
across the entire line of portable Macintosh computers. In general, your
application or other software should not be affected by any such
variations. ▲

The Power-Saver State 6
The power-saver state, available on some portable Macintosh computers, is a power
conservation state in which the processor slows from its normal clock speed to some
slower clock speed. On the PowerBook 180 computer, for example, the user can use
the PowerBook control panel to reduce the CPU clock speed from 33 MHz to 16 MHz.
6-6 About the Power Manager

C H A P T E R 6

Power Manager

6

P
ow

er M
anager

There is currently no way for your application to put a portable Macintosh computer
into the power-saver state or to return it to the normal (full-speed) state. Moreover, the
power-saver state is not available on all portable Macintosh computers. If the operation
of your application or other software component depends on the CPU clock speed, you
can use the Power Manager’s GetCPUSpeed function to determine the current speed. In
general, of course, it’s best to design your application so that it is unaffected by any
changes in the clock speed of the CPU.

The Idle State 6
When a portable Macintosh computer has been inactive for some amount of time, the
Power Manager causes the CPU to insert wait states into each RAM or ROM access. On
the Macintosh Portable, for example, after 15 seconds of inactivity the Power Manager
inserts 64 wait states, effectively changing the clock speed from 16 MHz to 1 MHz. This
condition is referred to as the idle state or the rest state.

Note
The inactivity timeout interval, clock speed, and hardware
implementation of the idle state are subject to variation across the entire
line of portable Macintosh computers. ◆

For the purposes of determining whether to enter the idle state, inactivity is defined as
the absence of any of the following:

■ any execution of the PBRead or PBWrite function by the File Manager or Device
Manager

■ a call to the Event Manager’s PostEvent or OSEventAvail function

■ any access of the Apple Sound Chip (ASC) or other sound-producing hardware

■ completion of an Apple Desktop Bus (ADB) transaction

■ a call to the QuickDraw SetCursor procedure that changes the cursor

■ the cursor displayed as the watch cursor

The Power Manager enters the idle state in one of two ways, depending on whether the
computer supports a mode of idling called power cycling. If power cycling is available
(for example, in the PowerBook 140 and later models), the CPU is turned off after two
seconds of inactivity. After a short interval (on the order of one-half to three-fourths of a
second), power is restored to the CPU. The Operating System then checks to see whether
any relevant activity has occurred. If it has, the power cycling is stopped and the
computer returns to the normal operating state. If, however, no activity has occurred,
power cycling resumes with a slightly longer interval (up to several seconds). The CPU
remains off for the duration of the cycling or until an interrupt occurs.

If power cycling is not available, the Power Manager uses an alternate method of
entering the idle state. The Power Manager maintains an activity timer that measures
the amount of time that has elapsed since the last relevant system activity. The activity
timer is originally set to 15 seconds. When the timer counts down to 0, the Power
Manager puts the computer into the idle state. Whenever the Power Manager detects
About the Power Manager 6-7

C H A P T E R 6

Power Manager

one of the relevant forms of activity, it resets the activity timer to 15 seconds and, if the
computer is in the idle state, returns the computer to the operating state.

Neither the user nor your application can change the activity timer to use a period other
than 15 seconds. However, the user can disable the activity timer through the Portable or
PowerBook control panel, and your application can reset, enable, and disable the activity
timer by using the IdleUpdate, EnableIdle, and DisableIdle routines. Your
application can also use the GetCPUSpeed function to determine whether the computer
is currently in the idle state. See “Enabling or Disabling the Idle State,” beginning on
page 6-15, for a further discussion of these routines.

The Sleep State 6
The Operating System sends a sleep command to the power management hardware
when the user requests it (through the Battery desk accessory or the Finder), when the
battery voltage falls below a preset level, or when the system has remained inactive for
an amount of time that the user sets through the Portable or PowerBook control panel.

The Operating System uses the power management hardware to shut down power to the
CPU, the ROM, and some of the control logic. Sufficient power is maintained to the RAM
so that no data is lost. Before the Operating System sends the sleep command to the
power management hardware, it performs the following tasks:

■ It pushes the contents of all of the CPU’s internal registers onto the stack.

■ It calls all sleep procedures listed in the sleep queue to inform them that the system
is about to be put into the sleep state. These procedures include the device drivers
for the serial ports and floppy disk drives. Each device driver must call the power
management hardware to stop power or clocks to the peripheral device controlled by
that driver. If the device contains any internal registers, the device driver must save
their contents before turning off power to the device. The sleep queue is described in
the following section, “The Sleep Queue.”

■ It pushes onto the stack the Reset vector, the contents of the versatile interface adapter
(VIA) chip, and the contents of the Apple Sound Chip (ASC) control registers.

■ It saves the stack pointer in memory.

While a portable Macintosh computer is in the sleep state, the clock to the power
management hardware (for example, the Power Manager IC) is off so that the hardware
does no processing. On each rising edge of the 60 Hz clock signal (from one of the
computer’s logic chips), a hardware circuit restores the clock signal to the power
management hardware, which updates the time in the real-time clock and checks the
status of the system to determine whether to return the computer to its operating state.
The power management hardware checks for the existence of the following conditions:

■ A key on the keyboard has been pressed.

■ The wakeup timer is enabled and the time to which the wakeup timer is set equals the
time in the real-time clock.

■ An internal modem is installed, the user has activated the ring-detect feature, and the
modem has detected a ring (that is, someone has called the modem).
6-8 About the Power Manager

C H A P T E R 6

Power Manager

6

P
ow

er M
anager

Note that use of the mouse or trackball cannot be detected by the power management
hardware.

If the power management hardware does not detect any of these conditions, it
deactivates its own clock until the next rising edge of the 60 Hz clock signal. If the power
management hardware does detect one of these conditions, it restores power to the CPU,
ROM, and any other hardware that was running when the computer entered the sleep
state. Then the Power Manager’s wakeup procedure reverses the procedure that put the
computer into the sleep state, including calling each routine listed in the sleep queue to
allow it to restore power to any subsystems it controls.

The Sleep Queue 6
The Power Manager maintains an operating-system queue called the sleep queue. The
sleep queue contains pointers to all of the routines—called sleep procedures —that the
Power Manager must call before it puts the computer into the sleep state or returns it
to the operating state. Each device driver, for example, can place in the sleep queue a
pointer to a routine that controls power to the subsystem that the driver controls. When
the Power Manager is ready to put the computer into the sleep state, it calls each of the
sleep procedures listed in the sleep queue. Each procedure performs whatever tasks are
necessary to prepare for the sleep state, including calling Power Manager routines, and
then returns control to the Power Manager. Similarly, the Power Manager calls each sleep
procedure when it is returning the computer to the operating state.

If you are writing a device driver or if you want your program to be informed before the
computer enters the sleep state, you can place an entry for your sleep procedure in the
sleep queue. If you do place an entry in the sleep queue, remember to remove it before
your device driver or application terminates. You use the SleepQInstall and
SleepQRemove procedures to install and remove sleep queue entries, as described
in “Installing a Sleep Procedure,” beginning on page 6-18.

Your sleep procedure can be called at any of four different times, namely

■ when the Power Manager wants to know whether it may put the computer into the
sleep state (a sleep request)

■ when the Power Manager is about to put the computer into the sleep state (a sleep
demand)

■ when the Power Manager has just returned the computer to the normal operating
state (a wakeup demand)

■ when the Power Manager has decided not to put the computer into the sleep state
but has already issued a sleep request (a sleep-request revocation)

Your sleep procedure will need to respond differently, depending on the reason it is
being called. The following four sections describe these cases.
About the Power Manager 6-9

C H A P T E R 6

Power Manager

Sleep Requests 6
The Power Manager sends your sleep procedure a sleep request when it would like to
put the computer into the sleep state. Your sleep procedure then has the option of
denying the sleep request. If any procedure in the sleep queue denies the sleep request,
the Power Manager sends a sleep-request revocation to each routine that it has already
called with a sleep request, and the computer does not enter the sleep state. If, on the
other hand, every sleep procedure in the sleep queue accepts the sleep request, then the
Power Manager sends a sleep demand to each sleep procedure in the sleep queue. After
every sleep procedure has processed the sleep demand, the Power Manager puts the
computer into the sleep state.

Before sending a sleep request to any of the sleep procedures in the sleep queue, the
Power Manager calls a built-in sleep procedure that checks the status of certain network
services, as summarized in Table 6-1. Only if all of the network services permit sleep
does the Power Manager continue by sending sleep requests to the routines in the sleep
queue. The network services in Table 6-1 are described in Inside Macintosh: Networking.

The Power Manager issues a sleep request when a sleep timeout occurs (that is, when
the period of inactivity set by the user in the Portable or PowerBook control panel has
expired).

Sleep Demands 6
The Power Manager sends your sleep procedure a sleep demand when it is about to put
the portable Macintosh computer into the sleep state. When a procedure in the sleep

Table 6-1 Response of network services to sleep requests and sleep demands

Network service in use
Response to sleep
request

Response to
conditional sleep
demand

Response to
unconditional sleep
demand

.MPP low-level
protocol (DDP, NBP,
RTMP, AEP)

Close driver if
computer is on battery;
else deny request

Close driver if
user gives okay;
else deny request

Close driver

.XPP extended
protocol (ASP, AFP);
no server volume
mounted

Close driver if
computer is on battery;
else deny request

Close driver if
user gives okay;
else deny request

Close driver

.XPP; server volume
mounted

Deny request Close server sessions
and close driver if
user gives okay;
else deny request

Close server sessions
and close driver

An application is
currently using
AppleTalk

Deny request Close server sessions
and close driver if
user gives okay;
else deny request

Close server sessions
and close driver
6-10 About the Power Manager

C H A P T E R 6

Power Manager

6

P
ow

er M
anager

queue receives a sleep demand, it must prepare for the sleep state as quickly as possible
and return control to the Power Manager.

From the point of view of the Power Manager, there are two types of sleep demands—
conditional and unconditional. The Power Manager might cancel a conditional sleep
demand if certain network services are in use; an unconditional sleep demand cannot be
canceled. When your sleep procedure receives a sleep demand, however, your procedure
has no way to determine whether it originated as a conditional sleep demand or an
unconditional sleep demand. Your device driver or application must prepare for the
sleep state and return control promptly to the Power Manager when it receives a sleep
demand.

The Power Manager processes a conditional sleep demand when the user chooses Sleep
from the Battery desk accessory or from the Special menu in the Finder. When the Power
Manager processes a conditional sleep demand, it first sends a sleep request to the
network driver’s sleep procedure (see Table 6-1). Whenever one of the network services
is in use, the sleep procedure displays a dialog box requesting the user’s permission to
put the computer into the sleep state. The wording of the message in the dialog box
depends on the nature of the network service in use. For example, if an .XPP driver
protocol is in use, has opened a server, and has mounted a volume, then the message
warns the user that the volume will be closed when the computer is put into the sleep
state.

If the user denies permission to close the driver, the Power Manager does not send sleep
demands to the routines in the sleep queue. If the user does give permission to close the
driver, the Power Manager sends a sleep demand to the network driver’s sleep
procedure and then to every other sleep procedure in the sleep queue.

The Power Manager issues an unconditional sleep demand when the battery voltage
falls below a preset level or when the user chooses Shut Down from the Special menu
in the Finder. In this case, the Power Manager sends a sleep demand to the network
driver’s sleep procedure, which closes all network drivers. Then the Power Manager
sends a sleep demand to every other sleep procedure in the sleep queue. As always for
a sleep demand, each sleep procedure must prepare for the sleep state and return control
to the Power Manager as quickly as possible. In this case, the Power Manager does not
display any warnings or dialog boxes; neither the network services, the user, nor any
application can deny the sleep demand.

Wakeup Demands 6
After restoring full power to the CPU, RAM, and ROM, the Power Manager’s wakeup
procedure calls each sleep procedure in the sleep queue with a wakeup demand. A
wakeup demand informs your sleep procedure that it must reverse whatever steps it
followed when it prepared for the sleep state. For example, a database application might
reestablish communications with a remote database.
About the Power Manager 6-11

C H A P T E R 6

Power Manager

Sleep-Request Revocations 6
If any sleep procedure in the sleep queue denies a sleep request, the Power Manager
sends a sleep-request revocation to every sleep procedure that it has already called with
a sleep request. Your sleep procedure must reverse whatever steps it followed when it
prepared to receive a sleep demand. A communications application that prevents users
from opening new sessions while it is waiting to receive a sleep demand, for example,
might once again allow users to open new sessions.

Power Manager Dispatch 6

Software that reads and writes directly to the Power Manager’s private data structures
and parameter RAM must be updated any time Apple Computer, Inc. makes a change to
the internal operation of the Power Manager. The Power Manager for some versions of
the Macintosh Operating System includes routines—referred to as the Power Manager
dispatch routines—that eliminate the need for applications to deal directly with the
Power Manager’s data structures. These routines provide access to most of the Power
Manager’s internal parameters. The interface is extensible, and may grow over time to
accommodate new kinds of functions.

You can use the routines described in “Power Manager Dispatch Routines,” beginning
on page 6-40, to isolate your application from future changes to the internal operation
of the Power Manager software.

IMPORTANT

Apple Computer, Inc. reserves the right to change the internal operation
of the Power Manager software. Applications should not depend on the
Power Manager’s internal data structures or parameter RAM. ▲

You should not depend on the Power Manager’s internal data structures staying the
same in future versions of system software. In particular, do not assume that

■ timeout values such as the hard disk spindown time reside at the same locations in
parameter RAM

■ the power cycling process works the same way or uses the same parameters

■ direct commands to the Power Manager microcontroller are supported in all models

Note
Whereas the Pascal programming language interface is used to
describe the Power Manager routines in “Power Manager Routines,”
beginning on page 6-28, the C language interface is used for the newer
routines described in “Power Manager Dispatch Routines,” beginning
on page 6-40. The section “Summary of the Power Manager,”
beginning on page 6-67, includes both Pascal and C interfaces for both
sets of routines. ◆
6-12 About the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Using the Power Manager 6

You can use the Power Manager to install a sleep procedure that is executed when power
to internal devices is about to be shut off or after power has just been restored. Most
applications or other software components that are sensitive to the power-consumption
state of the computer can use sleep procedures to perform any necessary processing at
those times. See “Writing a Sleep Procedure,” beginning on page 6-20, and “Installing a
Sleep Procedure,” beginning on page 6-18, for complete details on how to write and
install sleep procedures.

The Power Manager provides routines that you can use to monitor the state of the
battery charge and the status of the battery charger. See “Monitoring the Battery and
Battery Charger,” beginning on page 6-26, for details. In all likelihood, only utility
programs will need to use these routines.

If you are writing an application that is sensitive to the clock speed of the computer, you
can use the Power Manager to disable the CPU idle state when necessary.

IMPORTANT

Do not disable the idle state except when executing a routine that must
run at full speed. Disabling the idle state shortens the amount of time
the user can operate the computer from a battery. ▲

If you want to ensure that a portable Macintosh computer is in the operating state at
a particular time in the future, you can use the SetWUTime function to set the wakeup
timer. You can use the wakeup timer in conjunction with the Time Manager, for example,
when you want to use the computer to perform tasks that must be done at a specific
time, like printing a large file in the middle of the night.

If you are writing a device driver for a portable Macintosh computer, you might need
to use the Power Manager to control power to the subsystem that your driver controls.
See “Switching Serial Power On and Off,” on page 6-25, for a discussion of power control
for the serial communications subsystem. For power control for other devices, consult
Apple Developer Technical Support. The Power Manager cannot control power to
external peripheral devices such as hard disks and CD-ROM drives because such devices
have their own power supplies.

IMPORTANT

Because the Power Manager saves the contents of all of the CPU
registers, including the stack pointer, before putting the computer into
the sleep state, and because the contents of RAM are preserved while
the computer is in the sleep state, most applications are not adversely
affected by the sleep state. Because a portable Macintosh computer does
not enter the idle state when almost any sort of activity is going on (or
even when the watch cursor is being displayed), few programs are
adversely affected by the idle state. Therefore, it is likely that your
application will not have to make calls to the Power Manager. ▲
Using the Power Manager 6-13

C H A P T E R 6

Power Manager
Determining Whether the Power Manager Is Present 6
You can use the Gestalt function with the gestaltPowerMgrAttr selector to
determine whether the Power Manager is available on a particular computer and
whether certain other devices in the computer can be put into the idle or sleep state.
The Gestalt function returns in the response parameter a 32-bit value that may have
some or all of the following bits set:

CONST

gestaltPMgrExists = 0; {Power Manager is present}

gestaltPMgrCPUIdle = 1; {CPU can idle}

gestaltPMgrSCC = 2; {can stop SCC clock}

gestaltPMgrSound = 3; {can shut off sound circuits}

gestaltPMgrDispatchExists = 4; {dispatch routines are present}

If the gestaltPMgrExists bit is set, the Power Manager is present. If the
gestaltPMgrCPUIdle bit is set, the CPU is capable of going into a state of low power
consumption. If the gestaltPMgrSCC bit is set, it is possible to stop the SCC clock, thus
effectively turning off the serial ports. If the gestaltPMgrSound bit is set, it is possible
to turn off power to the sound circuits. If the gestaltPMgrDispatchExists bit is set,
the Power Manager dispatch routines are available; see the next section for more
information.

Note
For complete details on using the Gestalt function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. ◆

Determining Whether the Power Manager Dispatch Routines are
Present 6
You can use the Gestalt function with the gestaltPowerMgrAttr selector to
determine whether the Power Manager dispatch routines are available on a particular
computer. If the gestaltPMgrDispatchExists bit is set in the response parameter,
the Power Manager dispatch routines are available.

Because more routines may be added in the future, the PMSelectorCount function
(described on page 6-41) returns the number of dispatch routines that are implemented.
The sample code in Listing 6-1 shows how you can use the Gestalt function to
determine whether the Power Manager dispatch routines are present, and then use the
PMSelectorCount function to find out which routines are supported. In this case, the
sample code tests for the existence of the hard disk spindown routine (selector $07).
6-14 Using the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Listing 6-1 Determining which Power Manager dispatch routines exist

long pmgrAttributes;

Boolean routinesExist;

routinesExist = false;

if (! Gestalt(gestaltPowerMgrAttr, &pmgrAttributes))

if (pmgrAttributes & (1<<gestaltPMgrDispatchExists))

if (PMSelectorCount() >= 7) /* do the first 8 routines exist? */

routinesExist = true;

▲ W A R N I N G

If you call a routine that does not exist, the call to the public Power
Manager trap (if the trap exists) will return an error code, which your
program could misinterpret as data. ▲

Enabling or Disabling the Idle State 6
You can reset the activity timer to 15 seconds, disable or enable the idle state, and read
the current CPU clock speed by using Power Manager routines.

IMPORTANT

Keep in mind that it is almost always better to design your code so
that it is not affected by the idle state. If you do so, the computer can
conserve power whenever possible. Note also that disabling the idle
state does not disable the sleep state. To prevent your program from
being adversely affected by the sleep state, you need to place a sleep
procedure in the sleep queue, as described in “Installing a Sleep
Procedure,” beginning on page 6-18. ▲

To reset the activity timer to count down another 15 seconds before the Power Manager
puts the computer into the idle state, use the IdleUpdate function. The IdleUpdate
function takes no parameters and returns the value in the Ticks global variable at the
time the function was called.

If you want to disable the idle state—that is, prevent the computer from entering the idle
state—for more than 15 seconds, use the DisableIdle procedure. If your application
cannot tolerate the idle state at all, you can call the DisableIdle procedure when your
application starts up and then call the EnableIdle procedure when your application
terminates.

The EnableIdle procedure cancels the last call to the DisableIdle procedure. Note
that canceling the last call to the DisableIdle procedure is not always the same thing
as enabling the idle state. For example, if the user has used the Portable control panel to
disable the idle state, then a call to the EnableIdle procedure does not enable the idle
state. Similarly, if your routine called the DisableIdle procedure more than once or if
another routine has called the DisableIdle procedure, then a call to the EnableIdle
procedure cancels only the last call to the DisableIdle procedure; it does not enable
the idle state.
Using the Power Manager 6-15

C H A P T E R 6

Power Manager
The Power Manager does not actually reenable the idle state until every call to the
DisableIdle procedure has been matched by a call to the EnableIdle procedure,
and then only if the user has not disabled the idle state through the Portable (or
PowerBook) control panel. For this reason, you must be very careful to match each call
to the DisableIdle procedure with a single call to the EnableIdle procedure. Be
careful to avoid making extra calls to the EnableIdle procedure so that you do not
inadvertently reenable the idle state while another application needs it to remain
disabled.

Calls to the EnableIdle procedure are not cumulative; that is, after you make several
calls to the EnableIdle procedure, a single call to the DisableIdle procedure still
disables the idle state. Disabling the idle state always takes precedence over enabling the
idle state. A call to the DisableIdle procedure disables the idle state no matter how
many times the EnableIdle procedure has been called and whether or not the user has
enabled the idle state through the Portable or PowerBook control panel.

The following examples should help to clarify the use of EnableIdle and
DisableIdle:

■ If an application calls the EnableIdle routine but the user disables or has disabled
the idle state, the idle state is disabled.

■ If an application calls the DisableIdle routine and the user enables or has enabled
the idle state, the idle state is disabled.

■ If an application calls the DisableIdle routine twice in a row and then calls the
EnableIdle routine once, the idle state is disabled.

■ If an application calls the EnableIdle routine twice in a row and then calls the
DisableIdle routine once, the idle state is disabled.

■ If the idle state is initially enabled and if an application calls the DisableIdle
routine twice in a row and then calls the EnableIdle routine twice, the Power
Manager first disables and then reenables the idle state.

To determine whether a portable Macintosh computer is currently in the idle state, read
the current clock speed with the GetCPUSpeed function. If the value returned by the
GetCPUSpeed function is 1, the computer is in the idle state.

Setting, Disabling, and Reading the Wakeup Timer 6
When a portable Macintosh computer is in the sleep state, the power management
hardware updates the real-time clock and compares it to the wakeup timer once each
second. When the real-time clock and the wakeup timer have the same setting, the
power management circuits return the computer to the operating state. The Power
Manager provides functions that you can use to set the wakeup timer, disable the
wakeup timer, and read the wakeup timer’s current setting.
6-16 Using the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
IMPORTANT

In some portable Macintosh computers, the power management
hardware does not receive this periodic “tickle.” As a result, the
wakeup timer cannot be used on those machines. To determine whether
a particular portable Macintosh computer supports the use of the
wakeup timer, call the GetWUTime function. An error is returned if
the timer is not available. ▲

Use the SetWUTime function to set the wakeup timer. You pass one parameter to the
SetWUTime function, an unsigned long word specifying the number of seconds since
midnight, January 1, 1904. Setting the wakeup timer automatically enables it. Listing 6-2
illustrates how to call the SetWUTime function.

Listing 6-2 Setting the wakeup timer

FUNCTION WakeMeUp (when: LongInt): OSErr;

VAR

myTime: LongInt;

BEGIN

GetDateTime(myTime); {get the current time}

myTime := myTime + when; {add desired delay}

WakeMeUp := SetWUTime(LongInt(@myTime));

END;

The when parameter passed to the WakeMeUp function defined in Listing 6-2 specifies
how long from the current time the wakeup timer should go off. The WakeMeUp function
determines the current time by calling GetDateTime and then passes the appropriate
value to SetWUTime. Note that the parameter passed to SetWUTime is the address of the
desired wakeup time, not the wakeup time itself.

To disable the wakeup timer, you can set the wakeup timer to any time earlier than the
current setting of the real-time clock (that is, to some time in the past), or you can use the
DisableWUTime function. To reenable the wakeup timer, you must use the SetWUTime
function to set the timer to a new time in the future.

To get the current setting of the wakeup timer, use the GetWUTime function. This
function returns two parameters: the time to which the wakeup timer is set (in seconds
since midnight, January 1, 1904) and a flag indicating whether the wakeup timer is
enabled.

If the computer is already in the operating state when the real-time clock reaches the
setting in the wakeup timer, nothing happens.

Note
The power management circuits do not return the computer to the
operating state while battery voltage is low, even if the wakeup timer
and real-time clock settings coincide. ◆
Using the Power Manager 6-17

C H A P T E R 6

Power Manager
Installing a Sleep Procedure 6
If you want your program to be notified before the Power Manager puts a portable
Macintosh computer into the sleep state or returns it to the operating state, you can put
an entry in the sleep queue. If you do place an entry in the sleep queue, remember to
remove it before your device driver or application terminates.

The sleep queue is a standard operating-system queue, as described in Inside Macintosh:
Operating System Utilities. The SleepQRec data type defines a sleep queue record
as follows:

TYPE SleepQRec = {sleep queue record}

RECORD

sleepQLink: SleepQRecPtr; {next queue element}

sleepQType: Integer; {queue type = 16}

sleepQProc: ProcPtr; {pointer to sleep procedure}

sleepQFlags: Integer; {reserved}

END;

To add an entry to the sleep queue, fill in the sleepQType and sleepQProc fields
of a sleep queue record. The sleepQLink and sleepQFlags fields are maintained
privately by the Power Manager; your application should not modify these fields, except
to initialize them before it calls the SleepQInstall procedure. SleepQInstall takes
one parameter, a pointer to your sleep queue record. Listing 6-3 shows how to add an
entry to the sleep queue.

Listing 6-3 Adding an entry to the sleep queue

VAR

gSleepRec: SleepQRec; {a sleep queue record}

PROCEDURE MyInstallSleepProcedure;

BEGIN

{Set up the record before installing it into the sleep queue.}

WITH gSleepRec DO

BEGIN

sleepQLink := NIL; {initialize reserved field}

sleepQType := slpQType; {set sleep queue type}

sleepQProc := @MySleepProc; {set address of sleep proc}

sleepQFlags := 0; {initialize reserved field}

END;

SleepQInstall(@gSleepRec); {install the record}

END;

To remove your routine from the sleep queue, use the SleepQRemove procedure. This
procedure also takes as its one parameter a pointer to your sleep queue record.
6-18 Using the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Using Application Global Variables in Sleep Procedures 6
When a sleep procedure installed by an application is called, the A5 world of that
application might not be valid. That is to say, the A5 register might not point to the
boundary between the application’s global variables and its application parameters.
When this happens, any attempt by the sleep procedure to read the application’s global
variables or to access any other information in the application’s A5 world is likely to
return erroneous information.

As a result, if you use an application to install a sleep procedure and your sleep
procedure accesses any information in your application’s A5 world, you’ll need to
make sure that, at the time you access that information, the A5 register points to your
application’s global variables. Your sleep procedure must also restore the A5 register to
its previous value before exiting. This saving and restoring of the A5 register is necessary
whenever your sleep procedure uses any information in your application’s A5 world,
such as your application global variables or any of your application’s QuickDraw global
variables.

Note
The techniques described in this section are relevant only to sleep
procedures installed by applications. Sleep procedures installed from
other kinds of code (for example, from system extensions) do not need
to worry about saving and restoring the A5 register. ◆

It’s easy enough to use the SetA5 function to read the value of the A5 register when
your sleep procedure begins executing and to restore the register immediately before
your procedure exits. (See Listing 6-6 on page 6-21.) It’s a bit harder to pass your
application’s A5 value to the sleep procedure. A standard way to do this in a high-level
language like Pascal is to define a new data structure that contains both a sleep queue
record and room for the A5 value. For example, you can define a structure of type
SleepInfoRec, as follows:

TYPE SleepInfoRec = {sleep information record}

RECORD

mySleepQRec: SleepQRec; {a sleep queue record}

mySlpRefCon: LongInt; {address of app’s A5 world}

END;

SleepInfoRecPtr = ^SleepInfoRec;

Then, you simply need to call the SetCurrentA5 function at a time that your
application is the current application and pass the result of that function to your sleep
procedure (via the mySlpRefCon field of the sleep information record). Listing 6-4
shows how to do this.
Using the Power Manager 6-19

C H A P T E R 6

Power Manager
Listing 6-4 Installing a sleep procedure that uses application global variables

VAR

gSleepInfoRec: SleepInfoRec; {a sleep information record}

PROCEDURE MyInstallSleepProc;

BEGIN

{Set up the record before installing it into the sleep queue.}

WITH gSleepInfoRec.mySleepQRec DO

BEGIN

sleepQLink := NIL; {initialize reserved field}

sleepQType := slpQType; {set sleep queue type}

sleepQProc := @MySleepProc; {set address of sleep proc}

sleepQFlags := 0; {initialize reserved field}

END;

{Install app’s A5 value into expanded sleep record.}

gSleepInfoRec.mySlpRefCon := SetCurrentA5;

SleepQInstall(@gSleepInfoRec)); {install the record}

END;

The Power Manager puts the address you pass to SleepQInstall into register A0
when your sleep procedure is called. Thus, the sleep procedure simply needs to retrieve
the SleepInfoRec record and extract the appropriate value of the application’s A5
world. See the next section, “Writing a Sleep Procedure,” for a sample sleep procedure
that does this.

Note
For more information about your application’s A5 world and routines
you can use to manipulate the A5 register, see the chapter “Introduction
to Memory Management” in Inside Macintosh: Memory. ◆

Writing a Sleep Procedure 6
After you’ve added an entry to the sleep queue, the Power Manager calls your sleep
procedure when the Power Manager issues a sleep request, a sleep demand, a wakeup
demand, or a sleep-request revocation. Whenever the Power Manager calls your routine,
the A0 register contains a pointer to your sleep queue record and the D0 register contains
6-20 Using the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
a sleep procedure selector code indicating the reason your routine is being called. One
of four selector codes will be in the D0 register:

CONST

sleepRequest = 1; {sleep request}

sleepDemand = 2; {sleep demand}

sleepWakeUp = 3; {wakeup demand}

sleepRevoke = 4; {sleep-request revocation}

When your routine receives a sleep request, it must either allow or deny the request and
place its response in the D0 register. To allow the sleep request, clear the D0 register to 0
before returning control to the Power Manager. To deny the sleep request, return a
nonzero value in the D0 register. (Note that you cannot deny a sleep demand.)
Listing 6-5 defines two assembly-language glue routines that you can use to accept
or deny the request from a high-level language.

Listing 6-5 Accepting and denying a sleep request

PROCEDURE MyAllowSleepRequest;

INLINE

$7000; {MOVEQ #0, D0}

PROCEDURE MyDenySleepRequest;

INLINE

$7001; {MOVEQ #1, D0}

If your routine or any other routine in the sleep queue denies the sleep request, the
Power Manager sends a sleep-request revocation to each routine that it has already
called with a sleep request. If none of the routines denies the sleep request, the Power
Manager sends a sleep demand to each routine in the sleep queue. Because your routine
will be called a second time in any case, it is not necessary to prepare for sleep in
response to a sleep request; your routine need only allow or deny the sleep request
by returning a result in the D0 register. Listing 6-6 shows a sample sleep procedure.

Listing 6-6 A sleep procedure

PROCEDURE MySleepProc;

VAR

mySleepInfoPtr: SleepInfoRecPtr;

mySleepCommand: LongInt;

myOldA5: LongInt; {A5 upon entry to procedure}

myCurA5: LongInt;
Using the Power Manager 6-21

C H A P T E R 6

Power Manager
BEGIN

mySleepInfoPtr := MyGetSleepInfoPtr; {get the address of the sleep record}

mySleepCommand := MyGetSleepCommand; {get the task we are to perform}

{Set A5 register to app’s A5 value, and save the original A5 value.}

myOldA5 := SetA5(mySleepInfoPtr^.mySlpRefCon);

CASE mySleepCommand OF {do the right thing}

sleepRequest:

MySleepRequest;

sleepDemand:

MySleepDemand;

sleepWakeUp:

MyWakeupDemand;

sleepRevoke:

MySleepRevoke;

OTHERWISE

;

END; {CASE}

myOldA5 := SetA5(myOldA5); {restore original A5}

END;

The MySleepProc sleep procedure defined in Listing 6-6 retrieves the address of the
sleep queue record contained in register A0 and the selector code contained in register
D0. Then it calls the appropriate application-defined routine to handle the selector code.
MySleepProc uses two assembly-language glue routines, defined in Listing 6-7, to get
those values from the appropriate registers.

Listing 6-7 Retrieving the sleep queue record and the selector code

{Retrieve the address of our sleep info record from A0.}

FUNCTION MyGetSleepInfoPtr: SleepInfoRecPtr;

INLINE

$2E88; {MOVE.L A0, (A7)}

{Retrieve the command code for the sleep procedure from D0.}

FUNCTION MyGetSleepCommand: LongInt;

INLINE

$2E80; {MOVE.L D0, (A7)}

When your sleep procedure receives a sleep demand, it must prepare for the sleep state
and return control to the Power Manager as quickly as possible. Because sleep demands
are never sent by an interrupt handler, your sleep procedure can perform whatever tasks
6-22 Using the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
are necessary to prepare for sleep, including making calls to the Memory Manager.
You can, for example, display an alert box to inform the user of potential problems,
or you can even display a dialog box that requires the user to specify the action to be
performed. However, if several applications display alert or dialog boxes, the user might
become confused or alarmed. More important, if the user is not present to answer the
alert box or dialog box, control is never returned to the Power Manager and the
computer does not go to sleep. Listing 6-8 defines a procedure that displays a dialog box
whenever a sleep demand is received.

Listing 6-8 Displaying a dialog box in response to a sleep demand

PROCEDURE MySleepDemand;

VAR

myItem: Integer; {item number for ModalDialog}

myRect: Rect; {rectangle for NewDialog}

myOrigPort: GrafPtr; {original graphics port}

BEGIN

myItem := 0;

gOrigTime := TickCount; {initialize timer}

IF gDialog = NIL THEN {create a dialog window}

BEGIN

SetRect(myRect, 50, 50, 400, 150);

gDialog := NewDialog(NIL, myRect, '', FALSE, dBoxProc,

WindowPtr(-1), FALSE, 0, gItemHandle);

END;

IF gDialog <> NIL THEN

BEGIN

GetPort(myOrigPort); {remember current port}

ShowWindow(gDialog); {make dialog visible}

SelectWindow(gDialog);

SetPort(gDialog);

REPEAT

ModalDialog(@MyTimeOutFilter, myItem);

UNTIL myItem = 1;

HideWindow(gDialog);

SetPort(myOrigPort); {restore original port}

END;

END;

To display a dialog box, you need to build the dialog box from within the sleep
procedure itself to ensure that the newly created dialog box appears frontmost on the
Using the Power Manager 6-23

C H A P T E R 6

Power Manager
screen. You can facilitate this process by passing a handle to the dialog item list to your
sleep procedure. In Listing 6-8, the global variable gItemHandle is assumed to contain
a handle to the dialog item list. You can execute the following line of code early in your
application’s execution to set gItemHandle to the correct value:

gItemHandle := Get1Resource('DITL', kAlertDITL);

▲ W A R N I N G

If your sleep procedure displays an alert box or modal dialog box, the
computer does not enter the sleep state until the user responds. If the
computer remains in the operating state until the battery voltage drops
below a preset value, the power management hardware automatically
shuts off all power to the system, without preserving the state of open
applications or data that has not been saved to disk. To prevent this from
happening, you should automatically remove your dialog box after
several minutes have elapsed. ▲

An easy way to implement this time-out feature is to pass the ModalDialog procedure
the address of a modal dialog filter function that intercepts null events until the desired
amount of time has elapsed. Listing 6-9 illustrates such a filter function.

Listing 6-9 A modal dialog filter function that times out

FUNCTION MyTimeOutFilter (myDialog: DialogPtr;

 VAR myEvent: EventRecord;

 VAR myItem: Integer): Boolean;

CONST

kTimeOutMax = 18000; {remove dialog box after 5 minutes}

BEGIN

MyTimeOutFilter := FALSE;

CASE myEvent.what OF

nullEvent:

BEGIN

IF (TickCount - gOrigTime) >= kTimeOutMax THEN

BEGIN

myItem := 1;

MyTimeOutFilter := TRUE;

END;

END;

{handle other relevant events here}

OTHERWISE

;

END; {CASE}

END;
6-24 Using the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
The global variable gOrigTime is initialized in the MySleepDemand procedure; the
modal dialog filter function defined in Listing 6-9 simply waits until the appropriate
number of ticks (sixtieths of a second) have elapsed before simulating a click on the
OK button (assumed to be dialog item number 1).

When your routine receives a wakeup demand, it must prepare for the operating state
and return control to the Power Manager as quickly as possible.

When your routine receives a sleep-request revocation, it must reverse any changes
it made in response to the sleep request that preceded it and return control to the
Power Manager.

Switching Serial Power On and Off 6
The serial I/O subsystem of a portable Macintosh computer includes the following
components:

■ the Serial Communications Controller (SCC) chip

■ the serial driver chips

■ the –5 volt supply

■ the internal modem (if installed)

Because serial drivers always use these components in certain combinations, the
Power Manager provides five serial power procedures that perform the following tasks:

■ The AOn procedure switches on power to serial port A and switches on power to the
internal modem if it is installed.

■ The AOnIgnoreModem procedure switches on power to serial port A (the modem
port) but does not switch on power to the internal modem.

■ The BOn procedure switches on power to serial port B.

■ The AOff procedure switches off power to serial port A and to the internal modem if
it is in use.

■ The BOff procedure switches off power to serial port B.

If no internal modem is installed, then calling any of the power-on routines switches on
power to the SCC, the serial driver chips, and the –5 volt supply.

To switch power on for port B whether or not there is an internal modem installed, use
the BOn procedure. This procedure switches on power to the SCC, the serial driver chips,
and the –5 volt supply.

If the internal modem is installed, then you can use the AOn procedure to switch on the
modem. In this case, this procedure switches on power to the SCC, the –5 volt supply,
and the modem; the internal modem does not use the serial driver chips.

If the internal modem is installed but you do not want to use it (whether or not
the user has used the Portable control panel to disconnect the modem), then use the
AOnIgnoreModem procedure to switch on power to the SCC, the serial driver chips,
and the –5 volt supply.
Using the Power Manager 6-25

C H A P T E R 6

Power Manager
Note
You can use the Power Manager’s ModemStatus function to determine
whether an internal modem is turned on or off. For details, see the
description of ModemStatus beginning on page 6-36. ◆

Monitoring the Battery and Battery Charger 6
You can use the Power Manager to monitor the status of the battery and battery charger.
To do so, use the BatteryStatus function to determine the current voltage in the
battery.

For most accurate results, you might want to average the voltage over some extended
period of time (anywhere from 30 seconds to several minutes). The power load within
a portable Macintosh computer varies dynamically, and the current draw of the various
subsystems affects the voltage read at any one moment.

Power Manager Reference 6

This section describes the data structures and routines provided by the Power Manager.
See “Using the Power Manager,” beginning on page 6-13, for detailed instructions on
using these routines.

Data Structures 6
This section describes the data structures used by the Power Manager. The sleep queue
record is shown in Pascal. The other data structures, which are used by the functions
described in “Power Manager Dispatch Routines,” beginning on page 6-40, are shown in C.

Sleep Queue Record 6

The SleepQInstall and SleepQRemove procedures take as a parameter the address
of a sleep queue record, which is defined by the SleepQRec data type.

TYPE SleepQRec =

RECORD

sleepQLink: SleepQRecPtr; {next queue element}

sleepQType: Integer; {queue type = 16}

sleepQProc: ProcPtr; {pointer to sleep procedure}

sleepQFlags: Integer; {reserved}

END;

SleepQRecPtr = ^SleepQRec;
6-26 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Field descriptions

sleepQLink A pointer to the next element in the queue. This pointer is
maintained internally by the Power Manager; your application
should not modify this field.

sleepQType The type of the queue, which must be the constant slpQType (16).
sleepQProc A pointer to your sleep procedure. See “Sleep Procedures,” on

page 6-65, for details on this routine.
sleepQFlags Reserved for use by Apple Computer, Inc.

Hard Disk Queue Structure 6

The HardDiskQInstall and HardDiskQRemove functions take as a parameter the
address of a hard disk queue structure, which is defined by the HDQueueElement
data type.

struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue type (must be HDPwrQType) */

short hdFlags; /* reserved */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user-defined private storage */

} HDQueueElement;

Wakeup Time Structure 6

The wakeup time structure used by the GetWakeupTimer and SetWakeupTimer
functions is defined by the WakeupTime data type.

typedef struct WakeupTime {

 unsigned long wakeTime; /* wakeup time as number of seconds since

 midnight, January 1, 1904 */

 char wakeEnabled; /* 1 = enable timer, 0=disable timer */

} WakeupTime;

Battery Information Structure 6

The GetScaledBatteryInfo function returns information about the battery in a data
structure of type BatteryInfo.

typedef struct BatteryInfo {

unsigned char flags; /* misc flags (see below) */

unsigned char warningLevel; /* scaled warning level (0-255) */
Power Manager Reference 6-27

C H A P T E R 6

Power Manager
char reserved; /* reserved for internal use */

unsigned char batteryLevel; /* scaled battery level (0-255) */

} BatteryInfo;

 The values of the bits in the flags field are as follows:

Battery Time Structure 6

The GetBatteryTimes function returns information about the time remaining on the
computer’s battery or batteries in a data structure of type BatteryTimeRec.

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated time remaining */

unsigned long minimumBatteryTime; /* minimum time remaining */

unsigned long maximumBatteryTime; /* maximum time remaining */

unsigned long timeUntilCharged; /* time until full charge */

} BatteryTimeRec;

Power Manager Routines 6
This section describes the routines provided by the Power Manager. You can use these
routines to

■ enable, disable, and read the idle state

■ control and read the wakeup timer

■ add and remove elements from the sleep queue

■ control power to the serial ports

■ read the status of the internal modem

■ read the status of the battery and battery charger

Controlling the Idle State 6

The Power Manager provides routines that you can use to modify and control the idle
state. See “The Idle State,” on page 6-7, for a complete description of a computer’s
idle state and activity timer.

Bit name Bit number Description

batteryInstalled 7 A battery is installed.

batteryCharging 6 The battery is charging.

chargerConnected 5 The charger is connected.
6-28 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
IdleUpdate 6

You can use the IdleUpdate function to reset the Power Manager’s activity timer.

FUNCTION IdleUpdate: LongInt;

DESCRIPTION

The IdleUpdate function resets the activity timer. It takes no parameters and returns
the value in the Ticks global variable at the time the function was called.

EnableIdle 6

You can use the EnableIdle procedure to enable the idle state.

PROCEDURE EnableIdle;

DESCRIPTION

The EnableIdle procedure cancels the effect of a call to the DisableIdle procedure.
A call to the EnableIdle procedure enables the idle state only if the user has not used
the Portable or PowerBook control panel to disable the idle state and if every call to the
DisableIdle procedure has been balanced by a call to the EnableIdle procedure.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
EnableIdle routine. That macro calls the _IdleState trap. To call the _IdleState
trap directly, you must first put a longword routine selector in the D0 register. For
EnableIdle, the routine selector is 0.

SEE ALSO

See “Enabling or Disabling the Idle State,” beginning on page 6-15, for more discussion
of EnableIdle.

DisableIdle 6

You can use the DisableIdle procedure to disable the idle state.

PROCEDURE DisableIdle;
Power Manager Reference 6-29

C H A P T E R 6

Power Manager
DESCRIPTION

The DisableIdle procedure disables the idle state, even if the user has used the
Portable or PowerBook control panel to enable the idle state. Every call to the
DisableIdle procedure must be balanced by a call to the EnableIdle procedure
before the idle state is reenabled.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
DisableIdle routine. That macro calls the _IdleState trap. To call the _IdleState
trap directly, you must first put a longword routine selector in the D0 register. For
DisableIdle, the routine selector can be any value that is greater than 0.

SEE ALSO

See “Enabling or Disabling the Idle State,” beginning on page 6-15, for more discussion
of DisableIdle.

GetCPUSpeed 6

You can use the GetCPUSpeed function to read the current CPU clock speed.

FUNCTION GetCPUSpeed: LongInt;

DESCRIPTION

The GetCPUSpeed function returns the current effective clock speed (in megahertz) of
the CPU.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
GetCPUSpeed routine. That macro calls the _IdleState trap. To call the _IdleState
trap directly, you must first put a longword routine selector in the D0 register. For
GetCPUSpeed, the routine selector can be any value that is less than 0. The CPU speed is
returned as a single byte in register D0.
6-30 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Controlling and Reading the Wakeup Timer 6

The Power Manager provides functions to set the wakeup timer, disable the wakeup
timer, and read the current setting of the wakeup timer.

IMPORTANT

Some portable Macintosh computers do not support the wakeup timer.
There is currently no direct way to determine whether a particular
portable computer supports the wakeup timer. You can, however,
inspect the result code from the GetWUTime function to see whether the
call executed successfully. ▲

SetWUTime 6

You can use the SetWUTime function to set the wakeup timer.

FUNCTION SetWUTime (WUTime: LongInt): OSErr;

WUTime The time at which the wakeup timer is to wake up, specified as a number
of seconds since midnight, January 1, 1904.

DESCRIPTION

The SetWUTime function sets and enables the wakeup timer. When a portable
Macintosh computer is in the sleep state, the power management hardware updates the
real-time clock and compares it to the wakeup timer once each second. When the
real-time clock and the wakeup timer have the same setting, the power management
hardware returns the computer to the operating state.

The WUTime parameter specifies the time at which the power management hardware
will return the computer to the operating state. You specify the time as the number of
seconds since midnight, January 1, 1904.

If the computer is not in the sleep state when the wakeup timer and the real-time clock
settings coincide, nothing happens. If you set the wakeup timer to a time earlier than the
current setting of the real-time clock, you effectively disable the wakeup timer.

RESULT CODES

SEE ALSO

See “Setting, Disabling, and Reading the Wakeup Timer,” beginning on page 6-16, for an
example of calling SetWUTime.

You can use the SetWakeupTimer function (page 6-45) to explicitly enable and disable
the wakeup timer.

noErr 0 No error
Power Manager Reference 6-31

C H A P T E R 6

Power Manager
DisableWUTime 6

You can use the DisableWUTime function to disable the wakeup timer.

FUNCTION DisableWUTime: OSErr;

DESCRIPTION

The DisableWUTime function disables the wakeup timer. You must set a new wakeup
time to reenable the wakeup timer.

RESULT CODES

GetWUTime 6

You can use the GetWUTime function to read the current setting of the wakeup timer.

FUNCTION GetWUTime (VAR WUTime: LongInt; VAR WUFlag: Byte): OSErr;

WUTime On exit, the current setting of the wakeup timer, specified as the number
of seconds since midnight, January 1, 1904.

WUFlag On exit, a bit field encoding the state of the wakeup timer.

DESCRIPTION

The GetWUTime function returns the current setting of the wakeup timer and indicates
whether the wakeup timer is enabled. The value returned in the WUTime parameter is
the current setting of the wakeup timer, specified as the number of seconds since
midnight, January 1, 1904. If the low-order bit (bit 0) of the WUFlag parameter is set to 1,
the wakeup timer is enabled. The other bits in the WUFlag parameter are reserved.

SPECIAL CONSIDERATIONS

The GetWUTime function returns an error on machines that do not support the wakeup
timer.

RESULT CODES

noErr 0 No error

noErr 0 No error
pmBusyErr –13001 Wakeup timer is not available on this machine
6-32 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Controlling the Sleep Queue 6

The Power Manager allows you to install a sleep procedure that is executed whenever
the machine is about to go into the sleep state or just after the machine returns from the
sleep state.

SleepQInstall 6

You can use the SleepQInstall procedure to add an entry to the sleep queue.

PROCEDURE SleepQInstall (qRecPtr: SleepQRecPtr);

qRecPtr A pointer to a sleep queue record.

DESCRIPTION

The SleepQInstall procedure adds the specified sleep queue record to the sleep
queue. The qRecPtr parameter is a pointer to a sleep queue record.

SPECIAL CONSIDERATIONS

You should make sure to remove any elements you installed in the sleep queue before
your application or other software exits.

SEE ALSO

See “Sleep Queue Record,” on page 6-26, for the structure of a sleep queue record. See
“Sleep Procedures,” beginning on page 6-65, for information about sleep procedures.

SleepQRemove 6

You can use the SleepQRemove procedure to remove an entry from the sleep queue.

PROCEDURE SleepQRemove (qRecPtr: SleepQRecPtr);

qRecPtr A pointer to a sleep queue record, which is described on page 6-26.

DESCRIPTION

The SleepQRemove procedure removes the specified sleep queue record from the sleep
queue. The qRecPtr parameter is a pointer to the sleep queue record that you provided
when you added your routine to the sleep queue.
Power Manager Reference 6-33

C H A P T E R 6

Power Manager
Controlling Serial Power 6

The Power Manager provides five procedures that you can use to control power to the
serial ports and internal modem.

Assembly-Language Note

Although MPW provides assembly-language macros to execute these
routines, each of these macros calls the _SerialPower trap macro. To
call the _SerialPower trap macro directly, you must first put a routine
selector in the D0 register, setting the bits of the selector as follows:

AOn 6

You can use the AOn procedure to turn on the power to serial port A.

PROCEDURE AOn;

DESCRIPTION

The AOn procedure switches on power to the SCC and the –5 volt supply. If the internal
modem is installed and is connected to port A, the AOn procedure also switches on
power to the modem. If either of these conditions is not met, the AOn procedure switches
on power to the serial driver chips.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
AOn routine. That macro calls the _SerialPower trap. To call the _SerialPower trap
directly, you must first put a longword routine selector in the D0 register. For AOn, the
routine selector is $4.

AOnIgnoreModem 6

You can use the AOnIgnoreModem procedure to turn on the power to serial port A but
not to the internal modem.

PROCEDURE AOnIgnoreModem;

Bit Use

0 Set to 0 to use internal modem; set to 1 to ignore modem.

2 Set to 0 for port B; set to 1 for port A.

7 Set to 0 to switch on power; set to 1 to switch off power. ◆
6-34 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
DESCRIPTION

The AOnIgnoreModem procedure switches on power to the SCC, the –5 volt supply, and
the serial driver chips. This procedure does not switch on power to the internal modem,
even if the user has used the Portable or PowerBook control panel to select the modem.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
AOnIgnoreModem routine. That macro calls the _SerialPower trap. To call the
_SerialPower trap directly, you must first put a longword routine selector in
the D0 register. For AOnIgnoreModem, the routine selector is $5.

BOn 6

You can use the BOn procedure to turn on the power to serial port B.

PROCEDURE BOn;

DESCRIPTION

The BOn procedure switches on power to the SCC, the –5 volt supply, and the serial
driver chips.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
BOn routine. That macro calls the _SerialPower trap. To call the _SerialPower trap
directly, you must first put a longword routine selector in the D0 register. For BOn, the
routine selector is $0.

AOff 6

You can use the AOff procedure to turn off the power to serial port A and to the internal
modem.

PROCEDURE AOff;

DESCRIPTION

The AOff procedure always switches off power to the SCC and the –5 volt supply if
serial port B is not in use. If the internal modem is installed, connected to port A, and
switched on, this procedure switches off power to the modem. If any of these conditions
Power Manager Reference 6-35

C H A P T E R 6

Power Manager
are not met, it switches off power to the serial driver chips, unless they are being used
by port B.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
AOff routine. That macro calls the _SerialPower trap. To call the _SerialPower trap
directly, you must first put a longword routine selector in the D0 register. For AOff, the
routine selector is $84.

BOff 6

You can use the BOff procedure to turn off the power to serial port B and to the internal
modem.

PROCEDURE BOff;

DESCRIPTION

The BOff procedure switches off power to the SCC and the –5 volt supply if serial port
A is not in use. If the internal modem is installed, connected to port B, and switched on,
this procedure switches off power to the modem. Otherwise, the BOff procedure
switches off power to the serial driver chips, unless they are being used by port A.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
BOff routine. That macro calls the _SerialPower trap. To call the _SerialPower trap
directly, you must first put a longword routine selector in the D0 register. For BOff, the
routine selector is $80.

Reading the Status of the Internal Modem 6

The Power Manager provides a function that allows you to determine the status of the
internal modem.

ModemStatus 6

You can use the ModemStatus function to get information about the state of the internal
modem.

FUNCTION ModemStatus (VAR Status: Byte): OSErr;
6-36 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Status On exit, a byte value whose bits encode information about the current
state of the internal modem. See the description below for the meaning
of each bit.

DESCRIPTION

The ModemStatus function returns information about the internal modem in a
portable Macintosh computer. Bits 0 and 2 through 5 of the Status parameter encode
information about the state of the internal modem. (Currently, bits 6 and 7 are reserved;
in addition, bit 1 is reserved and is always set.) The Power Manager recognizes the
following constants for specifying bits in the Status parameter.

CONST

modemOnBit = 0; {1 if modem is on}

ringWakeUpBit = 2; {1 if ring wakeup is enabled}

modemInstalledBit = 3; {1 if internal modem is installed}

ringDetectBit = 4; {1 if incoming call is detected}

modemOnHookBit = 5; {1 if modem is off hook}

Constant descriptions

modemOnBit The modem’s power is on or off. If this bit is set, the modem is
switched on. You can use the serial power control functions to
control power to the modem. See “Switching Serial Power On and
Off,” beginning on page 6-25, for information about these functions.

ringWakeUpBit The state of the ring-wakeup feature. If this bit is set, the
ring-wakeup feature is enabled.

modemInstalledBit
The modem is or is not installed. If this bit is set, an internal modem
is installed.

ringDetectBit The ring-detect state. If this bit is set, the modem has detected an
incoming call.

modemOnHookBit The modem is on or off hook. If this bit is set, the modem is off
hook. The modem indicates that it is off hook whenever it is busy
sending or receiving data or processing commands. The modem
cannot receive an incoming call when it is off hook.

The Power Manager also defines these bit masks:

CONST

modemOnMask = $1; {modem on}

ringWakeUpMask = $4; {ring wakeup enabled}

modemInstalledMask = $8; {internal modem installed}

ringDetectMask = $10; {incoming call detected}

modemOnHookMask = $20; {modem off hook}

The user can use the Portable or PowerBook control panel to enable or disable the
ring-wakeup feature. When the ring-wakeup feature is enabled and the computer is in
Power Manager Reference 6-37

C H A P T E R 6

Power Manager
the sleep state, the Power Manager returns the computer to the operating state when the
modem receives an incoming call.

RESULT CODES

Reading the Status of the Battery and the Battery Charger 6

The Power Manager monitors the voltage level of the internal battery and warns the user
when the voltage drops below a threshold value stored in parameter RAM. If the voltage
continues to drop and falls below another, lower value stored in parameter RAM, the
Power Manager puts the computer into the sleep state. The Power Manager provides a
function that allows you to read the state of charge of the battery and the status of the
battery charger.

BatteryStatus 6

You can use the BatteryStatus function to get information about the state of the
internal battery.

FUNCTION BatteryStatus (VAR Status: Byte; VAR Power: Byte): OSErr;

Status On exit, a byte value whose bits encode information about the current
state of the battery charger. See the description below for the meaning
of each bit.

Power On exit, a byte whose value indicates the current level of the battery
voltage. See the description below for a method of calculating the voltage
from this value.

DESCRIPTION

The BatteryStatus function returns the status of the battery charger (in the Status
parameter) and the voltage level of the battery (in the Power parameter).

Bits 0 through 5 of the Status parameter encode information about the state of the
battery charger. (Currently, bits 6 and 7 are reserved.) The Power Manager recognizes
the following constants for specifying bits in the Status parameter.

CONST

chargerConnBit = 0; {1 if charger is connected}

hiChargeBit = 1; {1 if charging at hicharge rate}

chargeOverFlowBit = 2; {1 if hicharge counter has overflowed}

noErr 0 No error
6-38 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
batteryDeadBit = 3; {always 0}

batteryLowBit = 4; {1 if battery is low}

connChangedBit = 5; {1 if charger connection has changed}

Constant descriptions

chargerConnBit The charger is or is not connected. If this bit is set, the battery
charger is connected to the computer.

hiChargeBit The charge rate. If this bit is set, the battery is charging at the
hicharge rate.

chargeOverFlowBit
The hicharge counter overflow. If this bit is set, the hicharge counter
has overflowed. When the hicharge counter has overflowed, it
indicates that the charging circuit is having trouble charging the
battery.

batteryDeadBit
The dead battery indicator. This bit is always 0, because the Power
Manager automatically shuts the system down when the battery
voltage drops below a preset level.

batteryLowBit The battery warning. If this bit is set, the battery voltage has
dropped below the value set in parameter RAM. The power
management hardware sends an interrupt to the CPU once every
second when battery voltage is low.

connChangedBit
The charger connection has or has not changed state. If this bit is
set, the charger has been recently connected or disconnected.

The Power Manager also defines these bit masks:

CONST

chargerConnMask = $1; {charger is connected}

hiChargeMask = $2; {charging at hicharge rate}

chargeOverFlowMask = $4; {hicharge counter has overflowed}

batteryDeadMask = $8; {battery is dead}

batteryLowMask = $10; {battery is low}

connChangedMask = $20; {connection has changed}

Due to the nature of lead-acid batteries, the battery power remaining is difficult to
measure accurately. Temperature, load, and other factors can alter the measured voltage
by 30 percent or more. The Power Manager takes as many of these factors into account
as possible, but the voltage measurement can still be in error by up to 10 percent. The
measurement is most accurate when the computer has been in the sleep state for at least
30 minutes.

When the battery charger is connected to a portable Macintosh computer with a low
battery, the battery is charged at the hicharge rate (1.5 amps) until battery voltage
reaches its full charge (7.2 volts on most portable Macintosh computers). The Power
Manager has a counter (the hicharge counter) that measures the time required to raise
the battery voltage to this level.
Power Manager Reference 6-39

C H A P T E R 6

Power Manager
After the full charge level is reached, the power management circuits maintain the
hicharge connection until the hicharge counter counts down to 0. This ensures that the
battery is fully charged. At the end of that time, the power management circuits supply
the battery with just enough current to replace the voltage lost through self-discharge.

RESULT CODES

SEE ALSO

For more functions for determining the status of the battery and battery charger, see
“Getting Information About the Internal Batteries,” beginning on page 6-54.

Power Manager Dispatch Routines 6
This section describes the Power Manager dispatch routines. You can use these
routines to

■ determine what Power Manager features are available

■ set and read the sleep and wakeup timers and disable or disable the sleep timer

■ set, read, enable, and disable the timer that dims the screen

■ control the hard disk

■ get information about the battery

■ get and set the state of the internal modem

■ control the processing speed of the processor and processor cycling

■ get and set the SCSI ID the computer uses in SCSI disk mode

Note
The functions in this section are described using the C language
interface. The section “Summary of the Power Manager,” beginning on
page 6-67, includes both Pascal and C interfaces. ◆

Assembly-language note:

All the functions in this section share a single trap,
_PowerMgrDispatch ($A09E). The trap is register based: parameters
are passed in register D0 and sometimes also in A0. A routine selector
value passed in the low word of register D0 determines which routine
is executed. ◆

Determining the Power Manager Features Available 6

The functions in this section return the number of Power Manager dispatch functions
available and return information about the Power Manager features available.

noErr 0 No error
6-40 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
PMSelectorCount 6

You can use the PMSelectorCount function to determine which Power Manager
dispatch functions are implemented.

short PMSelectorCount();

DESCRIPTION

The PMSelectorCount function returns the number of routine selectors present. Any
function whose selector value is greater than the returned value is not implemented.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for PMSelectorCount
is 0 ($00) in the low word of register D0. The number of selectors is returned in the low
word of register D0.

PMFeatures 6

You can use the PMFeatures function to find out which features of the Power Manager
are implemented.

unsigned long PMFeatures();

DESCRIPTION

The PMFeatures function returns a 32-bit field describing hardware and software
features associated with the Power Manager on a particular machine. If a bit value is 1,
that feature is supported or available; if the bit value is 0, that feature is not available.
Unused bits are reserved by Apple for future expansion.

Bit name Bit number Description

hasWakeupTimer 0 The wakeup timer is supported.

hasSharedModemPort 1 The hardware forces exclusive access to
either SCC port A or the internal modem.
(If this bit is not set, port A and the internal
modem can be used simultaneously by
means of the Communications Toolbox.)

hasProcessorCycling 2 Processor cycling is supported; that is,
when the computer is idle, the processor
power will be cycled to reduce power use.

mustProcessorCycle 3 The processor cycling feature must be left
on (turn it off at your own risk).
Power Manager Reference 6-41

C H A P T E R 6

Power Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for PMFeatures is 1
($01) in the low word of register D0. The 32-bit field of supported features is returned
in register D0.

Controlling the Sleep and Wakeup Timers 6

The functions in this section read and set the sleep and wakeup timers and enable or
disable the automatic sleep feature.

GetSleepTimeout 6

You can use the GetSleepTimeout function to find out how long the computer will
wait before going to sleep.

unsigned char GetSleepTimeout();

DESCRIPTION

The GetSleepTimeout function returns the amount of time that the computer will wait
after the last user activity before going to sleep. The value of GetSleepTimeout is
expressed as the number of 15-second intervals that the computer will wait before going
to sleep.

hasReducedSpeed 4 Processor can be started up at a reduced
speed in order to extend battery life.

dynamicSpeedChange 5 Processor speed can be switched
dynamically between its full and reduced
speed at any time, rather than only at
startup time.

hasSCSIDiskMode 6 The SCSI disk mode is supported.

canGetBatteryTime 7 The computer can provide an estimate of
the battery time remaining.

canWakeupOnRing 8 The computer supports waking up from
the sleep state when an internal modem is
installed and the modem detects a ring.

hasDimmingSupport 9 The computer has dimming support built
into the ROM.

Bit name Bit number Description
6-42 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetSleepTimeout
is 2 ($02) in the low word of register D0. The sleep timeout value is returned in the low
word of register D0.

SetSleepTimeout 6

You can use the SetSleepTimeout function to set how long the computer will wait
before going to sleep.

void SetSleepTimeout(unsigned char timeout);

timeout The amount of time that the computer will wait after the last user activity
before going to sleep expressed as a number of 15-second intervals.

DESCRIPTION

The SetSleepTimeout function sets the amount of time the computer will wait after
the last user activity before going to sleep. The value of SetSleepTimeout is expressed
as the number of 15-second intervals making up the desired time. If a value of 0 is
passed in, the function sets the timeout value to the default value (currently equivalent
to 8 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetSleepTimeout
is 3 ($03) in the low word of register D0. The sleep timeout value to set is passed in the
high word of register D0.

AutoSleepControl 6

You can use the AutoSleepControl function to turn the automatic sleep feature on
and off.

void AutoSleepControl(Boolean enableSleep);

enableSleep
A Boolean that specifies whether to enable the automatic sleep feature.
Set this parameter to true to enable automatic sleep.
Power Manager Reference 6-43

C H A P T E R 6

Power Manager
DESCRIPTION

The AutoSleepControl function enables or disables the automatic sleep feature
that causes the computer to go into sleep mode after a preset period of time. When
enableSleep is set to true, the automatic sleep feature is enabled (this is the normal
state). When enableSleep is set to false, the computer will not go into the sleep
mode unless it is forced to either by some user action—for example, by the user’s
selecting Sleep from the Special menu of the Finder—or in a low battery situation.

SPECIAL CONSIDERATIONS

Calling AutoSleepControl with enableSleep set to false multiple times
increments the auto sleep disable level so that it requires the same number of calls to
AutoSleepControl with enableSleep set to true to reenable the auto sleep feature.
If more than one piece of software makes this call, auto sleep may not be reenabled when
you think it should be.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for AutoSleepControl
is 13 ($0D) in the low word of register D0. The Boolean value is passed in the high word
of register D0.

IsAutoSlpControlDisabled 6

You can use the IsAutoSlpControlDisabled function to find out whether automatic
sleep control is enabled.

Boolean IsAutoSlpControlDisabled();

DESCRIPTION

The IsAutoSlpControlDisabled function returns a Boolean true if automatic sleep
control is disabled, or false if automatic sleep control is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
IsAutoSlpControlDisabled is 33 ($21) in the low word of register D0. The Boolean
result is passed in the low byte of register D0.
6-44 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
GetWakeupTimer 6

You can use the GetWakeupTimer function to find out when the computer will wake up
from sleep mode.

void GetWakeupTimer(WakeupTime *theTime);

theTime A pointer to a WakeupTime structure, which specifies whether the timer
is enabled or disabled and the time at which the wakeup timer is set to
wake the computer.

DESCRIPTION

The GetWakeupTimer function returns the time when the computer will wake up from
sleep mode.

If the PowerBook model doesn’t support the wakeup timer, GetWakeupTimer returns
a value of 0.

 ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetWakeupTimer
is 22 ($16) in the low word of register D0. The pointer to WakeupTime is passed in
register A0.

SEE ALSO

The WakeupTime structure is described in “Wakeup Time Structure,” on page 6-27.

SetWakeupTimer 6

You can use the SetWakeupTimer function to set the time when the computer will
wake up from sleep mode.

void SetWakeupTimer(WakeupTime *theTime);

theTime A pointer to a WakeupTime structure, which specifies whether to enable
or disable the timer and the time at which the wakeup timer is to wake
the computer.

DESCRIPTION

The SetWakeupTimer function sets the time when the computer will wake up from
sleep mode and enables or disables the timer. On a PowerBook model that doesn’t
support the wakeup timer, SetWakeupTimer does nothing.
Power Manager Reference 6-45

C H A P T E R 6

Power Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetWakeupTimer
is 23 ($17) in the low word of register D0. The pointer to WakeupTime is passed in
register A0.

SEE ALSO

The WakeupTime structure is described in “Wakeup Time Structure,” on page 6-27.

Controlling the Dimming Timer 6

The functions in this section read and set the dimming timer and enable or disable the
automatic screen-dimming feature. The dimmer acts as a screen saver, dimming the
screen after a preset time of user inactivity.

GetDimmingTimeout 6

You can use the GetDimmingTimeout function to find out how long the computer will
wait before dimming the screen.

unsigned char GetDimmingTimeout();

DESCRIPTION

The GetDimmingTimeout function returns the amount of time that the computer
will wait after the last user activity before dimming the screen. The value of
GetDimmingTimeout is expressed as the number of 15-second intervals that the
computer will wait before dimming the screen.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetDimmingTimeout is 29 ($1D) in the low word of register D0. The dimming timeout
value is returned in the low word of register D0.

SetDimmingTimeout 6

You can use the SetDimmingTimeout function to set how long the computer will wait
before dimming the screen.

void SetDimmingTimeout(unsigned char timeout);
6-46 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
timeout The amount of time that the computer will wait after the last user activity
before dimming the screen expressed as a number of 15-second intervals.
Specify 0 to cause the screen to dim immediately.

DESCRIPTION

The SetDimmingTimeout function sets the amount of time the computer will wait after
the last user activity before dimming the screen. The value of SetDimmingTimeout is
expressed as the number of 15-second intervals making up the desired time.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetDimmingTimeout
is 30 ($1E) in the low word of register D0. The dimming timeout value to set is passed in
the high word of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer
supports automatic dimming.

DimmingControl 6

You can use the DimmingControl function to turn the automatic dimming feature
on and off.

void DimmingControl(Boolean enableDimming);

enableDimming
A Boolean that specifies whether to enable the automatic dimming
feature. Set this parameter to true to enable automatic dimming.

DESCRIPTION

The DimmingControl function enables or disables the automatic dimming feature that
causes the computer to dim the screen after a preset period of time. When
enableDimming is set to true, the automatic dimming feature is enabled (this is the
normal state). When enableDimming is set to false, the computer will not dim the
screen.

SPECIAL CONSIDERATIONS

Calling DimmingControl with enableDimming set to false multiple times
increments the auto dimming disable level so that it requires the same number of calls to
DimmingControl with enableDimming set to true to reenable the auto dimming
Power Manager Reference 6-47

C H A P T E R 6

Power Manager
feature. If more than one piece of software makes this call, auto dimming may not be
reenabled when you think it should be.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for DimmingControl
is 31 ($1F) in the low word of register D0. The Boolean value is passed in the high word
of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer
supports automatic dimming.

IsDimmingControlDisabled 6

You can use the IsDimmingControlDisabled function to find out whether automatic
dimming is enabled.

Boolean IsDimmingControlDisabled();

DESCRIPTION

The IsDimmingControlDisabled function returns a Boolean true if automatic
dimming is disabled, or false if dimming is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
IsDimmingControlDisabled is 32 ($20) in the low word of register D0. The Boolean
result is passed in the low byte of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer
supports automatic dimming.

Controlling the Hard Disk 6

The functions in this section return information about the hard disk timer and the state
of the hard disk, and allow you to control the spin down of the hard disk. You can also
use functions in this section to install and remove hard disk queue elements. The hard
disk queue notifies your software when power to the internal hard disk is about to be
turned off.
6-48 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
GetHardDiskTimeout 6

You can use the GetHardDiskTimeout function to find out how long the computer will
wait before turning off power to the internal hard disk.

unsigned char GetHardDiskTimeout();

DESCRIPTION

The GetHardDiskTimeout function returns the amount of time the computer will wait
after the last use of a SCSI device before turning off power to the internal hard disk. The
value of GetHardDiskTimeout is expressed as the number of 15-second intervals the
computer will wait before turning off power to the internal hard disk.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetHardDiskTimeout is 4 ($04) in the low word of register D0. The hard disk timeout
value is returned in the low word of register D0.

SetHardDiskTimeout 6

You can use the SetHardDiskTimeout function to set how long the computer will wait
before turning off power to the internal hard disk.

void SetHardDiskTimeout(unsigned char timeout);

timeout The amount of time that the computer will wait after the last user activity
before turning off the hard disk, expressed as a number of 15-second
intervals.

DESCRIPTION

The SetHardDiskTimeout function sets how long the computer will wait after the last
use of a SCSI device before turning off power to the internal hard disk. The value of
SetHardDiskTimeout is expressed as the number of 15-second intervals the computer
will wait before turning off power to the internal hard disk. If a value of 0 is passed in,
the function sets the timeout value to the default value (currently equivalent to
4 minutes).
Power Manager Reference 6-49

C H A P T E R 6

Power Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetHardDiskTimeout is 5 ($05) in the low word of register D0. The hard disk timeout
value to set is passed in the high word of register D0.

HardDiskPowered 6

You can use the HardDiskPowered function to find out whether the internal hard disk
is on.

Boolean HardDiskPowered();

DESCRIPTION

The HardDiskPowered function returns a Boolean value indicating whether or not the
internal hard disk is powered up. A value of true means that the hard disk is on, and a
value of false means that the hard disk is off.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskPowered
is 6 ($06) in the low word of register D0. The Boolean result is returned in the low word
of register D0.

SpinDownHardDisk 6

You can use the SpinDownHardDisk function to force the hard disk to spin down.

void SpinDownHardDisk();

DESCRIPTION

The SpinDownHardDisk function immediately forces the hard disk to spin down and
power off if it was previously spinning. Calling SpinDownHardDisk will not spin
down the hard disk if spindown is disabled by calling the SetSpindownDisable
function.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SpinDownHardDisk
is 7 ($07) in the low word of register D0.
6-50 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
IsSpindownDisabled 6

You can use the IsSpindownDisabled function to find out whether automatic hard
disk spindown is enabled.

Boolean IsSpindownDisabled();

DESCRIPTION

The IsSpindownDisabled function returns a Boolean true if automatic hard disk
spindown is disabled, or false if spindown is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
IsSpindownDisabled is 8 ($08) in the low word of register D0. The Boolean result is
passed in the low byte of register D0.

SetSpindownDisable 6

You can use the SetSpindownDisable function to disable hard disk spindown.

void SetSpindownDisable(Boolean setDisable);

setDisable A Boolean that specifies whether the spindown feature is enabled
(false) or disabled (true).

DESCRIPTION

The SetSpindownDisable function enables or disables hard disk spindown,
depending on the value of setDisable. If the value of setDisable is true, hard disk
spindown is disabled; if the value is false, spindown is enabled.

Disabling hard disk spindown affects the SpinDownHardDisk function, as well as the
normal spindown that occurs after a period of hard disk inactivity.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetSpindownDisable is 9 ($09) in the low word of register D0. The Boolean value to
set is passed in the high word of register D0.

SEE ALSO

The SpinDownHardDisk function is described on page 6-50.
Power Manager Reference 6-51

C H A P T E R 6

Power Manager
HardDiskQInstall 6

You can use the HardDiskQInstall function to notify your software when power to
the internal hard disk is about to be turned off.

OSErr HardDiskQInstall(HDQueueElement *theElement);

theElement A pointer to an element for the hard disk power down queue.

DESCRIPTION

The HardDiskQInstall function installs an element into the hard disk power down
queue to provide notification to your software when the internal hard disk is about to
be powered off. For example, this feature might be used by the driver for an external
battery-powered hard disk. When power to the internal hard disk is turned off, the
external hard disk could be turned off as well.

When power to the internal hard disk is about to be turned off, the software calls the
routine pointed to by the hdProc field so that it can do any special processing. The
routine is passed a pointer to its queue element so that, for example, the routine can
reference its variables.

Before calling HardDiskQInstall, the calling program must set the hdQType
field to HDPwrQType or the queue element won’t be added to the queue and
HardDiskQInstall will return an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQInstall
is 10 ($0A) in the low word of register D0. The pointer to the HDQueue element is passed
in register A0. The result code is returned in the low word of register D0.

RESULT CODES

SEE ALSO

The HDQueueElement structure is defined in “Hard Disk Queue Structure,” on
page 6-27.

The application-defined hard disk spindown function is described in “Hard Disk
Spindown Function,” on page 6-66.

noErr 0 No error
6-52 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
HardDiskQRemove 6

You can use the HardDiskQRemove function to discontinue notification of your
software when power to the internal hard disk is about to be turned off.

OSErr HardDiskQRemove(HDQueueElement *theElement);

theElement A pointer to the element for the hard disk power down queue that you
wish to remove.

DESCRIPTION

The HardDiskQRemove function removes a queue element installed by
HardDiskQInstall. If the hdQType field of the queue element is not set to
HDPwrQType, HardDiskQRemove simply returns an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQRemove
is 11 ($0B) in the low word of register D0. The pointer to the HDQueue element is passed
in register A0. The result code is returned in the low word of register D0.

RESULT CODES

SEE ALSO

The HDQueueElement structure is defined in “Hard Disk Queue Structure,” on
page 6-27.

The application-defined hard disk spindown function is described in “Hard Disk
Spindown Function,” on page 6-66.

noErr 0 No error
Power Manager Reference 6-53

C H A P T E R 6

Power Manager
Getting Information About the Internal Batteries 6

The functions in this section return information about the battery or batteries in the
computer.

GetScaledBatteryInfo 6

You can use the GetScaledBatteryInfo function to find out the condition of the
battery or batteries.

void GetScaledBatteryInfo(short whichBattery,

BatteryInfo *theInfo);

whichBattery
The battery for which you want information. Set this parameter to 0 to
receive combined information about all the batteries in the computer.

theInfo A pointer to a BatteryInfo data structure, which returns information
about the specified battery.

DESCRIPTION

The GetScaledBatteryInfo function provides a generic means of returning
information about the battery or batteries in the system. Instead of returning a voltage
value, the function returns the battery level as a fraction of the total possible voltage.

Note
Battery technologies such as nickel cadmium (NiCad) and nickel metal
hydride (NiMH) have replaced sealed lead acid batteries in portable
Macintosh computers. There is no single algorithm for determining the
battery voltage that is correct for all portable Macintosh computers. ◆

The value of whichBattery determines whether GetScaledBatteryInfo returns
information about a particular battery or about the total battery level. The value of
GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the
value of whichBattery is 0, GetScaledBatteryInfo returns a summation of all
the batteries, that is, the effective battery level of the whole system. If the
value of whichBattery is out of range, or the selected battery is not installed,
GetScaledBatteryInfo will return a result of 0 in all fields. Here is a summary
of the effects of the whichBattery parameter:

Value of whichBattery Information returned

0 Total battery level for all batteries

From 1 to BatteryCount() Battery level for the selected battery

Less than 0 or greater than
BatteryCount()

0 in all fields of theInfo
6-54 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
The flags character contains several bits that describe the battery and charger state.
If a bit value is 1, that feature is available or is operating; if the bit value is 0, that feature
is not operating. Unused bits are reserved by Apple for future expansion.

The value of warningLevel is the battery level at which the first low battery warning
message will appear. The function returns a value of 0 in some cases when it’s not
appropriate to return the warning level.

The value of batteryLevel is the current level of the battery. A value of 0 represents
the voltage at which the Power Manager will force the computer into sleep mode; a
value of 255 represents the highest possible voltage.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetScaledBatteryInfo is 12 ($0C) in the low word of register D0. The
BatteryInfo data are returned in the low word of register D0 as follows:

SEE ALSO

The BatteryInfo data type is described in “Battery Information Structure,” on
page 6-27.

Bit name Bit number Description

batteryInstalled 7 A battery is installed.

batteryCharging 6 The battery is charging.

chargerConnected 5 The charger is connected.

Bits Contents

31–24 Flags

23–16 Warning level

15–8 Reserved

7–0 Battery level
Power Manager Reference 6-55

C H A P T E R 6

Power Manager
BatteryCount 6

You can use the BatteryCount function to find out how many batteries the computer
supports.

short BatteryCount();

DESCRIPTION

The BatteryCount function returns the number of batteries that are supported
internally by the computer. The value of BatteryCount returned may not be the
same as the number of batteries currently installed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for BatteryCount is 26
($1A) in the low word of register D0. The number of batteries supported is returned in
the low word of register D0.

GetBatteryVoltage 6

You can use the GetBatteryVoltage function to find out the battery voltage.

Fixed GetBatteryVoltage(short whichBattery);

whichBattery
The battery for which you want a voltage reading.

DESCRIPTION

The GetBatteryVoltage function returns the battery voltage as a fixed-point number.

The value of whichBattery should be in the range 0 to BatteryCount()–1. If the
value of whichBattery is out of range, or the selected battery is not installed,
GetBatteryVoltage will return a result of 0.0 volts.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetBatteryVoltage is 27 ($1B) in the low word of register D0. The battery number is
passed in the high word of register D0. The 32-bit value of the battery voltage is returned
in register D0.
6-56 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
GetBatteryTimes 6

You can use the GetBatteryTimes function to find out about how much battery time
remains.

void GetBatteryTimes (short whichBattery,

BatteryTimeRec *theTimes);

whichBattery
The battery for which you want to know the time remaining. Specify 0 to
get combined information about all the batteries.

theTimes A pointer to a battery time structure, which contains information about
the time remaining for the batteries. The BatteryTimeRec data type
is described on page 6-28.

DESCRIPTION

The GetBatteryTimes function returns information about the time remaining on the
computer’s battery or batteries. The time values are in seconds. The value of
theTimes.expectedBatteryTime is the estimated time remaining based on current
use patterns. The values of theTimes.minimumBatteryTime and
theTimes.maximumBatteryTime are worst-case and best-case estimates, respectively.
The value of theTimes.timeUntilCharged is the time that remains until the battery
or batteries are fully charged.

The value of whichBattery determines whether GetBatteryTimes returns the time
information about a particular battery or the total time for all batteries. The value of
GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the value
of whichBattery is 0, GetBatteryTimes returns a total time for all the batteries, that
is, the effective battery time for the whole system. If the value of whichBattery is out
of range, or the selected battery is not installed, GetBatteryTimes will return a result
of 0 in all fields. Here is a summary of the effects of the whichBattery parameter:

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetBatteryTimes
is 28 ($1C) in the low word of register D0. The pointer to BatteryTimeRec is passed in
register A0.

Value of whichBattery Information returned

0 Total battery time for all batteries

From 1 to BatteryCount() Battery time for the selected battery

Less than 0 or greater than
BatteryCount()

0 in all fields of theTimes
Power Manager Reference 6-57

C H A P T E R 6

Power Manager
Controlling the Internal Modem 6

The functions in this section return information about the internal modem and configure
the internal modem’s state information.

GetIntModemInfo 6

You can use the GetIntModemInfo function to find out information about the internal
modem.

unsigned long GetIntModemInfo();

DESCRIPTION

The GetIntModemInfo function returns a 32-bit field containing information that
describes the features and state of the internal modem. It can be called whether or not a
modem is installed and will return the correct information.

If a bit is set, that feature or state is supported or selected; if the bit is cleared, that feature
is not supported or selected. Undefined bits are reserved by Apple for future expansion.

Bit name
Bit
number Description

hasInternalModem 0 An internal modem is installed.

intModemRingDetect 1 The modem has detected a ring on the
telephone line.

intModemOffHook 2 The internal modem has taken the telephone
line off hook (that is, you can hear the dial
tone or modem carrier).

intModemRingWakeEnb 3 The computer will come out of sleep mode if
the modem detects a ring on the telephone line
and the computer supports this feature (see the
canWakeupOnRing bit in PMFeatures).

extModemSelected 4 The external modem is selected (if this bit is
set, then the modem port will be connected to
port A of the SCC; if the modem port is not
shared by the internal modem and the SCC,
then this bit can be ignored).
6-58 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Bits 15–31 contain the modem type, which can have one of the following values:

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetIntModemInfo
is 14 ($0E) in the low word of register D0. The bit field to set is passed in the high word
of register D0.

SetIntModemState 6

You can use the SetIntModemState function to set some parts of the state of the
internal modem.

void SetIntModemState(short theState);

theState A set of bits you can use to set the modem state. Set bit 15 of this
parameter to 1 to set bits in the modem state. Clear bit 15 to 0 to
clear bits in the modem state. The modem state bits are described
in the preceding function description.

DESCRIPTION

The SetIntModemState function configures some of the internal modem’s state
information. Currently the only items that can be changed are the internal/external
modem selection and the wakeup-on-ring feature.

To change an item of state information, the calling program sets the corresponding bit
in the parameter theState. For example, to select the external modem, set bit 4 of
theState to 1 and set bit 15 to 1. To select the internal modem, set bit 4 to 1 but set bit
15 to 0.

SPECIAL CONSIDERATIONS

In some PowerBook computers, there is a hardware switch to connect either port A of
the SCC or the internal modem to the modem port. The two are physically separated, but
software emulates the serial port interface for those applications that don’t use the
Communications Toolbox. You can check the hasSharedModemPort bit returned by
PMFeatures to determine which way the computer is set up.

Value Meaning

–1 Modem is installed but type not recognized.

0 No modem is installed.

1 Modem is a serial modem.

2 Modem is a PowerBook Duo–style Express Modem.

3 Modem is a PowerBook 160/180–style Express Modem.
Power Manager Reference 6-59

C H A P T E R 6

Power Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetIntModemState
is 15 ($0F) in the low word of register D0. The bit field is returned in register D0.

Controlling the Processor 6

The functions in this section return information about the processor speed and processor
cycling, set the processor speed, and enable or disable processor cycling.

MaximumProcessorSpeed 6

You can use the MaximumProcessorSpeed function to find out the maximum speed of
the computer’s microprocessor.

short MaximumProcessorSpeed();

DESCRIPTION

The MaximumProcessorSpeed function returns the maximum clock speed of the
computer’s microprocessor, in MHz.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
MaximumProcessorSpeed is 16 ($10) in the low word of register D0. The processor
speed value is returned in the low word of register D0.

CurrentProcessorSpeed 6

You can use the CurrentProcessorSpeed function to find out the current clock speed
of the microprocessor.

short CurrentProcessorSpeed();

DESCRIPTION

The CurrentProcessorSpeed function returns the current clock speed of the
computer’s microprocessor, in MHz. The value returned will be different from the
maximum processor speed if the computer has been configured to run with a reduced
processor speed to conserve power.
6-60 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
CurrentProcessorSpeed is 17 ($11) in the low word of register D0. The processor
speed value is returned in the low word of register D0.

FullProcessorSpeed 6

You can use the FullProcessorSpeed function to find out whether the computer will
run at full speed the next time it restarts.

Boolean FullProcessorSpeed();

DESCRIPTION

The FullProcessorSpeed function returns a Boolean value of true if, on the next
restart, the computer will start up at its maximum processor speed; it returns false if
the computer will start up at its reduced processor speed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
FullProcessorSpeed is 18 ($12) in the low word of register D0. The Boolean result is
returned in the low byte of register D0.

SetProcessorSpeed 6

You can use the SetProcessorSpeed function to set the clock speed the
microprocessor will use the next time it is restarted.

Boolean SetProcessorSpeed(Boolean fullSpeed);

fullSpeed A Boolean that sets the processor speed to full speed (true) or reduced
speed (false).

DESCRIPTION

The SetProcessorSpeed function sets the processor speed that the computer will use
the next time it is restarted. If the value of fullSpeed is set to true, the processor will
start up at its full speed (the speed returned by MaximumProcessorSpeed, described
on page 6-60). If the value of fullSpeed is set to false, the processor will start up at
its reduced speed.
Power Manager Reference 6-61

C H A P T E R 6

Power Manager
SPECIAL CONSIDERATIONS

For PowerBook models that support changing the processor speed dynamically,
the current processor speed is also changed. If the speed is actually changed,
SetProcessorSpeed returns true; if the speed is not changed, it returns false.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetProcessorSpeed is 19 ($13) in the low word of register D0. The Boolean value
to set is passed in the high word of register D0. The Boolean result is returned in
register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer
supports changing the processor speed dynamically.

IsProcessorCyclingEnabled 6

You can use the IsProcessorCyclingEnabled function to find out whether
processor cycling is enabled.

Boolean IsProcessorCyclingEnabled();

DESCRIPTION

The IsProcessorCyclingEnabled function returns a Boolean value of true if
processor cycling is currently enabled, or false if it is disabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
IsProcessorCyclingEnabled is 24 ($18) in the low word of register D0. The Boolean
result is returned in register D0.

EnableProcessorCycling 6

You can use the EnableProcessorCycling function to turn the processor cycling
feature on and off.

void EnableProcessorCycling(Boolean enable);

enable A Boolean that specifies whether to enable processor cycling.
6-62 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
DESCRIPTION

The EnableProcessorCycling function enables processor cycling if a value of true
is passed in, and disables it if false is passed.

▲ W A R N I N G

You should follow the advice of the mustProcessorCycle bit in the
feature flags when turning processor cycling off. Turning processor
cycling off when it’s not recommended can result in hardware failures
due to overheating. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
EnableProcessorCycling is 25 ($19) in the low word of register D0. The Boolean
value to set is passed in the high word of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer
supports processor cycling.

Getting and Setting the SCSI ID 6

The functions in this section return and set the SCSI ID the computer uses in SCSI
disk mode.

GetSCSIDiskModeAddress 6

You can use the GetSCSIDiskModeAddress function to find out the SCSI ID the
computer uses in SCSI disk mode.

short GetSCSIDiskModeAddress();

DESCRIPTION

The GetSCSIDiskModeAddress function returns the SCSI ID that the computer uses
when it is started up in SCSI disk mode. The returned value is in the range 1 to 6.

Note
When the computer is in SCSI disk mode, the computer appears as a
hard disk to another computer. ◆
Power Manager Reference 6-63

C H A P T E R 6

Power Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetSCSIDiskModeAddress is 20 ($14) in the low word of register D0. The SCSI ID
is returned in the low word of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer
supports SCSI disk mode.

SetSCSIDiskModeAddress 6

You can use the SetSCSIDiskModeAddress function to set the SCSI ID for the
computer to use in SCSI disk mode.

void SetSCSIDiskModeAddress(short scsiAddress);

scsiAddress
The SCSI ID that the computer uses if it is started up in SCSI disk mode.
You must specify a value in the range of 1 to 6.

DESCRIPTION

The SetSCSIDiskModeAddress function sets the SCSI ID that the computer will use if
it is started up in SCSI disk mode.

The value of scsiAddress must be in the range of 1 to 6. If any other value is given, the
software sets the SCSI ID for SCSI disk mode to 2.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetSCSIDiskModeAddress is 21 ($15) in the low word of register D0. The SCSI ID
to set is passed in the high word of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer
supports SCSI disk mode.
6-64 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Application-Defined Routines 6

The Power Manager allows you to define a sleep procedure that is called at various
stages of the sleep and wakeup processes. You install a sleep procedure by calling the
SleepQInstall procedure.

Sleep Procedures 6

You pass the address of a sleep procedure in the sleepQProc field of a sleep queue record.

MySleepProc 6

A sleep procedure can perform any operations required to prepare your application (or
other software) for the sleep state. Your sleep procedure is also called when the computer
reawakens.

DESCRIPTION

Your sleep procedure is called at various stages in the Power Manager’s sleep and
wakeup processes. It is called in response to a sleep request, a sleep demand, a wakeup
demand, and a sleep-request revocation. You can determine which of these messages the
Power Manager is sending by inspecting the sleep procedure selector code passed in
register D0. This code is one of four values:

enum {

/* sleep procedure selector codes */

sleepRequest = 1, /* sleep request */

sleepDemand = 2, /* sleep demand */

sleepWakeUp = 3, /* wakeup demand */

sleepRevoke = 4 /* sleep-request revocation */

};

When called in response to a sleep request, your procedure must either accept or deny
the request by either clearing register D0 or leaving it alone. When passed any other
selector code, your sleep procedure should take any appropriate actions.

SPECIAL CONSIDERATIONS

A sleep procedure is never executed at interrupt time. As a result, you can, if necessary,
call Memory Manager routines or other routines that allocate memory. You can also
interact with the user by displaying dialog or alert boxes.

If your sleep procedure displays a dialog or alert box, you should make sure to remove
the box after a reasonable amount of time. Failure to do so will prevent the computer
from going to sleep and may permanently damage the screen.
Power Manager Reference 6-65

C H A P T E R 6

Power Manager
ASSEMBLY-LANGUAGE INFORMATION

When your sleep procedure is called, register A0 contains the address of the sleep queue
record associated with that procedure and the D0 register contains a sleep procedure
selector code.

SEE ALSO

See “Writing a Sleep Procedure,” beginning on page 6-20, for instructions on writing
a sleep procedure, and see “Installing a Sleep Procedure,” beginning on page 6-18, for
instructions on installing a sleep procedure.

Hard Disk Spindown Function 6

You pass the address of a hard disk spindown function in the hdProc field of a hard
disk queue structure.

MyHDSpindownProc 6

A hard disk spindown function can perform any operations you require to prepare for
the hard disk to spin down.

pascal void MyHDSpindownProc(HDQueueElement *theElement);

theElement A pointer to the element in the hard disk power down queue that was
used to install this function.

DESCRIPTION

The HardDiskQInstall function installs an element into the hard disk power down
queue to provide notification to your software when the internal hard disk is about to
be powered off. For example, this feature might be used by the driver for an external
battery-powered hard disk. When power to the internal hard disk is turned off, the
external hard disk could be turned off as well.

When power to the internal hard disk is about to be turned off, the software calls the
routine pointed to by the hdProc field so that it can do any special processing. The
routine will be passed a pointer to its queue element so that, for example, the routine
can reference its variables.

SEE ALSO

The hard disk power down queue elements are defined in “Hard Disk Queue Structure,”
on page 6-27.

The HardDiskQInstall function is described on page 6-52. The HardDiskQRemove
function is described on page 6-53.
6-66 Power Manager Reference

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Summary of the Power Manager 6

Pascal Summary 6

Constants 6

CONST

{Power Manager Gestalt selector}

gestaltPowerMgrAttr = 'powr'; {Power Manager attributes selector}

{bit values in Gestalt response parameter}

gestaltPMgrExists = 0; {Power Manager is present}

gestaltPMgrCPUIdle = 1; {CPU can idle}

gestaltPMgrSCC = 2; {can stop SCC clock}

gestaltPMgrSound = 3; {can shut off sound circuits}

gestaltPMgrDispatchExists = 4; {Power Manager dispatch exists }

slpQType = 16; {sleep queue type}

sleepQType = 16; {sleep queue type}

{bit positions for ModemStatus}

modemOnBit = 0; {1 if modem is on}

ringWakeUpBit = 2; {1 if ring wakeup is enabled}

modemInstalledBit = 3; {1 if internal modem is installed}

ringDetectBit = 4; {1 if incoming call is detected}

modemOnHookBit = 5; {1 if modem is off hook}

{masks for ModemStatus}

modemOnMask = $1; {modem on}

ringWakeUpMask = $4; {ring wakeup enabled}

modemInstalledMask = $8; {internal modem installed}

ringDetectMask = $10; {incoming call detected}

modemOnHookMask = $20; {modem off hook}

{bit positions for BatteryStatus}

chargerConnBit = 0; {1 if charger is connected}

hiChargeBit = 1; {1 if charging at hicharge rate}

chargeOverFlowBit = 2; {1 if hicharge counter has overflowed}

batteryDeadBit = 3; {always 0}

batteryLowBit = 4; {1 if battery is low}

connChangedBit = 5; {1 if charger connection has changed}
Summary of the Power Manager 6-67

C H A P T E R 6

Power Manager
{masks for BatteryStatus}

chargerConnMask = $1; {charger is connected}

hiChargeMask = $2; {charging at hicharge rate}

chargeOverFlowMask = $4; {hicharge counter has overflowed}

batteryDeadMask = $8; {battery is dead}

batteryLowMask = $10; {battery is low}

connChangedMask = $20; {connection has changed}

{sleep procedure selector codes}

sleepRequest = 1; {sleep request}

sleepDemand = 2; {sleep demand}

sleepWakeUp = 3; {wakeup demand}

sleepRevoke = 4; {sleep-request revocation}

{bits in bitfield returned by PMFeatures}

hasWakeupTimer = 0; {1 = wakeup timer is supported}

hasSharedModemPort = 1; {1 = modem port shared by SCC and internal modem}

hasProcessorCycling = 2; {1 = processor cycling is supported}

mustProcessorCycle = 3; {1 = processor cycling should not be turned off}

hasReducedSpeed = 4; {1 = processor can be started up at reduced speed}

dynamicSpeedChange = 5; {1 = processor speed can be switched dynamically}

hasSCSIDiskMode = 6; {1 = SCSI Disk Mode is supported}

canGetBatteryTime = 7; {1 = battery time can be calculated}

canWakeupOnRing = 8; {1 = can wakeup when the modem detects a ring}

hasDimmingSupport = 9; {1 = has dimming support built into the ROM}

{bits in BatteryInfo.flags}

batteryInstalled = 7; {1 = battery is currently connected}

batteryCharging = 6; {1 = battery is being charged}

chargerConnected = 5; {1 = charger is connected to the PowerBook }

{ (this does not mean the charger is plugged in)}

{bits in bitfield returned by GetIntModemInfo}

hasInternalModem = 0; {1 = internal modem installed}

intModemRingDetect = 1; {1 = internal modem has detected a ring}

intModemOffHook = 2; {1 = internal modem is off hook}

intModemRingWakeEnb = 3; {1 = wakeup on ring is enabled}

extModemSelected = 4; {1 = external modem selected}

modemSetBit = 15; {1 = set bit, 0=clear bit}

HDPwrQType ='HD';{hard disk notification queue element type}
6-68 Summary of the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Data Types 6

TYPE SleepQRec =

RECORD

sleepQLink: SleepQRecPtr; {next queue element}

sleepQType: Integer; {queue type = 16}

sleepQProc: ProcPtr; {pointer to sleep procedure}

sleepQFlags: Integer; {reserved}

END;

SleepQRecPtr = ^SleepQRec;

TYPE HDQueueElement =

RECORD

hdQLink: Ptr; {pointer to next queue element}

hdQType: Integer; {queue element type (must be HDQType)}

hdFlags: Integer; {miscellaneous flags}

hdProc: ProcPtr; {pointer to routine to call}

hdUser: LongInt; {user-defined (variable storage, etc.)}

END;

TYPE WakeupTime =

PACKED RECORD

wakeTime: LongInt; {wakeup time (same format as time)}

wakeEnabled: Byte; {1 = enable, 0=disable wakeup timer}

END;

TYPE BatteryInfo =

PACKED RECORD

flags: Byte; {misc flags (see above)}

warningLevel: Byte; {scaled warning level (0-255)}

reserved: Byte; {reserved for internal use}

batteryLevel: Byte; {scaled battery level (0-255)}

END;

TYPE BatteryTimeRec =

RECORD

expectedBatteryTime: LongInt; {estimated battery time remaining}

minimumBatteryTime: LongInt; {minimum battery time remaining}

maximumBatteryTime: LongInt; {maximum battery time remaining}

timeUntilCharged: LongInt; {time until battery is fully charged}

END;
Summary of the Power Manager 6-69

C H A P T E R 6

Power Manager
Power Manager Routines 6

Controlling the Idle State

FUNCTION IdleUpdate : LongInt;

PROCEDURE EnableIdle;

PROCEDURE DisableIdle;

FUNCTION GetCPUSpeed : LongInt;

Controlling and Reading the Wakeup Timer

FUNCTION SetWUTime (WUTime: LongInt): OSErr;

FUNCTION DisableWUTime : OSErr;

FUNCTION GetWUTime (VAR WUTime: LongInt; VAR WUFlag: Byte): OSErr;

Controlling the Sleep Queue

PROCEDURE SleepQInstall (qRecPtr: SleepQRecPtr);

PROCEDURE SleepQRemove (qRecPtr: SleepQRecPtr);

Controlling Serial Power

PROCEDURE AOn;

PROCEDURE AOnIgnoreModem;

PROCEDURE BOn;

PROCEDURE AOff;

PROCEDURE BOff;

Reading the Status of the Internal Modem

FUNCTION ModemStatus (VAR Status: Byte): OSErr;

Reading the Status of the Battery and the Battery Charger

FUNCTION BatteryStatus (VAR Status: Byte; VAR Power: Byte): OSErr;

Power Manager Dispatch Routines 6

Determining the Power Manager Features Available

FUNCTION PMSelectorCount : Integer;

FUNCTION PMFeatures : LongInt;
6-70 Summary of the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Controlling the Sleep and Wakeup Timers

FUNCTION GetSleepTimeout : Byte;

PROCEDURE SetSleepTimeout(timeout : Byte);

PROCEDURE AutoSleepControl(enableSleep : Boolean);

FUNCTION IsAutoSlpControlDisabled() : Boolean;

PROCEDURE GetWakeupTimer(VAR theTime : WakeupTime);

PROCEDURE SetWakeupTimer(theTime : WakeupTime);

Controlling the Dimming Timer

FUNCTION GetDimmingTimeout() : Byte;

PROCEDURE SetDimmingTimeout(timeout : Byte);

PROCEDURE DimmingControl(enableDimming : Boolean);

FUNCTION IsDimmingControlDisabled() : Boolean;

Controlling the Hard Disk

FUNCTION GetHardDiskTimeout : Byte;

PROCEDURE SetHardDiskTimeout(timeout : Byte);

FUNCTION HardDiskPowered : Boolean;

PROCEDURE SpinDownHardDisk;

FUNCTION IsSpindownDisabled : Boolean;

PROCEDURE SetSpindownDisable(setDisable : BOOLEAN);

FUNCTION HardDiskQInstall(VAR theElement : HDQueueElement) : OSErr;

FUNCTION HardDiskQRemove(VAR theElement : HDQueueElement) : OSErr;

Getting Information About the Battery

PROCEDURE GetScaledBatteryInfo(whichBattery : Integer; VAR theInfo :
BatteryInfo);

FUNCTION BatteryCount : Integer;

FUNCTION GetBatteryVoltage(whichBattery : Integer) : Fixed;

PROCEDURE GetBatteryTimes(whichBattery : INTEGER; VAR theTimes :
BatteryTimeRec);

Controlling the Internal Modem

FUNCTION GetIntModemInfo : LongInt;

PROCEDURE SetIntModemState(theState : Integer);

Controlling the Processor

FUNCTION MaximumProcessorSpeed : Integer;
Summary of the Power Manager 6-71

C H A P T E R 6

Power Manager
FUNCTION CurrentProcessorSpeed : Integer;

FUNCTION FullProcessorSpeed : Boolean;

FUNCTION SetProcessorSpeed(fullSpeed : Boolean) : Boolean;

FUNCTION IsProcessorCyclingEnabled : Boolean;

PROCEDURE EnableProcessorCycling(enable : Boolean);

Getting and Setting the SCSI ID

FUNCTION GetSCSIDiskModeAddress : Integer;

PROCEDURE SetSCSIDiskModeAddress(scsiAddress : Integer);

Application-Defined Routines 6

PROCEDURE MySleepProc;

PROCEDURE MyHDSpindownProc(theElement : HDQueueElement);

C Summary 6

Constants and Data Types 6

/* Power Manager Gestalt selector */

#define gestaltPowerMgrAttr 'powr' /* Power Manager attributes selector */

/* bit values in Gestalt response parameter */

enum {

gestaltPMgrExists = 0, /* Power Manager is present */

gestaltPMgrCPUIdle = 1, /* CPU can idle */

gestaltPMgrSCC = 2, /* can stop SCC clock */

gestaltPMgrSound = 3, /* can shut off sound circuits */

gestaltPMgrDispatchExists = 4 /* Power Manager dispatch exists */

};

enum {

slpQType = 16, /* sleep queue type */

sleepQType = 16 /* sleep queue type */

};

enum {

/* bit positions for ModemStatus */

modemOnBit = 0, /* 1 if modem is on */

ringWakeUpBit = 2, /* 1 if ring wakeup is enabled */
6-72 Summary of the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
modemInstalledBit = 3, /* 1 if internal modem is installed */

ringDetectBit = 4, /* 1 if incoming call is detected */

modemOnHookBit = 5, /* 1 if modem is off hook */

/* masks for ModemStatus */

modemOnMask = 0x1, /* modem on */

ringWakeUpMask = 0x4, /* ring wakeup enabled */

modemInstalledMask = 0x8, /* internal modem installed */

ringDetectMask = 0x10, /* incoming call detected */

modemOnHookMask = 0x20, /* modem off hook */

/* bit positions for BatteryStatus */

chargerConnBit = 0, /* 1 if charger is connected */

hiChargeBit = 1, /* 1 if charging at hicharge rate */

chargeOverFlowBit = 2, /* 1 if hicharge counter has overflowed */

batteryDeadBit = 3, /* always 0 */

batteryLowBit = 4, /* 1 if battery is low */

connChangedBit = 5, /* 1 if charger connection has changed */

/* masks for BatteryStatus */

chargerConnMask = 0x1, /* charger is connected */

hiChargeMask = 0x2, /* charging at hicharge rate */

chargeOverFlowMask = 0x4, /* hicharge counter has overflowed */

batteryDeadMask = 0x8, /* battery is dead */

batteryLowMask = 0x10, /* battery is low */

connChangedMask = 0x20, /* connection has changed */

/* sleep procedure selector codes */

sleepRequest = 1, /* sleep request */

sleepDemand = 2, /* sleep demand */

sleepWakeUp = 3, /* wakeup demand */

sleepRevoke = 4 /* sleep-request revocation */

};

/* bits in bitfield returned by PMFeatures */

#define hasWakeupTimer 0 /* 1 = wakeup timer is supported */

#define hasSharedModemPort 1 /* 1 = modem port shared by SCC and */

/* internal modem */

#define hasProcessorCycling 2 /* 1 = processor cycling is supported */

#define mustProcessorCycle 3 /* 1 = processor cycling should not be */

/* turned off */

#define hasReducedSpeed 4 /* 1 = processor can be started up at */

/* reduced speed */

#define dynamicSpeedChange 5 /* 1 = processor speed can be */

/* switched dynamically */
Summary of the Power Manager 6-73

C H A P T E R 6

Power Manager
#define hasSCSIDiskMode 6 /* 1 = SCSI Disk Mode is supported */

#define canGetBatteryTime 7 /* 1 = battery time can be calculated */

#define canWakeupOnRing 8 /* 1 = can wakeup when the modem detects */

/* a ring */

#define hasDimmingSupport 9 /* 1 = has dimming support built into the ROM */

/* bits in bitfield returned by GetIntModemInfo and set by SetIntModemState */

#define hasInternalModem 0 /* 1 = internal modem installed */

#define intModemRingDetect 1 /* 1 = internal modem has detected a ring */

#define intModemOffHook 2 /* 1 = internal modem is off hook */

#define intModemRingWakeEnb 3 /* 1 = wakeup on ring is enabled */

#define extModemSelected 4 /* 1 = external modem selected */

#define modemSetBit 15 /* 1 = set bit, 0=clear bit (SetIntModemState) */

/* bits in BatteryInfo.flags */

#define batteryInstalled 7 /* 1 = battery is currently connected */

#define batteryCharging 6 /* 1 = battery is being charged */

#define chargerConnected 5 /* 1 = charger is connected to the PowerBook */

/* (this does not mean the charger is */

/* plugged in) */

struct SleepQRec {

struct SleepQRec *sleepQLink; /* next queue element */

short sleepQType; /* queue type = 16 */

ProcPtr sleepQProc; /* pointer to sleep procedure */

short sleepQFlags; /* reserved */

};

typedef struct SleepQRec SleepQRec;

typedef SleepQRec *SleepQRecPtr;

/* hard disk spindown notification queue element */

typedef struct HDQueueElement HDQueueElement;

typedef pascal void (*HDSpindownProc)(HDQueueElement *theElement);

struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue element type (must be HDQType) */

short hdFlags; /* miscellaneous flags */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user-defined private storage */

};

#define HDPwrQType 'HD' /* queue element type */
6-74 Summary of the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
/* wakeup time record */

typedef struct WakeupTime {

unsigned long wakeTime; /* wakeup time (same format as current time) */

char wakeEnabled; /* 1 = enable wakeup timer, 0=disable */

} WakeupTime;

/* battery time information (in seconds) */

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated battery time remaining */

unsigned long inimumBatteryTime; /* minimum battery time remaining */

unsigned long maximumBatteryTime; /* maximum battery time remaining */

unsigned long timeUntilCharged; /* time until battery is fully charged */

} BatteryTimeRec;

Power Manager Functions 6

Controlling the Idle State

pascal long IdleUpdate (void);

pascal void EnableIdle (void);

pascal void DisableIdle (void);

pascal long GetCPUSpeed (void);

Controlling and Reading the Wakeup Timer

pascal OSErr SetWUTime (long WUTime);

pascal OSErr DisableWUTime (void);

pascal OSErr GetWUTime (long *WUTime, Byte *WUFlag);

Controlling the Sleep Queue

pascal void SleepQInstall (SleepQRecPtr qRecPtr);

pascal void SleepQRemove (SleepQRecPtr qRecPtr);

Controlling Serial Power

pascal void AOn (void);

pascal void AOnIgnoreModem (void);

pascal void BOn (void);

pascal void AOff (void);

pascal void BOff (void);
Summary of the Power Manager 6-75

C H A P T E R 6

Power Manager
Reading the Status of the Internal Modem

pascal OSErr ModemStatus (Byte *Status);

Reading the Status of the Battery and the Battery Charger

pascal OSErr BatteryStatus (Byte *Status, Byte *Power);

Power Manager Dispatch Functions 6

Determining the Power Manager Features Available

short PMSelectorCount (void);

unsigned long PMFeatures (void);

Controlling the Sleep and Wakeup Timers

unsigned char GetSleepTimeout(void);

void SetSleepTimeout (unsigned char timeout);

void AutoSleepControl (Boolean enableSleep);

Boolean IsAutoSlpControlDisabled(void);

void GetWakeupTimer (WakeupTime *theTime);

void SetWakeupTimer (WakeupTime *theTime);

Controlling the Dimming Timer

unsigned char GetDimmingTimeout(void);

void SetDimmingTimeout (unsigned char timeout);

void DimmingControl (Boolean enableDimming);

Boolean IsDimmingControlDisabled(void);

Controlling the Hard Disk

unsigned char GetHardDiskTimeout(void);

void SetHardDiskTimeout (unsigned char timeout);

Boolean HardDiskPowered (void);

void SpinDownHardDisk (void);

Boolean IsSpindownDisabled (void);

void SetSpindownDisable (Boolean setDisable);

OSErr HardDiskQInstall (HDQueueElement *theElement);

OSErr HardDiskQRemove (HDQueueElement *theElement);
6-76 Summary of the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
Getting Information About the Battery

void GetScaledBatteryInfo (short whichBattery, BatteryInfo *theInfo);

short BatteryCount (void);

Fixed GetBatteryVoltage (short whichBattery);

void GetBatteryTimes (short whichBattery, BatteryTimeRec *theTimes);

Controlling the Internal Modem

unsigned long GetIntModemInfo(void);

void SetIntModemState (short theState);

Controlling the Processor

short MaximumProcessorSpeed (void);

short CurrentProcessorSpeed (void);

Boolean FullProcessorSpeed (void);

Boolean SetProcessorSpeed (Boolean fullSpeed);

Boolean IsProcessorCyclingEnabled(void);

void EnableProcessorCycling (Boolean enable);

Getting and Setting the SCSI ID

short GetSCSIDiskModeAddress (void);

void SetSCSIDiskModeAddress (short scsiAddress);

Application-Defined Functions 6

void MySleepProc (void);

void (*HDSpindownProc)(HDQueueElement *theElement);

Assembly-Language Summary 6

Data Structures 6

Sleep Queue Data Structure

0 sleepQLink long pointer to next element in the queue
4 sleepQType word queue type (should be 16)
6 sleepQProc long pointer to a sleep procedure

10 sleepQFlags word reserved
Summary of the Power Manager 6-77

C H A P T E R 6

Power Manager
Hard Disk Queue Structure

Wakeup Time Structure

Battery Information Structure

Battery Time Structure

Trap Macros 6

Trap Macros Requiring Routine Selectors

_IdleState

_SerialPower

0 hdQLink long pointer to next element in the queue
4 hdQType word queue type (should be HDPwrQType)
6 hdFlags word reserved
8 hdProc long pointer to a hard disk power-down procedure

12 hdUser long user defined

0 wakeTime long wakeup time in seconds since 00:00:00, 1/1/1904
4 wakeEnabled byte 1 = enable wakeup timer, 0 = disable timer

0 flags byte flags
1 warningLevel byte scaled warning level (0—255)
2 reserved byte reserved
3 batteryLevel byte scaled battery level (0—255)

0 expectedBatteryTime long estimated battery time remaining in seconds
4 minimumBatteryTime long minimum battery time remaining
8 maximumBatteryTime long maximum battery time remaining

12 timeUntilCharged long time remaining until battery is fully charged

Selector Routine

0 EnableIdle

Any positive number DisableIdle

Any negative number GetCPUSpeed

Selector Routine

$04 AOn

$05 AOnIgnoreModem

$00 BOn

$84 AOff

$80 BOff
6-78 Summary of the Power Manager

C H A P T E R 6

Power Manager

6
P

ow
er M

anager
_PowerMgrDispatch

Selector Routine

$00 PMSelectorCount

$01 PMFeatures

$02 GetSleepTimeout

$03 SetSleepTimeout

$04 GetHardDiskTimeout

$05 SetHardDiskTimeout

$06 HardDiskPowered

$07 SpinDownHardDisk

$08 IsSpindownDisabled

$09 SetSpindownDisable

$0A HardDiskQInstall

$0B HardDiskQRemove

$0C GetScaledBatteryInfo

$0D AutoSleepControl

$0E GetIntModemInfo

$0F SetIntModemState

$10 MaximumProcessorSpeed

$11 CurrentProcessorSpeed

$12 FullProcessorSpeed

$13 SetProcessorSpeed

$14 GetSCSIDiskModeAddress

$15 SetSCSIDiskModeAddress

$16 GetWakeupTimer

$17 SetWakeupTimer

$18 IsProcessorCyclingEnabled

$19 EnableProcessorCycling

$1A BatteryCount

$1B GetBatteryVoltage

$1C GetBatteryTimes

$1D GetDimmingTimeout

$1E SetDimmingTimeout

$1F DimmingControl

$20 IsDimmingControlDisabled

$21 IsAutoSlpControlDisabled
Summary of the Power Manager 6-79

C H A P T E R 6

Power Manager
Result Codes 6
noErr 0 No error
pmBusyErr –13000 Power Manager IC stuck busy
pmReplyTOErr –13001 Timed out waiting to begin reply handshake
pmSendStartErr –13002 Power Manager IC did not start handshake
pmSendEndErr –13003 During send, Power Manager did not finish handshake
pmRecvStartErr –13004 During receive, Power Manager did not start handshake
pmRecvEndErr –13005 During receive, Power Manager did not finish handshake
6-80 Summary of the Power Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	Power Manager
	About the Power Manager
	The Power-Saver State
	The Idle State
	The Sleep State
	The Sleep Queue
	Sleep Requests
	Sleep Demands
	Wakeup Demands
	Sleep-Request Revocations
	Power Manager Dispatch

	Using the Power Manager
	Determining Whether the Power Manager Is Present
	Determining Whether the Power Manager Dispatch Rou...
	Enabling or Disabling the Idle State
	Setting, Disabling, and Reading the Wakeup Timer
	Installing a Sleep Procedure
	Using Application Global Variables in Sleep Proced...
	Writing a Sleep Procedure
	Switching Serial Power On and Off
	Monitoring the Battery and Battery Charger

	Power Manager Reference
	Data Structures
	Sleep Queue Record
	Hard Disk Queue Structure
	Wakeup Time Structure
	Battery Information Structure
	Battery Time Structure

	Power Manager Routines
	Controlling the Idle State
	Controlling and Reading the Wakeup Timer
	Controlling the Sleep Queue
	Controlling Serial Power
	Reading the Status of the Internal Modem
	Reading the Status of the Battery and the Battery ...

	Power Manager Dispatch Routines
	Determining the Power Manager Features Available
	Controlling the Sleep and Wakeup Timers
	Controlling the Dimming Timer
	Controlling the Hard Disk
	Getting Information About the Internal Batteries
	Controlling the Internal Modem
	Controlling the Processor
	Getting and Setting the SCSI ID
	Application-Defined Routines
	Sleep Procedures
	Hard Disk Spindown Function

	Summary of the Power Manager
	Pascal Summary
	Constants
	Data Types
	Power Manager Routines
	Power Manager Dispatch Routines
	Application-Defined Routines

	C Summary
	Constants and Data Types
	Power Manager Functions
	Power Manager Dispatch Functions
	Application-Defined Functions

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

