

C H A P T E R 1

1

D
evice M

anager

Device Manager 1

This chapter describes how your application can use the Device Manager to transfer
information into and out of a Macintosh computer. The Device Manager controls the
exchange of information between applications and hardware devices.

This chapter provides a brief introduction to devices and device drivers (the programs
that control devices) and then explains how you can use the Device Manager functions to

■ open, close, and exchange information with device drivers

■ write your own device driver that can communicate with the Device Manager

■ provide a user interface for your device driver by making it a Chooser extension or
desk accessory.

You should read the sections “About the Device Manager” and “Using the Device
Manager” if your application needs to use the Device Manager to communicate with a
device driver. Applications often communicate with the Device Manager indirectly, by
calling functions of other managers (for example, the File Manager) that use the Device
Manager. However, sometimes applications must call Device Manager functions directly.

The sections “Writing a Device Driver,” “Writing a Chooser-Compatible Device Driver,”
and “Writing a Desk Accessory,” provide information you’ll need if you are writing your
own device driver.

If you writing a device driver, you should understand how memory is organized and
allocated in Macintosh computers. See Inside Macintosh: Memory, for this information.
You should also be familiar with resources and how the system searches resource files.
You can find this information in the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox. If your device driver is to perform background tasks, you’ll need
to understand how processes are scheduled. Inside Macintosh: Processes covers these
topics. If your driver will control a hardware device, you should read Designing Cards
and Drivers for the Macintosh Family, third edition.

Introduction to Devices and Drivers 1

A device is a physical part of the Macintosh, or a piece of external equipment, that
can exchange information with applications or with the Macintosh Operating System.
Input devices transfer information into the Macintosh, while output devices receive
information from the Macintosh. An I/O device can transfer information in either
direction.

Devices transfer information in one of two ways. Character devices read or write a
stream of characters, or bytes, one at a time. Character devices provide sequential access
to data—they cannot skip over bytes in the data stream, and cannot go back to pick up
bytes that have already passed. The keyboard and the serial ports are examples of
character devices.

Block devices read and write blocks of bytes as a group. Disk drives, for example, can
read and write blocks of 512 bytes or more. Block devices provide random access to
data—they can read or write any block of data on demand.
Introduction to Devices and Drivers 1-3

C H A P T E R 1

Device Manager

Devices communicate with applications and with the Operating System through special
programs called device drivers . A device driver typically controls a specific hardware
device, such as a modem, hard disk, or printer. This type of device driver acts as a
translator, converting software requests into hardware actions and hardware actions into
software results. Figure 1-1 illustrates some of the hardware devices that communicate
with the Macintosh through device drivers.

Figure 1-1 Devices and the Macintosh

Macintosh device drivers may be either synchronous or asynchronous. A synchronous
device driver completes a requested transaction before returning control to the Device
Manager. An asynchronous device driver can initiate a transaction and return control to
the Device Manager before the transaction is complete. This type of device driver usually
relies on interrupts from a hardware device to regain control of the processor and
complete the transaction.

The Macintosh ROM and system software contain device drivers for controlling the
standard devices included with every Macintosh computer, such as the mouse, serial
ports, and floppy disk drive. Before deciding to write your own device driver, you
should consider whether your device can be accessed using one of the standard device
drivers. The section “Writing a Device Driver,” beginning on page 1-24, discusses the
reasons why you may want to use a standard device driver rather than writing your own.

Although device drivers are often used to control hardware, they are not restricted to
this function. For example, Macintosh desk accessories and Chooser extensions are small
programs that are written as device drivers, even though they may have nothing to do
with controlling hardware. In general, a device driver is a program that conforms to a
standard interface and provides access to a service through a standard set of routines.

Device Manager

Serial Driver Disk DriverSCSI drivers

Slot Manager

Floppy diskHard diskNuBus cards ScannerPrinterModem

Slot drivers

SCSI Manager
1-4 Introduction to Devices and Drivers

C H A P T E R 1

Device Manager

1

D
evice M

anager

Your program can take advantage of this interface to perform tasks unrelated to actual
physical devices.

About the Device Manager 1

The Device Manager provides a common programming interface for applications and
other managers to use when communicating with device drivers. The Device Manager
also includes support functions useful for writing your own device drivers.

Typically, your application won’t communicate directly with device drivers; instead, it
will call Device Manager functions or call the functions of another manager that calls the
Device Manager. For example, your application can communicate with a disk driver by
calling the Device Manager directly or by calling the File Manager, which calls the
Device Manager. Figure 1-2 shows the relationship between applications, the Device
Manager, other managers, device drivers, and devices.

Figure 1-2 Communication with devices

Before the Device Manager allows an application or another manager to communicate
with a device driver, the driver must be open, which means the Device Manager has
received a request to open the driver, has loaded the driver into memory, if necessary,
and has successfully called the driver’s open routine.

Application

Device Manager

Device drivers

Devices

Other managers
About the Device Manager 1-5

C H A P T E R 1

Device Manager

Your application opens a device driver using one of the Device Manager functions,
OpenDriver, OpenSlot, or PBOpen. These functions return a driver reference number
for the driver. You use the driver reference number to identify the driver in subsequent
communication requests.

Your application communicates with a driver by calling Device Manager functions such
as FSRead or PBRead, and supplying the driver reference number of the device. The
Device Manager then invokes a corresponding routine in the device driver to perform
the requested operation. The section “Driver Routines” on page 1-12 describes these
routines and their relationship to the Device Manager functions.

The Device Manager uses several data structures to locate, manage, and communicate
with device drivers. These structures are described in the following sections.

The Device Control Entry 1
The Device Manager maintains a data structure called a device control entry (DCE) for
each open driver. The device control entry is a relocatable block in the system heap that
contains a handle or pointer to the device driver code, and additional information about
the driver. Typically, the Device Manager maintains one device control entry for each
open device driver, but it is possible for multiple entries to refer to the same driver.

Figure 1-3 shows the device control entry structure. See “Device Manager Reference,”
beginning on page 1-53, for descriptions of the fields within the device control entry
structure.
1-6 About the Device Manager

C H A P T E R 1

Device Manager

1

D
evice M

anager

Figure 1-3 The device control entry

dCtlDriver

BytesOffset

4

4

0

dCtlFlags
6

2

(Pointer to ROM driver or handle to RAM driver)

(Flags)

dCtlQHdr

16

10

dCtlPosition

20

4

dCtlStorage

24

4

(Driver I/O queue header)

(Byte position for block devices)

(Handle to driver’s private storage)

dCtlRefNum
26

2

dCtlCurTicks

30

4

dCtlWindow

34

4

(Driver reference number)

(Number of ticks since last periodic event)

(Pointer to desk accessory window)

dCtlDelay
36

2

dCtlEMask
38

2

dCtlMenu 2

(Number of ticks between periodic actions)

(Desk accessory event mask)

(Desk accessory menu ID)
40

1dCtlSlot
41

1dCtlSlotId

dCtlDevBase

42

4

46

4dCtlOwner 4

50
1
1

dCtlExtDev
fillByte

(Slot)
(sResource directory ID)

(Slot device base address)

(Reserved; value must be 0)

(External device ID)
(Reserved)

51
About the Device Manager 1-7

C H A P T E R 1

Device Manager

The Unit Table 1

The Device Manager uses a data structure called the unit table to organize and keep
track of device control entries. The unit table is a nonrelocatable block in the system
heap, containing an array of handles. Each handle points to the device control entry of
an installed device driver. The location of a driver’s device control entry handle in the
unit table is called the driver’s unit number . If the handle at a given unit number is nil,
there is no device control entry installed in that position.

When you open a device driver, the Device Manager returns a driver reference number
for the driver. The driver reference number is the one’s complement (logical NOT) of the
unit number.

The system global variable UTableBase points to the first entry of the unit table. The
system global variable UnitNtryCnt contains the size of the unit table (that is, how
many handles it can hold). Figure 1-4 shows the organization of the unit table, including
the locations of some of the standard device drivers reserved by Apple Computer, Inc.
1-8 About the Device Manager

C H A P T E R 1

Device Manager

1

D
evice M

anager

Figure 1-4 The unit table

Unit # Reference #

–1

–2

.Print –3

.Sound –4

.Sony –5

.AIn –6

.AOut –7

.BIn –8

.BOut –9

.MPP –10

.ATP –11

Reserved

(Hard Disk 20)

(Printer)

(Sound)

(Disk)

(Modem in)

(Modem out)

(Printer in)

(Printer out)

(AppleTalk MPP)

(AppleTalk ATP)

1

2

3

4

5

6

7

8

9

10

Available for slot devices

and other drivers.

UTableBase

points here.

0

.Sony

 –12Reserved11

–13Desk accessory12

–32Desk accessory31

Available for

desk accessories.

Available for

SCSI devices.

Reserved by

Apple Computer, Inc.

–33SCSI device 032

–40SCSI device 7 (reserved)39

–41Reserved40

–48Reserved47

–4948

n = UnitNtryCnt n–1
About the Device Manager 1-9

C H A P T E R 1

Device Manager

The Driver I/O Queue 1

The Device Manager maintains an I/O queue for each open device driver. An I/O queue
is a standard Macintosh Operating System queue of type ioQType, as described in the
chapter “Queue Utilities” in Inside Macintosh: Operating System Utilities.

At the head of a device driver’s I/O queue is the request currently being processed
by the driver. The rest of the queue contains pending I/O requests—those the Device
Manager has received but not yet sent to the device driver. This queue allows your
application to request a data transfer with a busy device and accomplish other tasks
while the device processes previous requests.

With respect to the I/O queue, the Device Manager allows you to make three types of
requests: asynchronous, synchronous, and immediate.

■ Asynchronous requests. When you make an asynchronous request, the Device
Manager places your request at the end of the driver I/O queue and returns control
to your application—potentially before the request is processed. Your application is
free to perform other tasks while the device driver processes the requests in its queue.
The Device Manager provides mechanisms for your application to determine when
the driver has processed the request.

■ Synchronous requests. When you make a synchronous request, the Device Manager
places your request at the end of the queue and waits until the device driver has
handled every request in the queue, including the synchronous one, before returning
control to your application. Notice there can never be more than one synchronous
request in a driver I/O queue at any given time.

■ Immediate requests. The Device Manager sends immediate requests directly to the
device driver, bypassing the queue, and returns control to your application when the
request is complete. Because the device driver might be in the middle of processing
another request, you must make sure the driver is reentrant before making an
immediate request. A reentrant driver is capable of handling multiple requests
simultaneously. As some device drivers are not reentrant, you should always consult
a driver’s documentation to determine if it supports immediate requests.

IMPORTANT

The terms synchronous and asynchronous are used here to describe how
the Device Manager queues your I/O requests. How a device driver
processes these requests (synchronously or asynchronously) depends
on the design of the driver. When you make a synchronous request
to a device driver, the Device Manager waits for the driver to complete
the request, regardless of whether the driver handles the request
synchronously or asynchronously. ▲

Figure 1-5 shows the relationship of the unit table, device control entry, and I/O queue
to a device driver.
1-10 About the Device Manager

C H A P T E R 1

Device Manager

1

D
evice M

anager

Figure 1-5 Relationship of the Device Manager data structures

Master pointer

UTableBase ($11C)

Device driver

Handle or pointer

to device driver

Unit table

Device control entry

Pointer to first

I/O queue element

Queue link

Master pointer

Queue link

Queue element
Queue element
About the Device Manager 1-11

C H A P T E R 1

Device Manager

Driver Routines 1

Every device driver must provide a set of routines for handling requests from the Device
Manager. When an application or another manager calls a Device Manager function, the
Device Manager invokes one of the following routines in the designated device driver:

■ The open routine allocates memory and initializes the device driver’s data structures.
It may also initialize a hardware device or perform any other tasks necessary to make
the driver operational. All device drivers must implement an open routine.

■ The close routine deactivates the device driver, releases any memory allocated by the
driver, removes any patches installed by the driver, and performs any other tasks
necessary to reverse the actions of the open routine. All drivers must implement a
close routine.

■ The control routine is usually used to send control information to the device driver.
The function of this routine is driver-dependent. This routine is optional and need not
be implemented.

■ The status routine is usually used to return status information from the device driver.
The function of this routine is driver-dependent. The status routine is optional and
need not be implemented.

■ The prime routine implements the input and output functions of the driver. This
routine is optional. If the prime routine is implemented, it must support either read
functions or write functions, or both.

Each driver routine is responsible for handling specific types of Device Manager
requests. Table 1-1 shows the Device Manager I/O functions and the driver routines
responsible for handling them. The Device Manager I/O functions are described in
“Using the Device Manager,” beginning on page 1-14. The section “Writing a Device
Driver,” beginning on page 1-24, describes the driver routines.

Driver Resources 1
Device drivers are usually stored in driver resources, which can be located in
applications, system extension files, or the firmware of expansion cards. A driver

Table 1-1 Device Manager I/O functions and responsible driver routines

Device Manager function Responsible driver routine

OpenDriver, PBOpen, OpenSlot Open

FSRead, PBRead Prime

FSWrite, PBWrite Prime

Control, PBControl Control

Status, PBStatus Status

KillIO, PBKillIO Control

CloseDriver, PBClose Close
1-12 About the Device Manager

C H A P T E R 1

Device Manager

1

D
evice M

anager

resource consists of a header followed by the driver code. The header contains
information about the driver such as which driver routines are implemented and where
the routines are located within the driver code. The Device Manager copies the relevant
information from the header into the device control entry when you open the driver.
Figure 1-6 shows the structure of a driver resource. The section “Creating a Driver
Resource,” beginning on page 1-24, describes driver resources in detail.

Figure 1-6 Structure of a driver resource

BytesOffset

2

0
drvrFlags 2(Flags)

drvrDelay
4

2(Number of ticks between periodic actions)

6
drvrEMask 2(Desk accessory event mask)

drvrMenu
8

2(Desk accessory menu ID)

10
drvrOpen 2(Offset to open routine)*

drvrPrime
12

2(Offset to prime routine)*

14
drvrCtl 2(Offset to control routine)*

drvrStatus
16

2(Offset to status routine)*

18
drvrClose 2(Offset to close routine)*

drvrName[0]
19

1(Length of driver name)

drvrName+1 Variable(Characters of driver name)

VariableOpen routine

VariablePrime routine

VariableControl routine

VariableStatus routine

VariableClose routine

Driver

code

Driver

header

* Note: Routine offsets are relative to offset 0 of the driver resource.
About the Device Manager 1-13

C H A P T E R 1

Device Manager

Using the Device Manager 1

Your application can use Device Manager functions to communicate with devices
through their device drivers. This section describes the Device Manager functions that
allow you to open, close, and control device drivers, exchange information with them,
and monitor their status. The Device Manager also provides support functions useful for
writing and installing device drivers. The section “Writing a Device Driver,” beginning
on page 1-24, describes these support functions.

The Device Manager includes high-level and low-level versions of most of its functions.
The high-level versions are somewhat easier to use, but they allow less control of how
the Device Manager processes the I/O request (for example, they are always handled
synchronously) and they return less information to your application. Conversely, the
low-level functions require some additional setup, but they allow you greater control
and return more information.

The high-level Device Manager functions call the low-level functions, which in turn call
the appropriate driver routine. For example, the Device Manager converts the high-level
FSRead function to a low-level PBRead function before calling the driver’s prime
routine. Figure 1-7 depicts this hierarchy.

Figure 1-7 Hierarchy of Device Manager functions

OpenDriver, CloseDriver,

FSRead, FSWrite,

Control, Status, KillIO

High-level Device Manager functions

OpenSlot, PBOpen, PBClose,

PBRead, PBWrite,

PBControl, PBStatus, PBKillIO

Low-level Device Manager functions

Open, Close,

Prime,

Control, Status

Driver routines
1-14 Using the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
The high-level functions differ in form, but the low-level functions all have the form:

pascal OSErr PBRoutineName (ParmBlkPtr paramBlock, Boolean async);

The paramBlock parameter is a pointer to a structure of type ParamBlockRec. You
use the fields of this structure to pass more complete information to the driver than you
can with high-level functions, and the driver uses the same structure to pass information
back. The ParamBlockRec is defined in C as a union of six structures, but only the
IOParam and CntrlParam types are used by the Device Manager. Figure 1-8 shows the
fields of the ParamBlockRec structure used by the Device Manager. These fields are
described in detail later in this section and in “Data Structures” on page 1-53.

The async parameter specifies whether the Device Manager should process the function
asynchronously. For synchronous requests you set this parameter to false; the Device
Manager adds the parameter block to the driver I/O queue and waits until the driver
completes the request (which means it has completed all previously queued requests)
before returning control to your application.

▲ W A R N I N G

Never call any Device Manager function synchronously at interrupt
time. A synchronous request at interrupt time may block other pending
I/O requests. Because the device driver cannot begin processing the
synchronous request until it completes the other requests in its queue,
this situation can cause the Device Manager to loop indefinitely while it
waits for the device driver to complete the synchronous request. ▲

If you set the async parameter to true, the Device Manager adds the parameter block
to the driver I/O queue and returns control to your application immediately. In this case,
a noErr result code signifies that the request was successfully queued, not that the
request was successfully completed. The Device Manager sets the ioResult field of the
parameter block to 1 when the request is queued, and stores the actual result code there
when the driver indicates the request is complete.

When you make an asynchronous request you can also provide a pointer to a completion
routine in the ioCompletion field of the parameter block. The Device Manager
executes this routine when the driver completes the asynchronous request. Your
completion routine could, for example, set a flag to signal your application that the
I/O operation is complete. See “Handling Asynchronous I/O,” beginning on page 1-37,
for more information about completion routines and asynchronous operation.

Assembly-Language Note

You can call a Device Manager function immediately, bypassing the I/O
queue, by setting bit 9 of the trap word. You can set or test this bit using
the global constant noQueueBit. However, remember that the device
driver might be processing another request, especially if you make an
immediate request during interrupt time. The driver must be reentrant
to handle this situation properly. You should always check a driver’s
documentation to make sure the driver is reentrant before making
immediate requests. ◆
Using the Device Manager 1-15

C H A P T E R 1

Device Manager
Figure 1-8 Device Manager parameter blocks

When you use a low-level Device Manager function, the Device Manager places the
parameter block at the end of the driver I/O queue and then either waits for the driver
to complete the request or returns control to your application, depending on the value of

BytesOffset

4

qLink

0

4

qType 2

ioTrap
6

2

ioCmdAddr

8

16

4

ioCompletion

12

4

ioResult 2

ioNamePtr 4

18

ioVRefNum
22

2

ioRefNum
24

2
26

1ioVersNum
27

1ioPermssn

ioMisc

28

4

ioBuffer

32

4

ioReqCount

36

4

ioActCount

40

4

ioPosMode
44

2

ioPosOffset

46

4

50

Used by PBOpen, PBClose, PBRead, and PBWrite

BytesOffset

4

22

28

qLink

0

4

qType 2

ioTrap
6

2

ioCmdAddr

8

16

4

ioCompletion

12

4

ioResult 2

ioNamePtr 4

18

ioVRefNum
22

2

ioCRefNum
24

2
26

Used by PBControl, PBStatus, and PBKillIO

2

50

csCode

csParam[11]

IOParam CntrlParam
1-16 Using the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
the async parameter. For the high-level functions, the Device Manager creates a
parameter block for you, filling the required fields with the values you supplied. The
Device Manager then inserts the parameter block at the end of the I/O queue as a
synchronous request. As previously-queued requests are processed, the parameter block
moves forward in the I/O queue. When the parameter block is at the beginning of the
queue, the Device Manager calls the appropriate driver routine and passes it a pointer to
the parameter block and a pointer to the driver’s device control entry.

For read and write requests, the Device Manager calls the driver’s prime routine. This
routine can execute synchronously, completing the requested read or write transaction
before returning control to the Device Manager, or asynchronously, beginning the
requested transaction but returning control to the Device Manager before completing it.
For information about reading and writing data to devices, see “Communicating With
Device Drivers” on page 1-20.

If you are writing a device driver and your driver’s prime routine can execute
asynchronously, your driver must use some mechanism to regain control of the
processor to complete asynchronous requests. Your driver would typically use an
interrupt handler for this purpose, and notify the Device Manager when the transaction
is complete. See “Writing a Prime Routine” on page 1-33 and “Handling Asynchronous
I/O” on page 1-37 for more information about writing asynchronous routines.

The Device Manager handles control and status requests in the same way as read and
write requests, except that for control requests it calls the control routine and for status
requests it calls the status routine. See “Controlling and Monitoring Device Drivers” on
page 1-22 for information about making these requests. For information about providing
status and control routines for your own driver, see “Writing Control and Status
Routines” on page 1-34.

The Device Manager responds to KillIO requests by calling the device driver’s control
routine with a value of killCode for the csCode parameter. If the driver returns
noErr, the Device Manager removes all parameter blocks from the queue, calling their
completion routines with the result code abortErr. For more information about
canceling I/O requests, see the description of the KillIO function on page 1-80. For
information on how your driver can handle KillIO requests, see “Writing Control and
Status Routines” on page 1-34.

In response to a close request, the Device Manager waits until the driver is inactive, then
calls the driver’s close routine. When the driver indicates it has processed the close
request, the Device Manager unlocks the driver resource if the dRAMBased flag is set,
and unlocks the device control entry if the dNeedLock flag is not set. The Device
Manager does not release the driver resource or dispose of the device control entry
unless you call the DriverRemove function. The next section describes how to open
and close a device driver. See “Writing Open and Close Routines” on page 1-31 for
information about how your driver should respond to open and close requests.
Using the Device Manager 1-17

C H A P T E R 1

Device Manager
Opening and Closing Device Drivers 1
You must open a driver before your application can communicate with it. The Device
Manager provides three functions for opening device drivers: OpenDriver, OpenSlot,
and PBOpen. Each of these functions requires a driver name and returns a driver
reference number.

A driver name consists of a period (.) followed by any sequence of 1 to 254 printing
characters; for example, .ATP is the name of one of the high-level AppleTalk drivers. The
initial period in a driver name allows the Device Manager and the File Manager, which
share the _Open trap, to distinguish between driver names and filenames. Refer to
a device driver’s documentation to determine the driver name.

The OpenDriver function, which is the high-level function for opening a device driver,
takes the driver name as its first parameter and returns the driver reference number in its
second parameter. When an application or another manager calls the OpenDriver
function, the Device Manager first searches the unit table to see if a driver with the
specified name is already installed. If the name does not match any installed driver, the
Device Manager searches the current Resource Manager search path for a driver resource
with the specified name.

To open a device driver from a resource, the Device Manager

■ creates a device control entry for the driver, filling in the DCE with values from the
header of the driver resource

■ installs a handle to the device control entry in the unit table at a location determined
by the driver resource ID

■ calls the driver’s open routine

Listing 1-1 shows an application-defined function that uses the OpenDriver function to
open a driver.

Listing 1-1 Opening a device driver

short gDrvrRefNum; /* global variable for storing

 my driver reference number */

OSErr MyOpenDriver(void)

{

Handle drvrHdl;

short drvrID;

short tempDrvrID;

ResType drvrType;

Str255 drvrName;

OSErr myErr;

tempDrvrID = MyFindSpaceInUnitTable(); /* see Listing 1-14 */
1-18 Using the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
if (tempDrvrID > 0)

{

drvrHdl = GetNamedResource((ResType)'DRVR', "\p.MYDRIVER");

GetResInfo(drvrHdl, &drvrID, &drvrType, drvrName);

SetResInfo(drvrHdl, tempDrvrID, drvrName);

myErr = OpenDriver("\p.MYDRIVER", &gDrvrRefNum);

if (myErr == noErr)

DetachResource(drvrHdl);

drvrHdl = GetNamedResource((ResType)'DRVR', drvrName);

SetResInfo(drvrHdl, drvrID, drvrName);

return(myErr);

}

else

return(openErr); /* no space in the unit table */

}

The OpenDriver function uses the resource ID of the driver resource as the unit
number for the device driver, which determines where the device control entry will be
stored in the unit table. Because the OpenDriver function does not check to see if
another device control entry is already located at that position in the unit table, the
MyOpenDriver function begins by searching for an available space in the unit table.
Listing 1-14 on page 1-39 shows the MyFindSpaceInUnitTable function.

If there is room in the unit table, the MyOpenDriver function calls GetNamedResource
to load the resource into memory, then changes the ID of the driver resource in the
resource map before calling the OpenDriver function.

After the driver is open, MyOpenDriver calls the DetachResource function to prevent
the driver resource from being released. Finally, MyOpenDriver restores the original
resource ID so that the driver’s resource file remains unchanged.

You can use the PBOpen or OpenSlot functions instead of the OpenDriver function
when you want more control over how the Device Manager opens the device driver. For
example, you can set read and write permissions for the device with the ioPermssn
field of the parameter block. Use the OpenSlot function to open drivers that serve slot
devices, and the PBOpen function for all other drivers.

Because the Device Manager always opens device drivers synchronously, you must set
the async parameter to false when using the PBOpen or OpenSlot functions. If a
device driver is already open, the Device Manager simply returns the driver reference
number.

The remaining Device Manager functions require your application to use the driver
reference number, instead of the driver name, when referring to a device driver.
Using the Device Manager 1-19

C H A P T E R 1

Device Manager
When you finish using a driver, you may want to close it. However, you do not normally
close drivers that might be needed by the system or by other applications. Whether you
should close a particular driver depends on the type of driver and how it is being used.
Refer to the driver’s documentation to determine if it should be closed. See the
appropriate chapters in this book and other books in the Inside Macintosh series for
information about standard Macintosh drivers.

If you do want to close a driver, you can use the high-level CloseDriver function or
the low-level PBClose function. Listing 1-2 shows how to use the PBClose function to
close the driver opened in Listing 1-1.

Listing 1-2 Closing a device driver

OSErr MyCloseDriver(short refNum)

{

IOParam paramBlock;

paramBlock.ioRefNum = refNum;

return(PBClose((ParmBlkPtr)¶mBlock, false));

}

The MyCloseDriver function specifies the driver to close by placing the driver
reference number in the ioRefNum field of the parameter block and then calls the Device
Manager PBClose function.

Communicating With Device Drivers 1
Once a device driver is open and you have its reference number, you can use Device
Manager functions to exchange information with it. When you want to receive
information from a device driver, you first allocate a data buffer to hold the information
and then call the FSRead or PBRead function. To send information to a device driver,
you first store the information in a data buffer and then call the FSWrite or PBWrite
function. You must specify the number of bytes you want transferred when calling any
of these functions.

The PBRead and PBWrite functions support asynchronous requests, and allow you
to specify a completion routine. For block devices you specify the drive number,
positioning mode, and positioning offset in the ioVRefNum, ioPosMode, and
ioPosOffset fields of the parameter block. The Device Manager does not interpret
these fields—they are used by the device driver to locate the desired data block.

The Macintosh Operating System defines three positioning modes for block devices:

■ At the current position. Transfer begins at the current position on the
medium—typically where the last transfer ended.
1-20 Using the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
■ Offset from the start. Transfer begins at the specified offset from the beginning of the
medium.

■ Offset from the mark. Transfer begins at the specified offset from the current position.

You specify the positioning mode by setting the ioPosMode field to one of the defined
constants, fsAtMark, fsFromStart, or fsFromMark. Be sure you specify a mode that
is compatible with the device.

On completion, the PBRead and PBWrite functions return in the ioActCount field of
the parameter block the total number of bytes actually transferred. For block devices,
these functions also return a new positioning offset in the ioPosOffset field.

Certain device drivers provide additional abilities with the read and write functions.
For example, the Disk Driver allows you to use the PBRead function to verify that
data written to a block device matches the data in memory. To do this, you add the
read-verify constant rdVerify to the value in the ioPosMode field of the parameter
block, as explained in the description of the PBRead function on page 1-70.

Listing 1-3 shows an example of how to read from a device driver.

Listing 1-3 Reading from a device driver

OSErr MyReadFromDriver(short refNum)

{

IOParam paramBlock;

char buffer[256];

paramBlock.ioRefNum = refNum;

paramBlock.ioReqCount = 256;

paramBlock.ioBuffer = (Ptr)buffer;

return(PBRead((ParmBlkPtr)¶mBlock, false));

}

The MyReadFromDriver function uses a parameter block to specify the device driver
(by its driver reference number), the number of bytes to read, and a pointer to a buffer
to receive the data. When MyReadFromDriver calls the PBRead function, the Device
Manager appends the parameter block to the end of the driver I/O queue. Because the
async parameter is set to false, the Device Manager does not return control to
MyReadFromDriver until the driver has completed every request in its queue.

Listing 1-4 shows an example of how to write to a device driver.
Using the Device Manager 1-21

C H A P T E R 1

Device Manager
Listing 1-4 Writing to a device driver

OSErr MyWriteToDriver(short refNum)

{

IOParam paramBlock;

char* buffer;

buffer = "Data to Write";

paramBlock.ioCompletion = nil;

paramBlock.ioRefNum = refNum;

paramBlock.ioBuffer = (Ptr)buffer;

paramBlock.ioReqCount = strlen(buffer);

return(PBWrite((ParmBlkPtr)¶mBlock, false));

}

The MyWriteToDriver function also uses a parameter block to transfer information to
the driver. After filling in the necessary fields, MyWriteToDriver sends the parameter
block to the PBWrite function. Because the async parameter is false, the Device
Manager appends the parameter block to the end of the I/O queue and does not return
control to the MyWriteToDriver function until the driver has completed the request.

Controlling and Monitoring Device Drivers 1
In addition to the read and write functions, the Device Manager provides functions that
allow your application to control and monitor device drivers in other ways.

The Control and PBControl functions send commands to a driver. Because the
types of commands to which drivers respond varies, you need to consult a driver’s
documentation to determine what commands it accepts. As an example, you can send
a command to the Disk Driver requesting that it eject a disk.

The Status and PBStatus functions return status information from a driver. Again,
the type of information drivers provide varies widely. The Serial Driver, for example, can
return a breakdown of the types of errors that have occurred recently.

The control and status functions use the CntrlParam structure of the ParamBlockRec
union. This structure is defined in “Device Manager Parameter Block,” beginning on
page 1-53.

Because of the diversity of device drivers, the control and status functions have two
general-purpose parameters: csCode and csParamPtr (or csParam for the low-level
PBControl and PBStatus functions). You indicate the type of control or status
information you are requesting by placing a driver-specific code in the csCode
parameter. You send or receive information using the csParamPtr parameter.

Listing 1-5 shows an example of how to send control and status requests to a device
driver using the PBControl and PBStatus functions.
1-22 Using the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
Listing 1-5 Controlling and monitoring a device driver

OSErr MyIssueDriverControl(short refNum)

{

CntrlParam paramBlock;

paramBlock.ioCRefNum = refNum;

paramBlock.csCode = kClearAll; /* driver-specific control request */

return(PBControl((ParmBlkPtr)paramBlock, false));

}

OSErr MyGetDriverStatus(short refNum)

{

CntrlParam paramBlock;

OSErr myErr;

short count;

paramBlock.ioCRefNum = refNum;

paramBlock.csCode = kByteCount; /* driver-specific status request */

myErr = PBStatus((ParmBlkPtr)¶mBlock, false);

count = paramBlock.csParam[0]; /* value returned in csParam array */

if (myErr == noErr)

return(count);

else

return(myErr);

}

The MyIssueDriverControl and MyGetDriverStatus functions call the
example device driver control and status routines shown in Listing 1-12 on page 1-35
and Listing 1-13 on page 1-36.

The MyIssueDriverControl function begins by setting up the fields of a parameter
block. The ioCRefNum field specifies the driver reference number, and the csCode field
specifies the type of control information being sent. The MyDriverControl function
shown in Listing 1-12 interprets the driver-specific value kClearAll as a request for
the device driver to clear the information in its private storage.

The MyGetDriverStatus function also begins by setting up the fields of a parameter
block. The ioCRefNum field specifies the device driver reference number, and the
csCode field specifies the type of status information being requested. The
MyDriverStatus function shown in Listing 1-13 interprets a value of kByteCount
as a request to return the number of bytes transferred by the last I/O operation. This
information is returned in the csParam field of the parameter block.
Using the Device Manager 1-23

C H A P T E R 1

Device Manager
Writing a Device Driver 1

This section shows you how to write a basic device driver—one that can respond to
Device Manager requests. Although you will need to write some assembly-language
interface code, you can write your device driver routines in a high-level language.

Before you decide to write your own device driver, you should consider whether your
task can be more easily accomplished using one of the standard Macintosh drivers
described in this book or other Inside Macintosh volumes. In general, you should consider
writing a device driver only if your hardware device or system service needs to be
accessed at unpredictable times or by more than one application.

For example, if you develop a new output device that you want to make available to any
application, you might need to write a custom driver. On the other hand, if your product
is a specialized device that can only be used by your application, it may be easier to
control the device using private code within your application.

This section describes how to

■ create a driver resource

■ write the code in your driver resource so that it responds appropriately to Device
Manager requests

■ handle the special requirements of asynchronous I/O

■ install and initialize your driver

Creating a Driver Resource 1
You will probably want to store your device driver in a driver resource, although if you
are writing a driver for a slot device, you might want to store your driver in an
sResource data structure in the declaration ROM of the expansion card. See the chapter
“Slot Manager” in this book for information about sResource data structures.

Storing your driver in a driver resource allows the Device Manager to load your driver
code into memory and install a device control entry for your driver in the unit table. Like
all resources, your driver resource has a resource type, a resource ID, a resource name,
and resource attributes.

■ The resource type must be 'DRVR' if you plan to use the Device Manager to load
your driver into memory. If you write your own routine to load the driver, you can
choose a different resource type.

■ The resource ID determines where in the unit table the Device Manager installs the
driver’s device control entry. Because you must choose the resource ID when creating
your driver resource, you cannot know which unit numbers are available until you
open your driver. Therefore, your driver-opening routine must find an empty location
in the unit table and change the resource ID accordingly. “Installing a Device Driver”
on page 1-38 discusses appropriate values for the resource ID.
1-24 Writing a Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
■ The resource name should be the same as the driver name because the Device
Manager calls GetNamedResource using this name if it can’t find the driver in the
unit table. A driver name consists of a period (.) followed by any sequence of 1 to 255
printing characters. The Device Manager ignores case (but not diacritical marks) when
comparing names.

■ The resource attributes of your driver resource depend on your driver. A typical
driver might have these attributes: locked, since most drivers contain code that is
called at interrupt time; in the system heap, so that the driver exists over launches of
applications; and preloaded, which makes resource loading slightly more efficient.

A driver resource has two parts:

■ a driver header that contains information about the driver

■ the routines that do the work of the driver

The driver header contains a few words of flags and other data, offsets to the driver’s
routines, and an optional driver name. Figure 1-9 shows the format of a driver header.

Figure 1-9 The driver header

The elements of the driver header are:

Element Description

drvrFlags Flags in the high-order byte of this field specify certain
characteristics of the driver. These flags are copied to the high-order
byte of the dCtlFlags field of the device control entry when the

Bytes

drvrFlags

Offset
0

2

drvrDelay
2

2

drvrEMask
4

2

drvrMenu
6

2

drvrOpen
8

2

drvrPrime
10

2

drvrCtl
12

2

drvrStatus
14

2

drvrClose
16

2
18
19 1drvrName[0]

drvrName+1 Variable
Writing a Device Driver 1-25

C H A P T E R 1

Device Manager
driver is opened. You can use the constants shown in Listing 1-6 to
set or test the flags in this field.

drvrDelay If the dNeedTime flag is set, this field contains the requested
number of ticks between periodic actions. This value is approximate
and should not be used as a timing reference.

drvrEMask Used only by desk accessories, this field contains an event mask.
See “Writing a Desk Accessory” on page 1-49 for information about
this field.

drvrMenu Used only by desk accessories, this field contains a menu ID. See
“Writing a Desk Accessory” on page 1-49 for more information.

drvrOpen The offset of the driver’s open routine, relative to offset 0 of the
driver header.

drvrPrime The offset of the driver’s prime routine.
drvrCtl The offset of the driver’s control routine.
drvrStatus The offset of the driver’s status routine.
drvrClose The offset of the driver’s close routine.
drvrName A Pascal string containing the driver’s name, up to 255 characters.

See the section “Entering and Exiting From Driver Routines” on page 1-29 for more
information about the routine offsets.

Note
Your driver routines, which follow the driver header, must be aligned on
a word boundary. ◆

Name Bit Meaning

dReadEnable 8 Set if the driver can respond to read
requests.

dWritEnable 9 Set if the driver can respond to write
requests.

dCtlEnable 10 Set if the driver can respond to control
requests.

dStatEnable 11 Set if the driver can respond to status
requests.

dNeedGoodbye 12 Set if the driver needs to be called before
the application heap is reinitialized.

dNeedTime 13 Set if the driver needs time for
performing periodic tasks.

dNeedLock 14 Set if the driver needs to be locked in
memory as soon as it is opened.
1-26 Writing a Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
Listing 1-6 Driver flag constants

enum {

/* flags used in the driver header and device control entry */

dNeedLockMask = 0x4000, /* set if driver must be locked in memory as

soon as it’s opened */

dNeedTimeMask = 0x2000, /* set if driver needs time for performing

periodic tasks */

dNeedGoodByeMask = 0x1000, /* set if driver needs to be called before the

application heap is initialized */

dStatEnableMask = 0x0800, /* set if driver responds to status requests */

dCtlEnableMask = 0x0400, /* set if driver responds to control requests */

dWritEnableMask = 0x0200, /* set if driver responds to write requests */

dReadEnableMask = 0x0100, /* set if driver responds to read requests */

};

The dReadEnable, dWritEnable, dCtlEnable, and dStatEnable flags indicate
which Device Manager requests the device driver can respond to. The next section,
“Responding to the Device Manager,” describes these routines in detail.

Drivers in the application heap are lost when the heap is reinitialized. If you set
the dNeedGoodbye flag, the Device Manager calls your driver before the heap is
reinitialized so that you can perform any clean-up actions. See “Writing Control and
Status Routines,” beginning on page 1-34, for information about using this flag.

You set the dNeedTime flag if your device driver needs to perform some action
periodically. For example, a network driver may want to poll its input buffer every
5 seconds to see if it has received any messages. The value of the drvrDelay field
indicates how many ticks should pass between periodic actions. For example, a value
of 0 in the drvrDelay field indicates that the action should happen as often as possible,
a value of 1 means it should happen every sixtieth of a second, a value of 2 means at
most every thirtieth of a second, and so on. Whether the action actually occurs this
frequently depends on how often an application calls WaitNextEvent or SystemTask.
See “Writing Control and Status Routines,” beginning on page 1-34, for information
about using this flag.

Note
If you do not want your driver to depend on applications to call
WaitNextEvent or SystemTask, you can perform actions periodically
by installing a VBL task, a Deferred Task Manager task, a Time Manager
task, or a Notification Manager task. For more information, see Inside
Macintosh: Processes. ◆

You need to set the dNeedLock flag if your device driver’s code must be locked in
memory. In particular, you need to set this flag in these two cases:

■ If any part of your driver’s code can be called at interrupt time. Because the Operating
System may perform memory management at interrupt time, your driver must be
locked to prevent it from being moved.
Writing a Device Driver 1-27

C H A P T E R 1

Device Manager
■ If your driver provides the Operating System with a pointer to any part of its code.
For example, if your driver uses the Device Manager to call another driver, you might
provide the Device Manager with a pointer to a completion routine. If that completion
routine is in your driver code, your driver code must be locked. Otherwise, that
pointer might not be valid when the Device Manager calls the completion routine.

You can create your driver header in these ways:

■ You can use a resource compiler. See “Resources” on page 1-89 for the Rez format of
the driver resource.

■ You can use the DC instruction, as shown in Listing 1-7, to position the header
information directly in your assembly language code.

Listing 1-7 An assembly-language driver header

DHeader

DFlags DC.W 0 ;set by MyDriverOpen

DDelay DC.W 0 ;none

DEMask DC.W 0 ;DA event mask

DMenu DC.W 0 ;no menu

DC.W DOpen - DHeader ;offset to Open

DC.W DPrime - DHeader ;offset to Prime

DC.W DControl - DHeader ;offset to Control

DC.W DStatus - DHeader ;offset to Status

DC.W DClose - DHeader ;offset to Close

Name DC.B '.MYDRIVER' ;driver name

ALIGN 2 ;word alignment

In this example, the drvrFlags word is cleared to 0 because the flags are set by the
MyDriverOpen function, shown in Listing 1-9 on page 1-32. This is an implementation
decision—you can set the flags in the driver header or in your driver’s open routine. The
drvrDelay field is set to 0 because this driver does not perform any periodic actions
using the SystemTask function. The drvrEMask and drvrMenu fields are set to 0, as
this driver is not a desk accessory. The next five fields contain offsets to the driver
routines, defined in the next section, “Responding to the Device Manager.” The header
ends with the driver name and the word alignment directive.

Responding to the Device Manager 1
The Device Manager calls a driver routine by setting up registers and jumping to the
address indicated by the routine’s offset in the driver header.

■ Register A0 contains a pointer to the parameter block.

■ Register A1 contains a pointer to the driver’s device control entry.

This interface requires you to use some assembly language when writing a driver.
However, you can write your driver routines in a high-level language if you provide an
1-28 Writing a Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
assembly-language dispatching mechanism that acts as an interface between the Device
Manager and your driver routines.

The next few sections discuss how you can provide a dispatching routine and how you
can implement your driver routines in a high-level language.

Entering and Exiting From Driver Routines 1

Listing 1-8 shows an assembly-language dispatching routine that you can use as an
interface between the Device Manager and your high-level language driver routines.
This example properly handles synchronous, asynchronous, and immediate requests,
as well as the special cases of open, close, and KillIO.

Listing 1-8 An assembly-language dispatching routine

DOpen

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

BSR MyDriverOpen ;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

RTS ;open is always immediate, must return via RTS

DPrime

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

BSR MyDriverPrime ;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

BRA.B IOReturn

DControl

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

BSR MyDriverControl;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

CMPI.W #killCode,csCode(A0) ;test for KillIO call (special case)

BNE.B IOReturn

RTS ;KillIO must always return via RTS

DStatus

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C
Writing a Device Driver 1-29

C H A P T E R 1

Device Manager
BSR MyDriverStatus ;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

IOReturn

MOVE.W ioTrap(A0),D1

BTST #noQueueBit,D1 ;immediate calls are not queued, and must RTS

BEQ.B @Queued ;branch if queued

@NotQueued

TST.W D0 ;test asynchronous return result

BLE.B @ImmedRTS ;result must be ≤0
CLR.W D0 ;"in progress" result (> 0) not passed back

@ImmedRTS

MOVE.W D0,ioResult(A0) ;for immediate calls you must explicitly

; place the result in the ioResult field

RTS

@Queued

TST.W D0 ;test asynchronous return result

BLE.B @MyIODone ;I/O is complete if result ≤ 0
CLR.W D0 ;"in progress" result (> 0) not passed back

RTS

@MyIODone

MOVE.L JIODone,-(SP) ;push IODone jump vector onto stack

RTS

DClose

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

BSR MyDriverClose ;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

RTS ;close is always immediate, must return via RTS

In this example, DOpen, DPrime, DControl, DStatus, and DClose are the five entry
points that the Device Manager locates using the offsets defined in the driver header.
These in turn call the actual driver routines, which are written in C. The C functions
return a result code if the I/O completed, or a positive value (usually 1) if the I/O is
being handled asynchronously.
1-30 Writing a Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager

When the driver routine returns, the dispatching routine removes the parameters from
the stack, restores the A0 and A1 registers, and then returns control to the Device
Manager in one of two ways:

■ Calling the IODone routine. This routine, described in detail on page 1-87, indicates
to the Device Manager that the request is complete. The Device Manager removes the
request from the I/O queue and calls the completion routine, if any. This is the normal
method of returning from driver prime, control, and status routines.

■ Returning with an RTS instruction. Use this method when you do not want the Device
Manager to remove the request from the I/O queue. There are three cases where the
RTS instruction should be used:
n Returning from an asynchronous request that is not yet complete. After your device

driver begins an asynchronous operation, it should return control to the Device
Manager with an RTS instruction. The device driver can regain control of the
processor using an interrupt handler, VBL task, or other method, and jump to
IODone when the request is complete.

n Returning from an immediate request. Because the Device Manager does not queue
immediate requests, they should always return with an RTS instruction.

n Returning from open, close, and KillIO requests. These requests are never queued
and should always return with an RTS instruction.

To use this dispatching routine you would place it after the driver header in your
assembly-language source file, and link it to your C-language driver routines. Listing 1-7
on page 1-28 shows the driver header. Sample driver routines are presented in the
following sections.

Writing Open and Close Routines 1

You must provide both an open routine and a close routine for your device driver. The
open routine should allocate any private storage your driver requires and place a handle
to this storage in the dCtlStorage field of the device control entry. After allocating
memory, the open routine should perform any other preparation required by your driver.

If your open routine installs an interrupt handler, you may want to store a pointer
to the device control entry in private storage where it will be available for the interrupt
handler. The section “Handling Asynchronous I/O” on page 1-37 discusses
interrupt handling in more detail.

Listing 1-9 shows a sample open routine, MyDriverOpen. This function begins
by checking whether the driver is already open (by examining the contents of the
dCtlStorage field of the device control entry). If the driver is not already open, the
MyDriverOpen function sets the appropriate flags in the device control entry and
allocates memory in the system heap for private storage. The private storage of the
driver in this example contains two fields, byteCount and lastErr, which store
information about the last I/O function. The prime, control, and status routines
described in the following sections use these fields.

If the MyDriverOpen function fails to allocate memory for private storage, it returns the
openErr result code, which notifies the Device Manager that the driver did not open.
Writing a Device Driver 1-31

C H A P T E R 1

Device Manager
Listing 1-9 Example driver open routine

struct MyDriverGlobals {

short byteCount;

short lastErr;

};

typedef struct MyDriverGlobals MyDriverGlobals;

typedef struct MyDriverGlobals *MyDriverGlobalsPtr, **MyDriverGlobalsHdl;

OSErr MyDriverOpen(IOParamPtr pb, DCtlPtr dce)

{

if (dce->dCtlStorage == nil)

{

/* set up flags in the device control entry */

dce->dCtlFlags |= (dCtlEnableMask | dStatEnableMask | dWritEnableMask |

 dReadEnableMask | dNeedLockMask | dRAMBasedMask);

/* initialize dCtlStorage */

dce->dCtlStorage = NewHandleSysClear(sizeof(MyDriverGlobals));

if (dce->dCtlStorage == nil)

return(openErr);

else

return(noErr);

}

else

{

/* the driver is already open */

return(noErr);

}

}

The close routine must reverse the effects of the open routine by releasing any memory
allocated by the driver, removing interrupt handlers, removing any VBL or Time
Manager tasks, and replacing changed interrupt vectors. If the close routine cannot
complete the close request, it should return the closErr result code and the driver
should continue to operate normally.

The Device Manager does not dispose of the device control entry when a driver is closed.
If you want to save any information about the operational state of the driver until the
next time the driver is opened, you can store a handle to the information in the
dCtlStorage field of the device control entry.

Listing 1-10 shows a sample close routine, MyDriverClose. Because this device
driver does not need to store any information until the next time it is opened, the
MyDriverClose function disposes of the private storage allocated by MyDriverOpen.
1-32 Writing a Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
Listing 1-10 Example driver close routine

OSErr MyDriverClose(IOParamPtr pb, DCtlPtr dce)

{

if (dce->dCtlStorage != nil)

{

DisposeHandle(dce->dCtlStorage);

dce->dCtlStorage = nil;

}

return(noErr);

}

Writing a Prime Routine 1

The prime routine implements I/O requests. You can write your prime routine to
execute synchronously or asynchronously. While a synchronous prime routine completes
an entire I/O request before returning to the Device Manager, an asynchronous prime
routine can begin an I/O transaction but return to the Device Manager before the request
is complete. In this case, the I/O request continues to be executed, typically when more
data is available, by other routines such as interrupt handlers or completion routines.
“Handling Asynchronous I/O” on page 1-37 discusses how to complete an
asynchronous prime routine.

The Device Manager indicates whether it is requesting a read or a write operation by
placing one of the following constants in the low-order byte of the ioTrap field of the
parameter block:

enum {

aRdCmd = 2, /* read operation requested */

aWrCmd = 3 /* write operation requested */

};

The Device Manager includes two routines, Fetch and Stash, that provide low-level
support for reading and writing characters to and from data buffers. Use of these
routines is optional. “Writing and Installing Device Drivers,” beginning on page 1-82,
describes these functions.

The Fetch and Stash routines update the ioActCount field of the parameter block.
If you do not use these routines, you are responsible for updating this field.

If your driver serves a block device, you should update the dCtlPosition field of the
device control entry.

Listing 1-11 shows a sample prime routine. This routine determines whether a read or
write operation is being requested, then calls the appropriate function. The reading and
writing functions, which are not shown here, would transfer the data to or from the
hardware device.
Writing a Device Driver 1-33

C H A P T E R 1

Device Manager
Listing 1-11 Example driver prime routine

OSErr MyDriverPrime(IOParamPtr pb, DCtlPtr dce)

{

MyDriverGlobalsHdl dStore;

short callType;

long numBytes;

short myErr;

dStore = (MyDriverGlobalsHdl)dce->dCtlStorage;

numBytes = pb->ioReqCount;

callType = 0x00ff & pb->ioTrap; /* get the low byte */

switch (callType)

{

case aRdCmd:

myErr = MyReadBytes(pb->ioBuffer, numBytes);

break;

case aWrCmd:

myErr = MyWriteBytes(pb->ioBuffer, numBytes);

break;

}

(*dStore)->byteCount = numBytes; /* save in private storage */

(*dStore)->lastErr = myErr;

pb->ioActCount = numBytes; /* update parameter block field */

return(myErr);

}

After obtaining a handle to the device driver’s private storage from the dCtlStorage
field of the device control entry, the MyDriverPrime function examines the low-order
byte of the ioTrap field of the parameter block to determine whether the Device
Manager is requesting a read operation or a write operation. MyDriverPrime then calls
either the MyReadBytes or MyWriteBytes function to move the requested number of
bytes to or from the buffer designated by the parameter block.

The MyDriverPrime function stores the result code and byte count in its private
storage. These values will be used by the example control and status routines described
in the next section. Finally, MyDriverPrime updates the ioActCount field of the
parameter block and returns the result code.

Writing Control and Status Routines 1

Control and status routines are usually used to send and receive driver-specific
information. However, you can use these routines for any kind of data transfer as long
as you implement the minimum functionality described in this section. Like the prime
routine, the control and status routines that you write can execute synchronously or
asynchronously.
1-34 Writing a Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
The Device Manager passes information to the control routine in the csCode and
csParam fields of the parameter block. The csCode field specifies the type of control
request and the csParam field contains any additional information. The csCode values
-32767 through 127 are reserved by Apple Computer, Inc. Within this range, the
following constant values are defined for use by all device drivers:

When the Device Manager receives a KillIO request, it removes every parameter block
from the driver I/O queue. If your driver responds to any requests asynchronously, the
part of your driver that completes asynchronous requests (for example, an interrupt
handler) might expect the parameter block for the pending request to be at the head of
the queue. The Device Manager notifies your driver of KillIO requests so that it can
take the appropriate actions to stop work on the pending request. Your driver must
return control to the Device Manager by means of an RTS instruction and not by
jumping to the IODone routine.

If you set the dNeedGoodbye flag in the drvrFlags field of the driver header (or the
dCtlFlags field of the device control entry), the Device Manager will call your control
routine with the value goodbye in the csCode parameter before the heap is
reinitialized. You driver can respond by performing any clean-up actions necessary
before heap reinitialization.

If you set the dNeedTime flag in the drvrFlags field of the driver header (or the
dCtlFlags field of the device control entry), the Event Manager will periodically call
your control routine with the value accRun in the csCode parameter. Because these
calls are immediate, your driver must be reentrant to handle them properly. For more
information about the dNeedTime flag and periodic actions, see the description of the
driver header, beginning on page 1-25.

Your control routine must return the controlErr result code for any csCode values
that are not supported. You can define driver-specific csCode values if necessary, as
long as they are outside the range reserved by Apple Computer, Inc.

Listing 1-12 shows a sample control routine, MyDriverControl. This function
interprets the driver-specific csCode value of kClearAll as a command to clear the
information saved in the driver’s private storage by the MyDriverPrime routine.

Listing 1-12 Example driver control routine

OSErr MyDriverControl(CntrlParamPtr pb, DCtlPtr dce)

{

MyDriverGlobalsHdl dStore;

dStore = (MyDriverGlobalsHdl)dce->dCtlStorage;

Constant name Value Meaning

killCode 1 KillIO requested

goodbye –1 Heap being reinitialized

accRun 65 Time for periodic action
Writing a Device Driver 1-35

C H A P T E R 1

Device Manager
switch (pb->csCode)

{

case kClearAll:

(*dStore)->byteCount = 0;

(*dStore)->lastErr = 0;

return(noErr);

default: /* always return controlErr for unknown csCode */

return(controlErr);

}

}

Your status routine should work in a similar manner. The Device Manager uses the
csCode field to specify the type of status information requested. The status routine
should respond to whatever requests are appropriate for your driver and return the
error code statusErr for any unsupported csCode value.

The Device Manager interprets a status request with a csCode value of 1 as a special
case. When the Device Manager receives such a status request, it returns a handle to
the driver’s device control entry. Your driver’s status routine never sees this request.

Listing 1-13 shows a sample status routine, MyDriverStatus, that implements two
driver-specific status requests, kByteCount and kLastErr. When MyDriverStatus
receives one of these requests, it returns the byte count or error code values saved in
private storage by the MyDriverPrime routine. MyDriverStatus returns this
information in the csParam field.

Listing 1-13 Example driver status routine

OSErr MyDriverStatus(CntrlParamPtr pb, DCtlPtr dce)

{

MyDriverGlobalsHdl dStore;

dStore = (MyDriverGlobalsHdl)dce->dCtlStorage;

switch (pb->csCode)

{

case kByteCount:

pb->csParam[0] = (*dStore)->byteCount;

return(noErr);

case kLastErr:

pb->csParam[0] = (*dStore)->lastErr;

return(noErr);

default: /* always return statusErr for unknown csCode */

return(statusErr);

}

}

1-36 Writing a Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
Handling Asynchronous I/O 1
If you design any of your driver routines to execute asynchronously, you must provide a
mechanism for your driver to complete the requests. Some examples of routines that you
might use are:

■ Completion routines. Your driver routine could call another driver to start the data
transfer. In this case, you can provide that driver with a completion routine. When
the other driver completes the request, the Device Manager executes the completion
routine. In the completion routine, you could call the other driver again to execute the
next part of the I/O operation. When the entire operation is complete, the completion
routine should return by calling the IODone routine.

■ Interrupt handlers. If your driver serves a hardware device that generates interrupts,
you can create an interrupt handler that responds to these interrupts. Your interrupt
handler must clear the source of the interrupt and return as quickly as possible,
while preserving all registers other than D0 through D3 and A0 through A3. For
more information about interrupts and how to install an interrupt handler, see
Inside Macintosh: Processes and Designing Cards and Drivers for the Macintosh Family,
third edition.

■ VBL, Time Manager, and Deferred Task Manager tasks. Installing any of these tasks
ensures that your driver receives system time at some point in the future. During this
time, you can check to see if the I/O operation is ready to continue.

If your driver serves a device on a NuBus™ expansion card, you might want to use slot
interrupts to signal your driver. When a NuBus card device signals a slot interrupt, the
CPU can quickly detect which card requested the interrupt service, but not which device
on the card. To determine which device caused the interrupt, the system uses a polling
procedure. Your driver should provide a polling routine that checks if the device it
serves caused the current interrupt, and if so, calls the proper driver routine to handle
the interrupt. The Slot Manager maintains a queue of these polling routines for each slot.
Your driver can install an element in this queue using the Slot Manager function
SIntInstall. You can remove a queue element with the SIntRemove function.
See the chapter “Slot Manager” in this book for information about these functions.

You should observe these guidelines when writing or using asynchronous routines:

■ Once you pass a parameter block to an asynchronous routine it is out of your control.
You should not examine or change the parameter block until your completion routine
is called because you have no way of knowing the state of the parameter block.

■ Do not dispose of or reuse a parameter block until the asynchronous request is
completed. For example, if you declare the parameter block as a local variable, your
function cannot return until the request is complete because local variables are
allocated on the stack and released when a function returns.

■ Use a completion routine to determine when an asynchronous routine has completed,
rather than polling the ioResult field of the parameter block. Polling the ioResult
field is not efficient and defeats the purpose of asynchronous operation.
Writing a Device Driver 1-37

C H A P T E R 1

Device Manager
Installing a Device Driver 1
There are a variety of ways to install a device driver, depending on where the driver
code is stored and how much control you want over the installation process.

■ You can store the device driver in a resource within an application and have the
application install the driver.

■ You can store the device driver, and the code to install it, in a system extension file.
See the chapter “Start Manager” in Inside Macintosh: Operating System Utilities for
information about creating system extensions.

■ You can store the device driver in the declaration ROM of an expansion card. Slot
device drivers can be designed to load automatically at startup, or you can use the
Slot Manager SGetDriver function to load the driver into memory. Refer to
Designing Cards and Drivers for the Macintosh Family, third edition, for information
about writing and installing slot device drivers.

If you store your driver in a resource of type 'DRVR' you can use the OpenDriver or
PBOpen functions to install and open your driver. If you need more control over the
installation process, you can use the DriverInstall function to create the device
control entry and add it to the unit table, or you can create the device control entry
yourself, install it in the unit table, and then use OpenDriver or PBOpen to open the
driver. If the driver is already installed in the unit table, OpenDriver and PBOpen
simply call the driver’s open routine and return the driver reference number.

If you want to use the OpenDriver function to install your driver, you are responsible
for examining the unit table and changing your driver resource ID so that the
OpenDriver function installs your driver in an empty location in the unit table. If the
handle at a given unit number is nil, there is no device control entry installed in that
position. You can install your device control entry in any empty location in the unit table
that is not listed as reserved by Apple Computer, Inc. Table 1-2 summarizes the unit
numbers reserved for specific purposes.

Listing 1-14 shows a method of searching the unit table for an appropriate location to
install your driver. The MyOpenDriver function in Listing 1-1 on page 1-18 calls this
function and then uses the OpenDriver function to install and open the device driver.

Table 1-2 Reserved unit numbers

Unit number range Reference number range Purpose

0 through 11 –1 through –12 Reserved for serial, disk, AppleTalk,
printer, and other drivers

12 through 31 –13 through –32 Available for desk accessories

32 through 38 –33 through –39 Available for SCSI devices

39 through 47 –40 through –48 Reserved

48 through 127 –49 through –128 Available for slot and other drivers
1-38 Writing a Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
Listing 1-14 Finding space in the unit table

short MyFindSpaceInUnitTable(void);

{

Ptr curUTableBase, newUTableBase;

short curUTableEntries, newUTableEntries;

short refNum, unitNum;

/* get current unit table values from low memory globals */

curUTableEntries = *(short*)UnitNtryCnt;

curUTableBase = *(Ptr*)UTableBase;

/* search for empty space in the current unit table */

for (unitNum = curUTableEntries - 1;

unitNum >= 48; /* lowest available unit number */

unitNum--)

{

refNum = ~(unitNum);

if (GetDCtlEntry(refNum) == nil)

return(unitNum); /* found a space */

}

/* no space in the current table, so make a new one */

/* increase the size of the table by 16 (an arbitrary value) */

newUTableEntries = curUTableEntries + 16;

/* allocate space for the new table */

newUTableBase =

NewPtrSysClear((long)newUTableEntries * sizeof(Handle));

if (newUTableBase == nil)

return(memErr);

/* copy the old table to the new table */

BlockMove(curUTableBase, newUTableBase,

 (long)curUTableEntries * sizeof(Handle));

/* set the new unit table values in low memory */

(Ptr)UTableBase = newUTableBase;

(short)UnitNtryCnt = newUTableEntries;

unitNum = newUTableEntries - 1;

return(unitNum);

}

Writing a Device Driver 1-39

C H A P T E R 1

Device Manager
Although rare, it is possible for the unit table to become completely full. If the
MyFindSpaceInUnitTable function does not find an empty unit table entry, it creates
a larger unit table and copies the contents of the old unit table into the new one. To avoid
the need for every driver to create a larger table, this function increases the size of the
table by 16 entries—a reasonable amount in most cases.

The MyFindSpaceInUnitTable function does not need to disable interrupts when
changing the values of the UTableBase and UnitNtryCnt system global variables
because both unit tables are valid and drivers are not opened or closed at interrupt time.

Note that this function does not check for empty locations in the space reserved for desk
accessories or SCSI drivers. You may wish to modify the function if you are installing
one of these.

Writing a Chooser-Compatible Device Driver 1

The Chooser is a desk accessory that helps provide a standard user interface for
networking and printing device drivers. The Chooser allows the user to make choices
such as which serial port to use, which AppleTalk zone to communicate with, and which
LaserWriter to use.

This section describes how the Chooser works, how to create a Chooser extension, and
how to respond to actions from the user. You should read the previous section, “Writing
a Device Driver,” before you read this section.

How the Chooser Works 1
The Chooser allows users to select which devices they want to use. When the user
opens the Chooser, it displays a window containing lists and buttons for making
device-related choices. Typically, users select a type of device from the icon list, then
select the particular device they want to use from the device list. For AppleTalk devices,
the user must also select an AppleTalk zone from the zone list. The Chooser window can
also display buttons, such as an OK button; and radio buttons, such as the background
printing On and Off buttons. Figure 1-10 shows an example of the Chooser window.
1-40 Writing a Chooser-Compatible Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
Figure 1-10 The Chooser window

The Chooser relies on the List Manager for creating, displaying, and manipulating
possible user selections in this window. You may want to read the chapter
“List Manager” in Inside Macintosh: More Macintosh Toolbox for more information.

The Chooser does not communicate directly with device drivers; instead, it
communicates with device packages. A device package is a resource similar to a driver
resource, except a device package responds to Chooser messages instead of Device
Manager requests. The device package is responsible for communicating the user’s
choices to the device driver.

Device packages are stored in Chooser extension files, which the Chooser looks for in the
Extensions folder inside the System Folder of the startup disk. A Chooser extension file
contains a number of resources in addition to the device package resource. These other
resources contain information about the buttons, labels, and lists that the Chooser
displays when the user selects the device icon from the icon list. You use these resources
to define the following properties:

■ The device list label. The Chooser displays this label over the device list.

■ The buttons to use. The Chooser allows the device package to display up to four
buttons, called the Left button, the Right button, the On radio button, and the Off
radio button.

■ The titles and positions of the buttons.

■ The radio button label.

■ The AppleTalk device type name. The Chooser searches the current AppleTalk zone
for devices of this type.

■ An AppleTalk Name-Binding Protocol (NBP) retry interval and a timeout count. The
Chooser uses this information when searching for AppleTalk devices.

Device

list label

Device list

Icon list

Zone list
Left button

On radio button
Off radio button

Radio button label
Writing a Chooser-Compatible Device Driver 1-41

C H A P T E R 1

Device Manager
When a user selects the icon corresponding to a particular device package, the Chooser
sends messages to that device package by calling the device package as if it were the
following function:

pascal OSErr MyPackage (short message, short caller,

StringPtr objName, StringPtr zoneName,

long p1, long p2);

The Chooser passes the following parameters to the device package:

Parameter Description

message The operation to be performed; this parameter has one of the following
values:

enum {

/* Chooser messages */

chooserInitMsg = 11,

newSelMsg = 12,

fillListMsg = 13,

getSelMsg = 14,

selectMsg = 15,

deselectMsg = 16,

terminateMsg = 17,

buttonMsg = 19

};

Table 1-4 on page 1-47 explains the meaning of these messages.

caller A number that identifies the application calling your device package. The
value chooserID indicates the Chooser. Values in the range 0–127 are
reserved; values outside this range may be used by applications.

objName Additional information whose meaning depends on the value of the
message parameter. See Table 1-4 on page 1-47 for more information.

zoneName The name of the AppleTalk zone containing the devices in the device list.
If the Chooser is being used with the local zone and bit 24 of the flags
field of the device package header is not set, the string value is “*”,
otherwise, it is the actual zone name. See “Creating a Device Package” on
page 1-45 for more information about the package header.

p1 A handle to the List Manager list that contains the device choices
displayed in the device list box.

p2 Additional information whose meaning depends on the value of the
message parameter. See Table 1-4 on page 1-47 for more details.

When the user opens the Chooser, the Chooser searches the Extensions folder for
Chooser extension files. For each one it finds, it opens the file, fetches the device icon,
reads the flags field of the device package header, and closes the file. The Chooser then
displays each device icon, and dims the icons for AppleTalk devices if AppleTalk is not
connected.
1-42 Writing a Chooser-Compatible Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
When the user selects a device icon that is not dimmed, the Chooser reopens the
corresponding Chooser extension file and performs the following actions:

1. The Chooser labels the device list with the device list label.

2. The Chooser sends the chooserInitMsg message to the device package.

3. If the selected device package represents a serial printer, the Chooser places the two
icons that represent the printer port and the modem port serial drivers into the device
list box. When the user makes a selection, the Chooser records the user’s choice in low
memory and parameter RAM.

4. If the selected device icon represents an AppleTalk device and the corresponding
device package does not accept fillListMsg messages, the Chooser initiates an
asynchronous routine that interrogates the current AppleTalk zone for all devices
whose type matches the AppleTalk device type name specified in the Chooser
extension file. The asynchronous routine uses the retry interval and the timeout
count. As responses arrive, the Chooser updates the device list.

5. If the device package does accept fillListMsg messages, the Chooser sends the
fillListMsg message to the device package. The device package responds by filling
the device list with the appropriate device choices.

6. To determine which devices in the device list should be selected, the Chooser calls
the device package with the getSelMsg message. The device package responds
by inspecting the list and setting the selected or unselected state of each entry. The
Chooser may send the getSelMsg message frequently; for example, each time a new
response to the AppleTalk zone interrogation arrives. The Chooser does not send the
getSelMsg message for serial printers; it highlights the icon corresponding to the
currently selected serial port, as recorded in low memory.

7. If the device package allows multiple devices to be active at once, the Chooser sets
the appropriate List Manager bits. When the user selects or deselects a device, the
Chooser calls the device package with the appropriate message. For packages that
do not accept multiple active devices, the Chooser sends the selectMsg or
deselectMsg message; otherwise, it sends the newSelMsg message. The device
package mounts or unmounts the device, if appropriate, and records the user’s choice.

8. When the user selects a different device icon or closes the Chooser, the Chooser calls
the current device package with the terminateMsg message, if the package accepts
this kind of message. At this time, the package can clean up, if necessary. The Chooser
then calls the UpdateResFile function, closes the device resource file, and flushes
the system startup volume.

Creating a Chooser Extension File 1
The Chooser uses three file types to identify different kinds of devices supported by
Chooser extension files:

File type Device type

'PRES' Serial printer

'PRER' Non-serial printer

'RDEV' Other device
Writing a Chooser-Compatible Device Driver 1-43

C H A P T E R 1

Device Manager
You can specify the creator of your Chooser extension file, which allows you to give your
device its own icon.

You can include the following resources in your Chooser extension file:

You should also include a 'BNDL' resource (and appropriate icon family resources) to
give your device type a distinctive icon because this may be the only way that devices
are identified in the Chooser window. The chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials describes the 'BNDL' resource.

The Chooser allows your device package to display two buttons, called the Left button
and the Right button because of their default positions. The Left button has a double
border and is highlighted (the title string is dark) when one or more devices are selected
in the device list. When this button is highlighted, pressing the Return or Enter key, or
double-clicking in the device list, is equivalent to clicking the button. The Right button
has a single border and is always highlighted. The user can activate it only by clicking it.

The Chooser also allows you to display two radio buttons and a radio button label.
These buttons are called the On radio button and the Off radio button because those are
the titles the LaserWriter uses, but you can name them anything you want.

You can position these buttons by including a resource of type 'ncrt' with an ID
of –4096. The first word in this type of resource specifies the number of rectangles, and
the rest of the resource contains the rectangle definitions. The first rectangle positions the
Left button, the second positions the Right button, the third positions the On radio

Resource
 type

Resource
 ID Description

'PACK' –4096 Device package. This resource contains the device package
header and code.

'STR ' –4096 Type name for AppleTalk devices. The Chooser searches the
current AppleTalk zone for devices of this type.

'GNRL' –4096 AppleTalk information. The first byte of this resource
contains the Name-Binding Protocol (NBP) retry interval,
the second byte contains the timeout count.

'STR ' –4091 List box label. The Chooser labels the device list with this
string after the user has selected the device’s icon.

'STR ' –4087 Radio button label.

'STR ' –4088 Off radio button title.

'STR ' –4089 On radio button title.

'STR ' –4092 Right button title.

'STR ' –4093 Left button title.

'ncrt' –4096 Button positions.

'LDEF' –4096 Alternate list definition function. You can supply this
function to modify the device list—to include pictures
or icons, for example.

'STR ' –4090 Reserved for use by the Chooser.
1-44 Writing a Chooser-Compatible Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
button, and the fourth positions the Off radio button. The fifth rectangle positions the
radio button label.

Each rectangle definition is 8 bytes long and contains the rectangle coordinates in the
order [top, left, bottom, right]. The default values are [112, 206, 132, 266] for the Left button
and [112, 296, 132, 356] for the Right button. You could use the values [112, 251, 132, 331]
to center a single button.

The Chooser uses the List Manager to produce and display the standard device list. You
can supply a list definition function to modify this list. For example, you might want to
include pictures or icons in your list. To do this, you must provide a resource of type
'LDEF' with an ID of –4096. For complete information about list construction and data
structures, see the chapter “List Manager” in Inside Macintosh: More Macintosh Toolbox.

Creating a Device Package 1
Like a driver resource, a device package has two parts:

■ a header that contains flags and other information about the driver

■ the code that responds to Chooser messages

Figure 1-11 shows the structure of a device package.

Figure 1-11 Structure of a device package

Since the Chooser expects the package code to be at the beginning of the device package,
the first field of the package header should be a BRA.S instruction to the package code.

BytesOffset

Branch to package code
0

2

Device ID
2

2

$F000 (–4096)

Resource ID ('PACK')

4

8
2

4

Version 4

Flags 4

Package code Variable

10

14

18
Writing a Chooser-Compatible Device Driver 1-45

C H A P T E R 1

Device Manager
The device ID is an integer that identifies the device. The version field differentiates
versions of the driver code.

The flags field contains information about the device package and the device it serves.
Table 1-3 lists the meaning of each bit of the flags field.

The package code should implement the MyPackage function described on page 1-42.
The following section, “Responding to the Chooser,” discusses how to implement this
function.

Responding to the Chooser 1
This section gives more details about how your device package should respond when it
receives a message from the Chooser.

When the Chooser sends your device package a message, the Chooser extension file is
the current resource file and the Chooser window is the current graphics port. The

Table 1-3 Device package flags

Bit Meaning

31 Set if an AppleTalk device

30–29 Reserved (clear to 0)

28 Set if the device package can have multiple instances selected at once

27 Set if the device package uses the Left button

26 Set if the device package uses the Right button

25 Set if no zone name has been saved

24 Set if the device package uses actual zone names

23–21 Reserved (clear to 0)

20 Set if the device uses the On and Off radio buttons and radio button label

19–17 Reserved (clear to 0)

17 Set if the device package accepts the chooserInitMsg message

16 Set if the device package accepts the newSelMsg message

15 Set if the device package accepts the fillListMsg message

14 Set if the device package accepts the getSelMsg message

13 Set if the device package accepts the selectMsg message

12 Set if the device package accepts the deselectMsg message

11 Set if the device package accepts the terminateMsg message

10–0 Reserved (clear to 0)
1-46 Writing a Chooser-Compatible Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
startup disk is the default volume and the System Folder of the startup disk is the
default directory. Your device package must preserve all of these.

Table 1-4 lists the Chooser messages and how your device package should respond
to them.

Table 1-4 Chooser messages and their meanings

Message Meaning

chooserInitMsg The Chooser sends this message to your device package when the user selects
the icon representing your device in the icon list. The objName parameter
contains a pointer to a data structure that contains a size word followed by four
handles to structures of type ControlRecord. The size is at least 18 bytes
(2 bytes for the size word and 4 bytes for each of the handles). The handles
reference the Left and Right buttons and the On and Off radio buttons, in that
order. Your device package can respond to this message by setting up the initial
button configuration. To display any of the radio buttons, use the ShowControl
function. To highlight them, use the SetControlValue function. The p2
parameter is not used. For more information about controls, see the chapter
“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

newSelMsg If your device package allows multiple selections, the Chooser sends this
message to your package when the user changes or adds a selection. The
objName and p2 parameters are not used.

fillListMsg The Chooser sends this message when the user selects a device icon. The p1
parameter contains a handle to a List Manager list. Your device package should
use the List Manager to fill this list with choices for the particular type of device.
The objName and p2 parameters are not used.

getSelMsg The Chooser sends this message to determine which devices in the device list
should be selected. The p1 parameter contains a handle to a List Manager list.
Your device package should respond by inspecting the list and setting the
selected or unselected state of each entry, using the LSetSelect function. You
should alter only the entries that require updating. The Chooser does not send
this message for serial printers.

selectMsg If your device package does not allow multiple selections, the Chooser sends
this message to your package when the user selects a device in the device list.
You should record the user’s selection, preferably in your Chooser extension file.
Your device package may not call the List Manager in response to this message.

If your device package accepts fillListMsg messages, the objName
parameter is undefined and the p2 parameter contains the row number of the
selected device.

If your device package does not accept fillListMsg messages, the objName
parameter contains a pointer to a string containing the name of the device (up to
32 characters). If the device is an AppleTalk device, the p2 parameter contains
the AddrBlock value for the address of the selected AppleTalk device. For more
information about AppleTalk devices, refer to Inside Macintosh: Networking.

continued
Writing a Chooser-Compatible Device Driver 1-47

C H A P T E R 1

Device Manager
Allocating Private Storage 1
Device packages initially have no data space allocated. There are two ways your device
package can acquire data space:

■ Use the List Manager to allocate extra memory in the device list.

■ Create a resource.

The Chooser uses column 0 of the device list structure to store the names displayed in
the device list. For device packages that do not accept fillListMsg messages, the
Chooser uses column 1 to store the 4-byte AppleTalk internet addresses of the devices
in the list. Therefore, your device package can use column 1 and higher (if it accepts
fillListMsg messages) or column 2 and higher to store private data. You can use
standard List Manager functions to add these columns, store data in them, and retrieve
the data stored there. Your device package can also use the refCon field of the device
list for its own purposes.

Using the device list is limited by the fact that the Chooser disposes of the device list
whenever the user changes device types or changes the current zone. However, the
Chooser does call your device package with the terminateMsg message before it
disposes of the list.

deselectMsg If your device package does not allow multiple selections, the Chooser sends
this message to your package when the user deselects a device in the device list.
Your device package may not call the List Manager in response to this message.

If your device package accepts fillListMsg messages, the objName
parameter is undefined and the p2 parameter contains the row number of the
device that was deselected.

If your device package does not accept fillListMsg messages, the objName
parameter contains a pointer to a string containing the name of the device (up to
32 characters). If the device is an AppleTalk device, the p2 parameter contains
the AddrBlock value for the address of the selected AppleTalk device. For more
information about AppleTalk devices, refer to Inside Macintosh: Networking.

terminateMsg The Chooser sends this message when the user selects a different device icon,
closes the Chooser window, or changes zones. Your device package should
perform any necessary cleanup tasks but should not dispose of the device list.
The objName and p2 parameters are not used.

buttonMsg The Chooser sends this message when the user clicks one of the buttons in the
Chooser window. The low-order byte of the p2 parameter contains 1 if the user
clicked the Left button, 2 if the user clicked the Right button, 3 if the user clicked
the On radio button, and 4 if the user clicked the Off radio button. You must
perform the appropriate highlighting for the radio buttons. The high-order word
of the p2 parameter contains the modifier bits from the mouse-up event. See the
chapters “Control Manager” and “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more information.

Table 1-4 Chooser messages and their meanings (continued)

Message Meaning
1-48 Writing a Chooser-Compatible Device Driver

C H A P T E R 1

Device Manager

1
D

evice M
anager
Also, if your device package does not accept fillListMsg messages, the Chooser
disposes of the device list whenever a new response from the AppleTalk zone
interrogation arrives. However, the Chooser does send the getSelMsg message
immediately afterward.

The second way to obtain storage space is to create a resource in the device resource file.
This file is always the current resource file when the Chooser sends a message to the
package, so you can use the GetResource function to obtain a handle to the storage.

It is important for most device packages to record which devices the user has chosen.
The recommended method for this is to create a resource in your driver resource file.
This resource can be of any type; in fact, it’s advantageous to provide your own resource
type so that no other program will try to modify it. If you choose to use a standard
resource type, you should use only resource IDs in the range –4080 through –4065.

Writing a Desk Accessory 1

Desk accessories are small applications designed like device drivers. Desk accessories
typically provide a user interface with a window and a menu, perform some limited
function, and are opened from the Apple menu. The Chooser is an example of a desk
accessory.

Desk accessories were originally created for the Macintosh because they offered two
distinct advantages over applications. They provided both a limited degree of
multitasking and a primitive form of interapplication communication. However, modern
Macintosh applications enjoy far more sophisticated versions of these capabilities. Users
can even open applications from the Apple menu. For these reasons, you would be better
served by writing a small application than by writing a desk accessory.

Control panels have largely replaced desk accessories as a user interface for device
drivers. In addition to providing a more consistent and extensible interface, control
panels can include an initialization ('INIT') resource to load and execute your device
driver at system startup. For more information about control panels, see the chapter
“Control Panels” in Inside Macintosh: More Macintosh Toolbox.

If you’re certain you need to write a desk accessory, you should read this section. You
might also want to read the chapters “Event Manager,” “Window Manager,” “Dialog
Manager,” and “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

How Desk Accessories Work 1
When the user opens a desk accessory (or when an application calls the OpenDeskAcc
function), the system performs a major context switch, loads the desk accessory into the
system heap, and calls the desk accessory driver open routine. The desk accessory can
respond by creating its window and menu.
Writing a Desk Accessory 1-49

C H A P T E R 1

Device Manager
When events occur, the Event Manager directs them to the desk accessory by calling its
driver control routine. The Event Manager handles switching between applications and
desk accessories in the system heap.

When the user closes the desk accessory (by closing its window or choosing Quit from
its menu) or an application closes the desk accessory (by calling the CloseDeskAcc
function), the desk accessory disposes of its window and any other data structures
associated with it.

In a single-application environment in System 6, and in a multiple-application
environment in which the desk accessory is launched in the application’s partition
(for example, a desk accessory opened by the user from the Apple menu while holding
down the Option key), the Event Manager handles events for desk accessories in a
slightly different manner, although it still translates them into control requests. For
details, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Creating a Driver Resource for a Desk Accessory 1
You create a desk accessory by creating a driver resource and storing it in a resource file,
as described in “Creating a Driver Resource,” beginning on page 1-24. Typically, you
store your desk accessory driver resource in a file of type 'dfil', which the user places
in the Apple Menu Items folder.

Three fields of the driver resource header are of particular importance to desk
accessories:

■ The drvrEMask field. This field contains an event mask specifying which events your
desk accessory can handle. If your desk accessory has a window, you should include
keyboard, activate, update, and mouse-down events, but you should not include
mouse-up events. When an event occurs, the Event Manager checks this field to
determine whether the desk accessory can handle the type of event and, if so, calls
the desk accessory driver control routine. See the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials for more information about events
and event masks.

■ The drvrMenu field. This field contains the menu ID of your desk accessory’s menu,
if it has one, or any one of its menus, if it has more than one. Otherwise, it contains 0.
A desk accessory menu ID must be negative and must be different from the menu ID
for other desk accessories.

■ The drvrDelay field and the dNeedTime flag of the drvrFlags field. Desk
accessories sometimes need to perform certain actions periodically. For example, a
clock desk accessory might change the time it displays every second. If your desk
accessory needs to perform a periodic action, set the dNeedTime flag and use the
drvrDelay field to indicate how often the action should occur. “Creating a Driver
Resource,” beginning on page 1-24, describes these fields in more detail.

All desk accessories must implement open, close, and control routines. Your desk
accessory can implement a prime and status routine if needed.
1-50 Writing a Desk Accessory

C H A P T E R 1

Device Manager

1
D

evice M
anager
Opening and Closing a Desk Accessory 1
When the user chooses an item from the Apple menu, the foreground application calls
the OpenDeskAcc function, which determines whether the item is a desk accessory,
application, or document, and schedules it for execution. Applications call the
CloseDeskAcc function if the user chooses the Close menu item from the File menu
when the foreground window does not belong to the application. These functions are
described in “Device Manager Reference,” beginning on page 1-53.

Opening a desk accessory is similar to launching an application. In your desk accessory
driver open routine, you should do the following:

■ Create the desk accessory’s window. You can do this with the Dialog Manager
function GetNewDialog or NewDialog. You should specify that the window be
invisible because the OpenDeskAcc function will display it. You should set the
windowKind field of the windowRecord structure to the desk accessory’s driver
reference number, which you can find in the device control entry. You should also
store a copy of the window pointer in the dCtlWindow field of the device control
entry.

■ Allocate private storage as you would for any device driver.

■ Create any menus needed by your desk accessory. You are responsible for adding
your menus to the menu bar. See the chapter “Menu Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more details.

If your driver open routine is unable to complete its tasks (because of insufficient
memory, for example), you should modify the code so it doesn’t respond to events,
and display an alert indicating failure.

As for all drivers, your close routine should undo the actions taken by the open routine,
dispose of the desk accessory’s window and private storage, clear the window pointer in
the device control entry, and remove any menus that were added to the menu bar.

Responding to Events 1
When the Event Manager determines an event has occurred that your desk accessory
should handle, it checks the drvrEMask field of the driver header and, if that field
indicates your desk accessory handles the event type, it passes the event to your desk
accessory by calling your driver control routine.

The Event Manager passes one of nine values in the csCode field to indicate the action
to take:

Constant
name Value Meaning

accEvent 64 Handle a given event

accRun 65 Time for periodic action

accCursor 66 Change cursor shape if appropriate

accMenu 67 Handle a given menu item
Writing a Desk Accessory 1-51

C H A P T E R 1

Device Manager
Along with the accEvent message, the Event Manager sends a pointer to an event
record in the csParam field. Your desk accessory can respond to the event in whatever
way is appropriate. For example, when your desk accessory becomes active, it might
install its menu in the menu bar.

Note
If your desk accessory window is a modeless dialog box and you are
calling the Dialog Manager function IsDialogEvent in response to the
event, you should set the windowKind field of your window record to 2
before you call IsDialogEvent. Setting this field to 2 allows the Dialog
Manager to recognize and handle the event properly. You should restore
the original value of the windowKind field before returning from your
control routine. ◆

The Event Manager periodically sends the accRun message if your desk accessory
has requested time for background processing. To request this service, you set the
dNeedTime flag in the drvrFlags field of your desk accessory driver header. See
“Writing Control and Status Routines,” beginning on page 1-34, for more information.

The accCursor message makes it possible to change the shape of the cursor when it
is inside your desk accessory window and your desk accessory window is active. Your
control routine should check whether the mouse location is in your window and, if so,
should set the cursor appropriately by calling the QuickDraw function InitCursor.

If your desk accessory window is a dialog box, you should respond to the accCursor
message by generating a null event (storing the event code for a null event in an event
record) and passing it to the Dialog Manager function DialogSelect. This allows the
Dialog Manager to blink the insertion point in editText items.

When the Event Manager sends an accMenu message, it provides the menu ID followed
by the menu item number in the csParam field. You should take the appropriate action
and then call the Menu Manager function HiliteMenu with a value of 0 for the menuID
parameter to remove the highlighting from the menu bar.

You should respond to the last five messages, accUndo through accClear, by
processing the corresponding editing command in the desk accessory window, if
appropriate. The chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox
contains information about cutting and pasting.

Your desk accessory routines should restore the current resource file and graphics port if
it changes either one.

accUndo 68 Handle the Undo command

accCut 70 Handle the Cut command

accCopy 71 Handle the Copy command

accPaste 72 Handle the Paste command

accClear 73 Handle the Clear command

Constant
name Value Meaning
1-52 Writing a Desk Accessory

C H A P T E R 1

Device Manager

1
D

evice M
anager
Device Manager Reference 1

This section describes the data structures, functions, and resources that are specific to the
Device Manager.

The “Data Structures” section shows the C declarations for the data structures that are
used by the Device Manager. The “Device Manager Functions” section describes the
functions you use to communicate with device drivers and the functions that provide
support for writing your own device drivers. The “Resources” section describes the
driver resource.

Data Structures 1
This section describes the parameter block structure, the device control entry structure,
and the enumerated types you use to define values within them.

Device Manager Parameter Block 1

The Device Manager provides both a high-level and a low-level interface for
communicating with device drivers. You pass information to the low-level functions
in a parameter block structure, defined by the ParamBlockRec union.

typedef union ParamBlockRec {

IOParam ioParam;

FileParam fileParam;

VolumeParam volumeParam;

CntrlParam cntrlParam;

SlotDevParam slotDevParam;

MultiDevParam multiDevParam;

} ParamBlockRec;

typedef ParamBlockRec *ParmBlkPtr;

The Device Manager uses two forms of the parameter block: one for the open, close,
read, and write functions (the IOParam structure) and another for the control and status
functions (the CntrlParam structure). Other managers use other structures of the
ParamBlockRec union.

typedef struct IOParam {

 QElemPtr qLink; /* next queue entry */

 short qType; /* queue type */

 short ioTrap; /* routine trap */

 Ptr ioCmdAddr; /* routine address */

 ProcPtr ioCompletion; /* completion routine address */

 OSErr ioResult; /* result code */

 StringPtr ioNamePtr; /* pointer to driver name */
Device Manager Reference 1-53

C H A P T E R 1

Device Manager
 short ioVRefNum; /* volume reference or drive number */

 short ioRefNum; /* driver reference number */

 char ioVersNum; /* not used by the Device Manager */

 char ioPermssn; /* read/write permission */

 Ptr ioMisc; /* not used by the Device Manager */

 Ptr ioBuffer; /* pointer to data buffer */

 long ioReqCount; /* requested number of bytes */

 long ioActCount; /* actual number of bytes completed */

 short ioPosMode; /* positioning mode */

 long ioPosOffset; /* positioning offset */

} IOParam;

typedef struct CntrlParam {

 QElemPtr qLink; /* next queue entry */

 short qType; /* queue type */

 short ioTrap; /* routine trap */

 Ptr ioCmdAddr; /* routine address */

 ProcPtr ioCompletion; /* completion routine address */

 OSErr ioResult; /* result code */

 StringPtr ioNamePtr; /* pointer to driver name */

 short ioVRefNum; /* volume reference or drive number */

 short ioCRefNum; /* driver reference number */

 short csCode; /* type of control or status request */

 short csParam[11]; /* control or status information */

} CntrlParam;

The first eight fields are common to both structures. Each structure also includes its own
unique fields.

Field descriptions for fields common to both structures

qLink A pointer to the next entry in the driver I/O queue. (This field is
used internally by the Device Manager to keep track of
asynchronous calls awaiting execution.)

qType The queue type. (This field is used internally by the Device Manager.)
ioTrap The trap number of the routine that was called. (This field is used

internally by the Device Manager.)
ioCmdAddr The address of the routine that was called. (This field is used

internally by the Device Manager.)
ioCompletion A pointer to a completion routine. When making asynchronous

requests, you must set this field to nil if you are not specifying
a completion routine. The Device Manager automatically sets this
field to nil when you make a synchronous request.

ioResult A value indicating whether the routine completed successfully. The
Device Manager sets this field to 1 when it queues an asynchronous
request. When the driver completes the request, it places the actual
1-54 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
result code in this field. You can poll this field to detect when the
driver has completed the request and to determine its result code.
The Device Manager executes the completion routine after this field
receives the result code.

ioNamePtr A pointer to the name of the driver. You use this field only when
opening a driver.

ioVRefNum The drive number, if any. The meaning of this field depends on the
device driver. The Disk Driver uses this field to identify disk
devices.

Field descriptions for the IOParam structure

ioRefNum The driver reference number.
ioVersNum Not used.
ioPermssn The read/write permission of the driver. When you open a driver,

you must supply one of the following values in this field:

enum {

/* access permissions */

fsCurPerm = 0, /* retain current permission */

fsRdPerm = 1, /* allow reads only */

fsWrPerm = 2, /* allow writes only */

fsRdWrPerm = 3 /* allow reads and writes */

};

The Device Manager compares subsequent read and write requests
with the read/write permission of the driver. If the request type is
not permitted, the Device Manager returns a result code indicating
the error.

ioMisc Not used.
ioBuffer A pointer to the data buffer for the driver to use for reads or writes.
ioReqCount The requested number of bytes for the driver to read or write.
ioActCount The actual number of bytes the driver reads or writes.
ioPosMode The positioning mode used by drivers of block devices. Bits 0 and 1

of this field indicate where an operation should begin relative to the
physical beginning of the block-formatted medium. You can use the
following constants to test or set the value of these bits:

enum {

/* positioning modes */

fsAtMark = 0, /* at current position */

fsFromStart = 1, /* offset from beginning */

fsFromMark = 3 /* offset from current

position */

};
Device Manager Reference 1-55

C H A P T E R 1

Device Manager
The Disk Driver allows you to add the following constant to this
field to specify a read-verify operation:

enum {

rdVerify = 64 /* read-verify mode */

};

See the description of the PBRead function on page 1-70.
ioPosOffset The byte offset, relative to the position specified by the positioning

mode, where the driver should perform the operation. If you
specify the fsAtMark positioning mode, the Device Manager
ignores this field.

Field descriptions for the CntrlParam structure

ioCRefNum The driver reference number.
csCode A value identifying the type of control or status request. Each driver

may interpret this number differently.
csParam The control or status information passed to or from the driver. This

field is declared generically as an array of eleven integers. Each
driver may interpret the contents of this field differently. Refer to
the driver’s documentation for specific information.

Device Control Entry 1

The device control entry structure, defined by the AuxDCE data type, stores information
about each device driver in memory. The AuxDCE data type supersedes the original
DCtlEntry data type, and provides additional fields for drivers that serve slot devices.
See the chapter “Slot Manager” in this book for information about slot device drivers.

typedef struct AuxDCE {

Ptr dCtlDriver; /* pointer or handle to driver */

short dCtlFlags; /* flags */

QHdr dCtlQHdr; /* I/O queue header */

long dCtlPosition; /* current R/W byte position */

Handle dCtlStorage; /* handle to private storage */

short dCtlRefNum; /* driver reference number */

long dCtlCurTicks; /* used internally */

GrafPtr dCtlWindow; /* pointer to driver’s window */

short dCtlDelay; /* ticks between periodic actions */

short dCtlEMask; /* desk accessory event mask */

short dCtlMenu; /* desk accessory menu ID */

char dCtlSlot; /* slot */

char dCtlSlotId; /* sResource directory ID */

long dCtlDevBase; /* slot device base address */

Ptr dCtlOwner; /* reserved; must be 0 */

char dCtlExtDev; /* external device ID */
1-56 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
char fillByte; /* reserved */

} AuxDCE;

typedef AuxDCE *AuxDCEPtr, **AuxDCEHandle;

Field descriptions

dCtlDriver A pointer or handle to the driver, as determined by the dRAMBased
flag (bit 6) of the dCtlFlags field.

dCtlFlags Flags describing the abilities and state of the driver. The high-order
byte contains flags copied from the drvrFlags word of the driver
resource. These flags are described in “Creating a Driver Resource,”
beginning on page 1-24.
The low-order byte of the dCtlFlags field contains the following
run-time flags:

You can use the following constants to test or set the value of
these flags:

enum {

/* run-time flags in the device control entry */

dOpenedMask = 0x0020,

dRAMBasedMask = 0x0040,

drvrActiveMask = 0x0080

};

dCtlQHdr A pointer to the header of the driver I/O queue, which is a standard
Operating System queue. See the chapter “Queue Utilities” in
Inside Macintosh: Operating System Utilities for more information
about the QHdr data type.

dCtlPosition The current source or destination position for reading or writing.
This field is used only by drivers of block devices. The value in this
field is the number of bytes beyond the physical beginning of the
medium used by the device, and must be a multiple of 512. For
example, immediately after the Disk Driver reads the first block
of data from a 3.5-inch disk, this field contains the value 512.

dCtlStorage A handle to a driver’s private storage. A driver may allocate a
relocatable block of memory and keep a handle to it in this field.

dCtlRefNum The driver reference number.

Name Bit Meaning

dOpened 5 Set by the Device Manager when the
driver is opened, and cleared when it
is closed.

dRAMBased 6 Set if the dCtlDriver field contains
a handle.

drvrActive 7 Set by the Device Manager when the
driver is executing a request, and cleared
when the driver is inactive.
Device Manager Reference 1-57

C H A P T E R 1

Device Manager
dCtlCurTicks Used internally.
dCtlWindow A pointer to the desk accessory window. See “Writing a Desk

Accessory” on page 1-49 for more information.
dCtlDelay The number of ticks to wait between periodic actions.
dCtlEMask The desk accessory event mask. See “Writing a Desk Accessory” on

page 1-49 for more information.
dCtlMenu The menu ID of a desk accessory’s menu, if any. See “Writing a

Desk Accessory” on page 1-49 for more information.
dCtlSlot The slot number of the slot device.
dCtlSlotId The sResource directory ID of the slot device.
dCtlDevBase The base address of the slot device. For a video card this field

contains the address of the pixel map for the card’s GDevice record.
dCtlOwner Reserved. This field must be 0.
dCtlExtDev The external device ID of the slot device.
fillByte Reserved.

Device Manager Functions 1
This section describes the functions you use to

■ open and close device drivers

■ communicate with device drivers

■ control and monitor device drivers

■ write and install device drivers

The low-level Device Manager functions described in this section (those that use the
parameter block structure to pass information) provide two advantages over the
corresponding high-level functions:

■ These functions can be executed asynchronously, returning control to your application
before the operation is completed.

■ In most cases, these functions provide more extensive information or perform
advanced operations.

All of these functions exchange parameters with your application through a parameter
block of type ParamBlockRec. When you call a low-level function, you pass the
address of the parameter block to the function.

There are three versions of most low-level functions. The first takes two parameters: a
pointer to the parameter block and a Boolean parameter that specifies whether the
function is to execute asynchronously (true) or synchronously (false). For example,
the first version of the low-level PBRead function has this declaration:

pascal OSErr PBRead(ParmBlkPtr paramBlock, Boolean async);
1-58 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
The second version does not take a second parameter; instead, it adds the suffix
Sync to the name of the function.

pascal OSErr PBReadSync(ParmBlkPtr paramBlock);

Similarly, the third version of the function does not take a second parameter; instead,
it adds the suffix Async to the name of the function.

pascal OSErr PBReadAsync(ParmBlkPtr paramBlock);

Only the first version of each function is documented in this section. Note, however, that
the second and third versions of these functions do not use the glue code that the first
version uses and are therefore more efficient. See “Summary of the Device Manager,”
beginning on page 1-91, for a listing of all three versions of these functions.

Assembly-Language Note

All Device Manager functions are synchronous by default. If you want a
function to be executed asynchronously, set bit 10 of the trap word. To
execute a function immediately, set bit 9 of the trap word. You can set
these bits by appending the word ASYNC or IMMED as the second
argument to the trap macro. For example:

_Read, ASYNC

_Control, IMMED

You can set or test bit 10 of a trap word using the global constant
asyncTrpBit. You can set or test bit 9 of the trap word using the global
constant noQueueBit. ◆

▲ W A R N I N G

Never call any synchronous Device Manager function at interrupt time.
This includes all of the high-level functions and the synchronous
versions of the low-level functions.

A synchronous request at interrupt time may block other pending
I/O requests. Because the device driver cannot begin processing the
synchronous request until it completes the other requests in its queue,
this situation can cause the Device Manager to loop indefinitely while it
waits for the device driver to complete the synchronous request. ▲

Opening and Closing Device Drivers 1

A device driver must be open before your application can communicate with it. You
can use the OpenDriver or PBOpen function to open closed drivers or to determine the
driver reference number of a driver that is already open. You use the OpenSlot function
to open drivers that serve slot devices. To open a desk accessory or other Apple menu
item from within your application, use the OpenDeskAcc function.
Device Manager Reference 1-59

C H A P T E R 1

Device Manager
When you finish communicating with a device driver, you can close it if you are sure no
other application or part of the system needs to use it. You can use the CloseDriver or
PBClose function to close a driver. You use the CloseDeskAcc function to close a desk
accessory.

The PBOpen and PBClose functions use the IOParam union of the Device Manager
parameter block. The OpenSlot function uses the IOParam union fields and some
additional fields that apply only to slot devices.

IMPORTANT

Device drivers cannot be opened or closed asynchronously. The
PBOpen, PBClose, and OpenSlot functions include an asynchronous
option because they share code with the File Manager. The async
parameter must be set to false when these functions are used to open
or close a device driver. ▲

OpenDriver 1

You can use the OpenDriver function to open a closed device driver or to determine the
driver reference number of an open device driver.

pascal OSErr OpenDriver(ConstStr255Param name, short *drvrRefNum);

name The name of the driver to open. A driver name consists of a period (.)
followed by any sequence of 1 to 255 printing characters. The Device
Manager ignores case (but not diacritical marks) when comparing names.

drvrRefNum The driver reference number of the opened driver.

DESCRIPTION

The OpenDriver function opens the device driver specified by the name parameter and
returns its driver reference number in the drvrRefNum parameter. To avoid replacing an
open driver, the Device Manager searches the drivers that are already installed in the
unit table before searching driver resources. If the specified driver is already open, this
function simply returns the driver reference number.

If the driver is not already open, the Device Manager calls the GetNamedResource
function using the specified name and the resource type 'DRVR'. If the resource is
found, the resource ID defines the unit number of the driver, which determines the
location in the unit table where the Device Manager stores the handle to the driver’s
device control entry (DCE).

After loading the driver resource into memory, the Device Manager creates a DCE for the
driver, copies the flags from the driver header to the dCtlFlags field, and places the
driver reference number in the dCtlRefNum field.
1-60 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
The OpenDriver function is a high-level version of the low-level PBOpen function.
Use the PBOpen function when you need to specify read/write permission for the driver.
The next section describes the PBOpen function.

SPECIAL CONSIDERATIONS

Because another driver might already be installed in the unit table at the location
determined by the driver’s resource ID, you should first search for an unused location in
the unit table and renumber the driver resource accordingly before calling this function.
See Listing 1-1 on page 1-18 for an example.

The OpenDriver function may move memory; you should not call it at interrupt time.

RESULT CODES

SEE ALSO

For information about the low-level functions for opening devices, see the next section,
which describes the PBOpen function, and the description of the OpenSlot function on
page 1-63. For an example of how to open a device driver using the OpenDriver
function, see Listing 1-1 on page 1-18.

PBOpen 1

You can use the PBOpen function to open a closed device driver or to determine the
driver reference number of an open device driver.

pascal OSErr PBOpen(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to an IOParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to false because device drivers cannot be opened
asynchronously.

Parameter block

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
openErr –23 Requested read/write permission does not match driver’s

open permission
dInstErr –26 Driver resource not found

← ioResult OSErr The device driver’s result code.
→ ioNamePtr StringPtr A pointer to the driver name.
← ioRefNum short The driver reference number.
→ ioPermssn char Read/write permission.
Device Manager Reference 1-61

C H A P T E R 1

Device Manager
DESCRIPTION

The PBOpen function opens the device driver specified by the ioNamePtr field and
returns its driver reference number in the ioRefNum field. To avoid replacing an open
driver, the Device Manager searches the drivers that are already installed in the unit
table before searching driver resources. If the specified driver is already open, this
function simply returns the driver reference number.

If the driver is not already open, the Device Manager calls the GetNamedResource
function using the specified name and the resource type 'DRVR'. If the resource is
found, the resource ID defines the unit number of the driver, which determines the
location in the unit table where the Device Manager stores the handle to the driver’s
device control entry (DCE).

After loading the driver resource into memory, the Device Manager creates a DCE for the
driver, copies the flags from the driver header to the dCtlFlags field, and places
the driver reference number in the dCtlRefNum field.

You specify the access permission for the device driver by placing one of the following
constants in the ioPermssn field of the parameter block:

enum {

/* access permissions */

fsCurPerm = 0, /* retain current permission */

fsRdPerm = 1, /* allow reads only */

fsWrPerm = 2, /* allow writes only */

fsRdWrPerm = 3 /* allow reads and writes */

};

If the driver returns a negative result in register D0, the Device Manager returns the
result code in the ioResult parameter and does not open the driver.

SPECIAL CONSIDERATIONS

Because another driver might already be installed in the unit table at the location
determined by the driver’s resource ID, you should first search for an unused location in
the unit table and renumber the driver resource accordingly before calling this function.
See Listing 1-1 on page 1-18 for an example.

The PBOpen function may move memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBOpen function is _Open (0xA000). You must set up register A0
with the address of the parameter block. When _Open returns, register D0 contains the
result code. Register D0 is the only register affected by this function.

Registers on entry

A0 Address of the parameter block
1-62 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
RESULT CODES

SEE ALSO

For information about the high-level function for opening device drivers, see the
description of the OpenDriver function on page 1-60. For information about the
low-level function for opening device drivers that serve devices on expansion cards,
see the next section, which describes the OpenSlot function. For an example of opening
a device driver, see Listing 1-1 on page 1-18.

OpenSlot 1

You can use the OpenSlot function to open a device driver that serves a slot device.

pascal OSErr OpenSlot(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to a SlotDevParam or MultiDevParam structure of the
ParamBlockRec union.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to false because device drivers cannot be opened
asynchronously.

Parameter block

Additional fields for a single device

Registers on exit

D0 Result code

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
openErr –23 Requested read/write permission does not match driver’s

open permission
dInstErr –26 Driver resource not found

← ioResult OSErr The device driver’s result code.
→ ioNamePtr StringPtr A pointer to the driver name.
← ioRefNum short The driver reference number.
→ ioPermssn char Read/write permission.

→ ioMix Ptr Reserved for use by the driver open routine.
→ ioFlags short Determines the number of additional fields.
→ ioSlot char The slot number.
→ ioId char The slot resource ID.
Device Manager Reference 1-63

C H A P T E R 1

Device Manager
Additional fields for multiple devices

DESCRIPTION

The OpenSlot function is equivalent to the PBOpen function, except that it sets bit 9 of
the trap word, which signals the _Open routine that the parameter block includes
additional fields.

If the sResource serves a single device, you should clear all the bits of the ioFlags field
and include the slot number and slot resource ID in the ioSlot and ioID fields.

If the sResource serves multiple devices, you should set the fMulti bit (bit 0) of the
ioFlags field (clearing all other bits to 0), and specify, in the ioSEBlkPtr field, an
external parameter block that is customized for the devices installed in the slot.

SPECIAL CONSIDERATIONS

The OpenSlot function may move memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the OpenSlot function is _Open (0xA200). Bit 9 of the trap word is
set to signal that the parameter block contains additional fields for slot devices.

You must set up register A0 with the address of the parameter block. When _Open
returns, register D0 contains the result code. Register D0 is the only register affected by
this function.

RESULT CODES

SEE ALSO

For information about the low-level function for opening other device drivers, see the
description of the PBOpen function on page 1-61. For an example of opening a device

→ ioMMix Ptr Reserved for use by the driver open routine.
→ ioMFlags short The number of additional fields.
→ ioSEBlkPtr Ptr A pointer to an external parameter block.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
openErr –23 Requested read/write permission does not match driver’s

open permission
dInstErr –26 Driver resource not found
1-64 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
driver, see Listing 1-1 on page 1-18. Refer to the chapter “Slot Manager” in this book for
more information about slot device drivers.

OpenDeskAcc 1

You can use the OpenDeskAcc function to open an item in the Apple menu.

pascal short OpenDeskAcc(ConstStr255Param deskAccName);

deskAccName A Pascal string containing the name of the Apple menu item.

DESCRIPTION

The OpenDeskAcc function opens the Apple menu item specified by the deskAccName
parameter. If the item is already open, the OpenDeskAcc function schedules it for
execution and returns to your application. Otherwise, it prepares to open the item. In
either case, your application receives a suspend event and the selected item is brought
to the foreground.

You should ignore the value returned by OpenDeskAcc. If the menu item is a desk
accessory and is successfully opened, the function result is a driver reference number for
the desk accessory driver. Otherwise the function result is undefined. The desk accessory
is responsible for informing the user of any errors.

Because some older desk accessories may not reset the current graphics port before
returning, you should bracket your call to OpenDeskAcc with calls to the QuickDraw
procedures GetPort and SetPort, to save and restore the current port.

SPECIAL CONSIDERATIONS

The OpenDeskAcc function may move memory; you should not call it at interrupt time.

SEE ALSO

For information about closing a desk accessory, see the description of the
CloseDeskAcc function beginning on page 1-68.

CloseDriver 1

You can use the CloseDriver function to close an open device driver.

pascal OSErr CloseDriver(short refNum);

refNum The driver reference number returned by the driver-opening function.
Device Manager Reference 1-65

C H A P T E R 1

Device Manager
DESCRIPTION

The CloseDriver function closes the device driver indicated by the refNum parameter.
The Device Manager waits until the driver is inactive before calling the driver’s close
routine. When the driver indicates it has processed the close request, the Device
Manager unlocks the driver resource if the dRAMBased flag is set, and unlocks the
device control entry if the dNeedLock flag is not set. The Device Manager does not
dispose of the device control entry or remove it from the unit table.

This function is a high-level version of the low-level PBClose function. Use the
PBClose function when you want to specify a completion routine.

▲ W A R N I N G

You should not close drivers that other applications may be using, such
as a disk driver, the AppleTalk drivers, and so on. ▲

SPECIAL CONSIDERATIONS

The Device Manager does not queue close requests.

▲ W A R N I N G

Do not call the CloseDriver function at interrupt time because if the
driver was processing a request when the interrupt occurred the Device
Manager may loop indefinitely, waiting for the driver to complete the
request. ▲

RESULT CODES

SEE ALSO

For information about the low-level function for closing device drivers, see the next
section, which describes the PBClose function.

PBClose 1

You can use the PBClose function to close an open device driver.

pascal OSErr PBClose(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to an IOParam structure of the Device Manager parameter
block.

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
closErr –24 Driver unable to complete close request
dRemovErr –25 Attempt to remove an open driver
1-66 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
async A Boolean value that indicates whether the request is asynchronous. You
must set this field to false because device drivers cannot be closed
asynchronously.

Parameter block

DESCRIPTION

The PBClose function closes the device driver specified by the ioRefNum field. The
Device Manager waits until the driver is inactive before calling the driver’s close routine.
When the driver indicates it has processed the close request, the Device Manager
unlocks the driver resource if the dRAMBased flag is set, and unlocks the device control
entry if the dNeedLock flag is not set. The Device Manager does not dispose of the
device control entry or remove it from the unit table.

If the driver returns a negative result in register D0, the Device Manager returns this
result code in the ioResult field of the parameter block and does not close the driver.

▲ W A R N I N G

You should not close drivers that other applications may be using, such
as a disk driver, the AppleTalk drivers, and so on. ▲

SPECIAL CONSIDERATIONS

The Device Manager does not queue close requests.

▲ W A R N I N G

Do not call the PBClose function at interrupt time because if the driver
was processing a request when the interrupt occurred the Device
Manager may loop indefinitely, waiting for the driver to complete the
request. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBClose function is _Close (0xA001).

You must set up register A0 with the address of the parameter block. When _Close
returns, register D0 contains the result code. Register D0 is the only register affected by
this function.

← ioResult OSErr The device driver’s result code.
→ ioRefNum short The driver reference number.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code
Device Manager Reference 1-67

C H A P T E R 1

Device Manager
RESULT CODES

SEE ALSO

For information about the high-level function for closing device drivers, see the
description of the CloseDriver function on page 1-65. For an example of how to close
a device driver using the PBClose function, see Listing 1-2 on page 1-20.

CloseDeskAcc 1

You can use the CloseDeskAcc function to close a desk accessory.

pascal void CloseDeskAcc(short refNum);

refNum The driver reference number contained in the desk accessory’s
WindowRecord.

DESCRIPTION

The CloseDeskAcc function closes the desk accessory specified by the refNum
parameter. Your application should call CloseDeskAcc only when the user selects the
Close or Quit item from your File menu and the active window does not belong to your
application.

You obtain the refNum parameter from the windowKind field of the desk accessory’s
WindowRecord. Do not use the driver reference number returned by OpenDeskAcc.

SPECIAL CONSIDERATIONS

The CloseDeskAcc function may move memory; you should not call it at interrupt
time.

SEE ALSO

For information about opening a desk accessory or other Apple menu item, see the
description of the OpenDeskAcc function on page 1-65.

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
closErr –24 Driver unable to complete close request
dRemovErr –25 Attempt to remove an open driver
1-68 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
Communicating With Device Drivers 1

You can use either the FSRead or PBRead function to read information from a device
driver, and you can use the FSWrite or PBWrite function to write information to a
device driver.

FSRead 1

You can use the FSRead function to read data from an open driver into a data buffer.

pascal OSErr FSRead(short refNum, long *count, void *buffPtr);

refNum The driver reference number.

count The number of bytes to read.

buffPtr A pointer to a buffer to hold the data.

DESCRIPTION

Before calling the FSRead function, your application should allocate a data buffer large
enough to hold the data to be read. The FSRead function attempts to read the number of
bytes indicated by the count parameter and transfer them to the data buffer pointed to
by the buffPtr parameter. The refNum parameter identifies the device driver. After the
transfer is complete, the count parameter indicates the number of bytes actually read.

▲ W A R N I N G

Be sure your buffer is large enough to hold the number of bytes
specified by the count parameter, or this function may corrupt
memory. ▲

The FSRead function is a high-level synchronous version of the low-level PBRead
function. Use the PBRead function when you want to request asynchronous reading or
need to specify a drive number or a positioning mode and offset. See the next section,
which describes the PBRead function.

SPECIAL CONSIDERATIONS

Do not call the FSRead function at interrupt time. Synchronous requests at interrupt
time may block other pending I/O requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.
Device Manager Reference 1-69

C H A P T E R 1

Device Manager
RESULT CODES

SEE ALSO

For information about the low-level function for reading from device drivers, see the
next section, which describes the PBRead function.

PBRead 1

You can use the PBRead function to read data from an open driver into a data buffer.

pascal OSErr PBRead(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to an IOParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

Parameter block

DESCRIPTION

Before calling the PBRead function, your application should allocate a data buffer large
enough to hold the data to be read. The PBRead function attempts to read the number of
bytes indicated by the ioReqCount field and transfer them to the data buffer pointed to
by the ioBuffer field. The ioRefNum field identifies the device driver. After the
transfer is complete, the ioActCount field indicates the number of bytes actually read.

▲ W A R N I N G

Be sure your buffer is large enough to hold the number of bytes
specified by the count parameter, or this function may corrupt
memory. ▲

noErr 0 No error
readErr –19 Driver does not respond to read requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioVRefNum short The drive number.
→ ioRefNum short The driver reference number.
→ ioBuffer Ptr A pointer to a data buffer.
→ ioReqCount long The requested number of bytes to read.
← ioActCount long The actual number of bytes read.
→ ioPosMode short The positioning mode.
↔ ioPosOffset long The positioning offset.
1-70 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
For block devices such as disk drivers, the PBRead function allows you to specify a
drive number in the ioVRefNum field and specify a positioning mode and offset in
the ioPosMode and ioPosOffset fields. Bits 0 and 1 of the ioPosMode field
indicate where an operation should begin relative to the physical beginning of the
block-formatted medium. You can use the following constants to test or set the value
of these bits:

enum {

/* positioning modes */

fsAtMark = 0, /* at current position */

fsFromStart = 1, /* offset from beginning */

fsFromMark = 3 /* offset from current position */

};

The ioPosOffset field specifies the positive or negative byte offset where the data
is to be read, relative to the positioning mode. The offset must be a multiple of 512.
The ioPosOffset field is ignored when ioPosMode is set to fsAtMark.

After the transfer is complete, the ioPosOffset field indicates the current position of
the block device.

The Disk Driver allows you to use the PBRead function to verify that data written to
a block device matches the data in memory. To do this, call PBRead immediately after
writing the data, and add the read-verify constant rdVerify to the ioPosMode field
of the parameter block. The result code ioErr is returned if the data does not match.

SPECIAL CONSIDERATIONS

Do not call the PBRead function synchronously at interrupt time. Synchronous requests
at interrupt time may block other pending I/O requests and cause the Device Manager
to loop indefinitely while it waits for the device driver to complete the interrupted
requests.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBRead function is _Read (0xA002). Set bit 10 of the trap word to
execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Read
returns, register D0 contains the result code. Register D0 is the only register affected by
this function.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code
Device Manager Reference 1-71

C H A P T E R 1

Device Manager
RESULT CODES

SEE ALSO

For information about the high-level function for reading from device drivers, see the
description of the FSRead function beginning on page 1-69. For an example of how to
read from a device driver using the PBRead function, see Listing 1-3 on page 1-21.

FSWrite 1

You can use the FSWrite function to write data from a data buffer to an open driver.

pascal OSErr FSWrite(short refNum, long *count,

const void *buffPtr);

refNum The driver reference number.

count The number of bytes to write.

buffPtr A pointer to the buffer that holds the data.

DESCRIPTION

The FSWrite function attempts to write the number of bytes indicated by the count
parameter from the data buffer pointed to by the buffPtr parameter to the device
driver specified by the refNum parameter. After the transfer is complete, the count
parameter indicates the number of bytes actually written.

The FSWrite function is a high-level synchronous version of the low-level PBWrite
function. Use the PBWrite function when you want to request asynchronous writing or
need to specify a drive number or a positioning mode and offset. See the next section,
which describes the PBWrite function.

SPECIAL CONSIDERATIONS

Do not call the FSWrite function at interrupt time. Synchronous requests at interrupt
time may block other pending I/O requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

noErr 0 No error
readErr –19 Driver does not respond to read requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open
ioErr –36 Data does not match in read-verify mode
1-72 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
RESULT CODES

SEE ALSO

For information about the low-level function for writing to device drivers, see the next
section, which describes the PBWrite function.

PBWrite 1

You can use the PBWrite function to write data from a data buffer to an open driver.

pascal OSErr PBWrite(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to an IOParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

Parameter block

DESCRIPTION

The PBWrite function attempts to write the number of bytes indicated by the
ioReqCount field from the data buffer pointed to by the ioBuffer field to the device
driver specified by the ioRefNum field. After the transfer is complete, the ioActCount
field indicates the number of bytes actually written.

For block devices such as disk drivers, the PBWrite function allows you to specify
a drive number in the ioVRefNum field and specify a positioning mode and offset
in the ioPosMode and ioPosOffset fields. Bits 0 and 1 of the ioPosMode field
indicate where an operation should begin relative to the physical beginning of the
block-formatted medium. You can use the following constants to test or set the value
of these bits:

noErr 0 No error
writErr –20 Driver does not respond to write requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioVRefNum short The drive number.
→ ioRefNum short The driver reference number.
→ ioBuffer Ptr A pointer to a data buffer.
→ ioReqCount long The requested number of bytes to write.
← ioActCount long The actual number of bytes written.
→ ioPosMode short The positioning mode.
↔ ioPosOffset long The positioning offset.
Device Manager Reference 1-73

C H A P T E R 1

Device Manager
enum {

/* positioning modes */

fsAtMark = 0, /* at current position */

fsFromStart = 1, /* offset from beginning */

fsFromMark = 3 /* offset from current position */

};

The ioPosOffset field specifies the positive or negative byte offset where the data is
to be written, relative to the positioning mode. The offset must be a multiple of 512. The
ioPosOffset field is ignored when ioPosMode is set to fsAtMark.

After the transfer is complete, the ioPosOffset field indicates the new current position
of a block device.

SPECIAL CONSIDERATIONS

Do not call the PBWrite function synchronously at interrupt time. Synchronous requests
at interrupt time may block other pending I/O requests and cause the Device Manager
to loop indefinitely while it waits for the device driver to complete the interrupted
requests.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBWrite function is _Write (0xA003). Set bit 10 of the trap word
to execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Write
returns, register D0 contains the result code. Register D0 is the only register affected by
this function.

RESULT CODES

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

noErr 0 No error
writErr –20 Driver does not respond to write requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open
1-74 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
SEE ALSO

For information about the high-level function for writing to device drivers, see the
description of the FSWrite function on page 1-72. For an example of how to write to a
device driver using the PBWrite function, see Listing 1-4 on page 1-22.

Controlling and Monitoring Device Drivers 1

You can use either the Control or PBControl function to send control information
to a device driver, and you can use the Status or PBStatus function to obtain status
information from a device driver. The Device Manager also provides the KillIO and
PBKillIO functions for terminating all requests in a driver I/O queue.

The PBControl, PBStatus, and PBKillIO functions use the CntrlParam structure,
described on page 1-53.

Control 1

You can use the Control function to send control information to a device driver.

pascal OSErr Control(short refNum, short csCode,

const void *csParamPtr);

refNum The driver reference number.

csCode A driver-dependent code specifying the type of information sent.

csParamPtr A pointer to the control information.

DESCRIPTION

The Control function sends information to the device driver specified by the refNum
parameter. The value you pass in the csCode parameter and the type of information
pointed to by the csParamPtr parameter are defined by the driver you are calling. For
more information, see the appropriate chapters for the standard device drivers in this
book and other books in the Inside Macintosh series.

The Control function is a high-level synchronous version of the low-level PBControl
function. Use the PBControl function if you need to specify a drive number or if you
want the control request to be executed asynchronously.

SPECIAL CONSIDERATIONS

Do not call the Control function at interrupt time. Synchronous requests at interrupt
time may block other pending I/O requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.
Device Manager Reference 1-75

C H A P T E R 1

Device Manager
RESULT CODES

SEE ALSO

For information about the low-level function for controlling device drivers, see the next
section, which describes the PBControl function.

PBControl 1

You can use the PBControl function to send control information to a device driver.

pascal OSErr PBControl(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to a CntrlParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

Parameter block

DESCRIPTION

The PBControl function sends information to the device driver specified by the
ioCRefNum field. The value you pass in the csCode field and the type of information in
the csParam field are defined by the driver you are calling. For more information, see
the appropriate chapters for the standard device drivers in this book and other books in
the Inside Macintosh series.

SPECIAL CONSIDERATIONS

Do not call the PBControl function synchronously at interrupt time. Synchronous
requests at interrupt time may block other pending I/O requests and cause the Device
Manager to loop indefinitely while it waits for the device driver to complete the
interrupted requests.

noErr 0 No error
controlErr –17 Driver does not respond to this control request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioVRefNum short The drive number.
→ ioCRefNum short The driver reference number.
→ csCode short The type of control call.
→ csParam short[11] The control information.
1-76 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBControl function is _Control (0xA004). Set bit 10 of the trap
word to execute this routine asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Control
returns, register D0 contains the result code. Register D0 is the only register affected by
this routine.

RESULT CODES

SEE ALSO

For information about the high-level function for controlling device drivers, see the
description of the Control function on page 1-75. For an example of how to send
control information to a device driver using the PBControl function, see Listing 1-5
on page 1-23.

Status 1

You can use the Status function to obtain status information from a device driver.

pascal OSErr Status(short refNum, short csCode,

 void *csParamPtr);

refNum The driver reference number.

csCode A driver-dependent code specifying the type of information requested.

csParamPtr A pointer to a csParam array where the status information will be
returned.

DESCRIPTION

The Status function returns information about the device driver specified by the
refNum parameter. The value you pass in the csCode parameter and the received

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

noErr 0 No error
controlErr –17 Driver does not respond to this control request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open
Device Manager Reference 1-77

C H A P T E R 1

Device Manager
information pointed to by the csParamPtr parameter are defined by the driver you
are calling. For more information, see the appropriate chapters for the standard device
drivers in this book and other books in the Inside Macintosh series.

The Status function is a high-level synchronous version of the low-level PBStatus
function. Use the PBStatus function if you need to specify a drive number or if you
want the status request to be asynchronous.

Note
The Device Manager interprets a csCode value of 1 as a special case.
When the Device Manager receives a status request with a csCode
value of 1, it returns a handle to the driver’s device control entry.
This type of status request is not passed to the device driver. ◆

SPECIAL CONSIDERATIONS

Do not call the Status function at interrupt time. Synchronous requests at interrupt
time may block other pending I/O requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

RESULT CODES

SEE ALSO

For information about the low-level function for monitoring device drivers, see the next
section, which describes the PBStatus function.

PBStatus 1

You can use the PBStatus function to obtain status information from a device driver.

pascal OSErr PBStatus(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to a CntrlParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

noErr 0 No error
statusErr –18 Driver does not respond to this status request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open
1-78 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
Parameter block

DESCRIPTION

The PBStatus function returns information about the device driver specified by the
ioCRefNum field. The value you pass in the csCode field and the type of information
received in the csParam field are defined by the driver you are calling. For more
information, see the appropriate chapters for the standard device drivers in this book
and other books in the Inside Macintosh series.

Note
The Device Manager interprets a csCode value of 1 as a special case.
When the Device Manager receives a status request with a csCode
value of 1, it returns a handle to the driver’s device control entry.
This type of status request is not passed to the device driver. ◆

SPECIAL CONSIDERATIONS

Do not call the PBStatus function synchronously at interrupt time. Synchronous
requests at interrupt time may block other pending I/O requests and cause the Device
Manager to loop indefinitely while it waits for the device driver to complete the
interrupted requests.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBStatus function is _Status (0xA005). Set bit 10 of the trap
word to execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Status
returns, register D0 contains the result code. Register D0 is the only register affected by
this function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioVRefNum short The drive number.
→ ioCRefNum short The driver reference number.
→ csCode short The type of status call.
← csParam short[11] The status information.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code
Device Manager Reference 1-79

C H A P T E R 1

Device Manager
RESULT CODES

SEE ALSO

For information about the high-level function for monitoring device drivers, see the
description of the Status function on page 1-77. For an example of how to request
status information from a device driver using the PBStatus function, see Listing 1-5
on page 1-23.

KillIO 1

You can use the KillIO function to terminate all current and pending I/O requests for a
device driver.

pascal OSErr KillIO(short refNum);

refNum The driver reference number.

DESCRIPTION

The KillIO function stops any current I/O request being processed by the driver
specified by the RefNum parameter, and removes all pending requests from the
I/O queue for that driver. The Device Manager calls the completion routine, if any,
for each pending request, and sets the ioResult field of each request equal to the
result code abortErr.

The Device Manager passes KillIO requests to a driver only if the driver is open and
enabled for control calls. If the driver returns an error, the I/O queue is left unchanged
and no completion routines are called.

▲ W A R N I N G

The KillIO function terminates all pending I/O requests for a driver,
including requests initiated by other applications. ▲

SPECIAL CONSIDERATIONS

The Device Manager always executes the KillIO function immediately; that is, it never
places a KillIO request in the I/O queue.

Although the Device Manager imposes no restrictions on calling KillIO at interrupt
time, you should consult a device driver’s documentation to determine if it supports this.

noErr 0 No error
statusErr –18 Driver does not respond to this status request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open
1-80 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
RESULT CODES

SEE ALSO

For information about the low-level function for terminating current and pending
I/O requests for a driver, see the next section, which describes the PBKillIO function.

PBKillIO 1

You can use the PBKillIO function to terminate all current and pending I/O requests
for a device driver.

pascal OSErr PBKillIO(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to a CntrlParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to false because the PBKillIO function does not
support asynchronous requests.

Parameter block

DESCRIPTION

The PBKillIO function stops any current I/O request being processed by the driver
specified by the ioCRefNum field, and removes all pending requests from the I/O queue
for that driver. The Device Manager calls the completion routine, if any, for each pending
request, and sets the ioResult field of each request equal to the result code abortErr.

The Device Manager passes PBKillIO requests to a device driver only if the driver is
open and enabled for control calls. If the driver returns an error, the I/O queue is left
unchanged and no completion routines are called.

▲ W A R N I N G

The PBKillIO function terminates all pending I/O requests for a
driver, including requests initiated by other applications. ▲

noErr 0 No error
controlErr –17 Driver does not respond to this control request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
notOpenErr –28 Driver not open

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioCRefNum short The driver reference number.
Device Manager Reference 1-81

C H A P T E R 1

Device Manager
SPECIAL CONSIDERATIONS

The Device Manager always executes the PBKillIO function immediately; that is,
it never places a PBKillIO request in the I/O queue. However, you should not call this
function immediately—always call the PBKillIO function synchronously.

Although the Device Manager imposes no restrictions on calling PBKillIO at interrupt
time, you should consult a device driver’s documentation to determine if it supports this.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBKillIO function is _KillIO (0xA006). You must set up
register A0 with the address of the parameter block. When _KillIO returns, register D0
contains the result code. Register D0 is the only register affected by this function.

RESULT CODES

SEE ALSO

For information about the high-level function for terminating current and pending
I/O requests for a driver, see the description of the KillIO function on page 1-80.

Writing and Installing Device Drivers 1

The Device Manager includes a number of functions that provide low-level support for
device drivers.

The DriverInstall and DriverInstallReserveMem functions create a device
control entry and install it in the unit table. The DriverInstallReserveMem function
is preferred because it allocates the device control entry as low as possible in the system
heap. The DriverRemove function removes an existing device control entry.

The GetDCtlEntry function returns a handle to a driver’s device control entry.

The IODone routine notifies the Device Manager that an I/O operation is done. Driver
routines call IODone when the current request is completed and ready to be removed
from the I/O queue.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

noErr 0 No error
controlErr –17 Driver does not respond to this control request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
notOpenErr –28 Driver not open
1-82 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
The Fetch and Stash routines can be used to move characters into and out of data
buffers. You pass a pointer to the device control entry in the A1 register to each of these
three routines. The Device Manager uses the device control entry to locate the active
request. If no such request exists, these routines generate system error dsIOCoreErr.

In the interest of speed, you invoke the Fetch, Stash, and IODone routines with jump
vectors, stored in the global variables JFetch, JStash, and JIODone, rather than
macros. You can use a jump vector by moving its address onto the stack and executing
an RTS instruction. An example is:

MOVE.L JIODone,-(SP)

RTS

The Fetch and Stash routines do not return a result code; if an error occurs, the System
Error Handler is invoked.

DriverInstall 1

You can use the DriverInstall function to create a device control entry and install it
in the unit table.

pascal OSErr DriverInstall(Ptr drvrPtr, short refNum);

drvrPtr A pointer to the device driver.

refNum The driver reference number.

DESCRIPTION

The DriverInstall function allocates a device control entry (DCE) in the system heap
and installs a handle to this DCE in the unit table location specified by the refNum
parameter. You pass a pointer to the device driver in the drvrPtr parameter.

In addition, this function copies the refNum parameter to the dCtlRefNum field of the
DCE, sets the dRAMBased flag in the dCtlFlags field, and clears all the other fields.

SPECIAL CONSIDERATIONS

The DriverInstall function does not load the driver resource into memory, copy the
flags from the driver header to the dCtlFlags field, or open the driver. You can write
code to perform these tasks, or use the OpenDriver, OpenSlot, or PBOpen functions
instead.

The DriverInstall function allocates memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the DriverInstall function is _DrvrInstall (0xA03D).
Device Manager Reference 1-83

C H A P T E R 1

Device Manager
You place a pointer to the device driver in register A0, and the driver reference number
in register D0. When _DrvrInstall returns, register D0 contains the result code.

RESULT CODES

SEE ALSO

For information about the DriverInstallReserveMem function, which installs a
driver as low as possible in the system heap, see the next section.

DriverInstallReserveMem 1

You can use the DriverInstallReserveMem function to create a device control entry
and install it in the unit table.

pascal OSErr DriverInstallReserveMem(Ptr drvrPtr, short refNum);

drvrPtr A pointer to the device driver.

refNum The driver reference number.

DESCRIPTION

The DriverInstallReserveMem function is equivalent to the DriverInstall
function, except that it calls the Memory Manager ReserveMem function to compact
the heap before allocating memory for the device control entry (DCE).

After calling the ReserveMem function, the DriverInstallReserveMem function
allocates a DCE in the system heap and installs a handle to this DCE in the unit table
location specified by the refNum parameter. You pass a pointer to the device driver
in the drvrPtr parameter.

In addition, this function copies the refNum parameter to the dCtlRefNum field of the
DCE, sets the dRAMBased flag in the dCtlFlags field, and clears all the other fields.

Registers on entry

A0 A pointer to the device driver

D0 The driver reference number

Registers on exit

D0 Result code

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
1-84 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
SPECIAL CONSIDERATIONS

The DriverInstallReserveMem function does not load the driver resource into
memory, copy the flags from the driver header to the dCtlFlags field, or open the
driver. You can write code to perform these tasks, or use the OpenDriver, OpenSlot,
or PBOpen functions instead.

The DriverInstallReserveMem function allocates memory; you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the DriverInstallReserveMem function is _DrvrInstall
(0xA03D). You must set bit 10 of the trap word to signal the Device Manager to call the
ReserveMem function before allocating memory for the DCE.

You place a pointer to the device driver in register A0, and the driver reference number
in register D0. When _DrvrInstall returns, register D0 contains the result code.

RESULT CODES

DriverRemove 1

You can use the DriverRemove function to remove a device driver’s device control
entry from the unit table and release the driver resource.

pascal OSErr DriverRemove(short refNum);

refNum The driver reference number.

DESCRIPTION

The DriverRemove function removes a device driver’s device control entry from the
unit table and releases the driver resource. You specify the device driver using the
refNum parameter. You must close the device driver before calling DriverRemove.

If the driver is closed, DriverRemove calls the Memory Manager function
DisposeHandle to release the device control entry, then sets the corresponding handle

Registers on entry

A0 A pointer to the device driver

D0 The driver reference number

Registers on exit

D0 Result code

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
Device Manager Reference 1-85

C H A P T E R 1

Device Manager
in the unit table to nil. If the driver’s dRAMBased flag is set, DriverRemove calls the
Resource Manager function ReleaseResource to release the driver resource.

SPECIAL CONSIDERATIONS

The DriverRemove function may move memory; you should not call it at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the DriverRemove function is _DrvrRemove (0xA03E).

You place the driver reference number in register D0. When _DrvrRemove returns,
register D0 contains the result code.

RESULT CODES

GetDCtlEntry 1

You can use the GetDCtlEntry function to obtain a handle to the device control entry
of a device driver.

pascal DCtlHandle GetDCtlEntry (short refNum);

refNum The reference number of the driver.

DESCRIPTION

The GetDCtlEntry function returns a handle to the device control entry of the device
driver indicated by the refNum parameter.

SEE ALSO

For a description of the device control entry structure see page 1-56.

Registers on entry

D0 The driver reference number

Registers on exit

D0 Result code

noErr 0 No error
dRemovErr –25 Attempt to remove an open driver
1-86 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
IODone 1

You use the IODone routine to notify the Device Manager that an I/O request has
completed.

DESCRIPTION

The IODone routine sets the ioResult field of the parameter block with the value
returned by the driver in register D0. It then removes the current request from the
driver I/O queue and marks the driver inactive. If there are no pending requests, and the
dNeedLock bit of the dCtlFlags word is not set, IODone unlocks the driver and its
device control entry. Finally, IODone executes the completion routine, if any.

The section “Entering and Exiting From Driver Routines,” beginning on page 1-29,
explains when to use this routine.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

For an example of how to call the IODone routine from an assembly-language
dispatching routine, see Listing 1-8 on page 1-29.

Fetch 1

You can use the Fetch routine to get the next character from the data buffer.

DESCRIPTION

The Fetch routine gets the next character from the data buffer pointed to by the
ioBuffer field of the parameter block of the pending request. It increments the
ioActCount field by 1. If the ioActCount field equals the ioReqCount field,
this routine sets bit 15 of register D0. After receiving the last byte request, the
driver should jump to the IODone routine.

Registers on entry

A1 Pointer to DCE

D0 Result code

Jump vector

JIODone

Registers on entry

A1 Pointer to the device control entry
Device Manager Reference 1-87

C H A P T E R 1

Device Manager
Stash 1

You can use the Stash routine to store the next character from the data buffer.

DESCRIPTION

The Stash routine places the character in register D0 into the data buffer pointed to by
the ioBuffer field of the parameter block of the pending request and increments the
ioActCount field by 1. If the ioActCount field equals the ioReqCount field, this
routine sets bit 15 of register D0. After stashing the last byte requested, the driver should
jump to the IODone routine.

ASSEMBLY-LANGUAGE INFORMATION

Registers on exit

D0 Character fetched; bit 15 = 1 if this is the last character in the buffer

Jump vector

JFetch

Registers on entry

A1 Pointer to DCE

D0 Character to stash

Registers on exit

D0 Bit 15 = 1 if this is the last character in the buffer

Jump vector

JStash
1-88 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
Resources 1
This section describes the driver resource, which you can use to store your device drivers
and desk accessories. If your device driver requires a user interface, you can create a
Chooser extension and store your driver in a device package resource. For more
information, see “Creating a Device Package” on page 1-45.

The Driver Resource 1

Listing 1-15 shows the Rez format of the 'DRVR' resource type.

Listing 1-15 'DRVR' resource format

type 'DRVR' {

boolean = 0;

boolean dontNeedLock, needLock; /* lock drvr in memory */

boolean dontNeedTime, needTime; /* for periodic action */

boolean dontNeedGoodbye, needGoodbye; /* call before heap reinit */

boolean noStatusEnable, statusEnable; /* responds to Status */

boolean noCtlEnable, ctlEnable; /* responds to Control */

boolean noWriteEnable, writeEnable; /* responds to Write */

boolean noReadEnable, readEnable; /* responds to Read */

byte = 0;

integer; /* driver delay */

unsigned hex integer; /* DA event mask */

integer; /* DA menu */

unsigned hex integer; /* offset to Open */

unsigned hex integer; /* offset to Prime */

unsigned hex integer; /* offset to Control */

unsigned hex integer; /* offset to Status */

unsigned hex integer; /* offset to Close */

pstring; /* driver name */

hex string; /* driver code */

};

The driver resource begins with seven flags that specify certain characteristics of the
driver.

You need to set the dNeedLock flag if your driver’s code should be locked in memory.

You set the dNeedTime flag of the drvrFlags word if your device driver needs to
perform some action periodically.

You need to set the dNeedGoodbye flag if you want your application to receive a
goodbye control request before the heap is reinitialized.
Device Manager Reference 1-89

C H A P T E R 1

Device Manager
The last four flags indicate which Device Manager requests the driver’s routines can
respond to.

The next element of the resource specifies the time between periodic tasks.

The next two elements provide an event mask and menu ID for desk accessories. The
section “Writing a Desk Accessory” on page 1-49 describes these fields.

Offsets to the driver routines follow the desk accessory fields. See “Entering and Exiting
From Driver Routines” on page 1-29 for more information about the routine offsets.

The next element of the driver resource is the driver name. You can use uppercase and
lowercase letters when naming your driver, but the first character should be a period—
.MyDriver, for example.

Your driver routines, which follow the driver name, must be aligned on a word
boundary.

The section “Creating a Driver Resource” on page 1-24 discusses this structure in detail.
1-90 Device Manager Reference

C H A P T E R 1

Device Manager

1
D

evice M
anager
Summary of the Device Manager 1

C Summary 1

Constants 1

enum {

/* request codes passed by the Device Manager to a driver’s

prime routine */

aRdCmd = 2, /* read operation requested */

aWrCmd = 3 /* write operation requested */

};

enum {

/* flags used in the driver header and device control entry */

dNeedLockMask = 0x4000, /* set if driver must be locked in memory as

soon as it is opened */

dNeedTimeMask = 0x2000, /* set if driver needs time for performing

periodic tasks */

dNeedGoodByeMask = 0x1000, /* set if driver needs to be called before the

application heap is initialized */

dStatEnableMask = 0x0800, /* set if driver responds to status requests */

dCtlEnableMask = 0x0400, /* set if driver responds to control requests */

dWritEnableMask = 0x0200, /* set if driver responds to write requests */

dReadEnableMask = 0x0100, /* set if driver responds to read requests */

/* run-time flags used in the device control entry */

drvrActiveMask = 0x0080, /* driver is currently processing a request */

dRAMBasedMask = 0x0040, /* dCtlDriver is a handle (1) or pointer (0) */

dOpenedMask = 0x0020 /* driver is open */

};

enum {

/* access permissions */

fsCurPerm = 0, /* retain current permission */

fsRdPerm = 1, /* allow reads only */

fsWrPerm = 2, /* allow writes only */

fsRdWrPerm = 3, /* allow reads and writes */
Summary of the Device Manager 1-91

C H A P T E R 1

Device Manager
/* positioning modes */

fsAtMark = 0, /* at current position */

fsFromStart = 1, /* offset from beginning */

fsFromMark = 3, /* offset from current position */

/* read modes */

rdVerify = 64 /* read-verify mode */

};

enum {

/* control codes */

goodbye = -1, /* heap being reinitialized */

killCode = 1, /* KillIO requested */

accEvent = 64, /* handle an event */

accRun = 65, /* time for periodic action */

accCursor = 66, /* change cursor shape */

accMenu = 67, /* handle menu item */

accUndo = 68, /* handle undo command */

accCut = 70, /* handle cut command */

accCopy = 71, /* handle copy command */

accPaste = 72, /* handle paste command */

accClear = 73 /* handle clear command */

};

enum {

/* Chooser messages */

chooserInitMsg = 11, /* the user selected this device package */

newSelMsg = 12, /* the user made new device selections */

fillListMsg = 13, /* fill the device list with choices */

getSelMsg = 14, /* mark one or more choices as selected */

selectMsg = 15, /* the user made a selection */

deselectMsg = 16, /* the user canceled a selection */

terminateMsg = 17, /* allows device package to clean up */

buttonMsg = 19 /* the user selected a button */

};

Data Types 1

typedef union ParamBlockRec {

IOParam ioParam;

FileParam fileParam;

VolumeParam volumeParam;

CntrlParam cntrlParam;
1-92 Summary of the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
SlotDevParam slotDevParam;

MultiDevParam multiDevParam;

} ParamBlockRec;

typedef ParamBlockRec *ParmBlkPtr;

typedef struct IOParam {

QElemPtr qLink; /* next queue entry */

short qType; /* queue type */

short ioTrap; /* routine trap */

Ptr ioCmdAddr; /* routine address */

ProcPtr ioCompletion; /* completion routine address */

OSErr ioResult; /* result code */

StringPtr ioNamePtr; /* pointer to driver name */

short ioVRefNum; /* volume reference or drive number */

short ioRefNum; /* driver reference number */

char ioVersNum; /* not used by the Device Manager */

char ioPermssn; /* read/write permission */

Ptr ioMisc; /* not used by the Device Manager */

Ptr ioBuffer; /* pointer to data buffer */

long ioReqCount; /* requested number of bytes */

long ioActCount; /* actual number of bytes completed */

short ioPosMode; /* positioning mode */

long ioPosOffset; /* positioning offset */

} IOParam;

typedef struct CntrlParam {

QElemPtr qLink; /* next queue entry */

short qType; /* queue type */

short ioTrap; /* routine trap */

Ptr ioCmdAddr; /* routine address */

ProcPtr ioCompletion; /* completion routine address */

OSErr ioResult; /* result code */

StringPtr ioNamePtr; /* pointer to driver name */

short ioVRefNum; /* volume reference or drive number */

short ioCRefNum; /* driver reference number */

short csCode; /* type of control or status request */

short csParam[11]; /* control or status information */

} CntrlParam;

typedef struct AuxDCE {

Ptr dCtlDriver; /* pointer or handle to driver */

short dCtlFlags; /* flags */

QHdr dCtlQHdr; /* I/O queue header */

long dCtlPosition; /* current R/W byte position */
Summary of the Device Manager 1-93

C H A P T E R 1

Device Manager
Handle dCtlStorage; /* handle to private storage */

short dCtlRefNum; /* driver reference number */

long dCtlCurTicks; /* used internally */

GrafPtr dCtlWindow; /* pointer to driver’s window */

short dCtlDelay; /* ticks between periodic actions */

short dCtlEMask; /* desk accessory event mask */

short dCtlMenu; /* desk accessory menu ID */

char dCtlSlot; /* slot */

char dCtlSlotId; /* sResource directory ID */

long dCtlDevBase; /* slot device base address */

Ptr dCtlOwner; /* reserved; must be 0 */

char dCtlExtDev; /* external device ID */

char fillByte; /* reserved */

} AuxDCE;

typedef AuxDCE *AuxDCEPtr, **AuxDCEHandle;

Functions 1

Opening and Closing Device Drivers

pascal OSErr OpenDriver (ConstStr255Param name, short *drvrRefNum);

pascal OSErr PBOpen (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBOpenSync (ParmBlkPtr paramBlock);

pascal OSErr OpenSlot (ParmBlkPtr paramBlock, Boolean async);

pascal short OpenDeskAcc (ConstStr255Param deskAccName);

pascal OSErr CloseDriver (short refNum);

pascal OSErr PBClose (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBCloseSync (ParmBlkPtr paramBlock);

pascal void CloseDeskAcc (short refNum);

Communicating With Device Drivers

pascal OSErr FSRead (short refNum, long *count, void *buffPtr);

pascal OSErr PBRead (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBReadSync (ParmBlkPtr paramBlock);

pascal OSErr PBReadAsync (ParmBlkPtr paramBlock);

pascal OSErr FSWrite (short refNum, long *count, const void *buffPtr);

pascal OSErr PBWrite (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBWriteSync (ParmBlkPtr paramBlock);

pascal OSErr PBWriteAsync (ParmBlkPtr paramBlock);
1-94 Summary of the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
Controlling and Monitoring Device Drivers

pascal OSErr Control (short refNum, short csCode, const void
*csParamPtr);

pascal OSErr PBControl (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBControlSync (ParmBlkPtr paramBlock);

pascal OSErr PBControlAsync (ParmBlkPtr paramBlock);

pascal OSErr Status (short refNum, short csCode, void *csParamPtr);

pascal OSErr PBStatus (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBStatusSync (ParmBlkPtr paramBlock);

pascal OSErr PBStatusAsync (ParmBlkPtr paramBlock);

pascal OSErr KillIO (short refNum);

pascal OSErr PBKillIO (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBKillIOSync (ParmBlkPtr paramBlock);

pascal OSErr PBKillIOAsync (ParmBlkPtr paramBlock);

Driver Support Functions

pascal OSErr DriverInstall (Ptr drvrPtr, short refNum);

pascal OSErr DriverInstallReserveMem (Ptr drvrPtr, short refNum);

pascal OSErr DriverRemove (short refNum);

pascal DCtlHandle GetDCtlEntry (short refNum);

Pascal Summary 1

Constants 1

CONST

{request codes passed by the Device Manager to a driver’s prime routine}

aRdCmd = 2; {read operation requested}

aWrCmd = 3; {write operation requested}

{flags used in the driver header and device control entry}

dNeedLockMask = $4000; {set if driver must be locked in memory as }

{ soon as it is opened}

dNeedTimeMask = $2000; {set if driver needs time for performing }

{ periodic tasks}

dNeedGoodByeMask = $1000; {set if driver needs to be called before }

{ the application heap is initialized}

dStatEnableMask = $0800; {set if driver responds to status requests}
Summary of the Device Manager 1-95

C H A P T E R 1

Device Manager
dCtlEnableMask = $0400; {set if driver responds to control requests}

dWritEnableMask = $0200; {set if driver responds to write requests}

dReadEnableMask = $0100; {set if driver responds to read requests}

{run-time flags used in the device control entry}

drvrActiveMask = $0080; {driver is currently processing a request}

dRAMBasedMask = $0040; {dCtlDriver is a handle (1) or pointer (0)}

dOpenedMask = $0020; {driver is open}

{access permissions}

fsCurPerm = 0; {retain current permission}

fsRdPerm = 1; {allow reads only}

fsWrPerm = 2; {allow writes only}

fsRdWrPerm = 3; {allow reads and writes}

{positioning modes}

fsAtMark = 0; {at current position}

fsFromStart = 1; {offset from beginning}

fsFromMark = 3; {offset from current position}

{read modes}

rdVerify = 64; {read-verify mode}

{control codes}

goodbye = -1; {heap being reinitialized}

killCode = 1; {KillIO requested}

accEvent = 64; {handle an event}

accRun = 65; {time for periodic action}

accCursor = 66; {change cursor shape}

accMenu = 67; {handle menu item}

accUndo = 68; {handle undo command}

accCut = 70; {handle cut command}

accCopy = 71; {handle copy command}

accPaste = 72; {handle paste command}

accClear = 73; {handle clear command}

{Chooser messages}

chooserInitMsg = 11; {the user selected this device package}

newSelMsg = 12; {the user made new device selections}

fillListMsg = 13; {fill the device list with choices}

getSelMsg = 14; {mark one or more choices as selected}

selectMsg = 15; {the user made a selection}
1-96 Summary of the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
deselectMsg = 16; {the user canceled a selection}

terminateMsg = 17; {allows device package to clean up}

buttonMsg = 19; {the user selected a button}

Data Types 1

TYPE ParamBlkType = (IOParam, FileParam, VolumeParam, CntrlParam,

 SlotDevParam, MultiDevParam);

ParamBlockRec =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {completion routine address}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to driver name}

ioVRefNum: Integer; {volume reference or drive number}

CASE ParamBlkType OF

IOParam:

(ioRefNum: Integer; {driver reference number}

ioVersNum: SignedByte; {not used}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {not used}

ioBuffer: Ptr; {pointer to data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode}

ioPosOffset: LongInt); {positioning offset}

CntrlParam:

(ioCRefNum: Integer; {driver reference number}

csCode: Integer; {type of control or status request}

csParam: ARRAY[0..10] OF Integer); {control or status info}

END;

ParmBlkPtr = ^ParamBlockRec;

AuxDCE =

RECORD

dCtlDriver: Ptr; {pointer or handle to driver}

dCtlFlags: Integer; {flags}

dCtlQHdr: QHdr; {driver I/O queue header}

dCtlPosition: LongInt; {byte position}
Summary of the Device Manager 1-97

C H A P T E R 1

Device Manager
dCtlStorage: Handle; {handle to private storage}

dCtlRefNum: Integer; {driver reference number}

dCtlCurTicks: LongInt; {used internally}

dCtlWindow: GrafPtr; {pointer to driver’s window}

dCtlDelay: Integer; {ticks between periodic actions}

dCtlEMask: Integer; {event mask for desk accessories}

dCtlMenu: Integer; {menu ID for desk accessories}

dCtlSlot: Byte; {slot}

dCtlSlotId: Byte; {sResource directory ID}

dCtlDevBase: LongInt; {slot device base address}

dCtlOwner: Ptr; {reserved; must be 0}

dCtlExtDev: Byte; {external device ID}

fillByte: Byte; {reserved}

END;

AuxDCEPtr = ^AuxDCE;

AuxDCEHandle = ^AuxDCEPtr;

Routines 1

Opening and Closing Device Drivers

FUNCTION OpenDriver (name: Str255; VAR refNum: Integer): OSErr;

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBOpenSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION OpenSlot (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION OpenDeskAcc (deskAccName: Str255): INTEGER;

FUNCTION CloseDriver (refNum: Integer): OSErr;

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBCloseSync (paramBlock: ParmBlkPtr): OSErr;

PROCEDURE CloseDeskAcc (refNum: INTEGER);

Communicating With Device Drivers

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBReadSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBReadAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION FSWrite (refNum: Integer: VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBWriteSync (paramBlock: ParmBlkPtr): OSErr;
1-98 Summary of the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
FUNCTION PBWriteAsync (paramBlock: ParmBlkPtr): OSErr;

Controlling and Monitoring Device Drivers

FUNCTION Control (refNum: Integer; csCode: Integer;
csParamPtr: Ptr): OSErr;

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBControlSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBControlAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION Status (refNum: Integer; csCode: Integer;
csParamPtr: Ptr): OSErr;

FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBStatusSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBStatusAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION KillIO (refNum: Integer): OSErr;

FUNCTION PBKillIO (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBKillIOSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBKillIOAsync (paramBlock: ParmBlkPtr): OSErr;

Driver Support Routines

FUNCTION DriverInstall (drvrPtr: Ptr; refNum: Integer): OSErr;

FUNCTION DriverInstallReserveMem (drvrPtr: Ptr; refNum: Integer): OSErr;

FUNCTION DriverRemove (refNum: Integer): OSErr;

FUNCTION GetDCtlEntry (refNum: Integer): DCtlHandle;

Assembly-Language Summary 1

Data Structures 1

Device Manager Parameter Block Header

0 qLink long used internally by the Device Manager
4 qType word used internally by the Device Manager
6 ioTrap word used internally by the Device Manager
8 ioCmdAddr long used internally by the Device Manager

12 ioCompletion long completion routine
16 ioResult word result code
18 ioNamePtr long driver name
22 ioVRefNum word drive number
Summary of the Device Manager 1-99

C H A P T E R 1

Device Manager
I/O Parameter Structure

Control Parameter Structure

Trap Macros 1

Trap Macro Names

Routines Requiring Jump Vectors

24 ioRefNum word driver reference number
26 ioVersNum byte not used
27 ioPermssn byte read/write permission
28 ioMisc long not used
32 ioBuffer long pointer to data buffer
36 ioReqCount long requested number of bytes
40 ioActCount long actual number of bytes
44 ioPosMode word positioning mode
46 ioPosOffset long positioning offset

24 ioCRefNum word driver reference number
26 csCode word type of control or status request
28 csParam 22 bytes control or status information

C and Pascal
name Trap macro name

PBOpen _Open

OpenSlot _Open

PBClose _Close

PBRead _Read

PBWrite _Write

PBControl _Control

PBStatus _Status

PBKillIO _KillIO

DriverInstall _DrvrInstall

DriverRemove _DrvrRemove

Routine Jump vector

Fetch JFetch

Stash JStash

IODone JIODone
1-100 Summary of the Device Manager

C H A P T E R 1

Device Manager

1
D

evice M
anager
Result Codes 1
noErr 0 No error
controlErr –17 Driver does not respond to this control request
statusErr –18 Driver does not respond to this status request
readErr –19 Driver does not respond to read requests
writErr –20 Driver does not respond to write requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
openErr –23 Requested read/write permission does not match driver’s open permission
closErr –24 Driver unable to complete close request
dRemovErr –25 Attempt to remove an open driver
dInstErr –26 Driver resource not found
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open
ioErr –36 Data does not match in read-verify mode
Summary of the Device Manager 1-101

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	Device Manager
	Introduction to Devices and Drivers
	About the Device Manager
	The Device Control Entry
	The Unit Table
	The Driver I/O Queue
	Driver Routines
	Driver Resources

	Using the Device Manager
	Opening and Closing Device Drivers
	Communicating With Device Drivers
	Controlling and Monitoring Device Drivers

	Writing a Device Driver
	Creating a Driver Resource
	Responding to the Device Manager
	Entering and Exiting From Driver Routines
	Writing Open and Close Routines
	Writing a Prime Routine
	Writing Control and Status Routines

	Handling Asynchronous I/O
	Installing a Device Driver

	Writing a Chooser-Compatible Device Driver
	How the Chooser Works
	Creating a Chooser Extension File
	Creating a Device Package
	Responding to the Chooser
	Allocating Private Storage

	Writing a Desk Accessory
	How Desk Accessories Work
	Creating a Driver Resource for a Desk Accessory
	Opening and Closing a Desk Accessory
	Responding to Events

	Device Manager Reference
	Data Structures
	Device Manager Parameter Block
	Device Control Entry

	Device Manager Functions
	Opening and Closing Device Drivers
	Communicating With Device Drivers
	Controlling and Monitoring Device Drivers
	Writing and Installing Device Drivers

	Resources
	The Driver Resource

	Summary of the Device Manager
	C Summary
	Constants
	Data Types
	Functions

	Pascal Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

