CHAPTER 1

Device Manager

This chapter describes how your application can use the Device Manager to transfer
information into and out of a Macintosh computer. The Device Manager controls the
exchange of information between applications and hardware devices.

This chapter provides a brief introduction to devices and device drivers (the programs
that control devices) and then explains how you can use the Device Manager functions to

= open, close, and exchange information with device drivers
» write your own device driver that can communicate with the Device Manager

» provide a user interface for your device driver by making it a Chooser extension or
desk accessory.

You should read the sections “About the Device Manager” and “Using the Device
Manager” if your application needs to use the Device Manager to communicate with a
device driver. Applications often communicate with the Device Manager indirectly, by
calling functions of other managers (for example, the File Manager) that use the Device
Manager. However, sometimes applications must call Device Manager functions directly.

The sections “Writing a Device Driver,” “Writing a Chooser-Compatible Device Driver,”
and “Writing a Desk Accessory,” provide information you'll need if you are writing your
own device driver.

If you writing a device driver, you should understand how memory is organized and
allocated in Macintosh computers. See Inside Macintosh: Memory, for this information.
You should also be familiar with resources and how the system searches resource files.
You can find this information in the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox. If your device driver is to perform background tasks, you'll need
to understand how processes are scheduled. Inside Macintosh: Processes covers these
topics. If your driver will control a hardware device, you should read Designing Cards
and Drivers for the Macintosh Family, third edition.

Introduction to Devices and Drivers

A device is a physical part of the Macintosh, or a piece of external equipment, that
can exchange information with applications or with the Macintosh Operating System.
Input devices transfer information into the Macintosh, while output devices receive
information from the Macintosh. An I/O device can transfer information in either
direction.

Devices transfer information in one of two ways. Character devices read or write a
stream of characters, or bytes, one at a time. Character devices provide sequential access
to data—they cannot skip over bytes in the data stream, and cannot go back to pick up
bytes that have already passed. The keyboard and the serial ports are examples of
character devices.

Block devices read and write blocks of bytes as a group. Disk drives, for example, can
read and write blocks of 512 bytes or more. Block devices provide random access to
data—they can read or write any block of data on demand.

Introduction to Devices and Drivers 1-3

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Devices communicate with applications and with the Operating System through special
programs called device drivers . A device driver typically controls a specific hardware
device, such as a modem, hard disk, or printer. This type of device driver acts as a
translator, converting software requests into hardware actions and hardware actions into
software results. Figure 1-1 illustrates some of the hardware devices that communicate
with the Macintosh through device drivers.

Figure 1-1 Devices and the Macintosh

U

Modem

| Device Manager |

ﬂ

H

) \ .
N
SCSI drivers | Disk Driver

do U |

Slot Manager SCSI Manager

! !

=

<

N\

Printer NuBus cards Scanner Hard disk Floppy disk

Macintosh device drivers may be either synchronous or asynchronous. A synchronous
device driver completes a requested transaction before returning control to the Device
Manager. An asynchronous device driver can initiate a transaction and return control to
the Device Manager before the transaction is complete. This type of device driver usually
relies on interrupts from a hardware device to regain control of the processor and
complete the transaction.

The Macintosh ROM and system software contain device drivers for controlling the
standard devices included with every Macintosh computer, such as the mouse, serial
ports, and floppy disk drive. Before deciding to write your own device driver, you
should consider whether your device can be accessed using one of the standard device
drivers. The section “Writing a Device Driver,” beginning on page 1-24, discusses the
reasons why you may want to use a standard device driver rather than writing your own.

Although device drivers are often used to control hardware, they are not restricted to
this function. For example, Macintosh desk accessories and Chooser extensions are small
programs that are written as device drivers, even though they may have nothing to do
with controlling hardware. In general, a device driver is a program that conforms to a
standard interface and provides access to a service through a standard set of routines.

Introduction to Devices and Drivers

CHAPTER 1

Device Manager

Your program can take advantage of this interface to perform tasks unrelated to actual
physical devices.

About the Device Manager

The Device Manager provides a common programming interface for applications and
other managers to use when communicating with device drivers. The Device Manager
also includes support functions useful for writing your own device drivers.

Typically, your application won’t communicate directly with device drivers; instead, it

will call Device Manager functions or call the functions of another manager that calls the
Device Manager. For example, your application can communicate with a disk driver by

calling the Device Manager directly or by calling the File Manager, which calls the
Device Manager. Figure 1-2 shows the relationship between applications, the Device
Manager, other managers, device drivers, and devices.

Figure 1-2 Communication with devices
Application

Other managers

g

Device Manager

0

Device drivers

U

Devices

Before the Device Manager allows an application or another manager to communicate
with a device driver, the driver must be open, which means the Device Manager has
received a request to open the driver, has loaded the driver into memory, if necessary,
and has successfully called the driver’s open routine.

About the Device Manager

Jabeue a21n8Q -

1-6

CHAPTER 1

Device Manager

Your application opens a device driver using one of the Device Manager functions,
OpenDri ver, OpenSl ot , or PBOpen. These functions return a driver reference number
for the driver. You use the driver reference number to identify the driver in subsequent
communication requests.

Your application communicates with a driver by calling Device Manager functions such
as FSRead or PBRead, and supplying the driver reference number of the device. The
Device Manager then invokes a corresponding routine in the device driver to perform
the requested operation. The section “Driver Routines” on page 1-12 describes these
routines and their relationship to the Device Manager functions.

The Device Manager uses several data structures to locate, manage, and communicate
with device drivers. These structures are described in the following sections.

The Device Control Entry

The Device Manager maintains a data structure called a device control entry (DCE) for
each open driver. The device control entry is a relocatable block in the system heap that
contains a handle or pointer to the device driver code, and additional information about
the driver. Typically, the Device Manager maintains one device control entry for each
open device driver, but it is possible for multiple entries to refer to the same driver.

Figure 1-3 shows the device control entry structure. See “Device Manager Reference,”
beginning on page 1-53, for descriptions of the fields within the device control entry
structure.

About the Device Manager

CHAPTER 1

Device Manager

Figure 1-3 The device control entry
Offset Bytes
0
dCt | Driver (Pointer to ROM driver or handle to RAM driver) | 4
4
dct | Fl ags (Flags) 2
6
Z dct | QHdr (Driver 1/0 queue header) / 10
16
dCt | Posi tion (Byte position for block devices) 4
20
dCt| Storage (Handle to driver's private storage) 4
24
dct | Ref Num (Driver reference number) 2
26
dCt | Cur Ti cks (Number of ticks since last periodic event) 4
30
dct | W ndow (Pointer to desk accessory window) 4
34
dct | Del ay (Number of ticks between periodic actions) 2
36
dC& | EMask (Desk accessory event mask) 2
38
dct | Menu (Desk accessory menu ID) 2
40
41| dOTSiot (Slot) 1
42 dalSlotld (sResource directory ID) 1
dCt | DevBase (Slot device base address) 4
46
dct | Oamner (Reserved; value must be 0) 4
50
51 dCt | Ext Dev (External device ID) 1
fill Byte (Reserved) 1

About the Device Manager

1-7

Jabeue a21n8Q -

1-8

CHAPTER 1

Device Manager

The Unit Table

The Device Manager uses a data structure called the unit table to organize and keep
track of device control entries. The unit table is a nonrelocatable block in the system
heap, containing an array of handles. Each handle points to the device control entry of
an installed device driver. The location of a driver’s device control entry handle in the
unit table is called the driver’s unit number . If the handle at a given unit number is ni |,
there is no device control entry installed in that position.

When you open a device driver, the Device Manager returns a driver reference number
for the driver. The driver reference number is the one’s complement (logical NOT) of the
unit number.

The system global variable UTabl eBase points to the first entry of the unit table. The
system global variable Uni t Nt r yCnt contains the size of the unit table (that is, how
many handles it can hold). Figure 1-4 shows the organization of the unit table, including
the locations of some of the standard device drivers reserved by Apple Computer, Inc.

About the Device Manager

CHAPTER 1

Device Manager

Figure 1-4 The unit table

UTabl eBase Unit # Reference # c<?
. _— =.
points here. 0 Reserved -1 3
<
1| .Sony (Hard Disk 20)) §
«Q
2 . Print (Printer) -3 @
3 . Sound (Sound) —4
4 . Sony (Disk) -5
5 AN (Modem in) -6
6 . AQut (Modem out) -7
7 .Bln (Printer in) -8
8 . BQut (Printer out) -9
9 . MPP (AppleTalk MPP) -10
10 . ATP (AppleTalk ATP) -11
11 Reserved =12
—
12 Desk accessory -13
Available for
desk accessories. Z /
31 Desk accessory -32
A
—
32 SCSiI device 0 -33
Available for
SCSI devices. Z /
39 SCSI device 7 (reserved) | —40
o
40 Reserved -41
Reserved by
Apple Computer, Inc. Z /
47 Reserved -48
A
—
48 -49
Available for slot devices
and other drivers. Z /
n="UnitNtryCnt n-1
A

About the Device Manager 1-9

1-10

CHAPTER 1

Device Manager

The Driver 1/0O Queue

The Device Manager maintains an I/O queue for each open device driver. An I/O queue
is a standard Macintosh Operating System queue of type i 0QType, as described in the
chapter “Queue Utilities” in Inside Macintosh: Operating System Ultilities.

At the head of a device driver’s I/ O queue is the request currently being processed
by the driver. The rest of the queue contains pending I/O requests—those the Device
Manager has received but not yet sent to the device driver. This queue allows your
application to request a data transfer with a busy device and accomplish other tasks
while the device processes previous requests.

With respect to the I/ O queue, the Device Manager allows you to make three types of
requests: asynchronous, synchronous, and immediate.

s Asynchronous requests. When you make an asynchronous request, the Device
Manager places your request at the end of the driver I/ O queue and returns control
to your application—potentially before the request is processed. Your application is
free to perform other tasks while the device driver processes the requests in its queue.
The Device Manager provides mechanisms for your application to determine when
the driver has processed the request.

» Synchronous requests. When you make a synchronous request, the Device Manager
places your request at the end of the queue and waits until the device driver has
handled every request in the queue, including the synchronous one, before returning
control to your application. Notice there can never be more than one synchronous
request in a driver I/O queue at any given time.

s Immediate requests. The Device Manager sends immediate requests directly to the
device driver, bypassing the queue, and returns control to your application when the
request is complete. Because the device driver might be in the middle of processing
another request, you must make sure the driver is reentrant before making an
immediate request. A reentrant driver is capable of handling multiple requests
simultaneously. As some device drivers are not reentrant, you should always consult
a driver’s documentation to determine if it supports immediate requests.

IMPORTANT

The terms synchronous and asynchronous are used here to describe how
the Device Manager queues your I/O requests. How a device driver
processes these requests (synchronously or asynchronously) depends
on the design of the driver. When you make a synchronous request

to a device driver, the Device Manager waits for the driver to complete
the request, regardless of whether the driver handles the request
synchronously or asynchronously. a

Figure 1-5 shows the relationship of the unit table, device control entry, and I/O queue
to a device driver.

About the Device Manager

CHAPTER 1

Device Manager

Figure 1-5

Relationship of the Device Manager data structures

UTabl eBase ($110)

Unit table

Master pointer

Device control entry

Handle or pointer I

Master pointer

Device driver

to device driver

/

/

Pointer to first
1/0 queue element

Queue element

Queue link

Queue element

Queue link

{ <

About the Device Manager

1-11

Jabeue a21n8Q -

1-12

CHAPTER 1

Device Manager

Driver Routines

Every device driver must provide a set of routines for handling requests from the Device
Manager. When an application or another manager calls a Device Manager function, the
Device Manager invokes one of the following routines in the designated device driver:

The open routine allocates memory and initializes the device driver’s data structures.
It may also initialize a hardware device or perform any other tasks necessary to make
the driver operational. All device drivers must implement an open routine.

The close routine deactivates the device driver, releases any memory allocated by the
driver, removes any patches installed by the driver, and performs any other tasks
necessary to reverse the actions of the open routine. All drivers must implement a
close routine.

The control routine is usually used to send control information to the device driver.
The function of this routine is driver-dependent. This routine is optional and need not
be implemented.

The status routine is usually used to return status information from the device driver.
The function of this routine is driver-dependent. The status routine is optional and
need not be implemented.

The prime routine implements the input and output functions of the driver. This
routine is optional. If the prime routine is implemented, it must support either read
functions or write functions, or both.

Each driver routine is responsible for handling specific types of Device Manager
requests. Table 1-1 shows the Device Manager I/O functions and the driver routines
responsible for handling them. The Device Manager I/O functions are described in
“Using the Device Manager,” beginning on page 1-14. The section “Writing a Device
Driver,” beginning on page 1-24, describes the driver routines.

Table 1-1 Device Manager I/O functions and responsible driver routines
Device Manager function Responsible driver routine
OpenDriver, PBOpen, OpenSl ot Open

FSRead, PBRead Prime

FSWite, PBWite Prime

Control, PBControl Control

St atus, PBSt at us Status

KilllQ PBKilllO Control

Cl oseDriver, PBC ose Close

Driver Resources

Device drivers are usually stored in driver resources, which can be located in
applications, system extension files, or the firmware of expansion cards. A driver

About the Device Manager

CHAPTER 1

Device Manager

resource consists of a header followed by the driver code. The header contains
information about the driver such as which driver routines are implemented and where
the routines are located within the driver code. The Device Manager copies the relevant

information from the header into the device control entry when you open the driver. c<?
Figure 1-6 shows the structure of a driver resource. The section “Creating a Driver =3
Resource,” beginning on page 1-24, describes driver resources in detail. £
2
«Q
@
Figure 1-6 Structure of a driver resource
Offset Bytes
-
drvrFl ags (Flags) 2
2
drvr Del ay (Number of ticks between periodic actions) 2
4
dr vr EMask (Desk accessory event mask) 2
6
drvr Menu (Desk accessory menu ID) 2
8
drvr Open (Offset to open routine)* 2 ——
10
Driver drvrPrinme (Offset to prime routine)* 2
header | 12
drvrCtl (Offset to control routine)* 2
14
drvr St at us (Offset to status routine)* 2
16
drvrC ose (Offset to close routine)* 2
18
19 dr vr Nane[0] (Length of driver name) 1
Z drvr Nane+1 (Characters of driver name) / Variable
> B —
Z Open routine / Variable
Z Prime routine /Variable
Driver . .
code] Z Control routine / Variable
Z Status routine / Variable
{ Close routine { Variable
N

* Note: Routine offsets are relative to offset 0 of the driver resource.

About the Device Manager 1-13

CHAPTER 1

Device Manager

Using the Device Manager

Your application can use Device Manager functions to communicate with devices
through their device drivers. This section describes the Device Manager functions that
allow you to open, close, and control device drivers, exchange information with them,
and monitor their status. The Device Manager also provides support functions useful for
writing and installing device drivers. The section “Writing a Device Driver,” beginning
on page 1-24, describes these support functions.

The Device Manager includes high-level and low-level versions of most of its functions.
The high-level versions are somewhat easier to use, but they allow less control of how
the Device Manager processes the I/ O request (for example, they are always handled
synchronously) and they return less information to your application. Conversely, the
low-level functions require some additional setup, but they allow you greater control
and return more information.

The high-level Device Manager functions call the low-level functions, which in turn call
the appropriate driver routine. For example, the Device Manager converts the high-level
FSRead function to a low-level PBRead function before calling the driver’s prime
routine. Figure 1-7 depicts this hierarchy.

Figure 1-7 Hierarchy of Device Manager functions

High-level Device Manager functions

OpenDriver, d oseDriver,
FSRead, FSWite,
Control, Status, KilllO

J

Low-level Device Manager functions

OpenSl ot, PBOpen, PBd ose,
PBRead, PBWite,
PBControl, PBStatus, PBKilllO

J

Driver routines

Open, d ose,
Pri ne,
Control, Status

1-14 Using the Device Manager

CHAPTER 1

Device Manager

The high-level functions differ in form, but the low-level functions all have the form:
pascal OSErr PBRoutineName (ParnBl kPtr paranBl ock, Bool ean async);

The par anBl ock parameter is a pointer to a structure of type Par anBl ockRec. You
use the fields of this structure to pass more complete information to the driver than you
can with high-level functions, and the driver uses the same structure to pass information
back. The Par anBl ockRec is defined in C as a union of six structures, but only the

| OPar amand Cnt r | Par amtypes are used by the Device Manager. Figure 1-8 shows the
fields of the Par anBl ockRec structure used by the Device Manager. These fields are
described in detail later in this section and in “Data Structures” on page 1-53.

The async parameter specifies whether the Device Manager should process the function
asynchronously. For synchronous requests you set this parameter to f al se; the Device
Manager adds the parameter block to the driver I/O queue and waits until the driver
completes the request (which means it has completed all previously queued requests)
before returning control to your application.

WARNING

Never call any Device Manager function synchronously at interrupt
time. A synchronous request at interrupt time may block other pending
I/O requests. Because the device driver cannot begin processing the
synchronous request until it completes the other requests in its queue,
this situation can cause the Device Manager to loop indefinitely while it
waits for the device driver to complete the synchronous request. a

If you set the async parameter to t r ue, the Device Manager adds the parameter block
to the driver I/ O queue and returns control to your application immediately. In this case,
a noErr result code signifies that the request was successfully queued, not that the
request was successfully completed. The Device Manager sets the i oResul t field of the
parameter block to 1 when the request is queued, and stores the actual result code there
when the driver indicates the request is complete.

When you make an asynchronous request you can also provide a pointer to a completion
routine in the i oConpl et i on field of the parameter block. The Device Manager
executes this routine when the driver completes the asynchronous request. Your
completion routine could, for example, set a flag to signal your application that the

I/O operation is complete. See “Handling Asynchronous I/O,” beginning on page 1-37,
for more information about completion routines and asynchronous operation.

Assembly-Language Note

You can call a Device Manager function immediately, bypassing the I/O
queue, by setting bit 9 of the trap word. You can set or test this bit using
the global constant noQueueBi t . However, remember that the device
driver might be processing another request, especially if you make an
immediate request during interrupt time. The driver must be reentrant
to handle this situation properly. You should always check a driver’s
documentation to make sure the driver is reentrant before making
immediate requests. O

Using the Device Manager 1-15

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Figure 1-8 Device Manager parameter blocks
Offset | OPar am Bytes Offset Cntrl Param Bytes
0 0
gLi nk 4 gLi nk 4
4 4
qType 2 qType 2
6 6
ioTrap 2 ioTrap 2
8 8
i oCrd Addr 4 i oCrdAddr 4
12 12
i oConpl eti on 4 i oConpl etion 4
16 16
i oResul t 2 i oResul t 2
18 18
i oNarrePt r 4 i oNanePt r 4
22 22
i oVRef Num 2 i oVRef Num 2
24 24
i oRef Num 2 i 0CRef Num 2
26 - 26
27 | oVer sNum 1 csCode 5
i oPernssn 1 28
28
i oM sc 4
32
i oBuf fer 4
36
i oReqCount 4
csParani 11] 22
40
i 0Act Count 4
44
i oPosMode 2
46
i oPosCOf f set 4
50 50
Used by PBOpen, PBO ose, PBRead, and PBW i t e Used by PBCont rol , PBSt at us,and PBKi | I | O

When you use a low-level Device Manager function, the Device Manager places the
parameter block at the end of the driver I/O queue and then either waits for the driver
to complete the request or returns control to your application, depending on the value of

1-16 Using the Device Manager

CHAPTER 1

Device Manager

the async parameter. For the high-level functions, the Device Manager creates a
parameter block for you, filling the required fields with the values you supplied. The
Device Manager then inserts the parameter block at the end of the I/O queue as a
synchronous request. As previously-queued requests are processed, the parameter block
moves forward in the I/ O queue. When the parameter block is at the beginning of the
queue, the Device Manager calls the appropriate driver routine and passes it a pointer to
the parameter block and a pointer to the driver’s device control entry.

For read and write requests, the Device Manager calls the driver’s prime routine. This
routine can execute synchronously, completing the requested read or write transaction
before returning control to the Device Manager, or asynchronously, beginning the
requested transaction but returning control to the Device Manager before completing it.
For information about reading and writing data to devices, see “Communicating With
Device Drivers” on page 1-20.

If you are writing a device driver and your driver’s prime routine can execute
asynchronously, your driver must use some mechanism to regain control of the
processor to complete asynchronous requests. Your driver would typically use an
interrupt handler for this purpose, and notify the Device Manager when the transaction
is complete. See “Writing a Prime Routine” on page 1-33 and “Handling Asynchronous
I/O” on page 1-37 for more information about writing asynchronous routines.

The Device Manager handles control and status requests in the same way as read and
write requests, except that for control requests it calls the control routine and for status
requests it calls the status routine. See “Controlling and Monitoring Device Drivers” on
page 1-22 for information about making these requests. For information about providing
status and control routines for your own driver, see “Writing Control and Status
Routines” on page 1-34.

The Device Manager responds to Ki | | | Orequests by calling the device driver’s control
routine with a value of ki | | Code for the csCode parameter. If the driver returns

noEr r, the Device Manager removes all parameter blocks from the queue, calling their
completion routines with the result code abor t Er r. For more information about
canceling I/ O requests, see the description of the Ki | | | Ofunction on page 1-80. For
information on how your driver can handle Ki | | | Orequests, see “Writing Control and
Status Routines” on page 1-34.

In response to a close request, the Device Manager waits until the driver is inactive, then
calls the driver’s close routine. When the driver indicates it has processed the close
request, the Device Manager unlocks the driver resource if the dRAMBased flag is set,
and unlocks the device control entry if the dNeedLock flag is not set. The Device
Manager does not release the driver resource or dispose of the device control entry
unless you call the Dri ver Renpve function. The next section describes how to open
and close a device driver. See “Writing Open and Close Routines” on page 1-31 for
information about how your driver should respond to open and close requests.

Using the Device Manager 1-17

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Opening and Closing Device Drivers

You must open a driver before your application can communicate with it. The Device
Manager provides three functions for opening device drivers: QpenDr i ver, OpenSl| ot,
and PBOpen. Each of these functions requires a driver name and returns a driver
reference number.

A driver name consists of a period (.) followed by any sequence of 1 to 254 printing
characters; for example, .ATP is the name of one of the high-level AppleTalk drivers. The
initial period in a driver name allows the Device Manager and the File Manager, which
share the _Qpen trap, to distinguish between driver names and filenames. Refer to

a device driver’s documentation to determine the driver name.

The QpenDri ver function, which is the high-level function for opening a device driver,
takes the driver name as its first parameter and returns the driver reference number in its
second parameter. When an application or another manager calls the CpenDri ver
function, the Device Manager first searches the unit table to see if a driver with the
specified name is already installed. If the name does not match any installed driver, the
Device Manager searches the current Resource Manager search path for a driver resource
with the specified name.

To open a device driver from a resource, the Device Manager

= creates a device control entry for the driver, filling in the DCE with values from the
header of the driver resource

= installs a handle to the device control entry in the unit table at a location determined
by the driver resource ID

= calls the driver’s open routine

Listing 1-1 shows an application-defined function that uses the OpenDr i ver function to
open a driver.

Listing 1-1 Opening a device driver

1-18

short gDrvrRef Num /* gl obal variable for storing
ny driver reference nunber */

OSErr MyOQpenDri ver (voi d)
{
Handl e drvrHdl ;
short drvrl D
short tenpDrvr | D
ResType drvrType;
St r 255 dr vr Narre;
CSErr myErr;

tempDrvrI D = MyFi ndSpacel nUnit Tabl e(); /* see Listing 1-14 */

Using the Device Manager

CHAPTER 1

Device Manager

if (tempDrvriD > 0)

{
drvrHdl = Get NanedResource((ResType)' DRVR, "\p. MYDRI VER") ;
Get ResInfo(drvrHdl, &drvri D, &drvrType, drvrNane);
Set Resl nfo(drvrHdl, tenpDrvriD, drvrNane);
nyErr = QpenDriver("\p. MYDRI VER"', &gDrvr Ref Num ;
if (nyErr == noErr)
Det achResour ce(drvrHdl) ;
drvrHdl = Get NanedResour ce((ResType)' DRVR , drvr Nane);
Set Resl nfo(drvrHdl, drvrlD, drvrNane);
return(nyErr);
}
el se

return(openErr); /* no space in the unit table */

}

The QpenDri ver function uses the resource ID of the driver resource as the unit
number for the device driver, which determines where the device control entry will be
stored in the unit table. Because the QpenDri ver function does not check to see if
another device control entry is already located at that position in the unit table, the
M/QpenDr i ver function begins by searching for an available space in the unit table.
Listing 1-14 on page 1-39 shows the MyFi ndSpacel nUni t Tabl e function.

If there is room in the unit table, the MyQpenDr i ver function calls Get NanedResour ce
to load the resource into memory, then changes the ID of the driver resource in the
resource map before calling the OpenDri ver function.

After the driver is open, MyQpenbDr i ver calls the Det achResour ce function to prevent
the driver resource from being released. Finally, MyOpenDr i ver restores the original
resource ID so that the driver’s resource file remains unchanged.

You can use the PBOpen or OpenSl ot functions instead of the OpenDr i ver function
when you want more control over how the Device Manager opens the device driver. For
example, you can set read and write permissions for the device with the i oPer mssn
field of the parameter block. Use the OpenSl ot function to open drivers that serve slot
devices, and the PBOpen function for all other drivers.

Because the Device Manager always opens device drivers synchronously, you must set
the async parameter to f al se when using the PBOpen or OpenSl ot functions. If a
device driver is already open, the Device Manager simply returns the driver reference
number.

The remaining Device Manager functions require your application to use the driver
reference number, instead of the driver name, when referring to a device driver.

Using the Device Manager 1-19

Jabeue a21n8Q -

CHAPTER 1

Device Manager

When you finish using a driver, you may want to close it. However, you do not normally
close drivers that might be needed by the system or by other applications. Whether you
should close a particular driver depends on the type of driver and how it is being used.
Refer to the driver’s documentation to determine if it should be closed. See the
appropriate chapters in this book and other books in the Inside Macintosh series for
information about standard Macintosh drivers.

If you do want to close a driver, you can use the high-level O oseDri ver function or
the low-level PBCl ose function. Listing 1-2 shows how to use the PBC ose function to
close the driver opened in Listing 1-1.

Listing 1-2 Closing a device driver

1-20

OSErr Myd oseDriver(short refNum

{

| OParam par anBl ock;

par amBl ock. i oRef Num = ref Num

return(PBC ose((Par nmBl kPt r) &ar anmBl ock, false));
}

The MyCl oseDrx i ver function specifies the driver to close by placing the driver
reference number in the i oRef Numfield of the parameter block and then calls the Device
Manager PBCl ose function.

Communicating With Device Drivers

Once a device driver is open and you have its reference number, you can use Device
Manager functions to exchange information with it. When you want to receive
information from a device driver, you first allocate a data buffer to hold the information
and then call the FSRead or PBRead function. To send information to a device driver,
you first store the information in a data buffer and then call the FSWite or PBWite
function. You must specify the number of bytes you want transferred when calling any
of these functions.

The PBRead and PBW i t e functions support asynchronous requests, and allow you
to specify a completion routine. For block devices you specify the drive number,
positioning mode, and positioning offset in the i oVRef Num i oPosMbde, and

i oOPosOF f set fields of the parameter block. The Device Manager does not interpret
these fields—they are used by the device driver to locate the desired data block.

The Macintosh Operating System defines three positioning modes for block devices:

= At the current position. Transfer begins at the current position on the
medium—typically where the last transfer ended.

Using the Device Manager

CHAPTER 1

Device Manager

= Offset from the start. Transfer begins at the specified offset from the beginning of the
medium.

= Offset from the mark. Transfer begins at the specified offset from the current position.

You specify the positioning mode by setting the i o0PosMbde field to one of the defined
constants, f SAt Mar k, f sFronSt ar t, or f sFr omMVar k. Be sure you specify a mode that
is compatible with the device.

On completion, the PBRead and PBW i t e functions return in the i 0Act Count field of
the parameter block the total number of bytes actually transferred. For block devices,
these functions also return a new positioning offset in the i 0PosCf f set field.

Certain device drivers provide additional abilities with the read and write functions.
For example, the Disk Driver allows you to use the PBRead function to verify that
data written to a block device matches the data in memory. To do this, you add the
read-verify constant r dVer i f y to the value in the i oPosMbde field of the parameter
block, as explained in the description of the PBRead function on page 1-70.

Listing 1-3 shows an example of how to read from a device driver.

Listing 1-3 Reading from a device driver

OSErr MyReadFronDri ver (short refNum

{

| OParam par anBl ock;

char buf f er[256] ;

par anBl ock. i oRef Num = ref Num

par anBl ock. i oReqCount = 256;

par anBl ock. i oBuf fer = (Ptr)buffer;

ret ur n(PBRead((Par nBl kPt r) &par anBl ock, fal se));
}

The MyReadFr onDr i ver function uses a parameter block to specify the device driver
(by its driver reference number), the number of bytes to read, and a pointer to a buffer
to receive the data. When MyReadFr onDr i ver calls the PBRead function, the Device
Manager appends the parameter block to the end of the driver I/O queue. Because the
async parameter is set to f al se, the Device Manager does not return control to
M/ReadFr onDr i ver until the driver has completed every request in its queue.

Listing 1-4 shows an example of how to write to a device driver.

Using the Device Manager 1-21

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Listing 1-4 Writing to a device driver

1-22

OSErr MyWiteToDriver(short refNunm

{

| OParam par anBl ock;

char* buf fer;

buffer = "Data to Wite";

par anBl ock. i oConpl etion = nil;

par amBl ock. i oRef Num = ref Num

par anBl ock. i oBuffer = (Ptr)buffer;

par anBl ock. i oReqCount = strlen(buffer);

return(PBWite((ParnBl kPtr) &aranBl ock, false));
}

The YW i t eToDr i ver function also uses a parameter block to transfer information to
the driver. After filling in the necessary fields, MyW i t eToDr i ver sends the parameter
block to the PBW i t e function. Because the async parameter is f al se, the Device
Manager appends the parameter block to the end of the I/ O queue and does not return
control to the MyW i t eToDr i ver function until the driver has completed the request.

Controlling and Monitoring Device Drivers

In addition to the read and write functions, the Device Manager provides functions that
allow your application to control and monitor device drivers in other ways.

The Cont r ol and PBCont r ol functions send commands to a driver. Because the
types of commands to which drivers respond varies, you need to consult a driver’s
documentation to determine what commands it accepts. As an example, you can send
a command to the Disk Driver requesting that it eject a disk.

The St at us and PBSt at us functions return status information from a driver. Again,
the type of information drivers provide varies widely. The Serial Driver, for example, can
return a breakdown of the types of errors that have occurred recently.

The control and status functions use the Cnt r | Par amstructure of the Par anBl ockRec
union. This structure is defined in “Device Manager Parameter Block,” beginning on
page 1-53.

Because of the diversity of device drivers, the control and status functions have two
general-purpose parameters: csCode and csPar anPt r (or csPar amfor the low-level
PBCont r ol and PBSt at us functions). You indicate the type of control or status
information you are requesting by placing a driver-specific code in the csCode
parameter. You send or receive information using the csPar anPt r parameter.

Listing 1-5 shows an example of how to send control and status requests to a device
driver using the PBCont r ol and PBSt at us functions.

Using the Device Manager

CHAPTER 1

Device Manager

Listing 1-5 Controlling and monitoring a device driver

OSErr Myl ssueDriverControl (short refNum

{
Cntrl| Param paranBl ock;
par amBl ock. i oCRef Num = ref Num
par anmBl ock. csCode = kC earAl | ; /* driver-specific control request */
return(PBControl ((ParnBl kPtr) paranBl ock, false));
}
OSErr MyGetDriver Status(short refNum
{
Cntrl Param paranBl ock;
CSErr myErr;
short count;
par anmBl ock. i oCRef Num = ref Num
par amBl ock. csCode = kByteCount; /* driver-specific status request */
nyErr = PBStatus((ParnBl kPtr) &ar anBl ock, false);
count = paranBl ock.csParanf0]; /* value returned in csParamarray */
if (nyErr == noErr)
return(count);
el se
return(nyErr);
}

The Myl ssueDri ver Control and MyGet Dri ver St at us functions call the
example device driver control and status routines shown in Listing 1-12 on page 1-35
and Listing 1-13 on page 1-36.

The Myl ssueDr i ver Cont r ol function begins by setting up the fields of a parameter
block. The i 0CRef Numfield specifies the driver reference number, and the csCode field
specifies the type of control information being sent. The MyDr i ver Cont r ol function
shown in Listing 1-12 interprets the driver-specific value kGl ear Al | as a request for
the device driver to clear the information in its private storage.

The MyCet Dri ver St at us function also begins by setting up the fields of a parameter
block. The i 0CRef Numfield specifies the device driver reference number, and the
csCode field specifies the type of status information being requested. The

MyDr i ver St at us function shown in Listing 1-13 interprets a value of kByt eCount
as a request to return the number of bytes transferred by the last I/ O operation. This
information is returned in the csPar amfield of the parameter block.

Using the Device Manager 1-23

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Writing a Device Driver

1-24

This section shows you how to write a basic device driver—one that can respond to
Device Manager requests. Although you will need to write some assembly-language
interface code, you can write your device driver routines in a high-level language.

Before you decide to write your own device driver, you should consider whether your
task can be more easily accomplished using one of the standard Macintosh drivers
described in this book or other Inside Macintosh volumes. In general, you should consider
writing a device driver only if your hardware device or system service needs to be
accessed at unpredictable times or by more than one application.

For example, if you develop a new output device that you want to make available to any
application, you might need to write a custom driver. On the other hand, if your product
is a specialized device that can only be used by your application, it may be easier to
control the device using private code within your application.

This section describes how to
m create a driver resource

= write the code in your driver resource so that it responds appropriately to Device
Manager requests

» handle the special requirements of asynchronous I/O

= install and initialize your driver

Creating a Driver Resource

You will probably want to store your device driver in a driver resource, although if you
are writing a driver for a slot device, you might want to store your driver in an
sResource data structure in the declaration ROM of the expansion card. See the chapter
“Slot Manager” in this book for information about sResource data structures.

Storing your driver in a driver resource allows the Device Manager to load your driver
code into memory and install a device control entry for your driver in the unit table. Like
all resources, your driver resource has a resource type, a resource ID, a resource name,
and resource attributes.

s The resource type must be ' DRVR' if you plan to use the Device Manager to load
your driver into memory. If you write your own routine to load the driver, you can
choose a different resource type.

s The resource ID determines where in the unit table the Device Manager installs the
driver’s device control entry. Because you must choose the resource ID when creating
your driver resource, you cannot know which unit numbers are available until you
open your driver. Therefore, your driver-opening routine must find an empty location
in the unit table and change the resource ID accordingly. “Installing a Device Driver”
on page 1-38 discusses appropriate values for the resource ID.

Writing a Device Driver

CHAPTER 1

Device Manager

= The resource name should be the same as the driver name because the Device
Manager calls Get NamedResour ce using this name if it can’t find the driver in the
unit table. A driver name consists of a period (.) followed by any sequence of 1 to 255
printing characters. The Device Manager ignores case (but not diacritical marks) when
comparing names.

s The resource attributes of your driver resource depend on your driver. A typical
driver might have these attributes: locked, since most drivers contain code that is
called at interrupt time; in the system heap, so that the driver exists over launches of
applications; and preloaded, which makes resource loading slightly more efficient.

A driver resource has two parts:
s adriver header that contains information about the driver

= the routines that do the work of the driver

The driver header contains a few words of flags and other data, offsets to the driver’s
routines, and an optional driver name. Figure 1-9 shows the format of a driver header.

Figure 1-9 The driver header

Offset Bytes

0
drvr Fl ags 2

2
drvr Del ay 2

4
dr vr EMask 2

6
drvr Menu 2

8
drvr Open 2

10
drvrPrinme 2

12
drvrC i 2

14
drvr St at us 2

16
drvr Cl ose 2

18
19 dr vr Name[0] 1

{ drvr Nane+1 Variable

The elements of the driver header are:

Element Description

drvr Fl ags Flags in the high-order byte of this field specify certain
characteristics of the driver. These flags are copied to the high-order
byte of the dCt | FI ags field of the device control entry when the

Writing a Device Driver 1-25

Jabeue a21n8Q -

1-26

CHAPTER 1

Device Manager

drvr Del ay

dr vr EMask

drvr Menu
drvr Qpen

drvrPrinme
drvrCtl
drvr St at us
drvrd ose
dr vr Nare

See the section “Ente
information about th

Note

Your driver routines,
a word boundary. O

Writing a Device Driver

driver is opened. You can use the constants shown in Listing 1-6 to
set or test the flags in this field.

Name Bit Meaning

dReadEnabl e 8 Setif the driver can respond to read
requests.

dW it Enabl e 9 Setif the driver can respond to write
requests.

dCt | Enabl e 10 Set if the driver can respond to control
requests.

dSt at Enabl e 11 Setif the driver can respond to status
requests.

dNeedGoodbye 12 Set if the driver needs to be called before
the application heap is reinitialized.

dNeedTi ne 13 Set if the driver needs time for
performing periodic tasks.
dNeedLock 14 Set if the driver needs to be locked in

memory as soon as it is opened.

If the dNeedTi e flag is set, this field contains the requested
number of ticks between periodic actions. This value is approximate
and should not be used as a timing reference.

Used only by desk accessories, this field contains an event mask.
See “Writing a Desk Accessory” on page 1-49 for information about
this field.

Used only by desk accessories, this field contains a menu ID. See
“Writing a Desk Accessory” on page 1-49 for more information.

The offset of the driver’s open routine, relative to offset 0 of the
driver header.

The offset of the driver’s prime routine.

The offset of the driver’s control routine.

The offset of the driver’s status routine.

The offset of the driver’s close routine.

A Pascal string containing the driver’s name, up to 255 characters.

ring and Exiting From Driver Routines” on page 1-29 for more
e routine offsets.

which follow the driver header, must be aligned on

CHAPTER 1

Device Manager

Listing 1-6 Driver flag constants

enum {

/* flags used in the driver header and device control entry */
dNeedLockMask = 0x4000, /* set if driver nust be |locked in nmenory as

soon as it’s opened */

dNeedTi neMask = 0x2000, /* set if driver needs tinme for performng

peri odi c tasks */

dNeedGoodByeMask = 0x1000, /* set if driver needs to be called before the

dSt at Enabl eMask

application heap is initialized */
0x0800, /* set if driver responds to status requests */

dCt | Enabl eMask = 0x0400, /* set if driver responds to control requests*/

dW i t Enabl eMask
dReadEnabl eMask

0x0200, /* set if driver responds to wite requests */
0x0100, /* set if driver responds to read requests */

The dReadEnabl e, dW i t Enabl e, dCt | Enabl e, and dSt at Enabl e flags indicate
which Device Manager requests the device driver can respond to. The next section,
“Responding to the Device Manager,” describes these routines in detail.

Drivers in the application heap are lost when the heap is reinitialized. If you set

the dNeedGoodbye flag, the Device Manager calls your driver before the heap is
reinitialized so that you can perform any clean-up actions. See “Writing Control and
Status Routines,” beginning on page 1-34, for information about using this flag.

You set the dNeedTi e flag if your device driver needs to perform some action
periodically. For example, a network driver may want to poll its input buffer every

5 seconds to see if it has received any messages. The value of the dr vr Del ay field
indicates how many ticks should pass between periodic actions. For example, a value

of 0 in the dr vr Del ay field indicates that the action should happen as often as possible,
a value of 1 means it should happen every sixtieth of a second, a value of 2 means at
most every thirtieth of a second, and so on. Whether the action actually occurs this
frequently depends on how often an application calls Wi t Next Event or Syst enffask.
See “Writing Control and Status Routines,” beginning on page 1-34, for information
about using this flag.

Note

If you do not want your driver to depend on applications to call

Wi t Next Event or Syst enTask, you can perform actions periodically
by installing a VBL task, a Deferred Task Manager task, a Time Manager
task, or a Notification Manager task. For more information, see Inside
Macintosh: Processes. O

You need to set the dNeedLock flag if your device driver’s code must be locked in
memory. In particular, you need to set this flag in these two cases:

= If any part of your driver’s code can be called at interrupt time. Because the Operating
System may perform memory management at interrupt time, your driver must be
locked to prevent it from being moved.

Writing a Device Driver 1-27

Jabeue a21n8Q -

CHAPTER 1

Device Manager

= If your driver provides the Operating System with a pointer to any part of its code.
For example, if your driver uses the Device Manager to call another driver, you might
provide the Device Manager with a pointer to a completion routine. If that completion
routine is in your driver code, your driver code must be locked. Otherwise, that
pointer might not be valid when the Device Manager calls the completion routine.

You can create your driver header in these ways:

= You can use a resource compiler. See “Resources” on page 1-89 for the Rez format of
the driver resource.

= You can use the DCinstruction, as shown in Listing 1-7, to position the header
information directly in your assembly language code.

1-28

Listing 1-7 An assembly-language driver header
DHeader
DFl ags DC.W 0 ;set by MyDriverQpen
DDel ay DC.W 0 ; none
DEMask DC.W 0 ; DA event mask
DMenu DC.W 0 ;N0 nmenu
DC. W DOpen - DHeader ;offset to Open

DC. W DPrine - DHeader ;offset to Prine

DC. W DControl - DHeader ;offset to Control

DC. W DStatus - DHeader ;offset to Status

DC. W Dd ose - DHeader ;offset to C ose
Nane DC.B '.MYDRI VER ;driver name

ALI GN 2 ;word al i gnment

In this example, the dr vr FI ags word is cleared to 0 because the flags are set by the
MyDr i ver Open function, shown in Listing 1-9 on page 1-32. This is an implementation
decision—you can set the flags in the driver header or in your driver’s open routine. The
dr vr Del ay field is set to 0 because this driver does not perform any periodic actions
using the Syst enffask function. The dr vr EMask and dr vr Menu fields are set to 0, as
this driver is not a desk accessory. The next five fields contain offsets to the driver
routines, defined in the next section, “Responding to the Device Manager.” The header
ends with the driver name and the word alignment directive.

Responding to the Device Manager

The Device Manager calls a driver routine by setting up registers and jumping to the
address indicated by the routine’s offset in the driver header.

» Register A0 contains a pointer to the parameter block.
» Register Al contains a pointer to the driver’s device control entry.

This interface requires you to use some assembly language when writing a driver.
However, you can write your driver routines in a high-level language if you provide an

Writing a Device Driver

CHAPTER 1

Device Manager

assembly-language dispatching mechanism that acts as an interface between the Device
Manager and your driver routines.

The next few sections discuss how you can provide a dispatching routine and how you
can implement your driver routines in a high-level language.

Entering and Exiting From Driver Routines

Listing 1-8 shows an assembly-language dispatching routine that you can use as an
interface between the Device Manager and your high-level language driver routines.
This example properly handles synchronous, asynchronous, and immediate requests,

as well as the special cases of open, close, and Ki | | | O
Listing 1-8 An assembly-language dispatching routine
DOpen
MOVEM L AO- Al, - (SP) ; save ParnBl kPtr, DCtlPtr across function call
MOVEM L AO0- Al, - (SP) ; push ParnBl kPtr, DCtIPtr for C
BSR MyDri ver Open ;call linked C function
ADDQ #8, SP ;clean up the stack
MOVEM L (SP) +, AD- Al ;restore ParnBl kPtr, DCtIPtr
RTS ;open is always i mediate, must return via RTS
DPri ne
MOVEM L AO- Al, - (SP) ; save ParnmBl kPtr, DCtlPtr across function call
MOVEM L AO- Al, - (SP) ; push ParnmBl kPtr, DCtIPtr for C
BSR MyDriverPrinme ;call linked C function
ADDQ #8, SP ;clean up the stack
MOVEM L (SP) +, AD- Al ;restore ParnBl kPtr, DCtIPtr
BRA. B | ORet urn
DCont r ol
MOVEM L AO0- Al, - (SP) ; save ParnBl kPtr, DCtlPtr across function call
MOVEM L AO- Al, - (SP) ; push ParmBl kPtr, DCtIPtr for C
BSR MyDriverControl;call Iinked C function
ADDQ #8, SP ;clean up the stack
MOVEM L (SP) +, AD- Al ;restore ParnmBl kPtr, DCtIPtr

DSt at u

CWPl . W #kill Code, csCode(AO0) ;test for KilllO call (special case)
BNE. B | ORet urn

RTS ;Kill 1O nust always return via RTS

S

MOVEM L AO- Al, - (SP) ; save ParnmBl kPtr, DCtlPtr across function call
MOVEM L AO- Al, - (SP) ; push ParnmBl kPtr, DCtIPtr for C

Writing a Device Driver 1-29

Jabeue a21n8Q -

| ORet u

@bt Qu

@ med

@ueue

CHAPTER 1

Device Manager

BSR

ADDQ
MOVEM L

rn

MOVE. W
BTST
BEQ B

eued

TST. W
BLE. B
CLR W

RTS
MOVE. W

RTS

d

TST. W
BLE. B
CLR W
RTS

@41 Oone

DCl ose

1-30

MOVE. L
RTS

MOVEM L
MOVEM L
BSR
ADDQ
MOVEM L
RTS

MyDriverStatus ;call linked C function
#8, SP ;clean up the stack
(SP) +, AO- A1 ;restore ParnmBl kPtr, DCtIPtr

i oTrap(A0), D1
#noQueueBit, Dl ;i mediate calls are not queued, and nust RTS

@ueued ; branch if queued

DO ;test asynchronous return result

@ mredRTS ;result nust be <0

DO ;"in progress" result (> 0) not passed back
DO, i oResul t (A0) ;for imrediate calls you nust explicitly

; place the result in the ioResult field

DO ;test asynchronous return result
@1 ODone ;1/Ois conplete if result <0
DO ;"in progress” result (> 0) not passed back

JI ODone, - (SP) ; push I ODone junp vector onto stack

AO0- AL, - (SP) ; save ParnBl kPtr, DCtlPtr across function call
AO- Al, - (SP) ; push ParnmBl kPtr, DCtlIPtr for C

MyDriverCl ose ;call linked C function

#8, SP ;clean up the stack

(SP) +, AO- Al ;restore ParnmBl kPtr, DCQIPtr

;close is always i medi ate, must return via RTS

In this example, DOpen, DPr i e, DCont r ol , DSt at us, and DCl ose are the five entry
points that the Device Manager locates using the offsets defined in the driver header.
These in turn call the actual driver routines, which are written in C. The C functions
return a result code if the I/ O completed, or a positive value (usually 1) if the I/O is
being handled asynchronously.

Writing a Device Driver

CHAPTER 1

Device Manager

When the driver routine returns, the dispatching routine removes the parameters from
the stack, restores the A0 and Al registers, and then returns control to the Device
Manager in one of two ways:

» Calling the | ODone routine. This routine, described in detail on page 1-87, indicates
to the Device Manager that the request is complete. The Device Manager removes the
request from the I/O queue and calls the completion routine, if any. This is the normal
method of returning from driver prime, control, and status routines.

» Returning with an RTS instruction. Use this method when you do not want the Device
Manager to remove the request from the I/O queue. There are three cases where the
RTS instruction should be used:

o Returning from an asynchronous request that is not yet complete. After your device
driver begins an asynchronous operation, it should return control to the Device
Manager with an RTS instruction. The device driver can regain control of the
processor using an interrupt handler, VBL task, or other method, and jump to
| ODone when the request is complete.

o Returning from an immediate request. Because the Device Manager does not queue
immediate requests, they should always return with an RTS instruction.

o Returning from open, close, and Ki | | | Orequests. These requests are never queued
and should always return with an RTS instruction.

To use this dispatching routine you would place it after the driver header in your
assembly-language source file, and link it to your C-language driver routines. Listing 1-7
on page 1-28 shows the driver header. Sample driver routines are presented in the
following sections.

Writing Open and Close Routines

You must provide both an open routine and a close routine for your device driver. The
open routine should allocate any private storage your driver requires and place a handle
to this storage in the dCt | St or age field of the device control entry. After allocating
memory, the open routine should perform any other preparation required by your driver.

If your open routine installs an interrupt handler, you may want to store a pointer

to the device control entry in private storage where it will be available for the interrupt
handler. The section “Handling Asynchronous I/O” on page 1-37 discusses

interrupt handling in more detail.

Listing 1-9 shows a sample open routine, MyDr i ver Open. This function begins

by checking whether the driver is already open (by examining the contents of the
dCt | St or age field of the device control entry). If the driver is not already open, the
M/Dr i ver Open function sets the appropriate flags in the device control entry and
allocates memory in the system heap for private storage. The private storage of the
driver in this example contains two fields, byt eCount and | ast Er r, which store
information about the last I/O function. The prime, control, and status routines
described in the following sections use these fields.

If the MyDr i ver Open function fails to allocate memory for private storage, it returns the
openErr result code, which notifies the Device Manager that the driver did not open.

Writing a Device Driver 1-31

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Listing 1-9 Example driver open routine

struct MyDriverd obals {
short byt eCount ;
short lastErr;
b
typedef struct MyDriverd obals MyDriverd obal s;
t ypedef struct MyDriverd obals *MyDriverd obal sPtr, **MyDriverd obal sHdl ;

OSErr MyDriver Open(l OParanPtr pb, DCtl Ptr dce)

{
if (dce->dCt| Storage == nil)
{
/* set up flags in the device control entry */
dce->dCt | Fl ags | = (dCt| Enabl eMask | dStat Enabl eMask | dWit Enabl eMask |
dReadEnabl eMask | dNeedLockMask | dRAMBasedMask);
/* initialize dC| Storage */
dce->dCt | St orage = NewHandl eSysC ear (si zeof (MyDri ver d obal s));
if (dce->dCtl Storage == nil)
return(openkrr);
el se
return(noErr);
}
el se
{
/* the driver is already open */
return(noErr);
}
}

The close routine must reverse the effects of the open routine by releasing any memory
allocated by the driver, removing interrupt handlers, removing any VBL or Time
Manager tasks, and replacing changed interrupt vectors. If the close routine cannot
complete the close request, it should return the cl 0SErr result code and the driver
should continue to operate normally.

The Device Manager does not dispose of the device control entry when a driver is closed.
If you want to save any information about the operational state of the driver until the
next time the driver is opened, you can store a handle to the information in the

dCt | St or age field of the device control entry.

Listing 1-10 shows a sample close routine, MyDr i ver O ose. Because this device
driver does not need to store any information until the next time it is opened, the
M/Dr i ver O ose function disposes of the private storage allocated by MyDr i ver Cpen.

1-32 Writing a Device Driver

CHAPTER 1

Device Manager

Listing 1-10 Example driver close routine

OSErr MyDriverd ose(l OParanPtr pb, DCtIPtr dce)

{
if (dce->dCtl Storage !'= nil)
{
Di sposeHandl e(dce->dCt| St or age) ;
dce->dCt| Storage = nil;
}
return(noErr);
}

Writing a Prime Routine

The prime routine implements I/ O requests. You can write your prime routine to
execute synchronously or asynchronously. While a synchronous prime routine completes
an entire I/ O request before returning to the Device Manager, an asynchronous prime
routine can begin an I/O transaction but return to the Device Manager before the request
is complete. In this case, the I/ O request continues to be executed, typically when more
data is available, by other routines such as interrupt handlers or completion routines.
“Handling Asynchronous I/O” on page 1-37 discusses how to complete an
asynchronous prime routine.

The Device Manager indicates whether it is requesting a read or a write operation by
placing one of the following constants in the low-order byte of the i oTr ap field of the
parameter block:

enum {
aRdCnd =2, [/* read operation requested */
aw Crd =3 /* wite operation requested */
1

The Device Manager includes two routines, Fet ch and St ash, that provide low-level
support for reading and writing characters to and from data buffers. Use of these
routines is optional. “Writing and Installing Device Drivers,” beginning on page 1-82,
describes these functions.

The Fet ch and St ash routines update the i 0Act Count field of the parameter block.
If you do not use these routines, you are responsible for updating this field.

If your driver serves a block device, you should update the dCt | Posi t i on field of the
device control entry.

Listing 1-11 shows a sample prime routine. This routine determines whether a read or
write operation is being requested, then calls the appropriate function. The reading and
writing functions, which are not shown here, would transfer the data to or from the
hardware device.

Writing a Device Driver 1-33

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Listing 1-11 Example driver prime routine

1-34

OSErr MyDriverPrime(lOParanPtr pb, DCtIPtr dce)

{
MyDri ver @ obal sHdl dSt ore;
short cal | Type;
| ong nunByt es;
short nyErr;
dStore = (MyDriverd obal sHdl) dce->dCt | St or age;
nunByt es = pb->i oReqCount ;
cal | Type = 0Ox00ff & pb->ioTrap; /* get the |ow byte */
switch (call Type)
{
case aRdCnd:
nyErr = MyReadByt es(pb->i oBuffer, nunBytes);
br eak;
case aw Cnd:
nyErr = MyWiteBytes(pb->i oBuffer, nunBytes);
br eak;
}
(*dStore) ->byt eCount = nunBytes; /* save in private storage */
(*dStore)->lastErr = nyErr;
pb->i oAct Count = nunBytes; /* update paranmeter block field */
return(nyErr);
}

After obtaining a handle to the device driver’s private storage from the dCt | St or age
field of the device control entry, the MyDr i ver Pri me function examines the low-order
byte of the i 0Tr ap field of the parameter block to determine whether the Device
Manager is requesting a read operation or a write operation. MyDr i ver Pr i me then calls
either the M/ReadByt es or YW i t eByt es function to move the requested number of
bytes to or from the buffer designated by the parameter block.

The MyDr i ver Pri ne function stores the result code and byte count in its private
storage. These values will be used by the example control and status routines described
in the next section. Finally, MyDr i ver Pri me updates the i oAct Count field of the
parameter block and returns the result code.

Writing Control and Status Routines

Control and status routines are usually used to send and receive driver-specific
information. However, you can use these routines for any kind of data transfer as long
as you implement the minimum functionality described in this section. Like the prime
routine, the control and status routines that you write can execute synchronously or
asynchronously.

Writing a Device Driver

CHAPTER 1

Device Manager

The Device Manager passes information to the control routine in the csCode and
csPar amfields of the parameter block. The csCode field specifies the type of control
request and the csPar amfield contains any additional information. The csCode values

-

-32767 through 127 are reserved by Apple Computer, Inc. Within this range, the c<?

following constant values are defined for use by all device drivers: a
<

Constant name Value Meaning §

ki |1 Code 1 KilllOrequested 2

goodbye -1 Heap being reinitialized

accRun 65 Time for periodic action

When the Device Manager receives a Ki | | | Orequest, it removes every parameter block

from the driver I/O queue. If your driver responds to any requests asynchronously, the
part of your driver that completes asynchronous requests (for example, an interrupt
handler) might expect the parameter block for the pending request to be at the head of
the queue. The Device Manager notifies your driver of Ki | | | Orequests so that it can
take the appropriate actions to stop work on the pending request. Your driver must
return control to the Device Manager by means of an RTS instruction and not by
jumping to the | ODone routine.

If you set the dNeedGoodbye flag in the dr vr Fl ags field of the driver header (or the
dCt | Fl ags field of the device control entry), the Device Manager will call your control
routine with the value goodbye in the csCode parameter before the heap is
reinitialized. You driver can respond by performing any clean-up actions necessary
before heap reinitialization.

If you set the dNeedTi ne flag in the dr vr Fl ags field of the driver header (or the

dCt | Fl ags field of the device control entry), the Event Manager will periodically call
your control routine with the value accRun in the csCode parameter. Because these
calls are immediate, your driver must be reentrant to handle them properly. For more
information about the dNeedTi ne flag and periodic actions, see the description of the
driver header, beginning on page 1-25.

Your control routine must return the cont r ol Er r result code for any csCode values
that are not supported. You can define driver-specific csCode values if necessary, as
long as they are outside the range reserved by Apple Computer, Inc.

Listing 1-12 shows a sample control routine, MyDr i ver Cont r ol . This function
interprets the driver-specific csCode value of KCl ear Al | as a command to clear the
information saved in the driver’s private storage by the MyDr i ver Pri me routine.

Listing 1-12 Example driver control routine

OSErr MyDriverControl (Cntrl ParanmPtr pb, DC I Ptr dce)
{
MyDri ver @ obal sHdl dStore;

dStore = (MyDriverd obal sHdl) dce->dCt | St or age;

Writing a Device Driver 1-35

CHAPTER 1

Device Manager

switch (pb->csCode)
{
case kC earAll:
(*dSt ore) - >byt eCount = O;
(*dStore)->lastErr = 0;
return(noErr);
default: /* always return control Err for unknown csCode */
return(control Err);

}

Your status routine should work in a similar manner. The Device Manager uses the

csCode field to specify the type of status information requested. The status routine
should respond to whatever requests are appropriate for your driver and return the
error code st at usErr for any unsupported csCode value.

The Device Manager interprets a status request with a csCode value of 1 as a special
case. When the Device Manager receives such a status request, it returns a handle to
the driver’s device control entry. Your driver’s status routine never sees this request.

Listing 1-13 shows a sample status routine, MyDr i ver St at us, that implements two
driver-specific status requests, kByt eCount and kLast Err. When MyDr i ver St at us
receives one of these requests, it returns the byte count or error code values saved in
private storage by the MyDr i ver Pri me routine. MyDr i ver St at us returns this
information in the csPar amfield.

Listing 1-13 Example driver status routine

OSErr MyDriverStatus(Cntrl ParanPtr pb, DCtIPtr dce)

{
MyDri ver d obal sHdl dStore;
dStore = (MyDriverd obal sHdl) dce->dCt | St or age;
switch (pb->csCode)
{
case kByteCount:
pb- >csParani{ 0] = (*dStore)->byteCount;
return(nokErr);
case kLastErr:
pb->csParani{0] = (*dStore)->lastErr;
return(nokErr);
default: /* always return statuskErr for unknown csCode */
return(statuskrr);
}
}

1-36 Writing a Device Driver

CHAPTER 1

Device Manager

Handling Asynchronous I/O

If you design any of your driver routines to execute asynchronously, you must provide a
mechanism for your driver to complete the requests. Some examples of routines that you
might use are:

Completion routines. Your driver routine could call another driver to start the data
transfer. In this case, you can provide that driver with a completion routine. When
the other driver completes the request, the Device Manager executes the completion
routine. In the completion routine, you could call the other driver again to execute the
next part of the I/ O operation. When the entire operation is complete, the completion
routine should return by calling the | ODone routine.

Interrupt handlers. If your driver serves a hardware device that generates interrupts,
you can create an interrupt handler that responds to these interrupts. Your interrupt
handler must clear the source of the interrupt and return as quickly as possible,
while preserving all registers other than D0 through D3 and A0 through A3. For
more information about interrupts and how to install an interrupt handler, see

Inside Macintosh: Processes and Designing Cards and Drivers for the Macintosh Family,
third edition.

VBL, Time Manager, and Deferred Task Manager tasks. Installing any of these tasks
ensures that your driver receives system time at some point in the future. During this
time, you can check to see if the I/O operation is ready to continue.

If your driver serves a device on a NuBus' " expansion card, you might want to use slot
interrupts to signal your driver. When a NuBus card device signals a slot interrupt, the
CPU can quickly detect which card requested the interrupt service, but not which device
on the card. To determine which device caused the interrupt, the system uses a polling
procedure. Your driver should provide a polling routine that checks if the device it
serves caused the current interrupt, and if so, calls the proper driver routine to handle
the interrupt. The Slot Manager maintains a queue of these polling routines for each slot.
Your driver can install an element in this queue using the Slot Manager function

Sl ntInstall.Youcan remove a queue element with the Sl nt Renove function.

See the chapter “Slot Manager” in this book for information about these functions.

You should observe these guidelines when writing or using asynchronous routines:

Once you pass a parameter block to an asynchronous routine it is out of your control.
You should not examine or change the parameter block until your completion routine
is called because you have no way of knowing the state of the parameter block.

Do not dispose of or reuse a parameter block until the asynchronous request is
completed. For example, if you declare the parameter block as a local variable, your
function cannot return until the request is complete because local variables are
allocated on the stack and released when a function returns.

Use a completion routine to determine when an asynchronous routine has completed,
rather than polling the i oResul t field of the parameter block. Polling the i oResul t
field is not efficient and defeats the purpose of asynchronous operation.

Writing a Device Driver 1-37

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Installing a Device Driver

There are a variety of ways to install a device driver, depending on where the driver
code is stored and how much control you want over the installation process.

= You can store the device driver in a resource within an application and have the
application install the driver.

= You can store the device driver, and the code to install it, in a system extension file.
See the chapter “Start Manager” in Inside Macintosh: Operating System Ultilities for
information about creating system extensions.

» You can store the device driver in the declaration ROM of an expansion card. Slot
device drivers can be designed to load automatically at startup, or you can use the
Slot Manager SCet Dr i ver function to load the driver into memory. Refer to
Designing Cards and Drivers for the Macintosh Family, third edition, for information
about writing and installing slot device drivers.

If you store your driver in a resource of type' DRVR you can use the OpenDri ver or
PBOpen functions to install and open your driver. If you need more control over the
installation process, you can use the Dri ver I nst al | function to create the device
control entry and add it to the unit table, or you can create the device control entry
yourself, install it in the unit table, and then use QpenDr i ver or PBOpen to open the
driver. If the driver is already installed in the unit table, QpenDr i ver and PBOpen
simply call the driver’s open routine and return the driver reference number.

If you want to use the OpenDr i ver function to install your driver, you are responsible
for examining the unit table and changing your driver resource ID so that the

OpenDri ver function installs your driver in an empty location in the unit table. If the
handle at a given unit number is ni | , there is no device control entry installed in that
position. You can install your device control entry in any empty location in the unit table
that is not listed as reserved by Apple Computer, Inc. Table 1-2 summarizes the unit
numbers reserved for specific purposes.

Table 1-2 Reserved unit numbers

Unit number range Reference number range Purpose

0 through 11 -1 through -12 Reserved for serial, disk, AppleTalk,
printer, and other drivers

12 through 31 -13 through -32 Available for desk accessories

32 through 38 -33 through -39 Available for SCSI devices

39 through 47 —40 through —48 Reserved

48 through 127 —49 through -128 Available for slot and other drivers

Listing 1-14 shows a method of searching the unit table for an appropriate location to
install your driver. The MyOpenDr i ver function in Listing 1-1 on page 1-18 calls this
function and then uses the OpenDri ver function to install and open the device driver.

1-38 Writing a Device Driver

CHAPTER 1

Device Manager

Listing 1-14 Finding space in the unit table

short MFi ndSpacel nUni t Tabl e(voi d);

{
Ptr cur UTabl eBase, newUTabl eBase;
short cur UTabl eEntri es, newUTabl eEntri es;
short ref Num unitNum
/* get current unit table values froml|ow nenory gl obals */
curUTabl eEntries = *(short*)UnitNtryCnt;
cur UTabl eBase = *(Ptr*) UTabl eBase;
/* search for enpty space in the current unit table */
for (unitNum = curUTabl eEntries - 1;
uni t Num >= 48; /* |owest available unit nunber */
uni t Num -)
{
ref Num = ~(unitNunj;
if (GetDCtlEntry(refNum == nil)
return(unitNum); /* found a space */
}
/* no space in the current table, so nake a new one */
/* increase the size of the table by 16 (an arbitrary val ue)
newUTabl eEntri es = curUTabl eEntries + 16;
/* allocate space for the new table */
newUTabl eBase =
NewPt r SysCl ear ((1 ong) newldTabl eEntries * sizeof (Handl e));
i f (newUTabl eBase == nil)
return(nmentrr);
/* copy the old table to the new table */
Bl ockMove(cur UTabl eBase, newUTabl eBase,
(1 ong) curUTabl eEntries * sizeof (Handl e));
/* set the new unit table values in | ow nmenory */
(Ptr)UTabl eBase = newUTabl eBase;
(short)UnitNtryCnt = newUTabl eEntri es;
uni t Num = newUTabl eEntries - 1;
return(unit Nunm;
}

Writing a Device Driver

*/

1-39

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Although rare, it is possible for the unit table to become completely full. If the

MyFi ndSpacel nUni t Tabl e function does not find an empty unit table entry, it creates
a larger unit table and copies the contents of the old unit table into the new one. To avoid
the need for every driver to create a larger table, this function increases the size of the
table by 16 entries—a reasonable amount in most cases.

The MyFi ndSpacel nUni t Tabl e function does not need to disable interrupts when
changing the values of the UTabl eBase and Uni t Nt r yCnt system global variables
because both unit tables are valid and drivers are not opened or closed at interrupt time.

Note that this function does not check for empty locations in the space reserved for desk
accessories or SCSI drivers. You may wish to modify the function if you are installing
one of these.

Writing a Chooser-Compatible Device Driver

1-40

The Chooser is a desk accessory that helps provide a standard user interface for
networking and printing device drivers. The Chooser allows the user to make choices
such as which serial port to use, which AppleTalk zone to communicate with, and which
LaserWriter to use.

This section describes how the Chooser works, how to create a Chooser extension, and
how to respond to actions from the user. You should read the previous section, “Writing
a Device Driver,” before you read this section.

How the Chooser Works

The Chooser allows users to select which devices they want to use. When the user
opens the Chooser, it displays a window containing lists and buttons for making
device-related choices. Typically, users select a type of device from the icon list, then
select the particular device they want to use from the device list. For AppleTalk devices,
the user must also select an AppleTalk zone from the zone list. The Chooser window can
also display buttons, such as an OK button; and radio buttons, such as the background
printing On and Off buttons. Figure 1-10 shows an example of the Chooser window.

Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

Figure 1-10 The Chooser window

= Chooser
(- Select a file serverr ———— Device
& Apple Library Server [:] | list label
. Las‘iter Biblia
Icon list Bunker
Im E Circulation desk
it | Linda R&D
L Personal L' LS Stylet'riter Lorin's Macintosh — Device list
Manzana
) AppleTalk Zones: Pam's Macintosh
Apple E-Mail Rosanne's Macintosh
Apple Graphics
Apple Library |
Zone list - Applelink/¥.25
ATEAYMS — Left button
Austin
gg HDDt_h AppleTalk @ active —————— On radio button
L rion ‘ (2 Inactive —————————— Off radio button

L Radio button label

The Chooser relies on the List Manager for creating, displaying, and manipulating
possible user selections in this window. You may want to read the chapter
“List Manager” in Inside Macintosh: More Macintosh Toolbox for more information.

The Chooser does not communicate directly with device drivers; instead, it
communicates with device packages. A device package is a resource similar to a driver
resource, except a device package responds to Chooser messages instead of Device
Manager requests. The device package is responsible for communicating the user’s
choices to the device driver.

Device packages are stored in Chooser extension files, which the Chooser looks for in the
Extensions folder inside the System Folder of the startup disk. A Chooser extension file
contains a number of resources in addition to the device package resource. These other
resources contain information about the buttons, labels, and lists that the Chooser
displays when the user selects the device icon from the icon list. You use these resources
to define the following properties:

» The device list label. The Chooser displays this label over the device list.

s The buttons to use. The Chooser allows the device package to display up to four
buttons, called the Left button, the Right button, the On radio button, and the Off
radio button.

» The titles and positions of the buttons.
s The radio button label.

s The AppleTalk device type name. The Chooser searches the current AppleTalk zone
for devices of this type.

= An AppleTalk Name-Binding Protocol (NBP) retry interval and a timeout count. The
Chooser uses this information when searching for AppleTalk devices.

Writing a Chooser-Compatible Device Driver 1-41

Jabeue a21n8Q -

1-42

CHAPTER 1

Device Manager

When a user selects the icon corresponding to a particular device package, the Chooser
sends messages to that device package by calling the device package as if it were the
following function:

pascal OSErr MyPackage (short nessage, short caller,
StringPtr obj Nane, StringPtr zoneNane,
| ong pl, long p2);

The Chooser passes the following parameters to the device package:

Parameter Description
message The operation to be performed; this parameter has one of the following
values:
enum {

/* Chooser nessages */
chooserlnitMg = 11,
newSel Msg = 12,
filllListMg = 13,
get Sel Msg = 14,
sel ect Msg = 15,
desel ect Msg = 16,
t er mi nat eMsg = 17,
butt onMsg =19

b

Table 1-4 on page 1-47 explains the meaning of these messages.

cal l er A number that identifies the application calling your device package. The
value chooser | Dindicates the Chooser. Values in the range 0-127 are
reserved; values outside this range may be used by applications.

obj Nane Additional information whose meaning depends on the value of the
message parameter. See Table 1-4 on page 1-47 for more information.

zoneName The name of the AppleTalk zone containing the devices in the device list.
If the Chooser is being used with the local zone and bit 24 of the f | ags
field of the device package header is not set, the string value is “*”,
otherwise, it is the actual zone name. See “Creating a Device Package” on

page 1-45 for more information about the package header.

pl A handle to the List Manager list that contains the device choices
displayed in the device list box.

p2 Additional information whose meaning depends on the value of the
message parameter. See Table 1-4 on page 1-47 for more details.

When the user opens the Chooser, the Chooser searches the Extensions folder for
Chooser extension files. For each one it finds, it opens the file, fetches the device icon,
reads the flags field of the device package header, and closes the file. The Chooser then
displays each device icon, and dims the icons for AppleTalk devices if AppleTalk is not
connected.

Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

When the user selects a device icon that is not dimmed, the Chooser reopens the
corresponding Chooser extension file and performs the following actions:

1.
2.
3.

The Chooser labels the device list with the device list label.
The Chooser sends the chooser | ni t Msg message to the device package.

If the selected device package represents a serial printer, the Chooser places the two
icons that represent the printer port and the modem port serial drivers into the device
list box. When the user makes a selection, the Chooser records the user’s choice in low
memory and parameter RAM.

. If the selected device icon represents an AppleTalk device and the corresponding

device package does not accept fi | | Li st Msg messages, the Chooser initiates an
asynchronous routine that interrogates the current AppleTalk zone for all devices
whose type matches the AppleTalk device type name specified in the Chooser
extension file. The asynchronous routine uses the retry interval and the timeout
count. As responses arrive, the Chooser updates the device list.

. If the device package does accept fi | | Li st Msg messages, the Chooser sends the

fillListMsg message to the device package. The device package responds by filling
the device list with the appropriate device choices.

. To determine which devices in the device list should be selected, the Chooser calls

the device package with the get Sel Msg message. The device package responds

by inspecting the list and setting the selected or unselected state of each entry. The
Chooser may send the get Sel Msg message frequently; for example, each time a new
response to the AppleTalk zone interrogation arrives. The Chooser does not send the
get Sel Msg message for serial printers; it highlights the icon corresponding to the
currently selected serial port, as recorded in low memory.

. If the device package allows multiple devices to be active at once, the Chooser sets

the appropriate List Manager bits. When the user selects or deselects a device, the
Chooser calls the device package with the appropriate message. For packages that

do not accept multiple active devices, the Chooser sends the sel ect Msg or

desel ect Msg message; otherwise, it sends the newSel Msg message. The device
package mounts or unmounts the device, if appropriate, and records the user’s choice.

. When the user selects a different device icon or closes the Chooser, the Chooser calls

the current device package with the t er mi nat eMsg message, if the package accepts
this kind of message. At this time, the package can clean up, if necessary. The Chooser
then calls the Updat eResFi | e function, closes the device resource file, and flushes
the system startup volume.

Creating a Chooser Extension File

The Chooser uses three file types to identify different kinds of devices supported by
Chooser extension files:

File type Device type

' PRES Serial printer

" PRER Non-serial printer
' RDEV' Other device

Writing a Chooser-Compatible Device Driver 1-43

Jabeue a21n8Q -

1-44

CHAPTER 1

Device Manager

You can specify the creator of your Chooser extension file, which allows you to give your
device its own icon.

You can include the following resources in your Chooser extension file:

Resource Resource

type ID Description

" PACK —4096 Device package. This resource contains the device package
header and code.

"STR' —4096 Type name for AppleTalk devices. The Chooser searches the
current AppleTalk zone for devices of this type.

" GNRL —-4096 AppleTalk information. The first byte of this resource
contains the Name-Binding Protocol (NBP) retry interval,
the second byte contains the timeout count.

"STR -4091 List box label. The Chooser labels the device list with this
string after the user has selected the device’s icon.

"STR' —4087 Radio button label.

"STR' —4088 Off radio button title.

"STR' —4089 On radio button title.

"STR —4092 Right button title.

"STR' —4093 Left button title.

"nert’ —4096 Button positions.

' LDEF' —4096 Alternate list definition function. You can supply this
function to modify the device list—to include pictures
or icons, for example.

"STR -4090 Reserved for use by the Chooser.

You should also include a' BNDL' resource (and appropriate icon family resources) to
give your device type a distinctive icon because this may be the only way that devices
are identified in the Chooser window. The chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials describes the ' BNDL' resource.

The Chooser allows your device package to display two buttons, called the Left button
and the Right button because of their default positions. The Left button has a double
border and is highlighted (the title string is dark) when one or more devices are selected
in the device list. When this button is highlighted, pressing the Return or Enter key, or
double-clicking in the device list, is equivalent to clicking the button. The Right button
has a single border and is always highlighted. The user can activate it only by clicking it.

The Chooser also allows you to display two radio buttons and a radio button label.
These buttons are called the On radio button and the Off radio button because those are
the titles the LaserWriter uses, but you can name them anything you want.

You can position these buttons by including a resource of type ' ncrt' with an ID

of —4096. The first word in this type of resource specifies the number of rectangles, and
the rest of the resource contains the rectangle definitions. The first rectangle positions the
Left button, the second positions the Right button, the third positions the On radio

Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

button, and the fourth positions the Off radio button. The fifth rectangle positions the
radio button label.

Each rectangle definition is 8 bytes long and contains the rectangle coordinates in the
order [top, left, bottom, right]. The default values are [112, 206, 132, 266] for the Left button
and [112, 296, 132, 356] for the Right button. You could use the values [112, 251, 132, 331]
to center a single button.

The Chooser uses the List Manager to produce and display the standard device list. You
can supply a list definition function to modify this list. For example, you might want to
include pictures or icons in your list. To do this, you must provide a resource of type

' LDEF' with an ID of —4096. For complete information about list construction and data
structures, see the chapter “List Manager” in Inside Macintosh: More Macintosh Toolbox.

Creating a Device Package

Like a driver resource, a device package has two parts:
» a header that contains flags and other information about the driver

» the code that responds to Chooser messages

Figure 1-11 shows the structure of a device package.

Figure 1-11 Structure of a device package

Offset Bytes

° Branch to package code 2
° Device ID 2

4
Resource ID (* PACK') 4

8
$FO000 (—4096) 2

10
Version 4

14
Flags 4

18

{ Package code { Variable

Since the Chooser expects the package code to be at the beginning of the device package,
the first field of the package header should be a BRA. S instruction to the package code.

Writing a Chooser-Compatible Device Driver 1-45

Jabeue a21n8Q -

1-46

CHAPTER 1

Device Manager

The device ID is an integer that identifies the device. The version field differentiates
versions of the driver code.

The flags field contains information about the device package and the device it serves.
Table 1-3 lists the meaning of each bit of the flags field.

The package code should implement the MyPackage function described on page 1-42.
The following section, “Responding to the Chooser,” discusses how to implement this
function.

Table 1-3 Device package flags

Bit Meaning

31 Set if an AppleTalk device

30-29 Reserved (clear to 0)

28 Set if the device package can have multiple instances selected at once

27 Set if the device package uses the Left button

26 Set if the device package uses the Right button

25 Set if no zone name has been saved

24 Set if the device package uses actual zone names

23-21 Reserved (clear to 0)

20 Set if the device uses the On and Off radio buttons and radio button label

19-17 Reserved (clear to 0)

17 Set if the device package accepts the chooser | ni t Msg message
16 Set if the device package accepts the newSel Msg message

15 Set if the device package accepts the fi | | Li st Msg message

14 Set if the device package accepts the get Sel Msg message

13 Set if the device package accepts the sel ect Msg message

12 Set if the device package accepts the desel ect Msg message

11 Set if the device package accepts the t er mi nat eMsg message

10-0 Reserved (clear to 0)

Responding to the Chooser

This section gives more details about how your device package should respond when it
receives a message from the Chooser.

When the Chooser sends your device package a message, the Chooser extension file is
the current resource file and the Chooser window is the current graphics port. The

Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

startup disk is the default volume and the System Folder of the startup disk is the
default directory. Your device package must preserve all of these.

Table 1-4 lists the Chooser messages and how your device package should respond
to them.

Table 1-4 Chooser messages and their meanings
Message Meaning
chooser | nit Msg The Chooser sends this message to your device package when the user selects

newSel Msg

fillListMg

get Sel Msg

sel ect Msg

the icon representing your device in the icon list. The obj Nane parameter
contains a pointer to a data structure that contains a size word followed by four
handles to structures of type Cont r ol Recor d. The size is at least 18 bytes

(2 bytes for the size word and 4 bytes for each of the handles). The handles
reference the Left and Right buttons and the On and Off radio buttons, in that
order. Your device package can respond to this message by setting up the initial
button configuration. To display any of the radio buttons, use the ShowCont r ol
function. To highlight them, use the Set Cont r ol Val ue function. The p2
parameter is not used. For more information about controls, see the chapter
“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

If your device package allows multiple selections, the Chooser sends this
message to your package when the user changes or adds a selection. The
obj Name and p2 parameters are not used.

The Chooser sends this message when the user selects a device icon. The p1
parameter contains a handle to a List Manager list. Your device package should
use the List Manager to fill this list with choices for the particular type of device.
The obj Nare and p2 parameters are not used.

The Chooser sends this message to determine which devices in the device list
should be selected. The p1 parameter contains a handle to a List Manager list.
Your device package should respond by inspecting the list and setting the
selected or unselected state of each entry, using the LSet Sel ect function. You
should alter only the entries that require updating. The Chooser does not send
this message for serial printers.

If your device package does not allow multiple selections, the Chooser sends
this message to your package when the user selects a device in the device list.
You should record the user’s selection, preferably in your Chooser extension file.
Your device package may not call the List Manager in response to this message.

If your device package accepts fi | | Li st Msg messages, the obj Nane
parameter is undefined and the p2 parameter contains the row number of the
selected device.

If your device package does not accept f i | | Li st Msg messages, the obj Nane
parameter contains a pointer to a string containing the name of the device (up to
32 characters). If the device is an AppleTalk device, the p2 parameter contains
the Addr Bl ock value for the address of the selected AppleTalk device. For more
information about AppleTalk devices, refer to Inside Macintosh: Networking.

continued

Writing a Chooser-Compatible Device Driver 1-47

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Table 1-4 Chooser messages and their meanings (continued)
Message Meaning
desel ect Msg If your device package does not allow multiple selections, the Chooser sends
this message to your package when the user deselects a device in the device list.
Your device package may not call the List Manager in response to this message.
If your device package accepts fi | | Li st Msg messages, the obj Nane
parameter is undefined and the p2 parameter contains the row number of the
device that was deselected.
If your device package does not accept f i | | Li st Msg messages, the obj Nane
parameter contains a pointer to a string containing the name of the device (up to
32 characters). If the device is an AppleTalk device, the p2 parameter contains
the Addr Bl ock value for the address of the selected AppleTalk device. For more
information about AppleTalk devices, refer to Inside Macintosh: Networking.
ter m nat eMsg The Chooser sends this message when the user selects a different device icon,
closes the Chooser window, or changes zones. Your device package should
perform any necessary cleanup tasks but should not dispose of the device list.
The obj Nane and p2 parameters are not used.
but t onMsg The Chooser sends this message when the user clicks one of the buttons in the
Chooser window. The low-order byte of the p2 parameter contains 1 if the user
clicked the Left button, 2 if the user clicked the Right button, 3 if the user clicked
the On radio button, and 4 if the user clicked the Off radio button. You must
perform the appropriate highlighting for the radio buttons. The high-order word
of the p2 parameter contains the modifier bits from the mouse-up event. See the
chapters “Control Manager” and “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more information.
Allocating Private Storage
Device packages initially have no data space allocated. There are two ways your device
package can acquire data space:
= Use the List Manager to allocate extra memory in the device list.
» Create a resource.
The Chooser uses column 0 of the device list structure to store the names displayed in
the device list. For device packages that do not accept fi | | Li st Msg messages, the
Chooser uses column 1 to store the 4-byte AppleTalk internet addresses of the devices
in the list. Therefore, your device package can use column 1 and higher (if it accepts
fillListMsg messages)or column 2 and higher to store private data. You can use
standard List Manager functions to add these columns, store data in them, and retrieve
the data stored there. Your device package can also use the r ef Con field of the device
list for its own purposes.
Using the device list is limited by the fact that the Chooser disposes of the device list
whenever the user changes device types or changes the current zone. However, the
Chooser does call your device package with the t er m nat eMsg message before it
disposes of the list.
1-48 Writing a Chooser-Compatible Device Driver

CHAPTER 1

Device Manager

Also, if your device package does not acceptfi | | Li st Msg messages, the Chooser
disposes of the device list whenever a new response from the AppleTalk zone
interrogation arrives. However, the Chooser does send the get Sel Msg message
immediately afterward.

The second way to obtain storage space is to create a resource in the device resource file.
This file is always the current resource file when the Chooser sends a message to the
package, so you can use the Get Resour ce function to obtain a handle to the storage.

It is important for most device packages to record which devices the user has chosen.
The recommended method for this is to create a resource in your driver resource file.
This resource can be of any type; in fact, it's advantageous to provide your own resource
type so that no other program will try to modify it. If you choose to use a standard
resource type, you should use only resource IDs in the range —4080 through —4065.

Writing a Desk Accessory

Desk accessories are small applications designed like device drivers. Desk accessories
typically provide a user interface with a window and a menu, perform some limited
function, and are opened from the Apple menu. The Chooser is an example of a desk
accessory.

Desk accessories were originally created for the Macintosh because they offered two
distinct advantages over applications. They provided both a limited degree of
multitasking and a primitive form of interapplication communication. However, modern
Macintosh applications enjoy far more sophisticated versions of these capabilities. Users
can even open applications from the Apple menu. For these reasons, you would be better
served by writing a small application than by writing a desk accessory.

Control panels have largely replaced desk accessories as a user interface for device
drivers. In addition to providing a more consistent and extensible interface, control
panels can include an initialization (' | NI T') resource to load and execute your device
driver at system startup. For more information about control panels, see the chapter
“Control Panels” in Inside Macintosh: More Macintosh Toolbox.

If you're certain you need to write a desk accessory, you should read this section. You
might also want to read the chapters “Event Manager,” “Window Manager,” “Dialog
Manager,” and “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

How Desk Accessories Work

When the user opens a desk accessory (or when an application calls the OpenDeskAcc
function), the system performs a major context switch, loads the desk accessory into the
system heap, and calls the desk accessory driver open routine. The desk accessory can
respond by creating its window and menu.

Writing a Desk Accessory 1-49

Jabeue a21n8Q -

1-50

CHAPTER 1

Device Manager

When events occur, the Event Manager directs them to the desk accessory by calling its
driver control routine. The Event Manager handles switching between applications and
desk accessories in the system heap.

When the user closes the desk accessory (by closing its window or choosing Quit from
its menu) or an application closes the desk accessory (by calling the Cl oseDeskAcc
function), the desk accessory disposes of its window and any other data structures
associated with it.

In a single-application environment in System 6, and in a multiple-application
environment in which the desk accessory is launched in the application’s partition

(for example, a desk accessory opened by the user from the Apple menu while holding
down the Option key), the Event Manager handles events for desk accessories in a
slightly different manner, although it still translates them into control requests. For
details, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Creating a Driver Resource for a Desk Accessory

You create a desk accessory by creating a driver resource and storing it in a resource file,
as described in “Creating a Driver Resource,” beginning on page 1-24. Typically, you
store your desk accessory driver resource in a file of type ' df i | ', which the user places
in the Apple Menu Items folder.

Three fields of the driver resource header are of particular importance to desk
accessories:

» The dr vr EMask field. This field contains an event mask specifying which events your
desk accessory can handle. If your desk accessory has a window, you should include
keyboard, activate, update, and mouse-down events, but you should not include
mouse-up events. When an event occurs, the Event Manager checks this field to
determine whether the desk accessory can handle the type of event and, if so, calls
the desk accessory driver control routine. See the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials for more information about events
and event masks.

s The drvr Menu field. This field contains the menu ID of your desk accessory’s menu,
if it has one, or any one of its menus, if it has more than one. Otherwise, it contains 0.
A desk accessory menu ID must be negative and must be different from the menu ID
for other desk accessories.

» Thedrvr Del ay field and the dNeedTi ne flag of the dr vr Fl ags field. Desk
accessories sometimes need to perform certain actions periodically. For example, a
clock desk accessory might change the time it displays every second. If your desk
accessory needs to perform a periodic action, set the dNeedTi nme flag and use the
drvr Del ay field to indicate how often the action should occur. “Creating a Driver
Resource,” beginning on page 1-24, describes these fields in more detail.

All desk accessories must implement open, close, and control routines. Your desk
accessory can implement a prime and status routine if needed.

Writing a Desk Accessory

CHAPTER 1

Device Manager

Opening and Closing a Desk Accessory

When the user chooses an item from the Apple menu, the foreground application calls
the OpenDeskAcc function, which determines whether the item is a desk accessory,
application, or document, and schedules it for execution. Applications call the

O oseDeskAcc function if the user chooses the Close menu item from the File menu
when the foreground window does not belong to the application. These functions are
described in “Device Manager Reference,” beginning on page 1-53.

Opening a desk accessory is similar to launching an application. In your desk accessory
driver open routine, you should do the following:

» Create the desk accessory’s window. You can do this with the Dialog Manager
function Get NewDi al og or NewDi al 0g. You should specify that the window be
invisible because the OpenDeskAcc function will display it. You should set the
wi ndowKi nd field of the wi ndowRecor d structure to the desk accessory’s driver
reference number, which you can find in the device control entry. You should also
store a copy of the window pointer in the dCt | W ndowfield of the device control
entry.

= Allocate private storage as you would for any device driver.

= Create any menus needed by your desk accessory. You are responsible for adding
your menus to the menu bar. See the chapter “Menu Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more details.

If your driver open routine is unable to complete its tasks (because of insufficient
memory, for example), you should modify the code so it doesn’t respond to events,
and display an alert indicating failure.

As for all drivers, your close routine should undo the actions taken by the open routine,
dispose of the desk accessory’s window and private storage, clear the window pointer in
the device control entry, and remove any menus that were added to the menu bar.

Responding to Events

When the Event Manager determines an event has occurred that your desk accessory
should handle, it checks the dr vr EMask field of the driver header and, if that field
indicates your desk accessory handles the event type, it passes the event to your desk
accessory by calling your driver control routine.

The Event Manager passes one of nine values in the csCode field to indicate the action
to take:

Constant

name Value Meaning

accEvent 64 Handle a given event

accRun 65 Time for periodic action

accCur sor 66 Change cursor shape if appropriate
acchMenu 67 Handle a given menu item

Writing a Desk Accessory 1-51

Jabeue a21n8Q -

CHAPTER 1

Device Manager

Constant

name Value Meaning

accUndo 68 Handle the Undo command
accCut 70 Handle the Cut command
accCopy 71 Handle the Copy command
accPaste 72 Handle the Paste command
accd ear 73 Handle the Clear command

Along with the accEvent message, the Event Manager sends a pointer to an event
record in the csPar amfield. Your desk accessory can respond to the event in whatever
way is appropriate. For example, when your desk accessory becomes active, it might
install its menu in the menu bar.

Note

If your desk accessory window is a modeless dialog box and you are
calling the Dialog Manager function | sDi al ogEvent in response to the
event, you should set the wi ndowKi nd field of your window record to 2
before you call | sDi al ogEvent . Setting this field to 2 allows the Dialog
Manager to recognize and handle the event properly. You should restore
the original value of the wi ndowKi nd field before returning from your
control routine. O

The Event Manager periodically sends the accRun message if your desk accessory
has requested time for background processing. To request this service, you set the
dNeedTi ne flag in the dr vr Fl ags field of your desk accessory driver header. See
“Writing Control and Status Routines,” beginning on page 1-34, for more information.

The accCur sor message makes it possible to change the shape of the cursor when it
is inside your desk accessory window and your desk accessory window is active. Your
control routine should check whether the mouse location is in your window and, if so,
should set the cursor appropriately by calling the QuickDraw function | ni t Cur sor.

If your desk accessory window is a dialog box, you should respond to the accCur sor
message by generating a null event (storing the event code for a null event in an event
record) and passing it to the Dialog Manager function Di al ogSel ect . This allows the
Dialog Manager to blink the insertion point in edi t Text items.

When the Event Manager sends an accMenu message, it provides the menu ID followed
by the menu item number in the csPar amfield. You should take the appropriate action
and then call the Menu Manager function Hi | i t eMenu with a value of 0 for the nenul D
parameter to remove the highlighting from the menu bar.

You should respond to the last five messages, accUndo through accd ear, by
processing the corresponding editing command in the desk accessory window, if
appropriate. The chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox
contains information about cutting and pasting.

Your desk accessory routines should restore the current resource file and graphics port if
it changes either one.

1-52 Writing a Desk Accessory

CHAPTER 1

Device Manager

Device Manager Reference

This section describes the data structures, functions, and resources that are specific to the
Device Manager.

The “Data Structures” section shows the C declarations for the data structures that are
used by the Device Manager. The “Device Manager Functions” section describes the
functions you use to communicate with device drivers and the functions that provide
support for writing your own device drivers. The “Resources” section describes the
driver resource.

Data Structures

This section describes the parameter block structure, the device control entry structure,
and the enumerated types you use to define values within them.

Device Manager Parameter Block

The Device Manager provides both a high-level and a low-level interface for
communicating with device drivers. You pass information to the low-level functions
in a parameter block structure, defined by the Par anBl ockRec union.

t ypedef uni on ParanBl ockRec ({

| OPar am i oPar am

Fi | ePar am fil eParam
Vol unePar am vol unePar am
Cntrl Param cntrl Param

Sl ot DevParam sl ot DevPar am
Mul ti DevParam nul ti DevParam

} ParanBl ockRec;

t ypedef ParanBl ockRec *Par nBl kPt r;

The Device Manager uses two forms of the parameter block: one for the open, close,
read, and write functions (the | OPar amstructure) and another for the control and status
functions (the Cnt r | Par amstructure). Other managers use other structures of the

Par amBl ockRec union.

t ypedef struct | OParam {

CEl enPtr gLi nk; /* next queue entry */

short gType; /* queue type */

short i oTr ap; /* routine trap */

Ptr i oCrdAddr ; /* routine address */

ProcPtr i oConpletion; /* conpletion routine address */
OSEr r i oResul t; /* result code */

StringPtr i oNanmePtr; /* pointer to driver nane */

Device Manager Reference 1-53

Jabeue a21n8Q -

1-54

CHAPTER 1

Device Manager

short
short
char
char
Ptr

Ptr

| ong
| ong
short
| ong

} | OParam

typedef struct Cntrl Param {

oVRef Num /* volume reference or drive nunber */
oRef Num /* driver reference nunber */

oVer sNum /* not used by the Device Manager */
oPer nssn; /* read/wite perm ssion */

oM sc; /* not used by the Device Manager */
oBuf fer; [* pointer to data buffer */

oReqCount ; /* requested number of bytes */

oAct Count ; /* actual nunber of bytes conpleted */
oPosMode; /* positioning node */

oPosOF f set /* positioning offset */

CEl enPtr gLi nk;

/*

next queue entry */

short gType; /* queue type */

short i oTr ap; /* routine trap */

Ptr i oCrdAddr ; /* routine address */

ProcPtr i oConpletion; /* conpletion routine address */

OSEr r i oResul t; /* result code */

StringPtr i oNamePtr; /* pointer to driver nane */

short i oVRef Num /* volume reference or drive nunber */
short i oCRef Num [* driver reference nunmber */

short csCode; /* type of control or status request */
short csParanf 11]; /* control or status information */

} Cntrl Param

The first eight fields are common to both structures. Each structure also includes its own

unique fields.

Field descriptions for fields common to both structures

gLi nk

qType
i oTrap

i oCndAddr

i oConpl etion

i oResul t

A pointer to the next entry in the driver I/ O queue. (This field is
used internally by the Device Manager to keep track of
asynchronous calls awaiting execution.)

The queue type. (This field is used internally by the Device Manager.)

The trap number of the routine that was called. (This field is used
internally by the Device Manager.)

The address of the routine that was called. (This field is used
internally by the Device Manager.)

A pointer to a completion routine. When making asynchronous
requests, you must set this field to ni | if you are not specifying

a completion routine. The Device Manager automatically sets this
field to ni | when you make a synchronous request.

A value indicating whether the routine completed successfully. The
Device Manager sets this field to 1 when it queues an asynchronous
request. When the driver completes the request, it places the actual

Device Manager Reference

CHAPTER 1

Device Manager

i oNamePt r

i oVRef Num

result code in this field. You can poll this field to detect when the
driver has completed the request and to determine its result code.
The Device Manager executes the completion routine after this field
receives the result code.

A pointer to the name of the driver. You use this field only when
opening a driver.

The drive number, if any. The meaning of this field depends on the
device driver. The Disk Driver uses this field to identify disk
devices.

Field descriptions for the | OPar amstructure

i oRef Num
i oVer sNum
i oPer msesn

i oM sc

i oBuf fer

i oReqCount
i 0Act Count
i oPosMbde

The driver reference number.
Not used.

The read / write permission of the driver. When you open a driver,
you must supply one of the following values in this field:

enum {
/* access perm ssions */
fsCurPerm =0, /* retain current perm ssion */
f sRdPer m =1, /* allowreads only */
f sSW Perm =2, /* allowwites only */
fsRAWPerm =3 /* allow reads and wites */

s

The Device Manager compares subsequent read and write requests
with the read / write permission of the driver. If the request type is
not permitted, the Device Manager returns a result code indicating
the error.

Not used.

A pointer to the data buffer for the driver to use for reads or writes.
The requested number of bytes for the driver to read or write.

The actual number of bytes the driver reads or writes.

The positioning mode used by drivers of block devices. Bits 0 and 1
of this field indicate where an operation should begin relative to the
physical beginning of the block-formatted medium. You can use the
following constants to test or set the value of these bits:

enum {
/* positioning nmodes */
f sAt Mar k 0, /* at current position */
fsFronStart = 1, /* offset from begi nning */
f sFromvar k 3 /* offset fromcurrent
position */

Device Manager Reference 1-55

Jabeue a21n8Q -

CHAPTER 1

Device Manager

i oPosOr f set

The Disk Driver allows you to add the following constant to this
field to specify a read-verify operation:

enum {
rdverify = 64 /* read-verify node */
1

See the description of the PBRead function on page 1-70.

The byte offset, relative to the position specified by the positioning
mode, where the driver should perform the operation. If you
specify the f sSAt Mar k positioning mode, the Device Manager
ignores this field.

Field descriptions for the Cnt r | Par amstructure

i oCRef Num
csCode

csPar am

Device Control Entry

The driver reference number.

A value identifying the type of control or status request. Each driver
may interpret this number differently.

The control or status information passed to or from the driver. This
field is declared generically as an array of eleven integers. Each
driver may interpret the contents of this field differently. Refer to
the driver’s documentation for specific information.

The device control entry structure, defined by the Aux DCE data type, stores information
about each device driver in memory. The Aux DCE data type supersedes the original

DCt | Ent ry data type, and provides additional fields for drivers that serve slot devices.
See the chapter “Slot Manager” in this book for information about slot device drivers.

t ypedef struct AuxDCE {

Ptr
short
QHdr

| ong
Handl e
short

| ong
GafPtr
short
short
short
char
char

| ong
Ptr
char

dC | Driver; /* pointer or handle to driver */
d& | Fl ags; /* flags */

dc | QHdr ; /* 110 queue header */

dCt | Position; [/* current RFWhbyte position */
dC | St or age; /* handle to private storage */
dC | Ref Num /* driver reference nunber */

dCt I CurTicks; [/* used internally */

dC | W ndow, /* pointer to driver’s w ndow */
dct | Del ay; /* ticks between periodic actions */
dC | EMask; /* desk accessory event nask */
dc | Menu; /* desk accessory nenu ID */

dcl Sl ot; [* slot */

dc 1 Slotld; /* sResource directory ID */

dC | DevBase; /* slot device base address */
dct | Omner; /* reserved; nust be 0 */

dCt | Ext Dev; /* external device ID */

1-56 Device Manager Reference

CHAPTER 1

Device Manager

char
} AuxDCE;
t ypedef AuxDCE

Field descriptions
dc | Driver

d& | Fl ags

da | QHdr

dC | Position

dCt | St or age

dCt | Ref Num

fill Byte; /* reserved */

* AuxDCEPt r, **AuxDCEHandl e;

A pointer or handle to the driver, as determined by the dRAMBased
flag (bit 6) of the dCt | Fl ags field.

Flags describing the abilities and state of the driver. The high-order
byte contains flags copied from the dr vr Fl ags word of the driver
resource. These flags are described in “Creating a Driver Resource,”
beginning on page 1-24.

The low-order byte of the dCt | Fl ags field contains the following
run-time flags:

Name Bit Meaning

dOpened 5 Set by the Device Manager when the
driver is opened, and cleared when it
is closed.

dRAMBased 6 SetifthedCt| Dri ver field contains
a handle.

drvrActive 7 Setby the Device Manager when the

driver is executing a request, and cleared
when the driver is inactive.

You can use the following constants to test or set the value of
these flags:

enum {
/* run-tinme flags in the device control entry */
dOpenedMask = 0x0020,
dRAMBasedMask = 0x0040,
drvrActiveMask = 0x0080
1

A pointer to the header of the driver I/O queue, which is a standard
Operating System queue. See the chapter “Queue Utilities” in

Inside Macintosh: Operating System Ultilities for more information
about the QHdr data type.

The current source or destination position for reading or writing.
This field is used only by drivers of block devices. The value in this
field is the number of bytes beyond the physical beginning of the
medium used by the device, and must be a multiple of 512. For
example, immediately after the Disk Driver reads the first block

of data from a 3.5-inch disk, this field contains the value 512.

Ahandle to a driver’s private storage. A driver may allocate a
relocatable block of memory and keep a handle to it in this field.

The driver reference number.

Device Manager Reference 1-57

Jabeue a21n8Q -

CHAPTER 1

Device Manager

dct | Cur Ti cks
dCt | W ndow

dCt | Del ay
dCt | EMask

dct | Menu

dct 1 Sl ot
dclSlotld
dCt | DevBase

dct | Owner
dCt | Ext Dev
fillByte

Used internally.

A pointer to the desk accessory window. See “Writing a Desk
Accessory” on page 1-49 for more information.

The number of ticks to wait between periodic actions.

The desk accessory event mask. See “Writing a Desk Accessory” on
page 1-49 for more information.

The menu ID of a desk accessory’s menu, if any. See “Writing a
Desk Accessory” on page 1-49 for more information.

The slot number of the slot device.
The sResource directory ID of the slot device.

The base address of the slot device. For a video card this field
contains the address of the pixel map for the card’s GDevi ce record.

Reserved. This field must be 0.
The external device ID of the slot device.
Reserved.

Device Manager Functions

1-58

This section describes the functions you use to

= open and close device drivers

s communicate with device drivers

s control and monitor device drivers

s write and install device drivers

The low-level Device Manager functions described in this section (those that use the
parameter block structure to pass information) provide two advantages over the
corresponding high-level functions:

» These functions can be executed asynchronously, returning control to your application
before the operation is completed.

= In most cases, these functions provide more extensive information or perform
advanced operations.

All of these functions exchange parameters with your application through a parameter
block of type Par anBl ockRec. When you call a low-level function, you pass the
address of the parameter block to the function.

There are three versions of most low-level functions. The first takes two parameters: a
pointer to the parameter block and a Boolean parameter that specifies whether the
function is to execute asynchronously (t r ue) or synchronously (f al se). For example,
the first version of the low-level PBRead function has this declaration:

pascal OSErr

PBRead(Par nBl kPt r paranmBl ock, Bool ean async);

Device Manager Reference

CHAPTER 1

Device Manager

The second version does not take a second parameter; instead, it adds the suffix
Sync to the name of the function.

pascal OSErr PBReadSync(Par nBl kPtr paranBl ock);

Similarly, the third version of the function does not take a second parameter; instead,
it adds the suffix Async to the name of the function.

Jabeue a21n8Q -

pascal OSErr PBReadAsync(ParnBl kPtr paranBl ock);

Only the first version of each function is documented in this section. Note, however, that
the second and third versions of these functions do not use the glue code that the first
version uses and are therefore more efficient. See “Summary of the Device Manager,”
beginning on page 1-91, for a listing of all three versions of these functions.

Assembly-Language Note

All Device Manager functions are synchronous by default. If you want a
function to be executed asynchronously, set bit 10 of the trap word. To
execute a function immediately, set bit 9 of the trap word. You can set
these bits by appending the word ASYNC or | MVED as the second
argument to the trap macro. For example:

_Read, ASYNC
_Control, | MVED

You can set or test bit 10 of a trap word using the global constant
asyncTr pBi t . You can set or test bit 9 of the trap word using the global
constant noQueueBi t. O

A WARNING
Never call any synchronous Device Manager function at interrupt time.
This includes all of the high-level functions and the synchronous
versions of the low-level functions.

A synchronous request at interrupt time may block other pending

I/O requests. Because the device driver cannot begin processing the
synchronous request until it completes the other requests in its queue,
this situation can cause the Device Manager to loop indefinitely while it
waits for the device driver to complete the synchronous request. a

Opening and Closing Device Drivers

A device driver must be open before your application can communicate with it. You

can use the QpenDr i ver or PBOpen function to open closed drivers or to determine the
driver reference number of a driver that is already open. You use the QpenSl ot function
to open drivers that serve slot devices. To open a desk accessory or other Apple menu
item from within your application, use the OpenDeskAcc function.

Device Manager Reference 1-59

OpenDriver

CHAPTER 1

Device Manager

When you finish communicating with a device driver, you can close it if you are sure no
other application or part of the system needs to use it. You can use the Cl oseDri ver or
PBC ose function to close a driver. You use the Cl oseDeskAcc function to close a desk
accessory.

The PBOpen and PBC ose functions use the | OPar amunion of the Device Manager
parameter block. The QpenSl| ot function uses the | OPar amunion fields and some
additional fields that apply only to slot devices.

IMPORTANT

Device drivers cannot be opened or closed asynchronously. The
PBOpen, PBA ose, and OpenSl ot functions include an asynchronous
option because they share code with the File Manager. The async
parameter must be set to f al se when these functions are used to open
or close a device driver. a

DESCRIPTION

1-60

You can use the QpenDr i ver function to open a closed device driver or to determine the
driver reference number of an open device driver.

pascal OSErr OpenDriver (Const Str255Par am nane, short *drvrRef Nunj;

name The name of the driver to open. A driver name consists of a period (.)
followed by any sequence of 1 to 255 printing characters. The Device
Manager ignores case (but not diacritical marks) when comparing names.

dr vr Ref Num The driver reference number of the opened driver.

The OpenDri ver function opens the device driver specified by the name parameter and
returns its driver reference number in the dr vr Ref Numparameter. To avoid replacing an
open driver, the Device Manager searches the drivers that are already installed in the
unit table before searching driver resources. If the specified driver is already open, this
function simply returns the driver reference number.

If the driver is not already open, the Device Manager calls the Get NanedResour ce
function using the specified name and the resource type ' DRVR . If the resource is
found, the resource ID defines the unit number of the driver, which determines the
location in the unit table where the Device Manager stores the handle to the driver’s
device control entry (DCE).

After loading the driver resource into memory, the Device Manager creates a DCE for the
driver, copies the flags from the driver header to the dCt | FI ags field, and places the
driver reference number in the dCt | Ref Numfield.

Device Manager Reference

CHAPTER 1

Device Manager

The OpenDri ver function is a high-level version of the low-level PBOpen function.
Use the PBOpen function when you need to specify read / write permission for the driver.
The next section describes the PBOpen function.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

PBOpen

Because another driver might already be installed in the unit table at the location
determined by the driver’s resource ID, you should first search for an unused location in
the unit table and renumber the driver resource accordingly before calling this function.
See Listing 1-1 on page 1-18 for an example.

The OpenDri ver function may move memory; you should not call it at interrupt time.

noErr 0 No error

badUni t Err -21 Driver reference number does not match unit table

uni t Enpt yErr 22 Driver reference number specifies a ni | handle in unit table

openErr -23 Requested read / write permission does not match driver’s
open permission

dinstErr -26 Driver resource not found

For information about the low-level functions for opening devices, see the next section,
which describes the PBOpen function, and the description of the QpenSl ot function on
page 1-63. For an example of how to open a device driver using the OpenbDri ver
function, see Listing 1-1 on page 1-18.

You can use the PBOpen function to open a closed device driver or to determine the
driver reference number of an open device driver.

pascal OSErr PBOpen(ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to an | OPar amstructure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to f al se because device drivers cannot be opened
asynchronously.

Parameter block

- i oResul t CSErr The device driver’s result code.
- i oNamePt r StringPtr A pointer to the driver name.

- i oRef Num short The driver reference number.

N i oPer nssn char Read /write permission.

Device Manager Reference 1-61

Jabeue a21n8Q -

DESCRIPTION

CHAPTER 1

Device Manager

The PBOpen function opens the device driver specified by the i oNarmePt r field and
returns its driver reference number in the i oRef Numfield. To avoid replacing an open
driver, the Device Manager searches the drivers that are already installed in the unit
table before searching driver resources. If the specified driver is already open, this
function simply returns the driver reference number.

If the driver is not already open, the Device Manager calls the Get NamedResour ce
function using the specified name and the resource type ' DRVR . If the resource is
found, the resource ID defines the unit number of the driver, which determines the
location in the unit table where the Device Manager stores the handle to the driver’s
device control entry (DCE).

After loading the driver resource into memory, the Device Manager creates a DCE for the
driver, copies the flags from the driver header to the dCt | FI ags field, and places
the driver reference number in the dCt | Ref Numfield.

You specify the access permission for the device driver by placing one of the following
constants in the i oPer mssn field of the parameter block:

enum {
/* access perm ssions */
f sCur Perm 0, /* retain current pernission */
f sRdPer m = 1, /* allow reads only */
f sWPerm = 2, /* allow wites only */
f SRAW Per m =3 /* allow reads and wites */

s

If the driver returns a negative result in register D0, the Device Manager returns the
result code in the i oResul t parameter and does not open the driver.

SPECIAL CONSIDERATIONS

Because another driver might already be installed in the unit table at the location
determined by the driver’s resource ID, you should first search for an unused location in
the unit table and renumber the driver resource accordingly before calling this function.
See Listing 1-1 on page 1-18 for an example.

The PBOpen function may move memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

1-62

The trap macro for the PBOpen function is _Open (0xA000). You must set up register AQ
with the address of the parameter block. When _QOpen returns, register DO contains the
result code. Register DO is the only register affected by this function.

Registers on entry
A0 Address of the parameter block

Device Manager Reference

RESULT CODES

SEE ALSO

OpenSlot

CHAPTER 1

Device Manager

Registers on exit
DO Result code

noErr 0 No error

badUni t Err 21 Driver reference number does not match unit table

uni t Empt yErr —22 Driver reference number specifies a ni | handle in unit table

openkErr -23 Requested read / write permission does not match driver’s
open permission

dl nstErr -26 Driver resource not found

For information about the high-level function for opening device drivers, see the
description of the OpenDri ver function on page 1-60. For information about the
low-level function for opening device drivers that serve devices on expansion cards,

see the next section, which describes the OpenSl ot function. For an example of opening
a device driver, see Listing 1-1 on page 1-18.

You can use the QpenSl ot function to open a device driver that serves a slot device.
pascal OSErr OpenSl ot (ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to a Sl ot DevPar amor Ml t i DevPar amstructure of the
Par anBl ockRec union.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to f al se because device drivers cannot be opened
asynchronously.

Parameter block

- i oResul t OSEr r The device driver’s result code.
. i oNamrePt r StringPtr A pointer to the driver name.

- i oRef Num short The driver reference number.

N i oPer nssn char Read /write permission.

Additional fields for a single device

- i oM x Ptr Reserved for use by the driver open routine.
- i oFl ags short Determines the number of additional fields.
- i 0SI ot char The slot number.

- iold char The slot resource ID.

Device Manager Reference 1-63

Jabeue a21n8Q -

DESCRIPTION

CHAPTER 1

Device Manager

Additional fields for multiple devices

. i oMM x Ptr Reserved for use by the driver open routine.
N i oMFl ags short The number of additional fields.
. i OSEBI kPt r Ptr A pointer to an external parameter block.

The OpenSl ot function is equivalent to the PBOpen function, except that it sets bit 9 of
the trap word, which signals the _Qpen routine that the parameter block includes
additional fields.

If the sResource serves a single device, you should clear all the bits of the i oFI ags field
and include the slot number and slot resource ID in the i 0S| ot and i ol Dfields.

If the sResource serves multiple devices, you should set the f Mul ti bit (bit 0) of the
i oFl ags field (clearing all other bits to 0), and specify, in the i 0SEBI kPt r field, an
external parameter block that is customized for the devices installed in the slot.

SPECIAL CONSIDERATIONS

The OpenSl ot function may move memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

1-64

The trap macro for the OpenSl ot function is _Open (0xA200). Bit 9 of the trap word is
set to signal that the parameter block contains additional fields for slot devices.

You must set up register AQ with the address of the parameter block. When _Open
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

noErr 0 No error

badUni t Err 21 Driver reference number does not match unit table

uni t Enpt yErr 22 Driver reference number specifies a ni | handle in unit table

openkErr -23 Requested read / write permission does not match driver’s
open permission

dl nst Err 26 Driver resource not found

For information about the low-level function for opening other device drivers, see the
description of the PBOpen function on page 1-61. For an example of opening a device

Device Manager Reference

CHAPTER 1

Device Manager

driver, see Listing 1-1 on page 1-18. Refer to the chapter “Slot Manager” in this book for
more information about slot device drivers.

OpenDeskAcc

Jabeue a21n8Q -

You can use the OQpenDeskAcc function to open an item in the Apple menu.
pascal short OpenDeskAcc(Const Str255Param deskAccNane) ;

deskAccNane A Pascal string containing the name of the Apple menu item.

DESCRIPTION
The OpenDeskAcc function opens the Apple menu item specified by the deskAccName
parameter. If the item is already open, the OpenDeskAcc function schedules it for
execution and returns to your application. Otherwise, it prepares to open the item. In
either case, your application receives a suspend event and the selected item is brought
to the foreground.

You should ignore the value returned by OpenDeskAcc. If the menu item is a desk
accessory and is successfully opened, the function result is a driver reference number for
the desk accessory driver. Otherwise the function result is undefined. The desk accessory
is responsible for informing the user of any errors.

Because some older desk accessories may not reset the current graphics port before
returning, you should bracket your call to OpenDeskAcc with calls to the QuickDraw
procedures Get Port and Set Por t, to save and restore the current port.

SPECIAL CONSIDERATIONS
The OpenDeskAcc function may move memory; you should not call it at interrupt time.

SEE ALSO

For information about closing a desk accessory, see the description of the
0 oseDeskAcc function beginning on page 1-68.

CloseDriver

You can use the Cl oseDri ver function to close an open device driver.
pascal OSErr C oseDriver(short refNunj;

ref Num The driver reference number returned by the driver-opening function.

Device Manager Reference 1-65

DESCRIPTION

CHAPTER 1

Device Manager

The O oseDri ver function closes the device driver indicated by the r ef Numparameter.
The Device Manager waits until the driver is inactive before calling the driver’s close
routine. When the driver indicates it has processed the close request, the Device
Manager unlocks the driver resource if the dRAMBased flag is set, and unlocks the
device control entry if the dNeedLock flag is not set. The Device Manager does not
dispose of the device control entry or remove it from the unit table.

This function is a high-level version of the low-level PBCl ose function. Use the
PBCl ose function when you want to specify a completion routine.

WARNING

You should not close drivers that other applications may be using, such
as a disk driver, the AppleTalk drivers, and so on. a

SPECIAL CONSIDERATIONS

The Device Manager does not queue close requests.

A WARNING
Do not call the Cl oseDri ver function at interrupt time because if the
driver was processing a request when the interrupt occurred the Device
Manager may loop indefinitely, waiting for the driver to complete the
request. a
RESULT CODES
noErr 0 No error
badUni t Err -21 Driver reference number does not match unit table
uni t Enpt yErr -22 Driver reference number specifies a ni | handle in unit table
cl osErr 24 Driver unable to complete close request
dRenmovErr 25 Attempt to remove an open driver
SEE ALSO
For information about the low-level function for closing device drivers, see the next
section, which describes the PBCl ose function.
PBClose
You can use the PBCl ose function to close an open device driver.
pascal OSErr PBC ose(Par nBl kPtr paranBl ock, Bool ean async);
par anBl ock A pointer to an | OPar amstructure of the Device Manager parameter
block.
1-66 Device Manager Reference

DESCRIPTION

CHAPTER 1

Device Manager

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to f al se because device drivers cannot be closed
asynchronously.

Parameter block

- i oResul t CSEr r The device driver’s result code.
- i oRef Num short The driver reference number.

The PBCI ose function closes the device driver specified by the i oRef Numfield. The
Device Manager waits until the driver is inactive before calling the driver’s close routine.
When the driver indicates it has processed the close request, the Device Manager
unlocks the driver resource if the dRAMBased flag is set, and unlocks the device control
entry if the dNeedLock flag is not set. The Device Manager does not dispose of the
device control entry or remove it from the unit table.

If the driver returns a negative result in register D0, the Device Manager returns this
result code in the i oResul t field of the parameter block and does not close the driver.

A WARNING
You should not close drivers that other applications may be using, such
as a disk driver, the AppleTalk drivers, and so on. a
SPECIAL CONSIDERATIONS
The Device Manager does not queue close requests.
A WARNING

Do not call the PBCl ose function at interrupt time because if the driver
was processing a request when the interrupt occurred the Device
Manager may loop indefinitely, waiting for the driver to complete the
request. a

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBCl ose function is _Cl ose (0xA001).

You must set up register A0 with the address of the parameter block. When _Cl ose
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

Device Manager Reference 1-67

Jabeue a21n8Q -

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

nokErr 0 No error

badUni t Err 21 Driver reference number does not match unit table

uni t Enpt yErr -22 Driver reference number specifies a ni | handle in unit table
cl osErr 24 Driver unable to complete close request

dRenmovErr -25 Attempt to remove an open driver

For information about the high-level function for closing device drivers, see the
description of the Cl oseDri ver function on page 1-65. For an example of how to close
a device driver using the PBCl ose function, see Listing 1-2 on page 1-20.

CloseDeskAcc

DESCRIPTION

You can use the Cl oseDeskAcc function to close a desk accessory.
pascal void O oseDeskAcc(short refNunj;

ref Num The driver reference number contained in the desk accessory’s
W ndowRecor d.

The O oseDeskAcc function closes the desk accessory specified by the r ef Num
parameter. Your application should call Cl oseDeskAcc only when the user selects the
Close or Quit item from your File menu and the active window does not belong to your
application.

You obtain the r ef Numparameter from the wi ndowKi nd field of the desk accessory’s
W ndowRecor d. Do not use the driver reference number returned by OpenDeskAcc.

SPECIAL CONSIDERATIONS

SEE ALSO

1-68

The O oseDeskAcc function may move memory; you should not call it at interrupt
time.

For information about opening a desk accessory or other Apple menu item, see the
description of the OQpenDeskAcc function on page 1-65.

Device Manager Reference

CHAPTER 1

Device Manager

Communicating With Device Drivers

You can use either the FSRead or PBRead function to read information from a device
driver, and you can use the FSWi t e or PBW i t e function to write information to a
device driver.

FSRead

You can use the FSRead function to read data from an open driver into a data buffer.
pascal OSErr FSRead(short refNum |ong *count, void *buffPtr);

ref Num The driver reference number.
count The number of bytes to read.
buf f Pt r A pointer to a buffer to hold the data.

DESCRIPTION

Before calling the FSRead function, your application should allocate a data buffer large
enough to hold the data to be read. The FSRead function attempts to read the number of
bytes indicated by the count parameter and transfer them to the data buffer pointed to
by the buf f Pt r parameter. The r ef Numparameter identifies the device driver. After the
transfer is complete, the count parameter indicates the number of bytes actually read.

A WARNING
Be sure your buffer is large enough to hold the number of bytes
specified by the count parameter, or this function may corrupt
memory. a

The FSRead function is a high-level synchronous version of the low-level PBRead
function. Use the PBRead function when you want to request asynchronous reading or
need to specify a drive number or a positioning mode and offset. See the next section,
which describes the PBRead function.

SPECIAL CONSIDERATIONS

Do not call the FSRead function at interrupt time. Synchronous requests at interrupt
time may block other pending I/O requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

Device Manager Reference 1-69

Jabeue a21n8Q -

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

noErr 0 No error

readErr -19 Driver does not respond to read requests

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr 22 Driver reference number specifies a ni | handle in unit table
abortErr —-27 Request aborted by Ki I | I O

not OpenkErr -28 Driver not open

For information about the low-level function for reading from device drivers, see the
next section, which describes the PBRead function.

PBRead
You can use the PBRead function to read data from an open driver into a data buffer.
pascal OSErr PBRead(ParnBl kPtr paranBl ock, Bool ean async);
par anBl ock A pointer to an | OPar amstructure of the Device Manager parameter
block.
async A Boolean value that indicates whether the request is asynchronous.
Parameter block
. i oConpl eti on ProcPtr A pointer to a completion routine.
- i oResul t CSErr The device driver’s result code.
- i oVRef Num short The drive number.
. i oRef Num short The driver reference number.
. i oBuf f er Ptr A pointer to a data buffer.
. i oReqCount | ong The requested number of bytes to read.
- i 0Act Count | ong The actual number of bytes read.
- i oPosMode short The positioning mode.
o i oPosOr f set | ong The positioning offset.
DESCRIPTION
Before calling the PBRead function, your application should allocate a data buffer large
enough to hold the data to be read. The PBRead function attempts to read the number of
bytes indicated by the i oReqCount field and transfer them to the data buffer pointed to
by the i oBuf f er field. The i oRef Numfield identifies the device driver. After the
transfer is complete, the i 0Act Count field indicates the number of bytes actually read.
A WARNING
Be sure your buffer is large enough to hold the number of bytes
specified by the count parameter, or this function may corrupt
memory. a
1-70 Device Manager Reference

CHAPTER 1

Device Manager

For block devices such as disk drivers, the PBRead function allows you to specify a
drive number in the i oVRef Numfield and specify a positioning mode and offset in
the i oPosMbde and i oPosOf f set fields. Bits 0 and 1 of the i oPosMbde field
indicate where an operation should begin relative to the physical beginning of the
block-formatted medium. You can use the following constants to test or set the value

of these bits:
enum {

/* positioning nodes */

f sAt Mar k = 0, /* at current position */

fsFrontt art =1, /* offset from beginning */

f sFromvar k =3 /* offset fromcurrent position */
b

The i oPosOf f set field specifies the positive or negative byte offset where the data
is to be read, relative to the positioning mode. The offset must be a multiple of 512.
The i oPosOf f set field is ignored when i oPosMode is set to f sAt Mar k.

After the transfer is complete, the i o0PosCf f set field indicates the current position of
the block device.

The Disk Driver allows you to use the PBRead function to verify that data written to
a block device matches the data in memory. To do this, call PBRead immediately after
writing the data, and add the read-verify constant r dVeri f y to the i oPosMde field
of the parameter block. The result code i OEr r is returned if the data does not match.

SPECIAL CONSIDERATIONS

Do not call the PBRead function synchronously at interrupt time. Synchronous requests
at interrupt time may block other pending I/ O requests and cause the Device Manager
to loop indefinitely while it waits for the device driver to complete the interrupted
requests.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for the PBRead function is _Read (0xA002). Set bit 10 of the trap word to
execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register AQ with the address of the parameter block. When _Read
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry
A0 Address of the parameter block

Registers on exit
DO Result code

Device Manager Reference 1-71

Jabeue a21n8Q -

CHAPTER 1

Device Manager

RESULT CODES
noErr 0 No error
readErr -19 Driver does not respond to read requests
badUni t Err -21 Driver reference number does not match unit table
uni t Enpt yErr -22 Driver reference number specifies a ni | handle in unit table
abortErr —27 Request aborted by Ki I I 1 O
not OpenkErr 28 Driver not open
i OErr -36 Data does not match in read-verify mode
SEE ALSO

For information about the high-level function for reading from device drivers, see the
description of the FSRead function beginning on page 1-69. For an example of how to
read from a device driver using the PBRead function, see Listing 1-3 on page 1-21.

FSWrite
You can use the FSW i t e function to write data from a data buffer to an open driver.
pascal OSErr FSWite(short refNum |ong *count,

const void *buffPtr);

ref Num The driver reference number.
count The number of bytes to write.
buf f Pt r A pointer to the buffer that holds the data.

DESCRIPTION
The FSW i t e function attempts to write the number of bytes indicated by the count
parameter from the data buffer pointed to by the buf f Pt r parameter to the device
driver specified by the r ef Nu Mmparameter. After the transfer is complete, the count
parameter indicates the number of bytes actually written.
The FSW i t e function is a high-level synchronous version of the low-level PBWi t e
function. Use the PBW i t e function when you want to request asynchronous writing or
need to specify a drive number or a positioning mode and offset. See the next section,
which describes the PBW i t e function.

SPECIAL CONSIDERATIONS

Do not call the FSW i t e function at interrupt time. Synchronous requests at interrupt
time may block other pending I/ O requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

1-72 Device Manager Reference

CHAPTER 1

Device Manager

RESULT CODES
noErr 0 No error
witErr -20 Driver does not respond to write requests
badUni t Err -21 Driver reference number does not match unit table
uni t Enpt yErr 22 Driver reference number specifies a ni | handle in unit table
abortErr -27 Request aborted by Ki I I 1 O
not Openkrr 28 Driver not open
SEE ALSO
For information about the low-level function for writing to device drivers, see the next
section, which describes the PBW i t e function.
PBWrite
You can use the PBW i t e function to write data from a data buffer to an open driver.
pascal OSErr PBWite(ParnBl kPtr paranBl ock, Bool ean async);
par anBl ock A pointer to an | OPar amstructure of the Device Manager parameter
block.
async A Boolean value that indicates whether the request is asynchronous.
Parameter block
. i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t OSErr The device driver’s result code.
- i oVRef Num short The drive number.
. i oRef Num short The driver reference number.
. i oBuffer Ptr A pointer to a data buffer.
. i oRegCount l ong The requested number of bytes to write.
- i 0Act Count l ong The actual number of bytes written.
- i oPosMbde short The positioning mode.
o i oOPosOF f set | ong The positioning offset.
DESCRIPTION

The PBW i t e function attempts to write the number of bytes indicated by the

i oReqCount field from the data buffer pointed to by the i oBuf f er field to the device
driver specified by the i oRef Numfield. After the transfer is complete, the i 0Act Count
field indicates the number of bytes actually written.

For block devices such as disk drivers, the PBW i t e function allows you to specify
a drive number in the i 0VRef Numfield and specify a positioning mode and offset
in the i oPosMbde and i oPosOf f set fields. Bits 0 and 1 of the i oPosMode field
indicate where an operation should begin relative to the physical beginning of the
block-formatted medium. You can use the following constants to test or set the value
of these bits:

Device Manager Reference 1-73

Jabeue a21n8Q -

CHAPTER 1

Device Manager

enum {
/* positioning nodes */
f SAt Mar k = 0, /* at current position */
fsFronttart = 1, /* offset from begi nning */
f sFromvar k =3 /* offset fromcurrent position */
1

The i oPosf f set field specifies the positive or negative byte offset where the data is
to be written, relative to the positioning mode. The offset must be a multiple of 512. The
i oOPosOF f set field is ignored when i oPosMode is set to f SAt Mar k.

After the transfer is complete, the i 0PosCf f set field indicates the new current position
of a block device.

SPECIAL CONSIDERATIONS

Do not call the PBW i t e function synchronously at interrupt time. Synchronous requests
at interrupt time may block other pending I/ O requests and cause the Device Manager
to loop indefinitely while it waits for the device driver to complete the interrupted
requests.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

1-74

The trap macro for the PBW i t e functionis _W i t e (0xA003). Set bit 10 of the trap word
to execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register AQ with the address of the parameter block. When _Wite
returns, register DO contains the result code. Register DO is the only register affected by
this function.

Registers on entry

A0 Address of the parameter block

Registers on exit
DO Result code

noErr 0 No error

writErr -20 Driver does not respond to write requests

badUni t Err =21 Driver reference number does not match unit table

uni t Enpt yErr -22 Driver reference number specifies a ni | handle in unit table
abortErr -27 Request aborted by Ki | | | O

not Qpenkrr —28 Driver not open

Device Manager Reference

SEE ALSO

CHAPTER 1

Device Manager

For information about the high-level function for writing to device drivers, see the
description of the FSW i t e function on page 1-72. For an example of how to write to a
device driver using the PBW i t e function, see Listing 1-4 on page 1-22.

Controlling and Monitoring Device Drivers

Control

You can use either the Cont r ol or PBCont r ol function to send control information
to a device driver, and you can use the St at us or PBSt at us function to obtain status
information from a device driver. The Device Manager also provides the Ki | | | Oand
PBKi | | | Ofunctions for terminating all requests in a driver I/O queue.

The PBCont r ol , PBSt at us, and PBKi | | | O functions use the Cnt r | Par amstructure,
described on page 1-53.

DESCRIPTION

You can use the Cont r ol function to send control information to a device driver.

pascal OSErr Control (short refNum short csCode,
const void *csParanPtr);

ref Num The driver reference number.
csCode A driver-dependent code specifying the type of information sent.
csParanPtr A pointer to the control information.

The Cont r ol function sends information to the device driver specified by the r ef Num
parameter. The value you pass in the csCode parameter and the type of information
pointed to by the csPar anPt r parameter are defined by the driver you are calling. For
more information, see the appropriate chapters for the standard device drivers in this
book and other books in the Inside Macintosh series.

The Cont r ol function is a high-level synchronous version of the low-level PBCont r ol
function. Use the PBCont r ol function if you need to specify a drive number or if you
want the control request to be executed asynchronously.

SPECIAL CONSIDERATIONS

Do not call the Cont r ol function at interrupt time. Synchronous requests at interrupt
time may block other pending I/O requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

Device Manager Reference 1-75

Jabeue a21n8Q -

RESULT CODES

SEE ALSO

PBControl

CHAPTER 1

Device Manager

noErr 0 No error

control Err -17 Driver does not respond to this control request

badUni t Err -21 Driver reference number does not match unit table

uni t Enpt yErr 22 Driver reference number specifies a ni | handle in unit table
abortErr -27 Request aborted by Ki I [1 O

not OpenkErr 28 Driver not open

For information about the low-level function for controlling device drivers, see the next
section, which describes the PBCont r ol function.

DESCRIPTION

You can use the PBCont r ol function to send control information to a device driver.
pascal OSErr PBControl (ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to a Cnt r | Par amstructure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t OSErr The device driver’s result code.

= i oVRef Num short The drive number.

- i oCRef Num short The driver reference number.

- csCode short The type of control call.

- csPar am short[11] The control information.

The PBCont r ol function sends information to the device driver specified by the

i oCRef Numfield. The value you pass in the csCode field and the type of information in
the csPar amfield are defined by the driver you are calling. For more information, see
the appropriate chapters for the standard device drivers in this book and other books in
the Inside Macintosh series.

SPECIAL CONSIDERATIONS

1-76

Do not call the PBCont r ol function synchronously at interrupt time. Synchronous
requests at interrupt time may block other pending I/ O requests and cause the Device
Manager to loop indefinitely while it waits for the device driver to complete the
interrupted requests.

Device Manager Reference

CHAPTER 1

Device Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Status

The trap macro for the PBCont r ol functionis _Control (0xA004). Set bit 10 of the trap
word to execute this routine asynchronously. Set bit 9 to execute it immediately.

You must set up register AQ with the address of the parameter block. When _Cont r ol
returns, register DO contains the result code. Register DO is the only register affected by
this routine.

Registers on entry

A0 Address of the parameter block

Registers on exit
DO Result code

nokErr 0 No error

control Err -17 Driver does not respond to this control request

badUni t Err 21 Driver reference number does not match unit table

uni t Empt yErr -22 Driver reference number specifies a ni | handle in unit table
abortErr 27 Request aborted by Ki | | | O

not Qpenkr r —28 Driver not open

For information about the high-level function for controlling device drivers, see the
description of the Cont r ol function on page 1-75. For an example of how to send
control information to a device driver using the PBCont r ol function, see Listing 1-5
on page 1-23.

DESCRIPTION

You can use the St at us function to obtain status information from a device driver.

pascal OSErr Status(short refNum short csCode,
void *csParanPtr);

ref Num The driver reference number.
csCode A driver-dependent code specifying the type of information requested.

csParanPtr A pointer to a csPar amarray where the status information will be
returned.

The St at us function returns information about the device driver specified by the
r ef Numparameter. The value you pass in the csCode parameter and the received

Device Manager Reference 1-77

Jabeue a21n8Q -

CHAPTER 1

Device Manager

information pointed to by the csPar anPt r parameter are defined by the driver you
are calling. For more information, see the appropriate chapters for the standard device
drivers in this book and other books in the Inside Macintosh series.

The St at us function is a high-level synchronous version of the low-level PBSt at us
function. Use the PBSt at us function if you need to specify a drive number or if you
want the status request to be asynchronous.

Note

The Device Manager interprets a csCode value of 1 as a special case.
When the Device Manager receives a status request with a csCode
value of 1, it returns a handle to the driver’s device control entry.
This type of status request is not passed to the device driver. O

SPECIAL CONSIDERATIONS

Do not call the St at us function at interrupt time. Synchronous requests at interrupt
time may block other pending I/O requests and cause the Device Manager to loop
indefinitely while it waits for the device driver to complete the interrupted requests.

RESULT CODES
nokErr 0 No error
stat uskrr -18 Driver does not respond to this status request
badUni t Err 21 Driver reference number does not match unit table
uni t Enpt yErr -22 Driver reference number specifies a ni | handle in unit table
abortErr -27 Request aborted by Ki I [1 O
not Qpenkrr 28 Driver not open
SEE ALSO

For information about the low-level function for monitoring device drivers, see the next
section, which describes the PBSt at us function.

PBStatus

You can use the PBSt at us function to obtain status information from a device driver.
pascal OSErr PBStat us(ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to a Cnt r | Par amstructure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

1-78 Device Manager Reference

DESCRIPTION

CHAPTER 1

Device Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The device driver’s result code.

- i oVRef Num short The drive number.

- i oCRef Num short The driver reference number.

- csCode short The type of status call.

- csPar am short[11] The status information.

The PBSt at us function returns information about the device driver specified by the

i 0CRef Numfield. The value you pass in the csCode field and the type of information
received in the csPar amfield are defined by the driver you are calling. For more
information, see the appropriate chapters for the standard device drivers in this book
and other books in the Inside Macintosh series.

Note

The Device Manager interprets a csCode value of 1 as a special case.
When the Device Manager receives a status request with a csCode
value of 1, it returns a handle to the driver’s device control entry.
This type of status request is not passed to the device driver. O

SPECIAL CONSIDERATIONS

Do not call the PBSt at us function synchronously at interrupt time. Synchronous
requests at interrupt time may block other pending I/O requests and cause the Device
Manager to loop indefinitely while it waits for the device driver to complete the
interrupted requests.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBSt at us function is _St at us (0xA005). Set bit 10 of the trap
word to execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register AQ with the address of the parameter block. When _St at us
returns, register D0 contains the result code. Register DO is the only register affected by
this function.

Registers on entry

A0 Address of the parameter block

Registers on exit
DO Result code

Device Manager Reference 1-79

Jabeue a21n8Q -

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

noErr 0 No error

stat uskrr -18 Driver does not respond to this status request

badUni t Err -21 Driver reference number does not match unit table

uni t Enpt yErr 22 Driver reference number specifies a ni | handle in unit table
abortErr -27 Request aborted by Ki I [1 O

not OpenkErr 28 Driver not open

For information about the high-level function for monitoring device drivers, see the
description of the St at us function on page 1-77. For an example of how to request
status information from a device driver using the PBSt at us function, see Listing 1-5
on page 1-23.

KilllO
You can use the Ki | | | Ofunction to terminate all current and pending I/O requests for a
device driver.
pascal OSErr KilllQ(short refNunj;
ref Num The driver reference number.
DESCRIPTION
The Ki | | I Ofunction stops any current I/O request being processed by the driver
specified by the Ref Numparameter, and removes all pending requests from the
I/O queue for that driver. The Device Manager calls the completion routine, if any,
for each pending request, and sets the i oResul t field of each request equal to the
result code abor t Err.
The Device Manager passes Ki | | | Orequests to a driver only if the driver is open and
enabled for control calls. If the driver returns an error, the I/O queue is left unchanged
and no completion routines are called.
A WARNING
The Ki | | I Ofunction terminates all pending I/O requests for a driver,
including requests initiated by other applications. a
SPECIAL CONSIDERATIONS
The Device Manager always executes the Ki | | | Ofunction immediately; that is, it never
places a Ki | | | Orequest in the I/ O queue.
Although the Device Manager imposes no restrictions on calling Ki | | | Oat interrupt
time, you should consult a device driver’s documentation to determine if it supports this.
1-80 Device Manager Reference

RESULT CODES

SEE ALSO

PBKillIO

CHAPTER 1

Device Manager

noErr 0 No error

control Err -17 Driver does not respond to this control request

badUni t Err 21 Driver reference number does not match unit table

uni t Enpt yErr 22 Driver reference number specifies a ni | handle in unit table
not Qpenkrr 28 Driver not open

For information about the low-level function for terminating current and pending
I/0O requests for a driver, see the next section, which describes the PBKi | | | Ofunction.

DESCRIPTION

You can use the PBKi | | | Ofunction to terminate all current and pending I/ O requests
for a device driver.

pascal OSErr PBKilllQ(ParnBl kPtr paranBl ock, Bool ean async);

par anBl ock A pointer to a Cnt r | Par amstructure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to f al se because the PBKi | | | Ofunction does not
support asynchronous requests.

Parameter block
- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t OSEr r The device driver’s result code.
- i oCRef Num short The driver reference number.

The PBKi | | | Ofunction stops any current I/O request being processed by the driver
specified by the i oCRef Numfield, and removes all pending requests from the I/O queue
for that driver. The Device Manager calls the completion routine, if any, for each pending
request, and sets the i oOResul t field of each request equal to the result code abor t Err.

The Device Manager passes PBKi | | | Orequests to a device driver only if the driver is
open and enabled for control calls. If the driver returns an error, the I/O queue is left
unchanged and no completion routines are called.

WARNING

The PBKi | | | Ofunction terminates all pending I/O requests for a
driver, including requests initiated by other applications. a

Device Manager Reference 1-81

Jabeue a21n8Q -

CHAPTER 1

Device Manager

SPECIAL CONSIDERATIONS

The Device Manager always executes the PBKi | | | Ofunction immediately; that is,
it never places a PBKi | | | Orequest in the I/O queue. However, you should not call this
function immediately—always call the PBKi | | | Ofunction synchronously.

Although the Device Manager imposes no restrictions on calling PBKi | | | Oat interrupt
time, you should consult a device driver’s documentation to determine if it supports this.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro for the PBKi | | | Ofunctionis _Ki | | | O(0xA006). You must set up
register A0 with the address of the parameter block. When _Ki | | | Oreturns, register DO
contains the result code. Register DO is the only register affected by this function.

Registers on entry
AQ Address of the parameter block

Registers on exit
DO Result code

nokErr 0 No error

control Err -17 Driver does not respond to this control request

badUni t Err -21 Driver reference number does not match unit table

uni t Enpt yErr -22 Driver reference number specifies a ni | handle in unit table
not OpenkErr —28 Driver not open

For information about the high-level function for terminating current and pending
I/O requests for a driver, see the description of the Ki | | | Ofunction on page 1-80.

Writing and Installing Device Drivers

1-82

The Device Manager includes a number of functions that provide low-level support for
device drivers.

The Driverlnstall and Dri verl nstal | Reser veMemfunctions create a device
control entry and install it in the unit table. The Dri ver | nst al | Reser veMemfunction
is preferred because it allocates the device control entry as low as possible in the system
heap. The Dr i ver Renpve function removes an existing device control entry.

The Get DCt | Ent r y function returns a handle to a driver’s device control entry.

The | ODone routine notifies the Device Manager that an I/ O operation is done. Driver
routines call | ODone when the current request is completed and ready to be removed
from the I/O queue.

Device Manager Reference

CHAPTER 1

Device Manager

The Fet ch and St ash routines can be used to move characters into and out of data
buffers. You pass a pointer to the device control entry in the Al register to each of these
three routines. The Device Manager uses the device control entry to locate the active
request. If no such request exists, these routines generate system error ds| OCor eErr.

In the interest of speed, you invoke the Fet ch, St ash, and | ODone routines with jump
vectors, stored in the global variables JFet ch, JSt ash, and J| CDone, rather than
macros. You can use a jump vector by moving its address onto the stack and executing
an RTS instruction. An example is:

Jabeue a21n8Q -

MOVE.L JI ODone, - (SP)
RTS

The Fet ch and St ash routines do not return a result code; if an error occurs, the System
Error Handler is invoked.

DriverInstall

DESCRIPTION

You can use the Dri ver | nstal | function to create a device control entry and install it
in the unit table.

pascal OSErr Driverlnstall (Ptr drvrPtr, short refNum;

drvrPtr A pointer to the device driver.

ref Num The driver reference number.

The Dri ver | nst al | function allocates a device control entry (DCE) in the system heap
and installs a handle to this DCE in the unit table location specified by the r ef Num
parameter. You pass a pointer to the device driver in the dr vr Pt r parameter.

In addition, this function copies the r ef Numparameter to the dCt | Ref Numfield of the
DCE, sets the dRAMBased flag in the dCt | FI ags field, and clears all the other fields.

SPECIAL CONSIDERATIONS

The Dri ver | nst al | function does not load the driver resource into memory, copy the
flags from the driver header to the dCt | FI ags field, or open the driver. You can write
code to perform these tasks, or use the QpenDr i ver, QpenSl ot, or PBOpen functions
instead.

The Dri ver | nstal | function allocates memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the Dri ver | nst al | functionis _Drvr | nstal | (0xA03D).

Device Manager Reference 1-83

RESULT CODES

SEE ALSO

CHAPTER 1

Device Manager

You place a pointer to the device driver in register A0, and the driver reference number
in register DO. When _Dr vr | nst al | returns, register DO contains the result code.

Registers on entry
A0 Apointer to the device driver

DO The driver reference number

Registers on exit
DO Result code

noErr 0 No error
badUni t Err 21 Driver reference number does not match unit table

For information about the Dri ver | nst al | Reser veMemfunction, which installs a
driver as low as possible in the system heap, see the next section.

DriverInstallReserveMem

DESCRIPTION

1-84

You can use the Dri ver | nst al | Reser veMemfunction to create a device control entry
and install it in the unit table.

pascal OSErr Driverlnstall ReserveMen(Ptr drvrPtr, short refNun;

drvrPtr A pointer to the device driver.

ref Num The driver reference number.

The Dri ver | nst al | Reser veMemfunction is equivalent to the Dri ver| nstal |
function, except that it calls the Memory Manager Reser veMemfunction to compact
the heap before allocating memory for the device control entry (DCE).

After calling the Reser veMemfunction, the Dri ver | nst al | Reser veMemfunction
allocates a DCE in the system heap and installs a handle to this DCE in the unit table
location specified by the r ef Numparameter. You pass a pointer to the device driver
in the dr vr Pt r parameter.

In addition, this function copies the r ef Numparameter to the dCt | Ref Numfield of the
DCE, sets the dRAMBased flag in the dCt | Fl ags field, and clears all the other fields.

Device Manager Reference

CHAPTER 1

Device Manager

SPECIAL CONSIDERATIONS

The Dri ver | nst al | Reser veMemfunction does not load the driver resource into
memory, copy the flags from the driver header to the dCt | Fl ags field, or open the
driver. You can write code to perform these tasks, or use the OpenDr i ver, OpenSl| ot
or PBOpen functions instead.

The Dri ver | nst al | Reser veMemfunction allocates memory; you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the Dri ver | nst al | Reser veMemfunctionis _Drvr | nstal |
(0xA03D). You must set bit 10 of the trap word to signal the Device Manager to call the
Reser veMemfunction before allocating memory for the DCE.

You place a pointer to the device driver in register A0, and the driver reference number
in register DO. When _Dr vr | nst al | returns, register DO contains the result code.
Registers on entry

A0 Apointer to the device driver

DO The driver reference number

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

badUni t Err 21 Driver reference number does not match unit table
DriverRemove

DESCRIPTION

You can use the Dri ver Renpve function to remove a device driver’s device control
entry from the unit table and release the driver resource.

pascal OSErr DriverRemove(short refNunj;

ref Num The driver reference number.

The Dr i ver Renpve function removes a device driver’s device control entry from the
unit table and releases the driver resource. You specify the device driver using the
r ef Numparameter. You must close the device driver before calling Dri ver Renpve.

If the driver is closed, Dr i ver Renmpve calls the Memory Manager function
Di sposeHandl e to release the device control entry, then sets the corresponding handle

Device Manager Reference 1-85

Jabeue a21n8Q -

CHAPTER 1

Device Manager

in the unit table to ni | . If the driver’s dRAMBased flag is set, Dr i ver Renpve calls the
Resource Manager function Rel easeResour ce to release the driver resource.

SPECIAL CONSIDERATIONS

The Dr i ver Renpve function may move memory; you should not call it at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the Dri ver Renpbve function is _Dr vr Renpve (0xA03E).

You place the driver reference number in register D0. When _Dr vr Renpve returns,
register DO contains the result code.

Registers on entry

DO The driver reference number

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
dRemovErr -25 Attempt to remove an open driver
GetDCtIEntry
You can use the Get DCt | Ent r y function to obtain a handle to the device control entry
of a device driver.
pascal DCt| Handle GetDCtI Entry (short refNum;
ref Num The reference number of the driver.
DESCRIPTION
The Get DCt | Ent ry function returns a handle to the device control entry of the device
driver indicated by the r ef Numparameter.
SEE ALSO
For a description of the device control entry structure see page 1-56.
1-86 Device Manager Reference

IO0Done

CHAPTER 1

Device Manager

DESCRIPTION

You use the | ODone routine to notify the Device Manager that an I/O request has
completed.

The | ODone routine sets the i 0Resul t field of the parameter block with the value
returned by the driver in register DO. It then removes the current request from the

driver I/O queue and marks the driver inactive. If there are no pending requests, and the
dNeedLock bit of the dCt | Fl ags word is not set, | ODone unlocks the driver and its
device control entry. Finally, | ODone executes the completion routine, if any.

The section “Entering and Exiting From Driver Routines,” beginning on page 1-29,
explains when to use this routine.

ASSEMBLY-LANGUAGE INFORMATION

Registers on entry
Al Pointer to DCE
DO Result code

Jump vector
J1 ODone

SEE ALSO
For an example of how to call the | ODone routine from an assembly-language
dispatching routine, see Listing 1-8 on page 1-29.
Fetch
You can use the Fet ch routine to get the next character from the data buffer.
DESCRIPTION

The Fet ch routine gets the next character from the data buffer pointed to by the
i oBuf f er field of the parameter block of the pending request. It increments the
i 0Act Count field by 1.If the i oAct Count field equals the i oReqCount field,
this routine sets bit 15 of register D0. After receiving the last byte request, the
driver should jump to the | CDone routine.

Registers on entry

Al Pointer to the device control entry

Device Manager Reference 1-87

Jabeue a21n8Q -

Stash

CHAPTER 1

Device Manager

Registers on exit
DO Character fetched; bit 15 = 1 if this is the last character in the buffer

Jump vector
JFet ch

DESCRIPTION

You can use the St ash routine to store the next character from the data buffer.

The St ash routine places the character in register DO into the data buffer pointed to by
the i oBuf f er field of the parameter block of the pending request and increments the

i 0Act Count field by 1. If the i 0Act Count field equals the i oReqCount field, this
routine sets bit 15 of register D0. After stashing the last byte requested, the driver should
jump to the | ODone routine.

ASSEMBLY-LANGUAGE INFORMATION

1-88

Registers on entry
Al Pointer to DCE
DO Character to stash

Registers on exit
DO Bit 15 = 1 if this is the last character in the buffer

Jump vector
JSt ash

Device Manager Reference

CHAPTER 1

Device Manager

Resources

This section describes the driver resource, which you can use to store your device drivers
and desk accessories. If your device driver requires a user interface, you can create a
Chooser extension and store your driver in a device package resource. For more
information, see “Creating a Device Package” on page 1-45.

The Driver Resource

Listing 1-15 shows the Rez format of the ' DRVR' resource type.

Listing 1-15 ' DRVR' resource format

type 'DRVR {
bool ean = 0;
bool ean dont NeedLock, needLock; /* lock drvr in nenory */
bool ean dont NeedTi ne, needTi ne; /* for periodic action */
bool ean dont NeedGoodbye, needGoodbye; /* call before heap reinit */
bool ean noStatusEnabl e, statusEnable; /* responds to Status */

bool ean noCtI Enabl e, ctl Enable; /* responds to Control */
bool ean noWiteEnable, witeEnable; /* responds to Wite */
bool ean noReadEnabl e, readEnabl e; /* responds to Read */
byte = 0;

i nteger; /* driver delay */

unsi gned hex i nteger; /* DA event nmask */

i nteger; /* DA nenu */

unsi gned hex i nteger; /* offset to Open */
unsi gned hex i nteger; /* offset to Prine */
unsi gned hex i nteger; /* offset to Control */
unsi gned hex i nteger; /* offset to Status */
unsi gned hex i nteger; /* offset to Close */
pstring; /* driver nanme */

hex string; /* driver code */

The driver resource begins with seven flags that specify certain characteristics of the
driver.

You need to set the dNeedLock flag if your driver’s code should be locked in memory.

You set the dNeedTi e flag of the dr vr FI ags word if your device driver needs to
perform some action periodically.

You need to set the dNeedGoodbye flag if you want your application to receive a
goodbye control request before the heap is reinitialized.

Device Manager Reference 1-89

Jabeue a21n8Q -

CHAPTER 1

Device Manager

The last four flags indicate which Device Manager requests the driver’s routines can
respond to.

The next element of the resource specifies the time between periodic tasks.

The next two elements provide an event mask and menu ID for desk accessories. The
section “Writing a Desk Accessory” on page 1-49 describes these fields.

Offsets to the driver routines follow the desk accessory fields. See “Entering and Exiting
From Driver Routines” on page 1-29 for more information about the routine offsets.

The next element of the driver resource is the driver name. You can use uppercase and
lowercase letters when naming your driver, but the first character should be a period—
. MyDri ver, for example.

Your driver routines, which follow the driver name, must be aligned on a word
boundary.

The section “Creating a Driver Resource” on page 1-24 discusses this structure in detail.

1-90 Device Manager Reference

CHAPTER 1

Device Manager

Summary of the Device Manager

C Summary

Constants

enum {
/* request codes passed by the Device Manager to a driver’s
prime routine */

aRdCnd = 2, /* read operation requested */
aw Cnd =3 /* write operation requested */
1
enum {
/* flags used in the driver header and device control entry */
dNeedLockMask = 0x4000, /* set if driver nmust be |locked in nmenory as
soon as it is opened */
dNeedTi neMask = 0x2000, /* set if driver needs tine for performng
peri odi c tasks */
dNeedGoodByeMask = 0x1000, /* set if driver needs to be called before the
application heap is initialized */
dSt at Enabl eMask = 0x0800, /* set if driver responds to status requests */
dC | Enabl eMask = 0x0400, /* set if driver responds to control requests */
dwWit Enabl eMask = 0x0200, /* set if driver responds to wite requests */
dReadEnabl eMask = 0x0100, /* set if driver responds to read requests */
/* run-tinme flags used in the device control entry */
drvr Acti veMask = 0x0080, /* driver is currently processing a request */
dRAMBasedMask = 0x0040, /* dCtIDriver is a handle (1) or pointer (0) */
dOpenedMask = 0x0020 /* driver is open */
1
enum {
/* access perm ssions */
fsCur Perm = 0, /* retain current permssion */
f sRdPer m = 1, /* allow reads only */
f sW Perm = 2, /* allow wites only */
f sSRAW Per m = 3, /* allow reads and wites */

Summary of the Device Manager 1-91

Jabeue a21n8Q -

CHAPTER 1

Device Manager

/* positioning nodes */

f sAt Mar k = 0, /*
fsFronttart =1, /*
f sFr omivar k = 3, /*

/* read nodes */

rdverify = 64 /*

b

enum {
/* control codes */
goodbye = -1, /*
kil | Code = 1, /*
accEvent = 64, /*
accRun = 65, /*
accCur sor = 66, /*
accMenu = 67, /*
accUndo = 68, /*
accCut = 70, /*
accCopy = 71, /*
accPaste =72, /*
accd ear =73 /*

b

enum {
/* Chooser nessages */
chooser | nit Msg = 11, /*
newSel Msg = 12, /*
fillListMg = 13, /*
get Sel Msg = 14, /*
sel ect Msg = 15, /*
desel ect Msg = 16, /*
t er m nat eMsg = 17, /*
butt onMsg = 19 /*

b

Data Types

at current position */
of fset from begi nning */
of fset fromcurrent position */

read-verify node */

heap being reinitialized */
KilllO requested */

handl e an event */

time for periodic action */
change cursor shape */
handl e nenu item */

handl e undo command */
handl e cut conmand */
handl e copy conmmand */
handl e paste conmand */
handl e cl ear conmand */

the user selected this device package */
t he user nade new device sel ections */
fill the device list with choices */
mark one or nore choices as selected */
the user nade a selection */

the user canceled a selection */

al | ows devi ce package to clean up */

the user selected a button */

t ypedef uni on ParanBl ockRec ({

| OPar am i oPar am

Fi | ePar am fileParam
Vol unePar am vol unmePar am
Cntr | Par am cntrl Par am

1-92 Summary of the Device Manager

CHAPTER 1

Device Manager

Sl ot DevParam sl ot DevPar am
Mul ti DevParam nul ti DevPar am
} Par anBl ockRec;
t ypedef ParanBl ockRec *Par nBl kPt r

typedef struct | OParam {

CEl enPtr gLi nk; /*
short gType; /*
short i oTr ap; /*
Ptr i oCndAddr ; /*
ProcPtr i oCompl etion; /*
CSErr i oResul t; /*
StringPtr i oNamePtr; /*
short i oVRef Num /*
short i oRef Num /*
char i oVer sNum /*
char i oPer nssn; /*
Ptr i oM sc; /*
Ptr i oBuf fer; /*
| ong i oReqCount ; /*
| ong i 0Act Count ; /*
short i oPosMbde; /*
| ong i oOPosOf f set ; [*
} 1 OParam

t ypedef struct Cntrl Param {

QEl enPtr gLi nk; /*
short gType; /*
short i oTr ap; /*
Ptr i oCndAddr ; /*
ProcPtr i oCompl etion; [*
OSErr i oResul t; /*
StringPtr i oNamePtr; /*
short i oVRef Num /*
short i 0CRef Num /*
short csCode; /*
short csParanf 11]; /*

} Cntrl Param

t ypedef struct AuxDCE {

Ptr da | Driver; /*
short d& | Fl ags; /*
QHdr dCt | QHdr; /*
| ong dC | Position; [/*

Summary of the Device Manager

next queue entry */

gueue type */

routine trap */

routi ne address */

conpl etion routine address */
result code */

pointer to driver nane */

vol une reference or drive nunber */
driver reference nunber */

not used by the Device Manager */
read/ write permssion */

not used by the Device Manager */
pointer to data buffer */

request ed number of bytes */

actual nunber of bytes conpleted */
posi tioni ng node */

posi tioning offset */

next queue entry */

gueue type */

routine trap */

routi ne address */

conpl etion routine address */
result code */

pointer to driver nane */

vol une reference or drive nunmber */
driver reference nunber */

type of control or status request */
control or status information */

poi nter or handle to driver */
flags */

I/ O queue header */

current RFWbyte position */

1-93

Jabeue a21n8Q -

Hand
shor
| ong
G af
shor
shor
shor
char
char
| ong
Ptr

char
char

CHAPTER 1

Device Manager

l e
t

Ptr
t
t
t

} AuxDCE;
t ypedef AuxDCE * AuxDCEPtr,

Functions

dCt | St or age;

dCt | Ref Num

dc | Cur Ti cks;

dC | W ndow,
dCt | Del ay;
dCt | EMask;
dc | Menu;
dc 1 Sl ot ;
dctl Slotld;

dCt | DevBase;

dct | Owner;
dCt | Ext Dev;
fill Byte;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

handl e to private storage */
driver reference nunber */
used internally */

pointer to driver’s w ndow */
ti cks between periodic actions */
desk accessory event mask */
desk accessory nmenu ID */
slot */

sResource directory ID */
sl ot device base address */
reserved; nust be 0 */
external device ID */
reserved */

** Aux DCEHandl e;

Opening and Closing Device Drivers

pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal

OSEr r
OSEr r
OSEr r
OSEr r
short
OSEr r
OSEr r
OSEr r
voi d

QpenDri ver
PBOpen
PBOpenSync
Opensl ot
OpenDeskAcc
G oseDri ver
PBCl ose

PBCl oseSync
Cl oseDeskAcc

(Const St r255Par am nane, short
(ParnBl kPt r paranBl ock,
(Par nBl kPt r paranBl ock) ;
(ParmBl kPt r paranBl ock, Bool ean async);
(Const St r255Par am deskAccNane) ;

(short refNun;

(ParmBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;

(short refNun;

*drvr Ref Num ;
Bool ean async);

Communicating With Device Drivers

pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal

1-94

OSEr r
OSEr r
OSEr r
OSEr r
OSEr r
OSEr r
OSEr r
OSEr r

FSRead
PBRead
PBReadSync
PBReadAsync
FSWite
PBWite
PBWiteSync
PBW it eAsync

(short void *buffPtr);
(ParnBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;

(ParnBl kPt r paranBl ock) ;

(short
(ParnBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;

(ParnBl kPt r paranBl ock) ;

ref Num | ong *count,

ref Num | ong *count, const void *buffPtr);

Summary of the Device Manager

CHAPTER

1

Device Manager

Controlling and Monitoring Device Drivers

pascal OSErr Control

pascal OSErr PBContr ol
pascal OSErr PBControl Sync
pascal OSErr PBControl Async

pascal OSErr Status
pascal OSErr PBSt at us

pascal OSErr PBStatusSync
pascal OSErr PBStat usAsync

pascal OSErr KilllO

pascal OSErr PBKilllO
pascal OSErr PBKill | OSync
pascal OSErr PBKill | OAsync

Driver Support Functions

pascal OSErr Driverlnstall

(short ref Num short csCode, const void
*csParanPtr) ;

(ParnBl kPt r paranBl ock, Bool ean async);
(Par nBl kPt r par anBl ock) ;

(ParmBl kPt r paranBl ock) ;

(short ref Num short csCode, void *csParanPtr);
(ParnBl kPt r paranBl ock, Bool ean async);
(ParmBl kPt r paranBl ock) ;

(ParnBl kPt r paranBl ock) ;

(short refNun;

(ParmBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;

(ParnBl kPt r paranBl ock) ;

(Ptr drvrPtr, short refNunj;

pascal OSErr Driverlnstall ReserveMem (Ptr drvrPtr, short refNum;

pascal OSErr Driver Renove
pascal DCt| Handle GetDCtI Entry (short refNum;

Pascal Summary

(short refNum;

Constants

CONST
{request codes passed by the Device Manager to a driver’s prine routine}
aRdCnd = 2; {read operation requested}
aw Cnd = 3; {write operation requested}

{flags used in the driver

dNeedLockMask
dNeedTi nreMask
dNeedGoodByeMask

dSt at Enabl eMask

$4000;

$2000;

$1000;

$0800;

header and devi ce control entry}
{set if driver nmust be |locked in nenory as }
{ soon as it is opened}
{set if driver needs tine for perfornming }
{ periodic tasks}
{set if driver needs to be called before }
{ the application heap is initialized}
{set if driver responds to status requests}

Summary of the Device Manager 1-95

Jabeue a21n8Q -

CHAPTER 1

Device Manager

dCt | Enabl eMask
dW i t Enabl eMask
dReadEnabl eMask

$0400;
$0200;
$0100;

{set if driver responds to control requests}
{set if driver responds to wite requests}
{set if driver responds to read requests}

{run-time flags used in the device control entry}

drvrActi veMask =
dRAMBasedMask
dOpenedMask

{access perm ssi ons}
fsCur Perm =
f sRdPerm =
fsW Perm =
f sSRAW Per m =

{posi tioning nodes}
f sAt Mar k =
fsFronttart =
f sFromvar k =

{read nodes}
rdverify =

{control codes}

goodbye =
kill Code =
accEvent =
accRun =
accCur sor =
acchMenu =
accUndo =
accCut =
accCopy =
accPaste =
accd ear =

{Chooser nessages}

chooser 1 ni t Msg =
newSel Msg =
fillListMg =
get Sel Msg =
sel ect Msg =

1-96 Summary of the Device Manager

$0080;
$0040;
$0020;

WNRP©2

11,
12;
13;
14,
15;

{driver is currently processing a request}
{dCtIDriver is a handle (1) or pointer (0)}
{driver is open}

{retain current perm ssion}
{al |l ow reads only}

{allow wites only}

{all ow reads and writes}

{at current position}
{of fset from begi nni ng}
{offset fromcurrent position}

{read-verify node}

{heap being reinitialized}
{Kill'l O request ed}

{handl e an event}

{time for periodic action}
{change cursor shape}
{handl e nenu iten}

{handl e undo comrand}
{handl e cut conmand}
{handl e copy conmmand}
{handl e paste comand}
{handl e cl ear comuand}

{the user selected this device package}
{the user nmde new device sel ections}
{fill the device list with choices}
{mark one or nore choi ces as sel ected}
{the user made a sel ection}

CHAPTER 1

Device Manager

desel ect Msg = 16; {the user cancel ed a sel ection}
term nat eMsg = 17; {al | ows devi ce package to cl ean up}
butt onMsg = 19; {the user selected a button}

Data Types

TYPE ParanBl kType = (1 OParam Fil eParam Vol umeParam Cntrl Param
Sl ot DevParam Ml ti DevParam ;

Par anBl ockRec =

RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCrdAddr : Ptr; {routine address}
i oConpl etion: ProcPtr; {conpl etion routine address}
i oResul t: OSErr; {result code}
i oNamePtr: StringPtr; {pointer to driver nane}
i oVRef Num I nt eger; {vol ume reference or drive nunber}
CASE Par anBl kType OF
| OPar am
(i oRef Num I nt eger; {driver reference nunber}
i oVer sNum Si gnedByte; {not used}
i oPer nesn: Si gnedByte; {read/wite perm ssion}
i oM sc: Ptr; {not used}
i oBuf fer: Ptr; {pointer to data buffer}
i oReqCount : Longl nt; {request ed nunmber of bytes}
i 0Act Count : Longl nt; {actual nunber of bytes}
i oPosMbde: I nt eger; {posi tioni ng nmode}
i oPosOF f set : Longlnt); {posi tioning offset}
Cntrl Param
(1 oCRef Num I nt eger; {driver reference nunber}
csCode: I nt eger; {type of control or status request}
csParam ARRAY[0..10] OF Integer); {control or status info}
END;
Par nBl kPt r = ~Par anBl ockRec;
AuxDCE =
RECORD
dCt I Driver: Ptr; {pointer or handle to driver}
dC | Fl ags: I nt eger; {flags}
dc | QHdr : QHdr ; {driver I/O queue header}
d&t I Position: Longlnt; {byte position}

Summary of the Device Manager 1-97

Jabeue a21n8Q -

CHAPTER 1

Device Manager

dCt | St or age: Handl e;
dCt | Ref Num I nt eger;
d& | CurTicks: Longlnt;
dC | W ndow. Gafbtr;
dCt | Del ay: I nt eger;
dCt | EMask: I nt eger;
dc | Menu: I nt eger;
dcl Sl ot: Byt e;
dc& 1 Slotld: Byt e;
dCt | DevBase: Longl nt;
dCt | Omner: Ptr;
dCt | Ext Dev: Byt e;
fillByte: Byt e;

END;

Aux DCEPt r = "AuxDCE;

AuxDCEHandl e = "AuxDCEPt r

Routines

{handl e to private storage}
{driver reference nunber}

{used internally}

{pointer to driver’s w ndow}
{ticks between periodic actions}
{event mask for desk accessori es}
{menu I D for desk accessori es}
{sl ot}

{sResource directory |ID}

{sl ot device base address}
{reserved; mnust be 0}

{external device |ID}

{reserved}

Opening and Closing Device Drivers

FUNCTI ON OpenDri ver (nane: Str255; VAR refNum Integer): OSErr;
FUNCTI ON PBOpen (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBOpenSync (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON OpenSl ot (paranBl ock: ParnmBl kPtr; async: Bool ean): OSErr;
FUNCTI ON OpenDeskAcc (deskAccNane: Str255): | NTECER;
FUNCTI ON Cl oseDri ver (refNum Integer): OSErr;
FUNCTI ON PBC ose (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBC oseSync (paranBl ock: ParnBl kPtr): OSErr;
PROCEDURE Cl oseDeskAcc (ref Num | NTEGER) ;
Communicating With Device Drivers
FUNCTI ON FSRead (refNum Integer; VAR count: Longlnt;

buffPtr: Ptr): CSErr;
FUNCTI ON PBRead (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBReadSync (paranBl ock: ParnmBl kPtr): OSErr;
FUNCTI ON PBReadAsync (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON FSWite (refNum Integer: VAR count: Longlnt;

buffPtr: Ptr): OCSErr;
FUNCTI ON PBWite (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBW it eSync (paranmBl ock: ParnBl kPtr): OSErr;

1-98 Summary of the Device Manager

CHAPTER 1

Device Manager

FUNCTI ON PBW it eAsync (paranmBl ock: ParnBl kPtr): OSErr;

Controlling and Monitoring Device Drivers

FUNCTI ON Cont r ol (refNum |Integer; csCode: Integer;
csParanPtr: Ptr): OSErr;
FUNCTI ON PBCont r ol (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBCont r ol Sync (paranBl ock: ParnmBl kPtr): OSErr;
FUNCTI ON PBCont r ol Async (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON St at us (ref Num |Integer; csCode: Integer;
csParanPtr: Ptr): OSErr;
FUNCTI ON PBSt at us (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBSt at usSync (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON PBSt at usAsync (paranBl ock: ParnBl kPtr): OSErr;
FUNCTION Ki I I'1 O (ref Num Integer): CSErr;
FUNCTION PBKi I 11 O (paranmBl ock: ParnmBl kPtr; async: Bool ean): OSErr;
FUNCTI ON PBKi | I | GSync (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON PBKi I | | OAsync (paranBl ock: ParnBl kPtr): OSErr;

Driver Support Routines

FUNCTI ON Dri verlnstall (drvrPtr: Ptr; refNum Integer): OSErr;
FUNCTI ON Driverlnstall ReserveMem (drvrPtr: Ptr; refNum Integer): OSErr;
FUNCTI ON Dri ver Renmove (refNum Integer): OSErr;

FUNCTI ON GetDCt | Entry (refNum Integer): DCtlHandl e;

Assembly-Language Summary

Data Structures

Device Manager Parameter Block Header

0 gLi nk long used internally by the Device Manager
4 gType word used internally by the Device Manager
6 i oTrap word used internally by the Device Manager
8 i oCndAddr long used internally by the Device Manager

12 i oConpl etion long completion routine

16 i oResul t word result code

18 i oNamePt r long driver name

22 i oVRef Num word drive number

Summary of the Device Manager 1-99

Jabeue a21n8Q -

CHAPTER 1

Device Manager

I/O Parameter Structure

24 i oRef Num word driver reference number
26 i oVer sNum byte not used

27 i oPermesn byte read / write permission

28 i oM sc long not used

32 i oBuffer long pointer to data buffer

36 i oRegqCount long requested number of bytes
40 i 0Act Count long actual number of bytes

44 i oPosMbde word positioning mode

46 i oPosOf f set long positioning offset

Control Parameter Structure

24 i oCRef Num word driver reference number
26 csCode word type of control or status request
28 csPar am 22 bytes control or status information

Trap Macros

Trap Macro Names

C and Pascal

name Trap macro name
PBOpen _Open

Opensl ot _Open

PBC ose _C ose
PBRead _Read
PBWite _Wite
PBCont r ol _Control
PBSt at us _Status
PBKilllO _KilllO
Driverlnstall _Drvrinstall
Driver Renove _DrvrRenmove

Routines Requiring Jump Vectors

Routine Jump vector
Fet ch JFetch
St ash JSt ash

| CDone JI ODone

1-100 Summary of the Device Manager

CHAPTER 1

Device Manager

Result Codes

noErr 0
control Err -17
stat uskrr -18
readErr -19
witErr =20
badUni t Err -21
uni t Enpt yErr -22
openErr -23
cl osErr -24
dRemovErr -25
dlnstErr -26
abort Err 27
not QpenkErr -28
i oErr -36

No error

Driver does not respond to this control request

Driver does not respond to this status request

Driver does not respond to read requests

Driver does not respond to write requests

Driver reference number does not match unit table

Driver reference number specifies a ni | handle in unit table
Requested read / write permission does not match driver’s open permission
Driver unable to complete close request

Attempt to remove an open driver

Driver resource not found

Request aborted by Ki I 1 1 O

Driver not open

Data does not match in read-verify mode

Summary of the Device Manager 1-101

Jabeue a21n8Q -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	Device Manager
	Introduction to Devices and Drivers
	About the Device Manager
	The Device Control Entry
	The Unit Table
	The Driver I/O Queue
	Driver Routines
	Driver Resources

	Using the Device Manager
	Opening and Closing Device Drivers
	Communicating With Device Drivers
	Controlling and Monitoring Device Drivers

	Writing a Device Driver
	Creating a Driver Resource
	Responding to the Device Manager
	Entering and Exiting From Driver Routines
	Writing Open and Close Routines
	Writing a Prime Routine
	Writing Control and Status Routines

	Handling Asynchronous I/O
	Installing a Device Driver

	Writing a Chooser-Compatible Device Driver
	How the Chooser Works
	Creating a Chooser Extension File
	Creating a Device Package
	Responding to the Chooser
	Allocating Private Storage

	Writing a Desk Accessory
	How Desk Accessories Work
	Creating a Driver Resource for a Desk Accessory
	Opening and Closing a Desk Accessory
	Responding to Events

	Device Manager Reference
	Data Structures
	Device Manager Parameter Block
	Device Control Entry

	Device Manager Functions
	Opening and Closing Device Drivers
	Communicating With Device Drivers
	Controlling and Monitoring Device Drivers
	Writing and Installing Device Drivers

	Resources
	The Driver Resource

	Summary of the Device Manager
	C Summary
	Constants
	Data Types
	Functions

	Pascal Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

