CHAPTER 2

Slot Manager

This chapter describes how your application or device driver can use the Slot Manager to
identify expansion cards and communicate with the firmware on a card.

You need to use the Slot Manager only if you are writing an application or a device
driver that must address an expansion card directly. For example, you need to use the
Slot Manager if you are writing a driver for a video card, but not if you only want to
display information on a monitor for which a device driver already exists.

The Slot Manager provides functions to help you search through the data structures that
expansion cards use to organize the information in their firmware. The meaning of the
information in the data structures varies from card to card; you need to know the
specifics of a card in order to interpret its data structures. To interpret these data
structures, you need to know the information in Designing Cards and Drivers for the
Macintosh Family, third edition, as well as information specific to the expansion card
you're using.

Jabeue 10|1S -

This chapter begins with a brief introduction to Apple’s implementation of the NuBus
expansion interface . The NuBus interface provides a 32-bit-wide synchronous, multislot
expansion bus for adding expansion cards to Macintosh computers. This introduction
explains the firmware data structures of NuBus expansion cards, but does not provide
much detail about the information these data structures contain. If you are designing an
expansion card, you must read Designing Cards and Drivers for the Macintosh Family, third
edition. If you are writing a driver for a device on a card, you should also read the
chapter “Device Manager” in this book.

After introducing the NuBus architecture and expansion card design, this chapter
discusses how you can

= enable and disable NuBus cards
= delete, restore, enable, disable, and find information in an expansion card’s firmware

= install and remove slot interrupt handlers

Introduction to Slots and Cards

The Macintosh Operating System provides a standardized interface to expansion cards
through the Slot Manager. The Slot Manager supports two types of expansion cards:
NuBus and processor-direct slot (PDS). Most Macintosh computers include one or both
of these expansion systems. Although the discussion and examples in this chapter use
NuBus, the information also applies to PDS expansion cards.

Processor-direct slot expansion cards connect directly to the processor bus, giving them
direct access to the microprocessor and therefore a speed advantage over NuBus cards.
However, because the PDS expansion interface is an extension of the processor bus, the
configuration of the slot depends on which microprocessor is used by the computer.
Refer to Designing Cards and Drivers for the Macintosh Family, third edition, for
information specific to PDS expansion cards.

Introduction to Slots and Cards 2-3

CHAPTER 2

Slot Manager

Macintosh computers that include the NuBus expansion interface contain one or more
identical NuBus slots. Each slot is identified by slot a number in the range $1 through $E.
(Slot $0 corresponds to the main logic board, and slot $F is reserved for NuBus address
translation.)

Note

For convenience, this Chapter refers to a NuBus configuration with six
slots numbered $9 through $E. Keep in mind that Macintosh computers
may have more or fewer slots. Refer to the appropriate Macintosh
Developer Note or Guide to the Macintosh Family Hardware, second
edition, for information about specific models. O

In Macintosh computers, the processor bus (which connects the microprocessor to RAM,
ROM, and the FPU) and the NuBus (which connects the NuBus slots) are connected by a
bus interface , as shown in Figure 2-1.

Figure 2-1 Simplified processor-bus and NuBus architecture
NuBus slots
A C E
FPU RAM ROM
3] [ﬁ ﬁ Bus
cpPU > interface
Processor bus NuBus
Translates between
processor bus
and NuBus

Both the processor bus and the NuBus are 4 bytes (32 bits) wide. The bus interface
transfers data between the buses in byte lanes. A byte lane is any of the 4 bytes that
make up the 32-bit bus. Because the processor bus and the NuBus interpret the
significance of bytes within words differently, the bus interface must perform byte-lane
swapping between the two buses.

The bus interface also performs some address translation between the two buses. It maps
certain address ranges on each bus to different address ranges on the other bus.
Designing Cards and Drivers for the Macintosh Family, third edition, discusses byte lanes
and address translation in more detail.

The next section,“Slot Address Allocations,” discusses the address ranges assigned by
the Macintosh architecture to each NuBus slot.

The section “Firmware” on page 2-7 introduces the data structures that cards use to
organize information in their firmware.

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

Slot Address Allocations

The Macintosh architecture assigns certain address ranges to each slot. The
microprocessor communicates with an expansion card in a particular slot by reading

or writing to memory in the slot’s address range. Expansion cards can also communicate
with each other in this manner.

The NuBus architecture supports 32-bit addressing, providing 4 gigabytes of address
space. All Macintosh computers that use Motorola 68030, 68040, or PowerPC processors
support 32-bit addressing under System 7. Macintosh computers that use Motorola
68000 or 68020 processors, and those running System 6, use 24-bit addressing. This
section describes address space allocation in both the 32-bit and 24-bit modes.

In 32-bit mode, the Macintosh architecture assigns two address ranges to each NuBus
slot: a 256-megabyte super slot space and a 16-megabyte standard slot space.

Jabeue 10|1S -

The 4 gigabytes of 32-bit address space contain 16 regions of 256 megabytes apiece. Each
region constitutes the super slot space for one possible slot ID. Each super slot space
spans an address range of $s000 0000 through $sFFF FFFF, where s is a hexadecimal digit
$1 through $E, corresponding to the slot ID. For example, the address range $9000 0000
through $9FFF FFFF constitutes the super slot space for slot $9.

The standard slot spaces are 16 megabytes apiece and have address ranges of the form
$Fs00 0000 through $FsFF FFFE, where s is the slot ID. The standard slot space for slot $9,
for example, is $F900 0000 through $F9FF FFFE. Figure 2-2 shows the super slot and
standard slot subdivisions of the 32-bit address space.

In 24-bit mode, software can address only a fraction of each card’s allocated address
range. In this mode, the Operating System assigns each slot a 1-megabyte minor slot
space. The bus interface translates 24-bit addresses on the processor bus with the form
$sx xxxx (where s is a slot ID and x is any hexadecimal digit) into 32-bit NuBus addresses
of the form $FsOx xxxx, which is the first megabyte of the slot’s standard slot space.

For example, 24-bit addresses in the range $90 0000 through $9F FFFF constitute the
minor slot space corresponding to slot $9. The hardware translates these addresses into
the NuBus address range $F900 0000 through $F90F FFFF.

Introduction to Slots and Cards 2-5

CHAPTER 2

Slot Manager

Figure 2-2 The NuBus 32-bit address space
Standard slot space
$FFFF FFFF
$FF00 0000
$E $FE00 0000
$D $FD00 0000
$C $FC00 0000
$B $FBOO 0000
Super slot space) A $FA00 0000
$FFFF FFFF : $9 $F900 0000
$FO00 0000 = . $8 $F800 0000
$E000 0000 © , $7 $F700 0000
$D000 0000 b= $6 $F600 0000
$C000 0000 o : $5 $F500 0000
$B00O 0000 - $4 $F400 0000
$A000 0000 - . $3 $F300 0000
$9000 0000 = $2 $F200 0000
$8000 0000 = . $1 $F100 0000
$7000 0000 P : $FO00 0000
$6000 0000
$5000 0000 5
$4000 0000 $4
$3000 0000 $3
$2000 0000 $2
$1000 0000 $1
$0000 0000

Table 2-1 shows the address allocations for each slot ID.

2-6

Table 2-1 Slot address allocations by slot ID
24-bit minor 32-bit minor Standard slot Super slot

Slot ID slot space (1 MB) slot space (1 MB) space (16 MB) space (256 MB)
$1 $Ix xxxX $F10x xxxx SF1xx xxxx FT XXX XXXX

$2 $2x XxXXX SF20x xxxx SF2xx xxXxXX $2XXX XXXX

$3 $3x XxXXX SF30x xxxx SF3xx xxxx $3XXX XXXX

$4 $4x xxxXX SF40x xxxx SF4xx xxxx BAXXX XXXX

$5 $5X XxXXX SF50x xxxx SF5xx XXXX FEXXX XXXX

$6 $6X XXXX $F60x xxxx SF6XX XXXX FOEXXX XXXX

$7 $7x XxXXX SF70x xxxx SF7xx XXXX B7XXX XXXX

$8 $8X XxxXX SF80x xxxx FF8xx xxxx FEXXX XXXX

continued

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

Table 2-1 Slot address allocations by slot ID (continued)

24-bit minor 32-bit minor Standard slot Super slot
Slot ID slot space (1 MB) slot space (1 MB) space (16 MB) space (256 MB)
$9 $9x xxxx $FI0x xxxx $FIxx xxxx $Ixxx xxxx
$A $AX xxxx $FAOxX xxxx $FAXX xxxx $AXXX XXXX
$B $Bx xxxx $FBOx xxxx $FBxx xxxx $BxxX XXXX
$C $Cx xxxx $FCOx xxxx FFCxx xxxx FCxxx xxxx
$D $Dx xxxx $FDOx xxxx $FDxx xxxx $Dxxx XxXxX
$E $Ex xxxx $FEOx xxxx $FExx xxxx BFExxx xxxx
Firmware

The firmware of a NuBus expansion card contains information that identifies the card
and its functions. Your application uses the Slot Manager to communicate with this
firmware. This firmware, called the declaration ROM, may also include other
information, such as initialization code or code for drivers that communicate with
devices on the card. The sole purpose of many Slot Manager routines is to provide access
to the information in the declaration ROM.

This section discusses the data structures used to store information in the declaration
ROM. You'll need to understand these structures in order to use the Slot Manager
routines. To create firmware for an expansion card, you'll need to read Designing Cards
and Drivers for the Macintosh Family, third edition.

The declaration ROM includes these elements:

» The sResources . An sResource is a data structure in the firmware of an expansion
card’s declaration ROM that defines a function or capability of the card. An sResource
typically contains information about a single function or capability, although some
sResources may contain other data—for example, device drivers, icons, fonts, code,
or vendor-specific information.

s The sResource directory. The sResource directory is a special sResource that contains
offsets to all of the other sResources in the declaration ROM.

s The format block. The format block is a data structure that allows the Slot Manager to
find the declaration ROM and to validate it. It contains some identification
information and an offset to the sResource directory.

The next few sections discuss these data structures in more detail.

The sResource

An sResource consists of a list of 4-byte entries. The first byte of each entry is an ID field
that identifies the type of data contained in the entry. The next 3 bytes contain either data
for the sResource or an offset to additional data such as icon definitions, code, or device
drivers relating to the sResource.

Introduction to Slots and Cards 2-7

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Note

An sResource is sometimes referred to as a slot resource. Note, however,
that an sResource is a data structure in the firmware of a NuBus
expansion card and not the type of Macintosh resource associated
with the Resource Manager (which is described in Inside Macintosh:
More Macintosh Toolbox). O

The last entry in an sResource must contain an end-of-list marker—a 4-byte series with
the value $FF 00 00 00. Figure 2-3 shows the format of a typical sResource.

2-8

Figure 2-3 The structure of a typical sResource
sResource Bytes

—_— SRsrcType ID (value = 1) 1

SRsr cType offset 3

ID fields ———— sRsr cNane ID (value = 2) 1
sRsr cNane offset 3 ————— Offset fields

L Other sResource ID 1

Other sResource offset 3

End-of-list marker
(value = $FF00 0000)

The ID field of each sResource entry indicates the type of information in the offset field
of the entry. Apple reserves the range 0 through 127 for common sResource IDs.
Designing Cards and Drivers for the Macintosh Family, third edition, includes a complete list
of the Apple-defined sResource IDs and their meanings.

The offset field of each entry can contain a byte or word of data, or an offset to a larger
block of data. This field takes one of three possible forms:

= two $00 bytes followed by an 8-bit byte of data
= asingle $00 byte followed by a 16-bit word of data

» asigned 24-bit offset to a larger data structure; the offset is relative to the address of
the preceding ID field

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

Table 2-2 lists the kinds of large data types commonly used in sResources.

Table 2-2 Large data types used in sResources

Data type Description

Long 32 bits, signed or unsigned

Poi nt er 32 bits, signed or unsigned

cString One-dimensional array of bytes, ending with 0
sBl ock A sized block of data (see Figure 2-4)

sExecBl ock A sized block of code (see Figure 2-4)

The sBl ock and sExecBI ock data structures begin with a si ze field, which contains

the physical size of the block (including the si ze field). In the sBl ock structure, the

si ze field is followed by data. The sExecBI ock structure includes additional fields and
a code block. Figure 2-4 shows these structures.

Figure 2-4 The format of the sBl ock and sExecBl ock data structures
sBl ock Bytes sExecBl ock Bytes
Physical block size 4 Physical block size 4
Revision level 1
Data Variable CPU ID 1
Reserved 2
Code offset 4

{ Code

{ Variable

Type and Name Entries

As shown in Figure 2-3, the Slot Manager requires that each sResource contain an

sRsr cType entry, which identifies the sResource type, and an sRsr cNane entry, which
provides the sResource name.

The sRsr cType entry contains an ID value of 1 and an offset to an SRsr c Type entry.

Figure 2-5 shows the format of an sRsr c Type entry.

Introduction to Slots and Cards

2-9

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Figure 2-5 The sRsr cType entry format

2-10

SRsrcType Bytes
Cat egory 2
cType 2
Dr SW 2
Dr HW 2

The fields of the sRsr c Type entry are as follows:

Field Description

Cat egory The most general classification of card functions. Examples of categories
are cat Di spl ay and cat Net wor k.

cType The subclass of the category. For example, within the cat Di spl ay
category there is a t ypeVi deo subcategory; within the cat Net wor k
category, there is a t ypeEt her Net subcategory.

Dr SW The driver software interface to the card. (This provides the calling
interface for applications and system software.) For example, under the
cat Di spl ay category and the t ypeVi deo subcategory, there is a
dr SwAppl e software interface that indicates the Apple-defined interface
to work with QuickDraw using Macintosh Operating System frame
buffers.

Dr HW The identification of the specific hardware device associated with the
driver software interface. Generally, only the driver interacts with
the hardware specified here.

Every card has a unique sRsr cType entry that must be assigned by Apple Computer,
Inc. If you are developing a card, refer to Designing Cards and Drivers for the Macintosh
Family, third edition, for information on obtaining an SRsr cType entry.

The sRsr cNane entry in an sResource contains an ID value of 2 and an offset to a
cStri ng data structure containing the sResource name. By convention, the sRsr cNane
field is derived by stripping the prefixes from the SRsr cType values and separating
the fields by underscores. For example, the sRsr cNane field for an sResource whose
sRsr cType values are cat Di spl ay, t ypeVi deo, Dr SwAppl e, and Dr HWTFB becomes
' Di spl ay_Vi deo_Appl e TFB'.

Designing Cards and Drivers for the Macintosh Family, third edition, provides information
about these and other sResource entry types.

Introduction to Slots and Cards

CHAPTER 2

Slot Manager

The Board sResource and Functional sResources

Every card must have a single board sResource that contains information about the card
as a whole. An sResource relating to a specific function is called a functional sResource ,
and a card may have as many of them as necessary. For example, a video card may have
separate functional sResources for every pixel depth it supports. (See Figure 2-8 on

page 2-14 for an example of a functional sResources for a video card, and see Designing
Cards and Drivers for the Macintosh Family, third edition, for additional examples that
include code listings.)

The entries in the board sResource provide the Slot Manager with a card’s identification
number, vendor information, board flags, and initialization code. Like all sResources, the
board sResource must include an SRsr cType entry and an sRsr cNane entry. The board
sRsr cType entry must contain the constants Cat Boar d ($0001), TypBoar d ($0000),

Dr SVBoar d ($0000), and Dr HVBoar d ($0000). The sRsr cNane entry for the board
sResource name does not follow the same convention as other sResources: the

sRsr cNane entry for the board sResource contains the name of the entire card (for
example, ' Maci ntosh Di splay Card').

The board sResource must also contain a Boar dl d entry, a word that contains the card
design identification number assigned by Apple Computer, Inc. Designing Cards and
Drivers for the Macintosh Family, third edition, describes other Apple-defined entries
specifically for board sResources.

Figure 2-6 shows a sample board sResource. It shows an SRsr cType entry and an
sRsr cNane entry and also includes three entry types, Boar dI D, PRAM ni t Dat a,
and Pri maryl ni t, which are discussed in Designing Cards and Drivers for the
Macintosh Family, third edition.

Introduction to Slots and Cards 2-11

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Figure 2-6 A sample board sResource
_ Board sResource data Bytes

Board sResource Bytes Cat Board 2
SRsrcType ID (value = 1) 1 TypBoar d 2
SRsr cType offset 3— Dr SWBoar d 2
sRsr cNane ID (value = 2) 1 Dr H\Boar d 2

sRsr cNane offset 3 -

Boar dl d ID (value = 32) 1 cString Variable
Boar dl d data 3

PRAM ni t Dat a ID (value = 33) 1

Physical block size 4

PRAM ni t Dat a offset 3
Primaryl ni t ID (value = 34) 1 Value = $00 L
Value = $00 1
Primaryl nit offset 3 Byte 1 1
Byte 2 1
End-of-list marker 4 Byte 3 1
(value = $FF00 0000) Byte 4 1
Byte 5 1
Byte 6 1

Physical block size 4

Revision level 1
CPU ID 1
Reserved 2
Code offset 4

{ Code { Variable

The sResource Directory

The sResource directory lists all the sResources in the declaration ROM and provides an
offset to each one. The sResource directory has the same structure as an sResource—that
is, an sResource directory consists of a series of 4-byte entries, where the first byte is an
ID field and the next 3 bytes contain an offset to additional data. Figure 2-7 shows the
format of the sResource directory.

2-12 Introduction to Slots and Cards

CHAPTER 2

Slot Manager

Figure 2-7 The structure of the sResource directory
sResource directory Bytes

— sResource ID, 1

sResource offset 3

ID fields ——— sResource 1D, 1

sResource offset 3 ——— Offset fields

— sResource 1D, 1 w
=}
sResource offset 3 g
Q
=}
Q
«Q
4 / ®

sResource 1D, 1

sResource offset 3

End-of-list marker
(value = $FF00 0000)

The sResource ID field of an entry in the sResource directory always identifies an
sResource on the card. Each sResource in the card firmware requires a unique ID defined
by the card designer, and the ID must be in the range 1 through 254. For example, an
entry for the board sResource must appear first in a card’s sResource directory, so card
designers typically assign an sResource ID value of 1 to the board sResource. The
sResource ID numbers must appear in the sResource directory in ascending order. An
sResource directory must conclude with the end-of-list marker ($FF 00 00 00).

The offset field of each entry contains a signed 24-bit offset to the sResource
corresponding to the sResource ID field. The offset value counts only those bytes
accessible by valid byte lanes, and is relative to the address of the sResource ID field.

The Format Block

The format block always resides at the highest address in the standard slot space of a
declaration ROM. At startup, the Slot Manager locates installed cards by searching each
slot space for a valid format block. The format block contains information about the
declaration ROM and an offset to the sResource directory. The Slot Manager uses the
format block to validate the declaration ROM and locate the sResources.

The format block also contains a value that specifies which of the four byte lanes are
occupied by the declaration ROM. These byte lanes are called the valid byte lanes. Some
declaration ROMs do not appear on all four byte lanes, so software cannot read
meaningful data at every memory location in the address space for the byte lanes.

Introduction to Slots and Cards 2-13

CHAPTER 2

Slot Manager

IMPORTANT

The format block defines which byte lanes are valid for the declaration
ROM only. The valid byte lanes are determined by card design, and may
be different for other memory-mapped devices on the card. a

Designing Cards and Drivers for the Macintosh Family, third edition, defines the structure of
the format block and gives examples of how the valid byte lanes affect communication
with a declaration ROM.

Figure 2-8 illustrates the relationship of the format block, the sResource directory,

and the sResources for a sample video card. For every entry in the sResource directory
and in the sResources, its ID number is shown on the left side of the entry. As shown in
this figure, the board sResource is the first sSResource listed in the sResource directory.
Each functional sResource that follows in turns defines a display capability provided by
the card. (To simplify this figure, only one complete functional sResource is shown.)

Figure 2-8 The format block and sResources for a sample video card

Format block

Code or data
Cat Boar d (Cat egor y)
TypBoar d (cType)

Y

Directory offset | g EI\\A/\goar g (g SW
Length oar d (Dr HW
CRC ——~[cSiring]
Revllsion vael Board sResource —={cString|
orma H
Test pattern =1 SRsr CType [= 1 | Vendor| D
Reserved 2| sRsr CdNag“-‘ 3 | RevLevel
Byte lanes 32 _Boar I _ 4 |Par t Nunmber §
34| Primarylnit
36| Vendorlnfo Cat D spl ay (Cat egor y)
{y sResource directory Functional TypVi deo (cType)
1 Board sResource sResource 128 Dr SWAppl e (Dr SW
128| Functional sResource = 1| sRsrcType Dr HWTFB (Dr HWY
129| Functional sResource 2| sRsrcName | wlcString|
4 |sRsrcDrvrDir -
8 [sRsrcHWDevl d |_Driver_|
10| M nor BaseOS [————»|Video RAM Base]
1) M nor Length i——— Vijeo RAM Lengthl
128| OneBi t Mode4 -
129] TwoBi t Mode4 L w[1[OneBitParns - sBl ock |
130 Four Bi t Mode4 3 | PageCount
4 | Devi ceType
Functional -
s;esolurce 129 = 1 [TwoBi t Par ns |—| sBI ock |
= 1 SRsrcType 3 PageCount
4 | DeviceType
4 1 [Four Bi t Par ns}—=| sBl ock |
3 | PageCount
4 | DeviceType
2-14 Introduction to Slots and Cards

CHAPTER 2

Slot Manager

About the Slot Manager

The Slot Manager provides three basic services:
= On startup, it examines each slot and initializes any expansion cards it finds.

= It maintains data structures that contain information about each slot and every
available sResource.

= It provides functions that allow you to get information about expansion cards and
their sResources.

There are two variations of the System 7 Slot Manager: version 1 and version 2. Version 1
of the Slot Manager is RAM based and is installed by the user with the System 7 upgrade
kit. Version 2 is included in the ROM of newer Macintosh computers.

At startup, the version of the Slot Manager in ROM searches each slot for a declaration
ROM and creates a slot information record for each slot. See “Slot Information Record”
on page 2-24 for the definition of the Sl nf oRecor d data type.

As the Slot Manager searches the slots, it identifies all of the sResources in each
declaration ROM and creates a table—the slot resource table (SRT)—that lists all of the
sResources currently available to the system. The slot resource table is a private data
structure maintained by the Slot Manager. Applications and device drivers use Slot
Manager routines to get information from the slot resource table.

After building the slot resource table, the Slot Manager initializes the 6 bytes reserved for
each slot in parameter RAM. If the slot has an expansion card with a PRAM ni t Dat a
entry in its board sResource, the Slot Manager uses the values in that entry to initialize
the parameter RAM; otherwise, it clears those bytes in parameter RAM.

Next, the Slot Manager disables interrupts and executes the code in the Pri mar yl ni t
entry of the board sResource for each card. Note that at this point in the startup, the
keyboard and the mouse are not initialized and that a card’s Pri maryl ni t code has
only limited control over the functionality of the card itself.

If certain values (defined by the Start Manager) are set in a card’s parameter RAM, a
card with an sRsr cBoot Rec entry may take over the system startup process. The Start
Manager passes control to the code in the sRsr cBoot Rec early in the startup sequence,
before system patches are installed. Refer to the chapter “Start Manager” in Inside
Macintosh: Operating System Ultilities for more information about the startup process.

Designing Cards and Drivers for the Macintosh Family, third edition, describes the
PRAM ni t Dat a, Pri mar yl ni t, and sSRsr cBoot Rec entry types.

If no card takes over, the normal system startup continues. After version 1 of the Slot
Manager is loaded, it conducts a second search for declaration ROMs, this time in 32-bit
mode. If the Slot Manager finds any additional NuBus cards, it adds their sResources to
the slot resource table and executes the code in their Pri mar yl ni t entries. (Version 2 of
the Slot Manager, which resides in ROM, does not need to conduct a second search.)

About the Slot Manager 2-15

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Note

Some versions of the Slot Manager prior to System 7 address NuBus
cards in 24-bit mode and may not be able to identify all cards. After
version 1 of the Slot Manager is loaded, it locates these cards. O

After all system patches have been installed, version 1 or later of the Slot Manager
executes the code in any Secondar yl ni t entries it finds in the declaration ROMs.

It does not reexecute the code from Pri mar yl ni t entries, reinitialize parameter RAM,
or restore any sResources deleted by the Pri maryl ni t code.

Note

Most versions of the Slot Manager prior to System 7 do not execute code
from Secondar yl ni t entries. O

After the Slot Manager executes Secondar yI ni t code, it searches for sResources that
have an sRsr cFl ags entry with the f OpenAt St art flag set. When the Slot Manager
finds an sResource with this flag set, it loads the device driver from the SRsrcDrvrDi r
entry of the sResource, or calls the code in the sResource’s sRsr cLoadRec entry, which
loads the sResource’s device driver.

Finally, the system executes initialization resources of type' | NI T' .

See Designing Cards and Drivers for the Macintosh Family, third edition, for details about
the sRsr cFl ags, sRsrcDr vr Di r, and sRsr cLoadRec entry types.

Using the Slot Manager

2-16

The Slot Manager allows you to enable and disable NuBus cards, manipulate the slot
resource table, get information from slot information records, get status information,
and read and change expansion cards’ parameter RAM. However, the majority of Slot
Manager routines search for sResources in the slot resource table or provide information
from these structures.

The Slot Manager provides a variety of methods to find an sResource. These methods
include searching for an sResource with a particular sResource ID, searching for an
sResource with a particular sResource type, searching through all sResources, searching
through only the enabled sResources, and so on.

The Slot Manager also provides a number of routines that return information from
sResources. Some of these routines, like the SReadByt e and SGet CSt r i ng functions,
return one particular type of data structure. Others, like the SFi ndSt r uct function, can
return information about any data structure. Functions such as SGet Dri ver and SExec
not only return information from an sResource, they also perform additional operations
like loading the sResource’s driver or executing the code of an sExecBl ock data
structure.

You can use the SVer si on function, described on page 2-30, to determine if the Slot
Manager is version 1, version 2, or a version that predates System 7.

Using the Slot Manager

CHAPTER 2

Slot Manager

Enabling and Disabling NuBus Cards

Version 1 and later of the Slot Manager allows you to temporarily disable your NuBus
card. You might want to do this if, for example, you are designing a NuBus card that
must be addressed in 32-bit mode or that requires RAM-based system software patches
to be loaded into memory before the card is initialized. Your Pri mar yl ni t code can
disable the card temporarily and the Secondar yl ni t code can reenable it.

To disable a NuBus card temporarily, the initialization routine in your Pri mar yl ni t
record should return in the seSt at us field of the SEBI ock data structure (described in
“Slot Execution Parameter Block” on page 2-27) an error code with a value in the range
svTenpDi sabl e ($8000) through svDi sabl ed ($8080). The Slot Manager places this
code in the si | ni t St at usV field of the slot information record for the slot, and places
the fatal error s ni t St at VErr (-316) in the si | ni t St at usAfield of the slot
information record. The card and its sResources are then unavailable for use by the

Jabeue 10|1S -

Operating System.

After the Operating System loads RAM patches, the Slot Manager checks the value of the
si I ni t St at usAfield of each slot information record. If this value is greater than or
equal to 0, indicating no error, the Slot Manager executes the Secondar yl ni t code for
the slot, if any. If the value in the si | ni t St at usAfield is sm ni t St at VEr r, the Slot
Manager checks the si | ni t St at usV field. If the value of the si | ni t St at usV field is
in the range svTenpDi sabl e through svDi sabl ed, the Slot Manager sets the

si | nit St at usAfield to 0 and runs the Secondar yl ni t code.

For examples of Pri mar yl ni t and Secondar yl ni t code, see Designing Cards and
Drivers for the Macintosh Family, third edition.

Deleting and Restoring sResources

Some NuBus cards have sResources to support a variety of system configurations or
modes. The Slot Manager loads all of the sResources during system initialization, and
then the card’s Pri mar yl ni t code can delete from the slot resource table any
sResources that are not appropriate for the system as configured. If the user changes the
system configuration or selects a different mode of operation, your card can reinstall a
deleted sResource. The SDel et eSRTRec function deletes sResources; the

I nsert SRTRec function reinstalls them.

Because none of the Slot Manager functions can search for sResources that have been
deleted from the slot resource table, you must keep a record of all sResources you delete
so that you will have the appropriate parameter values when you want to reinstall one.

When you reinstall an sResource, it may be necessary to update the dCt | Sl ot | d and
dCt | DevBase fields in the slot device driver’s device control entry. You need to update
the dCt | Sl ot | d field if you change the sResource ID. The dCt | DevBase field holds
the base address of the slot device. For a video card this is the base address for the pixel
map in the card’s GDevi ce record (which is described in Inside Macintosh: Imaging With
QuickDraw). The | nser t SRTRec function updates the dCt | DevBase field
automatically if you supply a valid driver reference number.

Using the Slot Manager 2-17

CHAPTER 2

Slot Manager

Enabling and Disabling sResources

Under certain circumstances, you might want to disable an sResource while it remains
listed in the slot resource table. For example, a NuBus card might provide several modes
of operation, only one of which can be active at a given time. Your application might
want to disable the sResources associated with all but the active mode, but still list all
available modes in a menu. When the user selects a new mode, your application can
then disable the currently active sResource and enable the one the user selected.

You use the Set SRsr ¢St at e function to enable or disable an sResource. Listing 2-1
disables the sResource in slot $A with an sResource ID of 128 and enables the sResource
in the same slot with an sResource ID of 131.

Listing 2-1 Disabling and enabling an sResource

2-18

PROCEDURE MyDi sabl eAndEnabl eSResour ce;

VAR
ny SpBl k: SpBl ock;
nmyErr: OSErr;
BEG N
W TH nySpBl k DO {set required values in paraneter block}
BEG N
spParanData : = 1; {di sabl e}
spSl ot : = $A {slot nunber}
spl D : = 128; {sResource | D}
SpExt Dev : = O; {ID of external device}
END;

myErr := Set SRsrcStat e(@rySpBI k) ;
I F nyErr = noErr THEN

BEG N
W TH nySpBl k DO
BEG N
spParanData : = 0; {enabl e}
spSlot := $A; {sl ot nunber}
spl D : = 131; {sResource | D}
spExt Dev : = O; {1 D of external device}
END;
nyErr := Set SRsrcSt at e(@y SpBI k) ;
END;
END;

Using the Slot Manager

CHAPTER 2

Slot Manager

Searching for sResources

The Slot Manager provides several functions that search for sResources in the slot
resource table. These functions allow you to specify which sResources to search, but

each function provides slightly different options.

The SNext SRsr ¢ and SNext TypeSRsr ¢ functions allow you to search for enabled
sResources by slot. The SGet SRsr ¢ and SGet TypeSRsr ¢ functions, available only with

the System 7 Slot Manager (that is, version 1 and version 2 of the Slot Manager), allow
you to search for disabled sResources as well as enabled ones. Table 2-3 summarizes the

Slot Manager search routines and the options available for each.

Jabeue 10|1S -

Table 2-3 The Slot Manager search routines
State of Which Type of
sResources for Slots it sResources it sResource it
Function which it searches searches searches for searches for
SNext SRsr ¢ Enabled only Specified slot Next sResource Any type
and higher slots only
SGet SRsr ¢’ Your choice of Your choice of Your choice Any type
enabled only or one slot only or of specified
both enabled specified slot sResource or
and disabled and higher slots next sResource
SNext TypeSRsr c Enabled only Specified slot Next sResource Specified type
and higher slots only only
SGet TypeSRsrc” Your choice of Your choice of Next sResource Specified type
enabled only or one slot only or only only
both enabled specified slot
and disabled and higher slots

" Available only with the System 7 Slot Manager (that is, version 1 and version 2 of the Slot Manager)

Listing 2-2 shows how to use the SGet TypeSRsr ¢ function to search all slots for both
enabled and disabled sResources with an sResource type category of cat Di spl ay and

an sResource type subcategory of t ypeVi deo.

Listing 2-2

PROCEDURE My SResour ceSear ch;

VAR

Searching for a specified type of sResource

ny SpBl k:
nmyErr:

SpBl ock;
OSErr;

Using the Slot Manager 2-19

CHAPTER 2

Slot Manager

BEG N

W TH nmySpBI k DO {set required values in parameter bl ock}

BEG N
spParanData := fAI; {fAll flag = 1: search all sResources}
spCategory := catDi splay; {search for Category catD spl ay}
spCType : = typeVideo; {search for cType typeVi deo}
spDrvr SW .= 0; {this field not being matched}
spDr vr HW = 0; {this field not being matched}
spTBMask = 3; {match only Category and cType fi el ds}
spSl ot = 1; {start search fromslot 1}
spl D 1; {start search from sResource ID 1}
spExt Dev = 0; {external device ID (card-specific)}

END;

nmyErr = noFErr;

VWHI LE nyErr = noErr DO {loop to search sResources}

BEG N
myErr : = SCet TypeSRsrc(@rySpBl k) ;
MySRsr cProcess(nySpBl k) ; {routine to process results}

END;

IF nyErr <> snmNoMoresRsrcs THEN {all search functions return this value }
MyHandl eError (nmyErr); { when search is conpl ete}

END;

Obtaining Information From sResources

If you are writing a driver for a card device, you will most likely want access to the
information in an sResource.

The Slot Manager provides many functions that return information from the entries

of an sResource. The SO f set Dat a, SReadByt e, and SReadWr d functions return
information from the offset field of an sResource entry. The SReadLong, SGet CSt ri ng,
and SCet Bl ock functions return copies of the standard data structures pointed to by the
offset field of an sResource entry. The SFi ndSt r uct and SReadSt r uct functions allow
access to other data structures pointed to by sResource entries.

Listing 2-3 shows an example of searching for a board sResource and obtaining its
name. This example starts at a particular slot number and then searches for the board
sResource in that slot or, if necessary, in higher slots. Once it finds the board sResource,
Listing 2-3 calls the SGet CSt r i ng function, which returns a pointer to a buffer
containing the name string for the card.

2-20 Using the Slot Manager

CHAPTER 2

Slot Manager

Listing 2-3 Searching for the name of a board sResource

PROCEDURE Fi ndBoar dsResource (VAR sl ot Nunber: | nteger;
VAR fini shed: Bool ean);

VAR
mySpBl k: SpBl ock;
myErr: OSErr;

BEG N

{First, get a pointer to the board sResource for the slot.}

W TH nySpBl k DO BEG N
spSl ot .= slotNunber; {start searching in this slot, }

{ and continue until found}

spl D D=
spCat egory
spCType
spDrvr Sw
spDrvr Hw

END;

nyErr := SNext TypeSRsrc(@rySpBl k) ;

IF nyErr <> noErr THEN
MyHandl eErr or (myErr) {quit searching if no nore sResources}

ELSE
gTheSl ot := nySpBl k.spSlot; {the slot in which the sResource was found}

{sRsrcType val ues for a board sResource}

|
eeeeRre

{The spsPointer field of nySpBl ock now contains a pointer to the }
{ board sResource list. The SGetCString function uses this field }
{ as one of two input fields.}
nySpBl k. spI D : = 2; {sRsrcNane entry}
nyErr := SGet CString(@rySpBl k) ;
IF nyErr <> noErr THEN
MyHand! eError (nmyErr)
ELSE BEA N
{The spResult field now points to a copy of the cString.}
MyProcessCar dNane(gTheSl ot, Ptr(nySpBl k. spResult));
{Free nenory allocated by SGetCString.}
Di sposePtr (Ptr (nySpBl k. spResul t));
END;
END;

Because the SGet CSt r i ng function allocates memory for a buffer, your application
must dispose of the buffer afterward, using the Memory Manager procedure
Di sposePt r (which is described in Inside Macintosh: Memory).

Using the Slot Manager 2-21

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Installing and Removing Slot Interrupt Handlers

If your card generates hardware interrupts, you can install a slot interrupt handler to
process interrupts from the card. The Slot Manager maintains an interrupt queue for
each slot. You use the Sl nt I nst al | function, described on page 2-70, to install an
interrupt handler in the slot interrupt queue. The Sl nt Rendve function, described
on page 2-71, removes an interrupt handler from the slot interrupt queue.

The Sl ot | nt QEl enent data type, described on page 2-28, defines a slot interrupt
queue element. The queue elements are ordered by priority and contain pointers
to interrupt handlers. When a slot interrupt occurs, the Slot Manager calls the
highest-priority interrupt handler in the slot’s interrupt queue. If the interrupt
handler returns without servicing the interrupt, the Slot Manager calls the next
interrupt handler in the queue, in order of priority, until the interrupt is serviced.
If the interrupt is not serviced by any interrupt handler, a system error dialog box
is displayed.

Before returning to the Slot Manager, your interrupt handler should set a result code
in register DO to indicate whether the interrupt was serviced. If the interrupt was not
serviced, your interrupt handler must return 0. Any value other than 0 indicates that
the interrupt was serviced.

The Slot Manager returns to the interrupted task when your interrupt handler indicates
that the interrupt was serviced; otherwise, it calls the next lower-priority interrupt
handler for that slot. A system error is generated if the last interrupt handler returns

to the Slot Manager without servicing the interrupt.

Slot Manager Reference

This section describes the data structures and routines you use to get information about
the Slot Manager, expansion cards, and sResources.

Data Structures

This section describes the Slot Manager parameter block structure, the slot information
record, the format header record, the slot parameter RAM record, the slot execution
parameter block, and the slot interrupt queue element.

Many Slot Manager routines return information from data structures contained in the
firmware of cards. See “Firmware,” beginning on page 2-7, for a general discussion of
these data structures, and see Designing Cards and Drivers for the Macintosh Family, third
edition, for more detailed information.

2-22 Slot Manager Reference

CHAPTER 2

Slot Manager

Slot Manager Parameter Block

Every Slot Manager function requires a pointer to a Slot Manager parameter block as a
parameter and returns an OSEr r result code. Each routine uses only a subset of the fields
of the parameter block. See the individual routine descriptions for a list of the fields used
with each routine. The Slot Manager parameter block is defined by the SpBl ock data

type.

TYPE SpBl ock =

PACKED RECORD {Sl ot Manager paraneter bl ock}
spResul t: Longl nt ; {result}
spsPoi nter: Ptr; {structure pointer}
spSi ze: Longl nt ; {size of structure}
spOF f set Dat a: Longl nt; {of fset or data}
spl OFi | eNane: Ptr; {reserved for Slot Mnager}
spsExecPBI k: Ptr; {pointer to SEBIl ock data structure}
spPar anDat a: Longl nt; {fl ags}
spM sc: Longl nt; {reserved for Slot Mnager}
spReserved: Longl nt ; {reserved for Slot Manager}
spl OReser ved: I nt eger; {i oReserved field from SRT}
spRef Num I nt eger; {driver reference nunber}
spCat egory: I nt eger; {Category field of sRsrcType entry}
spCType: I nt eger; {cType field of sRsrcType entry}
spDrvr SW I nt eger; {DrSWfield of sRsrcType entry}
spDr vr HW I nt eger; {DrHWfield of sRsrcType entry}
spTBMask: Si gnedByt e; {sRsrcType entry bit mask}
spSl ot : Si gnedByt e; {sl ot nunber}
spl D: Si gnedByt e; {sResource | D}
SpExt Dev: Si gnedByt e; {external device |ID}
spHwDev: Si gnedByt e; {hardwar e device |D}
spByt eLanes: Si gnedByt e; {valid byte | anes}
spFl ags: Si gnedByt e; {flags used by Sl ot Manager}
spKey: Si gnedByt e; {reserved for Slot Mnager}

END;

Field descriptions
spResul t A general-purpose field used to contain the results returned by
several different routines.

spsPoi nt er A pointer to a data structure. The field can point to an sResource, a
data block, or a declaration ROM, depending on the routine being
executed.

spSi ze The size of the data pointed to in the spsPoi nt er field.

spOffset Dat a The contents of the offset field of an sResource entry. Some routines
use this field for other offsets or data.

spl OFi | eName Reserved for use by the Slot Manager.

Slot Manager Reference 2-23

Jabeue 10|1S -

CHAPTER 2

Slot Manager

spsExecPBI k

spPar anDat a

spM sc
spReserved
spl OReser ved

spRef Num
spCat egory

spCType

spDrvr SW
spDrvr HW
spTBMask

spSl ot

spl D
SpExt Dev

spHwDev
spByt eLanes

spFl ags
spKey

A pointer to an SEBI ock data structure, which is described on
page 2-27.

On input, a long word containing flags that determine what
sResources the Slot Manager searches. When set, bit 0 (the f Al |
flag) indicates that disabled sResources should be included. When
set, bit 1 (the f OneSl ot flag) restricts the search to sResources on

a single card. Bit 2 (the f Next flag) indicates when set that the
routine finds the next sResource. The rest of the bits must be cleared
to 0.

On output, this field indicates whether the sResource is enabled or
disabled (if 0, the sResource is enabled; if 1, it is disabled).

Reserved for use by the Slot Manager.
Reserved for future use.

The value of the i oReser ved field from the sResource’s entry in
the slot resource table.

The driver reference number of the driver associated with an
sResource, if there is one.

The Cat egor y field of the sRsr cType entry (which is described
on page 2-10).

The cType field of the SRsr cType entry.

The Dr SWfield of the sRsr cType entry.

The Dr HWfield of the SRsr c Type entry.

A mask that determines which sRsr c Type fields the Slot Manager
examines when searching for sResources.

The number of the slot with the NuBus card containing the
requested, or returned, sResource.

The sResource ID of the requested, or returned, sResource.

The external device identifier. This field allows you to distinguish
between devices on a card.

The hardware device identifier from the sRsr cHWDev | D field of the
sResource.

The byte lanes used by a declaration ROM.
Flags typically used by the Slot Manager.
Reserved for use by the Slot Manager.

Listing 2-1 on page 2-18 illustrates how to set values in an SpBI ock record to disable
and enable an sResource. Listing 2-2 on page 2-19 illustrates how to use the values in an
SpBI ock record for searching for sResources.

Slot Information Record

The Slot Manager creates a slot information record for each slot. This structure is defined
by the SI nf oRecor d data type.

2-24 Slot Manager Reference

CHAPTER 2

Slot Manager

TYPE SI nfoRecord = {slot information record}
PACKED RECORD
siDrPtr: Ptr; {pointer to sResource directory}
silnitStatusA: Integer; {initialization status}
silnitStatusV: Integer; {status returned by vendor }
{ initialization routine}
si St ate: Si gnedByt €; {initialization state}
si CPUByt eLanes: Si gnedByt e; {byte | anes used}
si TopOf ROM Si gnedByt e; {hi ghest valid address in ROV}
si StatusFl ags: Si gnedByt e; {status flags}
si TCConst ant : I nt eger; {timeout constant for bus error}
si Reserved: PACKED ARRAY [0..1] OF SignedByte;
{reserved}
si ROVAddr : Ptr; {address of top of ROV
si Sl ot: Char ; {slot nunber}
si Paddi ng: PACKED ARRAY [0..2] OF SignedByte; {reserved}
END;

Field descriptions

siDirPtr A pointer to the sResource directory (described in “The sResource
Directory” on page 2-12).

silnitStatusA The initialization status code set by the Slot Manager. A value of 0
indicates the card is installed and operational. Any other value is a
Slot Manager error code indicating why the initialization failed.

silnitStatusV The initialization status code returned by the card’s Pri mar yl ni t
routine in the seSt at us field of the SEBI ock parameter block
(described on page 2-27). Negative values cause the card
initialization to fail. Values in the range svTenpDi sabl e ($8000)
through svDi sabl ed ($8080) are used to temporarily disable a
card. See “Enabling and Disabling NuBus Cards” on page 2-17 for
more information.

si State Reserved for use by the Slot Manager.
si CPUByt eLanes The byte lanes used by the declaration ROM.
si TopOf ROM The least significant byte of the address stored in si ROVAddr .

si St at usFl ags Slot status flag field set by the Slot Manager. If the
f Car dl sChanged flag (bit 1) is set, the board ID of the installed
card does not match the board ID stored in parameter RAM. Other
flag bits are reserved.

si TOConst ant The number of retries that will be performed when a bus error
occurs while accessing the declaration ROM. The default is 100.

si Reserved Reserved for use by the Slot Manager.

si ROVAddr The highest address in the declaration ROM.

si Sl ot The slot number.

si Paddi ng Reserved for use by the Slot Manager.

Slot Manager Reference 2-25

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Format Header Record

The Slot Manager uses a format header record to describe the structure of a card’s format
block, which is located at the highest address in the slot’s NuBus address space. By
reading information from the format header record, the Slot Manager can locate and
validate the card’s declaration ROM. The format header record is defined by the
FHeader Rec data type.

Note
For more information about the format block, see Designing Cards and
Drivers for the Macintosh Family, third edition. O

TYPE FHeader Rec = {format header record}
PACKED RECORD
fhDirOf fset: Longl nt; {offset to sResource directory}
f hLengt h: Longl nt; {length in bytes of declaration ROV
f hCRC: Longl nt ; {cyclic redundancy check}
f hROVRev: Si gnedByt e; {decl arati on ROM revi si on}
f hFor mat : Si gnedByt €; {decl arati on ROM fornat}
fhTst Pat : Longl nt ; {test pattern}
f hReser ved: Si gnedByt e; {reserved; nust be 0}
f hByt eLanes: Si gnedByt €; {byte | anes used by decl arati on ROV}
END;

Field descriptions

fhDir O f set A self-relative signed offset to the sResource directory. This field
specifies only bytes accessible by valid byte lanes; as a result, the
value in this field might not be the absolute address difference.

fhLength The number of valid bytes in the declaration ROM. The Slot
Manager uses this value when computing the checksum.

f hCRC A checksum that allows the Slot Manager to validate the entire
declaration ROM.

f hROVRev The current ROM revision level. This field should contain a value

in the range 1-9; values greater than 9 cause the Slot Manager to
generate the error smRevi si onErr.

f hFor nat The format of the declaration ROM. A value of 1 designates the
Apple format.

f hTst Pat A test pattern. This field must contain the value $5A932BC7.

f hReser ved Reserved. This field must be 0.

f hByt eLanes A signed byte that specifies which of the four byte lanes to use

when communicating with the declaration ROM. Refer to Designing
Cards and Drivers for the Macintosh Family, third edition, for a list of
valid values.

2-26 Slot Manager Reference

CHAPTER 2

Slot Manager

Slot Parameter RAM Record

The Macintosh Operating System reserves eight bytes of parameter RAM for each
slot. Six of these bytes are available for card designers to store information. The
SPRAMRecor d data type defines the organization of these bytes of data in parameter
RAM. This data structure includes the Apple-defined Boar dI Dand six bytes of
vendor-specific information.

TYPE SPRAMRecord = {sl ot paraneter RAM record}

PACKED RECORD
boar dl D: I nt eger; { Appl e-defi ned board | D} @]
vendor Usel: Si gnedByt e; {avail abl e for vendor use} 2
vendor Use2: Si gnedByt e; {avai |l abl e for vendor use} %
vendor Use3: Si gnedByt e; {avail abl e for vendor use} <
vendor Use4: Si gnedByt e; {avail abl e for vendor use} B
vendor Useb: Si gnedByt e; {avai |l abl e for vendor use}
vendor Use6: Si gnedByt e; {avail abl e for vendor use}

END;

Field descriptions
boardl D

vendor Use

The card identification number assigned by Apple Computer, Inc.
General-purpose fields that may be used by the card designer.

Slot Execution Parameter Block

The SCGet Dri ver and SExec functions load and execute code from an sResource. These
routines use the slot execution parameter block to exchange information with this code.
The slot execution parameter block is defined by the SEBI ock data type.

TYPE SEBI ock =
PACKED RECORD

{sl ot execution paraneter block}

seSl ot : Si gnedByt e; {slot nunber}

sesRsrcl D: Si gnedByt €; {sResource | D}

seSt at us: I nt eger; {status of sExecBl ock code}
seFl ags: Si gnedByt e; {flags}

seFillerO: Si gnedByt €; {filler for word alignnent}
seFillerl: Si gnedByt e; {filler}

seFiller2: Si gnedByt e; {filler}

seResul t: Longl nt; {result of SLoadDriver}

sel OFi | eNane: Longl nt; {pointer to driver nane}
seDevi ce: Si gnedByt e; {device to read fron}
sePartition: Si gnedByt €; {the partition}

seCSType: Si gnedByt e; {type of OCs}

seReserved: Si gnedByt e; {reserved}

seRef Num Si gnedByt €; {driver reference nunber}

Slot Manager Reference

2-27

Slot Interrupt Queue Element

CHAPTER 2

Slot Manager

seNumDevi ces:
seBoot St at e:

END;

Field descriptions

seSl| ot
sesRsrcl D
seSt at us

seFl ags

seFill er0-2
seResul t

sel OFi | eNane
seDevi ce

sePartition
seCOSType
seReserved

seRef Num
seNunDevi ces
seBoot St at e

Si gnedByt e;
Si gnedByt e;

{nunber of devices to |oad}
{state of StartBoot code}

The slot number containing the code to be executed.
The sResource containing the code to be executed.

The status returned by the executed code. A card’s Pri mar yl ni t
routine returns its initialization status in this field, and the value is
stored in the si | ni t St at usV field of the slot information record.

Flags passed to or returned by the executed code.

Name Bit Meaning

fVar nt ar t 2 Set if a restart is being performed.

dRAMBased 6 Set if the seResul t field contains a
handle to a device driver.

Reserved.

A result value returned by the executed code. Normally used to
return a pointer or handle to a device driver.

An optional pointer to a device driver name.

The device number containing the code to be executed. This field is
used when loading code from a device attached to a card.

The partition number containing the code to be executed. This field
is used when loading code from a device attached to a card.

The operating system type identifier obtained from parameter RAM.
This field is used when loading code from a device attached to a card.

Additional information from parameter RAM, used when loading
code from a device attached to a card.

The driver reference number returned by the loaded device driver.
Unused.

A value indicating the relative state of the boot process. During
initialization, the Slot Manager passes one of the following constant
values in this field:

Name Value Meaning
sbSt at e0 0 State 0 of the boot process.
sbStatel 1 State 1 the boot process.

2-28

The Slot Manager maintains a queue of interrupt handlers for each slot. You use the
SIntlnstall and Sl nt Renpbve functions (described on page 2-70 and page 2-71,
respectively) to install and remove routines in the queue. The Sl ot | nt QEl enment
data type defines a slot interrupt queue element.

Slot Manager Reference

CHAPTER 2

Slot Manager

TYPE Sl ot nt QEl emrent = {slot interrupt queue el enent}
RECORD
sqLi nk: Ptr; {poi nter to next queue el ement}
sqType: I nt eger; {queue type ID; nust be sl Qlype}
sqgPri o: I nt eger; {priority value in | ow byte}
sqAddr : ProcPtr; {interrupt handl er}
sqgPar m Longl nt; {optional Al paraneter}
END;

Field descriptions

sqLi nk A pointer to the next queue element. This field is maintained by the
Slot Manager.

sqType The queue type identifier, which you set to the defined type
sl Qlype.

sqPrio The relative priority level of the interrupt handler. Only the low-

order byte of this field is used. The high-order byte must be set to 0.
Valid priority levels are 0 through 199. Priority levels 200 through
255 are reserved for Apple devices.

sqAddr A pointer to the interrupt handler.

sqParm An optional value that the Slot Manager places in register A1 before
calling the interrupt handler. This field is typically used to store a
handle to a driver’s device control entry.

Slot Manager Routines

This section describes the routines provided by the Slot Manager. Most of the routines in
this section are used to locate sResources or read information from an entry in an
sResource. Some of the routines allow you to read and set information about expansion
cards, such as their parameter RAM values, and others allow you to manipulate Slot
Manager data structures, like the slot resource table.

Because the SGet CSt ri ng, SGet Bl ock, SGet Dri ver, SExec, | ni t SDecl Myr,

Sl ni t PRAMRecs, Sl ni t SRsr cTabl e, and SPri mar yl ni t functions may allocate
memory, your application should not call them at interrupt time; however, your can call
any other Slot Manager function at interrupt time.

Because each routine uses a subset of the Slot Manager parameter block fields, each
routine reference section includes a list of pertinent fields and how they are used.

Parameter block

N fi el dNanme Fi el dType Input field.

- fi el dNanme Fi el dType Output field.

o fi el dName Fi el dType Input/output field.
O fi el dNanme Fi el dType Affected field.

The arrows show whether you provide a value in the field, the routine returns a value in
the field, or both. The 0 symbol designates fields that may be affected by the execution

Slot Manager Reference 2-29

Jabeue 10|1S -

CHAPTER 2

Slot Manager

of the routine. Any value you store in one of these affected fields may be lost. Also, the
meaning of these fields upon completion of the routine is undefined; your application
should not depend on these values.

Assembly-Language Note

You can call Slot Manager routines using either the _SI ot Manager trap
macro with a selector or an individual macro name consisting of the
routine name preceded by an underscore. For example, you can call the
SVer si on function using the _SVer si on macro. Because every routine
name macro is equivalent to the _S| ot Manager trap macro that specifies
the corresponding routine selector, you will need to know the routine
selectors to trace your code in MacsBug. The _S| ot Manager trap macro
selector for each routine is included in the routine description and
summarized in “Trap Macros,” beginning on page 2-99. O

Determining the Version of the Slot Manager

SVersion

Unlike other system software managers, which use the Gest al t function to return
version information, the Slot Manager includes its own function for providing this
information.

DESCRIPTION

2-30

You can use the SVer si on function to determine which version of the Slot Manager is in
use by the Macintosh Operating System.

FUNCTI ON SVersion (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Longl nt The Slot Manager version number.
- spsPoi nt er Ptr A pointer to additional information.

The SVer si on function returns the version number of the Slot Manager in the
spResul t field of the Slot Manager parameter block that you point to in the spBl kPt r
parameter. Version number 1 corresponds to the RAM-based Slot Manager and version
number 2 corresponds to the ROM-based Slot Manager. Versions of the Slot Manager
prior to System 7 do not recognize the SVer si on function and return the result code
snBel OOBEr r. The spsPoi nt er field is reserved for future use as a pointer to
additional information.

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SVer si on function are

Selecto
Trap macro r

_Sl ot Manager $0008

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0008

Jabeue 10|1S -

Registers on exit
DO Result code

noErr 0 No error
sniel OOBEr r —-338 Selector out of bounds or function not implemented

For more information on the different versions of the Slot Manager, see “About the Slot
Manager” on page 2-15.

Finding sResources

SRsrclnfo

The functions in this section locate sResources in the slot resource table and return
pointers to them and additional information about them. The SRsr ¢l nf o function is
useful for finding the driver reference number of an SResource. The SGet SRsr ¢ and
SCet TypeSRsr ¢ functions are the preferred routines for searching sResources. You can
use these functions to step through the sResources and to find disabled as well as
enabled sResources. Use the SNext SRsr ¢ and SNext TypeSRsr ¢ functions with
System 6 and earlier versions of the Slot Manager.

You can use the SRsr ¢l nf o function to find an sResource. This function also provides
additional information about the sResource, such as the driver reference number of the
slot device driver.

FUNCTI ON SRsrclnfo (spBl kPtr: SpBlockPtr): OSErr;

Slot Manager Reference 2-31

DESCRIPTION

CHAPTER 2

Slot Manager

spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spsPoi nter Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
- spl CReser ved | nt eger The value of the slot resource table
i oReser ved field.
- spRef Num I nt eger The device driver reference number.
- spCat egory I nt eger The Cat egor y field of the sRsr cType
entry (described on page 2-10).
- spCType | nt eger The cType field of the sSRsr cType entry.
- spDrvr SW | nt eger The Dr SWfield of the sRsr cType entry.
- spDrvr HW I nt eger The Dr HWfield of the sRsr cType entry.
- spSl ot Si gnedByt e The slot number of the requested sResource.
- spld Si gnedByt e The sResource ID of the requested
sResource.
- spExt Dev Si gnedByt e The external device identifier.
- spHwDev Si gnedByt e The hardware device identifier.

The SRsr ¢l nf o function allows you to find an sResource from the slot resource table
and provides additional information, including its driver reference number and the
values contained in its SRsr cType entry.

You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the SpBl KPt r parameter.

The SRsr cl nf o function returns a pointer to the sResource in the spsPoi nt er field
and returns information about the sResource type in the spRef Num spCType,

spDr vr SWspDr vr HWfields. The function returns other information about the
sResource in the spl OReser ved, spRef Num and spHwDev fields.

ASSEMBLY-LANGUAGE INFORMATION

2-32

The trap macro and routine selector for the SRsr ¢l nf o function are

Trap macro Selector
_Sl ot Manager $0016
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0016

Registers on exit
DO Result code

Slot Manager Reference

RESULT CODES

CHAPTER 2

Slot Manager

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

SEE ALSO
For more control in finding sResources, you can use the SGet SRsr ¢ function, described
next, and the SGet TypeSRsr ¢ function, described on page 2-35. .
[\
%}
SGetSRsrc 2
QD
3
You can use the SGet SRsr ¢ function to find any sResource, even one that has been ?'2
disabled.
FUNCTI ON SGet SRsrc (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
- spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
o spPar anDat a Longl nt On input: parameter flags.
On output: 0 if the sResource is enabled or
1 if disabled.
- spRef Num I nt eger The slot resource table reference number.
- spCat egory | nt eger The Cat egory field of the sRsr cType
entry (described on page 2-10).
- spCType I nt eger The cType field of the sRsr cType entry.
- spDrvr SW I nt eger The Dr SWfield of the sRsr cType entry.
- spDr vr HW I nt eger The Dr HWfield of the sSRsr cType entry.
- spSl ot Si gnedByt e The slot number.
- spld Si gnedByt e The sResource ID.
o spExt Dev Si gnedByt e The external device identifier.
- spHWDev Si gnedByt e The hardware device identifier.
DESCRIPTION

The SGet SRsr ¢ function allows you to specify whether the function should

include disabled sResources, whether it should continue looking for sResources in
higher-numbered slots, and whether it should return information about the specified
sResource or the one that follows it.

You specify an sResource with the spSl| ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the spBl kPt r parameter. You must also
include flags in bits 0, 1, and 2 of the spPar anDat a field as follows:

s Setthef Al'l flag (bit 0) to search both enabled and disabled sResources. Clear this
flag to search only enabled sResources.

Slot Manager Reference 2-33

CHAPTER 2

Slot Manager

= Set the f OneSl ot flag (bit 1) to search only the specified slot. Clear this flag to search
all slots.

= Set the f Next flag (bit 2) to return information about the sResource with the next
higher sResource ID than the specified sResource (or the first one on the next card if
the f Al | flag is set). Clear this flag to return data about the specified sResource.

The SGet SRsr ¢ function returns values in the spSl ot , spl D, and spExt Dev fields
corresponding to the sResource that it found. If you cleared the f Next flag, these fields
retain the values you specified when calling the function. In addition, the function
returns 0 in the spPar anDat a field if the sResource is enabled or 1 if it is disabled.

If you cleared the f Al | bit, the spPar anDat a field always returns the value 0.

The SGet SRsr ¢ function also returns a pointer to the sResource in the spsPoi nt er
field and returns other information about the sResource in the spRef Num spCat egory,
spCType, spDrvr SWspDr vr Hand spHwDev fields.

SPECIAL CONSIDERATIONS

The SCGet SRsr ¢ function is available only with version 1 or later of the Slot Manager.
You can use the SVer si on function, described on page 2-30, to determine whether the
Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

2-34

The trap macro and routine selector for the SGet SRsr ¢ function are

Trap macro Selector
_Sl ot Manager $000B
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
AQ Address of the parameter block
DO $000B

Registers on exit
DO Result code

NoErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For more control in finding sResources, you can also use the SGet TypeSRsr ¢ function,
described next.

Slot Manager Reference

CHAPTER 2

Slot Manager

SGetTypeSRsrc

You can use the SGet TypeSRsr ¢ function to step through sResources of one type,
including disabled ones.

FUNCTI ON SGet TypeSRsrc (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
o spPar anDat a Longl nt On input: parameter flags.
On output: 0 if the sResource is enabled or
1 if disabled.
- spRef Num I nt eger The slot resource table reference number.
- spCat egory I nt eger The Cat egor y field of the sRsr cType
entry (described on page 2-10).
o spCType | nt eger The cType field of the sRsr cType entry.
o spDrvr SW | nt eger The Dr SWfield of the sRsr cType entry.
o spDrvr HW | nt eger The Dr HWfield of the sRsr c Type entry.
- spTBMask Si gnedByt e The type bit mask for sRsr c Type fields.
o spSl ot Si gnedByt e The slot number.
o spld Si gnedByt e The sResource ID.
o spExt Dev Si gnedByt e The external device identifier.
- spHWDev Si gnedByt e The hardware device identifier.

DESCRIPTION

The SCGet TypeSRsr ¢ function allows you to find the next sResource of a certain type, as
does the SNext TypeSRsr ¢ function, but the SGet TypeSRsr ¢ function also allows you
to find disabled sResources and to limit searching to a single slot.

You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the spBl kPt r parameter, and you specify the
type of the sResource with the spCat egory, spCType, spDr vr SWand spDr vr HWV
fields. You must also use the spTBMask field to specify which of these sRsr cType fields
should not be included in the search:

= Set bit 0 to ignore the Dr HWfield.

= Setbit 1 to ignore the Dr SWiield.

= Set bit 2 to ignore the cType field.

= Set bit 3 to ignore the Cat egory field.

You must also set the f Al | flag of the spPar anDat a field (bit 0) to search both enabled
and disabled sResources or clear this flag to search only enabled ones. Set the f OneS| ot
flag (bit 1) to search only the specified slot, or clear this flag to search all slots. The

Slot Manager Reference 2-35

Jabeue 10|1S -

CHAPTER 2

Slot Manager

SCet TypeSRsr ¢ function does not use the f Next flag (bit 2) because it always searches
for the next sResource of the given type.

The SGet TypeSRsr ¢ function returns values in the spSl ot , spl D, and spExt Dev
fields corresponding to the sResource that it found, and it returns 0 in the spPar anDat a
field if that sResource is enabled or 1 if it is disabled.

The SGet TypeSRsr ¢ function also returns a pointer to the sResource in the
spsPoi nt er field and returns other information about the sResource in the spRef Num
spCat egory, spCType, spDrvr SWspDr vr Hand spHwDev fields.

SPECIAL CONSIDERATIONS

The SGet TypeSRsr ¢ function is available only with version 1 or later of the Slot
Manager. You can use the SVer si on function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

2-36

The trap macro and routine selector for the SGet TypeSRsr ¢ function are

Trap macro Selector
_Sl ot Manager $000C
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $000C

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For information on enabling and disabling sResources, see “Enabling and Disabling
sResources” on page 2-18 and the description of the Set SRsr cSt at e function in the
next section.

Slot Manager Reference

SNextSRsrc

CHAPTER 2

Slot Manager

DESCRIPTION

You can use the SNext SRsr ¢ function to step through the sResources on a card or from
one card to the next.

FUNCTI ON SNext SRsrc (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

Jabeue 10|1S -

- spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
- spl OReser ved I nt eger The value of the slot resource table
i oReser ved field.
- spRef Num I nt eger The driver reference number.
- spCat egory I nt eger The Cat egor y field of the sRsr cType
entry (described on page 2-10).
- spCType | nt eger The cType field of the sRsr cType entry.
- spDrvr SW | nt eger The Dr SWfield of the sRsr cType entry.
- spDrvr HW | nt eger The Dr HWfield of the sRsr c Type entry.
- spSl ot Si gnedByt e The slot number.
- spld Si gnedByt e The sResource ID.
o spExt Dev Si gnedByt e The external device identifier.
- spHWDev Si gnedByt e The hardware device identifier.

The SNext SRsr ¢ function is similar to the SRsr cl nf o function, except the

SNext SRsr ¢ function returns information about the sResource that follows the
requested one—that is, the one with the next entry in the sResource directory or the first
sResource on the next card. The SNext SRsr ¢ function skips disabled sResources.

You specify a particular sResource with the spSl ot , spl D, and spExt Dev fields of the
Slot Manager parameter block you point to in the spBl kPt r parameter. The

SNext SRsr ¢ function finds the next sResource, returns a pointer to it in the

spsPoi nt er field, and updates the spSl ot, spl D, and spExt Dev fields to correspond
to the sResource it found. If there are no more sResources, the SNext SRsr ¢ function
returns the snNoMbr esRsr ¢s result code.

The SNext SRsr ¢ function returns other information about the sResource in the
spRef Num spCat egory, spCType, spDr vr SWand spDr vr H\Wfields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SNext SRsr ¢ function are

Trap macro Selector
_Sl ot Manager $0014

Slot Manager Reference 2-37

CHAPTER 2

Slot Manager

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0014

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

SEE ALSO

For more control in finding sResources, you can use the SGet SRsr ¢ function, described
on page 2-33, and the SGet TypeSRsr ¢ function, described on page 2-35.

SNextTypeSRsrc

You can use the SNext TypeSRsr ¢ function to step through sResources of one type.
FUNCTI ON SNext TypeSRsrc (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

- spRef Num I nt eger The slot resource table reference number.

- spCat egory | nt eger The Cat egor y field of the sRsr cType
entry (described on page 2-10).

- spCType | nt eger The cType field of the sRsr cType entry.

- spDrvr SW | nt eger The Dr SWfield of the sRsr cType entry.

- spDr vr HW I nt eger The Dr HWfield of the sRsr cType entry.

- spTBMask Si gnedByt e The type bit mask for sRsr cType fields.

- spSl ot Si gnedByt e The slot number.

- spld Si gnedByt e The sResource ID.

o spExt Dev Si gnedByt e The external device identifier.

- spHWDev Si gnedByt e The hardware device identifier.

2-38 Slot Manager Reference

DESCRIPTION

CHAPTER 2

Slot Manager

The SNext TypeSRsr ¢ function allows you to find the next sResource, as does the
SNext SRsr ¢ function, but the SNext TypeSRsr ¢ function skips disabled sResources.

You indicate the sResource you want returned by identifying the slot number, sResource
ID, and device ID in the spSl ot, spl D, and spExt Dev fields of the Slot Manager
parameter block you point to in the spBl kPt r parameter. You specify the type of the
sResource with the spCat egory, spCType, spDr vr SWand spDr vr HWfields. You must
also use the spTBMask to specify which of these sRsr c Type entry fields should not be
included in the search:

= Set bit 0 to ignore the Dr HWfield.
= Setbit 1 to ignore the Dr SWfield.

Jabeue 10|1S -

= Setbit 2 to ignore the cType field.

= Setbit 3 to ignore the Cat egory field.

The SNext TypeSRsr ¢ function returns values in the spSl ot , spl D, and spExt Dev
fields corresponding to the sResource that it found.

The SNext TypeSRsr ¢ function also returns a pointer to the sResource in the
spsPoi nt er field and returns other information about the sResource in the
spl OReser ved, spRef Num spCat egory, spCType, spDr vr SWand spDr vr HWfields.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SNext TypeSRsr ¢ function are
Trap macro Selector

_Sl ot Manager $0015

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0015

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

Slot Manager Reference 2-39

SEE ALSO

CHAPTER 2

Slot Manager

For information on enabling and disabling sResources, see “Enabling and Disabling
sResources” on page 2-18 and the description of the Set SRsr c St at e function on
page 2-51.

Getting Information From sResources

The Slot Manager provides a number of routines that simplify access to the information
in sResources. Most of these routines simply return the value of an sResource entry.

The SReadDr vr Nane function returns the name of an sResource, formatted as a Pascal
string and prefixed with a period. You can pass this string to the Device Manager’s
OpensSl ot function to open the driver.

The SReadByt e, SReadWbr d, and SReadLong functions return byte, word, or long
values from an sResource entry. The SGet CSt ri ng, SGet Bl ock, SReadSt r uct , and
SFi ndSt r uct functions return pointers to larger data types.

SReadDrorName

DESCRIPTION

2-40

You can use the SReadDr vr Nane function to read the name of an sResource in a format
you can use to open the driver with Device Manager routines.

FUNCTI ON SReadDr vr Nane (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

o spSl ot Si gnedByt e The slot number.

- spl D Si gnedByt e The sResource ID.

- spResul t Ptr A pointer to the driver name.
0 spSi ze Longl nt

O spsPoi nt er Ptr

The SReadDr vr Nane function reads the name of an sResource, prefixes a period to the
value, and converts it to type St r 255. The final driver name is compatible with the
Device Manager’s QpenDr i ver function.

You indicate an sResource by identifying the slot number and sResource ID in the
spSl ot and spl Dfields of the Slot Manager parameter block you point to in the
spBl kPt r parameter. In your program, you should declare a Pascal string variable
and pass a pointer to it in the spResul t field.

The SReadDr vr Nane function returns the driver name by copying it into the string
pointed to by the spResul t field.

Slot Manager Reference

CHAPTER 2

Slot Manager

SPECIAL CONSIDERATIONS

This function may alter the values of the spSi ze and spsPoi nt er fields of the
parameter block. Your application should not depend on the values returned in these
fields.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

SReadByte

The trap macro and routine selector for the SReadDr vr Nane function are

Trap macro Selector

_ Sl ot Manager $0019

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0019

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For more information about the device control entry and device driver reference
numbers, see the chapter “Device Manager” in this book.

You can use the SReadByt e function to determine the value of the low-order byte of an
sResource entry.

FUNCTI ON SReadByte (spBl kPtr: SpBlockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Slot Manager Reference 2-41

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Parameter block

—

-

OO

DESCRIPTION

spResul t
spsPoi nt er
spl D

spOfset Dat a
spByt eLanes

Longl nt
Ptr

Si gnedByt e
Longl nt
Si gnedByt e

The contents of the entry byte.

A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
The ID of the sResource entry.

The SReadByt e function returns the low-order byte of the offset field of an entry in an
sResource. You provide a pointer to the sResource in the spsPoi nt er field and the ID of
the entry in the spl Dfield. The SReadByt e function returns the value in the low-order

byte of the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spOf f set Dat a and spByt eLanes fields of
the parameter block. Your application should not depend on the values returned in these

fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadByt e function are

Trap macro
_SI ot Manager

Selector
$0000

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0
Do

Address of the parameter block

$0000

Registers on exit

DO

RESULT CODES

noErr

Result code

snNoMor esRsr cs

2-42 Slot Manager Reference

0
-344

No error
Requested sResource not found

SReadWord

CHAPTER 2

Slot Manager

DESCRIPTION

You can use the SReadWor d function to determine the value of the low-order word of an
sResource entry.

FUNCTI ON SReadWord (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.
N

Parameter block
- spResul t Longl nt The contents of the entry word. @
- spsPoi nt er Ptr A pointer to an sResource (described in =

“The sResource,” beginning on page 2-7). D
- spl D Si gnedByt e The ID of the sResource entry. 2
O spCf f set Dat a Longl nt g
O spByt eLanes Si gnedByt e

The SReadWbr d function returns the low-order word of the offset field of an entry in an
sResource. You provide a pointer to the sResource in the spsPoi nt er field of the Slot
Manager parameter block you point to in the spBl kPt r parameter, and you provide the
ID of the entry in the spl Dfield. The SReadWr d function returns the value in the low-
order word of the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spCOf f set Dat a and spByt eLanes fields of
the parameter block. Your application should not depend on the values returned in these
fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadWor d function are
Trap macro Selector

_Sl ot Manager $0001

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0001

Registers on exit
DO Result code

Slot Manager Reference 2-43

CHAPTER 2

Slot Manager

RESULT CODES
noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

SReadLong
You can use the SReadlLong function to determine the value of a long word pointed to
by the offset field of an sResource entry.
FUNCTI ON SReadLong (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
- spResul t Longl nt The contents of the long word.
- spsPoi nt er Ptr A pointer to an sResource (described in

“The sResource,” beginning on page 2-7).

- spl D Si gnedByt e The ID of the sResource entry.
O spSi ze Longl nt
O spOf f set Dat a Longl nt
O spByt eLanes Si gnedByt e

DESCRIPTION
The SReadLong function returns the 32-bit value pointed to by the offset field of an
sResource entry. In the Slot Manager parameter block you point to in the spBl kPt r
parameter, you provide a pointer to the sResource in the spsPoi nt er field and specify
the ID of the entry in the spl Dfield. The SReadLong function returns the long word
value in the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spSi ze, spOf f set Dat a, and spByt eLanes
fields of the parameter block. Your application should not depend on the values returned
in these fields.

ASSEMBLY-LANGUAGE INFORMATION

2-44

The trap macro and routine selector for the SReadLong function are

Trap macro Selector
_Sl ot Manager $0002

Slot Manager Reference

CHAPTER 2

Slot Manager

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0002

Registers on exit
DO Result code

Jabeue 10|1S -

RESULT CODES
noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found
SGetCString
You can use the SGet CSt r i ng function to determine the value of a string pointed to by
the offset field of an sResource entry.
FUNCTI ON SGet CString (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
- spResul t Ptr A pointer to a copy of the cSt ri ng data
structure.
- spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).
. spl D Si gnedByt e The ID of the sResource entry.
O spSi ze Longl nt
O spO fset Dat a Longl nt
O spByt eLanes Si gnedByt e
O spFl ags Si gnedByt e
DESCRIPTION

The SCGet CSt r i ng function returns a copy of the ¢St r i ng data structure pointed to by
the offset field of an sResource entry.

You provide a pointer to the sResource in the spsPoi nt er field and specify the ID of
the entry in the spl Dfield.

The SGet CSt r i ng function allocates a memory buffer, copies the value of the cStri ng
data structure into it, and returns a pointer to it in the spResul t field. You should
dispose of this pointer by using the Memory Manager procedure Di sposePtr.

Slot Manager Reference 2-45

CHAPTER 2

Slot Manager

SPECIAL CONSIDERATIONS

The SGet CSt r i ng function may alter the values of the spSi ze, spCf f set Dat a,
spByt eLanes, and spFl ags fields of the parameter block. Your application should not
depend on the values returned in these fields.

SPECIAL CONSIDERATIONS

The SGet CSt r i ng function allocates memory; your application should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

2-46

The trap macro and routine selector for the SGet CSt ri ng function are
Trap macro Selector

_ Sl ot Manager $0003

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0003

Registers on exit
DO Result code

NoErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For more information about the cSt r i ng data structure, see “Firmware,” beginning on
page 2-7.

Slot Manager Reference

SGetBlock

CHAPTER 2

Slot Manager

DESCRIPTION

You can use the SGet Bl ock function to obtain a copy of an sBl ock data structure
pointed to by the offset field of an sResource entry.

FUNCTI ON SGet Bl ock (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Ptr A pointer to a copy of an SBl ock data
structure (described on page 2-9).

spsPoi nter Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

spl D Si gnedByt e The ID of the sResource entry.

spSi ze Longl nt

spOf f set Dat a Longl nt

spByt eLanes Si gnedByt e

spFl ags Si gnedByt e

!

Jabeue 10|1S -

o o o e Y

The SCet Bl ock function returns a copy of the sBl ock data structure pointed to by the
offset field of an sResource entry.

In the parameter block you point to in the spBl kPt r parameter, you provide a pointer
to the sResource in the spsPoi nt er field and specify the ID of the entry in the spl D
field.

The SGet Bl ock function allocates a memory buffer, copies the contents of the sBl ock
data structure into it, and returns a pointer to it in the spResul t field. You should
dispose of this pointer by using the Memory Manager procedure Di sposePtr.

SPECIAL CONSIDERATIONS

The SGet Bl ock function may alter the values of the spSi ze, spCf f set Dat a,
spByt eLanes, and spFl ags fields of the parameter block. Your application should not
depend on the values returned in these fields.

The SCet Bl ock function allocates memory; your application should not call this
function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGet Bl ock function are

Trap macro Selector
_Sl ot Manager $0005

Slot Manager Reference 2-47

CHAPTER 2

Slot Manager

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0005

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found
SFindStruct
You can use the SFi ndSt r uct function to obtain a pointer to any data structure pointed
to by the offset field of an sResource entry. You might want to use this function, for
example, when the data structure type is defined by the card designer.
FUNCTI ON SFi ndStruct (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
- spsPoi nt er Ptr On input: a pointer to an sResource.
On output: a pointer to a data structure.
- spl D Si gnedByt e The ID of the sResource entry.
O spByt eLanes Si gnedByt e
DESCRIPTION
You provide a pointer to the sResource in the spsPoi nt er field, and the ID of the entry
in the spl Dfield. The SFi ndSt r uct function returns a pointer to the data structure in
the spResul t field.
SPECIAL CONSIDERATIONS
This function may alter the value of the spByt eLanes field of the parameter block. Your
application should not depend on the value returned in this field.
2-48 Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SFi ndSt r uct function are

Trap macro Selector
_Sl ot Manager $0006
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0006

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For information about obtaining a copy of a data structure pointed to by the offset field
of an sResource entry, rather than a pointer to the data structure, see the next section,
which describes the SReadSt r uct function.

SReadStruct

You can use the SReadSt r uct function to obtain a copy of any data structure pointed to
by an sResource entry. You might want to use this function, for example, when the data
structure type is defined by the card designer.

FUNCTI ON SReadStruct (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Ptr A pointer to a memory block.
- spsPoi nter Ptr A pointer to the structure.
- spSi ze Longl nt The length in bytes of the structure.

O spByt eLanes Si gnedByt e

Slot Manager Reference 2-49

Jabeue 10|1S -

DESCRIPTION

CHAPTER 2

Slot Manager

The SReadSt r uct function copies any arbitrary data structure from the declaration
ROM of an expansion card into memory.

You provide a pointer to the structure in the spsPoi nt er field and specify the size of
the structure in the spSi ze field. You must also allocate a memory block for the result
and send a pointer to it in the spResul t field.

The SReadSt r uct function copies the data structure into the memory block pointed to
by the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the value of the spByt eLanes field of the parameter block. Your
application should not depend on the value returned in this field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

2-50

The trap macro and routine selector for the SReadSt r uct function are

Trap macro Selector

_Sl ot Manager $0007

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0007

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For information about obtaining a pointer to a data structure pointed to by the offset
field of an sResource entry, rather than a copy of the data structure, see the description of
the SFi ndSt r uct function on page 2-48.

Slot Manager Reference

CHAPTER 2

Slot Manager

Enabling, Disabling, Deleting, and Restoring sResources

SetSRsrcState

The functions in this section are primarily for use by device drivers. The

Set SRsr cSt at e function enables and disables sResources. The next two functions,
SDel et eSRTRec and | nser t SRTRec, delete sResources from and restore them to the
slot resource table. The SUpdat e SRT function updates the slot resource table record for
an existing sResource.

DESCRIPTION

You can use the Set SRsr ¢St at e function to select which sResources are enabled.

Jabeue 10|1S -

FUNCTI ON Set SRsrcState (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spPar anDat a Longl nt Either a value of 0 to enable the sResource or
a value of 1 to disable it.

o spSl ot Si gnedByt e The slot number.

o spld Si gnedByt e The sResource ID.

- SpExt Dev Si gnedByt e The external device identifier.

The Set SRsr ¢St at e function enables or disables an sResource. All of the Slot Manager
functions recognize enabled sResources, while only the SGet SRsr ¢ and

SGet TypeSRsr ¢ functions (described on page 2-33 and page 2-35, respectively)

can recognize disabled ones.

You specify the sResource to enable or disable with the spSl ot , spl D, and spExt Dev
fields of the Slot Manager parameter block you point to in the SpBl kPt r parameter, and
you specify whether to enable or disable it in the spPar anDat a field. The Slot Manager
enables the sResource when the spPar anDat a field has a value of 0 and disables it
when the field has a value of 1.

SPECIAL CONSIDERATIONS

The Set SRsr ¢St at e function is available only with version 1 or later of the Slot
Manager. You can use the SVer si on function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

Slot Manager Reference 2-51

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the Set SRsr ¢St at e function are

Trap macro Selector

_Sl ot Manager $0009

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0009

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For more information on enabling and disabling sResources, see “Enabling and
Disabling sResources” on page 2-18.

For information on finding disabled sResources, see the description of the SGet SRsr ¢
function on page 2-33 and the description of the SGet TypeSRsr ¢ function on page 2-35.

SDeleteSRTRec

2-52

You can use the SDel et e SRTRec function to remove an sResource from the slot
resource table.

FUNCTI ON SDel et eSRTRec (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spSl ot Si gnedByt e The slot number.
- spld Si gnedByt e The sResource ID.
- SpExt Dev Si gnedByt e The external device identifier.

Slot Manager Reference

DESCRIPTION

CHAPTER 2
Slot Manager
The SDel et eSRTRec function deletes an sResource from the slot resource table. This

routine is typically called by a card’s Pri mar yl ni t code to delete any sResources that
are not appropriate for the system as configured.

SPECIAL CONSIDERATIONS

The SDel et eSRTRec function is available only with Manager. You can use the
SVer si on function, described on page 2-30, to determine whether the Slot Manager is
version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The trap macro and routine selector for the SDel et eSRTRec function are

Trap macro Selector

_Sl ot Manager $0031

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0031

Registers on exit
DO Result code

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15. For information about restoring an sResource to the slot resource table, see
the | nsert SRTRec function, described next. For more information on deleting and
restoring sResources, see “Deleting and Restoring sResources” on page 2-17.

Slot Manager Reference 2-53

Jabeue 10|1S -

CHAPTER 2

Slot Manager

InsertSRTRec

DESCRIPTION

2-54

You can use the | nsert SRTRec function to add an sResource to the slot resource table.
FUNCTI ON | nsert SRTRec (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spsPoi nt er Ptr ANl L pointer.

- spPar anDat a Longl nt Either a value of 0 to enable the sResource
or a value of 1 to disable it.

- spRef Num I nt eger The device driver reference number.

N spSl ot Si gnedByt e The slot number.

N spld Si gnedByt e The sResource ID.

- SpExt Dev Si gnedByt e The external device identifier.

The | nser t SRTRec function installs an sResource from the firmware of a NuBus card
into the slot resource table. For example, if the user makes a selection in the Monitors
control panel that requires your video card to switch to a new sResource that was
deleted by Pri maryl ni t code, you can use the | nsert SRTRec function to restore
that sResource.

You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the sSpBl KPt r parameter. You must set the
spsPoi nt er field to NI L. Set the spPar anDat a field to 1 to disable the restored
sResource or to 0 to enable it.

If you place a valid device driver reference number in the spRef Numfield, the

Slot Manager updates the dCt | DevBase field in that device driver’s device control
entry (that is, in the device control entry that has that driver reference number in the

dCt | Ref Numfield). The dCt | DevBase field contains the base address of the slot device.
For a video card this is the base address for the pixel map in the card’s GDevi ce record
(which is described in Inside Macintosh: Imaging With QuickDraw). For other types of
cards the base address is optional and defined by the card designer.

The base address consists of the card’s slot address plus an optional offset that the card
designer can specify using the M nor BaseQS or Maj or BaseCS entries of the sResource.
The Slot Manager calculates the base address by using bit 2 (the f 32Bi t Mbde flag)

of the sRsr cFl ags entry of the sResource. As shown in Table 2-4, the Slot Manager

first checks the value of bit 2 of the sRsr cFl ags field, and then it checks for a

M nor BaseCS entry. If it finds one, it uses this value to create a 32-bit value to store

in the dCt | DevBase field. If it does not find a M nor BaseOS entry, it uses the value in
the Maj or BaseCS entry, if any.

Slot Manager Reference

CHAPTER 2

Slot Manager

Table 2-4 How the Slot Manager determines the base address of a slot device
sRsrcFl ags M nor BaseCS Maj or BaseCs Address format
Field missing $x xxXxXX Any or none $Fs0x xxxx
Field missing None BxX XXXX FSXXX XXXX
Bit21is 0 $x xxXxXX Any or none $FsOx xxxx
Bit21is 0 None Bxx XXXX FSXXX XXXX
Bit2is 1 $x xxXxXX Any or none SFSXX XXXX
Bit2is 1 None Bxx XXXX FSXXX XXXX
Note
In this table, x represents any hexadecimal digit and s represents a slot
number. O

SPECIAL CONSIDERATIONS

The | nsert SRTRec function is available only with version 1 or later of the Slot
Manager. You can use the SVer si on function, described on page 2-30, to determine
whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the | nser t SRTRec function are

Selector
$000A

Trap macro
_ Sl ot Manager

You must set up register DO with the routine selector and register AQ with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains

the result code.

Registers on entry
A0 Address of the parameter block
DO $000A

Registers on exit
DO Result code

Slot Manager Reference

2-55

Jabeue 10|1S -

RESULT CODES

SEE ALSO

CHAPTER 2

Slot Manager

nokErr 0 No error

menful | Err -108 Not enough room in heap

smUnExBUSsErr -308 Bus error

snBadRef | d =330 Reference ID not found in list

smBadsLi st -331 Bad sResource: Id1 < 1d2 <1d3 ... format is not followed

snReservedErr -332 Reserved field not zero

snBl ot OOBEr r -337 Slot number out of bounds

smNoMor esRsr cs -344 Specified sResource not found

snmBadsPtr Err -346 Bad pointer was passed to SCal cSPoi nt er

snByt eLanesErr —347 Byt eLanes field in card’s format block was determined
to be zero

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15.

For information about deleting an sResource from the slot resource table, see the
SDel et eSRTRec function, described on page 2-52. For more information on deleting
and restoring sResources, see “Deleting and Restoring sResources” on page 2-17.

For more information about the device control entry and device driver reference
numbers, see the chapter “Device Manager” in this book.

SUpdateSRT

DESCRIPTION

2-56

For system software versions earlier than System 7, you can use the SUpdat eSRT
function to update the slot resource table record for an existing sResource. A new record
will be added if the sResource does not already exist in the slot resource table.

FUNCTI ON SUpdat eSRT (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spl OReser ved I nt eger The value to be stored in the | OReser ved
field of the slot resource table.

- spRef Num I nt eger The device driver reference number.

- spSl ot Si gnedByt e The slot number.

- spld Si gnedByt e The sResource ID.

- spExt Dev Si gnedByt e The external device identifier.

The SUpdat eSRT function adds or updates an record in the slot resource table. You
specify an sResource with the spS| ot , spl D, and spExt Dev fields of the Slot Manager
parameter block you point to in the spBl kPt r parameter. If a matching record is found

Slot Manager Reference

CHAPTER 2

Slot Manager

in the slot resource table, the Ref Numand | OReser ved fields of the table are updated. If
the record is not found, the sResource is added to the table by reading the appropriate
declaration ROM. Updates may be made to enabled sResources only.

SPECIAL CONSIDERATIONS

In System 7, this function was replaced by the | nser t SRTRec function (described on
page 2-54). You should use the SUpdat eSRT function only if version 1 or later of the Slot
Manager is not available. You can use the SVer si on function, described on page 2-30, to
determine whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SUpdat eSRT function are

Trap macro Selector

_Sl ot Manager $002B

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $002B

Registers on exit
DO Result code

noErr 0 No error

menful | Err -108 Not enough room in heap
snmEnpt y Sl ot -300 No card in this slot
snUnExBuUsErr =308 Bus error

snmBadRef | d -330 Reference ID not found in list
sl ot OOBEr r -337 Slot number out of bounds
smNoMor esRsr cs -344 Specified sResource not found

For more information about the slot resource table, see “About the Slot Manager” on
page 2-15.

For information about the preferred routine for adding an sResource to the slot resource
table, see the | nser t SRTRec function, described on page 2-54. For information about
deleting an sResource from the slot resource table, see the SDel et eSRTRec function,
described on page 2-52.

Slot Manager Reference 2-57

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Loading Drivers and Executing Code From sResources

SGetDriver

The functions in this section allow you to load the device driver associated with an
sResource or execute code from an sExecBl ock data structure. Both of the functions in
this section require you to provide extra information in a structure of type SEBI ock. See
“Slot Execution Parameter Block” on page 2-27 for information about the fields of this
structure.

You can use the SGet Dri ver function to load an sResource’s device driver.
FUNCTI ON SGet Dri ver (spBl kPtr: SpBlockPtr): OCSErr
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Handl e A handle to the device driver.
- spsExecPBI k Ptr A pointer to the SEBI ock.
5 spSl ot Si gnedByt e The slot number.
N spl D Si gnedByt e The sResource ID.
- spExt Dev Si gnedByt e The external device ID.
O spSi ze Si gnedByt e
O spFl ags Si gnedByt e

DESCRIPTION
The SGet Dri ver function loads a device driver from an sResource into a relocatable
block in the system heap.
You specify an sResource with the spSl ot , spl D, and spExt Dev fields of the Slot
Manager parameter block you point to in the spBl kPt r parameter, and provide a
pointer to a slot execution parameter block in the spsExecPBlI k field.
The SGet Dri ver function searches the sResource for an sRsr cLoadRec entry. If it
finds one, it loads the sLoadDr i ver record and executes it. If no SRsr cLoadRec entry
exists, the SGet Dri ver function looks for an sRsr cDr vr Di r entry. If it finds one, it
loads the driver into memory.
The SGet Dri ver function returns a handle to the driver in the spResul t field of the
parameter block.

SPECIAL CONSIDERATIONS
The SCGet Dri ver function allocates memory; your application should not call this
function at interrupt time.

2-58 Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

SExec

The trap macro and routine selector for the SGet Dri ver function are

Trap macro Selector

_Sl ot Manager $002D

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register A0 contains a
handle to the loaded driver, and register DO contains the result code.

Registers on entry

A0 Address of the parameter block

DO $002D

Registers on exit
A0 Handle to loaded driver
DO Result code

noEr r 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For more information about sResources, including the sRsr cDr vr Di r and
sRsr cLoadRec entry types, see Designing Cards and Drivers for the Macintosh Family,
third edition.

You can use the SExec function to execute code stored in an SExecBIl ock data structure.
FUNCTI ON SExec (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

. spsPoi nt er Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

- spsExecPBIl k Ptr A pointer to the SEBI ock.

- spl D Si gnedByt e The ID of the sExecBl ock entry in the
sResource.

O spResul t Longl nt

Slot Manager Reference 2-59

Jabeue 10|1S -

DESCRIPTION

CHAPTER 2

Slot Manager

The SExec function loads sExecBl ock code from an sResource into the current heap
zone, checks its revision level, and executes the code.

You specify the sExecBl ock by providing a pointer to the sResource in the

spsPoi nt er field and the ID of the sExecBl ock entry in the spl Dfield. You must also
provide in the spsExecPBI k field a pointer to a slot execution parameter block. The
SEBI ock structure allows you to provide information about the execution of the
sExecBl ock code.

The SExec function passes the SExecBl ock code a pointer to the SEBI ock structure in
register AQ.

SPECIAL CONSIDERATIONS

The SExec function allocates memory; your application should not call this function at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

2-60

The trap macro and routine selector for the SExec function are

Trap macro Selector

_ Sl ot Manager $0023

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

Do $0023

Registers on exit
DO Result code

nokErr 0 No error

smCodeRevErr -333 The revision of the code to be executed by sExec was
wrong

snCPUEr r -334 The CPU field of the code to be executed by sExec was
wrong

smNoMor esRsr cs -344 Requested sResource not found

For more information about the sExecBl ock data structure, see page 2-9.

Slot Manager Reference

CHAPTER 2

Slot Manager

Getting Information About Expansion Cards and Declaration ROMs

SReadlInfo

The functions in this section return information about slot status or about entire
declaration ROMs, instead of single sResources. The SReadl nf o function returns
information from the slot information record maintained by the Slot Manager for a
particular slot. See “Slot Information Record,” beginning on page 2-24 for a description
of the slot information record.

The SReadFHeader functions returns a copy of the information in the format block of
a card’s declaration ROM. The SCkCar dSt at function returns a card’s initialization
status. The SCar dChanged function reports whether the card in a particular slot has
changed.

The SFi ndDevBase function returns the base address of a slot device.

DESCRIPTION

You can use the SRead| nf o function to obtain a copy of the slot information record for a
particular slot.

FUNCTI ON SReadl nfo (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block
- spResul t Poi nt er A pointer to a slot information record.

- spSl ot Si gnedByt e The slot number.
O spSi ze Longl nt

The Slot Manager maintains a slot information record for each slot. The SReadl nf o
function copies the information from this data structure for the requested slot.

You specify the slot with the spS| ot parameter. You must also allocate a slot
information record, and provide a pointer to it in the spResul t field. The SReadI nf o
function copies the information in the slot information record maintained by the Slot
Manager into the data structure pointed to by the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spSi ze field. Your application should not
depend on the value returned in this field.

Slot Manager Reference 2-61

Jabeue 10|1S -

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SRead| nf o function are

Trap macro Selector
_Sl ot Manager $0010
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0010

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
snmEnpt y Sl ot -300 No card in this slot
SEE ALSO
For general information about the slot information record, see “About the Slot Manager”
on page 2-15. To obtain a pointer to the SI nf oRecor d data structure, instead of a copy
of it, see the next section, which describes the SReadFHeader function.
SReadFHeader
You can use the SReadFHeader function to obtain a copy of the information in the
format block of a declaration ROM.
FUNCTI ON SReadFHeader (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
- spResul t Poi nt er A pointer to an FHeader Rec data
structure (described on page 2-26).
- spSl ot Si gnedByt e The slot number.
O spsPoi nt er Ptr
O spSi ze Longl nt
O spOf f set Dat a Longl nt
O spByt eLanes Si gnedByt e
2-62 Slot Manager Reference

DESCRIPTION

CHAPTER 2

Slot Manager

The SReadFHeader function copies the information from the format block of the
expansion card in the requested slot to an FHeader Rec data structure you provide.

You specify the slot with the spS| ot parameter. You must also allocate an FHeader Rec
data structure and provide a pointer to it in the spResul t field.

The SReadI nf o function copies the information in the format block into the data
structure pointed to by the spResul t field.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spsPoi nt er, spSi ze, spOf f set Dat a, and
spByt eLanes fields. Your application should not depend on the values returned in
these fields.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SReadFHeader function are

Trap macro Selector

_Sl ot Manager $0013

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0013

Registers on exit
DO Result code

nokErr 0 No error
smEnpt y Sl ot -300 No card in this slot

For general information about the format block, see “The Format Block,” beginning on
page 2-13. For information about the fields of the format block, see Designing Cards and
Drivers for the Macintosh Family, third edition.

Slot Manager Reference 2-63

Jabeue 10|1S -

CHAPTER 2

Slot Manager

SCkCardStat

DESCRIPTION

You can use the SCkCar dSt at function to check the initialization status of an expansion
card.

FUNCTI ON SCkCar dStat (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

N spSl ot Si gnedByt e The slot number.
O spResul t Longl nt

The SCkCar dSt at function checks the | ni t St at usAfield of the slot information
record for the expansion card in the designated slot. You specify the slot in the spS| ot
field of the Slot Manager parameter block you point to in the spBl kPt r parameter. The
SCkCar dSt at function returns the noEr r result code if the | ni t St at usAfield
contains a nonzero value.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spResul t field. Your application should not
depend on the values returned in this field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-64

The trap macro and routine selector for the SCkCar dSt at function are

Trap macro Selector
_Sl ot Manager $0018
You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0018

Registers on exit
DO Result code

noErr 0 No error
smEnpt y Sl ot -300 No card in this slot

Slot Manager Reference

CHAPTER 2

Slot Manager

SEE ALSO
For more information about card initialization, see “About the Slot Manager,” beginning
on page 2-15.
SCardChanged
You can use the SCar dChanged function to determine if the card in a particular slot has
been changed.
FUNCTI ON SCar dChanged (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
. spSl ot Si gnedByt e The slot number.
- spResul t Longl nt A Boolean signifying whether the card was
changed.
DESCRIPTION

The SCar dChanged function checks if the expansion card in a slot has been changed
(that is, if the card’s SPRAM ni t record has been initialized). You specify the slot in the
spSl ot field of the Slot Manager parameter block you point to in the spBl kPt r
parameter.

The SCar dChanged function returns a value of TRUE in the spResul t field of the
parameter block if the card has been changed.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SCar dChanged function are

Trap macro Selector
_Sl ot Manager $0022

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0022

Registers on exit
DO Result code

Slot Manager Reference 2-65

Jabeue 10|1S -

CHAPTER 2

Slot Manager

RESULT CODES

noErr 0 No error

smEnpt y Sl ot -300 No card in this slot
SFindDevBase

DESCRIPTION

2-66

You can use the SFi ndDevBase function to determine the base address of a slot device.
FUNCTI ON SFi ndDevBase (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spSl ot Si gnedByt e The slot number.
- spld Si gnedByt e The sResource ID.
- spResul t Longl nt The device base address.

The SFi ndDevBase function returns the base address of a device, using information
contained in the sResource. Use of the base address is optional (except for video cards)
and device-specific. For a video card this must be the base address for the pixel map in
the card’s GDevi ce record (which is described in Inside Macintosh: Imaging With
QuickDraw.) For other types of cards, the base address is defined by the card designer.
The Slot Manager makes no use of this information.

The base address consists of the card’s slot address plus an optional offset that the card
designer can specify using the M nor BaseOS or Maj or BaseCS entries of the sResource.
See Table 2-4 on page 2-55 for a description of how the Slot Manager calculates the base
address.

You specify the slot in the spSl ot field of the Slot Manager parameter block you
point to in the spBl kPt r parameter, and the sResource ID with the spl d field.
The SFi ndDevBase function returns the base address in the spResul t field of the
parameter block.

Note

The base address of a slot device is also stored in the dCt | DevBase
field of the device control entry. The | nser t SRTRec function
automatically updates the dCt | DevBase field when a new record is
added to the slot resource table. You need to call SFi ndDevBase only
if you used the SUpdat eSRTRec function to update the slot resource
table. O

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SFi ndDevBase function are
Trap macro Selector
_Sl ot Manager $001B
You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.
Registers on entry
A0 Address of the parameter block
DO $001B

Registers on exit
DO Result code

RESULT CODES

nokErr 0 No error
snmEnpt y Sl ot -300 No card in this slot

SEE ALSO
For more information about how the device base address is calculated, see the
description of the | nser t SRTRec function on page 2-54.

Accessing Expansion Card Parameter RAM

The Macintosh Operating System reserves six bytes of parameter RAM per slot for any
card-specific information that the card designer chooses to store. The functions in this
section allow you to read or change the value of these bytes. Both of the functions in
this section use the slot parameter RAM record to return the parameter RAM values.

SReadPRAMRec

You can use the SReadPRAMRec function to read the parameter RAM information for a
particular slot.

FUNCTI ON SReadPRAMRec (spBl kPtr: SpBlockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Slot Manager Reference 2-67

Jabeue 10|1S -

DESCRIPTION

CHAPTER 2

Slot Manager

Parameter block

- spSl ot Si gnedByt e The slot number.

- spResul t Poi nt er A pointer to an SPRAMRecor d data structure
(described on page 2-27).

O spSi ze Longl nt

The Macintosh Operating System allocates one SPRAMRecor d data structure for each
slot in the system parameter RAM. The Slot Manager initializes this structure with the
data from the SPRAM ni t record on the firmware of the expansion card. The
SReadPRAMRec function provides a copy of this information to your application.

You specify the slot number in the spS| ot field of the Slot Manager parameter block
you point to in the spBl kPt r parameter. You must also allocate a SPRAMRecor d data
structure and store a pointer to it in the spResul t field. The SReadPRAMRec function
copies the appropriate parameter RAM information into this data structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

2-68

The trap macro and routine selector for the SReadPRAMRec function are

Trap macro Selector

_Sl ot Manager $0011

You must set up register DO with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0011

Registers on exit
DO Result code

nokErr 0 No error
snmEnpt y Sl ot -300 No card in this slot

For more information about the SPRAM ni t record, see Designing Cards and Drivers for
the Macintosh Family, third edition.

Slot Manager Reference

CHAPTER 2

Slot Manager

SPutPRAMRec

DESCRIPTION

You can use the SPut PRAMRec function to change the values stored in a slot’s parameter
RAM.

FUNCTI ON SPut PRAMRec (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spsPoi nt er Ptr A pointer to an SPRAMRecor d data structure
(described on page 2-27).
N spSl ot Si gnedByt e The slot number.

Jabeue 10|1S -

The SPut PRAMRec function allows you to change the values stored in the parameter
RAM of a slot.

In the parameter block you point to in the spBl kPt r parameter, you specify the slot
number with the spSl ot field and provide the new parameter RAM values in a
SPRAMRecor d data structure pointed to by the spsPoi nt er field.

The SPut PRAMRec function copies the information from the six vendor-use fields into
the parameter RAM for the slot. This function does not copy the boar dl D field, which is
Apple-defined.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SPut PRAMRec function are
Trap macro Selector

_Sl ot Manager $0012

You must set up register DO with the routine selector and register A0 with the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0012

Registers on exit
DO Result code

noErr 0 No error
smEnpt y Sl ot =300 No card in this slot

Slot Manager Reference 2-69

CHAPTER 2

Slot Manager

Managing the Slot Interrupt Queue

SIntInstall

The Slot Manager maintains an interrupt queue for each slot. If your card generates
interrupts, you can install a slot interrupt handler to process the interrupts. You use the
Sl ntlnstall function to install an interrupt handler in the slot interrupt queue, and
the Sl nt Renove function to remove an interrupt handler from the queue.

DESCRIPTION

You use the Sl nt I nst al | function to install an interrupt handler in the slot interrupt
queue for a designated slot.

FUNCTION Sintlnstall (sIntQel enmPtr: SQEl enPtr;
theSlot: Integer) : OCsErr;

slnt QEl enPtr
A pointer to a slot interrupt queue element record, described on page 2-28.

t heSl ot The slot number.

The Sl nt I nst al | function adds a new element to the interrupt queue for a slot. You
provide a pointer to a slot interrupt queue element in the sl nt QEl enPt r parameter and
specify the slot number int heSl ot .

The Slot Manager calls your interrupt handler using a JSR instruction. Your routine
must preserve the contents of all registers except Al and DO, and return to the Slot
Manager with an RTS instruction. Register D0 should be set to 0 if your routine did
not service the interrupt, or any other value if the interrupt was serviced. Your routine
should not set the processor priority below 2, and must return with the processor
priority equal to 2.

ASSEMBLY-LANGUAGE INFORMATION

2-70

The trap macro for the SI nt I nstal | functionis _SIntlnstall ($A075).

You must set up register DO with the slot number and register A0 with the address of the
slot queue element. When _SI nt I nst al | returns, register DO contains the result code.

Registers on entry
AQ address of the slot queue element

DO slot number

Registers on exit
DO Result code

Slot Manager Reference

RESULT CODES

SIntRemove

CHAPTER 2

Slot Manager

noErr 0 No error

DESCRIPTION

You use the SI nt Renove function to remove an interrupt handler from a slot’s interrupt
queue.

FUNCTI ON SI nt Renove (slntQElenPtr: SQEl enPtr;
theSlot: Integer) : OsErr;

sl nt Qel enPtr
A pointer to a slot interrupt queue element record, described on page 2-28.

t heSl ot The slot number.

The Sl nt Renove function removes an element from the interrupt queue for a slot. You
provide a pointer to a slot interrupt queue element in the sl nt QEl enPt r parameter and
specify the slot number int heSl ot .

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro for the SI nt Renpve function is _SI nt Renove ($A076).

You must set up register DO with the slot number and register A0 with the address of the
slot queue element. When _SI nt Renpve returns, register DO contains the result code.

Registers on entry
A0 address of the slot queue element

DO slot number

Registers on exit
DO Result code

noErr 0 No error

For a description of the slot interrupt queue element record, see “Slot Interrupt Queue
Element” on page 2-28.

Slot Manager Reference 2-71

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Low-Level Routines

A

The routines in this section are used internally by the Macintosh Operating System
during startup, and as needed by the Slot Manager. They are included here for reference
only, and as an aid to debugging. These routines are not required or supported for
application-level programming. Applications and device drivers should rely only on
the high-level routines described in the previous section, “Slot Manager Routines.”

WARNING

The routines in this section are internal Macintosh Operating System
functions that may be changed without notice by Apple Computer, Inc.
These routines may not be supported by future versions of the
Operating System. a

InitSDecIMgr

DESCRIPTION

This function is used only by the Macintosh Operating System.
FUNCTI ON | ni t SDecl Myr (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

The | ni t SDecl Myr function initializes the Slot Manager. The contents of the parameter
block are undefined. This function allocates the slot information record and checks each
slot for a card. If a card is present, the Slot Manager validates the card’s firmware and the
resulting information is placed in the slot’s s| nf oRecor d. For empty slots, or cards that
fail to initialize, the Slot Manager stores the appropriate error code in the i ni t St at usA
field of the sI nf oRecor d for the slot.

SPECIAL CONSIDERATIONS

The | ni t SDecl Myr function allocates memory.

ASSEMBLY-LANGUAGE INFORMATION

2-72

The trap macro and routine selector for the | ni t SDecl Myr function are

Trap macro Selector
_Sl ot Manager $0020

Slot Manager Reference

CHAPTER 2

Slot Manager

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0020

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
smMUnExBuUsEr r -308 Abus error occurred
snmDi sposePErr -312 An error occurred during execution of Di sposePt r
snmBadsPtr Err -346 Bad spsPoi nt er value
snByt eLanesErr -347 Bad spByt eLanes value
SEE ALSO
For more information about Slot Manager initialization, see “About the Slot Manager,”
beginning on page 2-15.
SCalcSPointer
This function is used only by the Macintosh Operating System.
FUNCTI ON SCal cSPoi nter (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
o spsPoi nt er Ptr A pointer to a byte in declaration ROM.
- spOfsetData Longl nt The offset in bytes to desired pointer.
- spByt eLanes Si gnedByt e The byte lanes used.
DESCRIPTION

The SCal cSPoi nt er function returns a pointer to a given byte in the declaration ROM
of an expansion card.

Slot Manager Reference 2-73

Jabeue 10|1S -

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SCalcStep

The trap macro and routine selector for the SCal cSPoi nt er function are

Trap macro Selector
_Sl ot Manager $002C
On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $002C

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

DESCRIPTION

2-74

This function is used only by the Macintosh Operating System.
FUNCTI ON SCal cStep (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Longl nt The function result.

- spsPoi nt er Ptr A pointer to a byte in declaration ROM.
- spByt eLanes Si gnedByt e The byte lanes used.

- spFl ags Si gnedByt e Flags.

The SCal cSt ep function calculates the field sizes in the block pointed to by spBl kPt r.
It is used for stepping through the card firmware one field at a time. If the

f ConsecByt es flag is set the function calculates the step value for consecutive bytes;
otherwise it calculates it for consecutive IDs.

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCal ¢St ep function are

Trap macro Selector
_Sl ot Manager $0028

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains

the result code.

Registers on entry

A0 Address of the parameter block
DO $0028

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

smNoMor esRsr cs -344 Requested sResource not found
SFindBigDevBase

This function is obsolete.

FUNCTI ON SFi ndBi gDevBase (spBl kPtr: SpBlockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spSl ot Si gnedByt e The slot number.

- spld Si gnedByt e The sResource ID.

- spResul t Longl nt The device base address.
DESCRIPTION

The SFi ndBi gDevBase function has been superseded by the SFi ndDevBase function.

Currently, both functions execute the same code and return the same result. However,

for future compatibility you should use only the SFi ndDevBase function described on

page 2-66.

Slot Manager Reference

2-75

Jabeue 10|1S -

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SFi ndBi gDevBase function are

Trap macro Selector

_Sl ot Manager $001C

On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $001C

Registers on exit
DO Result code

nokErr 0 No error
snmEnpt y Sl ot -300 No card in this slot

For information about the supported function for finding a device base address, see the
description of the SFi ndDevBase function on page 2-66.

SFindSInfoRecPtr

DESCRIPTION

2-76

This function is used only by the Macintosh Operating System.
FUNCTI ON SFi ndSI nf oRecPtr (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spResul t Longl nt A pointer to the slot information record.
. spSl ot Si gnedByt e The slot number.

The SFi ndSI nf oRecPt r function returns a pointer to the slot information record for a
particular slot.

Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFi ndSI nf oRecPt r function are

Trap macro Selector

_Sl ot Manager $002F

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $002F

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found
SEE ALSO
For information about the high-level routine for reading the slot information record, see
the description of the SRead| nf o function on page 2-61.
SFindSRsrcPtr
This function is used only by the Macintosh Operating System.
FUNCTI ON SFi ndSRsrcPtr (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
- spsPoi nt er Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).
N spSl ot Si gnedByt e The slot number of the requested sResource.
- spld Si gnedByt e The sResource ID of the requested sResource.
O spResul t Longl nt
DESCRIPTION

The SFi ndSRsr cPt r function finds an sResource given its slot number and sResource
ID. This function ignores disabled sResources.

Slot Manager Reference 2-77

Jabeue 10|1S -

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFi ndSRsr cPt r function are

Trap macro Selector
_Sl ot Manager $0030
On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $0030

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found
SEE ALSO
For information about the high-level routines for locating sResources, see “Finding
sResources,” beginning on page 2-31.
SGetSRsrcPtr
This function is used only by the Macintosh Operating System.
FUNCTI ON SCGet SRsrcPtr (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.
Parameter block
- spsPoi nt er Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).
- spPar anDat a Longl nt The parameter flags.
N spSl ot Si gnedByt e The slot number of the requested sResource.
> spl D Si gnedByt e The sResource ID of the requested sResource.
> SpExt Dev Si gnedByt e The external device identifier.
DESCRIPTION
The SGet SRsr cPt r function finds an sResource given its slot number and sResource ID.
This function can search disabled sResources.
2-78 Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SGet SRsr cPt r function are

Trap macro Selector

_Sl ot Manager $001D

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $001D

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For information about the high-level routines for locating sResources, see “Finding
sResources,” beginning on page 2-31.

SInitPRAMRecs

DESCRIPTION

This function is used only by the Macintosh Operating System.
FUNCTI ON Sl ni t PRAMRecs (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

The Sl ni t PRAMRecs function scans every slot and checks its Boar dl d value against
the value stored in PRAM. If the values do not match, the f Car dl sChanged flag is

set and the board sResource is searched for a PRAM ni t Dat a entry. If one is found, the
sPRAMRecor d for the slot is initialized with the data from the card’s SPRAM ni t record;
otherwise it is initialized to 0. The contents of the parameter block are undefined.

SPECIAL CONSIDERATIONS

The Sl ni t PRAMRecs function may move memory.

Slot Manager Reference 2-79

Jabeue 10|1S -

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Sl ni t PRAMRecs function are
Trap macro Selector
_Sl ot Manager $0025
On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.
Registers on entry
A0 Address of the parameter block
DO $0025

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

smUnExBUSErr -308 A bus error occurred

snDi sposePErr =312 An error occurred during execution of Di sposePt r
SEE ALSO

4

For more information about Slot Manager initialization, see “About the Slot Manager,’
beginning on page 2-15.

SInitSRsrcTable

This function is used only by the Macintosh Operating System.
FUNCTI ON Sl nit SRsrcTabl e (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

DESCRIPTION

The Sl ni t SRsr cTabl e function initializes the slot resource table. The contents of the
parameter block are undefined.

SPECIAL CONSIDERATIONS
The Sl ni t SRsr cTabl e function allocates memory.

2-80 Slot Manager Reference

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the Sl ni t SRsr cTabl e function are

Trap macro Selector

_Sl ot Manager $0029

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains

the result code.

Registers on entry

A0 Address of the parameter block

DO $0029

Registers on exit
DO Result code

noErr 0
smMUnExXBuUsErr -308
snDi sposePErr =312

For more information about Slot Manager initialization, see “About the Slot Manager,’

beginning on page 2-15.

SOffsetData

No error
A bus error occurred
An error occurred during execution of Di sposePtr

4

DESCRIPTION

This function is used only by the Macintosh Operating System.

FUNCTI ON SOf f set Data (spBl kPtr: SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block
o spsPoi nt er

- spOfset Dat a
- spl D
- spByt eLanes

On output: A pointer to the sResource
entry.

Longl nt The contents of the of f set field.
Si gnedByt e The ID of the sResource entry.
Si gnedByt e The byte lanes from the card’s format block.

The SO f set Dat a function returns the value of the offset field of an sResource entry.

Slot Manager Reference

2-81

Jabeue 10|1S -

CHAPTER 2

Slot Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SOf f set Dat a function are

Trap macro Selector

_Sl ot Manager $0024

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $0024

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For information about high-level routines for getting information from sResources, see
the descriptions of the SReadByt e, SReadWor d, SReadLong, SCet CSt ri ng,

SCet Bl ock, SReadSt r uct, and SFi ndSt r uct functions in “Getting Information From
sResources,” beginning on page 2-40.

SPrimarylInit

DESCRIPTION

2-82

This function is used only by the Macintosh Operating System.
FUNCTION SPrimarylnit (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block
- spFl ags Si gnedByt e Flags passed to the card’s Pri mar yl ni t code.

Called by the Slot Manager during system startup, the SPri mar yl ni t function
executes the code in the Pri mar yl ni t entry of each card’s board sResource. It passes
the spFl ags byte to the Pri maryl ni t code via the seFl ags field of the SEBI ock. The
fVar St ar t bit is set if a restart is being performed.

Slot Manager Reference

CHAPTER 2

Slot Manager

SPECIAL CONSIDERATIONS

The SPri maryl ni t function may move memory.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPri maryl ni t function are

RESULT CODES

SEE ALSO

SPtrToSlot

Trap macro Sel

ector

_Sl ot Manager $0021

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains

the result code.

Registers on entry

A0 Address of the parameter block

DO $0021

Registers on exit
DO Result code

noErr
smUnExBUSErr
snDi sposePErr
snBadsPtrErr
snByt eLanesErr

For more information about Slot Manager initialization, see “About the Slot Manager,”

beginning on page 2-15.

0 No error
-308
=312
-346
-347

A bus error occurred
An error occurred during execution of Di sposePt r
Bad spsPoi nt er value

Bad spByt eLanes value

7

This function is used only by the Macintosh Operating System.

FUNCTI ON SPtrToSl ot (spBl kPtr:

SpBl ockPtr): OSErr;

spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

N spsPoi nt er
- spSl ot

Slot Manager Reference

Ptr
Si gnedByt e

A pointer to a byte in declaration ROM.
The slot number.

2-83

Jabeue 10|1S -

DESCRIPTION

CHAPTER 2

Slot Manager

The SPt r ToSI ot function returns the slot number of the card whose declaration ROM
is pointed to by spsPoi nt er. The value of spsPoi nt er must have the form
$Fsxx xxxx, where s is a slot number and x is a hexadecimal number.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPt r ToS| ot function are

Trap macro Selector

_Sl ot Manager $002E

On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $002E

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
smMUnExXBuUsErr -308 A bus error occurred
snBadsPtrErr -346 Bad spsPoi nt er value
SReadPBSize

2-84

This function is used only by the Macintosh Operating System.
FUNCTI ON SReadPBSi ze (spBl kPtr: SpBl ockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

o spsPoi nt er Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

- spSi ze Longl nt The size of the sBl ock data structure.

N spl D Si gnedByt e The ID of the sBI ock in the sResource.

- spByt eLanes Si gnedByt e The byte lanes from the card’s format block.

- spFl ags Si gnedByt e Flags.

Slot Manager Reference

DESCRIPTION

CHAPTER 2

Slot Manager

The SReadPBSi ze function returns the size of an sBl ock data structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the SReadPBSi ze function are

Trap macro Selector

_Sl ot Manager $0026

On entry, register DO contains the routine selector and register A0 contains the address of
the Slot Manager parameter block. When _S| ot Manager returns, register DO contains
the result code.

Registers on entry

A0 Address of the parameter block

DO $00026

Registers on exit
DO Result code

noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found

For more information about the high-level routine for obtaining information from an
sBIl ock data structure, see the description of the SCGet Bl ock function on page 2-47.

SSearchSRT

This function is used only by the Macintosh Operating System.
FUNCTI ON SSear chSRT (spBl kPtr: SpBlockPtr): OSErr;
spBl kPt r A pointer to a Slot Manager parameter block.

Parameter block

- spsPoi nt er Ptr A pointer to a record in the slot resource table.
- spl D Si gnedByt e The ID of the sResource entry.

> spExt Dev Si gnedByt e The external device identifier.

- spSl ot Si gnedByt e The slot.

> spFl ags Si gnedByt e Flags.

Slot Manager Reference 2-85

Jabeue 10|1S -

CHAPTER 2

Slot Manager

DESCRIPTION

The SSear chSRT function searches the slot resource table for the record corresponding
to the sResource in slot spSl ot with list spl d and external device identifier spExt Dev,
and returns a pointer to it in spsPoi nt er. If the f CkFor Next bit of spFl ags is 0, the
function searches for the specified record; if the flag is 1, it searches for the next record.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SSear chSRT function are
Trap macro Selector
_ Sl ot Manager $002A
On entry, register DO contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SI ot Manager returns, register DO contains
the result code.

Registers on entry
A0 Address of the parameter block
DO $002A

Registers on exit
DO Result code

RESULT CODES
noErr 0 No error
smNoMor esRsr cs -344 Requested sResource not found
smRecNot Fnd -351 Record not found in the slot resource table

2-86 Slot Manager Reference

CHAPTER 2

Slot Manager

Summary of the Slot Manager

Pascal Summary

Constants

CONST
{si StatusFlags field of SInfoRecord}

f Car dl sChanged = 1;
{flags for SSearchSRT}

f CkFor Sane = 0;
f CkFor Next = 1;

{flag passed to card
f War nSt ar t

by SPrimarylnit
2;

{constants for siState field of slInf

stateNi | = 0;
st at eSDM ni t = 1;
st at ePRAM ni t 2;
statePlnit = 3;
stateSInit = 4;

{card has changed}

Jabeue 10|1S -

{check for same sResource in tabl e}
{check for next sResource in table}

during startup or
{warm start if set;

restart}
el se cold start}

oRecor d}

{state}

{sl ot declaration manager
{sPRAM record init}
{primary init}

{secondary init}

init)

{bit flags for spParanmData field of SpBl ock}
fAlI = 0; {if set, search all sResources}
f OneSl ot = 1; {if set, search in given slot only}
f Next = 2; {if set, search for next sResource}
Data Types
TYPE SpBl ock = {Sl ot Manager paraneter bl ock}
PACKED RECORD
spResul t: Longl nt ; {function result}
spsPoi nter: Ptr; {structure pointer}
spSi ze: Longl nt ; {size of structure}
spOF f set Dat a: Longl nt; {of fset or data}
spl OFi | eNane: Ptr; {reserved for Slot Mnager}
spsExecPBI k: Ptr; {pointer to SEBl ock data structure}
spPar anDat a: Longl nt; {fl ags}

Summary of the Slot Manager

2-87

CHAPTER 2

Slot Manager

spM sc: Longl nt;
spReserved: Longl nt ;
spl OReser ved: I nt eger;
spRef Num I nt eger;
spCat egory: I nt eger;
spCType: I nt eger;
spDrvr SW I nt eger;
spDrvr HW I nt eger;
spTBMask: Si gnedByt e;
spSl ot : Si gnedByt €;
spl D: Si gnedByt e;
SpExt Dev: Si gnedByt e;
spHwDev: Si gnedByt e;
spByt eLanes: Si gnedByt e;
spFl ags: Si gnedByt e;
spKey: Si gnedByt e;
END;

SpBl ockPtr = ~SpBl ock;

S| nf oRecord =
PACKED RECORD
siDirPtr: Ptr;

si I nitStatusA: I nt eger;
silnitStatusV: I nt eger;
si State: Si gnedByt e;
si CPUByt eLanes: Si gnedByt €;
si TopOf ROM Si gnedByt e;
si St at usFl ags: Si gnedByt e;
si TOConst ant : I nt eger;
si Reserved:
si ROVAddr : Ptr;
si Sl ot: Char ;
si Paddi ng:

END;

Sl nf oRecPtr = 2SI nfoRecord;

FHeader Rec =
PACKED RECORD
fhDirOf fset: Longl nt;
f hLengt h: Longl nt ;
f hCRC: Longl nt ;
f hROVRev: Si gnedByt e;
f hFor mat : Si gnedByt e;

2-88 Summary of the Slot Manager

PACKED ARRAY [0..1] OF SignedByte;

PACKED ARRAY [0..2] OF SignedByte;

{reserved for Slot Mnager}
{reserved for Slot Manager}

{i oReserved field from SRT}
{driver reference nunber}
{Category field of sRsrcType entry}
{cType field of sRsrcType entry}
{DrSWfield of sRsrcType entry}
{DrHWfield of sRsrcType entry}
{sRsrcType entry bit mask}

{sl ot nunber}

{sResource | D}

{external device |ID}

{har dwar e device |D}

{valid byte | anes}

{flags used by Sl ot Manager}
{reserved for Slot Mnager}

{slot information record}

{pointer to sResource directory}
{initialization error}

{status returned by vendor }

{ initialization routine}
{initialization state}

{byte | anes used}

{hi ghest valid address in ROV}
{status flags}

{tinmeout constant for bus error}
{reserved}
{address of top of ROV

{sl ot nunber}

{reserved}

{format header record}

{offset to sResource directory}
{length in bytes of declaration ROV
{cyclic redundancy check}

{decl arati on ROM revi si on}

{decl arati on ROM f or mat }

CHAPTER 2

Slot Manager

fhTst Pat :

f hReser ved

f hByt eLanes:
END;

Longl nt;
Si gnedByt e
Si gnedByt e

FHeader RecPtr = ~FHeader Rec;

SPRAMRecord =
PACKED RECORD
boar dl D

vendor Usel:

vendor Use2:

vendor Use3:

vendor Use4:

vendor Useb:

vendor Use6:
END;

I nt eger;

Si gnedByt e
Si gnedByt e
Si gnedByt e
Si gnedByt e
Si gnedByt e
Si gnedByt e

SPRAMRecPtr = "SPRAMRecor d;

SEBI ock =

PACKED RECORD
seSl ot :
sesRsrcl d:
seSt at us:
seFl ags:
seFillerO:
seFillerl
seFiller2:
seResul t:
sel OFi | eNane:
seDevi ce:
sePartition:
seOSType:
seReserved
seRef Num
seNunDevi ces:
seBoot St at e

END;

Si gnedByt e
Si gnedByt e
I nt eger;

Si gnedByt e
Si gnedByt e
Si gnedByt e
Si gnedByt e
Longl nt;

Longl nt;

Si gnedByt e
Si gnedByt e
Si gnedByt e
Si gnedByt e
Si gnedByt e
Si gnedByt e
Si gnedByt e

Summary of the Slot Manager

{test pattern}
{reserved; nust be 0}

{byte | anes used by decl arati on ROV

{sl ot paraneter RAM record}

{ Appl e-defined card | D}

{reserved for vendor use}
{reserved for vendor use}
{reserved for vendor use}
{reserved for vendor use}
{reserved for vendor use}
{reserved for vendor use}

{sl ot execution paraneter block}

{slot nunber}

{sResource | D}

{status of sExecBl ock code}
{fl ags}

{filler for word alignnent}
{filler}

{filler}

{result of SLoadDriver}
{pointer to driver nane}
{device to read front
{partition}

{type of OS}

{reserved}

{driver reference nunber}
{nunber of devices to | oad}
{state of StartBoot code}

2-89

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Sl ot nt QEl emrent = {slot interrupt queue el enent}
RECORD
sqLi nk: Ptr; {poi nter to next queue el ement}
sqType: I nt eger; {queue type ID; nust be sl Qlype}
sqgPri o: I nt eger; {priority value in | ow byte}
sqAddr : ProcPtr; {interrupt handl er}
sqgPar m Longl nt; {optional Al paraneter}
END;

SQEl enPtr = 7Sl ot nt QEl enent;

Slot Manager Routines

Determining the Version of the Slot Manager
FUNCTI ON SVer si on (spBl kPtr: SpBl ockPtr): OSErr;

Finding sResources

FUNCTI ON SRsrcl nfo (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SGet SRsr ¢ (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SGet TypeSRsrc (spBl kPtr: SpBl ockPtr): OCSErr;
FUNCTI ON SNext SRsrc (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SNext TypeSRsr ¢ (spBl kPtr: SpBl ockPtr): OSErr;

Getting Information From sResources

FUNCTI ON SReadDr vr Nane (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SReadByt e (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SReadWor d (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SReadLong (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SCGet CStri ng (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SGet Bl ock (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SFi ndSt r uct (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SReadSt r uct (spBl kPtr: SpBl ockPtr): OSErr;

Enabling, Disabling, Deleting, and Restoring sResources

FUNCTI ON Set SRsrcSt at e (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SDel et eSRTRec (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON | nsert SRTRec (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SUpdat eSRT (spBl kPtr: SpBl ockPtr): OSErr;

2-90 Summary of the Slot Manager

CHAPTER 2

Slot Manager

Loading Drivers and Executing Code From sResources

FUNCTI ON
FUNCTI ON

SGet Dri ver
SExec

(spBl kPtr:
(spBl kPt r:

SpBl ockPtr):
SpBl ockPtr):

OSErr;
CSErr;

Getting Information About Expansion Cards and Declaration ROMs

FUNCTI ON SReadl nf o (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SReadFHeader (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SCkCar dSt at (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SCar dChanged (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SFi ndDevBase (spBl kPtr: SpBl ockPtr): OSErr;
Accessing Expansion Card Parameter RAM
FUNCTI ON SReadPRAMRec (spBl kPtr: SpBl ockPtr): OCSErr;
FUNCTI ON SPut PRAMRec (spBl kPtr: SpBlockPtr): OSErr;
Managing the Slot Interrupt Queue
FUNCTION SIntlnstall (sIntQEl enPtr: SCQEl enPtr;
theSl ot: Integer) CsErr;
FUNCTI ON SI nt Renpve (sIntQEl enPtr: SCEl enPtr;
theSlot: Integer) CsErr;
Low-Level Routines
FUNCTI ON | ni t SDecl Myr (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SCal cSPoi nt er (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SCal cSt ep (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SFi ndBi gDevBase (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SFi ndSI nf oRecPtr (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SFi ndSRsr cPt r (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SGet SRsrcPtr (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SI ni t PRAMRecs (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON Sl ni t SRsrcTabl e (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SOf f set Dat a (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SPrinaryl nit (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SPtr ToSI ot (spBl kPtr: SpBlockPtr): OSErr;
FUNCTI ON SReadPBSi ze (spBl kPtr: SpBl ockPtr): OSErr;
FUNCTI ON SSear chSRT (spBl kPtr: SpBl ockPtr): OSErr;

Summary of the Slot Manager

2-91

Jabeue 10|1S -

CHAPTER 2

Slot Manager

C Summary
Constants
enum {
/* StatusFlags field of sInfoArray */
f Cardl sChanged = 1, /* card has changed */

/* flags for SearchSRT */
f CkFor Sane = 0, /* check for sane sResource in table */
f CkFor Next =1, /* check for next sResource in table */

/* flag passed to card by SPrimarylnit during startup or restart */
f War nSt art = 2, /* warmstart if set; else cold start */

/* constants for siState field of slnfoRecord */
stateN | = 0, /* state */

stat eSDM ni t =1, /* slot declaration manager init */
statePRAM nit = 2, /* sPRAM record init */

statePlnit = 3, [* primary init */

stateSInit = 4, /* secondary init */

/* bit flags for spParanData field of SpBlock */

fall = 0, /* if set, search all sResources */
f onesl ot = 1, /* if set, search in given slot only */
f next =2 /* if set, search for next sResource */
b
Data Types
typedef struct SpBl ock { /* Sl ot Manager paraneter block */
| ong spResul t; /* function result */
Ptr spsPoi nter; /* structure pointer */
| ong spSi ze; /* size of structure */
| ong spOf f set Dat a; /* offset or data */
Ptr spl OFi | eNane; /* reserved for Slot Manager */
Ptr spsExecPBl k; /* pointer to SEBI ock structure */
| ong spPar anDat a; /* flags */
| ong spM sc; /* reserved for Slot Manager */
| ong spReser ved; /* reserved for Slot Manager */
short spl OReser ved,; /* ioReserved field from SRT */
short spRef Num /* driver reference nunber */

2-92 Summary of the Slot Manager

CHAPTER 2

Slot Manager

short spCat egory; /* Category field of sRsrcType entry */
short spCType; /* cType field of sRsrcType entry */
short spDrvr SW /* DrSWfield of sRsrcType entry */
short spDrvr HW /* DrHWfield of sRsrcType entry */
char spTBMask; /* sRsrcType entry bit nmask */
char spSl ot ; [* slot nunmber */
char spl D, /* sResource ID */
char spExt Dev; /* external device ID */
char spHwDev; /* hardware device ID */
char spByt eLanes; /* valid byte | anes */
char spFl ags; /* flags used by Sl ot Manager */
char spKey; /* reserved for Slot Manager */

} SpBl ock;

t ypedef SpBl ock *SpBl ockPtr;

typedef struct SInfoRecord { /* slot information record */
Ptr siDirPtr; /* pointer to sResource directory */
short silnitStatusA; /* initialization error */
short silnitStatusy, /* status returned by vendor

initialization routine */

char si St at e; /* initialization state */
char si CPUByt eLanes; /* byte | anes used */
char si TopOf ROM /* highest valid address in ROM */
char si St at usFl ags; /* status flags */
short si TOConst ; /* tinmeout constant for bus error */
char si Reserved[2] ; /* reserved */
Ptr si ROVAddr ; /* address of top of ROM */
char si Sl ot ; /* slot nunber */
char si Paddi ng[3] ; /* reserved */

} SInfoRecord;
t ypedef SInfoRecord *SInfoRecPtr;

typedef struct FHeader Rec { /* format header record */
| ong fhDirOf f set; /* offset to sResource directory */
| ong f hLengt h; /* length in bytes of declaration ROM */
| ong f hCRC, /* cyclic redundancy check */
char f hROVRev; /* declaration ROM revision */
char f hFor mat ; /* declaration ROM format */
| ong f hTst Pat ; [* test pattern */
char f hReser ved; /* reserved; nust be 0 */
char f hByt eLanes; /* byte | anes used by declarati on ROM */

} FHeader Rec;
t ypedef FHeader Rec *FHeader RecPtr;

Summary of the Slot Manager 2-93

Jabeue 10|1S -

CHAPTER 2

Slot Manager

t ypedef struct SPRAMRecord { /* slot parameter RAM record */
short boar dl D; /* Apple-defined card ID */
char vendor Usel; /* reserved for vendor use */
char vendor Use2; /* reserved for vendor use */
char vendor Use3; /* reserved for vendor use */
char vendor Use4; /* reserved for vendor use */
char vendor Use5; /* reserved for vendor use */
char vendor Use6; /* reserved for vendor use */

} SPRAMRecor d;
t ypedef SPRAMRecord * SPRAMRecPtr;

t ypedef struct SEBI ock { /* slot execution paraneter block */
unsi gned char seS| ot ; /* slot nunber */
unsi gned char sesRsrcl d; /* sResource ID */
short seSt at us; /* status of sExecBl ock code */
unsi gned char seFl ags; /* flags */
unsi gned char seFiller0; /* filler for word alignnent */
unsi gned char seFilleril; [* filler */
unsi gned char seFiller2; [* filler */
| ong seResul t; /* result of SLoadDriver */
| ong sel OFil eNane; /* pointer to driver name */
unsi gned char seDevi ce /* device to read from?*/
unsi gned char sePartition; /[* partition */
unsi gned char seCSType; /* type of GS */
unsi gned char seReserved; /* reserved */
unsi gned char seRef Num /* driver reference nunber */
unsi gned char seNunDevi ces; [/* nunber of devices to |oad */
unsi gned char seBoot St at e; /* state of StartBoot code */

} SEBI ock;

typedef struct SlotlntQEl enent { /* slot interrupt queue el ement */
Ptr sqLi nk; /* pointer to next queue el ement */
short sqType; /* queue type ID;, nust be sl Qlype */
short sqgPri o; /* priority value in | ow byte */
ProcPtr sgAddr; /* interrupt handler */
| ong sqParm /* optional Al paraneter */

} SlotlntQEl ement;
typedef Sl otlnt QEl ement *SQEl enPtr;

Slot Manager Functions

Determining the Version of the Slot Manager
pascal OSErr SVersion (SpBl ockPtr spBl kPtr);

2-94 Summary of the Slot Manager

CHAPTER 2

Slot Manager

Finding sResources

pascal OSErr SRsrclnfo (SpBl ockPtr spBl kPtr);
pascal OSErr SCet SRsrc (SpBl ockPtr spBl kPtr);
pascal OSErr SCet TypeSRsrc (SpBl ockPtr spBl kPtr);
pascal OSErr SNext SRsrc (SpBl ockPtr spBl kPtr);

pascal OSErr SNext TypeSRsrc (SpBl ockPtr spBl kPtr);

Getting Information From sResources
pascal OSErr SReadDrvr Nane (SpBl ockPtr spBl kPtr);

pascal OSErr SReadByte (SpBl ockPtr spBl kPtr);
pascal OSErr SReadWrd (SpBl ockPtr spBl kPtr);
pascal OSErr SReadLong (SpBl ockPtr spBl kPtr);
pascal OSErr SCGetCString (SpBl ockPtr spBl kPtr);
pascal OSErr SGCet Bl ock (SpBl ockPtr spBl kPtr);
pascal OSErr SFi ndStruct (SpBl ockPtr spBl kPtr);
pascal OSErr SReadStruct (SpBl ockPtr spBl kPtr);

Enabling, Disabling, Deleting, and Restoring sResources

pascal OSErr Set SRsrcState (SpBl ockPtr spBl kPtr);
pascal OSErr SDel et eSRTRec (SpBl ockPtr spBl kPtr);
pascal OSErr |nsert SRTRec (SpBl ockPtr spBl kPtr);
pascal OSErr SUpdat eSRT (SpBl ockPtr spBl kPtr);

Loading Drivers and Executing Code From sResources

pascal OSErr SCetDriver (SpBl ockPtr spBl kPtr);
pascal OSErr SExec (SpBl ockPtr spBl kPtr);

Getting Information About Expansion Cards and Declaration ROMs

pascal OSErr SReadlnfo (SpBl ockPtr spBl kPtr);
pascal OSErr SReadFHeader (SpBl ockPtr spBl kPtr);
pascal OSErr SCkCar dSt at (SpBl ockPtr spBl kPtr);

pascal OSErr SCardChanged (SpBl ockPtr spBl kPtr);
pascal OSErr SFi ndDevBase (SpBl ockPtr spBl kPtr);

Accessing Expansion Card Parameter RAM

pascal OSErr SReadPRAMRec (SpBl ockPtr spBl kPtr);
pascal OSErr SPut PRAMVRec (SpBl ockPtr spBl kPtr);

Summary of the Slot Manager 2-95

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Managing the Slot Interrupt Queue

pascal OSErr SIntlnstall (SQEl enPtr sintQEl enPtr, short theSlot);
pascal OSErr Sl nt Renove (SQEl enPtr sintQEl enPtr, short theSlot);

Low-Level Functions

pascal OSErr 1nit SDecl Myr (SpBl ockPtr spBl kPtr);
pascal OSErr SCal cSPoi nter (SpBl ockPtr spBl kPtr);
pascal OSErr SCal cStep (SpBl ockPtr spBl kPtr);

pascal OSErr SFi ndBi gDevBase (SpBl ockPtr spBlkPtr);
pascal OSErr SFi ndSl nf oRecPtr (SpBl ockPtr spBl kPtr);
pascal OSErr SFi ndSRsrcPtr (SpBl ockPtr spBl kPtr);
pascal OSErr SCet SRsrcPtr (SpBl ockPtr spBl kPtr);
pascal OSErr Sl nit PRAMRecs (SpBl ockPtr spBl kPtr);
pascal OSErr Sl nitSRsrcTable (SpBlockPtr spBl kPtr);

pascal OSErr SO f set Dat a (SpBl ockPtr spBl kPtr);
pascal OSErr SPrimarylnit (SpBl ockPtr spBl kPtr);
pascal OSErr SPtrToSl ot (SpBl ockPtr spBl kPtr);
pascal OSErr SReadPBSi ze (SpBl ockPtr spBl kPtr);
pascal OSErr SSear chSRT (SpBl ockPtr spBl kPtr);

2-96 Summary of the Slot Manager

CHAPTER 2

Slot Manager

Assembly-Language Summary

Data Structures

Slot Manager Parameter Block

0 spResul t long function result
4 spsPoi nt er long structure pointer
8 spSi ze long size of structure
12 SpOF f set Dat a long offset or data
16 spl OFi | eNane long reserved for Slot Manager
20 spsExecPBI k long pointer to SEBlock data structure
24 spPar anDat a long flags
28 spM sc long reserved for Slot Manager
32 spReserved long reserved for Slot Manager
36 spl OReser ved word i oReser ved field from SRT
38 spRef Num word driver reference number
40 spCat egory word Cat egory field of SRsr cType entry
42 spCType word cType field of SRsr cType entry
44 spDrvr SW word Dr SWfield of sRsr cType entry
46 spDrvr HW word Dr HWfield of sRsr cType entry
48 spTBMask byte SsRsr cType entry bit mask
49 spSl ot byte slot number
50 spl D byte sResource ID
51 spExt Dev byte external device ID
52 spHwDev byte hardware device ID
53 spByt eLanes byte valid byte lanes
54 spFl ags byte flags used by Slot Manager
55 spKey byte reserved for Slot Manager
Slot Information Record
0 sibDirPptr long pointer to sResource directory
4 silnitStatusA word initialization error
6 silnitStatusV word status returned by vendor initialization routine
8 si State byte initialization state
9 si CPUByt eLanes byte byte lanes used
10 si TopOf ROM byte highest valid address in ROM
11 si St at usFl ags byte status flags
12 si TOConst word timeout constant for bus error
14 si Reserved word reserved
16 si ROVAddr long address of top of ROM
20 si Sl ot byte slot number
21 si Paddi ng 3 bytes reserved

Summary of the Slot Manager

2-97

Jabeue 10|1S -

CHAPTER 2

Slot Manager

Format Header Record

0 fhDir O f set long offset to sResource directory

4 fhLengt h long length in bytes of declaration ROM
8 f hCRC long cyclic redundancy check

12 f hROVRev byte declaration ROM revision

13 f hFor mat byte declaration ROM format

14 f hTst Pat long test pattern

18 f hReser ved byte reserved; must be 0

19 f hByt eLanes byte byte lanes used by declaration ROM

Slot Parameter RAM Record

0 boardl D word Apple-defined card ID

2 vendor Usel byte reserved for vendor use
3 vendor Use2 byte reserved for vendor use
4 vendor Use3 byte reserved for vendor use
5 vendor Use4 byte reserved for vendor use
6 vendor Use5 byte reserved for vendor use
7 vendor Use6 byte reserved for vendor use

Slot Execution Parameter Block

0 seSl ot byte slot number
1 sesRsrcld byte sResource ID
2 seStatus word status of sExecBl ock code
4 seFl ags byte flags
5 seFiller0 byte filler for word alignment
6 seFillerl byte filler
7 seFiller2 byte filler
8 seResul t long result of SLoadDr i ver
12 sel OFi | eNane long pointer to driver name
16 seDevice byte device to read from
17 sePartition byte partition
18 seCSType byte type of operating system
19 seReserved byte reserved
20 seRef Num byte driver reference number
21 seNunDevi ces byte number of devices to load
22 seBoot St at e byte state of St ar t Boot code

Slot Interrupt Queue Element

0 sqgLi nk long pointer to next queue element
4 sqType word queue type ID; must be sl QType
6 sgPrio word priority value in low byt e
8 sgAddr long pointer to interrupt handler
12 sgParm long optional A1 parameter

2-98 Summary of the Slot Manager

CHAPTER 2

Slot Manager

Trap Macros

Trap Macros Requiring Routine Selectors

_ Sl ot Manager

Selector Routine

$0000 SReadByte
$0001 SReadWord
$0002 SReadLong
$0003 SGetCString
$0005 SGetBlock

$0006 SFindStruct
$0007 SReadStruct
$0008 SVersion

$0009 SetSRsrcState
$000A InsertSRTRec
$000B SGetSRsrc
$000C SGetTypeSRsrc
$0010 SReadInfo

$0011 SReadPRAMRec
$0012 SPutPRAMRec
$0013 SReadFHeader
$0014 SNextSRsrc
$0015 SNextTypeSRsrc
$0016 SRsrclnfo

$0018 SCkCardStat
$0019 SReadDrvrName
$001B SFindDevBase
$001C SFindBigDevBase
$001D SGetSRsrcPtr
$0020 InitSDecIlMgr
$0021 SPrimaryInit
$0022 SCardChanged
$0023 SExec

$0024 SOffsetData
$0025 SInitPRAMRecs
$0026 SReadPBSize
$0028 SCalcStep

Summary of the Slot Manager

2-99

Jabeue 10|1S -

Selector
$0029
$002A
$002B
$002C
$002D
$002E
$002F
$0030
$0031

CHAPTER 2

Slot Manager

Routine
SInitSRsrcTable
SSearchSRT
SUpdateSRT
SCalcSPointer
SGetDriver
SPtrToSlot
SFindSInfoRecPtr
SFindSRsrcPtr
SDeleteSRTRec

Result Codes

noErr

menful | Err
snEnpt y Sl ot
snCRCFai |

snfor mat Err
smMUnExBuUsEr r
snmBLFi el dBad
snDi sposePErr
smNoBoar dsRsr ¢
smNoBoar dl d
sm ni t St at VErr
smBadRef | d
snmBadsLi st
smReservedErr
snCodeRevErr
snCPUEr r

snmsPoi nterN |
sNi | sBl ockErr
sl ot OOBEr r
snSel OOBEr r
smCkSt at uskrr
snGet Dr vr NanEr r
smNoMor esRsr cs
smBadsPtr Err
snmByt eLanesErr
smRecNot Fnd

2-100

-108
-300
=301
=302
-308
-309
=312
=313
=315
=316
-330
-331
-332
-333
-334
-335
-336
=337
-338
=341
-342
—344
—-346
—347
-351

No error

Not enough room in heap

No card in this slot

CRC check failed

The format of the declaration ROM is wrong

Abus error occurred

A valid f hByt eLanes field was not found

An error occurred during execution of Di sposePt r
There is no board sResource

There is no board ID

The I ni t St at usV field was negative after Pri mar yl ni t
Reference ID was not found in the given list

The IDs are not in ascending order

A reserved field was not zero

The revision of the code to be executed by sExec was wrong
The CPU field of the code to be executed by sSExec was wrong
The spsPoi nt er value is NI L: no list is specified

The physical block size of an sBlock was zero

The given slot was out of bounds or does not exist
Selector out of bounds or function not implemented
Status of slot is bad

An error occurred during execution of _sGet Dr vr Nare
Requested sResource not found

Bad spsPoi nt er value

Bad spByt eLanes value

Record not found in the slot resource table

Summary of the Slot Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	Slot Manager
	Introduction to Slots and Cards
	Slot Address Allocations
	Firmware
	The sResource
	Type and Name Entries
	The Board sResource and Functional sResources
	The sResource Directory

	The Format Block

	About the Slot Manager
	Using the Slot Manager
	Enabling and Disabling NuBus Cards
	Deleting and Restoring sResources
	Enabling and Disabling sResources
	Searching for sResources
	Obtaining Information From sResources
	Installing and Removing Slot Interrupt Handlers

	Slot Manager Reference
	Data Structures
	Slot Manager Parameter Block
	Slot Information Record
	Format Header Record
	Slot Parameter RAM Record
	Slot Execution Parameter Block
	Slot Interrupt Queue Element

	Slot Manager Routines
	Determining the Version of the Slot Manager
	Finding sResources
	Getting Information From sResources
	Enabling, Disabling, Deleting, and Restoring sReso...
	Loading Drivers and Executing Code From sResources...
	Getting Information About Expansion Cards and Decl...
	Accessing Expansion Card Parameter RAM
	Managing the Slot Interrupt Queue

	Low-Level Routines

	Summary of the Slot Manager
	Pascal Summary
	Constants
	Data Types
	Slot Manager Routines
	Low-Level Routines

	C Summary
	Constants
	Data Types
	Slot Manager Functions
	Low-Level Functions

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

