CHAPTER 6

Power Manager

This chapter describes the Power Manager, the part of the Macintosh Operating System
that controls power to the internal hardware devices of battery-powered Macintosh
computers (such as the Macintosh Portable, the Macintosh PowerBook computers, and
the Macintosh Duo computers)

The Power Manager automatically shuts off power to internal devices to conserve power
whenever the computer has not been used for a predetermined amount of time. In
addition, the Power Manager allows your application or other software to

= install a procedure that is executed when power to internal devices is about to be shut
off or when power has just been restored

= seta timer to wake up the computer at some time in the future

= set or disable the wakeup timer and read its current setting

= enable, disable, or delay the CPU idle feature

s read the current CPU clock speed

= control power to the internal modem and serial ports

= read the status of the internal modem

= read the state of the battery charge and the status of the battery charger

Most applications do not need to know whether they are executing on a battery-powered
Macintosh computer because the transition between power states is largely invisible. As
a result, most applications do not need to use Power Manager routines. You need the
information in this chapter only if you are writing a program—such as a device driver—
that must control power to some subsystem of a battery-powered Macintosh computer
or that might be affected by the idle or sleep state. See “About the Power Manager,”
beginning on page 6-4, for a complete description of these power conservation states.

The Power Manager is available only in system software version 6.0.4 and later versions.
You should use the Gest al t function to determine whether the Power Manager is
available before calling it. See “Determining Whether the Power Manager Is Present,” on
page 6-14, for more information.

To use this chapter, you might need to be familiar with techniques for accessing
information in your application’s A5 world. The chapter “Introduction to Memory
Management” in Inside Macintosh: Memory describes the A5 world and the routines you
can use to manipulate the A5 register. This chapter provides complete code samples that
illustrate how to access your application’s A5 world in a sleep procedure. If you wish to
display a dialog box from a sleep procedure, you also need to know about the Dialog
Manager. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter begins with a preliminary description of the power conservation states
controlled by the Power Manager and of the relationship between the power
management hardware and software in portable Macintosh computers. It then discusses
the power conservation states and the sleep queue in greater detail. The section “Using
the Power Manager,” beginning on page 6-13, describes how to use Power Manager
routines to control the power conservation states and how to write and install sleep
procedures.

Jabeuely 1amod n

CHAPTER 6

Power Manager

The reference section is divided into three sections. The first section describes the data
structures used by Power Manager routines. The second section, “Power Manager
Routines,” beginning on page 6-28, describes low-level Power Manager routines that

you can use to control a variety of Power Manager functions. The third section, “Power
Manager Dispatch Routines,” beginning on page 6-40, describes high-level Power Manager
routines that isolate you from the need to read or write directly to the Power Manager’s
private data structures and to parameter RAM. The Power Manager dispatch routines
provide access to most of the Power Manager’s internal parameters. Where a Power
Manager dispatch routine duplicates the function of another Power Manager routine,

the dispatch routine provides the preferred interface.

Whereas the Pascal programming language interface is used to describe the Power
Manager routines in “Power Manager Routines,” the C language interface is used for
the newer routines described in “Power Manager Dispatch Routines.” The section
“Summary of the Power Manager,” beginning on page 6-67, includes both Pascal and
C interfaces for both sets of routines.

About the Power Manager

Battery-operated Macintosh computers (also known as portable Macintosh computers)
draw power from a built-in battery that can be charged from a voltage converter
plugged into an electric socket. In order to prolong the battery charge and thereby
increase the amount of time the computer can be operated from the battery, portable
Macintosh computers contain software and hardware components that can put the
computer into various power conservation states, known as the power-saver, idle, and
sleep states.

The software that controls power to the internal devices of portable Macintosh
computers is the Power Manager. The Power Manager provides a software interface
to the available power controlling hardware. On the Macintosh Portable computer,
the power-management hardware is the 50753 microprocessor (known as the Power
Manager integrated circuit or Power Manager IC). On other portable Macintosh
computers, other hardware may be used.

The Power Manager also provides some services unique to portable Macintosh
computers—such as reading the current clock speed—that are not directly related to
power control. The power management circuits and the microcode in the on-chip ROM
of the Power Manager IC are described in the Guide to the Macintosh Family Hardware,
second edition. The Power Manager provides routines that your program can use to
enable and disable the idle state, to control power to some of the subsystems of the
computer, and to ensure that your program is not adversely affected when the Power
Manager puts the computer into the sleep state.

The power-saver state is a low power-consumption state of several portable Macintosh
computers in which the processor slows from its normal clock speed to some slower
clock speed. On the PowerBook 170 computer, for example, the CPU clock speed can be
reduced from 25 MHz to 16 MHz in order to conserve power.

6-4 About the Power Manager

CHAPTER 6

Power Manager

In the idle state, the Power Manager slows the computer even further, from its current
clock speed to a 1 MHz clock speed. The Power Manager puts a portable Macintosh
computer in the idle state when the system has been inactive for 15 seconds. When the
computer has been inactive for an additional period of time (the user can set the length
of this period), the Power Manager and the various device drivers shut off power or
remove clocks from the computer’s various subsystems, including the CPU, RAM, ROM,
and I/O ports. This condition is known as the sleep state.

No data is lost from RAM when a portable Macintosh computer is in the sleep state.
Most applications can be interrupted by the idle and sleep states without any adverse
effects. When the user resumes use of the computer (by pressing a key, for example),
most of the applications that were running before the computer entered the sleep state
are still loaded in memory and resume running as if nothing had happened. If your
application or device driver cannot tolerate the sleep state, however, you can add an
entry to an operating-system queue called the sleep queue. The Power Manager calls
every sleep queue routine before the computer goes into the sleep state.

The user can also use the Battery desk accessory or a Finder menu item to cause a
portable Macintosh computer to go into the sleep state immediately. If the user chooses
Sleep from the Battery desk accessory (or from the Special menu in the Finder), the
Power Manager checks to see if any network communications will be interrupted by
going into the sleep state. If network communications will be affected, a built-in sleep
procedure displays a dialog box (shown in Figure 6-1) giving the user the option of
canceling the Sleep command.

Figure 6-1 A network driver’s sleep dialog box
Putting the computer to sleep will
cause you to lose some network

services, including file servers. Check
your connections in the Chooser next
time you wake the Macintosh.

Note

Some portable Macintosh computers (for example, the Macintosh
Portable) do not have a power switch. On these computers, if the
user chooses Shut Down from Special menu in the Finder, the Power
Manager puts the computer into the sleep state regardless of whether
any network communication routines are running at the time. O

The power management circuits in portable Macintosh computers include a
battery-voltage monitor, a voltage regulator and battery-charging circuit, and (on certain
portable computers) the Power Manager IC. The Power Manager IC controls the clocks
and power lines to the various internal components and external ports of the computer.

About the Power Manager 6-5

Jabeuely 1amod n

6-6

CHAPTER 6

Power Manager

The microcode in the Power Manager IC implements many of the computer’s power
management features, such as power and clock control and the wakeup timer. A user or
an application can set the wakeup timer to return the computer from the sleep state to
the operating state at a specific time.

Note
The wakeup timer is not available on all portable Macintosh
computers. O

The Power Manager firmware in the ROM of the computer provides an interface that
allows your application to control some of the functions of the power control hardware.
The power management hardware charges the battery, provides the voltages needed
by the system, and automatically shuts down all power and clocks to the system if the
battery voltage falls below a certain threshold. The automatic shutdown function helps
to prevent possible damage to the battery resulting from low voltage.

At any given time, a portable Macintosh computer is in one of five power-consumption
states:

= normal state

= power-saver state
= idle state

= sleep state

» shutdown state

When the computer is in its normal state, the CPU is running at its full clock speed and
no measures are being taken to conserve power. The computer behaves exactly like any
Macintosh computer that is not operated from a battery. Similarly, the shutdown state
on a portable Macintosh computer is exactly like the shutdown state on any nonportable
Macintosh computer, except that there is a very small drain on the battery to maintain
the settings of the computer’s parameter RAM.

The following sections provide more information about the three power conservation
states (power-saver, idle, and sleep) managed by the Power Manager.

IMPORTANT

The exact implementation details—and indeed the very existence of one
or more of the three power conservation states—is subject to variation
across the entire line of portable Macintosh computers. In general, your
application or other software should not be affected by any such
variations. a

The Power-Saver State

The power-saver state, available on some portable Macintosh computers, is a power
conservation state in which the processor slows from its normal clock speed to some
slower clock speed. On the PowerBook 180 computer, for example, the user can use
the PowerBook control panel to reduce the CPU clock speed from 33 MHz to 16 MHz.

About the Power Manager

CHAPTER 6

Power Manager

There is currently no way for your application to put a portable Macintosh computer
into the power-saver state or to return it to the normal (full-speed) state. Moreover, the
power-saver state is not available on all portable Macintosh computers. If the operation
of your application or other software component depends on the CPU clock speed, you
can use the Power Manager’s Get CPUSpeed function to determine the current speed. In
general, of course, it’s best to design your application so that it is unaffected by any
changes in the clock speed of the CPU.

The Idle State

When a portable Macintosh computer has been inactive for some amount of time, the
Power Manager causes the CPU to insert wait states into each RAM or ROM access. On
the Macintosh Portable, for example, after 15 seconds of inactivity the Power Manager
inserts 64 wait states, effectively changing the clock speed from 16 MHz to 1 MHz. This
condition is referred to as the idle state or the rest state.

Note

The inactivity timeout interval, clock speed, and hardware
implementation of the idle state are subject to variation across the entire
line of portable Macintosh computers. O

For the purposes of determining whether to enter the idle state, inactivity is defined as
the absence of any of the following;:

» any execution of the PBRead or PBW i t e function by the File Manager or Device
Manager

» acall to the Event Manager’s Post Event or OSEvent Avai | function

» any access of the Apple Sound Chip (ASC) or other sound-producing hardware
s completion of an Apple Desktop Bus (ADB) transaction

» acall to the QuickDraw Set Cur sor procedure that changes the cursor

» the cursor displayed as the watch cursor

The Power Manager enters the idle state in one of two ways, depending on whether the
computer supports a mode of idling called power cycling. 1f power cycling is available
(for example, in the PowerBook 140 and later models), the CPU is turned off after two
seconds of inactivity. After a short interval (on the order of one-half to three-fourths of a
second), power is restored to the CPU. The Operating System then checks to see whether
any relevant activity has occurred. If it has, the power cycling is stopped and the
computer returns to the normal operating state. If, however, no activity has occurred,
power cycling resumes with a slightly longer interval (up to several seconds). The CPU
remains off for the duration of the cycling or until an interrupt occurs.

If power cycling is not available, the Power Manager uses an alternate method of
entering the idle state. The Power Manager maintains an activity timer that measures
the amount of time that has elapsed since the last relevant system activity. The activity
timer is originally set to 15 seconds. When the timer counts down to 0, the Power
Manager puts the computer into the idle state. Whenever the Power Manager detects

About the Power Manager 6-7

Jabeuely 1amod n

6-8

CHAPTER 6

Power Manager

one of the relevant forms of activity, it resets the activity timer to 15 seconds and, if the
computer is in the idle state, returns the computer to the operating state.

Neither the user nor your application can change the activity timer to use a period other
than 15 seconds. However, the user can disable the activity timer through the Portable or
PowerBook control panel, and your application can reset, enable, and disable the activity
timer by using the | dl eUpdat e, Enabl el dl e, and Di sabl el dl e routines. Your
application can also use the Get CPUSpeed function to determine whether the computer
is currently in the idle state. See “Enabling or Disabling the Idle State,” beginning on
page 6-15, for a further discussion of these routines.

The Sleep State

The Operating System sends a sleep command to the power management hardware
when the user requests it (through the Battery desk accessory or the Finder), when the
battery voltage falls below a preset level, or when the system has remained inactive for
an amount of time that the user sets through the Portable or PowerBook control panel.

The Operating System uses the power management hardware to shut down power to the
CPU, the ROM, and some of the control logic. Sufficient power is maintained to the RAM
so that no data is lost. Before the Operating System sends the sleep command to the
power management hardware, it performs the following tasks:

» It pushes the contents of all of the CPU’s internal registers onto the stack.

» It calls all sleep procedures listed in the sleep queue to inform them that the system
is about to be put into the sleep state. These procedures include the device drivers
for the serial ports and floppy disk drives. Each device driver must call the power
management hardware to stop power or clocks to the peripheral device controlled by
that driver. If the device contains any internal registers, the device driver must save
their contents before turning off power to the device. The sleep queue is described in
the following section, “The Sleep Queue.”

» It pushes onto the stack the Reset vector, the contents of the versatile interface adapter
(VIA) chip, and the contents of the Apple Sound Chip (ASC) control registers.

» It saves the stack pointer in memory.

While a portable Macintosh computer is in the sleep state, the clock to the power
management hardware (for example, the Power Manager IC) is off so that the hardware
does no processing. On each rising edge of the 60 Hz clock signal (from one of the
computer’s logic chips), a hardware circuit restores the clock signal to the power
management hardware, which updates the time in the real-time clock and checks the
status of the system to determine whether to return the computer to its operating state.
The power management hardware checks for the existence of the following conditions:

» Akey on the keyboard has been pressed.

s The wakeup timer is enabled and the time to which the wakeup timer is set equals the
time in the real-time clock.

» Aninternal modem is installed, the user has activated the ring-detect feature, and the
modem has detected a ring (that is, someone has called the modem).

About the Power Manager

CHAPTER 6

Power Manager

Note that use of the mouse or trackball cannot be detected by the power management
hardware.

If the power management hardware does not detect any of these conditions, it
deactivates its own clock until the next rising edge of the 60 Hz clock signal. If the power
management hardware does detect one of these conditions, it restores power to the CPU,
ROM, and any other hardware that was running when the computer entered the sleep
state. Then the Power Manager’s wakeup procedure reverses the procedure that put the
computer into the sleep state, including calling each routine listed in the sleep queue to
allow it to restore power to any subsystems it controls.

The Sleep Queue

The Power Manager maintains an operating-system queue called the sleep queue. The
sleep queue contains pointers to all of the routines—called sleep procedures —that the
Power Manager must call before it puts the computer into the sleep state or returns it

to the operating state. Each device driver, for example, can place in the sleep queue a
pointer to a routine that controls power to the subsystem that the driver controls. When
the Power Manager is ready to put the computer into the sleep state, it calls each of the
sleep procedures listed in the sleep queue. Each procedure performs whatever tasks are
necessary to prepare for the sleep state, including calling Power Manager routines, and
then returns control to the Power Manager. Similarly, the Power Manager calls each sleep
procedure when it is returning the computer to the operating state.

If you are writing a device driver or if you want your program to be informed before the
computer enters the sleep state, you can place an entry for your sleep procedure in the
sleep queue. If you do place an entry in the sleep queue, remember to remove it before
your device driver or application terminates. You use the S| eepQ nst al | and

Sl eepQRenpve procedures to install and remove sleep queue entries, as described

in “Installing a Sleep Procedure,” beginning on page 6-18.

Your sleep procedure can be called at any of four different times, namely

= when the Power Manager wants to know whether it may put the computer into the
sleep state (a sleep request)

= when the Power Manager is about to put the computer into the sleep state (a sleep
demand)

= when the Power Manager has just returned the computer to the normal operating
state (a wakeup demand)

= when the Power Manager has decided not to put the computer into the sleep state
but has already issued a sleep request (a sleep-request revocation)

Your sleep procedure will need to respond differently, depending on the reason it is
being called. The following four sections describe these cases.

About the Power Manager 6-9

Jabeuely 1amod n

CHAPTER 6

Power Manager

Sleep Requests

The Power Manager sends your sleep procedure a sleep request when it would like to
put the computer into the sleep state. Your sleep procedure then has the option of
denying the sleep request. If any procedure in the sleep queue denies the sleep request,
the Power Manager sends a sleep-request revocation to each routine that it has already
called with a sleep request, and the computer does not enter the sleep state. If, on the
other hand, every sleep procedure in the sleep queue accepts the sleep request, then the
Power Manager sends a sleep demand to each sleep procedure in the sleep queue. After

every sleep procedure has processed the sleep demand, the Power Manager puts the
computer into the sleep state.

Before sending a sleep request to any of the sleep procedures in the sleep queue, the
Power Manager calls a built-in sleep procedure that checks the status of certain network
services, as summarized in Table 6-1. Only if all of the network services permit sleep
does the Power Manager continue by sending sleep requests to the routines in the sleep
queue. The network services in Table 6-1 are described in Inside Macintosh: Networking.

The Power Manager issues a sleep request when a sleep timeout occurs (that is, when
the period of inactivity set by the user in the Portable or PowerBook control panel has

expired).

Table 6-1

Response of network services to sleep requests and sleep demands

Network service in use

.MPP low-level
protocol (DDP, NBP,
RTMP, AEP)

XPP extended
protocol (ASP, AFP);
no server volume
mounted

XPP; server volume
mounted

An application is
currently using
AppleTalk

Response to sleep
request

Close driver if
computer is on battery;
else deny request

Close driver if
computer is on battery;
else deny request

Deny request

Deny request

Sleep Demands

Response to
conditional sleep
demand

Close driver if
user gives okay;
else deny request

Close driver if
user gives okay;
else deny request

Close server sessions
and close driver if
user gives okay;

else deny request

Close server sessions
and close driver if
user gives okay;

else deny request

Response to
unconditional sleep
demand

Close driver

Close driver

Close server sessions
and close driver

Close server sessions
and close driver

The Power Manager sends your sleep procedure a sleep demand when it is about to put
the portable Macintosh computer into the sleep state. When a procedure in the sleep

6-10 About the Power Manager

CHAPTER 6

Power Manager

queue receives a sleep demand, it must prepare for the sleep state as quickly as possible
and return control to the Power Manager.

From the point of view of the Power Manager, there are two types of sleep demands—
conditional and unconditional. The Power Manager might cancel a conditional sleep
demand if certain network services are in use; an unconditional sleep demand cannot be
canceled. When your sleep procedure receives a sleep demand, however, your procedure
has no way to determine whether it originated as a conditional sleep demand or an
unconditional sleep demand. Your device driver or application must prepare for the
sleep state and return control promptly to the Power Manager when it receives a sleep
demand.

The Power Manager processes a conditional sleep demand when the user chooses Sleep
from the Battery desk accessory or from the Special menu in the Finder. When the Power
Manager processes a conditional sleep demand, it first sends a sleep request to the
network driver’s sleep procedure (see Table 6-1). Whenever one of the network services
is in use, the sleep procedure displays a dialog box requesting the user’s permission to
put the computer into the sleep state. The wording of the message in the dialog box
depends on the nature of the network service in use. For example, if an .XPP driver
protocol is in use, has opened a server, and has mounted a volume, then the message
warns the user that the volume will be closed when the computer is put into the sleep
state.

If the user denies permission to close the driver, the Power Manager does not send sleep
demands to the routines in the sleep queue. If the user does give permission to close the
driver, the Power Manager sends a sleep demand to the network driver’s sleep
procedure and then to every other sleep procedure in the sleep queue.

The Power Manager issues an unconditional sleep demand when the battery voltage
falls below a preset level or when the user chooses Shut Down from the Special menu

in the Finder. In this case, the Power Manager sends a sleep demand to the network
driver’s sleep procedure, which closes all network drivers. Then the Power Manager
sends a sleep demand to every other sleep procedure in the sleep queue. As always for

a sleep demand, each sleep procedure must prepare for the sleep state and return control
to the Power Manager as quickly as possible. In this case, the Power Manager does not
display any warnings or dialog boxes; neither the network services, the user, nor any
application can deny the sleep demand.

Wakeup Demands

After restoring full power to the CPU, RAM, and ROM, the Power Manager’s wakeup
procedure calls each sleep procedure in the sleep queue with a wakeup demand. A
wakeup demand informs your sleep procedure that it must reverse whatever steps it
followed when it prepared for the sleep state. For example, a database application might
reestablish communications with a remote database.

About the Power Manager 6-11

Jabeuely 1amod n

6-12

CHAPTER 6

Power Manager

Sleep-Request Revocations

If any sleep procedure in the sleep queue denies a sleep request, the Power Manager
sends a sleep-request revocation to every sleep procedure that it has already called with
a sleep request. Your sleep procedure must reverse whatever steps it followed when it
prepared to receive a sleep demand. A communications application that prevents users
from opening new sessions while it is waiting to receive a sleep demand, for example,
might once again allow users to open new sessions.

Power Manager Dispatch

Software that reads and writes directly to the Power Manager’s private data structures
and parameter RAM must be updated any time Apple Computer, Inc. makes a change to
the internal operation of the Power Manager. The Power Manager for some versions of
the Macintosh Operating System includes routines—referred to as the Power Manager
dispatch routines—that eliminate the need for applications to deal directly with the
Power Manager’s data structures. These routines provide access to most of the Power
Manager’s internal parameters. The interface is extensible, and may grow over time to
accommodate new kinds of functions.

You can use the routines described in “Power Manager Dispatch Routines,” beginning
on page 6-40, to isolate your application from future changes to the internal operation
of the Power Manager software.

IMPORTANT

Apple Computer, Inc. reserves the right to change the internal operation
of the Power Manager software. Applications should not depend on the
Power Manager’s internal data structures or parameter RAM. a

You should not depend on the Power Manager’s internal data structures staying the
same in future versions of system software. In particular, do not assume that

» timeout values such as the hard disk spindown time reside at the same locations in
parameter RAM

» the power cycling process works the same way or uses the same parameters

» direct commands to the Power Manager microcontroller are supported in all models

Note

Whereas the Pascal programming language interface is used to
describe the Power Manager routines in “Power Manager Routines,”
beginning on page 6-28, the C language interface is used for the newer
routines described in “Power Manager Dispatch Routines,” beginning
on page 6-40. The section “Summary of the Power Manager,”
beginning on page 6-67, includes both Pascal and C interfaces for both
sets of routines. O

About the Power Manager

CHAPTER 6

Power Manager

Using the Power Manager

You can use the Power Manager to install a sleep procedure that is executed when power
to internal devices is about to be shut off or after power has just been restored. Most
applications or other software components that are sensitive to the power-consumption
state of the computer can use sleep procedures to perform any necessary processing at
those times. See “Writing a Sleep Procedure,” beginning on page 6-20, and “Installing a
Sleep Procedure,” beginning on page 6-18, for complete details on how to write and
install sleep procedures.

The Power Manager provides routines that you can use to monitor the state of the
battery charge and the status of the battery charger. See “Monitoring the Battery and
Battery Charger,” beginning on page 6-26, for details. In all likelihood, only utility
programs will need to use these routines.

If you are writing an application that is sensitive to the clock speed of the computer, you
can use the Power Manager to disable the CPU idle state when necessary.

IMPORTANT

Do not disable the idle state except when executing a routine that must
run at full speed. Disabling the idle state shortens the amount of time
the user can operate the computer from a battery. a

If you want to ensure that a portable Macintosh computer is in the operating state at

a particular time in the future, you can use the Set WUTi ne function to set the wakeup
timer. You can use the wakeup timer in conjunction with the Time Manager, for example,
when you want to use the computer to perform tasks that must be done at a specific
time, like printing a large file in the middle of the night.

If you are writing a device driver for a portable Macintosh computer, you might need

to use the Power Manager to control power to the subsystem that your driver controls.
See “Switching Serial Power On and Off,” on page 6-25, for a discussion of power control
for the serial communications subsystem. For power control for other devices, consult
Apple Developer Technical Support. The Power Manager cannot control power to
external peripheral devices such as hard disks and CD-ROM drives because such devices
have their own power supplies.

IMPORTANT

Because the Power Manager saves the contents of all of the CPU
registers, including the stack pointer, before putting the computer into
the sleep state, and because the contents of RAM are preserved while
the computer is in the sleep state, most applications are not adversely
affected by the sleep state. Because a portable Macintosh computer does
not enter the idle state when almost any sort of activity is going on (or
even when the watch cursor is being displayed), few programs are
adversely affected by the idle state. Therefore, it is likely that your
application will not have to make calls to the Power Manager. a

Using the Power Manager 6-13

Jabeuely 1amod n

6-14

CHAPTER 6

Power Manager

Determining Whether the Power Manager Is Present

You can use the Gest al t function with the gest al t Power Myr At t r selector to
determine whether the Power Manager is available on a particular computer and
whether certain other devices in the computer can be put into the idle or sleep state.
The Gest al t function returns in the r esponse parameter a 32-bit value that may have
some or all of the following bits set:

CONST
gest al t PMgr Exi st s =
gestal t PMgr CPUI dl e =
gest al t PMgr SCC =
gest al t PMgr Sound =
gest al t PMyr Di spat chExi sts

{Power Manager is present}
{CPU can idl e}

; {can stop SCC cl ock}

; {can shut off sound circuits}

; {dispatch routines are present}

A W DNPEFP O

If the gest al t PMyr Exi st s bit is set, the Power Manager is present. If the

gest al t PMgr CPUI dl e bit is set, the CPU is capable of going into a state of low power
consumption. If the gest al t PMyr SCChbit is set, it is possible to stop the SCC clock, thus
effectively turning off the serial ports. If the gest al t PMgr Sound bit is set, it is possible
to turn off power to the sound circuits. If the gest al t PMgr Di spat chExi st s bit s set,
the Power Manager dispatch routines are available; see the next section for more
information.

Note
For complete details on using the Gest al t function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Ultilities. O

Determining Whether the Power Manager Dispatch Routines are
Present

You can use the Gest al t function with the gest al t Power Mgr At t r selector to
determine whether the Power Manager dispatch routines are available on a particular
computer. If the gest al t PMyr Di spat chEXi st s bitis set in the r esponse parameter,
the Power Manager dispatch routines are available.

Because more routines may be added in the future, the PMSel ect or Count function
(described on page 6-41) returns the number of dispatch routines that are implemented.
The sample code in Listing 6-1 shows how you can use the Gest al t function to
determine whether the Power Manager dispatch routines are present, and then use the
PMSel ect or Count function to find out which routines are supported. In this case, the
sample code tests for the existence of the hard disk spindown routine (selector $07).

Using the Power Manager

CHAPTER 6

Power Manager

Listing 6-1 Determining which Power Manager dispatch routines exist

| ong pngrAttributes;
Bool ean routi nesExi st;

routi neskxi st = fal se;

if (! Cestalt(gestaltPowerMrAttr, &mngrAttributes))

if (pngrAttributes & (1<<gestaltPMrD spatchExists))

if (PMsel ectorCount() >=7) /* do the first 8 routines exist? */
routi neskxi st = true;

WARNING

If you call a routine that does not exist, the call to the public Power
Manager trap (if the trap exists) will return an error code, which your
program could misinterpret as data. a

Enabling or Disabling the Idle State

You can reset the activity timer to 15 seconds, disable or enable the idle state, and read
the current CPU clock speed by using Power Manager routines.

IMPORTANT

Keep in mind that it is almost always better to design your code so
that it is not affected by the idle state. If you do so, the computer can
conserve power whenever possible. Note also that disabling the idle
state does not disable the sleep state. To prevent your program from
being adversely affected by the sleep state, you need to place a sleep
procedure in the sleep queue, as described in “Installing a Sleep
Procedure,” beginning on page 6-18. a

To reset the activity timer to count down another 15 seconds before the Power Manager
puts the computer into the idle state, use the | dl eUpdat e function. The | dl eUpdat e
function takes no parameters and returns the value in the Ti cks global variable at the
time the function was called.

If you want to disable the idle state—that is, prevent the computer from entering the idle
state—for more than 15 seconds, use the Di sabl el dl e procedure. If your application
cannot tolerate the idle state at all, you can call the Di sabl el dI e procedure when your
application starts up and then call the Enabl el dl e procedure when your application
terminates.

The Enabl el dl e procedure cancels the last call to the Di sabl el dl e procedure. Note
that canceling the last call to the Di sabl el dl e procedure is not always the same thing
as enabling the idle state. For example, if the user has used the Portable control panel to
disable the idle state, then a call to the Enabl el dl e procedure does not enable the idle
state. Similarly, if your routine called the Di sabl el dl e procedure more than once or if
another routine has called the Di sabl el dl e procedure, then a call to the Enabl el dl e
procedure cancels only the last call to the Di sabl el dl e procedure; it does not enable
the idle state.

Using the Power Manager 6-15

Jabeuely 1amod

6-16

CHAPTER 6

Power Manager

The Power Manager does not actually reenable the idle state until every call to the

Di sabl el dl e procedure has been matched by a call to the Enabl el dI e procedure,
and then only if the user has not disabled the idle state through the Portable (or
PowerBook) control panel. For this reason, you must be very careful to match each call
to the Di sabl el dI e procedure with a single call to the Enabl el dl e procedure. Be
careful to avoid making extra calls to the Enabl el dI e procedure so that you do not
inadvertently reenable the idle state while another application needs it to remain
disabled.

Calls to the Enabl el dl e procedure are not cumulative; that is, after you make several
calls to the Enabl el dl e procedure, a single call to the Di sabl el dl e procedure still
disables the idle state. Disabling the idle state always takes precedence over enabling the
idle state. A call to the Di sabl el dl e procedure disables the idle state no matter how
many times the Enabl el dI e procedure has been called and whether or not the user has
enabled the idle state through the Portable or PowerBook control panel.

The following examples should help to clarify the use of Enabl el dl e and
Di sabl el dl e:

= If an application calls the Enabl el dI e routine but the user disables or has disabled
the idle state, the idle state is disabled.

= If an application calls the Di sabl el dl e routine and the user enables or has enabled
the idle state, the idle state is disabled.

= If an application calls the Di sabl el dl e routine twice in a row and then calls the
Enabl el dl e routine once, the idle state is disabled.

= If an application calls the Enabl el dl e routine twice in a row and then calls the
Di sabl el dl e routine once, the idle state is disabled.

» If the idle state is initially enabled and if an application calls the Di sabl el dl e
routine twice in a row and then calls the Enabl el dl e routine twice, the Power
Manager first disables and then reenables the idle state.

To determine whether a portable Macintosh computer is currently in the idle state, read
the current clock speed with the Get CPUSpeed function. If the value returned by the
Cet CPUSpeed function is 1, the computer is in the idle state.

Setting, Disabling, and Reading the Wakeup Timer

When a portable Macintosh computer is in the sleep state, the power management
hardware updates the real-time clock and compares it to the wakeup timer once each
second. When the real-time clock and the wakeup timer have the same setting, the
power management circuits return the computer to the operating state. The Power
Manager provides functions that you can use to set the wakeup timer, disable the
wakeup timer, and read the wakeup timer’s current setting.

Using the Power Manager

CHAPTER 6

Power Manager

IMPORTANT

In some portable Macintosh computers, the power management
hardware does not receive this periodic “tickle.” As a result, the
wakeup timer cannot be used on those machines. To determine whether
a particular portable Macintosh computer supports the use of the
wakeup timer, call the Get WUTi ne function. An error is returned if

the timer is not available. a

Use the Set WUTi e function to set the wakeup timer. You pass one parameter to the
Set WUTi nme function, an unsigned long word specifying the number of seconds since
midnight, January 1, 1904. Setting the wakeup timer automatically enables it. Listing 6-2
illustrates how to call the Set WUTi e function.

Listing 6-2 Setting the wakeup timer

FUNCTI ON WakeMeUp (when: Longlnt): OSErr

VAR
nyTi me: Longl nt;

BEG N
Cet Dat eTi me(nyTi ne) ; {get the current tine}
nyTime = nyTime + when; {add desired del ay}
WakeMeUp : = Set WJUTi ne(Longl nt (@yTine));

END;

The when parameter passed to the WakeMeUp function defined in Listing 6-2 specifies
how long from the current time the wakeup timer should go off. The WakeMeUp function
determines the current time by calling Get Dat eTi me and then passes the appropriate
value to Set WUTi ne. Note that the parameter passed to Set WUTi e is the address of the
desired wakeup time, not the wakeup time itself.

To disable the wakeup timer, you can set the wakeup timer to any time earlier than the
current setting of the real-time clock (that is, to some time in the past), or you can use the
Di sabl eWJTi e function. To reenable the wakeup timer, you must use the Set WJUTi e
function to set the timer to a new time in the future.

To get the current setting of the wakeup timer, use the Get WUTi e function. This
function returns two parameters: the time to which the wakeup timer is set (in seconds
since midnight, January 1, 1904) and a flag indicating whether the wakeup timer is
enabled.

If the computer is already in the operating state when the real-time clock reaches the
setting in the wakeup timer, nothing happens.

Note

The power management circuits do not return the computer to the
operating state while battery voltage is low, even if the wakeup timer
and real-time clock settings coincide. O

Using the Power Manager 6-17

Jabeuely 1amod n

CHAPTER 6

Power Manager

Installing a Sleep Procedure

If you want your program to be notified before the Power Manager puts a portable
Macintosh computer into the sleep state or returns it to the operating state, you can put
an entry in the sleep queue. If you do place an entry in the sleep queue, remember to
remove it before your device driver or application terminates.

The sleep queue is a standard operating-system queue, as described in Inside Macintosh:
Operating System Utilities. The Sl eepQRec data type defines a sleep queue record
as follows:

TYPE Sl eepQRrec = {sl eep queue record}
RECORD
sl eepQLi nk: Sl eepQRecPtr; {next queue el enent}
sl eepQTlype: I nt eger; {queue type = 16}
sl eepQProc: ProcPtr; {pointer to sleep procedure}
sl eepQFl ags: I nt eger; {reserved}
END;

To add an entry to the sleep queue, fill in the sl eepQType and sl eepQPr oc fields

of a sleep queue record. The sl eepQLi nk and sl eepQFl ags fields are maintained
privately by the Power Manager; your application should not modify these fields, except
to initialize them before it calls the S| eepQ nst al | procedure. Sl eepQ nstal | takes
one parameter, a pointer to your sleep queue record. Listing 6-3 shows how to add an
entry to the sleep queue.

Listing 6-3 Adding an entry to the sleep queue

6-18

VAR
gSl eepRec: Sl eepQRec; {a sl eep queue record}

PROCEDURE Myl nst al | S| eepProcedur e;

BEG N
{Set up the record before installing it into the sleep queue.}
W TH gSl eepRec DO

BEG N
sl eepQink := NL; {initialize reserved field}
sl eepQlype : = sl pQlype; {set sleep queue type}
sl eep@Proc : = @W¥Sl eepProc; {set address of sleep proc}
sl eepQFl ags : = 0O; {initialize reserved field}

END;

Sl eepQ nstal | (@S| eepRec) ; {install the record}

END;

To remove your routine from the sleep queue, use the Sl eepQRenove procedure. This
procedure also takes as its one parameter a pointer to your sleep queue record.

Using the Power Manager

CHAPTER 6

Power Manager

Using Application Global Variables in Sleep Procedures

When a sleep procedure installed by an application is called, the A5 world of that
application might not be valid. That is to say, the A5 register might not point to the
boundary between the application’s global variables and its application parameters.
When this happens, any attempt by the sleep procedure to read the application’s global
variables or to access any other information in the application’s A5 world is likely to
return erroneous information.

As a result, if you use an application to install a sleep procedure and your sleep
procedure accesses any information in your application’s A5 world, you'll need to

make sure that, at the time you access that information, the A5 register points to your
application’s global variables. Your sleep procedure must also restore the A5 register to
its previous value before exiting. This saving and restoring of the A5 register is necessary
whenever your sleep procedure uses any information in your application’s A5 world,
such as your application global variables or any of your application’s QuickDraw global
variables.

Note

The techniques described in this section are relevant only to sleep
procedures installed by applications. Sleep procedures installed from
other kinds of code (for example, from system extensions) do not need
to worry about saving and restoring the A5 register. O

It's easy enough to use the Set A5 function to read the value of the A5 register when
your sleep procedure begins executing and to restore the register immediately before
your procedure exits. (See Listing 6-6 on page 6-21.) It’s a bit harder to pass your
application’s A5 value to the sleep procedure. A standard way to do this in a high-level
language like Pascal is to define a new data structure that contains both a sleep queue
record and room for the A5 value. For example, you can define a structure of type

Sl eepl nf oRec, as follows:

TYPE Sl eepl nfoRec = {sleep information record}
RECORD
nmy Sl eepQRec: Sl eepQRec; {a sl eep queue record}
nmy Sl pRef Con: Longl nt; {address of app’'s A5 worl d}
END;

Sl eepl nfoRecPtr = ~Sl eepl nf oRec;

Then, you simply need to call the Set Cur r ent A5 function at a time that your
application is the current application and pass the result of that function to your sleep
procedure (via the my Sl pRef Con field of the sleep information record). Listing 6-4
shows how to do this.

Using the Power Manager 6-19

Jabeuely 1amod n

CHAPTER 6

Power Manager

Listing 6-4 Installing a sleep procedure that uses application global variables

6-20

VAR
gSl eepl nf oRec: Sl eepl nfoRec; {a sleep information record}

PROCEDURE Myl nst al | Sl eepPr oc;

BEG N
{Set up the record before installing it into the sleep queue.}
W TH ¢Sl eepl nf oRec. nySl eepQRec DO

BEG N
sl eepQ@ink := NL; {initialize reserved field}
sl eepQlype : = sl pQlype; {set sl eep queue type}
sl eep@Proc : = @¥Sl eepProc; {set address of sleep proc}
sl eepQFl ags : = 0; {initialize reserved field}
END;

{Install app’s A5 value into expanded sl eep record.}
gSl eepl nf oRec. ny S| pRef Con : = Set Current A5;

Sl eepQ nstal | (@S| eepl nfoRec)); {install the record}
END;

The Power Manager puts the address you pass to Sl eepQ nst al | into register AO
when your sleep procedure is called. Thus, the sleep procedure simply needs to retrieve
the Sl eepl nf oRec record and extract the appropriate value of the application’s A5
world. See the next section, “Writing a Sleep Procedure,” for a sample sleep procedure
that does this.

Note

For more information about your application’s A5 world and routines
you can use to manipulate the A5 register, see the chapter “Introduction
to Memory Management” in Inside Macintosh: Memory. O

Writing a Sleep Procedure

After you've added an entry to the sleep queue, the Power Manager calls your sleep
procedure when the Power Manager issues a sleep request, a sleep demand, a wakeup
demand, or a sleep-request revocation. Whenever the Power Manager calls your routine,
the A0 register contains a pointer to your sleep queue record and the DO register contains

Using the Power Manager

CHAPTER 6

Power Manager

a sleep procedure selector code indicating the reason your routine is being called. One
of four selector codes will be in the DO register:

CONST
sl eepRequest =
sl eepDenmand
sl eepWakeUp =
sl eepRevoke

; {sl eep request}

; {sl eep denand}

; {wakeup denmand}

; {sl eep-request revocation}

1
A W DN P

When your routine receives a sleep request, it must either allow or deny the request and
place its response in the DO register. To allow the sleep request, clear the DO register to 0
before returning control to the Power Manager. To deny the sleep request, return a
nonzero value in the DO register. (Note that you cannot deny a sleep demand.)

Listing 6-5 defines two assembly-language glue routines that you can use to accept

or deny the request from a high-level language.

Listing 6-5 Accepting and denying a sleep request

PROCEDURE My Al | owSl eepRequest ;
I NLI NE
$7000; { MOVEQ #0, DO}

PROCEDURE MyDenySl eepRequest ;
I NLI NE
$7001; { MOVEQ #1, DO}

If your routine or any other routine in the sleep queue denies the sleep request, the
Power Manager sends a sleep-request revocation to each routine that it has already
called with a sleep request. If none of the routines denies the sleep request, the Power
Manager sends a sleep demand to each routine in the sleep queue. Because your routine
will be called a second time in any case, it is not necessary to prepare for sleep in
response to a sleep request; your routine need only allow or deny the sleep request

by returning a result in the DO register. Listing 6-6 shows a sample sleep procedure.

Listing 6-6 A sleep procedure

PROCEDURE My S| eepPr oc;

VAR
ny Sl eepl

nfoPtr: Sl eepl nf oRecPt r;

ny Sl eepComand: Longl nt;

nmyd dA5:
my Cur A5:

Longl nt ; {A5 upon entry to procedure}
Longl nt;

Using the Power Manager 6-21

Jabeuely 1amod n

BEG N

nmySl eepl nf oPt r
ny Sl eepComand :

CHAPTER 6

Power Manager

MyGet Sl eepl nfoPtr; {get the address of the sleep record}
MyGet Sl eepComand; {get the task we are to perfornj

{Set A5 register to app’s A5 value, and save the original A5 val ue.}
nyd dA5 : = Set A5(ny Sl eepl nfoPtr”. mySl pRef Con) ;
CASE nySl eepComrand OF {do the right thing}

sl eepRequest :

M/ Sl eepRequest ;
sl eepDemand:

My Sl eepDerrand,;
sl eepWakeUp:

MyWakeupDemand;
sl eepRevoke:

M/ Sl eepRevoke;

OTHERW SE
END;, { CASE}
myd dA5 : = Set A5(nyd dA5); {restore original A5}
END;
The My Sl eepPr oc sleep procedure defined in Listing 6-6 retrieves the address of the
sleep queue record contained in register A0 and the selector code contained in register
DO. Then it calls the appropriate application-defined routine to handle the selector code.
My Sl eepPr oc uses two assembly-language glue routines, defined in Listing 6-7, to get
those values from the appropriate registers.
Listing 6-7 Retrieving the sleep queue record and the selector code
{Retrieve the address of our sleep info record from AO.}
FUNCTI ON MyGet Sl eepl nfoPtr: Sl eepl nfoRecPtr;
I NLI NE
$2E88; {MOVE. L A0, (A7)}
{Retrieve the command code for the sleep procedure from DO.}
FUNCTI ON MyGet Sl eepConmrand: Longl nt ;
I NLI NE
$2E80; {MOVE. L DO, (A7)}
When your sleep procedure receives a sleep demand, it must prepare for the sleep state
and return control to the Power Manager as quickly as possible. Because sleep demands
are never sent by an interrupt handler, your sleep procedure can perform whatever tasks
6-22 Using the Power Manager

CHAPTER 6

Power Manager

are necessary to prepare for sleep, including making calls to the Memory Manager.

You can, for example, display an alert box to inform the user of potential problems,

or you can even display a dialog box that requires the user to specify the action to be
performed. However, if several applications display alert or dialog boxes, the user might
become confused or alarmed. More important, if the user is not present to answer the
alert box or dialog box, control is never returned to the Power Manager and the
computer does not go to sleep. Listing 6-8 defines a procedure that displays a dialog box
whenever a sleep demand is received.

Listing 6-8 Displaying a dialog box in response to a sleep demand

PROCEDURE My S| eepDemnand;

VAR
myltem I nt eger; {item nunber for Mbodal D al og}
nmyRect : Rect ; {rectangl e for NewDi al og}
nmyOrigPort: Gafbtr; {original graphics port}
BEG N
myltem:= 0;
gOrigTine ;= TickCount; {initialize tiner}
IF gbialog = NIL THEN {create a dial og wi ndow}
BEG N
Set Rect (nmyRect, 50, 50, 400, 150);
ghi al og : = NewDi al og(NI'L, myRect, '', FALSE, dBoxProc,
W ndowPtr (-1), FALSE, 0, gltenHandl e);
END;

IF ghialog <> NIL THEN

BEG N
Get Port (myOrigPort); {renmenmber current port}
ShowwW ndow(gDi al og) ; {nmake di al og vi si bl e}

Sel ect W ndow gDi al og) ;
Set Port (gbi al og) ;
REPEAT
Modal Di al og(@ Ti neQutFilter, nyltem;
UNTIL nmyltem = 1,

H deW ndow(gDi al og) ;
Set Port (myOri gPort); {restore original port}
END;
END;

To display a dialog box, you need to build the dialog box from within the sleep
procedure itself to ensure that the newly created dialog box appears frontmost on the

Using the Power Manager 6-23

Jabeuely 1amod n

CHAPTER 6

Power Manager

screen. You can facilitate this process by passing a handle to the dialog item list to your

sleep procedure. In Listing 6-8, the global variable gl t emHand| e is assumed to contain
a handle to the dialog item list. You can execute the following line of code early in your

application’s execution to set gl t emHandl e to the correct value:

gltemHandl e : = Get 1Resource('DITL', kAl ertDI TL);

A WARNING
If your sleep procedure displays an alert box or modal dialog box, the
computer does not enter the sleep state until the user responds. If the
computer remains in the operating state until the battery voltage drops
below a preset value, the power management hardware automatically
shuts off all power to the system, without preserving the state of open
applications or data that has not been saved to disk. To prevent this from
happening, you should automatically remove your dialog box after
several minutes have elapsed. a

An easy way to implement this time-out feature is to pass the Modal Di al og procedure
the address of a modal dialog filter function that intercepts null events until the desired
amount of time has elapsed. Listing 6-9 illustrates such a filter function.

Listing 6-9 A modal dialog filter function that times out

FUNCTI ON MyTi meQutFilter (nyDi al og: Dial ogPtr;
VAR nyEvent: Event Record;
VAR nyltem |nteger): Bool ean;
CONST
kTi meQut Max = 18000; {renove dial og box after 5 m nutes}
BEG N
MyTi nreQut Fil ter := FALSE;

CASE nyEvent . what OF

nul | Event :
BEG N
I F (TickCount - gOrigTinme) >= kTi neQut Max THEN
BEG N
myltem:= 1,
M Ti meQut Filter := TRUE;
END;
END;
{handl e ot her rel evant events here}
OTHERW SE
END; { CASE}

END;

6-24 Using the Power Manager

CHAPTER 6

Power Manager

The global variable gOr i gTi ne is initialized in the My Sl eepDenmand procedure; the
modal dialog filter function defined in Listing 6-9 simply waits until the appropriate
number of ticks (sixtieths of a second) have elapsed before simulating a click on the
OK button (assumed to be dialog item number 1).

When your routine receives a wakeup demand, it must prepare for the operating state
and return control to the Power Manager as quickly as possible.

When your routine receives a sleep-request revocation, it must reverse any changes
it made in response to the sleep request that preceded it and return control to the
Power Manager.

Switching Serial Power On and Off

The serial I/O subsystem of a portable Macintosh computer includes the following
components:

s the Serial Communications Controller (SCC) chip
» the serial driver chips

s the -5 volt supply

» the internal modem (if installed)

Because serial drivers always use these components in certain combinations, the
Power Manager provides five serial power procedures that perform the following tasks:

s The AOn procedure switches on power to serial port A and switches on power to the
internal modem if it is installed.

= The AOnl gnor eMbdemprocedure switches on power to serial port A (the modem
port) but does not switch on power to the internal modem.

s The BOn procedure switches on power to serial port B.

s The AO f procedure switches off power to serial port A and to the internal modem if
it is in use.

s The BO f procedure switches off power to serial port B.

If no internal modem is installed, then calling any of the power-on routines switches on
power to the SCC, the serial driver chips, and the -5 volt supply.

To switch power on for port B whether or not there is an internal modem installed, use
the BOn procedure. This procedure switches on power to the SCC, the serial driver chips,
and the -5 volt supply.

If the internal modem is installed, then you can use the AOn procedure to switch on the
modem. In this case, this procedure switches on power to the SCC, the -5 volt supply,
and the modem; the internal modem does not use the serial driver chips.

If the internal modem is installed but you do not want to use it (whether or not

the user has used the Portable control panel to disconnect the modem), then use the
AOnI gnor eMbdemprocedure to switch on power to the SCC, the serial driver chips,
and the -5 volt supply.

Using the Power Manager 6-25

Jabeuely 1amod n

CHAPTER 6

Power Manager

Note

You can use the Power Manager’s ModensSt at us function to determine
whether an internal modem is turned on or off. For details, see the
description of Modenft at us beginning on page 6-36. O

Monitoring the Battery and Battery Charger

You can use the Power Manager to monitor the status of the battery and battery charger.
To do so, use the Bat t er ySt at us function to determine the current voltage in the
battery.

For most accurate results, you might want to average the voltage over some extended
period of time (anywhere from 30 seconds to several minutes). The power load within
a portable Macintosh computer varies dynamically, and the current draw of the various
subsystems affects the voltage read at any one moment.

Power Manager Reference

This section describes the data structures and routines provided by the Power Manager.
See “Using the Power Manager,” beginning on page 6-13, for detailed instructions on
using these routines.

Data Structures

This section describes the data structures used by the Power Manager. The sleep queue
record is shown in Pascal. The other data structures, which are used by the functions
described in “Power Manager Dispatch Routines,” beginning on page 6-40, are shown in C.

Sleep Queue Record

The Sl eepQ nst al | and Sl eepQRenDve procedures take as a parameter the address
of a sleep queue record, which is defined by the S| eepQRec data type.

TYPE Sl eepQRec =

RECORD
sl eepQLi nk: Sl eepQRecPtr; {next queue el enent}
sl eepQlype: I nt eger; {queue type = 16}
sl eepQProc: ProcPtr; {pointer to sleep procedure}
sl eepQFl ags: I nt eger; {reserved}
END;

Sl eepQRecPtr = ~Sl eepQRec;

6-26 Power Manager Reference

CHAPTER 6

Power Manager

Field descriptions

sl eepQLi nk A pointer to the next element in the queue. This pointer is
maintained internally by the Power Manager; your application
should not modify this field.

sl eepQType The type of the queue, which must be the constant sl pQType (16).

sl eepQProc A pointer to your sleep procedure. See “Sleep Procedures,” on
page 6-65, for details on this routine.

sl eepQFl ags Reserved for use by Apple Computer, Inc.

Hard Disk Queue Structure

The Har dDi skQ nst al | and Har dDi skQRenpve functions take as a parameter the
address of a hard disk queue structure, which is defined by the HDQueueEl enent

data type.
struct HDQueueEl ement {
Ptr hdQLi nk; /* pointer to next queue el enment */
short hdQType; /* queue type (rmust be HDPwr QType) */
short hdFl ags; /* reserved */
HDSpi ndownPr oc hdPr oc; /* pointer to routine to call */
| ong hdUser ; /* user-defined private storage */

} HDQueueEl enent ;

Wakeup Time Structure

The wakeup time structure used by the Get WakeupTi mer and Set WakeupTi ner
functions is defined by the WakeupTi ne data type.

typedef struct WakeupTi me {

unsi gned | ong wakeTi ne; /* wakeup tine as nunber of seconds since
m dni ght, January 1, 1904 */
char wakeEnabl ed; /* 1 = enable tiner, O=disable timer */

} WakeupTi ne;

Battery Information Structure

The Get Scal edBat t er yl nf o function returns information about the battery in a data
structure of type Bat t er yl nf o.

typedef struct Batterylnfo {
unsi gned char fl ags; /* misc flags (see below */
unsi gned char war ni ngLevel ; /* scal ed warning | evel (0-255) */

Power Manager Reference 6-27

Jabeuely 1amod n

CHAPTER 6

Power Manager

char reserved; /* reserved for internal use */
unsi gned char batteryLevel ; /* scaled battery level (0-255) */
} Batterylnfo;

The values of the bits in the f | ags field are as follows:

Bit name Bit number Description
batterylnstall ed 7 A battery is installed.

bat t er yChar gi ng 6 The battery is charging.
char ger Connect ed 5 The charger is connected.

Battery Time Structure

The Get Bat t er yTi mes function returns information about the time remaining on the
computer’s battery or batteries in a data structure of type Bat t er yTi neRec.

typedef struct BatteryTi neRec {
unsi gned | ong expectedBatteryTinme; /* estimated tine remaining */

unsi gned | ong mini nunBatteryTi me; /[* minimumtine remaining */
unsi gned | ong maxi nunBatteryTi ne; /* maximumtine renmai ning */
unsi gned | ong tinmeUntil Charged; /* time until full charge */

} BatteryTi meRec;

Power Manager Routines

This section describes the routines provided by the Power Manager. You can use these
routines to

= enable, disable, and read the idle state

» control and read the wakeup timer

» add and remove elements from the sleep queue
= control power to the serial ports

» read the status of the internal modem

» read the status of the battery and battery charger

Controlling the Idle State

The Power Manager provides routines that you can use to modify and control the idle
state. See “The Idle State,” on page 6-7, for a complete description of a computer’s
idle state and activity timer.

6-28 Power Manager Reference

CHAPTER 6

Power Manager

IdleUpdate

You can use the | dl eUpdat e function to reset the Power Manager’s activity timer.

FUNCTI ON | dl eUpdate: Longlnt;

DESCRIPTION

The | dI eUpdat e function resets the activity timer. It takes no parameters and returns
the value in the Ti cks global variable at the time the function was called.

Enableldle

You can use the Enabl el dl e procedure to enable the idle state.

PROCEDURE Enabl el dl e;

DESCRIPTION

The Enabl el dI e procedure cancels the effect of a call to the Di sabl el dI e procedure.
A call to the Enabl el dl e procedure enables the idle state only if the user has not used
the Portable or PowerBook control panel to disable the idle state and if every call to the
Di sabl el dl e procedure has been balanced by a call to the Enabl el dl e procedure.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
Enabl el dl e routine. That macro calls the _| dl eSt at e trap. To call the _I dl eSt at e
trap directly, you must first put a longword routine selector in the DO register. For
Enabl el dl e, the routine selector is 0.

SEE ALSO

See “Enabling or Disabling the Idle State,” beginning on page 6-15, for more discussion
of Enabl el dl e.

Disableldle

You can use the Di sabl el dl e procedure to disable the idle state.

PROCEDURE Di sabl el dl e;

Power Manager Reference 6-29

Jabeuely 1amod n

DESCRIPTION

CHAPTER 6

Power Manager

The Di sabl el dl e procedure disables the idle state, even if the user has used the
Portable or PowerBook control panel to enable the idle state. Every call to the

Di sabl el dl e procedure must be balanced by a call to the Enabl el dl e procedure
before the idle state is reenabled.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The MPW development system provides an assembly-language macro to execute the

Di sabl el dl e routine. That macro calls the _| dl eSt at e trap. To call the _| dl eSt at e
trap directly, you must first put a longword routine selector in the DO register. For

Di sabl el dl e, the routine selector can be any value that is greater than 0.

See “Enabling or Disabling the Idle State,” beginning on page 6-15, for more discussion
of bi sabl el dl e.

GetCPUSpeed

DESCRIPTION

You can use the Get CPUSpeed function to read the current CPU clock speed.

FUNCTI ON Get CPUSpeed: Longl nt;

The Get CPUSpeed function returns the current effective clock speed (in megahertz) of
the CPU.

ASSEMBLY-LANGUAGE INFORMATION

6-30

The MPW development system provides an assembly-language macro to execute the

Cet CPUSpeed routine. That macro calls the _| dl eSt at e trap. To call the _I dl eSt at e
trap directly, you must first put a longword routine selector in the DO register. For

Cet CPUSpeed, the routine selector can be any value that is less than 0. The CPU speed is
returned as a single byte in register DO.

Power Manager Reference

CHAPTER 6

Power Manager

Controlling and Reading the Wakeup Timer

The Power Manager provides functions to set the wakeup timer, disable the wakeup
timer, and read the current setting of the wakeup timer.

IMPORTANT

Some portable Macintosh computers do not support the wakeup timer.
There is currently no direct way to determine whether a particular
portable computer supports the wakeup timer. You can, however,
inspect the result code from the Get WJTi ne function to see whether the
call executed successfully. a

SetWUTime

You can use the Set WUTi e function to set the wakeup timer.

FUNCTI ON Set WJUTi me (WJTi me: Longlnt): OSErr;

WJTi nme The time at which the wakeup timer is to wake up, specified as a number
of seconds since midnight, January 1, 1904.

DESCRIPTION
The Set WUTi ne function sets and enables the wakeup timer. When a portable
Macintosh computer is in the sleep state, the power management hardware updates the
real-time clock and compares it to the wakeup timer once each second. When the
real-time clock and the wakeup timer have the same setting, the power management
hardware returns the computer to the operating state.

The WJTi e parameter specifies the time at which the power management hardware
will return the computer to the operating state. You specify the time as the number of
seconds since midnight, January 1, 1904.

If the computer is not in the sleep state when the wakeup timer and the real-time clock
settings coincide, nothing happens. If you set the wakeup timer to a time earlier than the
current setting of the real-time clock, you effectively disable the wakeup timer.

RESULT CODES
noErr 0 No error

SEE ALSO

See “Setting, Disabling, and Reading the Wakeup Timer,” beginning on page 6-16, for an
example of calling Set WUTi ne.

You can use the Set WakeupTi nmer function (page 6-45) to explicitly enable and disable
the wakeup timer.

Power Manager Reference 6-31

Jabeuely 1amod n

CHAPTER 6

Power Manager

DisableWUTime

You can use the Di sabl eWUTi me function to disable the wakeup timer.

FUNCTI ON Di sabl eWJTi ne: OSErr;

DESCRIPTION

The Di sabl eWUTi ne function disables the wakeup timer. You must set a new wakeup
time to reenable the wakeup timer.

RESULT CODES
noErr 0 No error

GetWUTime

You can use the Get WUTi e function to read the current setting of the wakeup timer.
FUNCTI ON Get WJUTi mre (VAR WUTi ne: Longlnt; VAR WUFl ag: Byte): OSErr;

WJTi ne On exit, the current setting of the wakeup timer, specified as the number
of seconds since midnight, January 1, 1904.

WUFI ag On exit, a bit field encoding the state of the wakeup timer.

DESCRIPTION

The Get WUTi me function returns the current setting of the wakeup timer and indicates
whether the wakeup timer is enabled. The value returned in the WJTi me parameter is
the current setting of the wakeup timer, specified as the number of seconds since
midnight, January 1, 1904. If the low-order bit (bit 0) of the WUFI ag parameter is set to 1,
the wakeup timer is enabled. The other bits in the WJFI ag parameter are reserved.

SPECIAL CONSIDERATIONS

The Get WUTi ne function returns an error on machines that do not support the wakeup
timer.

RESULT CODES

noErr 0 No error
pnBusyErr -13001 Wakeup timer is not available on this machine

6-32 Power Manager Reference

CHAPTER 6

Power Manager

Controlling the Sleep Queue

The Power Manager allows you to install a sleep procedure that is executed whenever
the machine is about to go into the sleep state or just after the machine returns from the
sleep state.

SleepQlInstall

You can use the Sl eepQ nst al | procedure to add an entry to the sleep queue.
PROCEDURE Sl eepQ nstall (qRecPtr: Sl eepQRecPtr);

gRecPtr A pointer to a sleep queue record.

DESCRIPTION
The Sl eepQ nst al | procedure adds the specified sleep queue record to the sleep
queue. The qRecPt r parameter is a pointer to a sleep queue record.
SPECIAL CONSIDERATIONS
You should make sure to remove any elements you installed in the sleep queue before
your application or other software exits.
SEE ALSO
See “Sleep Queue Record,” on page 6-26, for the structure of a sleep queue record. See
“Sleep Procedures,” beginning on page 6-65, for information about sleep procedures.
SleepQRemove
You can use the SI eepQRenpve procedure to remove an entry from the sleep queue.
PROCEDURE Sl eepQRenpve (gRecPtr: Sl eepQRecPtr);
qRecPtr A pointer to a sleep queue record, which is described on page 6-26.
DESCRIPTION

The SI eepQRenpve procedure removes the specified sleep queue record from the sleep
queue. The gRecPt r parameter is a pointer to the sleep queue record that you provided
when you added your routine to the sleep queue.

Power Manager Reference 6-33

Jabeuely 1amod n

CHAPTER 6

Power Manager

Controlling Serial Power

AOn

The Power Manager provides five procedures that you can use to control power to the
serial ports and internal modem.

Assembly-Language Note

Although MPW provides assembly-language macros to execute these
routines, each of these macros calls the _Ser i al Power trap macro. To
call the _Seri al Power trap macro directly, you must first put a routine
selector in the DO register, setting the bits of the selector as follows:

Bit Use
0 Set to 0 to use internal modem; set to 1 to ignore modem.
Set to 0 for port B; set to 1 for port A.

Set to 0 to switch on power; set to 1 to switch off power. O

DESCRIPTION

You can use the AOn procedure to turn on the power to serial port A.

PROCEDURE AOn;

The AOn procedure switches on power to the SCC and the -5 volt supply. If the internal
modem is installed and is connected to port A, the AOn procedure also switches on
power to the modem. If either of these conditions is not met, the AOn procedure switches
on power to the serial driver chips.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
AOn routine. That macro calls the _Ser i al Power trap. To call the _Ser i al Power trap
directly, you must first put a longword routine selector in the DO register. For AOn, the
routine selector is $4.

AOmnlIgnoreModem

6-34

You can use the AOnl gnor eMbdemprocedure to turn on the power to serial port A but
not to the internal modem.

PROCEDURE AOnI gnor eModem

Power Manager Reference

CHAPTER 6

Power Manager

DESCRIPTION

The AOnl gnor eMbdemprocedure switches on power to the SCC, the -5 volt supply, and
the serial driver chips. This procedure does not switch on power to the internal modem,
even if the user has used the Portable or PowerBook control panel to select the modem.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
AOnl gnor eMbdemroutine. That macro calls the _Ser i al Power trap. To call the
_Seri al Power trap directly, you must first put a longword routine selector in

the DO register. For AOnl gnor eMbdem the routine selector is $5.

BOn

You can use the BOn procedure to turn on the power to serial port B.

PROCEDURE BOn;

DESCRIPTION

The BOn procedure switches on power to the SCC, the -5 volt supply, and the serial
driver chips.

ASSEMBLY-LANGUAGE INFORMATION
The MPW development system provides an assembly-language macro to execute the
BOn routine. That macro calls the _Ser i al Power trap. To call the _Seri al Power trap
directly, you must first put a longword routine selector in the DO register. For BOn, the
routine selector is $0.

AOff
You can use the ACF f procedure to turn off the power to serial port A and to the internal
modem.
PROCEDURE ACE T ;

DESCRIPTION

The ACF f procedure always switches off power to the SCC and the -5 volt supply if
serial port B is not in use. If the internal modem is installed, connected to port A, and
switched on, this procedure switches off power to the modem. If any of these conditions

Power Manager Reference 6-35

Jabeuely 1amod

CHAPTER 6

Power Manager

are not met, it switches off power to the serial driver chips, unless they are being used
by port B.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
A f routine. That macro calls the _Ser i al Power trap. To call the _Seri al Power trap
directly, you must first put a longword routine selector in the DO register. For ACF f , the
routine selector is $84.

BOff
You can use the BOF f procedure to turn off the power to serial port B and to the internal
modem.
PROCEDURE BOf f ;

DESCRIPTION

The BOF f procedure switches off power to the SCC and the -5 volt supply if serial port
A'is not in use. If the internal modem is installed, connected to port B, and switched on,
this procedure switches off power to the modem. Otherwise, the BOf f procedure
switches off power to the serial driver chips, unless they are being used by port A.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the
BOF f routine. That macro calls the _Ser i al Power trap. To call the _Ser i al Power trap
directly, you must first put a longword routine selector in the DO register. For BO f , the
routine selector is $80.

Reading the Status of the Internal Modem

The Power Manager provides a function that allows you to determine the status of the
internal modem.

ModemStatus

6-36

You can use the Mbdenft at us function to get information about the state of the internal
modem.

FUNCTI ON ModentSt atus (VAR Status: Byte): OSErr;

Power Manager Reference

DESCRIPTION

CHAPTER 6

Power Manager

St at us On exit, a byte value whose bits encode information about the current
state of the internal modem. See the description below for the meaning
of each bit.

The Modenst at us function returns information about the internal modem in a
portable Macintosh computer. Bits 0 and 2 through 5 of the St at us parameter encode
information about the state of the internal modem. (Currently, bits 6 and 7 are reserved;
in addition, bit 1 is reserved and is always set.) The Power Manager recognizes the
following constants for specifying bits in the St at us parameter.

CONST
nodemOnBi t =
ri ngWakeUpBi t =
nodem nst al | edBi t =
ringDetectBit =
nodemOnHookBi t =

{1if nodemis on}

{1 if ring wakeup is enabl ed}
{1if internal nodemis installed}
{1 if incomng call is detected}
{1 if nodemis off hook}

O h WNO

Constant descriptions

modenOnBi t The modem’s power is on or off. If this bit is set, the modem is
switched on. You can use the serial power control functions to
control power to the modem. See “Switching Serial Power On and
Off,” beginning on page 6-25, for information about these functions.

ri ngWakeUpBit The state of the ring-wakeup feature. If this bit is set, the
ring-wakeup feature is enabled.

modemn nst al | edBi t
The modem is or is not installed. If this bit is set, an internal modem
is installed.

ringDetectBit The ring-detect state. If this bit is set, the modem has detected an
incoming call.

nodemOnHookBit The modem is on or off hook. If this bit is set, the modem is off
hook. The modem indicates that it is off hook whenever it is busy
sending or receiving data or processing commands. The modem
cannot receive an incoming call when it is off hook.

The Power Manager also defines these bit masks:

CONST
nmodenmOnMask = $1; { modem on}
ri ng\WakeUpMask = $4; {ring wakeup enabl ed}
nodem nst al | edMask = $8; {internal nodeminstall ed}

ri ngDet ect Mask
nodenOnHook Mask

$10; {incom ng call detected}
$20; {modem of f hook}

The user can use the Portable or PowerBook control panel to enable or disable the
ring-wakeup feature. When the ring-wakeup feature is enabled and the computer is in

Power Manager Reference 6-37

Jabeuely 1amod n

RESULT CODES

CHAPTER 6

Power Manager

the sleep state, the Power Manager returns the computer to the operating state when the
modem receives an incoming call.

noErr 0 No error

Reading the Status of the Battery and the Battery Charger

The Power Manager monitors the voltage level of the internal battery and warns the user
when the voltage drops below a threshold value stored in parameter RAM. If the voltage
continues to drop and falls below another, lower value stored in parameter RAM, the
Power Manager puts the computer into the sleep state. The Power Manager provides a
function that allows you to read the state of charge of the battery and the status of the
battery charger.

BatteryStatus

DESCRIPTION

You can use the Bat t er y St at us function to get information about the state of the
internal battery.

FUNCTI ON BatteryStatus (VAR Status: Byte; VAR Power: Byte): OSErr;

St at us On exit, a byte value whose bits encode information about the current
state of the battery charger. See the description below for the meaning
of each bit.

Power On exit, a byte whose value indicates the current level of the battery

voltage. See the description below for a method of calculating the voltage
from this value.

The Bat t er ySt at us function returns the status of the battery charger (in the St at us
parameter) and the voltage level of the battery (in the Power parameter).

Bits 0 through 5 of the St at us parameter encode information about the state of the
battery charger. (Currently, bits 6 and 7 are reserved.) The Power Manager recognizes
the following constants for specifying bits in the St at us parameter.

CONST

char ger ConnBi t = 0; {1 if charger is connected}

hi Char geBi t = 1; {1 if charging at hicharge rate}

char geQver Fl owBi t = 2; {1 if hicharge counter has overfl owed}
6-38 Power Manager Reference

CHAPTER 6

Power Manager

batt eryDeadBit
batteryLowBi t
connChangedBi t

= 3; {al ways 0}
= 4, {1if battery is |ow}
= b; {1 if charger connection has changed}

Constant descriptions

char ger ConnBi t

hi Char geBi t

The charger is or is not connected. If this bit is set, the battery
charger is connected to the computer.

The charge rate. If this bit is set, the battery is charging at the
hicharge rate.

char geQver Fl owBi t

batt eryDeadBit

batteryLowBi t

connChangedBi t

The hicharge counter overflow. If this bit is set, the hicharge counter
has overflowed. When the hicharge counter has overflowed, it
indicates that the charging circuit is having trouble charging the
battery.

The dead battery indicator. This bit is always 0, because the Power
Manager automatically shuts the system down when the battery
voltage drops below a preset level.

The battery warning. If this bit is set, the battery voltage has
dropped below the value set in parameter RAM. The power
management hardware sends an interrupt to the CPU once every
second when battery voltage is low.

The charger connection has or has not changed state. If this bit is
set, the charger has been recently connected or disconnected.

The Power Manager also defines these bit masks:

CONST
char ger ConnMask
hi Char geMask
char geOver Fl omvask
batt er yDeadMask
bat t er yLowMask
connChangedMask

= $1,; {charger is connected}

= $2; {charging at hicharge rate}

= $4; {hi charge counter has overfl owed}
= $8; {battery is dead}

= $10; {battery is | ow

= $20; {connection has changed}

Due to the nature of lead-acid batteries, the battery power remaining is difficult to
measure accurately. Temperature, load, and other factors can alter the measured voltage
by 30 percent or more. The Power Manager takes as many of these factors into account
as possible, but the voltage measurement can still be in error by up to 10 percent. The
measurement is most accurate when the computer has been in the sleep state for at least

30 minutes.

When the battery charger is connected to a portable Macintosh computer with a low
battery, the battery is charged at the hicharge rate (1.5 amps) until battery voltage
reaches its full charge (7.2 volts on most portable Macintosh computers). The Power
Manager has a counter (the hicharge counter) that measures the time required to raise
the battery voltage to this level.

Power Manager Reference

6-39

Jabeuely 1amod n

RESULT CODES

SEE ALSO

CHAPTER 6

Power Manager

After the full charge level is reached, the power management circuits maintain the
hicharge connection until the hicharge counter counts down to 0. This ensures that the
battery is fully charged. At the end of that time, the power management circuits supply
the battery with just enough current to replace the voltage lost through self-discharge.

noErr 0 No error

For more functions for determining the status of the battery and battery charger, see
“Getting Information About the Internal Batteries,” beginning on page 6-54.

Power Manager Dispatch Routines

This section describes the Power Manager dispatch routines. You can use these
routines to

» determine what Power Manager features are available

» set and read the sleep and wakeup timers and disable or disable the sleep timer
» set, read, enable, and disable the timer that dims the screen

= control the hard disk

» get information about the battery

= get and set the state of the internal modem

= control the processing speed of the processor and processor cycling

s get and set the SCSI ID the computer uses in SCSI disk mode

Note

The functions in this section are described using the C language

interface. The section “Summary of the Power Manager,” beginning on
page 6-67, includes both Pascal and C interfaces. O

Assembly-language note:

All the functions in this section share a single trap,

_Power Myr Di spat ch ($A09E). The trap is register based: parameters
are passed in register DO and sometimes also in AQ. A routine selector

value passed in the low word of register DO determines which routine
is executed. O

Determining the Power Manager Features Available

6-40

The functions in this section return the number of Power Manager dispatch functions
available and return information about the Power Manager features available.

Power Manager Reference

CHAPTER 6

Power Manager

PMSelectorCount

You can use the PMSel ect or Count function to determine which Power Manager
dispatch functions are implemented.

short PMsel ect or Count () ;

DESCRIPTION

The PMSel ect or Count function returns the number of routine selectors present. Any
function whose selector value is greater than the returned value is not implemented.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for PMSel ect or Count
is 0 ($00) in the low word of register DO. The number of selectors is returned in the low
word of register DO.

PMFeatures

You can use the PMFeat ur es function to find out which features of the Power Manager
are implemented.

unsi gned | ong PMrFeat ures();

DESCRIPTION

The PMFeat ur es function returns a 32-bit field describing hardware and software
features associated with the Power Manager on a particular machine. If a bit value is 1,
that feature is supported or available; if the bit value is 0, that feature is not available.
Unused bits are reserved by Apple for future expansion.

Bit name Bit number Description
hasWakeupTi nmer 0 The wakeup timer is supported.
hasShar edMbdenPor t 1 The hardware forces exclusive access to

either SCC port A or the internal modem.
(If this bit is not set, port A and the internal
modem can be used simultaneously by
means of the Communications Toolbox.)

hasProcessor Cycl i ng 2 Processor cycling is supported; that is,
when the computer is idle, the processor
power will be cycled to reduce power use.

nmust Processor Cycl e 3 The processor cycling feature must be left
on (turn it off at your own risk).

Power Manager Reference 6-41

Jabeuely 1amod n

CHAPTER 6

Power Manager

Bit name Bit number Description

hasReducedSpeed 4 Processor can be started up at a reduced
speed in order to extend battery life.

dynam cSpeedChange 5 Processor speed can be switched
dynamically between its full and reduced
speed at any time, rather than only at
startup time.

hasSCSI Di skibde 6 The SCSI disk mode is supported.

canCet BatteryTi ne 7 The computer can provide an estimate of
the battery time remaining.

canWkeupOnRi ng 8 The computer supports waking up from
the sleep state when an internal modem is
installed and the modem detects a ring.

hasDi mmi ngSuppor t 9 The computer has dimming support built
into the ROM.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for PMFeat ur es is 1
($01) in the low word of register DO. The 32-bit field of supported features is returned
in register DO.

Controlling the Sleep and Wakeup Timers

The functions in this section read and set the sleep and wakeup timers and enable or
disable the automatic sleep feature.

GetSleepTimeout

You can use the Get Sl eepTi neout function to find out how long the computer will
wait before going to sleep.

unsi gned char Get Sl eepTi neout () ;

DESCRIPTION

The Get Sl eepTi meout function returns the amount of time that the computer will wait
after the last user activity before going to sleep. The value of Get Sl eepTi neout is
expressed as the number of 15-second intervals that the computer will wait before going
to sleep.

6-42 Power Manager Reference

CHAPTER 6

Power Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Get Sl eepTi neout
is 2 ($02) in the low word of register DO. The sleep timeout value is returned in the low
word of register DO.

SetSleepTimeout

You can use the Set Sl eepTi neout function to set how long the computer will wait
before going to sleep.

voi d Set Sl eepTi meout (unsi gned char tineout);

ti meout The amount of time that the computer will wait after the last user activity
before going to sleep expressed as a number of 15-second intervals.

DESCRIPTION
The Set Sl eepTi meout function sets the amount of time the computer will wait after
the last user activity before going to sleep. The value of Set Sl eepTi nmeout is expressed
as the number of 15-second intervals making up the desired time. If a value of 0 is
passed in, the function sets the t i meout value to the default value (currently equivalent
to 8 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set Sl eepTi neout
is 3 ($03) in the low word of register DO. The sleep timeout value to set is passed in the
high word of register DO.

AutoSleepControl

You can use the Aut 0S| eepCont r ol function to turn the automatic sleep feature on
and off.

voi d Aut oSl eepCont rol (Bool ean enabl eSl eep) ;
enabl eSl eep

A Boolean that specifies whether to enable the automatic sleep feature.
Set this parameter to t r ue to enable automatic sleep.

Power Manager Reference 6-43

Jabeuely 1amod n

DESCRIPTION

CHAPTER 6

Power Manager

The Aut 0S| eepCont r ol function enables or disables the automatic sleep feature
that causes the computer to go into sleep mode after a preset period of time. When
enabl eS| eep is set to t r ue, the automatic sleep feature is enabled (this is the normal
state). When enabl eS| eep is set to f al se, the computer will not go into the sleep
mode unless it is forced to either by some user action—for example, by the user’s
selecting Sleep from the Special menu of the Finder—or in a low battery situation.

SPECIAL CONSIDERATIONS

Calling Aut oSl eepCont r ol with enabl eS| eep set to f al se multiple times
increments the auto sleep disable level so that it requires the same number of calls to

Aut 0S| eepContr ol with enabl eS| eep set to t r ue to reenable the auto sleep feature.
If more than one piece of software makes this call, auto sleep may not be reenabled when
you think it should be.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Aut 0S|l eepCont r ol
is 13 ($0D) in the low word of register DO. The Boolean value is passed in the high word
of register DO.

IsAutoSlpControlDisabled

DESCRIPTION

You can use the | sAut 0S| pCont r ol Di sabl ed function to find out whether automatic
sleep control is enabled.

Bool ean | sAut oSl pControl Di sabl ed();

The | sAut oSl pCont r ol Di sabl ed function returns a Boolean t r ue if automatic sleep
control is disabled, or f al se if automatic sleep control is enabled.

ASSEMBLY-LANGUAGE INFORMATION

6-44

The trap is _Power Myr Di spat ch ($A09E). The selector value for
| sAut oSl pCont r ol Di sabl ed is 33 ($21) in the low word of register DO. The Boolean
result is passed in the low byte of register DO.

Power Manager Reference

CHAPTER 6

Power Manager

GetWakeupTimer

You can use the Get WakeupTi ner function to find out when the computer will wake up
from sleep mode.

voi d Get WakeupTi ner (WakeupTi me *t heTi ne);

t heTi me A pointer to a WakeupTi ne structure, which specifies whether the timer
is enabled or disabled and the time at which the wakeup timer is set to
wake the computer.

DESCRIPTION
The Get WakeupTi mer function returns the time when the computer will wake up from
sleep mode.

If the PowerBook model doesn’t support the wakeup timer, Get WakeupTi mer returns
a value of 0.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Get WakeupTi ner
is 22 ($16) in the low word of register DO. The pointer to WakeupTi e is passed in
register AQ.

SEE ALSO
The WakeupTi nme structure is described in “Wakeup Time Structure,” on page 6-27.

SetWakeupTimer

You can use the Set WakeupTi mer function to set the time when the computer will
wake up from sleep mode.

voi d Set WakeupTi ner (WakeupTi me *t heTi ne);

t heTi me A pointer to a WakeupTime structure, which specifies whether to enable
or disable the timer and the time at which the wakeup timer is to wake
the computer.

DESCRIPTION

The Set WakeupTi mer function sets the time when the computer will wake up from
sleep mode and enables or disables the timer. On a PowerBook model that doesn’t
support the wakeup timer, Set WakeupTi mer does nothing.

Power Manager Reference 6-45

Jabeuely 1amod n

CHAPTER 6

Power Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set WakeupTi ner
is 23 ($17) in the low word of register D0. The pointer to WakeupTi ne is passed in
register AQ.

SEE ALSO
The WakeupTi nme structure is described in “Wakeup Time Structure,” on page 6-27.

Controlling the Dimming Timer

The functions in this section read and set the dimming timer and enable or disable the
automatic screen-dimming feature. The dimmer acts as a screen saver, dimming the
screen after a preset time of user inactivity.

GetDimmingTimeout

You can use the Get Di mmi ngTi neout function to find out how long the computer will
wait before dimming the screen.

unsi gned char Get Di mm ngTi neout () ;

DESCRIPTION
The Get Di mmi ngTi meout function returns the amount of time that the computer
will wait after the last user activity before dimming the screen. The value of

Cet Di mmi ngTi neout is expressed as the number of 15-second intervals that the
computer will wait before dimming the screen.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Cet Di mmi ngTi neout is 29 ($1D) in the low word of register D0O. The dimming timeout
value is returned in the low word of register DO.

SetDimmingTimeout

You can use the Set Di mmi ngTi meout function to set how long the computer will wait
before dimming the screen.

voi d Set Di mm ngTi neout (unsi gned char tineout);

6-46 Power Manager Reference

DESCRIPTION

CHAPTER 6

Power Manager

ti meout The amount of time that the computer will wait after the last user activity
before dimming the screen expressed as a number of 15-second intervals.
Specify 0 to cause the screen to dim immediately.

The Set Di nmi ngTi meout function sets the amount of time the computer will wait after
the last user activity before dimming the screen. The value of Set Di mmi ngTi neout is
expressed as the number of 15-second intervals making up the desired time.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set Di nmi ngTi meout
is 30 ($1E) in the low word of register DO. The dimming timeout value to set is passed in
the high word of register DO.

You can use the PMFeat ur es function (page 6-41) to determine whether the computer
supports automatic dimming.

DimmingControl

DESCRIPTION

You can use the Di i ngCont r ol function to turn the automatic dimming feature
on and off.

voi d Di mm ngControl (Bool ean enabl eDi mm ng) ;

enabl eDi mm ng
A Boolean that specifies whether to enable the automatic dimming
feature. Set this parameter to t r ue to enable automatic dimming.

The Di mmi ngCont r ol function enables or disables the automatic dimming feature that
causes the computer to dim the screen after a preset period of time. When

enabl eDi nmi ng is set to t r ue, the automatic dimming feature is enabled (this is the
normal state). When enabl eDi nmi ng is set to f al se, the computer will not dim the
screen.

SPECIAL CONSIDERATIONS

Calling Di nmi ngCont r ol with enabl eDi mmi ng set to f al se multiple times
increments the auto dimming disable level so that it requires the same number of calls to
Di mm ngCont r ol with enabl eDi mmi ng set tot r ue to reenable the auto dimming

Power Manager Reference 6-47

Jabeuely 1amod n

CHAPTER 6

Power Manager

feature. If more than one piece of software makes this call, auto dimming may not be
reenabled when you think it should be.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Di mm ngCont r ol
is 31 ($1F) in the low word of register D0. The Boolean value is passed in the high word
of register DO.

SEE ALSO

You can use the PMFeat ur es function (page 6-41) to determine whether the computer
supports automatic dimming.

IsDimmingControlDisabled

You can use the | sDi nmi ngCont r ol Di sabl ed function to find out whether automatic
dimming is enabled.

Bool ean 1 sDi mri ngControl Di sabl ed();

DESCRIPTION

The | sDi mmi ngCont r ol Di sabl ed function returns a Boolean t r ue if automatic
dimming is disabled, or f al se if dimming is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
I sDi mmi ngCont r ol Di sabl ed is 32 ($20) in the low word of register D0. The Boolean
result is passed in the low byte of register DO.

SEE ALSO

You can use the PM~eat ur es function (page 6-41) to determine whether the computer
supports automatic dimming.

Controlling the Hard Disk

The functions in this section return information about the hard disk timer and the state
of the hard disk, and allow you to control the spin down of the hard disk. You can also
use functions in this section to install and remove hard disk queue elements. The hard
disk queue notifies your software when power to the internal hard disk is about to be
turned off.

6-48 Power Manager Reference

CHAPTER 6

Power Manager

GetHardDiskTimeout

DESCRIPTION

You can use the Get Har dDi skTi neout function to find out how long the computer will
wait before turning off power to the internal hard disk.

unsi gned char GCet Har dDi skTi meout () ;

The Get Har dDi skTi meout function returns the amount of time the computer will wait
after the last use of a SCSI device before turning off power to the internal hard disk. The
value of Get Har dDi skTi meout is expressed as the number of 15-second intervals the
computer will wait before turning off power to the internal hard disk.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Cet Har dDi skTi neout is 4 ($04) in the low word of register DO. The hard disk timeout
value is returned in the low word of register DO.

SetHardDiskTimeout

DESCRIPTION

You can use the Set Har dDi skTi neout function to set how long the computer will wait
before turning off power to the internal hard disk.

voi d Set Har dDi skTi meout (unsi gned char tineout);

ti meout The amount of time that the computer will wait after the last user activity
before turning off the hard disk, expressed as a number of 15-second
intervals.

The Set Har dDi skTi meout function sets how long the computer will wait after the last
use of a SCSI device before turning off power to the internal hard disk. The value of

Set Har dDi skTi meout is expressed as the number of 15-second intervals the computer
will wait before turning off power to the internal hard disk. If a value of 0 is passed in,
the function sets the t i meout value to the default value (currently equivalent to

4 minutes).

Power Manager Reference 6-49

Jabeuely 1amod n

CHAPTER 6

Power Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Set Har dDi skTi meout is 5 ($05) in the low word of register DO. The hard disk timeout
value to set is passed in the high word of register DO.

HardDiskPowered

You can use the Har dDi skPower ed function to find out whether the internal hard disk
is on.

Bool ean Har dDi skPower ed() ;

DESCRIPTION

The Har dDi skPower ed function returns a Boolean value indicating whether or not the
internal hard disk is powered up. A value of t r ue means that the hard disk is on, and a
value of f al se means that the hard disk is off.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Har dDi skPower ed
is 6 ($06) in the low word of register D0. The Boolean result is returned in the low word
of register DO.

SpinDownHardDisk

You can use the Spi nDownHar dDi sk function to force the hard disk to spin down.

voi d Spi nDownHar dDi sk();

DESCRIPTION
The Spi nDownHar dDi sk function immediately forces the hard disk to spin down and
power off if it was previously spinning. Calling Spi nDownHar dDi sk will not spin
down the hard disk if spindown is disabled by calling the Set Spi ndownDi sabl e
function.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Spi nDownHar dDi sk
is 7 ($07) in the low word of register DO.

6-50 Power Manager Reference

CHAPTER 6

Power Manager

IsSpindownDisabled

You can use the | sSpi ndownDi sabl ed function to find out whether automatic hard
disk spindown is enabled.

Bool ean | sSpi ndownDi sabl ed() ;

DESCRIPTION

The | sSpi ndownDi sabl ed function returns a Boolean t r ue if automatic hard disk
spindown is disabled, or f al se if spindown is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
| sSpi ndownDi sabl ed is 8 ($08) in the low word of register DO. The Boolean result is
passed in the low byte of register DO.

SetSpindownDisable

You can use the Set Spi ndownDi sabl e function to disable hard disk spindown.
voi d Set Spi ndownDi sabl e(Bool ean set Di sabl e);

set Di sabl e A Boolean that specifies whether the spindown feature is enabled
(f al se) or disabled (t r ue).

DESCRIPTION
The Set Spi ndownDi sabl e function enables or disables hard disk spindown,
depending on the value of set Di sabl e. If the value of set Di sabl e ist rue, hard disk
spindown is disabled; if the value is f al se, spindown is enabled.

Disabling hard disk spindown affects the Spi nDownHar dDi sk function, as well as the
normal spindown that occurs after a period of hard disk inactivity.

ASSEMBLY-LANGUAGE INFORMATION
The trap is _Power Myr Di spat ch ($A09E). The selector value for
Set Spi ndownDi sabl e is 9 ($09) in the low word of register DO. The Boolean value to
set is passed in the high word of register DO.

Jabeuely 1amod n

SEE ALSO
The Spi nDownHar dDi sk function is described on page 6-50.

Power Manager Reference 6-51

CHAPTER 6

Power Manager

HardDiskQInstall

You can use the Har dDi skQ nst al | function to notify your software when power to
the internal hard disk is about to be turned off.

OSErr HardDi skQ nst al | (HDQueueEl enent *t heEl ermrent) ;

t heEl ement A pointer to an element for the hard disk power down queue.

DESCRIPTION
The Har dDi skQ nst al | function installs an element into the hard disk power down
queue to provide notification to your software when the internal hard disk is about to
be powered off. For example, this feature might be used by the driver for an external
battery-powered hard disk. When power to the internal hard disk is turned off, the
external hard disk could be turned off as well.

When power to the internal hard disk is about to be turned off, the software calls the
routine pointed to by the hdPr oc field so that it can do any special processing. The
routine is passed a pointer to its queue element so that, for example, the routine can
reference its variables.

Before calling Har dDi skQ nst al |, the calling program must set the hdQType
field to HDPwr QType or the queue element won’t be added to the queue and
Har dDi skQ nst al | will return an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Har dDi skQ nst al |
is 10 ($0A) in the low word of register DO. The pointer to the HDQueue element is passed
in register AQ. The result code is returned in the low word of register DO.

RESULT CODES
noErr 0 No error

SEE ALSO
The HDQueueEl enent structure is defined in “Hard Disk Queue Structure,” on
page 6-27.

The application-defined hard disk spindown function is described in “Hard Disk
Spindown Function,” on page 6-66.

6-52 Power Manager Reference

CHAPTER 6

Power Manager

HardDiskQRemove

You can use the Har dDi skQRenpve function to discontinue notification of your
software when power to the internal hard disk is about to be turned off.

OSErr Har dDi skQRenove(HDQueueE!l erent *t heEl enment) ;

t heEl ement A pointer to the element for the hard disk power down queue that you
wish to remove.

DESCRIPTION

The Har dDi skQRenpve function removes a queue element installed by
Har dDi skQ nst al | . If the hdQType field of the queue element is not set to
HDPwr QType, Har dDi skQRenove simply returns an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Har dDi skQRenpve
is 11 ($0B) in the low word of register D0. The pointer to the HDQueue element is passed
in register A0. The result code is returned in the low word of register DO.

RESULT CODES
noErr 0 No error

SEE ALSO
The HDQueueEl enent structure is defined in “Hard Disk Queue Structure,” on
page 6-27.

The application-defined hard disk spindown function is described in “Hard Disk
Spindown Function,” on page 6-66.

Power Manager Reference 6-53

Jabeuely 1amod n

CHAPTER 6

Power Manager

Getting Information About the Internal Batteries

The functions in this section return information about the battery or batteries in the
computer.

GetScaledBatterylnfo

DESCRIPTION

6-54

You can use the Get Scal edBat t er yl nf o function to find out the condition of the
battery or batteries.

voi d Get Scal edBatteryl nfo(short whichBattery,
Batterylnfo *thelnfo);

whi chBattery
The battery for which you want information. Set this parameter to 0 to
receive combined information about all the batteries in the computer.

t hel nfo A pointer to a Bat t er yI nf o data structure, which returns information
about the specified battery.

The Get Scal edBat t er yl nf o function provides a generic means of returning
information about the battery or batteries in the system. Instead of returning a voltage
value, the function returns the battery level as a fraction of the total possible voltage.

Note

Battery technologies such as nickel cadmium (NiCad) and nickel metal
hydride (NiMH) have replaced sealed lead acid batteries in portable
Macintosh computers. There is no single algorithm for determining the
battery voltage that is correct for all portable Macintosh computers. O

The value of whi chBat t er y determines whether Get Scal edBat t er yI nf o returns
information about a particular battery or about the total battery level. The value of
Get Scal edBat t er yl nf o should be in the range of 0 to Bat t er yCount () . If the
value of whi chBat t ery is 0, Get Scal edBat t er yl nf o returns a summation of all
the batteries, that is, the effective battery level of the whole system. If the

value of whi chBat t ery is out of range, or the selected battery is not installed,

Cet Scal edBat t er yl nf o will return a result of 0 in all fields. Here is a summary

of the effects of the whi chBat t er y parameter:

Value of whi chBattery Information returned
0 Total battery level for all batteries
From 1 to Bat t er yCount () Battery level for the selected battery

Less than 0 or greater than 0in all fields of t hel nf o
Batt er yCount ()

Power Manager Reference

CHAPTER 6

Power Manager

The f | ags character contains several bits that describe the battery and charger state.
If a bit value is 1, that feature is available or is operating; if the bit value is 0, that feature
is not operating. Unused bits are reserved by Apple for future expansion.

Bit name Bit number Description
batterylnstall ed 7 Abattery is installed.
bat t er yChar gi ng 6 The battery is charging.
char ger Connect ed 5 The charger is connected.

The value of war ni ngLevel is the battery level at which the first low battery warning
message will appear. The function returns a value of 0 in some cases when it’s not
appropriate to return the warning level.

The value of bat t er yLevel is the current level of the battery. A value of 0 represents
the voltage at which the Power Manager will force the computer into sleep mode; a
value of 255 represents the highest possible voltage.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Cet Scal edBat t er yl nf 0 is 12 ($0C) in the low word of register D0. The
Bat t er yI nf o data are returned in the low word of register DO as follows:

Bits Contents
31-24 Flags

23-16 Warning level
15-8 Reserved

7-0 Battery level

SEE ALSO

The Bat t er yl nf o data type is described in “Battery Information Structure,” on
page 6-27.

Power Manager Reference 6-55

Jabeuely 1amod n

CHAPTER 6

Power Manager

BatteryCount

You can use the Bat t er yCount function to find out how many batteries the computer
supports.

short BatteryCount();

DESCRIPTION

The Bat t er yCount function returns the number of batteries that are supported
internally by the computer. The value of Bat t er yCount returned may not be the
same as the number of batteries currently installed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Bat t er yCount is 26
($1A) in the low word of register DO. The number of batteries supported is returned in
the low word of register DO.

GetBatteryVoltage

You can use the Get Bat t er yVol t age function to find out the battery voltage.
Fi xed GetBatteryVoltage(short whichBattery);

whi chBattery
The battery for which you want a voltage reading.

DESCRIPTION
The Get Bat t er yVol t age function returns the battery voltage as a fixed-point number.
The value of whi chBat t er y should be in the range 0 to Bat t er yCount () -1. If the

value of whi chBat t ery is out of range, or the selected battery is not installed,
CGet Bat t er yVol t age will return a result of 0.0 volts.

ASSEMBLY-LANGUAGE INFORMATION
The trap is _Power Myr Di spat ch ($A09E). The selector value for
Cet Bat t er yVol t age is 27 ($1B) in the low word of register DO. The battery number is
passed in the high word of register DO. The 32-bit value of the battery voltage is returned
in register DO.

6-56 Power Manager Reference

CHAPTER 6

Power Manager

GetBatteryTimes

You can use the Get Bat t er yTi nes function to find out about how much battery time
remains.

void CetBatteryTi mes (short whichBattery,
BatteryTi meRec *theTi nmes);

whi chBattery
The battery for which you want to know the time remaining. Specify 0 to
get combined information about all the batteries.

theTimes A pointer to a battery time structure, which contains information about
the time remaining for the batteries. The Bat t er yTi neRec data type
is described on page 6-28.

DESCRIPTION

The Get Bat t er yTi mes function returns information about the time remaining on the
computer’s battery or batteries. The time values are in seconds. The value of

t heTi mes. expect edBat t er yTi me is the estimated time remaining based on current
use patterns. The values of t heTi mes. mi ni nunBat t er yTi ne and

t heTi mes. maxi munBat t er yTi me are worst-case and best-case estimates, respectively.
The value of t heTi nes. ti meUnti | Char ged is the time that remains until the battery
or batteries are fully charged.

The value of whi chBat t er y determines whether Get Bat t er yTi nes returns the time
information about a particular battery or the total time for all batteries. The value of

Get Scal edBat t er yl nf o should be in the range of 0 to Bat t er yCount () . If the value
of whi chBat t ery is 0, Get Bat t er yTi nmes returns a total time for all the batteries, that
is, the effective battery time for the whole system. If the value of whi chBat t ery is out
of range, or the selected battery is not installed, Get Bat t er yTi mes will return a result
of 0 in all fields. Here is a summary of the effects of the whi chBat t er y parameter:

Value of whi chBat t ery Information returned
0 Total battery time for all batteries
From 1 to Bat t er yCount () Battery time for the selected battery

Less than 0 or greater than 0in all fields of t heTi mes
Batt er yCount ()

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Get Bat t er yTi mes
is 28 ($1C) in the low word of register DO. The pointer to Bat t er yTi meRec is passed in
register AQ.

Power Manager Reference 6-57

Jabeuely 1amod n

CHAPTER 6

Power Manager

Controlling the Internal Modem

The functions in this section return information about the internal modem and configure

the internal modem’s state information.

GetIntModemInfo

You can use the Get | nt Modem nf o function to find out information about the internal

modem.

unsi gned | ong Getl nt Mbdemn nfo();

DESCRIPTION

The Get | nt Modem nf o function returns a 32-bit field containing information that
describes the features and state of the internal modem. It can be called whether or not a
modem is installed and will return the correct information.

If a bit is set, that feature or state is supported or selected; if the bit is cleared, that feature
is not supported or selected. Undefined bits are reserved by Apple for future expansion.

Bit name
hasl nt er nal Modem
i nt ModenRi ngDet ect

i nt Modent f Hook

i nt ModenRi ngWakeEnb

ext Modentel ect ed

6-58 Power Manager Reference

Bit
number

0
1

Description
An internal modem is installed.

The modem has detected a ring on the
telephone line.

The internal modem has taken the telephone
line off hook (that is, you can hear the dial
tone or modem carrier).

The computer will come out of sleep mode if
the modem detects a ring on the telephone line
and the computer supports this feature (see the
canWakeupORi ng bit in PM~eat ur es).

The external modem is selected (if this bit is
set, then the modem port will be connected to
port A of the SCC; if the modem port is not
shared by the internal modem and the SCC,
then this bit can be ignored).

CHAPTER 6

Power Manager

Bits 15-31 contain the modem type, which can have one of the following values:

Value Meaning
-1 Modem is installed but type not recognized.
No modem is installed.
Modem is a serial modem.
Modem is a PowerBook Duo-style Express Modem.
Modem is a PowerBook 160/180-style Express Modem.

(SIS R =)

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Get | nt Modem nf o
is 14 ($0E) in the low word of register DO. The bit field to set is passed in the high word
of register DO.

SetIntModemState

DESCRIPTION

You can use the Set | nt ModenSt at e function to set some parts of the state of the
internal modem.

voi d Set | nt Modentt at e(short theState);

theState Asetof bits you can use to set the modem state. Set bit 15 of this
parameter to 1 to set bits in the modem state. Clear bit 15 to 0 to
clear bits in the modem state. The modem state bits are described
in the preceding function description.

The Set | nt Modenst at e function configures some of the internal modem’s state
information. Currently the only items that can be changed are the internal/external
modem selection and the wakeup-on-ring feature.

To change an item of state information, the calling program sets the corresponding bit
in the parameter t heSt at e. For example, to select the external modem, set bit 4 of

t heSt at e to 1 and set bit 15 to 1. To select the internal modem, set bit 4 to 1 but set bit
15to 0.

SPECIAL CONSIDERATIONS

In some PowerBook computers, there is a hardware switch to connect either port A of
the SCC or the internal modem to the modem port. The two are physically separated, but
software emulates the serial port interface for those applications that don’t use the
Communications Toolbox. You can check the hasShar edMbdenPor t bit returned by
PMFeat ur es to determine which way the computer is set up.

Power Manager Reference 6-59

Jabeuely 1amod n

CHAPTER 6

Power Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for Set | nt Mbdentt at e
is 15 ($0F) in the low word of register D0. The bit field is returned in register DO.

Controlling the Processor

The functions in this section return information about the processor speed and processor
cycling, set the processor speed, and enable or disable processor cycling.

MaximumProcessorSpeed

You can use the Maxi munPr ocessor Speed function to find out the maximum speed of
the computer’s microprocessor.

short Maxi munPr ocessor Speed() ;

DESCRIPTION

The Maxi munPr ocessor Speed function returns the maximum clock speed of the
computer’s microprocessot, in MHz.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Maxi munPr ocessor Speed is 16 ($10) in the low word of register D0. The processor
speed value is returned in the low word of register DO.

CurrentProcessorSpeed

You can use the Cur r ent Pr ocessor Speed function to find out the current clock speed
of the microprocessor.

short Current Processor Speed();

DESCRIPTION

The Cur r ent Pr ocessor Speed function returns the current clock speed of the
computer’s microprocessor, in MHz. The value returned will be different from the
maximum processor speed if the computer has been configured to run with a reduced
processor speed to conserve power.

6-60 Power Manager Reference

CHAPTER 6

Power Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Cur r ent Processor Speed is 17 ($11) in the low word of register D0. The processor
speed value is returned in the low word of register DO.

FullProcessorSpeed

DESCRIPTION

You can use the Ful | Processor Speed function to find out whether the computer will
run at full speed the next time it restarts.

Bool ean Ful | Processor Speed();

The Ful | Pr ocessor Speed function returns a Boolean value of t r ue if, on the next
restart, the computer will start up at its maximum processor speed; it returns f al se if
the computer will start up at its reduced processor speed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Ful | Processor Speed is 18 ($12) in the low word of register DO. The Boolean result is
returned in the low byte of register DO.

SetProcessorSpeed

DESCRIPTION

You can use the Set Pr ocessor Speed function to set the clock speed the
microprocessor will use the next time it is restarted.

Bool ean Set Processor Speed(Bool ean ful | Speed) ;

full Speed A Boolean that sets the processor speed to full speed (t r ue) or reduced
speed (f al se).

The Set Pr ocessor Speed function sets the processor speed that the computer will use
the next time it is restarted. If the value of f ul | Speed is set to t r ue, the processor will
start up at its full speed (the speed returned by Maxi munPr ocessor Speed, described
on page 6-60). If the value of f ul | Speed is set to f al se, the processor will start up at
its reduced speed.

Power Manager Reference 6-61

Jabeuely 1amod n

CHAPTER 6

Power Manager

SPECIAL CONSIDERATIONS

For PowerBook models that support changing the processor speed dynamically,
the current processor speed is also changed. If the speed is actually changed,
Set Processor Speed returns t r ue; if the speed is not changed, it returns f al se.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The trap is _Power Myr Di spat ch ($A09E). The selector value for

Set Processor Speed is 19 ($13) in the low word of register D0. The Boolean value
to set is passed in the high word of register D0. The Boolean result is returned in
register DO.

You can use the PMFeat ur es function (page 6-41) to determine whether the computer
supports changing the processor speed dynamically.

IsProcessorCyclingEnabled

DESCRIPTION

You can use the | sProcessor Cycl i ngEnabl ed function to find out whether
processor cycling is enabled.

Bool ean | sProcessor Cycli ngEnabl ed() ;

The | sProcessor Cycl i ngEnabl ed function returns a Boolean value of t r ue if
processor cycling is currently enabled, or f al se if it is disabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
| sProcessor Cycl i ngEnabl ed is 24 ($18) in the low word of register D0O. The Boolean
result is returned in register DO.

EnableProcessorCycling

6-62

You can use the Enabl ePr ocessor Cycl i ng function to turn the processor cycling
feature on and off.

voi d Enabl eProcessor Cycl i ng(Bool ean enabl e);

enabl e A Boolean that specifies whether to enable processor cycling.

Power Manager Reference

CHAPTER 6

Power Manager

DESCRIPTION

The Enabl ePr ocessor Cycl i ng function enables processor cycling if a value of t r ue
is passed in, and disables it if f al se is passed.

A WARNING

You should follow the advice of the must Pr ocessor Cycl e bit in the
feature flags when turning processor cycling off. Turning processor
cycling off when it’s not recommended can result in hardware failures
due to overheating. a

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Enabl eProcessor Cycl i ng is 25 ($19) in the low word of register D0. The Boolean
value to set is passed in the high word of register DO.

SEE ALSO

You can use the PMFeat ur es function (page 6-41) to determine whether the computer
supports processor cycling.

Getting and Setting the SCSI ID

The functions in this section return and set the SCSI ID the computer uses in SCSI
disk mode.

GetSCSIDiskModeAddress

You can use the Get SCSI Di skMbdeAddr ess function to find out the SCSI ID the
computer uses in SCSI disk mode.

short Get SCSI Di skMbdeAddr ess();

DESCRIPTION

The Get SCSI Di skMbdeAddr ess function returns the SCSI ID that the computer uses
when it is started up in SCSI disk mode. The returned value is in the range 1 to 6.

Note

When the computer is in SCSI disk mode, the computer appears as a
hard disk to another computer. O

Power Manager Reference 6-63

Jabeuely 1amod n

CHAPTER 6

Power Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Get SCSI Di skMbdeAddr ess is 20 ($14) in the low word of register D0. The SCSI ID
is returned in the low word of register DO.

SEE ALSO

You can use the PMFeat ur es function (page 6-41) to determine whether the computer
supports SCSI disk mode.

SetSCSIDiskModeAddress

You can use the Set SCSI Di skibdeAddr ess function to set the SCSI ID for the
computer to use in SCSI disk mode.

voi d Set SCSI Di skMbdeAddr ess(short scsi Address);

scsi Addr ess
The SCSI ID that the computer uses if it is started up in SCSI disk mode.
You must specify a value in the range of 1 to 6.

DESCRIPTION
The Set SCSI Di skMbdeAddr ess function sets the SCSI ID that the computer will use if
it is started up in SCSI disk mode.

The value of scsi Addr ess must be in the range of 1 to 6. If any other value is given, the
software sets the SCSI ID for SCSI disk mode to 2.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _Power Myr Di spat ch ($A09E). The selector value for
Set SCSI Di skMbdeAddr ess is 21 ($15) in the low word of register DO. The SCSI ID
to set is passed in the high word of register DO.

SEE ALSO

You can use the PMFeat ur es function (page 6-41) to determine whether the computer
supports SCSI disk mode.

6-64 Power Manager Reference

CHAPTER 6

Power Manager

Application-Defined Routines

The Power Manager allows you to define a sleep procedure that is called at various
stages of the sleep and wakeup processes. You install a sleep procedure by calling the
Sl eepQ nst al | procedure.

Sleep Procedures

You pass the address of a sleep procedure in the sl eepQPr oc field of a sleep queue record.

MySleepProc

A sleep procedure can perform any operations required to prepare your application (or
other software) for the sleep state. Your sleep procedure is also called when the computer
reawakens.

DESCRIPTION
Your sleep procedure is called at various stages in the Power Manager’s sleep and
wakeup processes. It is called in response to a sleep request, a sleep demand, a wakeup
demand, and a sleep-request revocation. You can determine which of these messages the
Power Manager is sending by inspecting the sleep procedure selector code passed in
register DO. This code is one of four values:
enum {
/* sleep procedure selector codes */
sl eepRequest = 1, /* sleep request */
sl eepDenmand = 2, /* sleep demand */
sl eepWakeUp = 3, /* wakeup demand */
sl eepRevoke =4 /* sl eep-request revocation */
b
When called in response to a sleep request, your procedure must either accept or deny
the request by either clearing register DO or leaving it alone. When passed any other
selector code, your sleep procedure should take any appropriate actions.
SPECIAL CONSIDERATIONS

A sleep procedure is never executed at interrupt time. As a result, you can, if necessary,
call Memory Manager routines or other routines that allocate memory. You can also
interact with the user by displaying dialog or alert boxes.

If your sleep procedure displays a dialog or alert box, you should make sure to remove
the box after a reasonable amount of time. Failure to do so will prevent the computer
from going to sleep and may permanently damage the screen.

Power Manager Reference 6-65

Jabeuely 1amod n

CHAPTER 6

Power Manager

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

When your sleep procedure is called, register A0 contains the address of the sleep queue
record associated with that procedure and the DO register contains a sleep procedure
selector code.

See “Writing a Sleep Procedure,” beginning on page 6-20, for instructions on writing
a sleep procedure, and see “Installing a Sleep Procedure,” beginning on page 6-18, for
instructions on installing a sleep procedure.

Hard Disk Spindown Function

You pass the address of a hard disk spindown function in the hdPr oc field of a hard
disk queue structure.

MyHDSpindownProc

DESCRIPTION

SEE ALSO

6-66

A hard disk spindown function can perform any operations you require to prepare for
the hard disk to spin down.

pascal void MyHDSpi ndownPr oc(HDQueueEl enent *t heEl erment) ;

t heEl ement A pointer to the element in the hard disk power down queue that was
used to install this function.

The Har dDi skQ nst al | function installs an element into the hard disk power down
queue to provide notification to your software when the internal hard disk is about to
be powered off. For example, this feature might be used by the driver for an external
battery-powered hard disk. When power to the internal hard disk is turned off, the
external hard disk could be turned off as well.

When power to the internal hard disk is about to be turned off, the software calls the
routine pointed to by the hdPr oc field so that it can do any special processing. The
routine will be passed a pointer to its queue element so that, for example, the routine
can reference its variables.

The hard disk power down queue elements are defined in “Hard Disk Queue Structure,”
on page 6-27.

The Har dDi skQ nst al | function is described on page 6-52. The Har dDi skQRenove
function is described on page 6-53.

Power Manager Reference

CHAPTER 6

Power Manager

Summary of the Power Manager

Pascal Summary

Constants

CONST
{Power Manager Gestalt selector}
gest al t Power Mgr At t r

= ' pow’;

{Power Manager attributes selector}

{bit values in Gestalt response paraneter}

gest al t PMgr Exi st s = 0;
gestal t PMgr CPUI dl e =1
gest al t PMgr SCC =2
gest al t PMgr Sound = 3;
gest al t PMyr Di spat chExi sts 4

I
=
S

sl pQType
sl eepQlype

n
=
o

{bit positions for Mdenttatus}
nodenmOnBi t = 0;

ri ngWakeUpBi t = 2;
nodemnl nst al | edBi t = 3;

ri ngDet ect Bi t = 4;
nodenOnHookBi t = b5;
{masks for Mbdentt at us}
modenOnVask = $1,
ri ng\WakeUpMask = $4;
noden nst al | edMask = $8;
ri ngDet ect Mask = $10;
nodenOnHook Mask = $20;

{bit positions for BatteryStatus}
char ger ConnBi t = 0;

hi Char geBi t =
char geQver Fl owBi t =
batt er yDeadBi t =
batterylLowBit =
connChangedBi t =

g wNRE

Summary of the Power Manager

{Power Manager is present}

{CPU can idl e}

{can stop SCC cl ock}

{can shut off sound circuits}
{Power Manager dispatch exists }

{sl eep queue type}
{sl eep queue type}

{1 if nodemis on}

{1 if ring wakeup i s enabl ed}
{1if internal nodemis install ed}
{1 if inconmng call is detected}
{1 if nodemis off hook}

{ rodem on}

{ring wakeup enabl ed}
{internal nodem i nstall ed}
{incom ng call detected}
{nodem of f hook}

{1 if charger is connected}

{1 if charging at hicharge rate}

{1 if hicharge counter has overfl owed}
{al ways 0}

{1if battery is | ow}

{1 if charger connection has changed}

6-67

Jabeuely 1amod n

CHAPTER 6

Power Manager

{masks for BatteryStatus}

char ger ConnMask = $1,;
hi Char geMask = $2;
char geOver Fl owvask = $4;
bat t er yDeadMask = $8;
bat t er yLowVask = $10;
connChangedMask = $20;

{charger is connected}

{chargi ng at hicharge rate}

{hi charge counter has overfl owed}
{battery is dead}

{battery is | ow}

{connecti on has changed}

{sl eep procedure sel ector codes}

sl eepRequest = 1;
sl eepDenmand = 2;
sl eepWakeUp = 3;
sl eepRevoke = 4;

{bits in bitfield returned by

hasWakeupTi ner =0; {1
hasShar edModenPor t =1; {1
hasProcessorCycling = 2; {1
nust Processor Cycl e =3; {1
hasReducedSpeed =4; {1
dynam cSpeedChange =5 {1
hasSCSI Di skMode =6, {1
canGet BatteryTi ne =7, {1
canWakeupOnRi ng =8; {1
hasDi nmi ngSupport =9; {1
{bits in Batterylnfo.fl ags}
batterylnstall ed =7, {1
bat t er yChar gi ng =6; {1
char ger Connect ed =5 ({1
{
{bits in bitfield returned by

(this does

{sl eep request}
{sl eep denand}
{wakeup denand}

{sl eep-request revocation}

PMFeat ur es}

= wakeup timer is supported}

= nmodem port shared by SCC and interna
= processor cycling is supported}

= processor cycling should not be turned off}
= processor can be started up at reduced speed}
= processor speed can be switched dynamni cal | y}
= SCSI Di sk Mode is supported}

= battery tinme can be cal cul at ed}

= can wakeup when the nodem detects a ring}

= has di mm ng support built into the ROV

nodent

= battery
= battery
= charger

is currently connected}

i s being charged}

is connected to the PowerBook }

not mean the charger is plugged in)}

Get | nt Modem nf o}

hasl| nt er nal Modem = 0; {1 =internal nodeminstall ed}

i nt ModenRi ngDet ect =1; {1 = internal nodem has detected a ring}

i nt ModenOf f Hook =2; {1 =internal nmodemis off hook}

i nt ModenRi ngWakeEnb = 3; {1 = wakeup on ring is enabl ed}

ext Modentel ect ed = 4; {1 = external nodem sel ect ed}

nodentet Bi t = 15; {1 = set bit, O=clear bit}

HDPwr QType ='HD ; {hard disk notification queue el enent type}
6-68 Summary of the Power Manager

CHAPTER 6

Power Manager

Data Types

TYPE Sl eepQRec =

RECORD
sl eepQLi nk: Sl eepQRecPtr
sl eepQrlype: I nt eger
sl eepQProc: ProcPtr;
sl eepQFl ags: I nt eger;
END;

Sl eepQRecPtr = "Sl eepQRec

TYPE HDQueueEl enent =

RECORD
hdQLi nk: Ptr
hdQType: I nt eger;
hdFl ags: I nt eger;
hdPr oc: ProcPtr
hdUser : Longl nt;
END;
TYPE WakeupTi me =
PACKED RECORD
wakeTi ne: Longl nt ;
wakeEnabl ed: Byt e;
END;
TYPE Batterylnfo =
PACKED RECORD
fl ags: Byt e;
war ni ngLevel : Byte
reserved: Byt e;
batterylLevel: Byte

END;

TYPE BatteryTi neRec =
RECORD

expectedBatteryTi ne: Longlnt;

m ni nunBatteryTi ne: Longl nt;
maxi munBatteryTi me: Longlnt;
ti meUntil Charged: Longl nt ;

END;

Summary of the Power Manager

{next queue el ement}

{queue type = 16}

{pointer to sleep procedure}
{reserved}

{pointer to next queue el enent}

{queue el enent type (nust be HDQType)}
{m scel | aneous fl ags}

{pointer to routine to call}
{user-defined (variable storage, etc.)}

{wakeup time (same format as tine)}
{1 = enabl e, 0=di sabl e wakeup tiner}

{m sc flags (see above)}
{scal ed warni ng | evel (0-255)}
{reserved for internal use}
{scal ed battery |evel (0-255)}

{estimated battery time remaining}

{m ni num battery tinme remaini ng}
{maxi mum battery tine renai ni ng}
{time until battery is fully charged}

6-69

Jabeuely 1amod n

CHAPTER 6

Power Manager

Power Manager Routines

Controlling the Idle State

FUNCTI ON | dl eUpdat e . Longl nt;
PROCEDURE Enabl el dl e;

PROCEDURE Di sabl el dl e;

FUNCTI ON CGet CPUSpeed . Longl nt;

Controlling and Reading the Wakeup Timer

FUNCTI ON Set WJTi ne (WUJTi me: Longlnt): CSErr;
FUNCTI ON Di sabl eWUJTi ne . OSErr;
FUNCTI ON Get WJTi ne (VAR WUJTi nme: Longlnt; VAR WUFl ag: Byte): OCSErr;

Controlling the Sleep Queue

PROCEDURE Sl eepQ nst al | (gRecPtr: Sl eepQRecPtr);
PROCEDURE S| eepQRenpve (gRecPtr: Sl eepQRecPtr);

Controlling Serial Power

PROCEDURE AOn;

PROCEDURE AOnl ghor eMbdem
PROCEDURE BOn;

PROCEDURE AOff;

PRCOCEDURE BOf f;

Reading the Status of the Internal Modem
FUNCTI ON Modentt at us (VAR Status: Byte): OSErr;

Reading the Status of the Battery and the Battery Charger

FUNCTI ON Batt er ySt at us (VAR Status: Byte; VAR Power: Byte):

Power Manager Dispatch Routines

CSErr;

Determining the Power Manager Features Available

FUNCTI ON PMsel ect or Count : Integer;
FUNCTI ON PMreat ur es . Longlnt;

6-70 Summary of the Power Manager

CHAPTER 6

Power Manager

Controlling the Sleep and Wakeup Timers
FUNCTI ON Get Sl eepTi neout : Byte;

PROCEDURE Set Sl eepTi neout (ti neout : Byte);

PROCEDURE Aut oSl eepCont rol (enabl eSl eep :

Bool ean) ;

FUNCTI ON | sAut 0S| pCont rol Di sabl ed() : Bool ean;
PROCEDURE Get WakeupTi ner (VAR t heTi ne : WakeupTi ne) ;
PROCEDURE Set WakeupTi nmer (t heTi me : WakeupTi ne) ;

Controlling the Dimming Timer
FUNCTI ON Get Di mmi ngTi neout () : Byte;

PROCEDURE Set Di mm ngTi neout (ti meout : Byte);

PROCEDURE Di nmi ngCont r ol (enabl eDi mmi ng :

Bool ean) ;

FUNCTI ON | sDi nmi ngCont r ol Di sabl ed() : Bool ean;

Controlling the Hard Disk
FUNCTI ON CGet Har dDi skTi meout : Byte;

PROCEDURE Set Har dDi skTi meout (ti meout : Byte);

FUNCTI ON Har dDi skPower ed : Bool ean;
PROCEDURE Spi nDownHar dDi sk;

FUNCTI ON | sSpi ndownDi sabl ed : Bool ean;
PROCEDURE Set Spi ndownDi sabl e(set Di sabl e :
FUNCTI ON Har dDi skQ nstal | (VAR t heEl enent
FUNCTI ON Har dDi skQRenmove(VAR t heEl enment

Getting Information About the Battery

PROCEDURE Get Scal edBatteryl nfo(whi chBattery : Integer; VAR thelnfo :

BOOLEAN) ;
HDQueueEl enent) : OSErr;
HDQueueEl ement) : OSErr;

Batteryl nfo);

FUNCTI ON BatteryCount : |nteger;
FUNCTI ON Cet BatteryVol t age(whi chBattery :
PROCEDURE Get BatteryTi mes(whichBattery :

I nteger) : Fixed;
| NTEGER; VAR theTinmes :

Batt eryTi meRec);

Controlling the Internal Modem
FUNCTI ON CGet I nt Modem nfo : Longlnt;

PROCEDURE Set | nt Modenfst at e(theState : Integer);

Controlling the Processor

FUNCTI ON Maxi munPr ocessor Speed : | nteger;

Summary of the Power Manager

6-71

Jabeuely 1amod n

CHAPTER 6

Power Manager

FUNCTI ON Current Processor Speed : | nteger;

FUNCTI ON Ful | Processor Speed : Bool ean;

FUNCTI ON Set Processor Speed(ful | Speed : Bool ean) : Bool ean;
FUNCTI ON | sProcessor Cycl i ngEnabl ed : Bool ean;

PROCEDURE Enabl ePr ocessor Cycl i ng(enabl e : Bool ean);

Getting and Setting the SCSI ID

FUNCTI ON Get SCSI Di skMbdeAddress : | nteger;
PROCEDURE Set SCSI Di skMbdeAddr ess(scsi Address : Integer);

Application-Defined Routines

PROCEDURE My S| eepPr oc;
PROCEDURE MyHDSpi ndownPr oc(t heEl ement : HDQueueEl enent) ;

C Summary

Constants and Data Types

/* Power Manager GCestalt selector */
#def i ne gestalt Power MgrAttr 'pow' /* Power Manager attributes selector */

/* bit values in Gestalt response paraneter */
enum {

gestal t PMyr Exi st's = 0, /* Power Manager is present */
gestal t PMgr CPUI dl e = 1, /* CPU can idle */
gest al t PMgr SCC = 2, /* can stop SCC cl ock */
gest al t PMyr Sound = 3, /* can shut off sound circuits */
gestal t PMyr Di spat chExi sts = 4 /* Power Manager dispatch exists */
1
enum {
sl pQType = 16, /* sleep queue type */
sl eepQlype = 16 /* sleep queue type */
b
enum {
/* bit positions for Mdenttatus */
nodemOnBi t = 0, /* 1 if nodemis on */
ri ngWakeUpBi t = 2, [* 1 if ring wakeup is enabled */

6-72 Summary of the Power Manager

CHAPTER 6

Power Manager

nodeni nst al | edBi t = 3, /* 1 if internal nbdemis installed */
ringDetectBit = 4, /* 1 if incomng call is detected */
nodenOnHookBi t = b, /* 1 if nmodemis off hook */

/* masks for Mbdenttatus */

nmodenOnMask = 0Ox1, /* npdem on */
ri ngWakeUpMask = 0x4, /* ring wakeup enabl ed */
nodenl nst al | edMask = 0x8, /* internal nodeminstalled */

ri ngDet ect Mask
nodemOnHook Mask

0x10, /* incoming call detected */
0x20, [/* mnmodem of f hook */

/* bit positions for BatteryStatus */

char ger ConnBi t = 0, /* 1 if charger is connected */

hi Char geBi t =1, /* 1 if charging at hicharge rate */

char geOver Fl owBi t = 2, /* 1 if hicharge counter has overfl owed */
batt eryDeadBit = 3, /* always 0 */

batteryLowBi t = 4, /* 1 if battery is |low */

connChangedBi t = b5, /* 1 if charger connection has changed */

aa b~ WDN P

/* masks for BatteryStatus */

char ger ConnMask = 0x1, /* charger is connected */

hi Char geMask = 0x2, /* charging at hicharge rate */

char geOver FI owmvask = 0x4, /* hicharge counter has overflowed */
batt er yDeadMask = 0x8, /* battery is dead */

batt er yLowivask = 0x10, /* battery is low */

connChangedMask = 0x20, [/* connection has changed */

/* sleep procedure selector codes */

sl eepRequest =1, /* sleep request */
sl eepDenmand = 2, /* sleep demand */
sl eepWakeUp = 3, /* wakeup demand */
sl eepRevoke =4 /* sl eep-request revocation */
1
/* bits in bitfield returned by PMreatures */
#def i ne hasWakeupTi ner 0 /* 1 = wakeup tiner is supported */
#def i ne hasShar edMbdenPort 1 /* 1 = nodem port shared by SCC and */
/* internal nodem */
#def i ne hasProcessorCycling 2 /* 1 = processor cycling is supported */
#defi ne must ProcessorCycle 3 /* 1 = processor cycling should not be */
/* turned off */
#def i ne hasReducedSpeed 4 /* 1 = processor can be started up at */
/* reduced speed */
#def i ne dynami cSpeedChange 5 /* 1 = processor speed can be */

/* switched dynanmically */

Summary of the Power Manager 6-73

Jabeuely 1amod n

#def i
#def i
#def i

#def i

/* bi
#def i
#def i
#def i
#def i
#def i

#def i

/* bi
#def i
#def i
#def i

ne
ne
ne

ne

ts
ne
ne
ne
ne
ne

ne

ts
ne
ne
ne

CHAPTER 6

Power Manager

1
1
1

SCSI Di sk Mode is supported */
battery time can be calculated */

= can wakeup when the nodem detects */
aring */
hasDi mm ngSupport 9 /* 1 = has dimrng support built into the ROM */

in bitfield returned by GetlntMdem nfo and set by SetlntMdenttate */

hasSCSI Di skivbde 6 /*
canCGetBatteryTinme 7 /*
canWakeupOnRi ng 8 /*

/*
hasl nt er nal Modem 0 /*
i nt ModenRi ngDetect 1 /*
i nt ModenOX f Hook 2 /*

i nt ModenRi ngWakeEnb 3 /*

ext MbdenBel ect ed 4 /*
nodenSet Bit 15 /*
in Batterylnfo.flags */

batterylnstalled 7 /*
batteryChargi ng 6 /*
char ger Connected 5 /*

/*
/*

struct Sl eepQRec {

1

N

1

i nternal nmodeminstalled */

i nternal nodem has detected a ring */
internal nodemis off hook */

wakeup on ring is enabled */

ext ernal nodem sel ected */

= set bit, O=clear bit (SetlntMdenttate) */

battery is currently connected */
battery is being charged */
charger is connected to the PowerBook */

(this does not nean the charger is */
pl ugged in) */

struct Sl eepQRec *sleepQ.ink; /* next queue el enent */
short sl eepQlype; /* queue type = 16 */
ProcPtr sl eepQPr oc; /* pointer to sleep procedure */
short sl eepQFl ags; /* reserved */
1
typedef struct Sl eepQRec Sl eepQRec;
typedef Sl eepQRec *Sl eepQRecPtr
/* hard di sk spindown notification queue el ement */
typedef struct HDQueueEl enment HDQueueEl enent;
typedef pascal void (*HDSpi ndownProc) (HDQueueEl emrent *t heEl enent) ;
struct HDQueueEl ement {
Ptr hdQLi nk; /* pointer to next queue el ement */
short hdQType; /* queue el ement type (rmust be HDQType) */
short hdFl ags; /* nmiscellaneous flags */
HDSpi ndownProc hdProc; /* pointer to routine to call */
| ong hdUser; /* user-defined private storage */
1
#def i ne HDPwr QType ' HD /* queue el enent type */
6-74 Summary of the Power Manager

CHAPTER 6

Power Manager

/* wakeup tinme record */

typedef struct WakeupTi me {
unsi gned | ong wakeTi ne; /* wakeup tinme (sane format as current tinme) */
char wakeEnabl ed; /* 1 = enabl e wakeup tinmer, 0=disable */

} WakeupTi ne;

/* battery tine information (in seconds) */
typedef struct BatteryTi neRec {
unsi gned | ong expectedBatteryTine; /* estimated battery tinme remining */
unsi gned long inimunmBatteryTinme; /* mninumbattery tinme remaining */
unsi gned |l ong maxi nunBatteryTime; /* maxi mum battery tinme remaining */
unsi gned long timeUntil Charged; /* tinme until battery is fully charged */
} BatteryTi neRec;

Power Manager Functions

Controlling the Idle State

pascal |ong Idl eUpdate (void);
pascal void Enableldle (void);
pascal void Disableldle (void);
pascal |ong Get CPUSpeed (void);

Controlling and Reading the Wakeup Timer

pascal OSErr Set WJTi ne (long WUTi ne);
pascal OSErr Disabl eWJTine (void);
pascal OSErr Get WJTi ne (long *WJTi e, Byte *WUJFI ag);

Controlling the Sleep Queue

pascal void Sl eepQ nstall (Sl eepQRecPtr gRecPtr);
pascal void Sl eepQrenove (Sl eepQRecPtr qRecPtr);

Controlling Serial Power

pascal void AOn (void);
pascal void AOnl gnoreModem (void);
pascal void BOn (void);
pascal void AOf (void);
pascal void BOf (voi d);

Summary of the Power Manager 6-75

Jabeuely 1amod n

CHAPTER 6

Power Manager

Reading the Status of the Internal Modem
pascal OSErr Modentt at us (Byte *Status);

Reading the Status of the Battery and the Battery Charger
pascal OSErr BatteryStatus (Byte *Status, Byte *Power);

Power Manager Dispatch Functions

Determining the Power Manager Features Available

short PMsel ect or Count (void);
unsi gned | ong PMreat ures (void);

Controlling the Sleep and Wakeup Timers

unsi gned char Cet Sl eepTi meout (voi d);

voi d Set Sl eepTi nmeout (unsi gned char tinmeout);
voi d Aut oSl eepContr ol (Bool ean enabl eSl eep) ;
Bool ean | sAut oSl pContr ol Di sabl ed(voi d);

voi d Get WakeupTi ner (WakeupTi me *t heTi ne);
voi d Set WakeupTi ner (WakeupTi me *t heTi ne);

Controlling the Dimming Timer

unsi gned char Get Di mmi ngTi neout (voi d);

voi d Set Di mmi ngTi meout (unsi gned char timeout);
voi d Di mm ngContr ol (Bool ean enabl eDi mi ng) ;
Bool ean | sDi mm ngContr ol Di sabl ed(voi d);

Controlling the Hard Disk
unsi gned char Get Har dDi skTi meout (voi d);

voi d Set Har dDi skTi meout (unsi gned char timeout);

Bool ean Har dDi skPower ed (voi d);

voi d Spi nDownHar dDi sk (void);

Bool ean | sSpi ndownDi sabl ed (void);

voi d Set Spi ndownDi sabl e (Bool ean set Di sabl e);

OSErr HardDi skQ nstal | (HDQueueEl enent *t heEl enent) ;
OSErr Har dDi skQRenpve (HDQueueEl enent *t heEl enent);

6-76 Summary of the Power Manager

CHAPTER 6

Power Manager

Getting Information About the Battery

voi d Get Scal edBatterylnfo (short whichBattery, Batterylnfo *thelnfo);

short BatteryCount (void);
Fi xed CGetBatteryVoltage (short whichBattery);
void GetBatteryTi nes (short whichBattery, BatteryTi neRec *theTi nes);

Controlling the Internal Modem

unsi gned | ong Getl nt Mbdenl nf o(voi d);
voi d Set | nt Mbdentt at e (short theState);

Controlling the Processor

short Maxi munProcessor Speed (void);

short Current Processor Speed (void);

Bool ean Ful | Processor Speed (void);

Bool ean Set Processor Speed (Bool ean full Speed);
Bool ean | sProcessor Cycl i ngEnabl ed(voi d);

voi d Enabl eProcessor Cycling (Bool ean enabl e);

Getting and Setting the SCSI ID

short Get SCSI Di skModeAddr ess (voi d);
voi d Set SCSI Di skMbdeAddress (short scsi Address);

Application-Defined Functions

voi d MySl eepProc (void);
voi d (*HDSpi ndownPr oc) (HDQueueEl enent *t heEl enent) ;

Assembly-Language Summary

Data Structures

Sleep Queue Data Structure

0 sl eepQLi nk long pointer to next element in the queue
4 sl eepQlype word queue type (should be 16)
6 sleepQProc long pointer to a sleep procedure

10 sl eepQFl ags word reserved

Summary of the Power Manager

6-77

Jabeuely 1amod n

CHAPTER 6

Power Manager

Hard Disk Queue Structure

0
4
6
8
12

hdQLi nk long pointer to next element in the queue
hdQType word queue type (should be HDPw QType)

hdFl ags word reserved

hdPr oc long pointer to a hard disk power-down procedure

hdUser long user defined

Wakeup Time Structure

0
4

wakeTi me long wakeup time in seconds since 00: 00: 00, 1/1/1904
wakeEnabl ed byte 1 = enable wakeup timer, 0 = disable timer

Battery Information Structure

0

1
2
3

flags byte flags
war ni nglLevel byte scaled warning level (0—255)
reserved byte reserved

batteryLevel byte scaled battery level (0—255)

Battery Time Structure

0
4
8
12

expectedBatteryTi ne long
mi ni munBat teryTi ne long
maxi munBat t er yTi ne long
timeUntil Charged long

Trap Macros

estimated battery time remaining in seconds
minimum battery time remaining
maximum battery time remaining
time remaining until battery is fully charged

Trap Macros Requiring Routine Selectors

_ldleState

Selector Routine

0 Enabl el dl e
Any positive number Di sabl el dl e

Any negative number Get CPUSpeed

_Seri al Power

Selector Routine

$04 AOn

$05 AOnl gnor eModem

$00 BOn

$84 A f

$80 BOf f

6-78 Summary of the Power Manager

CHAPTER 6

Power Manager

_Power Myr Di spat ch

Selector
$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20
$21

Routine

PMSel ect or Count

PMrFeat ur es

CGet Sl eepTi neout

Set Sl eepTi meout

Get Har dDi skTi meout

Set Har dDi skTi meout

Har dDi skPower ed

Spi nDownHar dDi sk

| sSpi ndownDi sabl ed

Set Spi ndownDi sabl e

Har dDi skQ nst al |

Har dDi skQRenove

Cet Scal edBat teryl nfo
Aut oSl eepCont r ol

Get | nt Moden nf o

Set | nt Modentt at e

Maxi munPr ocessor Speed
Cur rent Processor Speed
Ful | Processor Speed

Set Pr ocessor Speed

Get SCSI Di skMbdeAddr ess
Set SCSI Di skMbdeAddr ess
Get WakeupTi ner

Set WakeupTi ner

| sProcessor Cycl i ngEnabl ed
Enabl eProcessor Cycl i ng
Bat t er yCount

Cet BatteryVol t age
CetBatteryTi nes

Get Di nmi ngTi meout

Set Di nmi ngTi meout

Di nm ngCont r ol

| sDi mmi ngCont r ol Di sabl ed
| sAut oSl pCont rol Di sabl ed

Summary of the Power Manager

6-79

Jabeuely 1amod n

CHAPTER 6

Power Manager

Result Codes

noErr
pnBusyErr
prmRepl yTOEr r
pnSendSt art Err
prmSendEndEr r
pnRecvStartErr
pnRecvENndErr

-13000
-13001
-13002
-13003
-13004
-13005

No error

Power Manager IC stuck busy

Timed out waiting to begin reply handshake

Power Manager IC did not start handshake

During send, Power Manager did not finish handshake
During receive, Power Manager did not start handshake
During receive, Power Manager did not finish handshake

6-80 Summary of the Power Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	Power Manager
	About the Power Manager
	The Power-Saver State
	The Idle State
	The Sleep State
	The Sleep Queue
	Sleep Requests
	Sleep Demands
	Wakeup Demands
	Sleep-Request Revocations
	Power Manager Dispatch

	Using the Power Manager
	Determining Whether the Power Manager Is Present
	Determining Whether the Power Manager Dispatch Rou...
	Enabling or Disabling the Idle State
	Setting, Disabling, and Reading the Wakeup Timer
	Installing a Sleep Procedure
	Using Application Global Variables in Sleep Proced...
	Writing a Sleep Procedure
	Switching Serial Power On and Off
	Monitoring the Battery and Battery Charger

	Power Manager Reference
	Data Structures
	Sleep Queue Record
	Hard Disk Queue Structure
	Wakeup Time Structure
	Battery Information Structure
	Battery Time Structure

	Power Manager Routines
	Controlling the Idle State
	Controlling and Reading the Wakeup Timer
	Controlling the Sleep Queue
	Controlling Serial Power
	Reading the Status of the Internal Modem
	Reading the Status of the Battery and the Battery ...

	Power Manager Dispatch Routines
	Determining the Power Manager Features Available
	Controlling the Sleep and Wakeup Timers
	Controlling the Dimming Timer
	Controlling the Hard Disk
	Getting Information About the Internal Batteries
	Controlling the Internal Modem
	Controlling the Processor
	Getting and Setting the SCSI ID
	Application-Defined Routines
	Sleep Procedures
	Hard Disk Spindown Function

	Summary of the Power Manager
	Pascal Summary
	Constants
	Data Types
	Power Manager Routines
	Power Manager Dispatch Routines
	Application-Defined Routines

	C Summary
	Constants and Data Types
	Power Manager Functions
	Power Manager Dispatch Functions
	Application-Defined Functions

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

