

C H A P T E R 3

3

S
C

S
I M

anager

SCSI Manager 3

This chapter describes the original Macintosh SCSI Manager. The SCSI Manager is the
part of the Macintosh Operating System that controls the transfer of data between a
Macintosh computer and peripheral devices connected through the Small Computer
System Interface (SCSI).

In 1993, Apple Computer introduced SCSI Manager 4.3, an enhanced version of the
SCSI Manager that provides new features as well as compatibility with the original
version. SCSI Manager 4.3 is described in the chapter “SCSI Manager 4.3” in this book.

SCSI Manager 4.3 Note

Throughout this chapter, notes like this one are used to point out areas
where SCSI Manager 4.3 differs from the original SCSI Manager. ◆

You should read this chapter if you are writing a SCSI device driver or other program
that needs to be compatible with the original SCSI Manager. To make best use of this
chapter, you should understand the Device Manager and how device drivers are
implemented in Macintosh computers. You should also be familiar with the SCSI-1
specification established by the American National Standards Institute (ANSI).
The SCSI-1 specification appears in ANSI document X3.131-1986, entitled Small Computer
System Interface. Unless otherwise noted, all mentions of a SCSI specification in this
chapter refer to the SCSI-1 specification.

If you are designing a SCSI peripheral device for Macintosh computers, you should read
Designing Cards and Drivers for the Macintosh Family, third edition, and Guide to the
Macintosh Family Hardware, second edition.

This chapter provides a brief introduction to SCSI concepts and then explains

■ how the SCSI standard is implemented on Macintosh computers

■ how data is structured on SCSI disk drives and other block devices

■ how you can use SCSI Manager routines and data structures to transfer data to and
from SCSI peripheral devices

Introduction to SCSI Concepts 3

The Small Computer System Interface (SCSI) is a computer industry standard for
connecting computers to peripheral devices such as hard disk drives, CD-ROM drives,
printers, scanners, magnetic tape drives, and any other device that needs to transfer
large amounts of data quickly.

The SCSI standard specifies the hardware and software interface at a level that
minimizes dependencies on any specific hardware implementation. The specification
allows a wide variety of peripheral devices to be connected to many types of computers.

A SCSI bus is a bus that conforms to the physical and electrical specifications of the SCSI
standard. A SCSI device refers to any unit connected to the SCSI bus, either a peripheral
device or a computer. Each SCSI device on the bus is assigned a SCSI ID , which is an
integer value from 0 to 7 that uniquely identifies the device during SCSI transactions.
Introduction to SCSI Concepts 3-3

C H A P T E R 3

SCSI Manager

The Macintosh computer is always assigned the SCSI ID value of 7, and its internal hard
disk drive is normally assigned the SCSI ID value of 0. In general, only one Macintosh
computer can be connected to a SCSI bus at a given time, and most Macintosh models
support only a single SCSI bus.

SCSI Manager 4.3 Note

Under the original SCSI Manager, the dual SCSI buses in
high-performance computers such as the Macintosh Quadra 950 are
treated as though they were a single physical bus. SCSI Manager 4.3
supports multiple SCSI buses and treats each bus separately. ◆

When two SCSI devices communicate, one device acts as the initiator and the other
as the target. The initiator begins a transaction by selecting a target device. The target
responds to the selection and requests a command. The initiator then sends a SCSI
command, and the target carries out the action. After acknowledging the command, the
target controls the remainder of the transaction. The role of initiator and target is fixed
for each device, and does not usually change. Under the original SCSI Manager, the
Macintosh computer always acts as initiator, and peripheral devices are always targets.

SCSI Manager 4.3 Note

SCSI Manager 4.3 allows multiple initiators, meaning that intelligent
peripheral devices can initiate SCSI transactions without involving the
computer. ◆

SCSI transactions involve interaction between bus signals, bus phases, SCSI commands,
and SCSI messages. Although the SCSI Manager masks much of the underlying
complexity of SCSI transactions, an understanding of these elements and how they
interact will help you understand the role of the SCSI Manager.

The following sections briefly summarize the elements of a SCSI transaction.

SCSI Bus Signals 3
The SCSI specification defines 50 bus signals, half of which are tied to ground. Table 3-1
describes the 18 SCSI bus signals that are relevant to understanding SCSI transactions.
Nine of these signals are used to initiate and control transactions, and nine are used for
data transfer (8 data bits plus a parity bit).
3-4 Introduction to SCSI Concepts

C H A P T E R 3

SCSI Manager

3

S
C

S
I M

anager

SCSI Bus Phases 3
A SCSI bus phase is an interval in time during which, by convention, certain control
signals are allowed or expected, and others are not. The SCSI bus can never be in more
than one phase at any given time.

For each of the bus phases, there is a set of allowable phases that can follow. For
example, the bus free phase can only be followed by the arbitration phase, or by another
bus free phase. A data phase can be followed by a command, status, message, or bus free
phase.

Control signals direct the transition from one phase to another. For example, the reset
signal invokes the bus free phase, while the attention signal invokes the message phase.

Table 3-1 SCSI bus signals

Signal Name Description

/BSY Busy Indicates that the bus is in use.

/SEL Select The initiator uses this signal to select a target.

/C/D Control/Data The target uses this signal to indicate whether the
information being transferred is control information
(signal asserted) or data (signal negated).

/I/O Input/Output The target uses this signal to specify the direction of
the data movement with respect to the initiator.
When the signal is asserted, data flows to the
initiator; when negated, data flows to the target.

/MSG Message This signal is used by the target during the message
phase.

/REQ Request The target uses this signal to start a request/
acknowledge handshake.

/ACK Acknowledge This signal is used by the initiator to end a request/
acknowledge handshake.

/ATN Attention The initiator uses this signal to inform the target
that the initiator has a message ready. The target
retrieves the message, at its convenience, by
transitioning to a message-out bus phase

/RST Reset This signal is used to clear all devices and
operations from the bus, and force the bus into the
bus free phase. The Macintosh computer asserts this
signal at startup. SCSI peripheral devices should
never assert this signal.

/DB0–/DB7,
/DBP

Data Eight data signals, numbered 0 to 7, and the parity
signal. Macintosh computers generate proper SCSI
parity, but the original SCSI Manager does not
detect parity errors in SCSI transactions.
Introduction to SCSI Concepts 3-5

C H A P T E R 3

SCSI Manager

The SCSI standard specifies eight distinct phases for the SCSI bus:

■ Bus free . This phase means that no SCSI devices are using the bus, and that the bus is
available for another SCSI operation.

■ Arbitration. This phase is preceded by the bus free phase and permits a SCSI device
to gain control of the SCSI bus. During this phase, all devices wishing to use the bus
assert the /BSY signal and put their SCSI ID onto the bus (using the data signals). The
device with highest SCSI ID wins the arbitration.

■ Selection . This phase follows the arbitration phase. The device that won arbitration
uses this phase to select another device to communicate with.

■ Reselection . This optional phase is used by systems that allow peripheral devices to
disconnect and reconnect from the bus during lengthy operations. This phase is not
supported by the original Macintosh SCSI Manager, but is by SCSI Manager 4.3.

■ Command . During this phase, the target requests a command from the initiator.

■ Data. The data phase occurs when the target requests a transfer of data to or from the
initiator.

■ Status. This phase occurs when the target requests that status information be sent to
the initiator.

■ Message . The message phase occurs when the target requests the transfer of a
message. Messages are small blocks of data that carry information or requests
between the initiator and a target. Multiple messages can be sent during this phase.

Together, the last four phases (command, data, status, and message) are known as the
information transfer phases. Figure 3-1 shows the relationship of the SCSI bus phases.

Figure 3-1 SCSI bus phases and allowable transitions

Reset condition

Information

transfer

phases

Selection

or reselection

phase

Arbitration

phase

Bus free

phase
3-6 Introduction to SCSI Concepts

C H A P T E R 3

SCSI Manager

3

S
C

S
I M

anager

SCSI Commands 3
A SCSI command is an instruction from an initiator to a target to conduct an operation,
such as reading or writing a block of data. Commands are read by the target when it is
ready to do so, as opposed to being sent unrequested by the initiator.

SCSI commands are contained in a data structure called a command descriptor block
(CDB) , which can be 6, 10, or 12 bytes in size. The first byte specifies the operation
requested, and the remaining bytes are parameters used by that operation.

A single SCSI command may cause a peripheral device to undertake a relatively large
amount of work, compared with other device interfaces. For example, the read
command can specify multiple blocks of data rather than just one. The primary
difference between the SCSI protocol and other interfaces typically used for storage
devices is that SCSI commands address a device as a series of logical blocks rather
than in terms of heads, tracks, and sectors. It is this abstraction from the physical
characteristics of the device that allows the SCSI protocol to be used with a wide
variety of devices.

SCSI Messages 3
The SCSI standard specifies a number of possible messages between initiator and target.
SCSI messages are small blocks of data, often just one byte in size, that indicate the
successful completion of an operation (the command complete message), or a variety
of other events, requests, and status information. All messages are sent during the
message phase.

The command complete message is required in all SCSI implementations. This message
is sent from the target to the initiator and indicates that a command (or series of linked
commands) has been completed, either successfully or unsuccessfully. Success or failure
of the command is indicated by status information sent earlier during the status phase.
The importance of the command complete message is more fully discussed in “Using the
SCSIComplete Function,” beginning on page 3-21.

Other SCSI messages are optional. During the selection phase, the initiator and target
each specify their ability to handle messages other than the command complete message.

SCSI Handshaking 3
The SCSI standard defines the required sequence of transitions of the control and data
signals to ensure reliable communication between SCSI devices. Because the request
signal (/REQ) and the acknowledge signal (/ACK) both play a major role, this part of
the SCSI protocol is often referred to as request/acknowledge handshaking (usually
abbreviated as REQ/ACK handshaking).

The SCSI information transfer phases use REQ/ACK handshaking to transfer data or
control information between the initiator and target, in either direction. The direction of
the transfer depends on the particular bus phase. The handshaking occurs on every byte
transferred, and constitutes the lowest level of the SCSI protocol.
Introduction to SCSI Concepts 3-7

C H A P T E R 3

SCSI Manager

For example, during the data phase, when a target sends data to the initiator, the target
places the data on the SCSI bus data lines and then asserts the /REQ signal. The initiator
senses the /REQ signal, reads the data lines, then asserts the /ACK signal. When the
target senses the /ACK signal, it releases the data lines and negates the /REQ signal.
The initiator then senses that the /REQ signal has been negated, and negates the /ACK
signal. After the target senses that the /ACK signal has been negated, it can repeat the
whole process again, to transfer another byte of data.

Unless you are designing a SCSI device, you do not need any special knowledge of
SCSI handshaking to write software that uses the SCSI Manager. However, a general
understanding of SCSI handshaking can be helpful when debugging. Refer to the SCSI
specification for complete information about SCSI handshaking, bus phases, commands,
and messages.

About the SCSI Manager 3

The SCSI Manager provides routines that allow Macintosh device drivers and other
programs to communicate with SCSI peripheral devices using the SCSI protocol.

The SCSI Manager is a software layer that mediates between device drivers or
applications and the SCSI controller hardware in the Macintosh computer. In some cases,
the amount of mediation is small. For example, the SCSI Manager SCSIReset function
does little except assert the reset signal on the SCSI bus. In other cases, a single SCSI
Manager function may initiate a relatively complex series of actions.

Figure 3-2 shows the relationship of the SCSI Manager to the Macintosh system
architecture. The architecture consists of multiple layers: the application layer, the
system software layer (which is composed of several subordinate layers), and the
hardware layer.
3-8 About the SCSI Manager

C H A P T E R 3

SCSI Manager

3

S
C

S
I M

anager

Figure 3-2 The role of the SCSI Manager

Application programs usually rely on high-level services such as those provided by the
File Manager, but may also call low-level services directly. The File Manager calls the
Device Manager, which calls the appropriate device driver. SCSI device drivers do not
control SCSI hardware directly; they use the SCSI Manager to communicate with SCSI
devices.

Conformance With the SCSI Specification 3
The SCSI specification has been revised considerably since the first Macintosh SCSI
implementation. For information about the SCSI standard as originally defined, see
ANSI document X3.131-1986, Small Computer System Interface. Many of the features
described in the newer SCSI-2 specification are supported by SCSI Manager 4.3.
However, the original SCSI Manager predates these extensions.

CD-ROM

driver

Hard disk

driver

File Manager

Device Manager

Other SCSI

device

drivers

Scanner

driver

CD-ROM
Hard

disk

Other SCSI

devices

Scanner

SCSI interface

Peripheral

devices

System

software

Application

SCSI Manager
About the SCSI Manager 3-9

C H A P T E R 3

SCSI Manager

Due to hardware variations among Macintosh models, there are minor differences in the
behavior of some SCSI Manager routines. These differences lie mostly outside the scope
of the SCSI protocol. For information about these differences, see the description of the
SCSIGet function on page 3-32.

All Macintosh computers support these aspects of the SCSI specification:

■ multiple targets

■ as many as eight devices on the bus (the computer and up to seven peripherals)

■ parity generation

The following optional features of the SCSI specification are not supported by the
original SCSI Manager:

■ multiple SCSI buses

■ multiple initiators on a single bus

■ disconnect/reconnect

■ parity error detection

SCSI Manager 4.3 Note

These features and other enhancements are supported by
SCSI Manager 4.3. ◆

Overview of SCSI Manager Data Structures 3
The SCSI specification and the Macintosh Operating System define a number of data
structures for communicating with SCSI devices. These data structures fall into three
categories:

■ structures defined by the SCSI specification, such as command descriptor blocks and
SCSI messages

■ structures specific to the SCSI Manager, such as transfer instruction blocks and the
16-bit status word returned by the SCSIStat function

■ structures required for the proper operation of SCSI disk drives with the Start
Manager and the File Manager; for example, the driver descriptor map and the
partition map

The command descriptor block and other data structures defined by the SCSI
specification are not discussed in detail in this chapter. Refer to the SCSI specification for
complete information about these structures. See “Using CDB and TIB Structures,”
beginning on page 3-17, for an example of how to send a CDB to a SCSI device.

Although the driver descriptor map and the partition map are not used by the SCSI
Manager, they must be present on all block devices compatible with the Macintosh
Operating System. These structures are discussed in the following section.

A transfer instruction block (TIB) is a Macintosh-specific data structure that your
program uses to pass instructions to the SCSI Manager. TIB structures are used to control
3-10 About the SCSI Manager

C H A P T E R 3

SCSI Manager

3

S
C

S
I M

anager

data transfers, and for other purposes such as comparing data on a peripheral device
with data in memory. TIB structures are passed as parameters to the SCSI Manager
SCSIRead, SCSIRBlind, SCSIWrite, and SCSIWBlind functions. For read
operations, the TIB specifies a memory location where the data should be stored.
For write operations, the TIB specifies the location of the data to be written.

Although a transfer instruction block is data, not machine-executable code, it is
analogous to code in that the data is interpreted and executed by the SCSI Manager in
a manner similar to executing a program. The SCSIInstr data type defines a transfer
instruction block.

TYPE SCSIInstr = {transfer instruction block}

RECORD

scOpcode: Integer; {operation code}

scParam1: LongInt; {first parameter}

scParam2: LongInt; {second parameter}

END;

The first field of the transfer instruction block contains a transfer operation code.
This code is not a command in the SCSI protocol, but rather an instruction to the SCSI
Manager that directs the transfer of data across the SCSI bus after a SCSI command
has been sent. The instruction set consists of eight operation codes that allow you to
transfer data, increment a counter, and form iterative loops. See “SCSI Manager TIB
Instructions,” beginning on page 3-27, for details of the TIB instruction set.

A sequence of TIB instructions is also known as a TIB pseudoprogram . Here is an
example of a TIB pseudoprogram:

scInc $67B50 512

scLoop -10 6

scStop

This sample pseudoprogram consists of three TIB instructions that transfer six 512-byte
blocks of data to or from address $67B50 (depending on whether these instructions are
passed to a SCSIRead or a SCSIWrite function).

The first TIB instruction transfers a 512-byte block of data from a starting address
and then increments that address by the amount of data transferred. The second TIB
instruction branches back to the first (by branching back 10 bytes, which is the size of a
TIB instruction), and forms a loop that is executed six times (as specified by the second
parameter). The third and final TIB instruction terminates the execution sequence and
returns to the calling routine.

See “Using CDB and TIB Structures,” beginning on page 3-17, for an example of how to
use TIB instructions.
About the SCSI Manager 3-11

C H A P T E R 3

SCSI Manager

The Structure of Block Devices 3
This section describes the low-level organization of data on random-access storage
devices such as SCSI hard disk drives. Although this information is presented in the
context of the SCSI Manager, it applies to any type of block device that can be used by
the Macintosh Operating System, regardless of the hardware interface.

There are a number of ways to address data on block-structured storage devices such as
disk drives. At the lowest level, a disk drive addresses a block by its cylinder, head, and
sector number. The SCSI specification, however, conceals this level of detail. Instead,
each block on a SCSI disk is assigned a number, beginning with 0 and extending to the
last block on the disk. The SCSI specification describes these addresses as “logical” block
numbers, but the SCSI Manager calls them physical block numbers because they
correspond to a fixed location on the disk.

At an even higher level of abstraction, a device driver can define the mapping of
physical addresses on a device to the logical addresses of a file system. This allows
file systems to be independent of the characteristics of a particular device.

In the terminology of the SCSI Manager, a physical block refers to a specific, fixed
location defined by the manufacturer of a SCSI device. A logical block refers to an
abstract location defined by software. A partition is a series of contiguous logical blocks
that have been allocated to a particular operating system, file system, or device driver.
A disk can be divided into any number of partitions. Locations within these partitions
are specified using logical block numbers, which are integer values ranging from 0 to the
number of blocks in the partition.

The low-level organization of block devices is defined by two data structures: the driver
descriptor record and the partition map. These structures are introduced in the following
sections. See “Data Structures,” beginning on page 3-23, for a complete description of the
fields within these structures.

The Driver Descriptor Record 3

The driver descriptor record is a data structure that identifies the device drivers installed
on a disk. To support multiple operating systems or other features, a disk can have more
than one device driver installed, each in its own partition. The Start Manager reads the
driver descriptor record during system startup and uses the information to locate and
load the appropriate device driver.

The driver descriptor record is always located at physical block 0, the first block on the
disk. The driver descriptor record is defined by the Block0 data type.

TYPE Block0 =

PACKED RECORD

sbSig: Integer; {device signature}

sbBlkSize: Integer; {block size of the device}

sbBlkCount: LongInt; {number of blocks on the device}

sbDevType: Integer; {reserved}

sbDevId: Integer; {reserved}
3-12 About the SCSI Manager

C H A P T E R 3

SCSI Manager

3

S
C

S
I M

anager

sbData: LongInt; {reserved}

sbDrvrCount: Integer; {number of driver descriptor entries}

ddBlock: LongInt; {first driver’s starting block}

ddSize: Integer; {size of the driver, in 512-byte blocks}

ddType: Integer; {operating system type (MacOS = 1)}

ddPad: ARRAY [0..242] OF Integer; {additional drivers, if any}

END;

The driver descriptor record consists of seven fixed fields, followed by a variable amount
of driver-specific information. The first field in the driver descriptor record is a signature,
which must be set to the value of the sbSIGWord constant to indicate that the record
is valid (meaning that the disk has been formatted). The second field, sbBlkSize,
specifies the size of the blocks on the device, in bytes. The sbBlkCount field specifies
the total number of blocks on the device. The next three fields are reserved. The
sbDrvrCount field specifies the number of drivers that are installed on the disk.
The drivers can be located anywhere on the device and can be as large as necessary.

The ddBlock, ddSize, and ddType fields contain information about the first device
driver on the disk. Information about any additional drivers is stored in the ddPad field,
as an array of consecutive ddBlock, ddSize, and ddType fields.

To select a particular device driver for loading at system startup, you use the Start
Manager SetOSDefault function and specify a value corresponding to the ddType
field in the driver descriptor record.

The Partition Map 3

The partition map is a data structure that describes the partitions present on a block
device. The Macintosh Operating System and all other operating systems from Apple
use the same partitioning method. This allows a single device to support multiple
operating systems.

The partition map always begins at physical block 1, the second block on the disk. With
the exception of the driver descriptor record in block 0, every block on a disk must
belong to a partition.

Each partition on a disk is described by an entry in the partition map. The partition map
is itself a partition, and contains an entry describing itself. The partition map entry for
the partition map is not necessarily the first entry in the map. Partition map entries can
be in any order, and need not correspond to the physical organization of partitions on
the disk.

The number of entries in the partition map is not restricted. However, because the
partition map must begin at block 1 and must be contiguous, it cannot easily be
expanded once other partitions are created. One way around this limitation is to
create a large number of empty partition map entries when the disk is initialized.

To locate a partition, the Start Manager examines the pmMapBlkCnt field of the first
partition map entry. This field contains the size of the partition map, in blocks. Then,
using the block size value from the sbBlkSize field of the driver descriptor record, the
About the SCSI Manager 3-13

C H A P T E R 3

SCSI Manager
Start Manager reads each block in the partition map, looking for a valid signature in the
pmSIG field of each partition map entry record.

The partition map entry record is defined by the Partition data type.

TYPE Partition =

RECORD

pmSig: Integer; {partition signature}

pmSigPad: Integer; {reserved}

pmMapBlkCnt: LongInt; {number of blocks in partition map}

pmPyPartStart: LongInt; {first physical block of partition}

pmPartBlkCnt: LongInt; {number of blocks in partition}

pmPartName: PACKED ARRAY [0..31] OF Char; {partition name}

pmParType: PACKED ARRAY [0..31] OF Char; {partition type}

pmLgDataStart: LongInt; {first logical block of data area}

pmDataCnt: LongInt; {number of blocks in data area}

pmPartStatus: LongInt; {partition status information}

pmLgBootStart: LongInt; {first logical block of boot code}

pmBootSize: LongInt; {size of boot code, in bytes}

pmBootAddr: LongInt; {boot code load address}

pmBootAddr2: LongInt; {reserved}

pmBootEntry: LongInt; {boot code entry point}

pmBootEntry2: LongInt; {reserved}

pmBootCksum: LongInt; {boot code checksum}

pmProcessor: PACKED ARRAY [0..15] OF Char; {processor type}

pmPad: ARRAY [0..187] OF Integer; {reserved}

END;

The first three fields in a partition map entry record are redundant, in that all entries in
the partition map must contain the same values for these fields. The pmSig field contains
the partition map signature, which is defined by the pMapSIG constant. The pmSigPad
field is currently unused and must be set to 0. The pmMapBlkCnt field contains the size
in blocks of the entire partition map. Because this value is duplicated in every entry, you
can determine the size of the partition map from any entry in the map.

The remaining fields of the partition map entry record contain information about a
particular disk partition. The pmPyPartStart field contains the physical block number
of the first block of the partition. The pmPartBlkCnt field contains the number of
blocks in the partition. The pmPartName field can contain an optional 32-character
partition name. If this field contains a string beginning with Maci (for Macintosh),
the Start Manager will perform checksum verification of the device driver’s boot code.
Otherwise, this field is ignored.

The pmParType field contains a string that identifies the partition type. Strings
beginning with Apple_ are reserved for use by Apple Computer, Inc. The Start Manager
uses this information to identify the type of device driver or file system in a partition.
3-14 About the SCSI Manager

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
A bootable system disk must contain both an Apple_Driver and an Apple_HFS
partition. See page 3-26 for a list of the standard partition types defined by Apple.

For file systems that do not begin at logical block 0 of the partition, the pmLgDataStart
field contains the logical block number of the first block of file system data. The
pmDataCnt field specifies the size of the data area, in blocks. The pmPartStatus field
is currently used only by the A/UX operating system.

For device driver partitions, the pmLgBootStart field specifies the logical block
number of the first block containing boot code. The pmBootSize field contains the size
in bytes of the boot code. The pmBootAddr field specifies the memory address where
the boot code is to be loaded, while the pmBootEntry field specifies the address to
which the Start Manager will transfer control after loading the boot code into memory.
The pmBootCksum field holds the checksum of the boot code, which the Start Manager
can compare against the calculated checksum after loading the code. The pmProcessor
field is a string that identifies the type of processor that will execute the boot code.

For more information about the startup process and SCSI devices, see the chapter
“Start Manager” in Inside Macintosh: Operating System Utilities.

Using the SCSI Manager 3

Your device driver or application can use the SCSI Manager routines to transfer data
to and from SCSI peripheral devices. This section begins with a simple example that
illustrates the basic steps necessary to read data from a SCSI device. Next, the details of
using transfer instruction blocks and command descriptor blocks are presented,
followed by a complete program that uses these concepts.

Reading Data From a SCSI Device 3
This section shows you how to use the SCSI Manager routines to read data from a SCSI
peripheral device. Your application or device driver follows these steps for reading data
from a SCSI device:

1. Create a command descriptor block (CDB) and a transfer instruction block (TIB).

2. Call the SCSIGet function to arbitrate for the SCSI bus.

3. Use the SCSISelect function to select the SCSI device to read from.

4. Use the SCSICmd function to send a command descriptor block (CDB) containing a
SCSI read command to the device.

5. Call the SCSIRead function to transfer the data.

6. Call the SCSIComplete function to get the status and message bytes that mark the
end of a transaction over the SCSI bus.

Listing 3-1 shows code illustrating these steps. The example is simplified, in that it
excludes the details of setting up the CDB and TIB data structures prior to initiating the
read operation. That information is presented in the next section.
Using the SCSI Manager 3-15

C H A P T E R 3

SCSI Manager
Listing 3-1 Reading data from a SCSI device

FUNCTION MyReadSCSI : OSErr;

CONST

kCompletionTimeout = 300; {value passed to SCSIComplete }

{ 300 ticks = 5 seconds}

VAR

CDB: PACKED ARRAY [0..5] OF Byte; {command descriptor block}

CDBLen: Integer; {length of CDB}

TIB: PACKED ARRAY [0..1] OF SCSIInstr;{transfer instruction block}

scsiID: Integer; {SCSI ID of the target}

compStat: Integer; {status from SCSIComplete}

compMsg: Integer; {message from SCSIComplete}

compErr: OSErr; {result from SCSIComplete}

myErr: OSErr; {cumulative error result}

BEGIN

{Note: This example assumes the CDB, CDBLen, TIB, and scsiID variables }

{ already contain appropriate values.}

myErr := SCSIGet; {arbitrate for the bus}

IF myErr = noErr THEN

BEGIN

myErr := SCSISelect(scsiID); {select the target}

IF myErr = noErr THEN

BEGIN

myErr := SCSICmd(@CDB, CDBLen); {send read command}

IF myErr = noErr THEN

myErr := SCSIRead(@TIB); {polled read}

{complete the transaction and release the bus}

compErr := SCSIComplete(compStat, compMsg, kCompletionTimeout);

{return the most informative error result}

IF myErr = noErr THEN {if no prior errors, then }

myErr := compErr; { return SCSIComplete result}

END;

END;

MyReadSCSI := myErr; {return result code}

END;
3-16 Using the SCSI Manager

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
The MyReadSCSI function follows the steps presented earlier in this section, starting
with calling the SCSIGet and SCSISelect functions to select the target device, sending
a read command using the SCSICmd function, and reading the data with the SCSIRead
function. Finally, the SCSIComplete function is called to obtain the status and message
bytes from the device and restore the bus to the bus free phase.

The MyReadSCSI function assumes these variables have already been set up properly:

■ a SCSI command descriptor block (the CDB variable)

■ an integer specifying the length of the command descriptor block (the CDBLen
variable)

■ a transfer instruction block (the TIB variable)

■ an integer specifying the SCSI ID of the target device (the scsiID variable)

Within its narrowed scope, the MyReadSCSI function is correct and complete. You can
easily modify it to handle other operations, such as writing data, or conducting blind
transfers.

The MyReadSCSI function shows one way of handling the error results returned by
a series of SCSI Manager functions. The result codes returned by the SCSI Manager
functions are put into the myErr local variable as each SCSI Manager function is called.
Your code should likewise check the result codes and proceed only if there is no error.
Calling the SCSIComplete function is the last step, and requires special handling. Your
code should call the SCSIComplete function even if an earlier SCSI Manager routine
has returned an error, because the SCSIComplete function takes whatever steps are
necessary to restore the SCSI bus to the bus free phase. For more information, see “Using
the SCSIComplete Function” on page 3-21.

Using CDB and TIB Structures 3
The command descriptor block (CDB) is a data structure defined by the SCSI
specification for communicating commands to SCSI devices. The SCSI Manager does
not interpret the commands in a CDB, it simply transfers them to the selected device.

You send a CDB to a SCSI device using the SCSICmd function. The size of the CDB
structure can be 6, 10, or 12 bytes, depending on the number of parameters required by
the command. The first byte specifies the command, and the remaining bytes contain
parameters.

The SCSI specification includes a set of standard commands that all SCSI devices
must implement, and a wide range of commands for specific device types. In addition,
manufacturers can define proprietary command codes for their devices. You should refer
to the manufacturer’s documentation for information about the commands supported by
a particular device.

You use the transfer instruction block (TIB) data structure to pass instructions to the
SCSI Manager SCSIRead, SCSIRBlind, SCSIWrite, and SCSIWBlind functions. The
TIB structure is defined by the SCSIInstr data type. The scOpcode field contains a
transfer operation code, and the scParam1 and scParam2 fields contain parameters to
the command. The instruction set consists of eight operation codes that allow you to
Using the SCSI Manager 3-17

C H A P T E R 3

SCSI Manager
transfer data, increment a counter, and form iterative loops. See “SCSI Manager TIB
Instructions,” beginning on page 3-27, for details of the TIB instruction set.

Listing 3-2 shows an example of how you can use CDB and TIB instructions to send a
command and read information from a SCSI peripheral device. The MySCSIInquiry
program uses the SCSI INQUIRY command to obtain a 256-byte record of information
from a target device. This information includes the target’s device type, vendor ID,
product ID, revision data, and other vendor-specific information. The INQUIRY
command is one of the standard commands that all SCSI devices must support.

Listing 3-2 Using TIB and CDB structures

PROGRAM MySCSIInquiry;

USES SCSI;

CONST

kInquiryCmd = $12; {SCSI command code for the INQUIRY command}

kVendorIDSize = 8; {size of the Vendor ID string}

kProductIDSize = 16; {size of the Product ID string}

kRevisionSize = 4; {size of the Revision string}

kCompletionTimeout = 300; {timeout value passed to SCSIComplete}

kMySCSIID = 0; {SCSI ID of the target device}

{This structure duplicates the format of the SCSI INQUIRY response record, }

{ as described in the SCSI-2 specification. The first 5 bytes are required }

{ for SCSI-1 devices. The first 36 bytes are required for SCSI-2 devices. }

{ The AdditionalLength field contains the length of the vendor-specific }

{ information, if any, beyond the 5 bytes required for all devices.}

TYPE MyInquiryRecord =

PACKED RECORD

DeviceType: Byte; {SCSI device type code (disk, tape, etc.)}

DeviceQualifier: Byte; {7-bit vendor-specific code}

Version: Byte; {version of ANSI standard (SCSI-1 or SCSI-2)}

ResponseFormat: Byte;

AdditionalLength: Byte; {length of vendor-specific information}

VendorUse1: Byte;

Reserved1: Integer;

VendorID: PACKED ARRAY [1..kVendorIDSize] OF Char; {manufacturer}

ProductID: PACKED ARRAY [1..kProductIDSize] OF Char; {product code}

Revision: PACKED ARRAY [1..kRevisionSize] OF Char; {firmware rev}

VendorUse2: PACKED ARRAY [1..20] OF Byte;

Reserved2: PACKED ARRAY [1..42] OF Byte;

VendorUse3: PACKED ARRAY [1..158] OF Byte;

END; {a total of 256 bytes of data may be returned}
3-18 Using the SCSI Manager

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
VAR

CDB: PACKED ARRAY [0..5] OF Byte; {command descriptor block}

TIB: PACKED ARRAY [0..1] OF SCSIInstr; {transfer instruction block}

Response: MyInquiryRecord; {holds target’s response}

compStat: Integer; {status information from SCSIComplete}

compMsg: Integer; {message information from SCSIComplete}

compErr: OSErr; {result from SCSIComplete}

myErr: OSErr; {error result}

i: Integer; {loop counter}

BEGIN

{Set up the command buffer with the SCSI INQUIRY command.}

CDB[0] := kInquiryCmd; {SCSI command code for the INQUIRY command}

CDB[1] := 0; {unused parameter}

CDB[2] := 0; {unused parameter}

CDB[3] := 0; {unused parameter}

CDB[4] := 5; {maximum number of bytes target should return}

CDB[5] := 0; {unused parameter}

{Set up the two TIB structures; one to read, the other as terminator.}

TIB[0].scOpcode := scNoInc; {specify the scNoInc instruction}

TIB[0].scParam1 := LongInt(@Response); {pointer to buffer}

TIB[0].scParam2 := 5; {number of bytes to move}

TIB[1].scOpcode := scStop; {specify the scStop instruction}

TIB[1].scParam1 := LongInt(NIL); {unused parameter}

TIB[1].scParam2 := LongInt(NIL); {unused parameter}

WRITELN('SCSI inquiry example. Testing SCSI ID:', kMySCSIID);

{Send the INQUIRY command twice. The first time to obtain the }

{ AdditionalLength value in the fifth byte of the INQUIRY response }

{ record and the second time to read that additional amount. Notice }

{ that SCSIComplete is always called if SCSISelect was successful.}

FOR i := 1 to 2 DO

BEGIN

myErr := SCSIGet; {arbitrate for the bus}

IF myErr = noErr THEN

myErr := SCSISelect(kMySCSIID); {select the target}

IF myErr <> noErr THEN

BEGIN

WRITELN('Error result from SCSIGet or SCSISelect:', myErr);

EXIT(MySCSIInquiry);

END;

myErr := SCSICmd(@CDB, 6); {send INQUIRY command to the target}
Using the SCSI Manager 3-19

C H A P T E R 3

SCSI Manager
IF myErr = noErr THEN

BEGIN

myErr := SCSIRead(@TIB); {read the INQUIRY response record}

IF myErr = noErr THEN {if there was no error, and }

IF i = 1 THEN { if this is the first time through }

BEGIN { the loop, get the AdditionalLength}

CDB[4] := CDB[4] + Response.AdditionalLength;

TIB[0].scParam2 := TIB[0].scParam2 +

 Response.AdditionalLength;

END;

END;

{Call SCSIComplete to clean up. Results are ignored in this example.}

compErr := SCSIComplete(compStat, compMsg, kCompletionTimeout);

IF myErr <> noErr THEN

BEGIN

WRITELN('Error result from SCSICmd or SCSIRead:', myErr);

EXIT(MySCSIInquiry);

END;

END; {FOR loop}

{Display the information.}

IF Response.AdditionalLength > 0 THEN

BEGIN

WITH Response DO

BEGIN

WRITE('VendorID:');

FOR i := 1 TO kVendorIDSize DO

WRITE(VendorID[i]);

WRITELN;

WRITE('ProductID:');

FOR i := 1 TO kProductIDSize DO

WRITE(ProductID[i]);

WRITELN;

WRITE('Revision:');

FOR i := 1 TO kRevisionSize DO

WRITE(Revision[i]);

WRITELN;

END;

END;

END.
3-20 Using the SCSI Manager

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
The MySCSIInquiry program first defines various constants, including the
kInquiryCmd constant, which contains the operation code for the SCSI INQUIRY
command. Next the MyInquiryRecord data type is declared, a 256-byte structure that
holds the information returned by the target. The fields of this record are based on the
SCSI-2 specification. The SCSI-1 specification requires that devices return at least the first
5 bytes of information (DeviceType through AdditionalLength), however, many
SCSI-1 devices and all SCSI-2 devices return at least the first 36 bytes (DeviceType
through Revision).

In the 6-byte CDB used by the SCSI INQUIRY command, the first byte contains the
operation code and the fifth byte specifies the maximum number of bytes the target is
allowed to send in response to the inquiry. Restricting the target’s response to a specified
number of bytes prevents it from overflowing the buffer the initiator has set aside to
accept the data.

This program uses two transfer instruction blocks, both of which are relatively simple.
The first TIB is an scNoInc instruction, whose parameters specify a data transfer into
the Response record. The second TIB is an scStop instruction, which terminates the
SCSI Manager processing that occurs inside the SCSIRead function.

The body of the MySCSIInquiry program consists of a loop that performs the
arbitrate/select/command/transfer/complete sequence described in “Reading Data
From a SCSI Device” on page 3-15. The loop executes this sequence of SCSI Manager
functions twice. The first time sends the SCSI INQUIRY command to the target and
requests only the standard 5 bytes of information supplied by all SCSI devices. The value
of the fifth byte (returned in the AdditionalLength field of the Response record)
indicates the amount of additional information the device is capable of returning. Before
going through the loop a second time, both the CDB and the TIB are modified to reflect
the additional size of the inquiry information.

The program checks for errors at each stage in the SCSI Manager calling sequence. If
either the SCSIGet or SCSISelect function returns an error, the program exits. If the
SCSICmd function returns an error, SCSIRead is not called. To complete the transaction
and release the bus, the SCSIComplete function is always called if SCSISelect was
successful.

Using the SCSIComplete Function 3
The SCSIComplete function completes a SCSI transaction and restores the bus to the
bus free phase. You must call this function at the end of every transaction that proceeds
past the selection phase, even if the transaction does not complete successfully.

The SCSIComplete function waits a specified number of ticks for the current
transaction to complete, and then returns one byte of status information and one byte
of message information from the target device. The function returns one of the following
result codes:

■ noErr. The SCSIComplete function was able to obtain both the status and message
bytes successfully. This result code indicates that the information is valid.
Using the SCSI Manager 3-21

C H A P T E R 3

SCSI Manager
■ scComplPhaseErr. Upon entry, the SCSIComplete function detected that the target
was ready to transfer information (that is, the /REQ signal was asserted) but the SCSI
bus was not in the status phase. The SCSI Manager performed corrective action to bring
the bus into the status phase. For example, accepting bytes from the target without
passing them to your program (“bit-bucketing”), or sending an arbitrary number of
bytes to the target. Once in status phase, the SCSIComplete function was able to
transfer the status and message bytes successfully, and this information is valid.

■ scPhaseErr. The SCSIComplete function could not force the SCSI bus into the
status phase. The status and message bytes should be considered invalid. You may
need to reset the bus to restore proper operation.

■ scCommErr. This result code covers any other error conditions encountered by the
SCSIComplete function, such as the timeout that occurs if the transaction does not
complete within the specified number of ticks.

Choosing Polled or Blind Transfers 3
The SCSI Manager supports two data transfer methods: polled and blind. During a
polled transfer , the SCSI Manager senses the state of the Macintosh SCSI controller
hardware to determine when the controller is ready to transfer another byte. In a blind
transfer, the SCSI Manager assumes that the SCSI controller (and the target device) can
keep up with a specified transfer rate, and does not explicitly sense whether the
hardware is ready.

Note
These transfer modes are specific to the Macintosh SCSI interface
hardware implementation and are not part of the SCSI protocol. ◆

When the SCSI Manager retrieves data from the SCSI controller, it can explicitly verify
that a byte was received by the controller and is ready for transfer. The SCSI Manager
does this by polling a status register in the controller. Alternatively, the SCSI Manager
can assume that a byte is available and can attempt to read it without checking first.
As long as a SCSI device can supply data to the SCSI controller faster than the SCSI
Manager can retrieve it, blind transfers work reliably. If the SCSI device cannot keep up,
timeout errors and other problems can occur.

For example, in the Macintosh Plus (the first model to include a SCSI interface), if
the SCSI Manager reads a byte from the SCSI controller chip before the chip receives
a byte from the target, the read operation completes but the data is invalid. The
SCSIComplete function does not always return an error result in this case.

Newer Macintosh models include hardware support for handshaking, allowing blind
transfers to be both fast and reliable. This handshaking allows the SCSI controller to
defer the CPU if no data is available to transfer. If the data doesn’t arrive within a
specified period, the SCSI Manager returns the scBusTOErr result. The timeout period
varies for each Macintosh model. This type of timeout error does not occur when using
polled transfers.

Polled transfers work reliably with all SCSI peripheral devices, and are a good choice for
slow or unpredictable devices such as printers and scanners. You should also use polled
3-22 Using the SCSI Manager

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
transfers if you are unfamiliar with the characteristics of a particular device. You use the
SCSIRead and SCSIWrite functions to initiate polled transfers.

For disk drives and other high-speed devices, blind transfers can significantly increase
data throughput. As long as the device does not incur any delays during a transfer, or
the delays occur at predictable times, blind transfers are a good choice. You use the
SCSIRBlind and SCSIWBlind functions to initiate blind transfers.

Because the first byte transferred by each TIB instruction is always polled, even in blind
mode, you can work around predictable delays using an appropriate sequence of TIB
instructions. For example, if a peripheral device always pauses at a specific byte within a
transfer, you can divide the transfer into blocks so that the delayed byte is located at the
start of a TIB instruction. The SCSI Manager polls the controller before the first byte, then
reads the remaining bytes using a blind transfer. For disk drives, predictable delays
generally occur at sector boundaries, so you can compensate by dividing your transfers
into sector-sized blocks.

SCSI Manager Reference 3

This section describes the data structures and routines that constitute the SCSI Manager,
and also includes the data structures that describe the low-level structure of block
devices.

The section “SCSI Manager TIB Instructions,” beginning on page 3-27, contains
descriptions of transfer instruction block (TIB) instructions. These structures are used to
control data transfers conducted by the SCSI Manager. Although TIB instructions are
data structures, not machine-executable code, they are analogous to code in that TIB
instructions are interpreted and executed by the SCSI Manager. Because of this dual
nature, TIB instructions are presented in their own section.

Data Structures 3
This section describes the driver descriptor record and the partition map entry record.
These data structures are not used by the SCSI Manager, but represent the way data is
structured on random access storage devices such as hard disk drives. The Start Manager
uses this information to locate partitions and device drivers on SCSI disks.

Driver Descriptor Record 3

The driver descriptor record contains information about the device drivers resident on a
SCSI peripheral device. The driver descriptor record is defined by the Block0 data type.

TYPE Block0 =

PACKED RECORD

sbSig: Integer; {device signature}
SCSI Manager Reference 3-23

C H A P T E R 3

SCSI Manager
sbBlkSize: Integer; {block size of the device}

sbBlkCount: LongInt; {number of blocks on the device}

sbDevType: Integer; {reserved}

sbDevId: Integer; {reserved}

sbData: LongInt; {reserved}

sbDrvrCount: Integer; {number of driver descriptor entries}

ddBlock: LongInt; {first driver’s starting block}

ddSize: Integer; {size of the driver, in 512-byte blocks}

ddType: Integer; {operating system type (MacOS = 1)}

ddPad: ARRAY [0..242] OF Integer; {additional drivers, if any}

END;

Field descriptions

sbSig The device signature. This field should contain the value of the
sbSIGWord constant ($4552) to indicate that the driver descriptor
record is valid (meaning that the disk has been formatted).

sbBlkSize The size of the blocks on the device, in bytes.
sbBlkCount The number of blocks on the device.
sbDevType Reserved.
sbDevId Reserved.
sbData Reserved.
sbDrvrCount The number of drivers installed on the disk. More than one driver

may be included when multiple operating systems or processors are
supported. The drivers can be located anywhere on the device and
can be as large as necessary.

ddBlock The physical block number of the first block of the first device
driver on the disk.

ddSize The size of the device driver, in 512-byte blocks.
ddType The operating system or processor supported by the driver. A value

of 1 specifies the Macintosh Operating System. The values 0
through 15 are reserved for use by Apple Computer, Inc.

ddPad Additional ddBlock, ddSize, and ddType entries for other device
drivers on the disk.

If multiple device drivers exist on the device, you can use the Start Manager
SetOSDefault function to control which operating system is loaded at startup by
specifying a value that corresponds to the ddType field of the appropriate device driver.
For more information on the startup process, see the chapter “Start Manager” in
Inside Macintosh: Operating System Utilities.

See “The Structure of Block Devices,” beginning on page 3-12, for more information
about this data structure.
3-24 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
Partition Map Entry Record 3

The partition map entry record contains information about how data is stored on a block
device, usually a SCSI disk drive. The partition map entry record is defined by the
Partition data type.

TYPE Partition =

RECORD

pmSig: Integer; {partition signature}

pmSigPad: Integer; {reserved}

pmMapBlkCnt: LongInt; {number of blocks in partition map}

pmPyPartStart: LongInt; {first physical block of partition}

pmPartBlkCnt: LongInt; {number of blocks in partition}

pmPartName: PACKED ARRAY [0..31] OF Char; {partition name}

pmParType: PACKED ARRAY [0..31] OF Char; {partition type}

pmLgDataStart: LongInt; {first logical block of data area}

pmDataCnt: LongInt; {number of blocks in data area}

pmPartStatus: LongInt; {partition status information}

pmLgBootStart: LongInt; {first logical block of boot code}

pmBootSize: LongInt; {size of boot code, in bytes}

pmBootAddr: LongInt; {boot code load address}

pmBootAddr2: LongInt; {reserved}

pmBootEntry: LongInt; {boot code entry point}

pmBootEntry2: LongInt; {reserved}

pmBootCksum: LongInt; {boot code checksum}

pmProcessor: PACKED ARRAY [0..15] OF Char; {processor type}

pmPad: ARRAY [0..187] OF Integer; {reserved}

END;

Field descriptions

pmSig The partition signature. This field should contain the value of the
pMapSIG constant ($504D). An earlier but still supported version
uses the value $5453.

pmSigPad Reserved.
pmMapBlkCnt The size of the partition map, in blocks.
pmPyPartStart The physical block number of the first block of the partition.
pmPartBlkCnt The size of the partition, in blocks.
pmPartName An optional partition name, up to 32 bytes in length. If the string

is less than 32 bytes, it must be terminated with the ASCII NUL
character (a byte with a value of 0). If the partition name begins
with Maci (for Macintosh), the Start Manager will perform
checksum verification of the device driver’s boot code. Otherwise,
this field is ignored.
SCSI Manager Reference 3-25

C H A P T E R 3

SCSI Manager
pmParType A string that identifies the partition type. Names that begin with
Apple_ are reserved for use by Apple Computer, Inc. Names
shorter than 32 characters must be terminated with the NUL
character. The following standard partition types are defined for
the pmParType field:

pmLgDataStart The logical block number of the first block containing file system
data. This is for use by operating systems, such as A/UX, in which
the file system does not begin at logical block 0 of the partition.

pmDataCnt The size of the file system data area, in blocks. This is used in
conjunction with the pmLgDataStart field, for those operating
systems in which the file system does not begin at logical block 0
of the partition.

pmPartStatus Two words of status information about the partition. The low-order
byte of the low-order word contains status information used only
by the A/UX operating system:

The remaining bytes of the pmPartStatus field are reserved.
pmLgBootStart The logical block number of the first block containing boot code.
pmBootSize The size of the boot code, in bytes.

String Meaning

Apple_partition_map Partition contains a partition map

Apple_Driver Partition contains a device driver

Apple_Driver43 Partition contains a SCSI Manager 4.3
device driver

Apple_MFS Partition uses the original Macintosh
File System (64K ROM version)

Apple_HFS Partition uses the Hierarchical File
System implemented in 128K and
later ROM versions

Apple_Unix_SVR2 Partition uses the Unix file system

Apple_PRODOS Partition uses the ProDOS file system

Apple_Free Partition is unused

Apple_Scratch Partition is empty

Bit Meaning

0 Set if a valid partition map entry

1 Set if partition is already allocated; clear if available

2 Set if partition is in use; may be cleared after a system reset

3 Set if partition contains valid boot information

4 Set if partition allows reading

5 Set if partition allows writing

6 Set if boot code is position-independent

7 Unused
3-26 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
pmBootAddr The memory address where the boot code is to be loaded.
pmBootAddr2 Reserved.
pmBootEntry The memory address to which the Start Manager will transfer

control after loading the boot code into memory.
pmBootEntry2 Reserved.
pmBootCksum The boot code checksum. The Start Manager can compare this value

against the calculated checksum after loading the code.
pmProcessor An optional string that identifies the type of processor that will

execute the boot code. Strings shorter than 16 bytes must be
terminated with the ASCII NUL character. The following processor
types are defined: 68000, 68020, 68030, and 68040.

pmPad Reserved.

See “The Structure of Block Devices,” beginning on page 3-12, for more information
about this data structure.

SCSI Manager TIB Instructions 3
The transfer instruction block (TIB) is a data structure that you use to control the
data transfer process. TIB structures are passed as parameters to the SCSIRead,
SCSIRBlind, SCSIWrite, and SCSIWBlind functions. The transfer instruction
block is defined by the SCSIInstr data type.

TYPE SCSIInstr =

RECORD

scOpcode: Integer; {operation code}

scParam1: LongInt; {first parameter}

scParam2: LongInt; {second parameter}

END;

The scOpcode field contains a value that specifies the operation to be performed. There
are eight possible operations, known as TIB instructions, which carry out tasks such as
moving data, looping, and address arithmetic. These instructions are described in this
section. The operation codes for the TIB instructions are:

CONST

scInc = 1; {transfer data, increment buffer pointer}

scNoInc = 2; {transfer data, don’t increment pointer}

scAdd = 3; {add long to address}

scMove = 4; {move long to address}

scLoop = 5; {decrement counter and loop if > 0}

scNop = 6; {no operation}

scStop = 7; {stop TIB execution}

scComp = 8; {compare SCSI data with memory}
SCSI Manager Reference 3-27

C H A P T E R 3

SCSI Manager
To transfer data, you create a variable-length array of TIB instructions and pass a
pointer to this array to any of the SCSI Manager data transfer functions (SCSIRead,
SCSIRBlind, SCSIWrite, SCSIWBlind). These SCSI Manager functions interpret the
TIB instructions and carry out the requested operations.

For an example of how to use TIB instructions, see “Using CDB and TIB Structures,”
beginning on page 3-17.

IMPORTANT

Before you call any of the SCSI Manager data transfer functions
(SCSIRead, SCSIRBlind, SCSIWrite, or SCSIWBlind), you must
first send a SCSI read or write command to the target using the
SCSICmd function. ▲

scInc 3

You can use the scInc TIB instruction to transfer data and increment the buffer pointer.

Parameter block

DESCRIPTION

The scInc instruction moves data to or from the buffer pointed to by scParam1. You
specify the number of bytes to be transferred in scParam2. The buffer pointer in
scParam1 is incremented by the number of bytes transferred (for use by a subsequent
iteration of this instruction).

scNoInc 3

You can use the scNoInc TIB instruction to transfer data without incrementing the
buffer pointer.

Parameter block

DESCRIPTION

The scNoInc instruction moves data to or from the buffer pointed to by scParam1. You
specify the number of bytes to be transferred in scParam2. The buffer pointer in
scParam1 is unmodified by this instruction.

→ scParam1 Ptr A pointer to a data buffer.
→ scParam2 LongInt The number of bytes to be transferred.

→ scParam1 Ptr A pointer to a data buffer.
→ scParam2 LongInt The number of bytes to be transferred.
3-28 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
scAdd 3

You can use the scAdd TIB instruction to add a value to an address.

Parameter block

DESCRIPTION

The scAdd instruction adds the long value in scParam2 to the address in scParam1.

scMove 3

You can use the scMove TIB instruction to copy a long value from one memory location
to another.

Parameter block

DESCRIPTION

The scMove TIB instruction copies the 32-bit value pointed to by the scParam1
parameter to the memory location specified by the scParam2 parameter.

scLoop 3

You can use the scLoop TIB instruction to repeat a sequence of TIB instructions a
specified number of times.

Parameter block

DESCRIPTION

The scLoop TIB instruction decrements the value in scParam2 by 1. If the result is
greater than 0, the flow of control branches to the TIB instruction whose relative offset is
the current instruction plus the value in scParam1. If the result is 0, control passes to the
instruction following the scLoop instruction. The offset in scParam1 is a signed value,
and must be a multiple of 10 bytes (the size of the SCSIInstr data type). For example,

→ scParam1 Ptr An address.
→ scParam2 LongInt The number to add to the address.

→ scParam1 Ptr The source address.
→ scParam2 Ptr The destination address.

→ scParam1 LongInt The relative offset of the TIB instruction to branch to.
→ scParam2 LongInt The number of times to loop.
SCSI Manager Reference 3-29

C H A P T E R 3

SCSI Manager
to branch to the instruction immediately preceding the current one, you would specify
a relative offset of –10. To jump ahead three instructions, you would specify a relative
offset of 30.

scNop 3

The scNop TIB instruction does nothing.

DESCRIPTION

The scNop TIB instruction is analogous to an assembly-language NOP instruction. The
two parameters are ignored.

scStop 3

You use the scStop TIB instruction to end a sequence of TIB instructions.

DESCRIPTION

The scStop TIB instruction stops execution of a sequence of TIB instructions and
returns control to the calling SCSI Manager function. At least one scStop instruction
is required in any TIB instruction sequence, usually at the end. The two parameters are
ignored.

scComp 3

You can use the scComp TIB instruction to compare data on a SCSI device with data in
memory.

Parameter block

DESCRIPTION

The scComp TIB instruction is used in conjunction with the SCSIRead function to
compare data in memory with incoming data from a SCSI device. The SCSI Manager
compares the result of the read command with the contents of the data buffer pointed
to by scParam1. The scParam2 parameter specifies the number of bytes to read and
compare. If all bytes do not compare, the SCSIRead function returns the result code
scCompareErr.

→ scParam1 Ptr A pointer to a data buffer.
→ scParam2 LongInt The number of bytes to be compared.
3-30 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
SCSI Manager 4.3 Note

You should avoid using the scComp TIB instruction because it is not
supported by SCSI Manager 4.3. ◆

SCSI Manager Routines 3
This section describes the SCSI Manager routines you use to

■ reset the SCSI bus

■ arbitrate for the SCSI bus

■ select a SCSI device

■ send SCSI commands and messages

■ read or write data to SCSI devices

■ obtain the status of the SCSI bus

■ complete the processing of a SCSI transaction

SCSIReset 3

You can use the SCSIReset function to reset all devices on the SCSI bus.

FUNCTION SCSIReset: OSErr;

DESCRIPTION

The SCSIReset function directs the SCSI controller chip (or equivalent hardware) in the
Macintosh computer to assert the SCSI bus reset signal. The reset signal causes all
devices on the bus to clear pending I/O and forces the bus into the bus free phase.

▲ W A R N I N G

The SCSIReset function interrupts SCSI communications and can
cause data loss. Use this function only in exceptional circumstances. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIReset are

RESULT CODES

Trap macro Selector

_SCSIDispatch $0000

noErr 0 No error
scCommErr 2 Communications error, operation timeout
SCSI Manager Reference 3-31

C H A P T E R 3

SCSI Manager
SEE ALSO

See “SCSI Bus Signals,” beginning on page 3-4, and “SCSI Bus Phases,” beginning on
page 3-5, for more information about the reset signal and the bus free phase.

SCSIGet 3

You use the SCSIGet function to arbitrate for control of the SCSI bus.

FUNCTION SCSIGet: OSErr;

DESCRIPTION

The SCSIGet function prepares the SCSI Manager to initiate the arbitration sequence.
If the SCSI Manager is busy with another operation, this function returns the
scMgrBusyErr result. If arbitration failed because the bus was busy, the function
returns the scArbNBErr result.

IMPORTANT

The operation of the SCSIGet function varies on different Macintosh
models and does not necessarily initiate the SCSI bus arbitration phase.
In some Macintosh models, the arbitration phase does not occur until
your program calls the SCSISelect function. However, your program
must always call the SCSIGet function before calling SCSISelect. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIGet are

RESULT CODES

SEE ALSO

See “SCSI Bus Phases,” beginning on page 3-5, for a description of the arbitration phase.

Trap macro Selector

_SCSIDispatch $0001

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scArbNBErr 3 Bus busy, arbitration timeout
scMgrBusyErr 7 SCSI Manager busy
3-32 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
SCSISelect 3

You use SCSISelect function to select a SCSI device for a subsequent operation.

FUNCTION SCSISelect (targetID: Integer): OSErr;

targetID The SCSI ID of the target device, with a value from 0 to 7.

DESCRIPTION

The SCSISelect function selects the SCSI device identified by the targetID value.

IMPORTANT

You must call the SCSIGet function before calling SCSISelect. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSISelect are

RESULT CODES

SEE ALSO

See “SCSI Bus Phases,” beginning on page 3-5, for a description of the selection phase.

SCSISelAtn 3

You can use the SCSISelAtn function to select a SCSI device and at the same time to
assert the attention (/ATN) bus signal.

FUNCTION SCSISelAtn (targetID: Integer): OSErr;

targetID The SCSI ID of the target device, with a value from 0 to 6.

DESCRIPTION

The SCSISelAtn function is identical to the SCSISelect function except that this
function asserts the /ATN signal during selection. The /ATN signal informs the target

Trap macro Selector

_SCSIDispatch $0002

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scArbNBErr 3 Bus busy, arbitration timeout
scSequenceErr 8 Attempted operation is out of sequence
SCSI Manager Reference 3-33

C H A P T E R 3

SCSI Manager
that the initiator wants to send a message. The SCSISelAtn function must be followed
by a call to the SCSIMsgOut function to send the message to the target device.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSISelAtn are

RESULT CODES

SEE ALSO

See “SCSI Bus Signals,” beginning on page 3-4, and “SCSI Bus Phases,” beginning on
page 3-5, for more information about the attention signal and the selection phase.

SCSICmd 3

You use the SCSICmd function to send a SCSI command to a SCSI device.

FUNCTION SCSICmd (buffer: Ptr; count: Integer): OSErr;

buffer A pointer to a buffer containing the SCSI command descriptor block.

count The size of the command descriptor block, in bytes.

DESCRIPTION

The SCSICmd function sends a SCSI command to the previously selected target device.
The command code and other parameters are contained in a command descriptor block
(CDB) data structure pointed to by the buffer parameter. The count parameter
specifies the size of the CDB structure, which can be 6, 10, or 12 bytes.

The SCSI specification describes the CDB data structure and lists the standard SCSI
commands that all devices must support. Devices may support additional commands
not defined by the SCSI specification.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSICmd are

Trap macro Selector

_SCSIDispatch $000B

noErr 0 No error
scCommErr 2 Communications error, operation timeout

Trap macro Selector

_SCSIDispatch $0003
3-34 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
RESULT CODES

SEE ALSO

See “SCSI Commands,” beginning on page 3-7, for an overview of SCSI commands.
Refer to the SCSI specification for detailed information about SCSI commands.

SCSIMsgIn 3

You can use the SCSIMsgIn function to receive a message from a SCSI device.

FUNCTION SCSIMsgIn (VAR message: Integer): OSErr;

message The low-order byte contains the message from the target device.

DESCRIPTION

The SCSIMsgIn function receives a SCSI message from the previously selected target
device. The message is returned in the low-order byte of the message parameter. See the
SCSI specification for information about the types of messages that can be sent from a
target to an initiator.

The SCSIMsgIn function leaves the attention bus signal undisturbed if it is already
asserted.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIMsgIn are

RESULT CODES

SEE ALSO

See “SCSI Messages,” beginning on page 3-7, for an overview of SCSI messages. Refer to
the SCSI specification for detailed information about SCSI messages.

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus

Trap macro Selector

_SCSIDispatch $000C

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus
SCSI Manager Reference 3-35

C H A P T E R 3

SCSI Manager
SCSIMsgOut 3

You can use the SCSIMsgOut function to send a message to a SCSI device.

FUNCTION SCSIMsgOut (message: Integer): OSErr;

message The low-order byte contains the message to be sent to the target device.

DESCRIPTION

The SCSIMsgOut function sends a SCSI message to the previously selected target
device. The message is contained in the low-order byte of the message parameter. See
the SCSI specification for information about the types of messages that can be sent from
an initiator to a target.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIMsgOut are

RESULT CODES

SEE ALSO

See “SCSI Messages,” beginning on page 3-7, for an overview of SCSI messages. Refer to
the SCSI specification for detailed information about SCSI messages.

SCSIRead 3

You can use the SCSIRead function to read data from a SCSI device using a polled transfer.

FUNCTION SCSIRead (tibPtr: Ptr): OSErr;

tibPtr A pointer to an array of TIB instructions.

DESCRIPTION

The SCSIRead function reads data from the previously selected target device. The data
transfer instructions are specified by the TIB array pointed to by the tibPtr parameter.

Trap macro Selector

_SCSIDispatch $000D

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus
3-36 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIRead are

RESULT CODES

SEE ALSO

See “Using CDB and TIB Structures,” beginning on page 3-17, for information about
using TIB instructions. See “SCSI Manager TIB Instructions,” beginning on page 3-27, for
details of the TIB instruction set.

SCSIRBlind 3

You can use the SCSIRBlind function to read data from a SCSI device using a blind
transfer.

FUNCTION SCSIRBlind (tibPtr: Ptr): OSErr;

tibPtr A pointer to an array of TIB instructions.

DESCRIPTION

The SCSIRBlind function is identical to the SCSIRead function but does not poll the
SCSI controller before transferring each byte of data. The SCSI controller is polled only
for the first byte transferred by each scInc, scNoInc, or scComp TIB instruction.

SPECIAL CONSIDERATIONS

You should use this function only if the device you are reading from is capable of
transferring data fast enough to avoid timeout errors from the SCSI controller.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIRBlind are

Trap macro Selector

_SCSIDispatch $0005

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scBadParmsErr 4 Unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
scCompareErr 6 Comparison error from scComp instruction

Trap macro Selector

_SCSIDispatch $0008
SCSI Manager Reference 3-37

C H A P T E R 3

SCSI Manager
RESULT CODES

SEE ALSO

See the description of the SCSIRead function on page 3-36 for information about
performing a polled transfer. See “Choosing Polled or Blind Transfers,” beginning on
page 3-22, for additional information.

SCSIWrite 3

You can use the SCSIWrite function to write to a SCSI device using a polled transfer.

FUNCTION SCSIWrite (tibPtr: Ptr): OSErr;

tibPtr A pointer to an array of TIB instructions.

DESCRIPTION

The SCSIWrite function transfers data to the previously selected target device. The
data transfer instructions are specified by the TIB array pointed to by the tibPtr
parameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIWrite are

RESULT CODES

SEE ALSO

See “Using CDB and TIB Structures,” beginning on page 3-17, for information about
using TIB instructions. See “SCSI Manager TIB Instructions,” beginning on page 3-27, for
details of the TIB instruction set.

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scBadParmsErr 4 Unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
scCompareErr 6 Comparison error from scComp instruction
scBusTOErr 9 Bus timeout during blind transfer

Trap macro Selector

_SCSIDispatch $0006

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scBadParmsErr 4 Unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
3-38 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
SCSIWBlind 3

You can use the SCSIWBlind function to write to a SCSI device using a blind transfer.

FUNCTION SCSIWBlind (tibPtr: Ptr): OSErr;

tibPtr A pointer to an array of TIB instructions.

DESCRIPTION

The SCSIWBlind function is identical to the SCSIWrite function but does not poll the
SCSI controller before transferring each byte of data. The SCSI controller is polled only
for the first byte transferred by each scInc, scNoInc, or scComp TIB instruction.

SPECIAL CONSIDERATIONS

You should use this function only if the device you are writing to is capable of accepting
data fast enough to avoid timeout errors from the SCSI controller.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIWBlind are

RESULT CODES

SEE ALSO

See the description of the SCSIWrite function on page 3-38 for information about
performing a polled transfer. See “Choosing Polled or Blind Transfers,” beginning on
page 3-22, for additional information.

Trap macro Selector

_SCSIDispatch $0009

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scBadParmsErr 4 Unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
scBusTOErr 9 Bus timeout during blind transfer
SCSI Manager Reference 3-39

C H A P T E R 3

SCSI Manager
SCSIComplete 3

You use the SCSIComplete function to complete a SCSI transaction.

FUNCTION SCSIComplete(VAR stat: Integer; VAR message: Integer;

 wait: LongInt): OSErr;

stat The low-order byte contains the status byte from the target device.

message The low-order byte contains the message byte from the target device.

wait The number of ticks to wait for the command to complete.

DESCRIPTION

The SCSIComplete function performs the tasks necessary to properly complete the
current SCSI transaction and leave the bus in the bus free phase. This function must be
called at the end of each SCSI transaction, even if the transaction does not complete
successfully.

The SCSIComplete function waits for the transaction to complete, and then returns one
byte of status information and one byte of message information. If the transaction fails to
complete within the number of ticks specified by the wait parameter, the scCommErr
result is returned.

The SCSIComplete function uses a number of strategies to correct anomalous
conditions on the SCSI bus and restore the bus into a known state. These include
accepting arbitrary amounts of data sent by the target (and throwing this data away),
and sending arbitrary data (bytes with the value of $EE) as requested by the target. The
function returns the scComplPhaseErr result if either of these steps were necessary.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIComplete are

RESULT CODES

SEE ALSO

See “Using the SCSIComplete Function,” beginning on page 3-21, for more information
about this function.

Trap macro Selector

_SCSIDispatch $0004

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus
scComplPhaseErr 10 SCSI bus was not in status phase on entry to

SCSIComplete
3-40 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
SCSIStat 3

You can use the SCSIStat function to obtain status information from the SCSI Manager.

FUNCTION SCSIStat: Integer;

DESCRIPTION

The SCSIStat function returns a 16-bit value containing status information. This
information includes the state of all SCSI bus control signals as well as the status of the
NCR 5380 SCSI controller chip (or equivalent hardware). In Macintosh models that use
other SCSI controller hardware, the status information conforms to the 5380 format, but
may not represent the actual state of the hardware.

IMPORTANT

Because hardware differences make it difficult to accurately interpret
the status information, use of this function is not recommended. ▲

Bits 0 through 9 represent the state of the SCSI bus signals, and bits 10 through 15
report status information from the SCSI controller hardware. The status bits have these
meanings:

Note
The SCSI bus control signals are active low; therefore, the status bits
represent the complement of the bus signals. ◆

Bit Name Meaning

0 DBP Data parity signal

1 /SEL Select signal

2 /I/O I/O signal

3 /C/D Command/Data signal

4 /MSG Message signal

5 /REQ Request signal

6 /BSY Busy signal

7 /RST Reset signal

8 /ACK Acknowledge signal

9 /ATN Attention signal

10 BSY ERR Busy error

11 PHS MAT Phase match

12 INT REQ Interrupt request

13 PTY ERR Parity error

14 DMA REQ Direct memory access request

15 END DMA Direct memory access complete
SCSI Manager Reference 3-41

C H A P T E R 3

SCSI Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIStat are

RESULT CODES

SEE ALSO

See “SCSI Bus Signals,” beginning on page 3-4, for an overview of SCSI bus signals.
Refer to the SCSI specification for detailed information about SCSI bus signals. Refer to
the NCR 5380 SCSI controller specification for information about that device.

Trap macro Selector

_SCSIDispatch $000A

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus
3-42 SCSI Manager Reference

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
Summary of the SCSI Manager 3

Pascal Summary 3

Constants 3

CONST

scInc = 1; {transfer data, increment buffer pointer}

scNoInc = 2; {transfer data, don’t increment pointer}

scAdd = 3; {add long to address}

scMove = 4; {move long to address}

scLoop = 5; {decrement counter and loop if > 0}

scNop = 6; {no operation}

scStop = 7; {stop TIB execution}

scComp = 8; {compare SCSI data with memory}

{signature values}

sbSIGWord = $4552; {driver descriptor map signature}

pMapSIG = $504D; {partition map signature}

Data Types 3

TYPE SCSIInstr =

RECORD

scOpcode: Integer; {operation code}

scParam1: LongInt; {first parameter}

scParam2: LongInt; {second parameter}

END;

Block0 =

PACKED RECORD

sbSig: Integer; {device signature}

sbBlkSize: Integer; {block size of the device}

sbBlkCount: LongInt; {number of blocks on the device}

sbDevType: Integer; {reserved}

sbDevId: Integer; {reserved}

sbData: LongInt; {reserved}

sbDrvrCount: Integer; {number of driver descriptor entries}

ddBlock: LongInt; {first driver’s starting block}

ddSize: Integer; {size of the driver, in 512-byte blocks}
Summary of the SCSI Manager 3-43

C H A P T E R 3

SCSI Manager
ddType: Integer; {operating system type (MacOS = 1)}

ddPad: ARRAY [0..242] OF Integer; {additional drivers, if any}

END;

Partition =

RECORD

pmSig: Integer; {partition signature}

pmSigPad: Integer; {reserved}

pmMapBlkCnt: LongInt; {number of blocks in partition map}

pmPyPartStart: LongInt; {first physical block of partition}

pmPartBlkCnt: LongInt; {number of blocks in partition}

pmPartName: PACKED ARRAY [0..31] OF Char; {partition name}

pmParType: PACKED ARRAY [0..31] OF Char; {partition type}

pmLgDataStart: LongInt; {first logical block of data area}

pmDataCnt: LongInt; {number of blocks in data area}

pmPartStatus: LongInt; {partition status information}

pmLgBootStart: LongInt; {first logical block of boot code}

pmBootSize: LongInt; {size of boot code, in bytes}

pmBootAddr: LongInt; {boot code load address}

pmBootAddr2: LongInt; {reserved}

pmBootEntry: LongInt; {boot code entry point}

pmBootEntry2: LongInt; {reserved}

pmBootCksum: LongInt; {boot code checksum}

pmProcessor: PACKED ARRAY [0..15] OF Char; {processor type}

pmPad: ARRAY [0..187] OF Integer; {reserved}

END;

Routines 3

FUNCTION SCSIReset : OSErr;

FUNCTION SCSIGet : OSErr;

FUNCTION SCSISelect (targetID: Integer): OSErr;

FUNCTION SCSISelAtn (targetID: Integer): OSErr;

FUNCTION SCSICmd (buffer: Ptr; count: Integer): OSErr;

FUNCTION SCSIMsgIn (VAR message: Integer): OSErr;

FUNCTION SCSIMsgOut (message: Integer): OSErr;

FUNCTION SCSIRead (tibPtr: Ptr): OSErr;

FUNCTION SCSIRBlind (tibPtr: Ptr): OSErr;

FUNCTION SCSIWrite (tibPtr: Ptr): OSErr;

FUNCTION SCSIWBlind (tibPtr: Ptr): OSErr;

FUNCTION SCSIComplete (VAR stat: Integer; VAR message: Integer;
wait: LongInt): OSErr;
3-44 Summary of the SCSI Manager

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
FUNCTION SCSIStat : Integer;

C Summary 3

Constants 3

enum {

/* TIB instruction opcodes */

scInc = 1, /* transfer data, increment buffer pointer */

scNoInc = 2, /* transfer data, don’t increment pointer */

scAdd = 3, /* add long to address */

scMove = 4, /* move long to address */

scLoop = 5, /* decrement counter and loop if > 0 */

scNop = 6, /* no operation */

scStop = 7, /* stop TIB execution */

scComp = 8, /* compare SCSI data with memory */

/* signature values */

sbSIGWord = 0x4552, /* driver descriptor map signature */

pMapSIG = 0x504D /* partition map signature */

};

Data Types 3

struct SCSIInstr {

unsigned short scOpcode; /* operation code */

unsigned long scParam1; /* first parameter */

unsigned long scParam2; /* second parameter */

};

typedef struct SCSIInstr SCSIInstr;

struct Block0 {

unsigned short sbSig; /* device signature */

unsigned short sbBlkSize; /* block size of the device*/

unsigned long sbBlkCount; /* number of blocks on the device*/

unsigned short sbDevType; /* reserved */

unsigned short sbDevId; /* reserved */

unsigned long sbData; /* reserved */

unsigned short sbDrvrCount; /* number of driver descriptor entries */

unsigned long ddBlock; /* first driver’s starting block */

unsigned short ddSize; /* driver’s size, in 512-byte blocks */
Summary of the SCSI Manager 3-45

C H A P T E R 3

SCSI Manager
unsigned short ddType; /* operating system type (MacOS = 1) */

unsigned short ddPad[243]; /* additional drivers, if any */

};

typedef struct Block0 Block0;

Partition {

unsigned short pmSig; /* partition signature */

unsigned short pmSigPad; /* reserved */

unsigned long pmMapBlkCnt; /* number of blocks in partition map */

unsigned long pmPyPartStart; /* first physical block of partition */

unsigned long pmPartBlkCnt; /* number of blocks in partition */

unsigned char pmPartName[32];/* partition name */

unsigned char pmParType[32]; /* partition type */

unsigned long pmLgDataStart; /* first logical block of data area */

unsigned long pmDataCnt; /* number of blocks in data area */

unsigned long pmPartStatus; /* partition status information */

unsigned long pmLgBootStart; /* first logical block of boot code */

unsigned long pmBootSize; /* size of boot code, in bytes */

unsigned long pmBootAddr; /* boot code load address */

unsigned long pmBootAddr2; /* reserved */

unsigned long pmBootEntry; /* boot code entry point */

unsigned long pmBootEntry2; /* reserved */

unsigned long pmBootCksum; /* boot code checksum */

unsigned char pmProcessor[16]; /* processor type */

unsigned short pmPad[188]; /* reserved */

};

typedef struct Partition Partition;

Functions 3

pascal OSErr SCSIReset (void);

pascal OSErr SCSIGet (void);

pascal OSErr SCSISelect (short targetID);

pascal OSErr SCSISelAtn (short targetID);

pascal OSErr SCSICmd (Ptr buffer, short count);

pascal OSErr SCSIMsgIn (short *message);

pascal OSErr SCSIMsgOut (short message);

pascal OSErr SCSIRead (Ptr tibPtr);

pascal OSErr SCSIRBlind (Ptr tibPtr);

pascal OSErr SCSIWrite (Ptr tibPtr);

pascal OSErr SCSIWBlind (Ptr tibPtr);
3-46 Summary of the SCSI Manager

C H A P T E R 3

SCSI Manager

3
S

C
S

I M
anager
pascal OSErr SCSIComplete (short *stat, short *message,
unsigned long wait);

pascal short SCSIStat (void);

Assembly-Language Summary 3

Data Structures 3

Transfer Instruction Block

Driver Descriptor Record

Partition Map Entry Record

0 scOpcode word operation code
2 scParam1 long first parameter
6 scParam2 long second parameter

0 sbSig word device signature
2 sbBlkSize word block size of the device
4 sbBlkCount long number of blocks on the device
8 sbDevType word reserved

10 sbDevId word reserved
12 sbData long reserved
16 sbDrvrCount word number of driver descriptor entries
18 ddBlock long first driver’s starting block
22 ddSize word driver’s size, in 512-byte blocks
24 ddType word operating system type (MacOS = 1)
26 ddPad 486 bytes additional drivers, if any

0 pmSig word partition signature
2 pmSigPad word reserved
4 pmMapBlkCnt long number of blocks in partition map
8 pmPyPartStart long first physical block of partition

12 pmPartBlkCnt long number of blocks in partition
16 pmPartName 32 bytes partition name
48 PmParType 32 bytes partition type
80 pmLgDataStart long first logical block of data area
84 pmDataCnt long number of blocks in data area
88 pmPartStatus long partition status information
92 pmLgBootStart long first logical block of boot code
96 pmBootSize long size of boot code, in bytes

100 pmBootAddr long boot code load address
104 pmBootAddr2 long reserved
108 pmBootEntry long boot code entry point
112 pmBootEntry2 long reserved
Summary of the SCSI Manager 3-47

C H A P T E R 3

SCSI Manager
Trap Macros 3

Trap Macros Requiring Routine Selectors

_SCSIDispatch

Result Codes 3

116 pmBootCksum long boot code checksum
120 pmProcessor 16 bytes processor type
136 pmPad 376 bytes reserved

Selector Routine

$00 SCSIReset

$01 SCSIGet

$02 SCSISelect

$03 SCSICmd

$04 SCSIComplete

$05 SCSIRead

$06 SCSIWrite

$08 SCSIRBlind

$09 SCSIWBlind

$0A SCSIStat

$0B SCSISelAtn

$0C SCSIMsgIn

$0D SCSIMsgOut

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scArbNBErr 3 Bus busy, arbitration timeout
scBadParmsErr 4 Bad parameter or unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
scCompareErr 6 Comparison error from scComp instruction
scMgrBusyErr 7 SCSI Manager busy
scSequenceErr 8 Attempted operation is out of sequence
scBusTOErr 9 Bus timeout during blind transfer
scComplPhaseErr 10 SCSI bus was not in status phase on entry to SCSIComplete
3-48 Summary of the SCSI Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	SCSI Manager
	Introduction to SCSI Concepts
	SCSI Bus Signals
	SCSI Bus Phases
	SCSI Commands
	SCSI Messages
	SCSI Handshaking

	About the SCSI Manager
	Conformance With the SCSI Specification
	Overview of SCSI Manager Data Structures
	The Structure of Block Devices
	The Driver Descriptor Record
	The Partition Map

	Using the SCSI Manager
	Reading Data From a SCSI Device
	Using CDB and TIB Structures
	Using the SCSIComplete Function
	Choosing Polled or Blind Transfers

	SCSI Manager Reference
	Data Structures
	Driver Descriptor Record
	Partition Map Entry Record

	SCSI Manager TIB Instructions
	SCSI Manager Routines

	Summary of the SCSI Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Functions

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

