

C H A P T E R 4

4

S
C

S
I M

anager 4.3

SCSI Manager 4.3 4

SCSI Manager 4.3 is an enhanced version of the SCSI Manager that provides new
features as well as compatibility with the original version. SCSI Manager 4.3 is contained
in the ROM of high-performance computers such as the Macintosh Quadra 840AV and
the Power Macintosh 8100/80. Beginning with system software version 7.5, SCSI
Manager 4.3 is also available as a system extension that can be installed in any
Macintosh computer that uses the NCR 53C96 SCSI controller chip.

In addition to the capabilities of the original SCSI Manager, SCSI Manager 4.3 provides

■ support for asynchronous SCSI I/O

■ support for optional SCSI features such as disconnect/reconnect

■ a hardware-independent programming interface that minimizes the SCSI-specific
tasks a device driver must perform

You should read this chapter if you are writing a SCSI device driver or other software for
Macintosh computers that use SCSI Manager 4.3. To make best use of this chapter, you
should understand the Device Manager and the implementation of device drivers in
Macintosh computers. If you are designing a SCSI peripheral device for the Macintosh,
you should read Designing Cards and Drivers for the Macintosh Family, third edition, and
Guide to the Macintosh Family Hardware, second edition.

This chapter assumes you are familiar with the following SCSI specifications established
by the American National Standards Institute (ANSI):

■ X3.131-1986, Small Computer System Interface

■ X3.131-1994, Small Computer System Interface–2

■ X3.232 (draft), SCSI-2 Common Access Method

If you are writing a device driver for a block-structured storage device such as hard disk,
you should also read the chapter “SCSI Manager” in this book for information about the
structure of block devices used by the Macintosh Operating System. Because many
Macintosh models continue to use the original SCSI Manager, you may want to design
your software to operate with both SCSI Manager 4.3 and the original SCSI Manager.

About SCSI Manager 4.3 4

The SCSI Manager 4.3 application program interface (API) is modeled on the Common
Access Method (CAM) software interface being developed by ANSI committee X3T9.
The SCSI Manager 4.3 interface, however, includes Apple-specific differences required
for compatibility with the original SCSI Manager and the Macintosh Operating System.

The CAM specification defines the operation of three functional units—the transport
(XPT), the SCSI interface module (SIM), and the host bus adapter (HBA). The XPT
is the entry point to SCSI Manager 4.3 and is responsible for passing requests to the
appropriate SIM. Each SIM is responsible for managing the HBA for a particular bus.

In addition to the XPT, SCSI Manager 4.3 includes a SIM for managing the NCR
53C96 SCSI controller used in high-performance Macintosh computers. Other SIM
About SCSI Manager 4.3 4-3

C H A P T E R 4

SCSI Manager 4.3

modules and HBA hardware can be added at any time by Apple or third-party
developers. For example, a NuBus or PDS expansion card can provide an additional
SCSI bus, which device drivers can access through SCSI Manager 4.3 in exactly the
same way as the internal bus. Figure 4-1 shows the relationship between device
drivers, SCSI Manager 4.3, and the SCSI controller hardware.

Figure 4-1 The SCSI Manager 4.3 architecture

The features and capabilities of SCSI Manager 4.3 include

■ SCSI-2 compliance. All mandatory SCSI-2 messages and protocol actions are
supported as defined for an initiator. Optional SCSI-2 hardware features, such as
fast and wide transfers, are anticipated by the SCSI Manager 4.3 architecture and
supported by the interface.

■ Concurrent asynchronous I/O. SCSI Manager 4.3 handles both synchronous and
asynchronous I/O requests. In addition, it allows multiple device drivers to issue
multiple requests and attempts to overlap the operations as much as possible.

■ Hardware-independent programming interface. A new hardware-independent
interface allows device drivers to work with any SCSI Manager 4.3-compatible host
bus adapter (HBA), including those from third-party developers.

Transport (XPT)

Hardware

SCSI Manager 4.3

SCSI device

drivers

SCSI

interface

modules

Host bus

adaptors

SIM SIM

53C96 HBA Other HBA

Standard

SCSI driver

(Original SCSI

Manager interface)

Asynchronous

SCSI driver

(SCSI Manager 4.3

 interface)
4-4 About SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4

S
C

S
I M

anager 4.3

■ Direct memory access (DMA). SCSI Manager 4.3 automatically takes advantage
of the DMA capabilities available in high-performance Macintosh models. Direct
memory access allows the computer to perform other functions while data bytes are
transferred to or from the SCSI bus.

■ Support for multiple buses. SCSI Manager 4.3 supports any number of SCSI buses,
each with a full complement of devices. For example, on Macintosh computers with
dual SCSI buses (such as the Power Macintosh 8100/80), up to 14 SCSI devices can be
attached. In addition, developers can design NuBus or PDS expansion cards that offer
enhanced SCSI bus capabilities.

■ Support for multiple logical units on each target. SCSI Manager 4.3 allows access to
all logical units on a target device. Logical units are treated as separate entities, and
I/O requests are queued according to logical unit number (LUN).

■ Disconnect/reconnect. This capability helps maximize SCSI bus utilization by
allowing a device to disconnect and release control of the SCSI bus while it processes
a command, then reconnect when it is ready to complete the transaction. This allows a
device driver to submit requests to multiple targets so that those requests are executed
in parallel. For example, the driver for a disk array can issue a request to one disk,
which disconnects, then issue another request to a different disk. The two disks can
perform their seek operations simultaneously, reducing the effective seek time.

■ Parity detection. SCSI Manager 4.3 detects and handles parity errors in data received
from a target. For compatibility reasons, this feature can be disabled on a per-
transaction basis. (All Macintosh computers generate parity for write operations, but
the original SCSI Manager does not detect parity errors in incoming data.)

■ Autosense. SCSI Manager 4.3 automatically sends a REQUEST SENSE command in
response to a CHECK CONDITION status and retrieves the sense data. This feature can
be disabled.

■ Compatibility. SCSI Manager 4.3 supports all original SCSI Manager functions and
TIB instructions, except for scComp (compare).

Transport 4
The SCSI Manager 4.3 transport (XPT) provides the software interface to applications
and device drivers, and is responsible for

■ providing the means to register host bus adapters, their characteristics, and their
respective SCSI interface modules

■ routing requests to the proper SCSI interface module

■ notifying the caller when a request is complete

■ providing the high-level facilities for emulating the original SCSI Manager interface.
This consists of maintaining a translation table of SCSI ID numbers and their
corresponding host bus adapters, and directing original SCSI Manager requests
accordingly

■ isolating SCSI interface modules from certain operating system requirements, such as
those imposed by the Virtual Memory Manager
About SCSI Manager 4.3 4-5

C H A P T E R 4

SCSI Manager 4.3

SCSI Interface Modules 4
A SCSI interface module (SIM) provides the software interface between the transport
(XPT) and a host bus adapter (HBA) in SCSI Manager 4.3. The SIM processes and executes
SCSI requests directed to it by the XPT and is responsible for handling all aspects of
a SCSI transaction, including

■ maintaining the request queue, including freezing and unfreezing for error handling
as necessary, and queuing multiple operations for all logical units on all target devices

■ managing the selection, disconnection, reconnection, and data pointers of the SCSI
protocol

■ assigning tags for tag queuing, if supported

■ managing the HBA hardware

■ identifying abnormal conditions on the SCSI bus and performing error recovery

■ providing a time-out mechanism for tracking SCSI command execution

■ emulating original SCSI Manager functions, if supported

System Performance 4
In terms of maximum data transfer (bytes-per-second) over the internal SCSI bus,
SCSI Manager 4.3 performs similarly to the original SCSI Manager. This aspect of
performance is limited by the capability of the SCSI controller hardware and can be
improved by adding a faster HBA.

In terms of overall system performance, the asynchronous capability of SCSI Manager
4.3 can provide significant benefits by allowing application code to regain control of the
system while a SCSI transaction is in progress. This concurrency is a key benefit of
asynchronous operation. In addition, support for disconnect/reconnect allows
applications to initiate multiple I/O requests on multiple targets simultaneously,
allowing further increases in throughput.

Multiple bus systems offer the added benefit of concurrency between buses. If DMA is
used for both buses, their data transfer periods can be overlapped as well.

Compatibility 4
All the functions provided by the original SCSI Manager are emulated by the SCSI
Manager 4.3 XPT and SIM for the internal SCSI bus. This level of compatibility is
optional for third-party SIM/HBA developers. When a SIM registers its HBA with the
SCSI Manager 4.3 XPT, the SIM specifies whether or not it is able to emulate the original
SCSI Manager functions by setting the oldCallCapable field of the SIM initialization
record.

When an application or device driver calls the original SCSI Manager function SCSIGet,
the XPT sets a flag preventing any additional SCSIGet function calls but performs
no other action. Upon receipt of a SCSISelect function call, the XPT issues a
SCSIOldCall request to the appropriate SIM, which places the request in its queue.
4-6 About SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4

S
C

S
I M

anager 4.3

Once the SCSIOldCall request begins execution, the SIM emulates subsequent original
SCSI Manager function calls passed to it by the XPT. During this emulation, no new
requests are processed until the entire transaction is completed and the SCSIComplete
function returns. Any SCSIGet or SCSISelect requests received after the start of a
SCSIOldCall request are rejected and return the scMgrBusyErr code.

While the original SCSI Manager emulation is in progress, asynchronous requests made
by other applications or device drivers (using SCSI Manager 4.3 functions) are queued
but do not execute until the emulation is complete. Requests to other SIMs are not
affected and continue to execute normally.

The SCSIReset function resets only those buses that are capable of handling original
SCSI Manager functions. The SCSIStat function returns results as accurate as possible
for the SIM/HBA handling the request.

The scComp (compare) TIB instruction is not supported by SCSI Manager 4.3 because
DMA transfers do not permit this type of compare operation. This should pose few
compatibility problems because this instruction is rarely used. You can, of course,
write your own code to compare data on a SCSI device with data in memory.

▲ W A R N I N G

Applications or device drivers that bypass the SCSI Manager for any
part of a transaction are not supported and will interfere with the
operation of SCSI Manager 4.3. ▲

Using SCSI Manager 4.3 4

A fundamental difference between SCSI Manager 4.3 and the original SCSI Manager is
that a single function, SCSIAction, handles an entire SCSI transaction. You do not need
to explicitly arbitrate for the bus, select a device, or send a SCSI command. In most cases,
your program does not need to be aware of SCSI bus phases.

The SCSIAction function is the entry point for all SCSI Manager 4.3 client functions.
These functions provide the services that clients (applications and device drivers) need
to communicate with SCSI devices. The only parameter to SCSIAction is a pointer to a
SCSI Manager parameter block data structure. You use the scsiFunctionCode field of
the parameter block to specify which function to perform. Most functions use specialized
versions of the parameter block to carry the input parameters and return the results.
For example, the SCSIBusInquiry function requires a SCSI bus inquiry parameter
block (SCSIBusInquiryPB).

Perhaps the most important SCSIAction function is SCSIExecIO, which you use
to request a SCSI I/O transaction. This function uses the SCSI I/O parameter block
(SCSIExecIOPB), which specifies the destination of the request (the bus, target, and
logical unit), the command descriptor block (CDB), the data buffers that either contain or
receive the data, and a variety of other fields and flags required to fulfill the transaction.

You can call the SCSIExecIO function either synchronously or asynchronously. If the
scsiCompletion field of the parameter block contains a pointer to a completion
Using SCSI Manager 4.3 4-7

C H A P T E R 4

SCSI Manager 4.3

routine, the SCSI Manager executes the function asynchronously. If you set the
scsiCompletion field to nil, the request is executed synchronously.

Because of interrupt handling considerations, device drivers must issue synchronous
SCSIExecIO requests as such, rather than issuing them asynchronously and creating
a synchronous wait loop inside the device driver. See “Writing a SCSI Device Driver,”
beginning on page 4-11, for more information about the proper handling of synchronous
and asynchronous requests by device drivers. Applications are not subject to the same
restrictions as device drivers and may create synchronous wait loops if desired.

Different SIM implementations may require additional fields beyond the standard fields
of the SCSI I/O parameter block. Some of these may be input or output fields providing
access to special capabilities of a SIM; others may be private fields required during the
processing of the request. You can use the SCSIBusInquiry function to determine the
size of the SCSI I/O parameter block for a particular SIM, as well as the largest
parameter block required by any registered SIM.

You can also use the SCSIBusInquiry function to get information about various
hardware and software characteristics of a SIM and its HBA. You can use this
information to form a request that takes advantage of all the capabilities of a SIM.

Parameter blocks are queued separately for each logical unit (LUN) on a target device.
When an error occurs during a SCSIExecIO request, the SIM freezes the queue for the
LUN on which the error occurred, to allow you to perform any necessary error recovery.
After correcting the error condition, you must use the SCSIReleaseQ function to enable
normal handling of I/O requests to that LUN. See “Error Recovery Techniques” on
page 4-10 for more information.

Locating SCSI Devices 4
SCSI Manager 4.3 supports multiple buses, allowing a client to specify a device based
on its bus number as well as its target ID and LUN. To emulate original SCSI Manager
functions that understand only a target ID, the technique first used in the Macintosh
Quadra 900 has been expanded to include not only built-in SCSI buses but any
compatible HBA installed in a NuBus or PDS expansion slot.

When multiple buses are registered with the XPT, emulated original SCSI Manager
transactions are directed to the first bus that responds to a selection for the requested
target ID. The target ID specified in a SCSISelect function is called the virtual ID
because it designates a device on the single virtual bus (which encompasses all original
SCSI Manager-compatible buses).

When you make a SCSISelect request, the XPT first attempts to select a device on the
built-in internal bus. If there is no response on that bus, the XPT tries the built-in external
bus (on models that include two SCSI buses), or the first registered add-on bus.
Additional buses are searched in the order they were registered.

When the XPT finds a device that responds to the selection, all subsequent SCSISelect
requests are directed to the bus on which that selection occurred. Until a successful
selection occurs on one of the buses, the virtual ID is not assigned to any physical bus.
4-8 Using SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
Once established, the mapping of virtual ID to physical bus is not changed until restart.
You can use the SCSIGetVirtualIDInfo function to determine which physical bus a
device is attached to.

It is possible for devices to be available through the original SCSI Manager interface but
not through the SCSI Manager 4.3 interface. For example, a third-party SIM may install
its own XPT if SCSI Manager 4.3 is not available. This creates a functional SCSI Manager
4.3 interface that does not include the built-in SCSI bus. Another possibility is the
presence of a third-party SCSI adapter that does not comply with SCSI Manager 4.3 but
patches the original SCSI Manager interface to create its own virtual bus. To locate all
SCSI devices in these environments you must use the SCSI Manager 4.3 functions to scan
for devices on all SIMs and then use the original SCSI Manager functions to scan for
devices that are not accessible through the SCSI Manager 4.3 interface.

Describing Data Buffers 4
SCSI Manager 4.3 recognizes three data types for describing the source and destination
memory buffers for a SCSI data transfer. The most familiar is a simple buffer, consisting
of a single contiguous block of memory. An extension of this is the scatter/gather list,
which consists of one or more elements, each of which describes the location and size of
one buffer. Scatter/gather lists allow you to group multiple buffers of any size into a
single virtual buffer for an I/O transaction.

In addition to these, SCSI Manager 4.3 supports the transfer instruction block (TIB) data
type used by the original SCSI Manager interface. This structure is used only for
emulating original SCSI Manager functions. During the execution of a SCSIRead,
SCSIWrite, SCSIRBlind, or SCSIWBlind function, TIB instructions are interpreted by
the SCSI Manager to determine the source and destination of the data. See the chapter
“SCSI Manager” in this book for more information about TIB instructions.

Handshaking Instructions 4
In the original SCSI Manager interface, you use TIB instructions to show the SCSI
Manager where long delays (greater than 16 microseconds) may occur in a blind transfer.
Without these instructions, the SCSI Manager can lose data or crash the system if delays
occur at unexpected times in a data transfer.

You use the scsiHandshake field of the SCSI I/O parameter block to specify
handshaking instructions to SCSI Manager 4.3. This field contains a series of word
values, each of which specifies the number of bytes between potential delays in the
SCSI data transfer. You terminate the instructions with a value of 0.

For example, a “1, 511” TIB is a common TIB structure used with disk drives that have a
512-byte block size and sometimes experience a delay between the first and second bytes
in the block, as well as a delay between the last byte of a block and the first byte of the
following block. This TIB structure translates to a scsiHandshake field of “1, 511, 0”,
which indicates a request to synchronize and transfer 1 byte, synchronize and transfer
511 bytes, synchronize and transfer 1 byte, and so on.
Using SCSI Manager 4.3 4-9

C H A P T E R 4

SCSI Manager 4.3
Like the original SCSI Manager, SCSI Manager 4.3 always synchronizes on the first
byte of a data phase. In addition, the handshaking cycle is reset whenever a device
disconnects. That is, the cycle starts over from the beginning when a device reconnects.
The scsiHandshake field should also indicate where a device may disconnect.

The handshaking cycle continues across scatter/gather list elements. For example, if
the handshake array contains “2048, 0” and the scatter/gather list specifies a transfer of
512 bytes and then 8192 bytes, a handshake synchronization will occur 1536 bytes into
the second scatter/gather element.

You should use polled transfers for devices that may experience unpredictable delays
during the data phase or can disconnect at unpredictable times.

Error Recovery Techniques 4
SCSI Manager 4.3 provides a feature called queue freezing that you can use to recover
from I/O errors. When a SCSIExecIO request returns an error, the SIM freezes the
I/O queue for the LUN that caused the error. You can then issue additional requests with
the scsiSIMQHead flag set so that they will be inserted in front of any requests that
were already in the queue. You can use this method to perform retries, block remapping,
or other error recovery techniques. After inserting your error handling requests, you
call the SCSIReleaseQ function to allow the request at the head of the queue to
be dispatched. If necessary, multiple requests can be single-stepped by setting the
scsiSIMQFreeze flag as well as the scsiSIMQHead flag on each of the requests
and following each with a SCSIReleaseQ call.

Note
You can disable queue freezing for a single transaction by setting the
scsiSIMQNoFreeze flag. ◆

Optional Features 4
The following optional features may not be supported by all SIMs. You should use the
SCSIBusInquiry function to determine which features are supported by a particular
bus.

■ synchronous data transfer

■ target command queuing

■ HBA engine support

■ target mode

■ asynchronous event notification
4-10 Using SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
Writing a SCSI Device Driver 4

This section provides additional information you need to write a device driver that is
compatible with both SCSI Manager 4.3 and the original SCSI Manager.

Loading and Initializing a Driver 4
During system startup of Macintosh models that do not include SCSI Manager 4.3 in
ROM, the Start Manager scans the SCSI bus from SCSI ID 6 to SCSI ID 0, looking for
devices that have both an Apple_HFS and Apple_Driver partition. For each device
found, the driver is loaded and executed, and installs itself into the unit table. The driver
then places an element in the drive queue for any HFS partitions that are on the drive.

When SCSI Manager 4.3 is present in ROM, the Start Manager loads all SCSI Manager 4.3
drivers from all devices on all registered buses. Drivers that support SCSI Manager 4.3 are
identified by the string Apple_Driver43 in the pmParType field of the partition map.
Traditional (Apple_Driver) drivers are then loaded for any devices on the virtual bus
that do not contain a SCSI Manager 4.3 driver.

If SCSI Manager 4.3 is not present in ROM, the Start Manager treats SCSI Manager 4.3
drivers exactly like traditional drivers. Because the Start Manager in earlier Macintosh
computers checks only the first 12 characters of the pmParType field before loading and
executing a driver, both SCSI Manager 4.3 drivers and traditional drivers will load on
these models. To initialize the driver, the Start Manager jumps to the first byte of the
driver’s code (using a JSR instruction), with register D5 set to the SCSI ID of the device
the driver was loaded from.

SCSI Manager 4.3 drivers contain a second entry point at an offset of 8 bytes from the
standard entry. Use of this entry point means that SCSI Manager 4.3 is present and that
register D5 contains a device identification record. No other registers are used.

There are seven unit table entries (32 through 38) reserved for SCSI drivers controlling
devices at SCSI ID 0 through SCSI ID 6 on the virtual SCSI bus. For compatibility with
existing SCSI utility software, drivers serving devices on the virtual bus should continue
to install themselves in the unit table locations reserved for traditional SCSI drivers.
Drivers for devices that are not on the virtual bus should choose a unit number outside
the range reserved for traditional SCSI drivers. See the chapter “Device Manager” in this
book for information about installing device drivers in the unit table.

To allow clients to determine whether a driver has been loaded for a particular SCSI
device, the XPT maintains a driver registration table. This table cross-references device
identification records with driver reference numbers. The device identification record is a
SCSI Manager 4.3 data structure that specifies a device by its bus, SCSI ID, and logical unit
number. The device identification record is defined by the DeviceIdent data type, which
is described on page 4-19.

A device identification record can have only one driver reference number associated with it,
but a single driver reference number may be registered to multiple devices. You can use the
SCSICreateRefNumXref, SCSILookupRefNumXref, and SCSIRemoveRefNumXref
Writing a SCSI Device Driver 4-11

C H A P T E R 4

SCSI Manager 4.3
functions to access the driver registration table. Drivers loaded through the SCSI
Manager 4.3 entry point must use the SCSICreateRefNumXref function to register
with the XPT. This is done automatically by SCSI Manager 4.3 for traditional drivers.

Selecting a Startup Device 4
After all device drivers are loaded and initialized, the Start Manager searches for the
default startup device in the drive queue. If the device is found, it is mounted and the
boot process begins. Macintosh models that do not include SCSI Manager 4.3 in ROM
identify the boot drive by a driver reference number stored in PRAM. This works well
when drivers retain the same reference number between startups, but SCSI Manager 4.3
drivers allocate unit table entries dynamically if the device they are controlling is not on
the virtual bus.

Macintosh models that include SCSI Manager 4.3 in ROM designate the startup device
using Slot Manager values in PRAM. Slot number 0 is used for devices on the built-in bus
or buses. The dCtlSlot and dCtlSlotId fields of the driver’s device control entry
must contain the slot number and sResource ID number, respectively. These are available
in the bus inquiry data from the SIM. The dCtlExtDev field should contain both the
SCSI ID and LUN of the device that the driver is controlling. The high-order 5 bits contain
the SCSI ID (up to 31 for a 32-bit wide SCSI bus) and the low-order 3 bits contain the LUN.

Transitions Between SCSI Environments 4
Because SCSI Manager 4.3 can be installed as a system extension in older Macintosh
models, your device driver may be loaded before SCSI Manager 4.3 is active. This can
also occur if a NuBus or PDS expansion card loads SCSI Manager 4.3 or an equivalent
XPT from the card’s ROM. In this case, the expansion card will load a subset of the
SCSI Manager 4.3 XPT and a SIM responsible for the card’s HBA, but it will not load
a SIM for the built-in bus. This creates a situation in which SCSI Manager 4.3 is loaded
but some buses may be accessible only through the original interface.

To determine whether to use the SCSI Manager 4.3 interface, your driver should first
check for the presence of the _SCSIAtomic trap (0xA089). If the trap exists, the driver
can pass the SCSI ID of its device to the SCSIGetVirtualIDInfo function to get the
device identification record of its device. If the scsiExists field of the parameter block
returns true, the device is available through the SCSI Manager 4.3 interface. If the
scsiExists field returns false, the device is on a bus that is not available through
SCSI Manager 4.3.

The best time for your driver to perform this check is at the first accRun tick, which
occurs after all system patches are in place. The Event Manager calls your driver at this
time if you set the dNeedTime flag in the device control entry. If your driver can access
its device through SCSI Manager 4.3, it should allocate and initialize a SCSI I/O
parameter block at this time.

Even if your driver is loaded and initialized by a ROM-based SCSI Manager 4.3, you can
use the first accRun tick to check for new features that may have been installed by a
system patch.
4-12 Writing a SCSI Device Driver

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
Handling Asynchronous Requests 4
When a client makes a read or write request to a device driver, the Device Manager
places the request in the driver’s I/O queue. When the driver is ready to accept the
request, the Device Manager passes it to the driver’s prime routine. The prime routine
should fill in a SCSI I/O parameter block with the appropriate values and call the
SCSIExecIO function. The XPT passes the parameter block to the proper SIM, which
then adds the request to its queue and possibly starts processing it before returning back
to the driver.

If the SCSIExecIO function returns noErr, the request was accepted and the contents
of the parameter block cannot be reliably viewed by the driver. At this point, virtually
nothing can be assumed about the request. It may only have been queued, or it may
have proceeded all the way to completion.

IMPORTANT

Once a parameter block is accepted by XPT, do not attempt to examine
the parameter block until the completion routine is called. ▲

If SCSIExecIO returns an error result, the request was rejected and the completion
routine will not be called. This is usually due to an input parameter error.

Completion routines can execute before the XPT returns to your driver. Because the
completion routine may initiate a new request to the driver, it is possible that by the time
control returns to the calling function, the parameter block is being used for a completely
different transaction.

Asynchronous I/O requests from a client to a device driver can occur at interrupt time.
Because you cannot allocate memory at interrupt time, you must reserve memory for
parameter blocks, scatter/gather lists, and any other structures you need when the
driver is initialized. You cannot use the stack for this purpose (as you can for
synchronous requests) because parameters on the stack are discarded when the device
driver returns from its prime routine.

Asynchronous requests may start at any time and may end at any time. There is no
implied ordering of requests with respect to when they were issued. An earlier request
may start later, or a later request may complete earlier. However, a series of requests to
the same device (bus number, target ID, and LUN) is issued to that device in the order
received (unless the scsiSIMQHead flag is set in the scsiFlags field of the SCSI I/O
parameter block, in which case the request is inserted at the head of the queue).

Handling Immediate Requests 4
If your device driver supports immediate requests, it must be reentrant. The Device
Manager neither sets nor checks the drvrActive flag in the dCtlFlags field of the
device control entry before making an immediate request. Asynchronous operation
makes it even more likely that an immediate request will happen when your driver is
busy because the immediate request may have been made from application time while
your driver was asynchronous. When this happens you need to be careful not to reuse
parameter blocks or other variables that might be busy.
Writing a SCSI Device Driver 4-13

C H A P T E R 4

SCSI Manager 4.3
Virtual Memory Compatibility 4
Because page faults can occur while interrupts are disabled, SCSI device drivers can
receive synchronous I/O requests from the Virtual Memory Manager when the processor
interrupt level is not 0. The SCSI Manager handles the resulting SCSI transaction without
the benefit of interrupts. This requires that all synchronous wait loops be performed
either in the SCSI Manager or in the Device Manager, where code is provided to poll the
SCSI interrupt sources.

When your driver receives a synchronous I/O request, it can issue the subsequent SCSI
I/O request synchronously as well, or it can issue the SCSI request asynchronously and
return to the Device Manager. This second option is generally preferred because it
simplifies driver design. The Device Manager waits for the synchronous request to
complete, allowing your driver to handle it asynchronously. The driver should jump
to IODone after it receives the SCSI completion callback. If a single driver request
translates to multiple SCSI requests, and your driver handles them asynchronously, the
driver should not call IODone until after the callbacks for all of the SCSI requests have
been received.

IMPORTANT

Because SCSI completion routines must not cause a page fault, all
code and data used by SCSI completion routines must be held in real
memory. This is automatic for device drivers loaded in the system
heap. Applications (or drivers within applications) must use the
HoldMemory function to ensure their completion routine code and
data is held. See the chapter “Virtual Memory Manager” in
Inside Macintosh: Memory for more information. ▲
4-14 Writing a SCSI Device Driver

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
Writing a SCSI Interface Module 4

This section provides additional information that HBA developers need to write a
SCSI interface module.

SIM Initialization and Operation 4
When SCSI Manager 4.3 is present in ROM, the Start Manager loads any SIM drivers it
finds in the declaration ROM of all installed expansion cards. A SIM driver may contain
the actual SIM, or it may contain code to load the SIM from some other location (such as
a device attached to the expansion card). The Start Manager searches for SIM drivers
using the Slot Manager SNextTypeSRsrc function, and loads all drivers matching
the following criteria:

After loading a SIM driver, the Start Manager calls the driver’s open routine. If the SIM
is contained in the driver, it should register itself with the XPT at this time. If the
registration is successful, the open routine should return noErr. If the open routine
returns an error result, the Start Manager removes the driver from the unit table and
releases it from memory. A SIM loader can use this technique to remove itself after
loading and registering the actual SIM. Because no other driver entry points are used,
you do not need to implement the close, prime, status, or control routines, but they
should return appropriate errors.

For Macintosh models that do not include SCSI Manager 4.3 in ROM, your SIM can either
provide its own temporary XPT or wait until SCSI Manager 4.3 is installed by the system
before registering with the XPT. If you wait for SCSI Manager 4.3 to load, devices on your
bus cannot be used as the boot device or as the paging device for virtual memory but can
be mounted after SCSI Manager 4.3 is running and your bus is registered.

If your SIM supplies its own XPT, your SIM and XPT must be prepared for the
possibility that a system patch will install a new XPT later. To provide a consistent
environment for driver clients of your SIM when the XPT is replaced, your XPT must
maintain information about any virtual ID numbers it assigns (including a driver
registration table) and correctly fill in the XPT fields of the bus inquiry record. When
the SCSI Manager4.3 XPT loads, it uses the SCSIGetVirtualIDInfo,
SCSILookupRefNumXref, and SCSIBusInquiry functions to query your XPT, then
calls the SetTrapAddress function to install itself. Next, it uses your XPT to send a
SCSIRegisterWithNewXPT command to each registered SIM. A SIM must respond
by using the SCSIReregisterBus function to export its assigned bus number, entry
points, and static data storage pointer to the new XPT. Finally, the SCSI Manager 4.3
XPT calls your XPT with a SCSIKillXPT command. Your XPT should then release
any memory it has allocated and remove or disable any patches it may have installed.

sResource type Constant Value

spCatagory CatIntBus 12

spCType TypSIM 12

spDrvrSW DrvrSwScsi43 1
Writing a SCSI Interface Module 4-15

C H A P T E R 4

SCSI Manager 4.3
Your XPT must reserve bus number 0 for the built-in SCSI bus. For Macintosh computers
with dual SCSI buses, you must reserve bus numbers 0 and 1. If the SCSI Manager 4.3
XPT is installed after your XPT, it will assign these bus numbers to the built-in buses.

After determining the presence of the XPT, a SIM should register itself using the
SCSIRegisterBus function. The SIM initialization record for this request contains the
SIM’s function entry points, required static data storage size, and the oldCallCapable
status of the SIM. The SIM initialization record, defined by the SIMInitInfo data type,
is shown on page 4-36. The XPT allocates the requested number of bytes for the SIM’s
static storage, fills in the appropriate fields of the SIM initialization record, and then calls
the SIM’s SIMInit function. If the SIMInit function returns noErr, the XPT completes
the registration process, making the SIM available to the system. If SIMInit returns an
error, the registration request fails.

Once the registration is complete, the XPT makes calls to the SIMAction entry point
whenever a SCSIAction request is received that is destined for this bus. The XPT
passes a pointer to the parameter block and a pointer to the SIM’s static storage to
the SIMAction function. The SIM should parse the parameter block for illegal or
unsupported parameters and return an error result if necessary. After queuing the
request, the SIMAction function should return to the XPT. When the request completes,
the SIM calls the XPT’s MakeCallback function with the appropriate parameter block.
The XPT then calls the client’s completion routine.

Other types of requests should be implemented to conform to the function descriptions
provided in this chapter. Functions or features not implemented by the SIM should
return appropriate errors (for example, scsiFunctionNotAvailable or
scsiProvideFail).
The SIMInteruptPoll function is called during the Device Manager’s synchronous
wait loop to give time to the SIM when interrupts are masked. The sole parameter is a
pointer to the SIM’s static data, which is passed on the stack. Because this call does not
imply the presence of an interrupt, the SIM should check for interrupts before proceeding.

The EnteringSIM and ExitingSIM functions provide compatibility with the Virtual
Memory Manager and should be called every time the SIM is entered and exited,
respectively. In other words, these two function calls should surround all SIM entry and
exit points, including interrupt handlers and callbacks to client code made through the
MakeCallback function.

Parameter blocks must appear to the client to be queued on a per-LUN basis, because
queue freezing and unfreezing are performed one LUN at a time. The actual
implementation may vary as long as this appearance is maintained.

Supporting the Original SCSI Manager 4
If your SIM indicates that it is capable of supporting original SCSI Manager functions,
the XPT adds it to the list of buses that are searched when a SCSISelect request is
received.
4-16 Writing a SCSI Interface Module

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
The XPT is responsible for converting original SCSI Manager functions into the proper
format and submitting them to the SIM. It also receives the results for each of the
functions from the SIM and returns them to the client.

When it receives a SCSIGet request, the XPT simply notes that the call was made by
setting an internal flag, then returns to the caller. In response to a SCSISelect request,
the XPT generates a SCSIOldCall request and submits it to the SIM’s SIMAction
entry point. The scsiDevice field of the parameter block contains the bus number
of the SIM, the target ID specified in the SCSISelect request, and a LUN of 0. This
parameter block should be queued like any other.

When your SIM receives a SCSIOldCall request, it should attempt to select the device
and return a result code to the XPT in the scsiOldCallResult field of the parameter
block (scsiRequestComplete if successful and scsiSelectTimeout if not).
Intermediate function results are not communicated through the scsiResult field
because this would be interpreted as completion of the entire transaction rather
than only the portion of the transaction resulting from a single original function. As
subsequent original function calls are made, the XPT fills in the appropriate fields
of the parameter block and calls the SIM’s NewOldCall entry point. Table 4-1 shows
the original function parameters and the fields that are filled in by the XPT.

To provide the highest level of compatibility with the original SCSI Manager, a SIM
should be able to perform a SCSI arbitration and select process independently of a SCSI
message-out or command phase. A SIM that requires the CDB or message-out bytes in
order to perform a select operation will be unable to execute the SCSISelect function

Table 4-1 Original SCSI Manager parameter conversion

Function Parameter Direction Parameter block field Notes

SCSIGet XPT handles internally.

SCSISelect targetID → scsiDevice bus set by XPT, LUN = 0.

SCSICmd buffer
count

→
→

scsiCDB
scsiCDBLength

Field is a pointer.

SCSIRead,
SCSIWrite,
SCSIRBlind,
SCSIWBlind

tibPtr → scsiDataPtr Field is a pointer.

SCSIComplete stat
message
wait

←
←
→

scsiSCSIstatus
scsiSCSImessage
scsiTimeout

Field contains status.
Field contains message.
Time in Time Manager format.

SCSIMsgIn message ← scsiSCSImessage Field contains message.

SCSIMsgOut message → scsiSCSImessage Field contains message.

SCSIReset Translated to SCSIResetBus.

SCSIStat XPT handles internally.
Writing a SCSI Interface Module 4-17

C H A P T E R 4

SCSI Manager 4.3
properly, and must always return noErr to a SCSISelect request. This can create a
false indication of the presence of a device at a SCSI ID, causing all future SCSISelect
requests to that SCSI ID to be directed only to that bus. Devices installed on buses that
registered after that bus would not be accessible through the original interface.

Handshaking of Blind Transfers 4
Handshaking instructions are used to prevent bus errors when a target fails to
deliver the next byte within the processor bus error timeout period. This timeout is
250 milliseconds for the Macintosh SE and 16 microseconds for all Macintosh models
since the Macintosh II.

The SCSI Manager 4.3 SIM requires this handshaking information for blind transfers
when DMA is not available. Your SIM does not need to pay attention to the
scsiHandshake field unless your hardware requires it.

Supporting DMA 4
DMA typically requires that the data buffer affected by the transfer be locked (so that the
physical address does not change) and that it be non-cacheable. SCSI Manager 4.3
provides an improved version of the LockMemory function, which you can call at
interrupt time as long as the affected pages are already held in real memory. You can also
call the GetPhysical function at interrupt time, but only on pages that are locked.

Loading Drivers 4
The Start Manager is normally responsible for loading SCSI drivers. However, if the
startup device specified in PRAM is on a third-party HBA and the SIM is a Slot Manager
device, the Start Manager will call the boot record of the card’s declaration ROM. The
boot record code should examine the dCtlExtDev field to determine which SCSI device
is the startup device and then load a driver from that device (and only that device).

All other drivers are loaded by the Start Manager, but SIMs are given the opportunity
to override this if necessary. Before the Start Manager attempts to load a driver from a
device, it calls the SIM with a SCSILoadDriver request. If the function succeeds, the
Start Manager does nothing further with that device. If the function fails (the normal
case), the Start Manager reads the partition map on the device and loads a driver from it.
If this fails, the Start Manager calls the SIM again with a SCSILoadDriver request, this
time with the scsiDiskLoadFailed parameter set to indicate that no driver was
available on the media.

This facility allows a SIM to provide a default driver to be used instead of any driver that
may be on the device. For example, if a SIM does support the original SCSI Manager, it
can use the second SCSILoadDriver request to load a SCSI Manager 4.3-compatible
driver if none is present on the device.
4-18 Writing a SCSI Interface Module

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
SCSI Manager 4.3 Reference 4

This section describes the data structures, functions, and constants that are specific to
SCSI Manager 4.3.

The “Data Structures” section shows the C declarations for the data structures defined
by SCSI Manager 4.3.

The “SCSI Manager 4.3 Functions” section describes the functions you use to communicate
with SCSI devices, the functions that a SIM uses to communicate with the XPT, and the
functions a SIM must include in order to be compatible with SCSI Manager 4.3.

Data Structures 4
This section describes the parameter blocks you use to communicate with the
SCSI Manager and the data structures you use to define values within them.

IMPORTANT

Always set unused or reserved fields to 0 before passing a parameter
block to any of the SCSI Manager 4.3 functions. ▲

Simple Data Types 4

SCSI Manager 4.3 uses these simple data types:

typedef char SInt8;

typedef short SInt16;

typedef long SInt32;

typedef unsigned char UInt8;

typedef unsigned short UInt16;

typedef unsigned long UInt32;

Device Identification Record 4

You use the device identification record to specify a target device by its bus, SCSI ID,
and logical unit number (LUN). The device identification record is defined by the
DeviceIdent data type.

struct DeviceIdent

{

UInt8 diReserved;

UInt8 bus;

UInt8 targetID;

UInt8 LUN;

};

typedef struct DeviceIdent DeviceIdent;
SCSI Manager 4.3 Reference 4-19

C H A P T E R 4

SCSI Manager 4.3
Field descriptions

bus The bus number of the SIM/HBA for the target device.
targetID The SCSI ID number of the target device.
LUN The target LUN, or 0 if the device does not support logical units.

Command Descriptor Block Record 4

You use the command descriptor block record to pass SCSI commands to the
SCSIAction function. The SCSI commands can be stored within this structure, or
you can provide a pointer to them. You set the scsiCDBIsPointer flag in the SCSI
parameter block if this record contains a pointer.

The command descriptor block record is defined by the CDB data type.

union CDB

{

UInt8 *cdbPtr;

UInt8 cdbBytes[maxCDBLength];

};

typedef union CDB CDB, *CDBPtr;

Field descriptions

cdbPtr A pointer to a buffer containing a CDB.
cdbBytes A buffer in which you can place a CDB.

Scatter/Gather List Element 4

You use scatter/gather lists to specify the data buffers to be used for a transfer. A
scatter/gather list consists of one or more elements, each of which describes the location
and size of one buffer.

The scatter/gather list element is defined by the SGRecord data type.

struct SGRecord

{

Ptr SGAddr;

SInt32 SGCount;

};

typedef struct SGRecord SGRecord;

Field descriptions

SGAddr A pointer to a data buffer.
SGCount The size of the data buffer, in bytes.
4-20 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
SCSI Manager Parameter Block Header 4

You use the SCSI Manager parameter block to pass information to the SCSIAction
function. Because many of the functions that you access through SCSIAction require
additional information, the parameter block consists of a common header (SCSIPBHdr)
followed by function-specific fields, if any. This section describes the parameter block
header common to all SCSIAction functions. The function-specific extensions are
described in the following sections.

The SCSI Manager parameter block header is defined by the SCSI_PB data type.

#define SCSIPBHdr \

struct SCSIHdr *qLink; \

SInt16 scsiReserved1; \

UInt16 scsiPBLength; \

UInt8 scsiFunctionCode; \

UInt8 scsiReserved2; \

OSErr scsiResult; \

DeviceIdent scsiDevice; \

CallbackProc scsiCompletion;\

UInt32 scsiFlags; \

UInt8 *scsiDriverStorage;\

Ptr scsiXPTprivate; \

SInt32 scsiReserved3;

struct SCSI_PB

{

SCSIPBHdr

};

typedef struct SCSI_PB SCSI_PB;

Field descriptions

qLink A pointer to the next entry in the request queue. This field is used
internally by the SCSI Manager and must be set to 0 when the
parameter block is initialized. The SCSI Manager functions always
set this field to 0 before returning, so you do not need to set it to 0
again before reusing a parameter block.

scsiPBLength The size of the parameter block, in bytes, including the parameter
block header.

scsiFunctionCode
A function selector code that specifies the service being requested.
Table 4-2 on page 4-39 lists these codes.

scsiResult The result code returned by the XPT or SIM when the function
completes. The value scsiRequestInProgress indicates that the
request is still in progress or queued.
SCSI Manager 4.3 Reference 4-21

C H A P T E R 4

SCSI Manager 4.3
scsiDevice A 4-byte value that uniquely identifies the target device for a
request. The DeviceIdent data type designates the bus number,
target SCSI ID, and logical unit number (LUN).

scsiCompletion A pointer to a completion routine.
scsiFlags Flags indicating the transfer direction and any special handling

required for this request.

scsiDirectionMask
A bit field that specifies transfer direction, using
these constants:

scsiDirectionIn Data in
scsiDirectionOut Data out
scsiDirectionNone No data phase expected

scsiDisableAutosense
Disable the automatic REQUEST SENSE feature.

scsiCDBLinked
The parameter block contains a linked CDB. This
option may not be supported by all SIMs.

scsiQEnable Enable target queue actions. This option may not
be supported by all SIMs.

scsiCDBIsPointer
Set if the scsiCDB field of a SCSI I/O parameter
block contains a pointer. If clear, the scsiCDB
field contains the actual CDB. In either case, the
scsiCDBLength field contains the number of
bytes in the SCSI command descriptor block.

scsiInitiateSyncData
Set if the SIM should attempt to initiate a
synchronous data transfer by sending the SDTR
message. If successful, the device normally
remains in the synchronous transfer mode until it
is reset or until you specify asynchronous mode
by setting the scsiDisableSyncData flag.
Because SDTR negotiation occurs every time this
flag is set, you should set it only when negotiation
is actually needed.

scsiDisableSyncData
Disable synchronous data transfer. The SIM sends
an SDTR message with a REQ/ACK offset of 0 to
indicate asynchronous data transfer mode. You
should set this flag only when negotiation is
actually needed.

scsiSIMQHead Place the parameter block at the head of the SIM
queue. This can be used to insert error handling at
the head of a frozen queue.

scsiSIMQFreeze
Freeze the SIM queue after completing this
transaction. See “Error Recovery Techniques” on
page 4-10 for information about using this flag.
4-22 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiDriverStorage
A pointer to the device driver’s private storage. This field is not
affected or used by the SCSI Manager.

SCSI I/O Parameter Block 4

You use the SCSI I/O parameter block to pass information to the SCSIExecIO function.
The SCSI I/O parameter block is defined by the SCSIExecIOPB data type.

#define SCSI_IO_Macro \

SCSIPBHdr \

UInt16 scsiResultFlags; \

UInt16 scsiReserved12; \

UInt8 *scsiDataPtr; \

SInt32 scsiDataLength; \

UInt8 *scsiSensePtr; \

SInt8 scsiSenseLength; \

UInt8 scsiCDBLength; \

UInt16 scsiSGListCount; \

UInt32 scsiReserved4; \

UInt8 scsiSCSIstatus; \

SInt8 scsiSenseResidual; \

UInt16 scsiReserved5; \

SInt32 scsiDataResidual; \

CDB scsiCDB; \

SInt32 scsiTimeout; \

UInt8 *scsiReserved13; \

UInt16 scsiReserved14; \

UInt16 scsiIOFlags; \

UInt8 scsiTagAction; \

scsiSIMQNoFreeze
Disable SIM queue freezing for this transaction.

scsiDoDisconnect
Explicitly allow device to disconnect.

scsiDontDisconnect
Explicitly prohibit device disconnection. If this flag
and the scsiDoDisconnect flag are both 0, the
SIM determines whether to allow or prohibit
disconnection, based on performance criteria.

scsiDataReadyForDMA
Data buffer is locked and non-cacheable.

scsiDataPhysical
Data buffer address is physical.

scsiSensePhysical
Autosense data pointer is physical.
SCSI Manager 4.3 Reference 4-23

C H A P T E R 4

SCSI Manager 4.3
UInt8 scsiReserved6; \

UInt16 scsiReserved7; \

UInt16 scsiSelectTimeout; \

UInt8 scsiDataType; \

UInt8 scsiTransferType; \

UInt32 scsiReserved8; \

UInt32 scsiReserved9; \

UInt16 scsiHandshake[8]; \

UInt32 scsiReserved10; \

UInt32 scsiReserved11; \

struct SCSI_IO *scsiCommandLink; \

UInt8 scsiSIMpublics[8]; \

UInt8 scsiAppleReserved6[8]; \

UInt16 scsiCurrentPhase; \

SInt16 scsiSelector; \

OSErr scsiOldCallResult; \

UInt8 scsiSCSImessage; \

UInt8 XPTprivateFlags; \

UInt8 XPTextras[12];

struct SCSI_IO

{

SCSI_IO_Macro

};

typedef struct SCSI_IO SCSI_IO;

typedef SCSI_IO SCSIExecIOPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiResultFlags
Output flags that modify the scsiResult field.

scsiSIMQFrozen
The SIM queue for this LUN is frozen because of
an error. You must call the SCSIReleaseQ
function to release the queue and resume
processing requests.

scsiAutosenseValid
An automatic REQUEST SENSE was performed
after this I/O because of a CHECK CONDITION
status message from the device. The data
contained in the scsiSensePtr buffer is valid.

scsiBusNotFree
The SCSI Manager was unable to clear the bus
after an error. You may need to call the
SCSIResetBus function to restore operation.
4-24 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiDataPtr A pointer to a data buffer or scatter/gather list. You specify the data
type using the scsiDataType field.

scsiDataLength The amount of data to be transferred, in bytes.
scsiSensePtr A pointer to the autosense data buffer. If autosense is enabled (the

scsiDisableAutosense flag is not set), the SCSI Manager
returns REQUEST SENSE information in this buffer.

scsiSenseLength The size of the autosense data buffer, in bytes.
scsiCDBLength The length of the SCSI command descriptor block, in bytes.
scsiSGListCount The number of elements in the scatter/gather list.
scsiSCSIstatus The status returned by the SCSI device.
scsiSenseResidual

The automatic REQUEST SENSE residual length (that is, the
number of bytes that were expected but not transferred). This
number is negative if extra bytes had to be transferred to force the
target off of the bus.

scsiDataResidual
The data transfer residual length (that is, the number of bytes that
were expected but not transferred). This number is negative if extra
bytes had to be transferred to force the target off the bus.

scsiCDB This field can contain either the actual CDB or a pointer to the CDB.
You set the scsiCDBIsPointer flag if this field contains a pointer.

scsiTimeout The length of time the SIM should allow before reporting a timeout
of the SCSI bus. The time value is represented in Time Manager
format (positive values for milliseconds, negative values for
microseconds). The timer is started when the I/O request is sent to
the target. If the request does not complete within the specified
time, the SIM attempts to issue an ABORT message, either by
reselecting the device or by asserting the attention (/ATN) signal.
A value of 0 specifies the default timeout for the SIM. The default
timeout for the SCSI Manager 4.3 SIM is infinite (that is, no timeout).

scsiIOFlags Additional I/O flags describing the data transfer.

scsiNoParityCheck
Disable parity error detection for this transaction.

scsiDisableSelectWAtn
Do not send the IDENTIFY message for LUN
selection. The LUN is still required in the
scsiDevice field so that the request can be
placed in the proper queue. The LUN field in the
CDB is untouched. The purpose is to provide
compatibility with older devices that do not
support this aspect of the SCSI-2 specification.

scsiSavePtrOnDisconnect
Perform a SAVE DATA POINTER operation
automatically in response to a DISCONNECT
message from the target. The purpose of this flag
is to provide compatibility with devices that do
not properly implement this aspect of the SCSI-2
specification.
SCSI Manager 4.3 Reference 4-25

C H A P T E R 4

SCSI Manager 4.3
scsiTagAction Reserved.
scsiSelectTimeout

An optional SELECT timeout value, in milliseconds. The default
is 250 ms, as specified by SCSI-2. The accuracy of this period is
dependent on the HBA. A value of 0 specifies the default timeout.
Some SIMs ignore this parameter and always use a value of 250 ms.

scsiNoBucketIn
Prohibit bit-bucketing during the data-in phase
of the transaction. Bit-bucketing is the practice of
throwing away excess data bytes when a target
tries to supply more data than the initiator
expects. For example, if the CDB requests more
data than you specified in the scsiDataLength
field, the SCSI Manager normally throws away
the excess and returns the scsiDataRunError
result code. If this flag is set, the SCSI Manager
refuses any extra data, terminates the I/O
request, and leaves the bus in the data-in phase.
You must reset the bus to restore operation. This
flag is intended only for debugging purposes.

scsiNoBucketOut
Prohibit bit-bucketing during the data-out phase
of the transaction. If a target requests more data
than you specified in the scsiDataLength field,
the SCSI Manager normally sends an arbitrary
number of meaningless bytes (0xEE) until the
target releases the bus. If this flag is set, the
SCSI Manager terminates the I/O request when
the last byte is sent and leaves the bus in the
data-out phase. You must reset the bus to restore
operation. This flag is intended only for
debugging purposes.

scsiDisableWide
Disable wide data transfer negotiation for this
transaction if it had been previously enabled.
This option may not be supported by all SIMs.

scsiInitiateWide
Attempt wide data transfer negotiation for
this transaction if it is not already enabled. This
option may not be supported by all SIMs.

scsiRenegotiateSense
Attempt to renegotiate synchronous or wide
transfers before issuing a REQUEST SENSE.
This is necessary when the error was caused
by problems operating in synchronous or wide
transfer mode. It is optional because some devices
flush sense data after performing negotiation.
4-26 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiDataType The data type pointed to by the scsiDataPtr field. You specify
the type using one of the following constants:

scsiTransferType
The type of transfer mode to use during the data phase. You
specify the type using one of the following constants:

scsiHandshake[8]
Handshaking instructions for blind transfers, consisting of an array
of word values, terminated by 0. The SIM polls for data ready after
transferring the amount of data specified in each successive
scsiHandshake entry. When it encounters a 0 value, the SIM
starts over at the beginning of the list. Handshaking always starts
from the beginning of the list every time a device transitions to data
phase. See “Handshaking Instructions,” beginning on page 4-9, for
more information.

scsiCommandLink
A pointer to a linked parameter block. This field provides support for
SCSI linked commands. This optional feature ensures that a set of
commands sent to a device are executed in sequential order without
interference from other applications. You create a list of commands
using this pointer to link additional parameter blocks. Each
parameter block except the last should have the scsiCDBLinked
flag set in the scsiFlags field. A CHECK CONDITION status from
the device will abort linked command execution. Linked commands
may not be supported by all SIMs.

scsiSIMpublics[8]
An additional input field available for use by SIM developers.

scsiDataBuffer
The scsiDataPtr field contains a pointer to a
contiguous data buffer, and the scsiDataLength
field contains the length of the buffer, in bytes.

scsiDataSG The scsiDataPtr field contains a pointer to a
scatter/gather list. The scsiDataLength field
contains the total number of bytes to be transferred,
and the scsiSGListCount field contains the
number of elements in the scatter/gather list.

scsiDataTIB The scsiDataPtr field contains a pointer to a
transfer instruction block. This is used by the XPT
during original SCSI Manager emulation, when
communicating with a SIM that supports this.

scsiTransferBlind
Use DMA, if available; otherwise, perform a blind
transfer using the handshaking information
contained in the scsiHandshake field.

scsiTransferPolled
Use polled transfer mode. The scsiHandshake
field is not required for this mode.
SCSI Manager 4.3 Reference 4-27

C H A P T E R 4

SCSI Manager 4.3
scsiCurrentPhase
The current SCSI bus phase reported by the SIM after handling an
original SCSI Manager function. This field is used only by the XPT and
SIM during original SCSI Manager emulation. The phases are defined
by the following constant values:

enum {

kDataOutPhase,

kDataInPhase,

kCommandPhase,

kStatusPhase,

kPhaseIllegal0,

kPhaseIllegal1,

kMessageOutPhase,

kMessageInPhase,

kBusFreePhase,

kArbitratePhase,

kSelectPhase

};

scsiSelector The function selector code that was passed to the _SCSIDispatch
trap during original SCSI Manager emulation. The SIM uses this
field to determine which original SCSI Manager function to perform.

scsiOldCallResult
The result code from an emulated original SCSI Manager function.
The SIM returns results to all original SCSI Manager functions in
this field, except for the SCSIComplete result, which it returns in
scsiResult.

scsiSCSIMessage The message byte returned by an emulated SCSIComplete
function. This field is only used by the XPT and SIM during original
SCSI Manager emulation.

XPTprivateFlagsReserved.
XPTextras[12] Reserved.

SCSI Bus Inquiry Parameter Block 4

You use the SCSI bus inquiry parameter block with the SCSIBusInquiry function to
get information about a bus. The SCSI bus inquiry parameter block is defined by
the SCSIBusInquiryPB data type.

struct SCSIBusInquiryPB

{

SCSIPBHdr

UInt16 scsiEngineCount;

UInt16 scsiMaxTransferType;

UInt32 scsiDataTypes;
4-28 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
UInt16 scsiIOpbSize;

UInt16 scsiMaxIOpbSize;

UInt32 scsiFeatureFlags;

UInt8 scsiVersionNumber;

UInt8 scsiHBAInquiry;

UInt8 scsiTargetModeFlags;

UInt8 scsiScanFlags;

UInt32 scsiSIMPrivatesPtr;

UInt32 scsiSIMPrivatesSize;

UInt32 scsiAsyncFlags;

UInt8 scsiHiBusID;

UInt8 scsiInitiatorID;

UInt16 scsiBIReserved0;

UInt32 scsiBIReserved1;

UInt32 scsiFlagsSupported;

UInt16 scsiIOFlagsSupported;

UInt16 scsiWeirdStuff;

UInt16 scsiMaxTarget;

UInt16 scsiMaxLUN;

SInt8 scsiSIMVendor[16];

SInt8 scsiHBAVendor[16];

SInt8 scsiControllerFamily[16];

SInt8 scsiControllerType[16];

SInt8 scsiXPTversion[4];

SInt8 scsiSIMversion[4];

SInt8 scsiHBAversion[4];

UInt8 scsiHBAslotType;

UInt8 scsiHBAslotNumber;

UInt16 scsiSIMsRsrcID;

UInt16 scsiBIReserved3;

UInt16 scsiAdditionalLength;

};

typedef struct SCSIBusInquiryPB SCSIBusInquiryPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiEngineCount
The number of engines on the HBA. This value is 0 for a built-in
SCSI bus. See the CAM specification for information about HBA
engines.

scsiMaxTransferType
The number of data transfer types available on the HBA.
SCSI Manager 4.3 Reference 4-29

C H A P T E R 4

SCSI Manager 4.3
scsiDataTypes A bit mask describing the data types supported by the SIM/HBA.
Bits 3 through 15 and bit 31 are reserved by Apple Computer, Inc.
Bits 16 through 30 are available for use by SIM developers. The
following bits are currently defined. These types correspond to the
scsiDataType field of the SCSI I/O parameter block.

enum {

scsiBusDataBuffer = 0x00000001,

scsiBusDataTIB = 0x00000002,

scsiBusDataSG = 0x00000004,

/* bits 3 to 15 are reserved by Apple */

/* bits 16 to 30 are available for 3rd parties */

scsiBusDataReserved = 0x80000000

};

scsiIOpbSize The minimum size of a SCSI I/O parameter block for this SIM.
scsiMaxIOpbSize The minimum size of a SCSI I/O parameter block for all currently

registered SIMs. That is, the largest registered scsiIOpbSize.
scsiFeatureFlags

These flags describe various physical characteristics of the SCSI bus.

scsiVersionNumber
The version number of the SIM/HBA.

scsiBusInternal
The bus is at least partly internal to the computer.

scsiBusExternal
The bus extends outside of the computer.

scsiBusInternalExternal
The bus is both internal and external.

scsiBusInternalExternalUnknown
The internal/external state of the bus is unknown.

scsiBusCacheCoherentDMA
DMA is cache coherent.

scsiBusOldCallCapable
The SIM supports the original SCSI Manager
interface.

scsiBusDifferential
The bus uses a differential SCSI interface.

scsiBusFastSCSI
The bus supports SCSI-2 fast data transfers.

scsiBusDMAavailable
DMA is available.
4-30 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiHBAInquiry Flags describing the capabilities of the bus.

scsiTargetModeFlags
Reserved.

scsiScanFlags Reserved.
scsiSIMPrivatesPtr

A pointer to the SIM’s private storage.
scsiSIMPrivatesSize

The size of the SIM’s private storage, in bytes.
scsiAsyncFlags Reserved.
scsiHiBusID The highest bus number currently registered with the XPT. If no

buses are registered, this field contains 0xFF (the ID of the XPT).
scsiInitiatorID

The SCSI ID of the HBA. This value is 7 for a built-in SCSI bus.
scsiFlagsSupported

A bit mask that defines which scsiFlags bits are supported.
scsiIOFlagsSupported

A bit mask that defines which scsiIOFlags bits are supported.
scsiWeirdStuff Flags that identify unusual aspects of a SIM’s operation.

scsiBusMDP Supports the MODIFY DATA POINTER message.

scsiBusWide32 Supports 32-bit wide transfers.

scsiBusWide16 Supports 16-bit wide transfers.

scsiBusSDTR Supports synchronous transfers.

scsiBusLinkedCDB
 Supports linked commands.

scsiBusTagQ Supports tagged queuing.

scsiBusSoftReset
 Supports soft reset.

scsiOddDisconnectUnsafeRead1
Indicates that a disconnect or other phase change
on a odd byte boundary during a read operation
will result in inaccurate residual counts or data
loss. If your device can disconnect on odd bytes,
use polled transfers instead of blind.

scsiOddDisconnectUnsafeWrite1
Indicates that a disconnect or other phase change
on a odd byte boundary during a write operation
will result in inaccurate residual counts or data
loss. If your device can disconnect on odd bytes,
use polled transfers instead of blind.

scsiBusErrorsUnsafe
Indicates that a delay of more than 16 microseconds
or a phase change during a blind transfer on a non-
handshaked boundary may cause a system crash.
If you cannot predict where delays or disconnects
will occur, use polled transfers.
SCSI Manager 4.3 Reference 4-31

C H A P T E R 4

SCSI Manager 4.3
scsiMaxTarget The highest SCSI ID value supported by the HBA.
scsiMaxLUN The highest logical unit number supported by the HBA.
scsiSIMVendor[16]

An ASCII text string that identifies the SIM vendor. This field
returns 'Apple Computer' for a built-in SCSI bus.

scsiHBAVendor[16]
An ASCII text string that identifies the HBA vendor. This field
returns 'Apple Computer' for a built-in SCSI bus.

scsiControllerFamily[16]
An optional ASCII text string that identifies the family of parts to
which the SCSI controller chip belongs. This information is
provided at the discretion of the HBA vendor.

scsiControllerType[16]
An optional ASCII text string that identifies the specific type of SCSI
controller chip. This information is provided at the discretion of the
HBA vendor.

scsiXPTversion[4]
An ASCII text string that identifies the version number of the XPT.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsiSIMversion[4]
An ASCII text string that identifies the version number of the SIM.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsiHBAversion[4]
An ASCII text string that identifies the version number of the HBA.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsiHBAslotType The slot type, if any, used by this HBA. You specify the type using
one of the following constants:

scsiRequiresHandshake
Indicates that a delay of more than 16 microseconds
or a phase change during a blind transfer on a
non-handshaked boundary may result in inaccurate
residual counts or data loss. If you cannot predict
where delays or disconnects will occur, use polled
transfers.

scsiTargetDrivenSDTRSafe
Indicates that the SIM supports target-initiated
synchronous data transfer negotiation. If your
device supports this feature and this bit is not set,
you must set the scsiDisableSelectWAtn flag
in the scsiIOFlags field.

scsiMotherboardBus
A built-in SCSI bus.

scsiNuBus A NuBus slot.

scsiPDSBus A processor-direct slot.
4-32 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiHBAslotNumber
The slot number for the SIM. Device drivers should copy this value
into the dCtlSlot field of the device control entry. This value is 0
for a built-in SCSI bus.

scsiSIMsRsrcID The sResource ID for the SIM. Device drivers should copy this value
into the dCtlSlotID field of the device control entry. This value is
0 for a built-in SCSI bus.

scsiAdditionalLength
The additional size of this parameter block, in bytes. If this structure
includes extra fields to return additional information, this field
contains the number of additional bytes.

SCSI Abort Command Parameter Block 4

You use the SCSI abort command parameter block to identify the SCSI I/O parameter
block to be canceled by the SCSIAbortCommand function. The SCSI abort command
parameter block is defined by the SCSIAbortCommandPB data type.

struct SCSIAbortCommandPB

{

SCSIPBHdr

SCSI_IO * scsiIOptr;

};

typedef struct SCSIAbortCommandPB SCSIAbortCommandPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiIOptr A pointer to the parameter block to be canceled.

SCSI Terminate I/O Parameter Block 4

You use the SCSI terminate I/O parameter block to identify the SCSI I/O parameter
block to be canceled by the SCSITerminateIO function. The SCSI terminate I/O
parameter block is defined by the SCSITerminateIOPB data type.

struct SCSITerminateIOPB

{

SCSIPBHdr

SCSI_IO * scsiIOptr;

};

typedef struct SCSITerminateIOPB SCSITerminateIOPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.
SCSI Manager 4.3 Reference 4-33

C H A P T E R 4

SCSI Manager 4.3
scsiIOptr A pointer to the parameter block to be canceled.

SCSI Virtual ID Information Parameter Block 4

You use the SCSI virtual ID information parameter block with the
SCSIGetVirtualIDInfo function to get the device identification record for a device
on the virtual bus. The SCSI virtual ID information parameter block is defined by
the SCSIGetVirtualIDInfoPB data type.

struct SCSIGetVirtualIDInfoPB

{

SCSIPBHdr

UInt16 scsiOldCallID;

Boolean scsiExists;

};

typedef struct SCSIGetVirtualIDInfoPB SCSIGetVirtualIDInfoPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21. The device information record is returned
in the scsiDevice field of the parameter block header.

scsiOldCallID The virtual SCSI ID of the device you are searching for.
scsiExists The XPT returns true in this field if the scsiDevice field contains

a valid device identification record.

SCSI Load Driver Parameter Block 4

The Start Manager uses this parameter block with the SCSILoadDriver function to
load a driver for a SCSI device. The SCSI load driver parameter block is defined by
the SCSILoadDriverPB data type.

struct SCSILoadDriverPB

{

SCSIPBHdr

SInt16 scsiLoadedRefNum;

Boolean scsiDiskLoadFailed;

};

typedef struct SCSILoadDriverPB SCSILoadDriverPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiLoadedRefNum
If the driver is successfully loaded, this field contains the driver
reference number returned by the SIM.
4-34 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiDiskLoadFailed
If this field is set to true, the SIM should attempt to load its own
driver regardless of whether there is one on the device. If this field
is set to false, the SIM has the option of loading a driver from the
device or using one of its own.

SCSI Driver Identification Parameter Block 4

You use the SCSI driver identification parameter block with the
SCSICreateRefNumXref, SCSILookupRefNumXref, and SCSIRemoveRefNumXref
functions to exchange device driver registration information. The SCSI driver
identification parameter block is defined by the SCSIDriverPB data type.

struct SCSIDriverPB

{

SCSIPBHdr

SInt16 scsiDriver;

UInt16 scsiDriverFlags;

DeviceIdent scsiNextDevice;

};

typedef struct SCSIDriverPB SCSIDriverPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiDriver The driver reference number of the device driver associated with
this device identification record.

scsiDriverFlags
Driver information flags. These flags are not interpreted by the XPT
but can be used to provide information about the driver to other
clients. The following flags are defined:

scsiNextDevice The device identification record of the next device in the driver
registration list.

scsiDeviceSensitive
Only the device driver should access this device.
SCSI utilities and other applications that bypass
drivers should check this flag before accessing a
device.

scsiDeviceNoOldCallAccess
This driver or device does not accept original
SCSI Manager requests.
SCSI Manager 4.3 Reference 4-35

C H A P T E R 4

SCSI Manager 4.3
SIM Initialization Record 4

You use the SIM initialization record to provide information about your SIM when you
register it with the XPT using the SCSIRegisterBus function. The SIM initialization
record is defined by the SIMInitInfo data type.

struct SIMInitInfo {

UInt8 *SIMstaticPtr;

SInt32 staticSize;

SIMInitProc SIMInit;

SIMActionProc SIMAction;

SCSIProc SIM_ISR;

InterruptPollProc SIMInterruptPoll;

SIMActionProc NewOldCall;

UInt16 ioPBSize;

Boolean oldCallCapable;

UInt8 simInfoUnused1;

SInt32 simInternalUse;

SCSIProc XPT_ISR;

SCSIProc EnteringSIM;

SCSIProc ExitingSIM;

MakeCallbackProc MakeCallback;

UInt16 busID;

UInt16 simInfoUnused3;

SInt32 simInfoUnused4;

};

typedef struct SIMInitInfo SIMInitInfo;

Field descriptions

SIMstaticPtr A pointer to the storage allocated by the XPT for the SIM’s static
variables.

staticSize The amount of memory requested by the SIM for storing its static
variables.

SIMInit A pointer to the SIM’s initialization function. See the description of
the SIMInit function on page 4-60 for more information.

SIMAction A pointer to the SIM function that handles SCSIAction requests.
See the description of the SIMAction function on page 4-61 for
more information.

SIM_ISR Reserved.
SIMInterruptPoll

A pointer to the SIM’s interrupt polling function. The Device
Manager periodically calls this routine while waiting for a
synchronous request to complete if the processor’s interrupt priority
level is not 0. This allows the Virtual Memory Manager to initiate
SCSI transactions when interrupts are disabled. See the description of
the SIMInterruptPoll function on page 4-61 for more information.
4-36 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
NewOldCall If the oldCallCapable field is set to true, this field contains a
pointer to the SIM function that handles original SCSI Manager
requests. See the description of the NewOldCall function
beginning on page 4-63 for more information.

ioPBSize The minimum size that a SCSI I/O parameter block must be for use
with this SIM.

oldCallCapable A Boolean value that indicates whether the SIM emulates original
SCSI Manager functions.

simInfoUnused1 Reserved.
simInternalUse A long word available for use by the SIM. This field is not affected

or used by the SCSI Manager.
XPT_ISR Reserved.
EnteringSIM A pointer to the XPT EnteringSIM function. This function

provides support for virtual memory. Your SIM must call this
function prior to executing any other SIM code. See the description
of the EnteringSIM function on page 4-58 for more information.

ExitingSIM A pointer to the XPT ExitingSIM function. Your SIM must call this
function before passing control to any code that could cause a page
fault, including completion routines. See the description of the
ExitingSIM function on page 4-59 for more information.

MakeCallback A pointer to the XPT MakeCallback function. Your SIM must call
this function after completing a transaction. The XPT then calls the
completion routine specified in the scsiCompletion field of the
parameter block header. See the description of the MakeCallback
function on page 4-59 for more information.

busID The bus number assigned by the XPT to this SIM/HBA.

SCSI Manager 4.3 Functions 4
This section describes the functions you use to communicate with SCSI devices and with
the XPT and SIM components of SCSI Manager 4.3.

■ “Client Functions” describes the functions that applications and device drivers use to
communicate with SCSI devices and the XPT.

■ “SIM Support Functions” describes the functions a SIM uses to register its bus and
communicate with the XPT.

■ “SIM Internal Functions” describes the functions that a SIM must provide in order to
be compatible with SCSI Manager 4.3 and the functions that a SIM must include if it
supports original SCSI Manager emulation.

Client Functions 4

This section describes the functions that clients (applications and device drivers) use to
communicate with SCSI devices and the XPT.
SCSI Manager 4.3 Reference 4-37

C H A P T E R 4

SCSI Manager 4.3
SCSIAction 4

You use the SCSIAction function to initiate a SCSI transaction or request a service from
the XPT or SIM.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

DESCRIPTION

The SCSIAction function initiates the request specified by the scsiFunctionCode
field of the parameter block. Certain types of requests are handled by the XPT, but most
are handled by the SIM. Table 4-2 lists the function selector codes. See the following
sections for descriptions of the functions you access through SCSIAction.

When called asynchronously, SCSIAction normally returns the NoErr result code,
indicating that the request was queued successfully. The result of the SCSI transaction is
returned in the scsiResult field upon completion. If the SCSIAction function returns
an error code, the request was not queued and the completion routine will not be called.

When the completion routine is called, it receives the A5 world that existed when the
SCSIAction request was received. If A5 was invalid when the request was made, it
is also invalid in the completion routine.

Your completion routine should use the following function prototype:

pascal void (*CallbackProc) (void * scsiPB);

There is no implied ordering of asynchronous requests made to different devices. An
earlier request may be started later, and a later request may complete earlier. However, a
series of requests to the same device is issued to that device in the order received, except
when the scsiSIMQHead flag is set in the scsiFlags field of the parameter block.

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The function selector code.
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent A 4-byte value that uniquely

identifies the target device.
→ scsiCompletion CallbackProc A pointer to a completion

routine. If this field is set to
nil, the function is executed
synchronously.

→ scsiFlags UInt32 Flags indicating the transfer
direction and any special
handling required for the
request. See page 4-22 for
descriptions of these flags.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.
4-38 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
When called synchronously, the SCSIAction function returns the actual result of the
operation. It also places this result in the scsiResult field.

RESULT CODES

Note
Result codes for specific SCSIAction function requests are listed
in the following sections. See page 4-90 for a list of all result codes. ◆

Table 4-2 SCSIAction function selector codes

Code Function Operation

00 SCSINop No operation.

01 SCSIExecIO Execute a SCSI I/O transaction.

02 Reserved

03 SCSIBusInquiry Bus inquiry.

04 SCSIReleaseQ Release a frozen SIM queue.

05–0F Reserved

10 SCSIAbortCommand Abort a SCSI command.

11 SCSIResetBus Reset the SCSI bus.

12 SCSIResetDevice Reset a SCSI device.

13 SCSITerminateIO Terminate I/O transaction.

14–7F Reserved

80 SCSIGetVirtualIDInfo Return DeviceIdent of a virtual SCSI ID.

81 Reserved

82 SCSILoadDriver Load a driver from a SCSI device.

83 Reserved

84 SCSIOldCall SIM support function for original SCSI
Manager emulation.

85 SCSICreateRefNumXref Register a device driver.

86 SCSILookupRefNumXref Find a driver reference number.

87 SCSIRemoveRefNumXref Deregister a device driver.

88 SCSIRegisterWthNewXPT XPT was replaced; SIM needs to reregister.

89–BF Reserved

C0–FF Vendor unique Requests in this range are passed directly to
the SIM without evaluation by the XPT.

noErr 0 Asynchronous request successfully queued, or synchronous request
successfully completed
SCSI Manager 4.3 Reference 4-39

C H A P T E R 4

SCSI Manager 4.3
SCSINop 4

The SCSINop function does nothing.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

DESCRIPTION

The SCSINop function performs no action, returns no values in the parameter block, and
does not call a completion routine. It is provided for compatibility with the CAM
specification, and may be useful for debugging.

RESULT CODES

SCSIExecIO 4

You use the SCSIExecIO function to perform SCSI I/O operations.

OSErr SCSIAction(SCSIExecIOPB *scsiPB);

scsiPB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

Parameter block

→ scsiFunctionCode UInt8 The SCSINop function selector code (0x00).

noErr 0 No error

→ scsiPBLength UInt16 The size of the parameter block. This
value must be equal to or greater
than the scsiIOpbSize for the SIM.

→ scsiFunctionCode UInt8 The SCSIExecIO function selector
code (0x01).

← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiFlags UInt32 Flags indicating the transfer direction
and any special handling required
for the request. See page 4-22 for
descriptions of these flags.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.
4-40 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
DESCRIPTION

The SCSIExecIO function sends a request to a SIM to carry out a SCSI transaction. The
SIM performs all the actions necessary to fulfill the request, including arbitrating for the
bus, selecting the device, sending the CDB, receiving or sending data, performing
disconnect operations, and so on. The parameter block contains all the information
required for the SIM to complete the SCSI request, including issuing a REQUEST SENSE
command if necessary.

RESULT CODES

← scsiResultFlags UInt16 Output flags that modify the
scsiResult field. See page 4-24.

→ scsiDataPtr UInt8 * A pointer to a data buffer or
scatter/gather list.

→ scsiDataLength UInt32 The amount of data to be transferred.
→ scsiSensePtr UInt8 * A pointer to the autosense buffer.
→ scsiSenseLength UInt8 The size of the autosense buffer.
→ scsiCDBLength UInt8 The size of the CDB.
→ scsiSGListCount UInt16 The number of elements in the

scatter/gather list.
← scsiSCSIstatus UInt8 Status returned by the SCSI device.
← scsiSenseResidual SInt8 The autosense residual length.
← scsiDataResidual SInt32 The data transfer residual length.
→ scsiCDB CDB The CDB, or a pointer to the CDB,

depending on the setting of the
scsiCDBIsPointer flag.

→ scsiTimeout SInt32 The SCSI bus timeout period.
→ scsiIOFlags UInt16 Additional I/O flags. See page 4-25.
→ scsiSelectTimeout UInt16 Optional SELECT timeout value.
→ scsiDataType UInt8 The data type pointed to by the

scsiDataPtr field. See page 4-27.
→ scsiTransferType UInt8 The transfer mode (polled or blind).

See page 4-27.
→ scsiHandshake[8] UInt16 Handshaking instructions.
→ scsiCommandLink SCSI_IO * Optional pointer to a linked CDB.

noErr 0 No error
scsiRequestInProgress 1 Parameter block request is in progress
scsiCDBLengthInvalid -7863 The CDB length supplied is not

supported by this SIM; typically this
means it was too big

scsiTransferTypeInvalid -7864 The scsiTransferType requested is
not supported by this SIM

scsiDataTypeInvalid -7865 SIM does not support the requested
scsiDataType

scsiIDInvalid -7866 The initiator ID is invalid
scsiLUNInvalid -7867 The logical unit number is invalid
scsiTIDInvalid -7868 The target ID is invalid
scsiBusInvalid -7869 The bus ID is invalid
SCSI Manager 4.3 Reference 4-41

C H A P T E R 4

SCSI Manager 4.3
scsiRequestInvalid -7870 The parameter block request is invalid
scsiFunctionNotAvailable -7871 The requested function is not supported

by this SIM
scsiPBLengthError -7872 The parameter block length supplied

was too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiNoSuchXref -7882 No driver has been cross-referenced

with this device
scsiDeviceConflict -7883 Attempt to register more than one driver

to a device
scsiNoHBA -7884 No HBA detected
scsiDeviceNotThere -7885 SCSI device not installed or available
scsiProvideFail -7886 Unable to provide the requested service
scsiBusy -7887 SCSI subsystem is busy
scsiTooManyBuses -7888 SIM registration failed because the XPT

registry is full
scsiCDBReceived -7910 The SCSI CDB was received
scsiNoNexus -7911 Nexus is not established
scsiTerminated -7912 Parameter block request terminated by

the host
scsiBDRsent -7913 A SCSI bus device reset (BDR) message

was sent to the target
scsiWrongDirection -7915 Data phase was in an unexpected

direction
scsiSequenceFail -7916 Target bus phase sequence failure
scsiUnexpectedBusFree -7917 Unexpected bus free phase
scsiDataRunError -7918 Data overrun/underrun error
scsiAutosenseFailed -7920 Automatic REQUEST SENSE command

failed
scsiParityError -7921 An uncorrectable parity error occurred
scsiSCSIBusReset -7922 Execution of this parameter block was

halted because of a SCSI bus reset
scsiMessageRejectReceived -7923 REJECT message received
scsiIdentifyMessageRejected -7924 The target issued a REJECT message in

response to the IDENTIFY message; the
LUN probably does not exist

scsiCommandTimeout -7925 The timeout value for this parameter
block was exceeded and the parameter
block was aborted

scsiSelectTimeout -7926 Target selection timeout
scsiUnableToTerminate -7927 Unable to terminate I/O parameter

block request
scsiNonZeroStatus -7932 The target returned non-zero status

upon completion of the request
scsiUnableToAbort -7933 Unable to abort parameter block request
scsiRequestAborted -7934 Parameter block request aborted by the

host
4-42 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
SCSIBusInquiry 4

You use the SCSIBusInquiry function to get information about a SCSI bus.

OSErr SCSIAction(SCSIBusInquiryPB *scsiPB);

scsiPB A pointer to a SCSI bus inquiry parameter block, which is described
on page 4-28.

Parameter block

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIBusInquiry function

selector code (0x03).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.

Only the bus number is required.
→ scsiCompletion CallbackProc Unused. Must be nil.
← scsiEngineCount UInt16 The number of HBA engines.
← scsiMaxTransferType UInt16 The number of data transfer

types available on the HBA.
← scsiDataTypes UInt32 The data types supported.
← scsiIOpbSize UInt16 The minimum parameter block

size for this SIM.
← scsiMaxIOpbSize UInt16 The largest parameter block size

currently registered.
← scsiFeatureFlags UInt32 Features of the SIM/HBA.
← scsiVersionNumber UInt8 The version of the SIM/HBA
← scsiHBAInquiry UInt8 Features of the SIM/HBA.
← scsiSIMPrivatesPtr UInt32 A pointer to the SIM’s storage.
← scsiSIMPrivatesSize UInt32 The size of the SIM’s storage.
← scsiHiBusID UInt8 The highest registered bus number.
← scsiInitiatorID UInt8 SCSI ID of the HBA.
← scsiFlagsSupported UInt32 Bit mask of supported

scsiFlags.
← scsiIOFlagsSupported UInt16 Bit mask of supported

scsiIOFlags.
← scsiWeirdStuff UInt16 Additional flags.
← scsiMaxTarget UInt16 The highest SCSI ID value

supported by the HBA.
← scsiMaxLUN UInt16 The highest logical unit number

supported by the HBA.
← scsiSIMVendor SInt8[16] SIM vendor string.
← scsiHBAVendor SInt8[16] HBA vendor string.
← scsiControllerFamily SInt8[16] Controller family string.
← scsiControllerType SInt8[16] Controller type string.
← scsiXPTversion SInt8[4] XPT version string.
← scsiSIMversion SInt8[4] SIM version string.
← scsiHBAversion SInt8[4] HBA version string.
← scsiHBAslotType UInt8 The slot type of the HBA.
SCSI Manager 4.3 Reference 4-43

C H A P T E R 4

SCSI Manager 4.3
DESCRIPTION

The SCSIBusInquiry function returns information about the SIM and HBA for a bus.
This function is typically used to find the minimum size of the SCSI I/O parameter block
for a particular SIM. You can also use this function to determine whether a bus supports
various optional features such as synchronous or wide transfer modes. Because this
function is always executed synchronously, the scsiCompletion field must be set to nil.

To find all buses, first request information about the XPT by setting the bus number in
the scsiDevice field to 0xFF, then use the value returned in the scsiHiBusID field to
set the limits of the search.

RESULT CODES

SCSIReleaseQ 4

You use the SCSIReleaseQ function to release a frozen queue for a LUN.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

DESCRIPTION

The SCSIReleaseQ function releases a frozen I/O queue for the logical unit number
specified in the scsiDevice field. If an I/O request returns with the scsiSIMQFrozen
flag set in the scsiResultFlags field, you must call this function to restore normal
operation.

← scsiHBAslotNumber UInt8 The slot number of the HBA.
← scsiSIMsRsrcID UInt16 The sResource ID of the SIM.
← scsiAdditionalLength UInt16 The additional size of this

parameter block, if any.

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiNoHBA -7884 No HBA detected
scsiBusy -7887 SCSI subsystem is busy

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIReleaseQ function

selector code (0x04).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.
4-44 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
Queue freezing provides the opportunity to insert error-handling requests at the
beginning of the queue using the scsiSIMQHead flag. You then release the queue using
this function. Subsequent errors will continue to freeze the queue, allowing you to step
through the queue one request at a time without aborting any other pending requests.

Because this function is always executed synchronously, the scsiCompletion field
must be set to nil. Unlike other synchronous functions, however, you can call
SCSIReleaseQ from a completion routine.

RESULT CODES

SEE ALSO

See “Error Recovery Techniques” on page 4-10 for more information about queue
freezing.

SCSIAbortCommand 4

You can use the SCSIAbortCommand function to cancel an I/O request.

OSErr SCSIAction(SCSIAbortCommandPB *scsiPB);

scsiPB A pointer to a SCSI abort command parameter block, which is described
on page 4-33.

Parameter block

noErr 0 No error
scsiIDInvalid -7866 The initiator ID is invalid
scsiLUNInvalid -7867 The logical unit number is invalid
scsiTIDInvalid -7868 The target ID is invalid
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIAbortCommand function

selector code (0x10).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

→ scsiIOptr SCSI_IO * A pointer to the SCSI I/O parameter
block to be canceled.
SCSI Manager 4.3 Reference 4-45

C H A P T E R 4

SCSI Manager 4.3
DESCRIPTION

The SCSIAbortCommand function cancels the SCSIExecIO request identified by the
scsiIOptr field. If the request has not yet been delivered to the device, it is removed
from the queue and its completion routine is called with a result code of
scsiRequestAborted. If the request has already been started, the SIM attempts to
send an ABORT message to the device, either by asserting the /ATN signal or by
reselecting the device. The function returns the scsiUnableToAbort result code if the
specified request has already been completed.

SPECIAL CONSIDERATIONS

Because the interrupt that calls the completion routine can pre-empt the
SCSIAbortCommand request, this function can produce unexpected results if the
completion routine for the canceled request reuses the parameter block.

RESULT CODES

SEE ALSO

See the description of the SCSITerminateIO function on page 4-48 for information
about another method of canceling a request.

SCSIResetBus 4

You use the SCSIResetBus function to reset a SCSI bus.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiUnableToAbort -7933 Unable to abort parameter block request

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIResetBus function

selector code (0x11).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.

Only the bus number is required.
→ scsiCompletion CallbackProc A pointer to a completion

routine. If set to nil, the function
is executed synchronously.
4-46 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
DESCRIPTION

The SCSIResetBus function directs the HBA to assert the SCSI bus reset signal, causing
all devices on the bus to clear pending I/O and forcing the bus into the bus free phase. In
addition, the SIM calls the completion routines for all requests that were already
delivered to devices. The appropriate LUN queue is frozen for each of the requests that
were reset, unless the scsiSIMQNoFreeze flag is set.

SPECIAL CONSIDERATIONS

The SCSIResetBus function interrupts SCSI communications and can cause data loss.
You should use this function only to restore operation in the event that a device refuses
to release the bus. You can use the SCSIResetDevice function to reset a single device
when the SCSI bus is operational and the device is still responding to selection.

RESULT CODES

SCSIResetDevice 4

You use the SCSIResetDevice function to reset a SCSI device.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIResetDevice function

selector code (0x12).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If set to nil, the function is
executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.
SCSI Manager 4.3 Reference 4-47

C H A P T E R 4

SCSI Manager 4.3
DESCRIPTION

The SCSIResetDevice function attempts to send a BUS DEVICE RESET message to
the target. If the device is currently on the bus, the SIM asserts the /ATN signal and
sends the message at the next message-out phase. If the target is not on the bus, the SIM
selects it and sends an IDENTIFY message followed by a BUS DEVICE RESET message.

SPECIAL CONSIDERATIONS

The BUS DEVICE RESET message clears all I/O transactions for all logical units of the
target device. This function may result in data loss and should be used only to restore
operation in the event that a device fails to respond to other messages.

RESULT CODES

SCSITerminateIO 4

You can use the SCSITerminateIO function to cancel an I/O request.

OSErr SCSIAction(SCSITerminateIOPB *scsiPB);

scsiPB A pointer to a SCSI terminate I/O parameter block, which is described on
page 4-33.

Parameter block

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for

this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiMessageRejectReceived -7923 REJECT message received

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSITerminateIO function

selector code (0x13).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

→ scsiIOptr SCSI_IO * A pointer to the SCSI I/O parameter
block to be canceled.
4-48 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
DESCRIPTION

The SCSITerminateIO function cancels the SCSIExecIO request identified by the
scsiIOptr field. If the request has not yet been delivered to the device, it is removed
from the queue and its completion routine is called with a result code of
scsiTerminated. If the request has already been started, the SIM attempts to send a
TERMINATE IO PROCESS message to the device, either by asserting the /ATN signal or
by reselecting the device. The function returns the scsiUnableToTerminate result
code if the specified request has already been completed.

The SCSITerminateIO function differs from the SCSIAbortCommand function
(described on page 4-45) only in the message it sends over the SCSI bus. TERMINATE IO
PROCESS is an optional SCSI-2 message that instructs the device to complete a request
normally although prematurely, while attempting to maintain media integrity.

SPECIAL CONSIDERATIONS

Because the interrupt that calls the completion routine can pre-empt the
SCSITerminateIO request, this function can produce unexpected results if the
completion routine for the canceled request reuses the parameter block.

RESULT CODES

SCSIGetVirtualIDInfo 4

You can use the SCSIGetVirtualIDInfo funtion to get the device identification record
for a virtual SCSI ID.

OSErr SCSIAction(SCSIGetVirtualInfoPB *scsiPB);

scsiPB A pointer to a SCSI virtual ID information parameter block, which is
described on page 4-34.

Parameter block

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiUnableToTerminate -7927 Unable to terminate I/O parameter block request

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIGetVirtualIDInfo

function selector code (0x80).
← scsiResult OSErr The returned result code.
← scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.
→ scsiOldCallID UInt16 The virtual SCSI ID to search for.
SCSI Manager 4.3 Reference 4-49

C H A P T E R 4

SCSI Manager 4.3
DESCRIPTION

The SCSIGetVirtualIDInfo function returns the device identification record of a
device on the virtual bus. This function is typically used by a device driver during the
transition from a ROM-based original SCSI Manager to SCSI Manager 4.3. If a device
with the specified SCSI ID is not found on the virtual bus, or the device exists but is not
accessible through the SCSI Manager 4.3 interface, the scsiExists field returns false
and the scsiDevice field should be ignored.

Because this function is always executed synchronously, the scsiCompletion field
must be nil.

RESULT CODES

SCSILoadDriver 4

The Start Manager uses the SCSILoadDriver function to provide an opportunity for a
SIM to load a driver other than one found on the media.

OSErr SCSIAction(SCSILoadDriverPB *scsiPB);

scsiPB A pointer to a SCSI load driver parameter block, which is described on
page 4-34.

Parameter block

← scsiExists Boolean Returns true if the scsiDevice
field contains a valid device
identification record.

noErr 0 No error
scsiTIDInvalid -7868 The target ID is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSILoadDriver function

selector code (0x82).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the
function is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

← scsiLoadedRefNum UInt16 The driver reference number
returned by the SIM.

→ scsiDiskLoadFailed Boolean Set to true if a driver could not be
loaded from the media.
4-50 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
DESCRIPTION

The SCSILoadDriver function is called by the Start Manager to load device drivers for
SCSI devices. You can use this function to load a driver for a device that was not
available at system startup.

The Start Manager can call this function both before and after attempting to load a driver
from the media. On the first attempt, the scsiDiskLoadFailed field is set to false,
indicating to the SIM that it can choose to load a driver from the media or install another
(typically newer) driver of its own choosing.

If the first attempt to load a driver fails, the Start Manager calls the SCSILoadDriver
function a second time, with the scsiDiskLoadFailed field set to true to indicate
that a driver could not be loaded from the media. The SIM then loads its own driver, if
possible, or returns an error result.

SPECIAL CONSIDERATIONS

The SCSILoadDriver function may move memory; you should not call it at interrupt
time.

RESULT CODES

SCSICreateRefNumXref 4

You use the SCSICreateRefNumXref function to register a device driver with the XPT.

OSErr SCSIAction(SCSIDriverPB *scsiPB);

scsiPB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

noErr 0 No error
scsiFunctionNotAvailable -7871 The requested function is not supported by

this SIM

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSICreateRefNumXref

function selector code (0x85).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.
→ scsiDriver SInt16 The driver reference number.
→ scsiDriverFlags UInt16 Optional driver flags.
SCSI Manager 4.3 Reference 4-51

C H A P T E R 4

SCSI Manager 4.3
DESCRIPTION

The SCSICreateRefNumXref function adds an element to the XPT’s driver registration
table. You specify a device identification record in the scsiDevice field and a driver
reference number in the scsiDriver field. The scsiDriverFlags field provides
information about the driver that other clients can access using the
SCSILookupRefNumXref function. The XPT does not interpret these flags.

A device identification record can have only one driver reference number associated
with it, but a driver reference number may be registered to multiple devices. This
function returns the scsiDeviceConflict result code if a driver is already registered
to the specified device identification record.

Because this function is always executed synchronously, the scsiCompletion field
must be set to nil.

SPECIAL CONSIDERATIONS

The SCSICreateRefNumXref function is executed synchronously and may move
memory; you should not call it at interrupt time.

RESULT CODES

SEE ALSO

See “Loading and Initializing a Driver,” beginning on page 4-11, for more information
about how device drivers are registered with the XPT.

SCSILookupRefNumXref 4

You can use the SCSILookupRefNumXref function to determine if a driver is installed
for a SCSI device.

OSErr SCSIAction(SCSIDriverPB *scsiPB);

scsiPB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

noErr 0 No error
scsiQLinkInvalid -7881 The qLink field was not 0
scsiDeviceConflict -7883 Attempt to register more than one driver to a device

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSILookupRefNumXref

function selector code (0x86).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.
4-52 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
DESCRIPTION

The SCSILookupRefNumXref function returns the driver reference number for a
device. You specify a device identification record in the scsiDevice field, and the
function returns the driver reference number in the scsiDriver field. If no driver is
registered for the device, the function returns nil in the scsiDriver field.

The scsiDriverFlags field returns the flags that were set when the driver was
registered. The scsiNextDevice field returns the device identification record of the
next device in the driver registration table. If this is the last device in the table, the
function returns 0xFF in the scsiNextDevice.bus field.

To find all registered drivers you should first call this function with a value of 0xFF in the
scsiDevice.bus field. The function returns the device identification record of the first
device in the list in the scsiNextDevice field. You can then find other drivers by
moving the scsiNextDevice value into the scsiDevice field and repeating the
operation until the function returns 0xFF in the scsiNextDevice.bus field.

Because this function is always executed synchronously, the scsiCompletion field
must be set to nil.

RESULT CODES

SCSIRemoveRefNumXref 4

You use the SCSIRemoveRefNumXref function to deregister a device driver with the XPT.

OSErr SCSIAction(SCSIDriverPB *scsiPB);

scsiPB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

← scsiDriver SInt16 The driver reference number.
← scsiDriverFlags UInt16 Optional driver flags.
← scsiNextDevice DeviceIdent The device identification record of

the next device in the driver
registration table.

noErr 0 No error
scsiQLinkInvalid -7881 The qLink field was not 0

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIRemoveRefNumXref

function selector code (0x87).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.
SCSI Manager 4.3 Reference 4-53

C H A P T E R 4

SCSI Manager 4.3
DESCRIPTION

The SCSIRemoveRefNumXref function removes a driver entry from the XPT’s driver
registration table. You specify the device identification record in the scsiDevice field.

Because this function is always executed synchronously, the scsiCompletion field
must be set to nil.

SPECIAL CONSIDERATIONS

The SCSIRemoveRefNumXref function is executed synchronously, and may move
memory; you should not call it at interrupt time.

RESULT CODES

SEE ALSO

See “Loading and Initializing a Driver,” beginning on page 4-11, for more information
about how device drivers are registered with the XPT.

SIM Support Functions 4

This section describes the functions a SIM uses to register its bus and communicate with
the XPT. If you are writing a SIM, you use these functions to

■ register, deregister, or reregister your SIM with the XPT

■ remove the existing XPT if you replace it

■ inform the XPT when your code is running

■ call a completion routine

SCSIRegisterBus 4

You use the SCSIRegisterBus function to register a SIM and HBA for use with the XPT.

OSErr SCSIRegisterBus(SIMInitInfo *SIMinfoPtr);

SIMinfoPtr A pointer to a SIM initialization record, which is described on page 4-36.

Parameter block

noErr 0 No error
scsiQLinkInvalid -7881 The qLink field was not 0
scsiNoSuchXref -7882 No driver has been cross-referenced with this device

← SIMstaticPtr UInt8 * A pointer to the allocated
static storage.

→ staticSize SInt32 The amount of memory
requested for static storage.
4-54 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
DESCRIPTION

You use the SIM initialization record to specify the characteristics of the HBA, the SIM’s
function entry points, and the number of bytes required for static data storage (global
variables). The XPT returns a pointer to the allocated storage and a bus number that
identifies the bus in all future transactions. In addition, the XPT returns pointers to the
EnteringSIM, ExitingSIM, and MakeCallback functions.

Before assigning a bus number, the XPT calls the SIM’s SIMInit function, which
instructs the SIM to initialize itself. If the SIMInit function returns noErr, the XPT
assigns a bus number and returns from the SCSIRegisterBus function. At this point
the SIM is installed and should be ready to accept requests.

SPECIAL CONSIDERATIONS

The SCSIRegisterBus function may move memory; you should not call it at interrupt
time.

RESULT CODES

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using this function.

→ SIMInit SIMInitProc A pointer to the SIMInit
function.

→ SIMAction SIMActionProc A pointer to the SIMAction
function.

→ SIMInterruptPoll InterruptPollProc A pointer to the
SIMInterruptPoll
function.

→ NewOldCall SIMActionProc A pointer to the
NewOldCall function.

→ ioPBSize UInt16 The SCSI I/O parameter
block size for this SIM.

→ oldCallCapable Boolean Set to true if the SIM
emulates original SCSI
Manager functions.

← EnteringSIM SCSIProc A pointer to the
EnteringSIM function.

← ExitingSIM SCSIProc A pointer to the
ExitingSIM function.

← MakeCallback MakeCallbackProc A pointer to the
MakeCallback function.

← busID UInt16 The bus number assigned to
this SIM/HBA.

noErr 0 No error
scsiTooManyBuse
s

-7888 SIM registration failed because the XPT registry is full
SCSI Manager 4.3 Reference 4-55

C H A P T E R 4

SCSI Manager 4.3
SCSIDeregisterBus 4

You can use the SCSIDeregisterBus function to deregister a bus that is no longer
available.

OSErr SCSIDeregisterBus(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

DESCRIPTION

The SCSIDeregisterBus function attempts to remove the SIM specified by the
scsiDevice.bus field of the parameter block. The XPT marks the bus number as
invalid and any subsequent requests to it are rejected. This function is not normally used
by the Macintosh Operating System and may not be supported in all implementations.

Because this function is always executed synchronously, the scsiCompletion field
must be set to nil.

SPECIAL CONSIDERATIONS

The SCSIDeregisterBus function may move memory; you should not call it at
interrupt time.

RESULT CODES

SCSIReregisterBus 4

You can use the SCSIReregisterBus function to reregister a bus if its entry points
change or if the XPT is replaced.

OSErr SCSIReregisterBus(SIMInitInfo *SIMinfoPtr);

SIMinfoPtr A pointer to a SIM initialization record, which is described on page 4-36.

→ scsiPBLength UInt16 The size of the parameter block.
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.

Only the bus number is required.
→ scsiCompletion CallbackProc Unused. Must be set to nil.

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiFunctionNotAvailable -7871 The function is not supported by this SIM
4-56 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
Parameter block

DESCRIPTION

You normally call the SCSIReregisterBus function in response to a
SCSIRegisterWithNewXPT request. This function is identical to SCSIRegisterBus
except that the bus number and static storage pointer are passed to the XPT, rather than
being returned by it. In addition, the XPT does not call the SIMInit function.

This function allows a SIM to retain its bus number and static storage if the XPT changes.
It is also useful if you need to change the SIM’s function entry points or other
information.

SPECIAL CONSIDERATIONS

The SCSIReregisterBus function may move memory; you should not call it at
interrupt time.

RESULT CODES

→ SIMstaticPtr UInt8 * A pointer to the SIM’s
existing static storage.

→ staticSize SInt32 The size of the SIM’s static
storage.

→ SIMInit SIMInitProc A pointer to the SIMInit
function.

→ SIMAction SIMActionProc A pointer to the SIMAction
function.

→ SIMInterruptPoll InterruptPollProc A pointer to the
SIMInterruptPoll
function.

→ NewOldCall SIMActionProc A pointer to the
NewOldCall function.

→ ioPBSize UInt16 The SCSI I/O parameter
block size for this SIM.

→ oldCallCapable Boolean Set to true if the SIM
emulates original SCSI
Manager functions.

← EnteringSIM SCSIProc A pointer to the
EnteringSIM function.

← ExitingSIM SCSIProc A pointer to the
ExitingSIM function.

← MakeCallback MakeCallbackProc A pointer to the
MakeCallback function.

→ busID UInt16 The bus number requested.

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiTooManyBuses -7888 SIM registration failed because the XPT registry is full
SCSI Manager 4.3 Reference 4-57

C H A P T E R 4

SCSI Manager 4.3
SCSIKillXPT 4

You use the SCSIKillXPT function to remove an XPT that has been replaced.

OSErr SCSIKillXPT(void *);

DESCRIPTION

The SCSIKillXPT function forces the XPT to release any memory it allocated and
remove any patches it may have installed. This function is typically called by a new XPT
after it has installed itself and reregistered all existing SIMs.

SPECIAL CONSIDERATIONS

The SCSIKillXPT function may move memory; you should not call it at interrupt time.

RESULT CODES

EnteringSIM 4

You use the EnteringSIM function to inform the XPT that your SIM code is running.

void EnteringSIM();

DESCRIPTION

The EnteringSIM function informs the XPT that subsequent code is not reentrant and
instructs the Virtual Memory Manager to defer execution of VBL tasks, Time Manager
tasks, completion routines, and any other code that could cause a page fault. A SIM must
call this function whenever its code begins executing and call the corresponding
ExitingSIM function on exit.

SPECIAL CONSIDERATIONS

You get the address of this function from the EnteringSIM field of the SIM
initialization record.

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using this function.

noErr 0 No error
4-58 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
ExitingSIM 4

The ExitingSIM function is the counterpart to the EnteringSIM function.

void ExitingSIM();

DESCRIPTION

The ExitingSIM function informs the XPT that the SIM is about to pass control to an
external routine that might cause a page fault. A SIM must call this function before
returning to the XPT or calling a completion routine.

SPECIAL CONSIDERATIONS

You get the address of this function from the ExitingSIM field of the SIM initialization
record.

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using this function.

MakeCallback 4

You use the MakeCallback function to signal the XPT to call a completion routine.

void MakeCallback(SCSI_IO *scsiPB);

scsiPB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

Parameter block

DESCRIPTION

The MakeCallback function instructs the XPT to execute the completion routine in the
SCSI I/O parameter block. The XPT restores the client’s A5 world and then calls the
completion routine. A SIM should always use this function rather than calling
completion routines directly because the XPT may chose to defer the actual execution of
the routine until page faults are safe.

You should surround a call to MakeCallback with calls to ExitingSIM and
EnteringSIM so that the Virtual Memory Manager can properly handle any page faults
caused by the completion routine.

→ scsiCompletion CallbackProc A pointer to a completion routine.
SCSI Manager 4.3 Reference 4-59

C H A P T E R 4

SCSI Manager 4.3
SPECIAL CONSIDERATIONS

You get the address of this function from the MakeCallback field of the SIM
initialization record.

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using this function.

SIM Internal Functions 4

This section describes the functions that a SIM must provide to be compatible
with SCSI Manager 4.3 and the functions that a SIM must include if it supports
original SCSI Manager emulation. These functions are called by the XPT to control
or provide information to the SIM.

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using these functions.

SIMInit 4

The XPT calls this function to initialize a SIM. The SIMInit function must conform to
the following type definition:

typedef OSErr (*SIMInitProc) (Ptr SIMinfoPtr);

SIMinfoPtr A pointer to a SIM initialization record, which is described on page 4-36.

DESCRIPTION

The XPT calls this function after a SIM has called SCSIRegisterBus. Before returning
from the SCSIRegisterBus function, the XPT calls this function to initialize the SIM.
The SIM is responsible for initializing the HBA.

The XPT passes a pointer to the SIM initialization record, which contains pointers to
the SIM’s static data storage and the required XPT entry points (EnteringSIM,
ExitingSIM, and MakeCallback).

RESULT CODES

noErr 0 No error
scsiNoHBA -7884 No HBA detected
4-60 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
SIMAction 4

The XPT calls this function when a SCSIAction request is received that needs to be
serviced by the SIM. The SIMAction function must conform to the following type
definition:

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

scsiPB A pointer to a SCSI Manager parameter block.

SIMGlobals A pointer to the SIM’s static data storage.

DESCRIPTION

The SIMAction function is responsible for handling SCSIAction requests directed to
the SIM’s bus. The XPT passes the client’s parameter block to the SIM, which should
then queue the request, execute it, and call the completion routine. The SIM must
conform to the behavior defined for the SCSIAction function.

In addition to supporting all client functions, the SIMAction function may optionally
support two requests made by the XPT, SCSIOldCall and SCSIRegisterWithNewXPT.

RESULT CODES

The SIMAction function returns a result code in the scsiResult field of the parameter
block. The code should be appropriate for the SCSIAction request being processed.

SIMInterruptPoll 4

The XPT calls this function when interrupts are disabled during a synchronous wait
loop, to give the SIM an opportunity to handle interrupts from the HBA. The
SIMAction function must conform to the following type definition:

typedef void (*InterruptPollProc) (Ptr SIMGlobals);

SIMGlobals A pointer to the SIM’s static data storage.

DESCRIPTION

If the Device Manager is waiting for a synchronous request to complete, and processor
interrupts are masked at level 2 (the level of NuBus interrupts) or higher, the XPT
periodically calls the SIMInterruptPoll function for each SIM. The SIM can then
check whether an interrupt is pending from the HBA, and execute its interrupt service
routine if necessary.
SCSI Manager 4.3 Reference 4-61

C H A P T E R 4

SCSI Manager 4.3
SCSIOldCall 4

The XPT calls this function when a client calls the original SCSI Manager function
SCSISelect.

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

scsiPB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

SIMGlobals A pointer to the SIM’s static data storage.

Parameter block

DESCRIPTION

This function indicates the beginning of an original SCSI Manager transaction. A SIM
that supports original SCSI Manager emulation should attempt to select the device
described in the scsiDevice field. Because the entire SCSI transaction is not completed
by a call to SCSIOldCall, the result code for this function is returned in the
scsiOldCallResult field rather than the scsiResult field, as with other functions.
Subsequent original SCSI Manager function calls for this transaction are made through
the NewOldCall function.

If the SIM successfully selects the device, it should queue the parameter block like any
other SCSI I/O parameter block. The parameter block should not be removed until the
NewOldCall function completes a SCSIComplete command.

To provide full compatibility with the original SCSI Manager, a SIM must be able to
perform a SCSI arbitration and select process independent of a SCSI message-out or
command phase. If the SIM requires the CDB or message-out bytes it will not be able to
perform the select operation at the time of the SCSIOldCall request. The SIM should
return noErr in the scsiOldCallResult field and wait for a subsequent I/O request
before actually selecting the device.

RESULT CODES

The SCSIOldCall function returns an appropriate SCSISelect result code in the
scsiOldCallResult field of the parameter block.

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIOldCall function selector

code (0x84).
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

← scsiCurrentPhase UInt16 The current SCSI bus phase.
→ scsiSelector SInt16 The SCSISelect trap selector (0x02).
← scsiOldCallResult OSErr The result code from SCSISelect.
4-62 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
NewOldCall 4

The XPT calls this function when a client calls any of the original SCSI Manager
functions other than SCSISelect (which is handled by SCSIOldCall). The
NewOldCall function must conform to the following type definition:

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

scsiPB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

SIMGlobals A pointer to the SIM’s static data storage.

Parameter block

DESCRIPTION

After an original SCSI Manager transaction begins, the NewOldCall function receives all
subsequent original SCSI Manager function requests until the transaction is completed.
The XPT converts all original SCSI Manager function requests (except SCSIGet and
SCSIStat) into SCSI Manager 4.3 parameter block requests and sends them to the
appropriate SIM.

A SIM uses the scsiSelector field of the parameter block to determine which
function to perform and should return the current bus phase and message byte in the
appropriate fields after each request.

The XPT converts a SCSIReset request into a SCSIResetBus request and sends it to
all SIMs that support original SCSI Manager emulation. The XPT handles SCSIStat
requests itself, using the information returned in the scsiCurrentPhase field.

RESULT CODES

Result codes from all emulated functions except SCSIComplete are returned in the
scsiOldCallResult field. The SCSIComplete result is returned in scsiResult.
This indicates to the XPT that the transaction is complete and that the SIM is ready to
start a new original SCSI Manager transaction. See the chapter “SCSI Manager” in this
book for a list of original SCSI Manager result codes.

→ scsiPBLength UInt16 The size of the parameter block.
← scsiResult OSErr The SCSIComplete result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

← scsiCurrentPhase UInt16 The current SCSI bus phase.
→ scsiSelector SInt16 The _SCSIDispatch trap selector.
← scsiOldCallResult OSErr The function result code.
← scsiSCSImessage UInt8 The SCSIComplete message byte.
SCSI Manager 4.3 Reference 4-63

C H A P T E R 4

SCSI Manager 4.3
SCSIRegisterWithNewXPT 4

This function informs a SIM that a new XPT layer has been installed. The SIM should call
the SCSIReregisterBus function to register itself with the new XPT.

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

scsiPB A pointer to a SCSI Manager parameter block.

SIMGlobals A pointer to the SIM’s static data storage.

Parameter block

DESCRIPTION

After a new XPT installs itself, and before it removes the old XPT, it sends the
SCSIRegisterWithNewXPT request to all SIMs registered with the old XPT. Each SIM
should then call the SCSIReregisterBus function to register with the new XPT. This
allows SIMs to keep their existing bus number and static data storage when installing
themselves in a new XPT.

RESULT CODES

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIRegisterWithNewXPT

function selector code (0x88).

noErr 0 No error
scsiQLinkInvalid -7881 The qLink field was not 0
4-64 SCSI Manager 4.3 Reference

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
Summary of SCSI Manager 4.3 4

C Summary 4

Constants 4

enum {

scsiVERSION = 43

};

/* SCSI Manager function codes */

enum {

SCSINop = 0x00, /* no operation */

SCSIExecIO = 0x01, /* execute a SCSI IO transaction */

SCSIBusInquiry = 0x03, /* bus inquiry */

SCSIReleaseQ = 0x04, /* release a frozen SIM queue */

SCSIAbortCommand = 0x10, /* abort a SCSI command */

SCSIResetBus = 0x11, /* reset the SCSI bus */

SCSIResetDevice = 0x12, /* reset a SCSI device */

SCSITerminateIO = 0x13, /* terminate I/O transaction */

SCSIGetVirtualIDInfo = 0x80, /* return DeviceIdent of virtual ID */

SCSILoadDriver = 0x82, /* load a driver from a SCSI device */

SCSIOldCall = 0x84, /* begin old-API emulation */

SCSICreateRefNumXref = 0x85, /* register a device driver */

SCSILookupRefNumXref = 0x86, /* find a driver reference number */

SCSIRemoveRefNumXref = 0x87, /* deregister a device driver */

SCSIRegisterWithNewXPT = 0x88, /* XPT replaced; SIM must reregister */

vendorUnique = 0xC0 /* 0xC0 through 0xFF */

};

/* allocation lengths for parameter block fields */

enum {

handshakeDataLength = 8, /* handshake data length */

maxCDBLength = 16, /* space for the CDB bytes/pointer */

vendorIDLength = 16 /* ASCII string length for vendor ID */

};
Summary of SCSI Manager 4.3 4-65

C H A P T E R 4

SCSI Manager 4.3
/* types for the scsiTransferType field */

enum {

scsiTransferBlind = 0, /* DMA if available, otherwise blind */

scsiTransferPolled /* polled */

};

/* types for the scsiDataType field */

enum {

scsiDataBuffer = 0, /* single contiguous buffer supplied */

scsiDataTIB = 1, /* TIB supplied (ptr in scsiDataPtr) */

scsiDataSG = 2 /* scatter/gather list supplied */

};

/* flags for the scsiResultFlags field */

enum {

scsiSIMQFrozen = 0x0001, /* the SIM queue is frozen */

scsiAutosenseValid = 0x0002, /* autosense data valid for target */

scsiBusNotFree = 0x0004 /* SCSI bus is not free */

};

/* bit numbers of the scsiFlags field */

enum {

kbSCSIDisableAutosense = 29, /* disable autosense feature */

kbSCSIFlagReservedA = 28,

kbSCSIFlagReserved0 = 27,

kbSCSICDBLinked = 26, /* the PB contains a linked CDB */

kbSCSIQEnable = 25, /* target queue actions are enabled */

kbSCSICDBIsPointer = 24, /* the CDB field contains a pointer */

kbSCSIFlagReserved1 = 23,

kbSCSIInitiateSyncData = 22, /* attempt sync data transfer and SDTR */

kbSCSIDisableSyncData = 21, /* disable sync, go to async */

kbSCSISIMQHead = 20, /* place PB at the head of SIM queue */

kbSCSISIMQFreeze = 19, /* freeze the SIM queue */

kbSCSISIMQNoFreeze = 18, /* disable SIM queue freezing */

kbSCSIDoDisconnect = 17, /* definitely do disconnect */

kbSCSIDontDisconnect = 16, /* definitely don't disconnect */

kbSCSIDataReadyForDMA = 15, /* data buffer(s) are ready for DMA */

kbSCSIFlagReserved3 = 14,

kbSCSIDataPhysical = 13, /* S/G buffer data ptrs are physical */

kbSCSISensePhysical = 12, /* autosense buffer ptr is physical */

kbSCSIFlagReserved5 = 11,

kbSCSIFlagReserved6 = 10,

kbSCSIFlagReserved7 = 9,

kbSCSIFlagReserved8 = 8,
4-66 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
kbSCSIDataBufferValid = 7, /* data buffer valid */

kbSCSIStatusBufferValid = 6, /* status buffer valid */

kbSCSIMessageBufferValid= 5, /* message buffer valid */

kbSCSIFlagReserved9 = 4

};

/* bit masks for the scsiFlags field */

enum {

scsiDirectionMask = 0xC0000000, /* data direction mask */

scsiDirectionNone = 0xC0000000, /* data direction (11: no data) */

scsiDirectionReserved = 0x00000000, /* data direction (00: reserved) */

scsiDirectionOut = 0x80000000, /* data direction (10: DATA OUT) */

scsiDirectionIn = 0x40000000, /* data direction (01: DATA IN) */

scsiDisableAutosense = 0x20000000, /* disable auto sense feature */

scsiFlagReservedA = 0x10000000,

scsiFlagReserved0 = 0x08000000,

scsiCDBLinked = 0x04000000, /* the PB contains a linked CDB */

scsiQEnable = 0x02000000, /* target queue actions enabled */

scsiCDBIsPointer = 0x01000000, /* the CDB field is a pointer */

scsiFlagReserved1 = 0x00800000,

scsiInitiateSyncData = 0x00400000, /* attempt sync data xfer & SDTR */

scsiDisableSyncData = 0x00200000, /* disable sync, go to async */

scsiSIMQHead = 0x00100000, /* place PB at the head of queue */

scsiSIMQFreeze = 0x00080000, /* freeze the SIM queue */

scsiSIMQNoFreeze = 0x00040000, /* disallow SIM Q freezing */

scsiDoDisconnect = 0x00020000, /* definitely do disconnect */

scsiDontDisconnect = 0x00010000, /* definitely don't disconnect */

scsiDataReadyForDMA = 0x00008000, /* buffer(s) are ready for DMA */

scsiFlagReserved3 = 0x00004000,

scsiDataPhysical = 0x00002000, /* S/G buffer ptrs are physical */

scsiSensePhysical = 0x00001000, /* autosense ptr is physical */

scsiFlagReserved5 = 0x00000800,

scsiFlagReserved6 = 0x00000400,

scsiFlagReserved7 = 0x00000200,

scsiFlagReserved8 = 0x00000100

};

/* bit masks for the scsiIOFlags field */

enum {

scsiNoParityCheck = 0x0002, /* disable parity checking */

scsiDisableSelectWAtn = 0x0004, /* disable select w/Atn */

scsiSavePtrOnDisconnect = 0x0008, /* SaveDataPointer on disconnect */

scsiNoBucketIn = 0x0010, /* don’t bit-bucket on input */

scsiNoBucketOut = 0x0020, /* don’t bit-bucket on output */
Summary of SCSI Manager 4.3 4-67

C H A P T E R 4

SCSI Manager 4.3
scsiDisableWide = 0x0040, /* disable wide negotiation */

scsiInitiateWide = 0x0080, /* initiate wide negotiation */

scsiRenegotiateSense = 0x0100, /* renegotiate sync/wide */

scsiIOFlagReserved0080 = 0x0080,

scsiIOFlagReserved8000 = 0x8000

};

/* SIM queue actions. */

enum {

scsiSimpleQTag = 0x20, /* tag for a simple queue */

scsiHeadQTag = 0x21, /* tag for head of queue */

scsiOrderedQTag = 0x22 /* tag for ordered queue */

};

/* scsiHBAInquiry field bits */

enum {

scsiBusMDP = 0x80, /* supports Modify Data Pointer message */

scsiBusWide32 = 0x40, /* supports 32-bit wide SCSI */

scsiBusWide16 = 0x20, /* supports 16-bit wide SCSI */

scsiBusSDTR = 0x10, /* supports SDTR message */

scsiBusLinkedCDB = 0x08, /* supports linked CDBs */

scsiBusTagQ = 0x02, /* supports tag queue message */

scsiBusSoftReset = 0x01 /* supports soft reset */

};

/* scsiDataTypes field bits */

/* bits 0-15 Apple-defined, 16-30 vendor unique, 31 = reserved */

enum {

scsiBusDataBuffer = (1<<scsiDataBuffer), /* single buffer */

scsiBusDataTIB = (1<<scsiDataTIB), /* TIB (ptr in scsiDataPtr) */

scsiBusDataSG = (1<<scsiDataSG), /* scatter/gather list */

scsiBusDataReserved = 0x80000000

};

/* scsiScanFlags field bits */

enum {

scsiBusScansDevices = 0x80, /* bus scans and maintains device list */

scsiBusScansOnInit = 0x40, /* bus scans at startup */

scsiBusLoadsROMDrivers = 0x20 /* may load ROM drivers for targets */

};
4-68 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
/* scsiFeatureFlags field bits */

enum {

scsiBusInternalExternalMask = 0x000000C0, /* internal/external mask*/

scsiBusInternalExternalUnknown = 0x00000000, /* unknown if in or out */

scsiBusInternalExternal = 0x000000C0, /* both inside and outside */

scsiBusInternal = 0x00000080, /* bus goes inside the box */

scsiBusExternal = 0x00000040, /* bus goes outside the box */

scsiBusCacheCoherentDMA = 0x00000020, /* DMA is cache coherent */

scsiBusOldCallCapable = 0x00000010, /* SIM supports old API */

scsiBusDifferential = 0x00000004, /* uses differential bus */

scsiBusFastSCSI = 0x00000002, /* HBA supports fast SCSI */

scsiBusDMAavailable = 0x00000001 /* DMA is available */

};

/* scsiWeirdStuff field bits */

enum {

/* disconnects on odd byte boundries are unsafe with DMA or blind reads */

scsiOddDisconnectUnsafeRead1 = 0x0001,

/* disconnects on odd byte boundries unsafe with DMA or blind writes */

scsiOddDisconnectUnsafeWrite1 = 0x0002,

/* non-handshaked delays or disconnects on blind transfer may hang */

scsiBusErrorsUnsafe = 0x0004,

/* non-handshaked delays or disconnects on blind transfer may corrupt */

scsiRequiresHandshake = 0x0008,

/* targets that initiate synchronous negotiations are supported */

scsiTargetDrivenSDTRSafe = 0x0010

};

/* scsiHBAslotType values */

enum {

scsiMotherboardBus = 0x01, /* a built-in Apple bus */

scsiNuBus = 0x02, /* a SIM on a NuBus card */

scsiPDSBus = 0x03 /* a SIM on a PDS card */

};

/* flags for the scsiDriverFlags field */

enum {

scsiDeviceSensitive = 0x0001, /* only driver should access this device */

scsiDeviceNoOldCallAccess = 0x0002 /* device does not support old API */

};
Summary of SCSI Manager 4.3 4-69

C H A P T E R 4

SCSI Manager 4.3
/* SCSI Phases (used by SIMs that support the original SCSI Manager) */

enum {

kDataOutPhase, /* encoded MSG, C/D, I/O bits */

kDataInPhase,

kCommandPhase,

kStatusPhase,

kPhaseIllegal0,

kPhaseIllegal1,

kMessageOutPhase,

kMessageInPhase,

kBusFreePhase, /* additional phases */

kArbitratePhase,

kSelectPhase

};

Data Types 4

/* SCSI callback function prototypes */

typedef pascal void (*CallbackProc) (void * scsiPB);

typedef void (*AENCallbackProc) (void);

typedef OSErr (*SIMInitProc) (Ptr SIMinfoPtr);

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

typedef void (*SCSIProc) (void);

typedef void (*MakeCallbackProc) (void * scsiPB);

typedef SInt32 (*InterruptPollProc) (Ptr SIMGlobals);

struct DeviceIdent

{

UInt8 diReserved; /* reserved */

UInt8 bus; /* SCSI - bus number */

UInt8 targetID; /* SCSI - target SCSI ID */

UInt8 LUN; /* SCSI - logical unit number */

};

typedef struct DeviceIdent DeviceIdent;

union CDB

{

UInt8 *cdbPtr; /* pointer to the CDB, or */

UInt8 cdbBytes[maxCDBLength]; /* the actual CDB to send */

};

typedef union CDB CDB, *CDBPtr;
4-70 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
struct SGRecord

{

Ptr SGAddr; /* scatter/gather buffer address */

UInt32 SGCount; /* buffer size */

};

typedef struct SGRecord SGRecord;

#define SCSIPBHdr \

struct SCSIHdr *qLink; /* internal use, must be nil */ \

SInt16 scsiReserved1; /* -> reserved for input */ \

UInt16 scsiPBLength; /* -> length of the entire PB */ \

UInt8 scsiFunctionCode; /* -> function selector */ \

UInt8 scsiReserved2; /* <- reserved for output*/ \

OSErr scsiResult; /* <- returned result */ \

DeviceIdent scsiDevice; /* -> device ID (bus+target+LUN) */ \

CallbackProc scsiCompletion; /* -> completion routine pointer */ \

UInt32 scsiFlags; /* -> assorted flags */ \

UInt8 *scsiDriverStorage; /* <> pointer for driver private use */ \

Ptr scsiXPTprivate; /* private field for XPT */ \

SInt32 scsiReserved3; /* reserved */

struct SCSI_PB

{

SCSIPBHdr

};

typedef struct SCSI_PB SCSI_PB;

#define SCSI_IO_Macro \

SCSIPBHdr /* header information fields */ \

UInt16 scsiResultFlags; /* <- flags that modify scsiResult */ \

UInt16 scsiReserved12; /* -> reserved */ \

UInt8 *scsiDataPtr; /* -> data pointer */ \

UInt32 scsiDataLength; /* -> data transfer length */ \

UInt8 *scsiSensePtr; /* -> autosense data buffer pointer */ \

UInt8 scsiSenseLength; /* -> size of the autosense buffer */ \

UInt8 scsiCDBLength; /* -> number of bytes for the CDB */ \

UInt16 scsiSGListCount; /* -> number of S/G list entries */ \

UInt32 scsiReserved4; /* <- reserved for output */ \

UInt8 scsiSCSIstatus; /* <- returned SCSI device status */ \

SInt8 scsiSenseResidual; /* <- autosense residual length */ \

UInt16 scsiReserved5; /* <- reserved for output */ \

SInt32 scsiDataResidual; /* <- data residual length */ \

CDB scsiCDB; /* -> actual CDB or pointer to CDB */ \

SInt32 scsiTimeout; /* -> timeout value */ \
Summary of SCSI Manager 4.3 4-71

C H A P T E R 4

SCSI Manager 4.3
UInt8 *scsiReserved13; /* -> reserved */ \

UInt16 scsiReserved14; /* -> reserved */ \

UInt16 scsiIOFlags; /* -> additional I/O flags */ \

UInt8 scsiTagAction; /* -> what to do for tag queuing */ \

UInt8 scsiReserved6; /* -> reserved for input */ \

UInt16 scsiReserved7; /* -> reserved for input */ \

UInt16 scsiSelectTimeout; /* -> select timeout value */ \

UInt8 scsiDataType; /* -> data description type */ \

UInt8 scsiTransferType; /* -> transfer type (blind/polled) */ \

UInt32 scsiReserved8; /* -> reserved for input */ \

UInt32 scsiReserved9; /* -> reserved for input */ \

UInt16 scsiHandshake[handshakeDataLength]; /* -> handshake info */ \

UInt32 scsiReserved10; /* -> reserved for input */ \

UInt32 scsiReserved11; /* -> reserved for input */ \

struct SCSI_IO *scsiCommandLink; /* -> linked command pointer */ \

UInt8 scsiSIMpublics[8]; /* -> reserved for SIM input */ \

UInt8 scsiAppleReserved6[8]; /* -> reserved for input */ \

/* XPT private fields for original SCSI Manager emulation */ \

UInt16 scsiCurrentPhase; /* <- bus phase after old call */ \

SInt16 scsiSelector; /* -> selector for old call */ \

OSErr scsiOldCallResult; /* <- result of old call */ \

UInt8 scsiSCSImessage; /* <- SCSIComplete message byte */ \

UInt8 XPTprivateFlags; /* <> XPT private flags */ \

UInt8 XPTextras[12]; /* reserved */

struct SCSI_IO

{

SCSI_IO_Macro

};

typedef struct SCSI_IO SCSI_IO;

typedef SCSI_IO SCSIExecIOPB;

struct SCSIBusInquiryPB

{

SCSIPBHdr /* header information fields */

UInt16 scsiEngineCount; /* <- number of engines on HBA */

UInt16 scsiMaxTransferType; /* <- number of xfer types supported */

UInt32 scsiDataTypes; /* <- data types supported by this SIM */

UInt16 scsiIOpbSize; /* <- size of SCSI_IO PB for this SIM */

UInt16 scsiMaxIOpbSize; /* <- largest SCSI_IO PB for all SIMs */

UInt32 scsiFeatureFlags; /* <- supported features flags field */

UInt8 scsiVersionNumber; /* <- version number for the SIM/HBA */

UInt8 scsiHBAInquiry; /* <- mimic of INQ byte 7 for the HBA */

UInt8 scsiTargetModeFlags; /* <- flags for target mode support */
4-72 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
UInt8 scsiScanFlags; /* <- scan related feature flags */

UInt32 scsiSIMPrivatesPtr; /* <- pointer to SIM private data */

UInt32 scsiSIMPrivatesSize; /* <- size of SIM private data */

UInt32 scsiAsyncFlags; /* <- reserved for input */

UInt8 scsiHiBusID; /* <- highest path ID in the subsystem */

UInt8 scsiInitiatorID; /* <- ID of the HBA on the SCSI bus */

UInt16 scsiBIReserved0; /* reserved */

UInt32 scsiBIReserved1; /* reserved */

UInt32 scsiFlagsSupported; /* <- which scsiFlags are supported */

UInt16 scsiIOFlagsSupported; /* <- which scsiIOFlags are supported */

UInt16 scsiWeirdStuff; /* <- flags for strange behavior */

UInt16 scsiMaxTarget; /* <- maximum target ID supported */

UInt16 scsiMaxLUN; /* <- maximum LUN supported */

SInt8 scsiSIMVendor[vendorIDLength]; /* <- vendor ID of the SIM */

SInt8 scsiHBAVendor[vendorIDLength]; /* <- vendor ID of the HBA */

SInt8 scsiControllerFamily[vendorIDLength]; /* <- controller family */

SInt8 scsiControllerType[vendorIDLength]; /* <- controller model */

SInt8 scsiXPTversion[4]; /* <- version number of XPT */

SInt8 scsiSIMversion[4]; /* <- version number of SIM */

SInt8 scsiHBAversion[4]; /* <- version number of HBA */

UInt8 scsiHBAslotType; /* <- type of slot this HBA is in */

UInt8 scsiHBAslotNumber; /* <- slot number of this HBA */

UInt16 scsiSIMsRsrcID; /* <- sResource ID of this SIM */

UInt16 scsiBIReserved3; /* <- reserved for input */

UInt16 scsiAdditionalLength; /* <- additional length of PB */

};

typedef struct SCSIBusInquiryPB SCSIBusInquiryPB;

struct SCSIAbortCommandPB

{

SCSIPBHdr /* header information fields */

SCSI_IO *scsiIOptr; /* -> pointer to the PB to abort */

};

typedef struct SCSIAbortCommandPB SCSIAbortCommandPB;

struct SCSITerminateIOPB

{

SCSIPBHdr /* header information fields */

SCSI_IO *scsiIOptr; /* -> pointer to the PB to terminate */

};

typedef struct SCSITerminateIOPB SCSITerminateIOPB;
Summary of SCSI Manager 4.3 4-73

C H A P T E R 4

SCSI Manager 4.3
struct SCSIGetVirtualIDInfoPB

{

SCSIPBHdr /* header information fields */

UInt16 scsiOldCallID; /* -> SCSI ID of device in question */

Boolean scsiExists; /* <- true if device exists */

};

typedef struct SCSIGetVirtualIDInfoPB SCSIGetVirtualIDInfoPB;

struct SCSIDriverPB

{

SCSIPBHdr /* header information fields */

SInt16 scsiDriver; /* -> driver refNum, for CreateRefNumXref */

/* <- for LookupRefNumXref */

UInt16 scsiDriverFlags; /* <> details of driver/device */

DeviceIdent scsiNextDevice; /* <- DeviceIdent of the next driver */

};

typedef struct SCSIDriverPB SCSIDriverPB;

struct SCSILoadDriverPB

{

SCSIPBHdr /* header information fields */

SInt16 scsiLoadedRefNum; /* <- SIM returns driver reference number */

Boolean scsiDiskLoadFailed; /* -> if true, previous call failed */

};

typedef struct SCSILoadDriverPB SCSILoadDriverPB;

struct SIMInitInfo

{

UInt8 *SIMstaticPtr; /* <- pointer to the SIM's static data */

SInt32 staticSize; /* -> size requested for SIM static data */

SIMInitProc SIMInit; /* -> pointer to the SIMInit function */

SIMActionProc SIMAction; /* -> pointer to the SIMAction function */

SCSIProc SIM_ISR; /* reserved */

InterruptPollProc SIMInterruptPoll; /* -> pointer to SIMInterruptPoll */

SIMActionProc NewOldCall; /* -> pointer to NewOldCall function */

UInt16 ioPBSize; /* -> size of SCSI_IO PB for this SIM */

Boolean oldCallCapable; /* -> true if SIM handles old-API calls */

UInt8 simInfoUnused1; /* reserved */

SInt32 simInternalUse; /* not affected or viewed by XPT */

SCSIProc XPT_ISR; /* reserved */

SCSIProc EnteringSIM; /* <- pointer to EnteringSIM function */

SCSIProc ExitingSIM; /* <- pointer to ExitingSIM function */

MakeCallbackProc MakeCallback; /* <- pointer to MakeCallback function */

UInt16 busID; /* <- bus number for the registered bus */
4-74 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
UInt16 simInfoUnused3; /* <- reserved */

SInt32 simInfoUnused4; /* <- reserved */

};

typedef struct SIMInitInfo SIMInitInfo;

Functions 4

OSErr SCSIAction (SCSI_PB *scsiPB);

OSErr SCSIRegisterBus (SIMInitInfo *SIMinfoPtr);

OSErr SCSIDeregisterBus (SCSI_PB *scsiPB);

OSErr SCSIReregisterBus (SIMInitInfo *SIMinfoPtr);

OSErr SCSIKillXPT (void *);

Pascal Summary 4

Constants 4

CONST

scsiVERSION = 43;

{SCSI Manager function codes}

SCSINop = $00; {no operation}

SCSIExecIO = $01; {execute a SCSI IO transaction}

SCSIBusInquiry = $03; {bus inquiry}

SCSIReleaseQ = $04; {release a frozen SIM queue}

SCSIAbortCommand = $10; {abort a SCSI command}

SCSIResetBus = $11; {reset the SCSI bus}

SCSIResetDevice = $12; {reset a SCSI device}

SCSITerminateIO = $13; {terminate I/O transaction}

SCSIGetVirtualIDInfo = $80; {return DeviceIdent of virtual ID}

SCSILoadDriver = $82; {load a driver from a SCSI device}

SCSIOldCall = $84; {begin old-API emulation}

SCSICreateRefNumXref = $85; {register a device driver}

SCSILookupRefNumXref = $86; {find a driver reference number}

SCSIRemoveRefNumXref = $87; {deregister a device driver}

SCSIRegisterWithNewXPT = $88; {XPT replaced; SIM must reregister}

vendorUnique = $C0; {$C0 through $FF}
Summary of SCSI Manager 4.3 4-75

C H A P T E R 4

SCSI Manager 4.3
{allocation lengths for parameter block fields}

handshakeDataLength = 8; {handshake data length}

maxCDBLength = 16; {space for the CDB bytes/pointer}

vendorIDLength = 16; {ASCII string length for Vendor ID}

{types for the scsiTransferType field}

scsiTransferBlind = 0; {DMA if available, otherwise blind}

scsiTransferPolled = 1; {polled}

{types for the scsiDataType field}

scsiDataBuffer = 0; {single contiguous buffer supplied}

scsiDataTIB = 1; {TIB supplied (ptr in scsiDataPtr)}

scsiDataSG = 2; {scatter/gather list supplied}

{flags for the scsiResultFlags field}

scsiSIMQFrozen = $0001; {the SIM queue is frozen}

scsiAutosenseValid = $0002; {autosense data valid for target}

scsiBusNotFree = $0004; {SCSI bus is not free}

{bit numbers in the scsiFlags field}

kbSCSIDisableAutosense = 29; {disable auto sense feature}

kbSCSIFlagReservedA = 28;

kbSCSIFlagReserved0 = 27;

kbSCSICDBLinked = 26; {the PB contains a linked CDB}

kbSCSIQEnable = 25; {target queue actions are enabled}

kbSCSICDBIsPointer = 24; {the CDB field contains a pointer}

kbSCSIFlagReserved1 = 23;

kbSCSIInitiateSyncData = 22; {attempt sync data transfer and SDTR}

kbSCSIDisableSyncData = 21; {disable sync, go to async}

kbSCSISIMQHead = 20; {place PB at the head of SIM queue}

kbSCSISIMQFreeze = 19; {freeze the SIM queue}

kbSCSISIMQNoFreeze = 18; {disable SIM queue freezing}

kbSCSIDoDisconnect = 17; {definitely do disconnect}

kbSCSIDontDisconnect = 16; {definitely don't disconnect}

kbSCSIDataReadyForDMA = 15; {data buffer(s) are ready for DMA}

kbSCSIFlagReserved3 = 14;

kbSCSIDataPhysical = 13; {S/G buffer data ptrs are physical}

kbSCSISensePhysical = 12; {autosense buffer ptr is physical}

kbSCSIFlagReserved5 = 11;

kbSCSIFlagReserved6 = 10;

kbSCSIFlagReserved7 = 9;

kbSCSIFlagReserved8 = 8;

kbSCSIDataBufferValid = 7; {data buffer valid}
4-76 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
kbSCSIStatusBufferValid = 6; {status buffer valid}

kbSCSIMessageBufferValid = 5; {message buffer valid}

kbSCSIFlagReserved9 = 4;

{bit masks for the scsiFlags field}

scsiDirectionMask = $C0000000; {data direction mask}

scsiDirectionNone = $C0000000; {data direction (11: no data)}

scsiDirectionReserved = $00000000; {data direction (00: reserved)}

scsiDirectionOut = $80000000; {data direction (10: DATA OUT)}

scsiDirectionIn = $40000000; {data direction (01: DATA IN)}

scsiDisableAutosense = $20000000; {disable auto sense feature}

scsiFlagReservedA = $10000000;

scsiFlagReserved0 = $08000000;

scsiCDBLinked = $04000000; {the PB contains a linked CDB}

scsiQEnable = $02000000; {target queue actions enabled}

scsiCDBIsPointer = $01000000; {the CDB field is a pointer}

scsiFlagReserved1 = $00800000;

scsiInitiateSyncData = $00400000; {attempt sync data xfer & SDTR}

scsiDisableSyncData = $00200000; {disable sync; go to async}

scsiSIMQHead = $00100000; {place PB at the head of queue}

scsiSIMQFreeze = $00080000; {freeze the SIM queue}

scsiSIMQNoFreeze = $00040000; {disallow SIM Q freezing}

scsiDoDisconnect = $00020000; {definitely do disconnect}

scsiDontDisconnect = $00010000; {definitely don't disconnect}

scsiDataReadyForDMA = $00008000; {buffer(s) are ready for DMA}

scsiFlagReserved3 = $00004000;

scsiDataPhysical = $00002000; {S/G buffer ptrs are physical}

scsiSensePhysical = $00001000; {autosense ptr is physical}

scsiFlagReserved5 = $00000800;

scsiFlagReserved6 = $00000400;

scsiFlagReserved7 = $00000200;

scsiFlagReserved8 = $00000100;

{bit masks for the scsiIOFlags field}

scsiNoParityCheck = $0002; {disable parity checking}

scsiDisableSelectWAtn = $0004; {disable select w/Atn}

scsiSavePtrOnDisconnect = $0008; {SaveDataPointer on disconnect}

scsiNoBucketIn = $0010; {don’t bit-bucket on input}

scsiNoBucketOut = $0020; {don’t bit-bucket on output}

scsiDisableWide = $0040; {disable wide negotiation}

scsiInitiateWide = $0080; {initiate wide negotiation}

scsiRenegotiateSense = $0100; {renegotiate sync/wide}

scsiIOFlagReserved0080 = $0080;

scsiIOFlagReserved8000 = $8000;
Summary of SCSI Manager 4.3 4-77

C H A P T E R 4

SCSI Manager 4.3
{SIM queue actions}

scsiSimpleQTag = $20; {tag for a simple queue}

scsiHeadQTag = $21; {tag for head of queue}

scsiOrderedQTag = $22; {tag for ordered queue}

{scsiHBAInquiry field bits}

scsiBusMDP = $80; {supports Modify Data Pointer message}

scsiBusWide32 = $40; {supports 32-bit wide SCSI}

scsiBusWide16 = $20; {supports 16-bit wide SCSI}

scsiBusSDTR = $10; {supports SDTR message}

scsiBusLinkedCDB = $08; {supports linked CDBs}

scsiBusTagQ = $02; {supports tag queue message}

scsiBusSoftReset = $01; {supports soft reset}

{scsiDataTypes field bits}

{bits 0-15 Apple-defined, 16-30 vendor unique, 31 = reserved}

scsiBusDataBuffer = $00000001; {single buffer}

scsiBusDataTIB = $00000002; {TIB (pointer in scsiDataPtr)}

scsiBusDataSG = $00000004; {scatter/gather list}

scsiBusDataReserved = $80000000;

{scsiScanFlags field bits}

scsiBusScansDevices = $80; {bus scans and maintains device list}

scsiBusScansOnInit = $40; {bus scans at startup}

scsiBusLoadsROMDrivers = $20; {may load ROM drivers for targets}

{scsiFeatureFlags field bits}

scsiBusInternalExternalMask = $000000C0; {internal/external mask}

scsiBusInternalExternalUnknown = $00000000; {unknown if in or out}

scsiBusInternalExternal = $000000C0; {both inside and outside}

scsiBusInternal = $00000080; {bus goes inside the box}

scsiBusExternal = $00000040; {bus goes outside the box}

scsiBusCacheCoherentDMA = $00000020; {DMA is cache coherent}

scsiBusOldCallCapable = $00000010; {SIM supports old-API}

scsiBusDifferential = $00000004; {uses differential bus}

scsiBusFastSCSI = $00000002; {HBA supports fast SCSI}

scsiBusDMAavailable = $00000001; {DMA is available}

{scsiWeirdStuff field bits}

scsiOddDisconnectUnsafeRead1 = $0001; {odd byte disconnects unsafe}

scsiOddDisconnectUnsafeWrite1 = $0002; {odd byte disconnects unsafe}

scsiBusErrorsUnsafe = $0004; {delays or disconnects may hang}

scsiRequiresHandshake = $0008; {delays/disconnects may corrupt}

scsiTargetDrivenSDTRSafe = $0010; {target-driven STDR supported}
4-78 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
{scsiHBAslotType values}

scsiMotherboardBus = $01; {a built-in Apple bus}

scsiNuBus = $02; {a SIM on a NuBus card}

scsiPDSBus = $03; {a SIM on a PDS card}

{flags for the scsiDriverFlags field}

scsiDeviceSensitive = $0001; {only driver should access the device}

scsiDeviceNoOldCallAccess = $0002; {device does not support old API}

{SCSI Phases (used by SIMs that support the original SCSI Manager)}

kDataOutPhase = $00; {encoded MSG, C/D, I/O bits}

kDataInPhase = $01;

kCommandPhase = $02;

kStatusPhase = $03;

kPhaseIllegal0 = $04;

kPhaseIllegal1 = $05;

kMessageOutPhase = $06;

kMessageInPhase = $07;

kBusFreePhase = $08; {additional phases}

kArbitratePhase = $09;

kSelectPhase = $0A;

Data Types 4

TYPE

{SCSI callback function prototypes}

CallbackProc = ProcPtr;

AENCallbackProc = ProcPtr;

SIMInitProc = ProcPtr;

SIMActionProc = ProcPtr;

SCSIProc = ProcPtr;

MakeCallbackProc = ProcPtr;

InterruptPollProc = ProcPtr;

TYPE

DI =

PACKED RECORD

diReserved: Byte; {reserved}

bus: Byte; {SCSI - bus number}

targetID: Byte; {SCSI - target SCSI ID}

LUN: Byte; {SCSI - logical unit number}

END;

DeviceIdent = DI;
Summary of SCSI Manager 4.3 4-79

C H A P T E R 4

SCSI Manager 4.3
CDBRec =

PACKED RECORD

CASE Integer OF

0: cdbPtr: ^Byte; {pointer to the CDB, or}

1: cdbBytes: ARRAY [0..15] OF Byte; {the actual CDB to send}

END;

CDB = CDBRec;

CDBPtr = ^CDBRec;

SGR =

PACKED RECORD

SGAddr: Ptr; {scatter/gather buffer address}

SGCount: LongInt; {buffer size}

END;

SGRecord = SGR;

SCSIHdr =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

END;

SCSI_PB = SCSIHdr;

SCSI_IO =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}
4-80 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiResultFlags: Integer; {<- flags that modify scsiResult}

scsiReserved12: Integer; {-> reserved}

scsiDataPtr: ^Byte; {-> data pointer}

scsiDataLength: LongInt; {-> data transfer length}

scsiSensePtr: ^Byte; {-> autosense data buffer pointer}

scsiSenseLength: Byte; {-> size of the autosense buffer}

scsiCDBLength: Byte; {-> number of bytes for the CDB}

scsiSGListCount: Integer; {-> number of S/G list entries}

scsiReserved4: LongInt; {<- reserved for output}

scsiSCSIstatus: Byte; {<- returned SCSI device status}

scsiSenseResidual: Char; {<- autosense residual length}

scsiReserved5: Integer; {<- reserved for output}

scsiDataResidual: LongInt; {<- data residual length}

scsiCDB: CDB; {-> actual CDB or pointer to CDB}

scsiTimeout: LongInt; {-> timeout value}

scsiReserved13: ^Byte; {-> reserved}

scsiReserved14: Integer; {-> reserved}

scsiIOFlags: Integer; {-> additional I/O flags}

scsiTagAction: Byte; {-> what to do for tag queuing}

scsiReserved6: Byte; {-> reserved for input}

scsiReserved7: Integer; {-> reserved for input}

scsiSelectTimeout: Integer; {-> select timeout value}

scsiDataType: Byte; {-> data description type}

scsiTransferType: Byte; {-> transfer type (blind/polled)}

scsiReserved8: LongInt; {-> reserved for input}

scsiReserved9: LongInt; {-> reserved for input}

scsiHandshake: ARRAY [0..7] OF Integer; {-> handshake info}

scsiReserved10: LongInt; {-> reserved for input}

scsiReserved11: LongInt; {-> reserved for input}

scsiCommandLink: ^SCSI_IO; {-> linked command pointer}

scsiSIMpublics: ARRAY [0..7] OF Byte; {-> reserved for SIM input}

scsiAppleReserved6: ARRAY [0..7] OF Byte; {-> reserved for input}

scsiCurrentPhase: Integer; {<- bus phase after old call}

scsiSelector: Integer; {-> selector for old call}

scsiOldCallResult: OSErr; {<- result of old call}

scsiSCSImessage: Byte; {<- SCSIComplete message byte}

XPTprivateFlags: Byte; {<> XPT private flags}

XPTextras: ARRAY [0..11] OF Byte; {reserved}

END;

SCSIExecIOPB = SCSI_IO;
Summary of SCSI Manager 4.3 4-81

C H A P T E R 4

SCSI Manager 4.3
SCSIBusInquiryPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiEngineCount: Integer; {<- number of engines on HBA}

scsiMaxTransferType: Integer; {<- number of xfer types supported}

scsiDataTypes: LongInt; {<- data types supported by SIM}

scsiIOpbSize: Integer; {<- size of SCSI_IO PB for SIM}

scsiMaxIOpbSize: Integer; {<- largest SCSI_IO PB registered}

scsiFeatureFlags: LongInt; {<- supported features flags field}

scsiVersionNumber: Byte; {<- version number for the SIM/HBA}

scsiHBAInquiry: Byte; {<- mimic of INQ byte 7 for HBA}

scsiTargetModeFlags: Byte; {<- flags for target mode support}

scsiScanFlags: Byte; {<- scan related feature flags}

scsiSIMPrivatesPtr: LongInt; {<- pointer to SIM private data}

scsiSIMPrivatesSize: LongInt; {<- size of SIM private data}

scsiAsyncFlags: LongInt; {<- reserved for input}

scsiHiBusID: Byte; {<- highest bus ID registered}

scsiInitiatorID: Byte; {<- ID of the HBA on the SCSI bus}

scsiBIReserved0: Integer; { reserved}

scsiBIReserved1: LongInt; { reserved}

scsiFlagsSupported: LongInt; {<- which scsiFlags are supported}

scsiIOFlagsSupported: Integer; {<- which scsiIOFlags supported}

scsiWeirdStuff: Integer; {<- flags for strange behavior}

scsiMaxTarget: Integer; {<- maximum target ID supported}

scsiMaxLUN: Integer; {<- maximum LUN supported}

scsiSIMVendor: ARRAY [0..15] OF Char; {<- vendor ID of the SIM}

scsiHBAVendor: ARRAY [0..15] OF Char; {<- vendor ID of the HBA}

scsiControllerFamily: ARRAY [0..15] OF Char; {<- controller family}

scsiControllerType: ARRAY [0..15] OF Char; {<- controller model}

scsiXPTversion: ARRAY [0..3] OF Char; {<- version number of XPT}

scsiSIMversion: ARRAY [0..3] OF Char; {<- version number of SIM}

scsiHBAversion: ARRAY [0..3] OF Char; {<- version number of HBA}
4-82 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiHBAslotType: Byte; {<- type of slot this HBA is in}

scsiHBAslotNumber: Byte; {<- slot number of this HBA}

scsiSIMsRsrcID: Integer; {<- sResource ID of this SIM}

scsiBIReserved3: Integer; {<- reserved for input}

scsiAdditionalLength: Integer; {<- additional length of PB}

END;

SCSIAbortCommandPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiIOptr: ^SCSI_IO; {-> pointer to the PB to abort}

END;

SCSITerminateIOPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiIOptr: ^SCSI_IO; {-> pointer to the PB to terminate}

END;

SCSIGetVirtualIDInfoPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}
Summary of SCSI Manager 4.3 4-83

C H A P T E R 4

SCSI Manager 4.3
scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiOldCallID: Integer; {-> SCSI ID of device in question}

scsiExists: Boolean; {<- true if device exists}

END;

SCSIDriverPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiDriver: Integer; {<> driver reference number}

scsiDriverFlags: Integer; {<> details of driver/device}

scsiNextDevice: DeviceIdent; {<- DeviceIdent of the next driver}

END;

SCSILoadDriverPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}
4-84 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiLoadedRefNum: Integer; {<- SIM returns driver refNum}

scsiDiskLoadFailed: Boolean; {-> if true, previous call failed}

END;

SIMInitInfo =

PACKED RECORD

SIMstaticPtr: ^Byte; {<- pointer to SIM's static data}

staticSize: LongInt; {-> requested SIM static data size}

SIMInit: SIMInitProc; {-> SIMInit function pointer}

SIMAction: SIMActionProc; {-> SIMAction function pointer}

SIM_ISR: SCSIProc; { reserved}

SIMInterruptPoll: InterruptPollProc; {-> SIMInterruptPoll function}

NewOldCall: SIMActionProc; {-> NewOldCall function pointer}

ioPBSize: Integer; {-> size of SCSI_IO PB for SIM}

oldCallCapable: Boolean; {-> true if SIM supports old-API}

simInfoUnused1: Byte; { reserved}

simInternalUse: LongInt; { not affected or viewed by XPT}

XPT_ISR: SCSIProc; { reserved}

EnteringSIM: SCSIProc; {<- EnteringSIM function pointer}

ExitingSIM: SCSIProc; {<- ExitingSIM function pointer}

MakeCallback: MakeCallbackProc; {<- MakeCallback function ptr}

busID: Integer; {<- bus number assigned by XPT}

simInfoUnused3: Integer; {<- reserved}

simInfoUnused4: LongInt; {<- reserved}

END;

Routines 4

FUNCTION SCSIAction (VAR ioPtr: SCSI_PB): OSErr;

FUNCTION SCSIRegisterBus (VAR ioPtr: SIMInitInfo): OSErr;

FUNCTION SCSIDeregisterBus (VAR ioPtr: SIMInitInfo): OSErr;

FUNCTION SCSIReregisterBus (VAR ioPtr: SIMInitInfo): OSErr;

FUNCTION SCSIKillXPT (VAR ioPtr: SIMInitInfo): OSErr;
Summary of SCSI Manager 4.3 4-85

C H A P T E R 4

SCSI Manager 4.3
Assembly-Language Summary 4

Data Structures 4

The Device Identification Record

The Command Descriptor Block Record

The Scatter/Gather List Element

The SCSI Manager Parameter Block Header

The SCSI I/O Parameter Block

0 diReserved byte reserved
1 bus byte bus number
2 targetID byte target SCSI ID
3 LUN byte logical unit number

0 cdbPtr long CDB buffer pointer
4 cdbBytes 16 bytes CDB buffer

0 SGAddr long buffer pointer
4 SGCount long buffer size

0 qLink long used internally by the SCSI Manager
4 scsiReserved word reserved
6 scsiPBLength word parameter block size
8 scsiFunctionCode byte function selector code
9 scsiReserved2 byte reserved

10 scsiResult word result code
12 scsiDevice 4 bytes device ID (bus number, target ID, LUN)
16 scsiCompletion long completion routine
20 scsiFlags long flags
24 scsiDriverStorage long driver private data
28 scsiXPTprivate long reserved
32 scsiReserved3 long reserved

0 SCSIPBHdr 36 bytes parameter block header
36 scsiResultFlags word I/O result flags
38 scsiReserved12 word reserved
40 scsiDataPtr long data buffer pointer
44 scsiDataLength long data buffer size
48 scsiSensePtr long autosense buffer pointer
52 scsiSenseLength byte autosense buffer size
53 scsiCDBLength byte CDB size
54 scsiSGListCount word number of scatter/gather list entries
56 scsiReserved4 long reserved
60 scsiSCSIstatus byte SCSI device status
4-86 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
The SCSI Bus Inquiry Parameter Block

61 scsiSenseResidual byte autosense residual length
62 scsiReserved5 word reserved
64 scsiDataResidual long data transfer residual length
68 scsiCDB 16 bytes command descriptor block record
84 scsiTimeout long timeout value, in Time Manager format
88 scsiReserved13 long reserved
92 scsiReserved14 long reserved
94 scsiIOFlags word I/O flags
96 scsiTagAction byte reserved
97 scsiReserved6 byte reserved
98 scsiReserved7 word reserved

100 scsiSelectTimeout word selection timeout value, in milliseconds
102 scsiDataType byte data type of scsiDataPtr
103 scsiTransferType byte transfer mode (polled or blind)
104 scsiReserved8 long reserved
108 scsiReserved9 long reserved
112 scsiHandshake 16 bytes handshaking instructions
128 scsiReserved10 long reserved
132 scsiReserved1 long reserved
136 scsiCommandLink long linked parameter block pointer
140 scsiSIMpublics 8 bytes additional input to SIM
148 scsiAppleReserved6 8 bytes reserved
156 scsiCurrentPhase word bus phase after original SCSI Manager function
158 scsiSelector word _SCSIDispatch selector for original function
160 scsiOldCallResult word result code of original function
162 scsiSCSImessage byte SCSIComplete message byte
163 XPTprivateFlags byte reserved
164 XPTextras 12 bytes reserved

0 SCSIPBHdr 36 bytes parameter block header
36 scsiEngineCount word number of engines on the HBA
38 scsiMaxTransferType word number of data transfer types supported
40 scsiDataTypes long bit map of supported data types
44 scsiIOpbSize word SCSI I/O parameter block size for this SIM
46 scsiMaxIOpbSize word largest parameter block for any registered SIM
48 scsiFeatureFlags long bus feature flags
52 scsiVersionNumber byte SIM/HBA version number
53 scsiHBAInquiry byte bus capability flags
54 scsiTargetModeFlags byte reserved
55 scsiScanFlags byte scan feature flags
56 scsiSIMPrivatesPtr long SIM private data pointer
60 scsiSIMPrivatesSize long SIM private data size
64 scsiAsyncFlags long reserved
68 scsiHiBusID byte highest registered bus number
69 scsiInitiatorID byte SCSI ID of the HBA
70 scsiBIReserved0 word reserved
72 scsiBIReserved1 long reserved
76 scsiFlagsSupported long bit map of supported scsiFlags
Summary of SCSI Manager 4.3 4-87

C H A P T E R 4

SCSI Manager 4.3
The SCSI Abort Command Parameter Block

The SCSI Terminate I/O Parameter Block

The SCSI Virtual ID Information Parameter Block

The SCSI Load Driver Parameter Block

The SCSI Driver Identification Parameter Block

80 scsiIOFlagsSupported word bit map of supported scsiIOFlags
82 scsiWeirdStuff word miscellaneous flags
84 scsiMaxTarget word highest SCSI ID supported by the HBA
86 scsiMaxLUN word highest LUN supported by the HBA
88 scsiSIMVendor 16 bytes SIM vendor string

104 scsiHBAVendor 16 bytes HBA vendor string
120 scsiControllerFamily 16 bytes SCSI controller family string
136 scsiControllerType 16 bytes SCSI controller type string
152 scsiXPTversion 4 bytes XPT version string
156 scsiSIMversion 4 bytes SIM version string
160 scsiHBAversion 4 bytes HBA version string
164 scsiHBAslotType byte HBA slot type
165 scsiHBAslotNumber byte HBA slot number
166 scsiSIMsRsrcID word SIM sResource ID
168 scsiBIReserved3 word reserved
170 scsiAdditionalLength word additional size of the parameter block

0 SCSIPBHdr 36 bytes parameter block header
36 scsiIOptr long SCSI I/O parameter block pointer

0 SCSIPBHdr 36 bytes parameter block header
36 scsiIOptr long SCSI I/O parameter block pointer

0 SCSIPBHdr 36 bytes parameter block header
36 scsiOldCallID word virtual SCSI ID of the device to search for
38 scsiExists byte Boolean (true if the device was found)

0 SCSIPBHdr 36 bytes parameter block header
36 scsiLoadedRefNum word driver reference number
38 scsiDiskLoadFailed byte Boolean (true if a driver could not be loaded)

0 SCSIPBHdr 36 bytes parameter block header
36 scsiDriver word driver reference number
38 scsiDriverFlags word driver flags
40 scsiNextDevice 4 bytes device ID of the next device in the list
4-88 Summary of SCSI Manager 4.3

C H A P T E R 4

SCSI Manager 4.3

4
S

C
S

I M
anager 4.3
The SIM Initialization Record

Trap Macros 4

Trap Macros Requiring Routine Selectors

_SCSIAtomic

0 SIMstaticPtr long SIM private data pointer
4 staticSize long SIM private data size
8 SIMInit long SIMInit function pointer

12 SIMAction long SIMAction function pointer
16 SIM_ISR long reserved
20 SIMInterruptPoll long SIMInterruptPoll function pointer
24 NewOldCall long NewOldCall function pointer
28 ioPBSize word SCSI I/O parameter block size for this SIM
30 oldCallCapable byte Boolean (true if SIM accepts original functions)
31 simInfoUnused1 byte reserved
32 simInternalUse long SIM private data
36 XPT_ISR long reserved
40 EnteringSIM long EnteringSIM function pointer
44 ExitingSIM long ExitingSIM function pointer
48 MakeCallback long MakeCallback function pointer
52 busID word bus number
54 simInfoUnused3 word reserved
56 simInfoUnused4 long reserved

Selector Routine

$0001 SCSIAction

$0002 SCSIRegisterBus

$0003 SCSIDeregisterBus

$0004 SCSIReregisterBus

$0005 SCSIKillXPT
Summary of SCSI Manager 4.3 4-89

C H A P T E R 4

SCSI Manager 4.3
Result Codes 4

noErr 0 No error
scsiRequestInProgress 1 Parameter block request is in progress
scsiCDBLengthInvalid -7863 The CDB length supplied is not supported by this SIM;

typically this means it was too big
scsiTransferTypeInvalid -7864 The scsiTransferType is not supported by this SIM
scsiDataTypeInvalid -7865 SIM does not support the requested scsiDataType
scsiIDInvalid -7866 The initiator ID is invalid
scsiLUNInvalid -7867 The logical unit number is invalid
scsiTIDInvalid -7868 The target ID is invalid
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiFunctionNotAvailable -7871 The requested function is not supported by this SIM
scsiPBLengthError -7872 The parameter block length is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiNoSuchXref -7882 No driver has been cross-referenced with this device
scsiDeviceConflict -7883 Attempt to register more than one driver to a device
scsiNoHBA -7884 No HBA detected
scsiDeviceNotThere -7885 SCSI device not installed or available
scsiProvideFail -7886 Unable to provide the requested service
scsiBusy -7887 SCSI subsystem is busy
scsiTooManyBuses -7888 SIM registration failed because the XPT registry is full
scsiCDBReceived -7910 The SCSI CDB was received
scsiNoNexus -7911 Nexus is not established
scsiTerminated -7912 Parameter block request terminated by the host
scsiBDRsent -7913 A SCSI bus device reset (BDR) message was sent to

the target
scsiWrongDirection -7915 Data phase was in an unexpected direction
scsiSequenceFail -7916 Target bus phase sequence failure
scsiUnexpectedBusFree -7917 Unexpected bus free phase
scsiDataRunError -7918 Data overrun/underrun error
scsiAutosenseFailed -7920 Automatic REQUEST SENSE command failed
scsiParityError -7921 An uncorrectable parity error occurred
scsiSCSIBusReset -7922 Execution of this parameter block was halted because of

a SCSI bus reset
scsiMessageRejectReceived -7923 REJECT message received
scsiIdentifyMessageRejected -7924 The target issued a REJECT message in response to the

IDENTIFY message; the LUN probably does not exist
scsiCommandTimeout -7925 The timeout value for this parameter block was

exceeded and the parameter block was aborted
scsiSelectTimeout -7926 Target selection timeout
scsiUnableToTerminate -7927 Unable to terminate I/O parameter block request
scsiNonZeroStatus -7932 The target returned non-zero status upon completion of

the request
scsiUnableToAbort -7933 Unable to abort parameter block request
scsiRequestAborted -7934 Parameter block request aborted by the host
4-90 Summary of SCSI Manager 4.3

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	SCSI Manager 4.3
	About SCSI Manager 4.3
	Transport
	SCSI Interface Modules
	System Performance
	Compatibility

	Using SCSI Manager 4.3
	Locating SCSI Devices
	Describing Data Buffers
	Handshaking Instructions
	Error Recovery Techniques
	Optional Features

	Writing a SCSI Device Driver
	Loading and Initializing a Driver
	Selecting a Startup Device
	Transitions Between SCSI Environments
	Handling Asynchronous Requests
	Handling Immediate Requests
	Virtual Memory Compatibility

	Writing a SCSI Interface Module
	SIM Initialization and Operation
	Supporting the Original SCSI Manager
	Handshaking of Blind Transfers
	Supporting DMA
	Loading Drivers

	SCSI Manager 4.3 Reference
	Data Structures
	Simple Data Types
	Device Identification Record
	Command Descriptor Block Record
	Scatter/Gather List Element
	SCSI Manager Parameter Block Header
	SCSI I/O Parameter Block
	SCSI Bus Inquiry Parameter Block
	SCSI Abort Command Parameter Block
	SCSI Terminate I/O Parameter Block
	SCSI Virtual ID Information Parameter Block
	SCSI Load Driver Parameter Block
	SCSI Driver Identification Parameter Block
	SIM Initialization Record

	SCSI Manager 4.3 Functions
	Client Functions
	SIM Support Functions
	SIM Internal Functions

	Summary of SCSI Manager 4.3
	C Summary
	Constants
	Data Types
	Functions

	Pascal Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

