CHAPTER 4

SCSI Manager 4.3

SCSI Manager 4.3 is an enhanced version of the SCSI Manager that provides new
features as well as compatibility with the original version. SCSI Manager 4.3 is contained
in the ROM of high-performance computers such as the Macintosh Quadra 840AV and
the Power Macintosh 8100/80. Beginning with system software version 7.5, SCSI
Manager 4.3 is also available as a system extension that can be installed in any
Macintosh computer that uses the NCR 53C96 SCSI controller chip.

In addition to the capabilities of the original SCSI Manager, SCSI Manager 4.3 provides
= support for asynchronous SCSII/O

= support for optional SCSI features such as disconnect/reconnect

= a hardware-independent programming interface that minimizes the SCSI-specific
tasks a device driver must perform

You should read this chapter if you are writing a SCSI device driver or other software for
Macintosh computers that use SCSI Manager 4.3. To make best use of this chapter, you
should understand the Device Manager and the implementation of device drivers in
Macintosh computers. If you are designing a SCSI peripheral device for the Macintosh,
you should read Designing Cards and Drivers for the Macintosh Family, third edition, and
Guide to the Macintosh Family Hardware, second edition.

This chapter assumes you are familiar with the following SCSI specifications established
by the American National Standards Institute (ANSI):

= X3.131-1986, Small Computer System Interface
= X3.131-1994, Small Computer System Interface—2
» X3.232 (draft), SCSI-2 Common Access Method

If you are writing a device driver for a block-structured storage device such as hard disk,
you should also read the chapter “SCSI Manager” in this book for information about the
structure of block devices used by the Macintosh Operating System. Because many
Macintosh models continue to use the original SCSI Manager, you may want to design
your software to operate with both SCSI Manager 4.3 and the original SCSI Manager.

£'v 1oBeuep 1SOS -

About SCSI Manager 4.3

The SCSI Manager 4.3 application program interface (API) is modeled on the Common
Access Method (CAM) software interface being developed by ANSI committee X3T9.
The SCSI Manager 4.3 interface, however, includes Apple-specific differences required
for compatibility with the original SCSI Manager and the Macintosh Operating System.

The CAM specification defines the operation of three functional units—the transport
(XPT), the SCSI interface module (SIM), and the host bus adapter (HBA). The XPT

is the entry point to SCSI Manager 4.3 and is responsible for passing requests to the
appropriate SIM. Each SIM is responsible for managing the HBA for a particular bus.

In addition to the XPT, SCSI Manager 4.3 includes a SIM for managing the NCR
53C96 SCSI controller used in high-performance Macintosh computers. Other SIM

About SCSI Manager 4.3 4-3

CHAPTER 4

SCSI Manager 4.3

modules and HBA hardware can be added at any time by Apple or third-party
developers. For example, a NuBus or PDS expansion card can provide an additional
SCSI bus, which device drivers can access through SCSI Manager 4.3 in exactly the
same way as the internal bus. Figure 4-1 shows the relationship between device
drivers, SCSI Manager 4.3, and the SCSI controller hardware.

Figure 4-1 The SCSI Manager 4.3 architecture

SCSI device
CIEEE Standard Asynchronous
SCSI driver SCSI driver
(Criginal SCSI (SCSI Manager 4.3
Manager interface) interface)

I I

Transport (XPT)

e I

interface SIM SIM
modules

SCSI Manager 4.3

Hardware

Host bus

adaptors 53C96 HBA Other HBA

The features and capabilities of SCSI Manager 4.3 include

= SCSI-2 compliance. All mandatory SCSI-2 messages and protocol actions are
supported as defined for an initiator. Optional SCSI-2 hardware features, such as
fast and wide transfers, are anticipated by the SCSI Manager 4.3 architecture and
supported by the interface.

» Concurrent asynchronous I/0. SCSI Manager 4.3 handles both synchronous and
asynchronous I/O requests. In addition, it allows multiple device drivers to issue
multiple requests and attempts to overlap the operations as much as possible.

» Hardware-independent programming interface. A new hardware-independent
interface allows device drivers to work with any SCSI Manager 4.3-compatible host
bus adapter (HBA), including those from third-party developers.

About SCSI Manager 4.3

CHAPTER 4

SCSI Manager 4.3

Direct memory access (DMA). SCSI Manager 4.3 automatically takes advantage

of the DMA capabilities available in high-performance Macintosh models. Direct
memory access allows the computer to perform other functions while data bytes are
transferred to or from the SCSI bus.

Support for multiple buses. SCSI Manager 4.3 supports any number of SCSI buses,
each with a full complement of devices. For example, on Macintosh computers with
dual SCSI buses (such as the Power Macintosh 8100/80), up to 14 SCSI devices can be
attached. In addition, developers can design NuBus or PDS expansion cards that offer
enhanced SCSI bus capabilities.

Support for multiple logical units on each target. SCSI Manager 4.3 allows access to
all logical units on a target device. Logical units are treated as separate entities, and
I/O requests are queued according to logical unit number (LUN).

Disconnect/reconnect. This capability helps maximize SCSI bus utilization by
allowing a device to disconnect and release control of the SCSI bus while it processes
a command, then reconnect when it is ready to complete the transaction. This allows a
device driver to submit requests to multiple targets so that those requests are executed
in parallel. For example, the driver for a disk array can issue a request to one disk,
which disconnects, then issue another request to a different disk. The two disks can
perform their seek operations simultaneously, reducing the effective seek time.

Parity detection. SCSI Manager 4.3 detects and handles parity errors in data received
from a target. For compatibility reasons, this feature can be disabled on a per-
transaction basis. (All Macintosh computers generate parity for write operations, but
the original SCSI Manager does not detect parity errors in incoming data.)

Autosense. SCSI Manager 4.3 automatically sends a REQUEST SENSE command in
response to a CHECK CONDI Tl ON status and retrieves the sense data. This feature can
be disabled.

Compatibility. SCSI Manager 4.3 supports all original SCSI Manager functions and
TIB instructions, except for scConp (compare).

Transport

The SCSI Manager 4.3 transport (XPT) provides the software interface to applications
and device drivers, and is responsible for

About SCSI Manager 4.3

providing the means to register host bus adapters, their characteristics, and their
respective SCSI interface modules

routing requests to the proper SCSI interface module
notifying the caller when a request is complete

providing the high-level facilities for emulating the original SCSI Manager interface.
This consists of maintaining a translation table of SCSI ID numbers and their
corresponding host bus adapters, and directing original SCSI Manager requests
accordingly

isolating SCSI interface modules from certain operating system requirements, such as
those imposed by the Virtual Memory Manager

4-5

£'v 1oBeuep 1SOS -

1-6

CHAPTER 4

SCSI Manager 4.3

SCSI Interface Modules

A SCSI interface module (SIM) provides the software interface between the transport
(XPT) and a host bus adapter (HBA) in SCSI Manager 4.3. The SIM processes and executes
SCSI requests directed to it by the XPT and is responsible for handling all aspects of

a SCSI transaction, including

= maintaining the request queue, including freezing and unfreezing for error handling
as necessary, and queuing multiple operations for all logical units on all target devices

» managing the selection, disconnection, reconnection, and data pointers of the SCSI
protocol

= assigning tags for tag queuing, if supported

= managing the HBA hardware

» identifying abnormal conditions on the SCSI bus and performing error recovery
» providing a time-out mechanism for tracking SCSI command execution

= emulating original SCSI Manager functions, if supported

System Performance

In terms of maximum data transfer (bytes-per-second) over the internal SCSI bus,
SCSI Manager 4.3 performs similarly to the original SCSI Manager. This aspect of
performance is limited by the capability of the SCSI controller hardware and can be
improved by adding a faster HBA.

In terms of overall system performance, the asynchronous capability of SCSI Manager
4.3 can provide significant benefits by allowing application code to regain control of the
system while a SCSI transaction is in progress. This concurrency is a key benefit of
asynchronous operation. In addition, support for disconnect/reconnect allows
applications to initiate multiple I/ O requests on multiple targets simultaneously,
allowing further increases in throughput.

Multiple bus systems offer the added benefit of concurrency between buses. If DMA is
used for both buses, their data transfer periods can be overlapped as well.

Compatibility

All the functions provided by the original SCSI Manager are emulated by the SCSI
Manager 4.3 XPT and SIM for the internal SCSI bus. This level of compatibility is
optional for third-party SIM/HBA developers. When a SIM registers its HBA with the
SCSI Manager 4.3 XPT, the SIM specifies whether or not it is able to emulate the original
SCSI Manager functions by setting the ol dCal | Capabl e field of the SIM initialization
record.

When an application or device driver calls the original SCSI Manager function SCS| Get,
the XPT sets a flag preventing any additional SCSI Get function calls but performs

no other action. Upon receipt of a SCSI Sel ect function call, the XPT issues a

SCSI A dCal | request to the appropriate SIM, which places the request in its queue.

About SCSI Manager 4.3

CHAPTER 4

SCSI Manager 4.3

Once the SCSI A dCal | request begins execution, the SIM emulates subsequent original
SCSI Manager function calls passed to it by the XPT. During this emulation, no new
requests are processed until the entire transaction is completed and the SCSI Conpl et e
function returns. Any SCSI Get or SCSI Sel ect requests received after the start of a
SCSI A dCal | request are rejected and return the scMyr BusyEr r code.

While the original SCSI Manager emulation is in progress, asynchronous requests made
by other applications or device drivers (using SCSI Manager 4.3 functions) are queued
but do not execute until the emulation is complete. Requests to other SIMs are not
affected and continue to execute normally.

The SCSI Reset function resets only those buses that are capable of handling original
SCSI Manager functions. The SCSI St at function returns results as accurate as possible
for the SIM/HBA handling the request.

The scConp (compare) TIB instruction is not supported by SCSI Manager 4.3 because
DMA transfers do not permit this type of compare operation. This should pose few
compatibility problems because this instruction is rarely used. You can, of course,
write your own code to compare data on a SCSI device with data in memory.

WARNING

Applications or device drivers that bypass the SCSI Manager for any
part of a transaction are not supported and will interfere with the
operation of SCSI Manager 4.3. a

Using SCSI Manager 4.3

A fundamental difference between SCSI Manager 4.3 and the original SCSI Manager is
that a single function, SCSI Act i on, handles an entire SCSI transaction. You do not need
to explicitly arbitrate for the bus, select a device, or send a SCSI command. In most cases,
your program does not need to be aware of SCSI bus phases.

The SCSI Act i on function is the entry point for all SCSI Manager 4.3 client functions.
These functions provide the services that clients (applications and device drivers) need
to communicate with SCSI devices. The only parameter to SCSI Act i on is a pointer to a
SCSI Manager parameter block data structure. You use the scsi Funct i onCode field of
the parameter block to specify which function to perform. Most functions use specialized
versions of the parameter block to carry the input parameters and return the results.

For example, the SCSI Bus| nqui ry function requires a SCSI bus inquiry parameter
block (SCSI Bus| nqui r yPB).

Perhaps the most important SCSI Act i on function is SCSI Execl O which you use

to request a SCSI 1/0O transaction. This function uses the SCSI I/O parameter block

(SCsI Execl OPB), which specifies the destination of the request (the bus, target, and
logical unit), the command descriptor block (CDB), the data buffers that either contain or
receive the data, and a variety of other fields and flags required to fulfill the transaction.

You can call the SCSI Execl Ofunction either synchronously or asynchronously. If the
scsi Conpl et i on field of the parameter block contains a pointer to a completion

Using SCSI Manager 4.3 4-7

£'v 1oBeuep 1SOS -

4-8

CHAPTER 4

SCSI Manager 4.3

routine, the SCSI Manager executes the function asynchronously. If you set the
scsi Conpl et i on field to ni |, the request is executed synchronously.

Because of interrupt handling considerations, device drivers must issue synchronous
SCSI Execl Orequests as such, rather than issuing them asynchronously and creating

a synchronous wait loop inside the device driver. See “Writing a SCSI Device Driver,”
beginning on page 4-11, for more information about the proper handling of synchronous
and asynchronous requests by device drivers. Applications are not subject to the same
restrictions as device drivers and may create synchronous wait loops if desired.

Different SIM implementations may require additional fields beyond the standard fields
of the SCSI I/O parameter block. Some of these may be input or output fields providing
access to special capabilities of a SIM; others may be private fields required during the
processing of the request. You can use the SCSI Bus| nqui ry function to determine the
size of the SCSI I/O parameter block for a particular SIM, as well as the largest
parameter block required by any registered SIM.

You can also use the SCSI Bus| nqui ry function to get information about various
hardware and software characteristics of a SIM and its HBA. You can use this
information to form a request that takes advantage of all the capabilities of a SIM.

Parameter blocks are queued separately for each logical unit (LUN) on a target device.
When an error occurs during a SCSI Execl Orequest, the SIM freezes the queue for the
LUN on which the error occurred, to allow you to perform any necessary error recovery.
After correcting the error condition, you must use the SCSI Rel easeQfunction to enable
normal handling of I/O requests to that LUN. See “Error Recovery Techniques” on

page 4-10 for more information.

Locating SCSI Devices

SCSI Manager 4.3 supports multiple buses, allowing a client to specify a device based
on its bus number as well as its target ID and LUN. To emulate original SCSI Manager
functions that understand only a target ID, the technique first used in the Macintosh
Quadra 900 has been expanded to include not only built-in SCSI buses but any
compatible HBA installed in a NuBus or PDS expansion slot.

When multiple buses are registered with the XPT, emulated original SCSI Manager
transactions are directed to the first bus that responds to a selection for the requested
target ID. The target ID specified in a SCSI Sel ect function is called the virtual ID
because it designates a device on the single virtual bus (which encompasses all original
SCSI Manager-compatible buses).

When you make a SCSI Sel ect request, the XPT first attempts to select a device on the
built-in internal bus. If there is no response on that bus, the XPT tries the built-in external
bus (on models that include two SCSI buses), or the first registered add-on bus.
Additional buses are searched in the order they were registered.

When the XPT finds a device that responds to the selection, all subsequent SCSI Sel ect
requests are directed to the bus on which that selection occurred. Until a successful
selection occurs on one of the buses, the virtual ID is not assigned to any physical bus.

Using SCSI Manager 4.3

CHAPTER 4

SCSI Manager 4.3

Once established, the mapping of virtual ID to physical bus is not changed until restart.
You can use the SCSI Get Vi r t ual | DI nf o function to determine which physical bus a
device is attached to.

It is possible for devices to be available through the original SCSI Manager interface but
not through the SCSI Manager 4.3 interface. For example, a third-party SIM may install
its own XPT if SCSI Manager 4.3 is not available. This creates a functional SCSI Manager
4.3 interface that does not include the built-in SCSI bus. Another possibility is the
presence of a third-party SCSI adapter that does not comply with SCSI Manager 4.3 but
patches the original SCSI Manager interface to create its own virtual bus. To locate all
SCSI devices in these environments you must use the SCSI Manager 4.3 functions to scan
for devices on all SIMs and then use the original SCSI Manager functions to scan for
devices that are not accessible through the SCSI Manager 4.3 interface.

Describing Data Buffers

SCSI Manager 4.3 recognizes three data types for describing the source and destination
memory buffers for a SCSI data transfer. The most familiar is a simple buffer, consisting
of a single contiguous block of memory. An extension of this is the scatter/gather list,
which consists of one or more elements, each of which describes the location and size of
one buffer. Scatter/ gather lists allow you to group multiple buffers of any size into a
single virtual buffer for an I/O transaction.

In addition to these, SCSI Manager 4.3 supports the transfer instruction block (TIB) data
type used by the original SCSI Manager interface. This structure is used only for
emulating original SCSI Manager functions. During the execution of a SCSI Read,

SCSI Wit e, SCSI RBI i nd, or SCSI VBI i nd function, TIB instructions are interpreted by
the SCSI Manager to determine the source and destination of the data. See the chapter
“SCSI Manager” in this book for more information about TIB instructions.

Handshaking Instructions

In the original SCSI Manager interface, you use TIB instructions to show the SCSI
Manager where long delays (greater than 16 microseconds) may occur in a blind transfer.
Without these instructions, the SCSI Manager can lose data or crash the system if delays
occur at unexpected times in a data transfer.

You use the scsi Handshake field of the SCSII/O parameter block to specify
handshaking instructions to SCSI Manager 4.3. This field contains a series of word
values, each of which specifies the number of bytes between potential delays in the
SCSI data transfer. You terminate the instructions with a value of 0.

For example, a “1, 511”7 TIB is a common TIB structure used with disk drives that have a
512-byte block size and sometimes experience a delay between the first and second bytes
in the block, as well as a delay between the last byte of a block and the first byte of the
following block. This TIB structure translates to a scsi Handshake field of “1, 511, 0”,
which indicates a request to synchronize and transfer 1 byte, synchronize and transfer
511 bytes, synchronize and transfer 1 byte, and so on.

Using SCSI Manager 4.3 4-9

£'v 1oBeuep 1SOS -

4-10

CHAPTER 4

SCSI Manager 4.3

Like the original SCSI Manager, SCSI Manager 4.3 always synchronizes on the first
byte of a data phase. In addition, the handshaking cycle is reset whenever a device
disconnects. That is, the cycle starts over from the beginning when a device reconnects.
The scsi Handshake field should also indicate where a device may disconnect.

The handshaking cycle continues across scatter / gather list elements. For example, if
the handshake array contains “2048, 0” and the scatter/gather list specifies a transfer of
512 bytes and then 8192 bytes, a handshake synchronization will occur 1536 bytes into
the second scatter / gather element.

You should use polled transfers for devices that may experience unpredictable delays
during the data phase or can disconnect at unpredictable times.

Error Recovery Techniques

SCSI Manager 4.3 provides a feature called queue freezing that you can use to recover
from I/O errors. When a SCSI Execl Orequest returns an error, the SIM freezes the

I/0O queue for the LUN that caused the error. You can then issue additional requests with
the scsi SI MQHead flag set so that they will be inserted in front of any requests that
were already in the queue. You can use this method to perform retries, block remapping,
or other error recovery techniques. After inserting your error handling requests, you

call the SCSI Rel easeQfunction to allow the request at the head of the queue to

be dispatched. If necessary, multiple requests can be single-stepped by setting the

scsi S| MJFr eeze flag as well as the scsi SI MQHead flag on each of the requests

and following each with a SCSI Rel easeQcall.

Note

You can disable queue freezing for a single transaction by setting the
scsi S| MNoFr eeze flag. O

Optional Features

The following optional features may not be supported by all SIMs. You should use the
SCSI Busl nqui ry function to determine which features are supported by a particular
bus.

= synchronous data transfer
» target command queuing
= HBA engine support

= target mode

= asynchronous event notification

Using SCSI Manager 4.3

CHAPTER 4

SCSI Manager 4.3

Writing a SCSI Device Driver

This section provides additional information you need to write a device driver that is
compatible with both SCSI Manager 4.3 and the original SCSI Manager.

Loading and Initializing a Driver

During system startup of Macintosh models that do not include SCSI Manager 4.3 in
ROM, the Start Manager scans the SCSI bus from SCSI ID 6 to SCSI ID 0, looking for
devices that have both an Appl e_HFS and Appl e_Dr i ver partition. For each device
found, the driver is loaded and executed, and installs itself into the unit table. The driver
then places an element in the drive queue for any HFS partitions that are on the drive.

When SCSI Manager 4.3 is present in ROM, the Start Manager loads all SCSI Manager 4.3
drivers from all devices on all registered buses. Drivers that support SCSI Manager 4.3 are
identified by the string Appl e_Dr i ver 43 in the pnPar Type field of the partition map.
Traditional (Appl e_Dr i ver) drivers are then loaded for any devices on the virtual bus
that do not contain a SCSI Manager 4.3 driver.

If SCSI Manager 4.3 is not present in ROM, the Start Manager treats SCSI Manager 4.3
drivers exactly like traditional drivers. Because the Start Manager in earlier Macintosh
computers checks only the first 12 characters of the pnPar Type field before loading and
executing a driver, both SCSI Manager 4.3 drivers and traditional drivers will load on
these models. To initialize the driver, the Start Manager jumps to the first byte of the
driver’s code (using a JSRinstruction), with register D5 set to the SCSI ID of the device
the driver was loaded from.

SCSI Manager 4.3 drivers contain a second entry point at an offset of 8 bytes from the
standard entry. Use of this entry point means that SCSI Manager 4.3 is present and that
register D5 contains a device identification record. No other registers are used.

There are seven unit table entries (32 through 38) reserved for SCSI drivers controlling
devices at SCSI ID 0 through SCSIID 6 on the virtual SCSI bus. For compatibility with
existing SCSI utility software, drivers serving devices on the virtual bus should continue
to install themselves in the unit table locations reserved for traditional SCSI drivers.
Drivers for devices that are not on the virtual bus should choose a unit number outside
the range reserved for traditional SCSI drivers. See the chapter “Device Manager” in this
book for information about installing device drivers in the unit table.

To allow clients to determine whether a driver has been loaded for a particular SCSI
device, the XPT maintains a driver registration table. This table cross-references device
identification records with driver reference numbers. The device identification record is a
SCSI Manager 4.3 data structure that specifies a device by its bus, SCSI ID, and logical unit
number. The device identification record is defined by theDevi cel dent data type, which
is described on page 4-19.

A device identification record can have only one driver reference number associated with it,
but a single driver reference number may be registered to multiple devices. You can use the
SCSI Cr eat eRef NunmXr ef , SCSI LookupRef NunXr ef , and SCSI RenoveRef NunXr ef

Writing a SCSI Device Driver 4-11

£'v 1oBeuep 1SOS -

4-12

CHAPTER 4

SCSI Manager 4.3

functions to access the driver registration table. Drivers loaded through the SCSI
Manager 4.3 entry point must use the SCSI Cr eat eRef NunXr ef function to register
with the XPT. This is done automatically by SCSI Manager 4.3 for traditional drivers.

Selecting a Startup Device

After all device drivers are loaded and initialized, the Start Manager searches for the
default startup device in the drive queue. If the device is found, it is mounted and the
boot process begins. Macintosh models that do not include SCSI Manager 4.3 in ROM
identify the boot drive by a driver reference number stored in PRAM. This works well
when drivers retain the same reference number between startups, but SCSI Manager 4.3
drivers allocate unit table entries dynamically if the device they are controlling is not on
the virtual bus.

Macintosh models that include SCSI Manager 4.3 in ROM designate the startup device
using Slot Manager values in PRAM. Slot number 0 is used for devices on the built-in bus
or buses. ThedCt | Sl ot and dCt | Sl ot | d fields of the driver’s device control entry

must contain the slot number and sResource ID number, respectively. These are available
in the bus inquiry data from the SIM. ThedCt | Ext Dev field should contain both the
SCSIID and LUN of the device that the driver is controlling. The high-order 5 bits contain
the SCSI ID (up to 31 for a 32-bit wide SCSI bus) and the low-order 3 bits contain the LUN.

Transitions Between SCSI Environments

Because SCSI Manager 4.3 can be installed as a system extension in older Macintosh
models, your device driver may be loaded before SCSI Manager 4.3 is active. This can
also occur if a NuBus or PDS expansion card loads SCSI Manager 4.3 or an equivalent
XPT from the card’s ROM. In this case, the expansion card will load a subset of the
SCSI Manager 4.3 XPT and a SIM responsible for the card’s HBA, but it will not load

a SIM for the built-in bus. This creates a situation in which SCSI Manager 4.3 is loaded
but some buses may be accessible only through the original interface.

To determine whether to use the SCSI Manager 4.3 interface, your driver should first
check for the presence of the _SCSI At omi ¢ trap (0xA089). If the trap exists, the driver
can pass the SCSI ID of its device to the SCSI Get Vi r t ual | DI nf o function to get the
device identification record of its device. If the scsi Exi st s field of the parameter block
returns t r ue, the device is available through the SCSI Manager 4.3 interface. If the

scsi Exi st s field returns f al se, the device is on a bus that is not available through
SCSI Manager 4.3.

The best time for your driver to perform this check is at the first accRun tick, which
occurs after all system patches are in place. The Event Manager calls your driver at this
time if you set the dNeedTi e flag in the device control entry. If your driver can access
its device through SCSI Manager 4.3, it should allocate and initialize a SCSI1/O
parameter block at this time.

Even if your driver is loaded and initialized by a ROM-based SCSI Manager 4.3, you can
use the first accRun tick to check for new features that may have been installed by a
system patch.

Writing a SCSI Device Driver

CHAPTER 4

SCSI Manager 4.3

Handling Asynchronous Requests

When a client makes a read or write request to a device driver, the Device Manager
places the request in the driver’s I/O queue. When the driver is ready to accept the
request, the Device Manager passes it to the driver’s prime routine. The prime routine
should fill in a SCSI I/ O parameter block with the appropriate values and call the

SCSI Execl Ofunction. The XPT passes the parameter block to the proper SIM, which
then adds the request to its queue and possibly starts processing it before returning back
to the driver.

If the SCSI Execl Ofunction returns noEr r, the request was accepted and the contents
of the parameter block cannot be reliably viewed by the driver. At this point, virtually
nothing can be assumed about the request. It may only have been queued, or it may
have proceeded all the way to completion.

IMPORTANT
Once a parameter block is accepted by XPT, do not attempt to examine
the parameter block until the completion routine is called. a

If SCSI Execl Oreturns an error result, the request was rejected and the completion
routine will not be called. This is usually due to an input parameter error.

Completion routines can execute before the XPT returns to your driver. Because the
completion routine may initiate a new request to the driver, it is possible that by the time
control returns to the calling function, the parameter block is being used for a completely
different transaction.

Asynchronous I/O requests from a client to a device driver can occur at interrupt time.
Because you cannot allocate memory at interrupt time, you must reserve memory for
parameter blocks, scatter/ gather lists, and any other structures you need when the
driver is initialized. You cannot use the stack for this purpose (as you can for
synchronous requests) because parameters on the stack are discarded when the device
driver returns from its prime routine.

£'v 1oBeuep 1SOS -

Asynchronous requests may start at any time and may end at any time. There is no
implied ordering of requests with respect to when they were issued. An earlier request
may start later, or a later request may complete earlier. However, a series of requests to
the same device (bus number, target ID, and LUN) is issued to that device in the order
received (unless the scsi SI MQHead flag is set in the scsi Fl ags field of the SCSI1/O
parameter block, in which case the request is inserted at the head of the queue).

Handling Immediate Requests

If your device driver supports immediate requests, it must be reentrant. The Device
Manager neither sets nor checks the dr vr Act i ve flag in the dCt | Fl ags field of the
device control entry before making an immediate request. Asynchronous operation
makes it even more likely that an immediate request will happen when your driver is
busy because the immediate request may have been made from application time while
your driver was asynchronous. When this happens you need to be careful not to reuse
parameter blocks or other variables that might be busy.

Writing a SCSI Device Driver 4-13

4-14

CHAPTER 4

SCSI Manager 4.3

Virtual Memory Compatibility

Because page faults can occur while interrupts are disabled, SCSI device drivers can
receive synchronous I/O requests from the Virtual Memory Manager when the processor
interrupt level is not 0. The SCSI Manager handles the resulting SCSI transaction without
the benefit of interrupts. This requires that all synchronous wait loops be performed
either in the SCSI Manager or in the Device Manager, where code is provided to poll the
SCSI interrupt sources.

When your driver receives a synchronous I/O request, it can issue the subsequent SCSI
I/O request synchronously as well, or it can issue the SCSI request asynchronously and
return to the Device Manager. This second option is generally preferred because it
simplifies driver design. The Device Manager waits for the synchronous request to
complete, allowing your driver to handle it asynchronously. The driver should jump

to | ODone after it receives the SCSI completion callback. If a single driver request
translates to multiple SCSI requests, and your driver handles them asynchronously, the
driver should not call | ODone until after the callbacks for all of the SCSI requests have
been received.

IMPORTANT

Because SCSI completion routines must not cause a page fault, all
code and data used by SCSI completion routines must be held in real
memory. This is automatic for device drivers loaded in the system
heap. Applications (or drivers within applications) must use the

Hol dMenor y function to ensure their completion routine code and
data is held. See the chapter “Virtual Memory Manager” in

Inside Macintosh: Memory for more information. a

Writing a SCSI Device Driver

CHAPTER 4

SCSI Manager 4.3

Writing a SCSI Interface Module

This section provides additional information that HBA developers need to write a
SCSI interface module.

SIM Initialization and Operation

When SCSI Manager 4.3 is present in ROM, the Start Manager loads any SIM drivers it
finds in the declaration ROM of all installed expansion cards. A SIM driver may contain
the actual SIM, or it may contain code to load the SIM from some other location (such as
a device attached to the expansion card). The Start Manager searches for SIM drivers
using the Slot Manager SNext TypeSRsr ¢ function, and loads all drivers matching

the following criteria:

sResource type Constant Value
spCat agory Cat | nt Bus 12
spCType TypSIM 12
spDrvr SW Drvr SwScsi 43 1

After loading a SIM driver, the Start Manager calls the driver’s open routine. If the SIM
is contained in the driver, it should register itself with the XPT at this time. If the
registration is successful, the open routine should return noEr r. If the open routine
returns an error result, the Start Manager removes the driver from the unit table and
releases it from memory. A SIM loader can use this technique to remove itself after
loading and registering the actual SIM. Because no other driver entry points are used,
you do not need to implement the close, prime, status, or control routines, but they
should return appropriate errors.

For Macintosh models that do not include SCSI Manager 4.3 in ROM, your SIM can either
provide its own temporary XPT or wait until SCSI Manager 4.3 is installed by the system

before registering with the XPT. If you wait for SCSI Manager 4.3 to load, devices on your
bus cannot be used as the boot device or as the paging device for virtual memory but can
be mounted after SCSI Manager 4.3 is running and your bus is registered.

If your SIM supplies its own XPT, your SIM and XPT must be prepared for the
possibility that a system patch will install a new XPT later. To provide a consistent
environment for driver clients of your SIM when the XPT is replaced, your XPT must
maintain information about any virtual ID numbers it assigns (including a driver
registration table) and correctly fill in the XPT fields of the bus inquiry record. When
the SCSI Manager4.3 XPT loads, it uses the SCSI Get Vi r t ual | DI nf o,

SCSI LookupRef NumXr ef , and SCSI Bus| nqui ry functions to query your XPT, then
calls the Set Tr apAddr ess function to install itself. Next, it uses your XPT to send a
SCSI Regi st er W t hNewXPT command to each registered SIM. A SIM must respond
by using the SCSI Rer egi st er Bus function to export its assigned bus number, entry
points, and static data storage pointer to the new XPT. Finally, the SCSI Manager 4.3
XPT calls your XPT with a SCSI Ki | | XPT command. Your XPT should then release
any memory it has allocated and remove or disable any patches it may have installed.

Writing a SCSI Interface Module 4-15

£'v 1oBeuep 1SOS -

4-16

CHAPTER 4

SCSI Manager 4.3

Your XPT must reserve bus number 0 for the built-in SCSI bus. For Macintosh computers
with dual SCSI buses, you must reserve bus numbers 0 and 1. If the SCSI Manager 4.3
XPT is installed after your XPT, it will assign these bus numbers to the built-in buses.

After determining the presence of the XPT, a SIM should register itself using the

SCSI Regi st er Bus function. The SIM initialization record for this request contains the
SIM’s function entry points, required static data storage size, and the ol dCal | Capabl e
status of the SIM. The SIM initialization record, defined by the SI M ni t | nf o data type,
is shown on page 4-36. The XPT allocates the requested number of bytes for the SIM’s
static storage, fills in the appropriate fields of the SIM initialization record, and then calls
the SIM’s SI M ni t function. If the SI M ni t function returns noEr r, the XPT completes
the registration process, making the SIM available to the system. If S| M ni t returns an
error, the registration request fails.

Once the registration is complete, the XPT makes calls to the SI MAct i on entry point
whenever a SCSI Act i on request is received that is destined for this bus. The XPT
passes a pointer to the parameter block and a pointer to the SIM's static storage to

the SI MAct i on function. The SIM should parse the parameter block for illegal or
unsupported parameters and return an error result if necessary. After queuing the
request, the SI MAct i on function should return to the XPT. When the request completes,
the SIM calls the XPT’s MakeCal | back function with the appropriate parameter block.
The XPT then calls the client’s completion routine.

Other types of requests should be implemented to conform to the function descriptions
provided in this chapter. Functions or features not implemented by the SIM should
return appropriate errors (for example, scsi Funct i onNot Avai | abl e or

scsi Provi deFai |).

The SI M nt er upt Pol | function is called during the Device Manager’s synchronous
wait loop to give time to the SIM when interrupts are masked. The sole parameter is a
pointer to the SIM’s static data, which is passed on the stack. Because this call does not
imply the presence of an interrupt, the SIM should check for interrupts before proceeding.

The Ent er i ngSI Mand Exi t i ngS| Mfunctions provide compatibility with the Virtual
Memory Manager and should be called every time the SIM is entered and exited,
respectively. In other words, these two function calls should surround all SIM entry and
exit points, including interrupt handlers and callbacks to client code made through the
MakeCal | back function.

Parameter blocks must appear to the client to be queued on a per-LUN basis, because
queue freezing and unfreezing are performed one LUN at a time. The actual
implementation may vary as long as this appearance is maintained.

Supporting the Original SCSI Manager

If your SIM indicates that it is capable of supporting original SCSI Manager functions,
the XPT adds it to the list of buses that are searched when a SCSI Sel ect request is
received.

Writing a SCSI Interface Module

CHAPTER 4

SCSI Manager 4.3

The XPT is responsible for converting original SCSI Manager functions into the proper
format and submitting them to the SIM. It also receives the results for each of the
functions from the SIM and returns them to the client.

When it receives a SCSI Get request, the XPT simply notes that the call was made by
setting an internal flag, then returns to the caller. In response to a SCSI Sel ect request,
the XPT generates a SCSI O dCal | request and submits it to the SIM’s SI MAct i on
entry point. The scsi Devi ce field of the parameter block contains the bus number

of the SIM, the target ID specified in the SCSI Sel ect request, and a LUN of 0. This
parameter block should be queued like any other.

When your SIM receives a SCSI O dCal | request, it should attempt to select the device
and return a result code to the XPT in the scsi O dCal | Resul t field of the parameter
block (scsi Request Conpl et e if successful and scsi Sel ect Ti neout if not).
Intermediate function results are not communicated through the scsi Resul t field
because this would be interpreted as completion of the entire transaction rather

than only the portion of the transaction resulting from a single original function. As
subsequent original function calls are made, the XPT fills in the appropriate fields

of the parameter block and calls the SIM’s Newd dCal | entry point. Table 4-1 shows
the original function parameters and the fields that are filled in by the XPT.

Table 4-1 Original SCSI Manager parameter conversion
Function Parameter Direction Parameter block field Notes
SCSI Get XPT handles internally.
SCSI Sel ect targetl D - scsi Devi ce bus set by XPT, LUN=0.
SCsI Cmd buf fer - scsi CDB Field is a pointer.
count - scsi CDBLengt h
SCSI Read, tibPtr - scsi Dat aPtr Field is a pointer.
SCSIWite,
SCSI RBl i nd,
SCSI VBl i nd
SCSI Conpl et e st at - scsi SCSI st at us Field contains status.
message - scsi SCSI nessage Field contains message.
wai t - scsi Ti meout Time in Time Manager format.
SCSI Msgl n nmessage - scsi SCSI nessage Field contains message.
SCSI MsgQut nmessage - scsi SCSI nessage Field contains message.
SCSI Reset Translated to SCSI Reset Bus.
SCSI St at XPT handles internally.

To provide the highest level of compatibility with the original SCSI Manager, a SIM
should be able to perform a SCSI arbitration and select process independently of a SCSI
message-out or command phase. A SIM that requires the CDB or message-out bytes in
order to perform a select operation will be unable to execute the SCSI Sel ect function

Writing a SCSI Interface Module 4-17

£'v 1oBeuep 1SOS -

4-18

CHAPTER 4

SCSI Manager 4.3

properly, and must always return noEr r to a SCSI Sel ect request. This can create a
false indication of the presence of a device at a SCSI ID, causing all future SCSI Sel ect
requests to that SCSI ID to be directed only to that bus. Devices installed on buses that
registered after that bus would not be accessible through the original interface.

Handshaking of Blind Transfers

Handshaking instructions are used to prevent bus errors when a target fails to
deliver the next byte within the processor bus error timeout period. This timeout is
250 milliseconds for the Macintosh SE and 16 microseconds for all Macintosh models
since the Macintosh II.

The SCSI Manager 4.3 SIM requires this handshaking information for blind transfers
when DMA is not available. Your SIM does not need to pay attention to the
scsi Handshake field unless your hardware requires it.

Supporting DMA

DMA typically requires that the data buffer affected by the transfer be locked (so that the
physical address does not change) and that it be non-cacheable. SCSI Manager 4.3
provides an improved version of the LockMenor y function, which you can call at
interrupt time as long as the affected pages are already held in real memory. You can also
call the Get Physi cal function at interrupt time, but only on pages that are locked.

Loading Drivers

The Start Manager is normally responsible for loading SCSI drivers. However, if the
startup device specified in PRAM is on a third-party HBA and the SIM is a Slot Manager
device, the Start Manager will call the boot record of the card’s declaration ROM. The
boot record code should examine the dCt | Ext Dev field to determine which SCSI device
is the startup device and then load a driver from that device (and only that device).

All other drivers are loaded by the Start Manager, but SIMs are given the opportunity

to override this if necessary. Before the Start Manager attempts to load a driver from a
device, it calls the SIM with a SCSI LoadDr i ver request. If the function succeeds, the
Start Manager does nothing further with that device. If the function fails (the normal
case), the Start Manager reads the partition map on the device and loads a driver from it.
If this fails, the Start Manager calls the SIM again with a SCSI LoadDr i ver request, this
time with the scsi Di skLoadFai | ed parameter set to indicate that no driver was
available on the media.

This facility allows a SIM to provide a default driver to be used instead of any driver that
may be on the device. For example, if a SIM does support the original SCSI Manager, it
can use the second SCSI LoadDr i ver request to load a SCSI Manager 4.3-compatible
driver if none is present on the device.

Writing a SCSI Interface Module

CHAPTER 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference

This section describes the data structures, functions, and constants that are specific to
SCSI Manager 4.3.

The “Data Structures” section shows the C declarations for the data structures defined
by SCSI Manager 4.3.

The “SCSI Manager 4.3 Functions” section describes the functions you use to communicate
with SCSI devices, the functions that a SIM uses to communicate with the XPT, and the
functions a SIM must include in order to be compatible with SCSI Manager 4.3.

Data Structures

This section describes the parameter blocks you use to communicate with the
SCSI Manager and the data structures you use to define values within them.

IMPORTANT

Always set unused or reserved fields to 0 before passing a parameter
block to any of the SCSI Manager 4.3 functions. a

Simple Data Types

SCSI Manager 4.3 uses these simple data types:

t ypedef char Sl nt 8;

typedef short Sintl6;

typedef | ong SI nt 32;

typedef unsigned char Ul nt 8;
t ypedef unsigned short Ul nt16;
t ypedef unsigned | ong Ul nt 32;

Device Identification Record

You use the device identification record to specify a target device by its bus, SCSI ID,
and logical unit number (LUN). The device identification record is defined by the
Devi cel dent data type.

struct Devi cel dent

{
unt8 di Reserved;
unt8 bus;
unt8 targetl D,
unt8 LUN,;

1

t ypedef struct Devicel dent Devicel dent;

SCSI Manager 4.3 Reference 4-19

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

Field descriptions

bus The bus number of the SIM/HBA for the target device.
target|D The SCSI ID number of the target device.
LUN The target LUN, or 0 if the device does not support logical units.

Command Descriptor Block Record

You use the command descriptor block record to pass SCSI commands to the

SCSI Act i on function. The SCSI commands can be stored within this structure, or
you can provide a pointer to them. You set the scsi CDBI sPoi nt er flag in the SCSI
parameter block if this record contains a pointer.

The command descriptor block record is defined by the CDB data type.

uni on CDB

{
Ul nt8 *cdbPtr;

U nt8 cdbByt es[maxCDBLengt h] ;
i
t ypedef union CDB CDB, *CDBPtr;

Field descriptions
cdbPtr A pointer to a buffer containing a CDB.
cdbByt es A buffer in which you can place a CDB.

Scatter /Gather List Element

You use scatter/ gather lists to specify the data buffers to be used for a transfer. A
scatter / gather list consists of one or more elements, each of which describes the location
and size of one buffer.

The scatter/ gather list element is defined by the SGRecor d data type.

struct SGRecord

{
Ptr SGAddr ;

Sl nt 32 SGCount ;
b
typedef struct SGRecord SGRecord;

Field descriptions
SGAddr A pointer to a data buffer.
SGCount The size of the data buffer, in bytes.

4-20 SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

SCSI Manager Parameter Block Header

You use the SCSI Manager parameter block to pass information to the SCSI Act i on
function. Because many of the functions that you access through SCSI Act i on require
additional information, the parameter block consists of a common header (SCSI PBHdr)
followed by function-specific fields, if any. This section describes the parameter block
header common to all SCSI Act i on functions. The function-specific extensions are
described in the following sections.

The SCSI Manager parameter block header is defined by the SCSI _PB data type.

#def i ne SCSI PBHdr \
st ruct SCSI Hdr *qLi nk; \
SInt16 scsi Reservedl; \
U nt 16 scsi PBLengt h; \
unt8 scsi Functi onCode; \
U nt8 scsi Reserved?; \
CSErr scsi Resul t; \

\

Devi cel dent scsi Devi ce;
Cal | backProc scsi Conmpl etion;\

Ul nt 32 scsi Fl ags; \
U nt8 *scsi Driver Storage; \
Ptr scsi XPTpri vat e; \

Sl nt 32 scsi Reserved3;

struct SCSI_PB

{
SCSI PBHdr
1
t ypedef struct SCSI _PB SCSl _PB;

Field descriptions

gLi nk A pointer to the next entry in the request queue. This field is used
internally by the SCSI Manager and must be set to 0 when the
parameter block is initialized. The SCSI Manager functions always
set this field to 0 before returning, so you do not need to set it to 0
again before reusing a parameter block.

scsi PBLengt h The size of the parameter block, in bytes, including the parameter
block header.

scsi Functi onCode
A function selector code that specifies the service being requested.
Table 4-2 on page 4-39 lists these codes.

scsi Resul t The result code returned by the XPT or SIM when the function
completes. The value scsi Request | nPr ogr ess indicates that the
request is still in progress or queued.

SCSI Manager 4.3 Reference 4-21

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

scsi Devi ce A 4-byte value that uniquely identifies the target device for a
request. The Devi cel dent data type designates the bus number,
target SCSI ID, and logical unit number (LUN).

scsi Conpl eti on A pointer to a completion routine.

scsi Fl ags Flags indicating the transfer direction and any special handling
required for this request.

scsi Directi onMask
Abit field that specifies transfer direction, using
these constants:

scsibDirectionln Datain
scsiDirectionQut Dataout
scsi Directi onNone No data phase expected

scsi Di sabl eAut osense
Disable the automatic REQUEST SENSE feature.

scsi CDBLi nked
The parameter block contains a linked CDB. This
option may not be supported by all SIMs.

scsi QEnabl e Enable target queue actions. This option may not
be supported by all SIMs.

scsi CDBI sPoi nt er
Set if the scsi CDB field of a SCSI I/O parameter
block contains a pointer. If clear, the scsi CDB
field contains the actual CDB. In either case, the
scsi CDBLengt h field contains the number of
bytes in the SCSI command descriptor block.

scsilnitiateSyncData
Set if the SIM should attempt to initiate a
synchronous data transfer by sending the SDTR
message. If successful, the device normally
remains in the synchronous transfer mode until it
is reset or until you specify asynchronous mode
by setting the scsi Di sabl eSyncDat a flag.
Because SDTR negotiation occurs every time this
flag is set, you should set it only when negotiation
is actually needed.

scsi Di sabl eSyncDat a
Disable synchronous data transfer. The SIM sends
an SDTR message with a REQ/ACK offset of 0 to
indicate asynchronous data transfer mode. You
should set this flag only when negotiation is
actually needed.

scsi SI MHead Place the parameter block at the head of the SIM
queue. This can be used to insert error handling at
the head of a frozen queue.

scsi SI MQFr eeze
Freeze the SIM queue after completing this
transaction. See “Error Recovery Techniques” on
page 4-10 for information about using this flag.

4-22 SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

scsi SI MNoFr eeze

Disable SIM queue freezing for this transaction.

scsi DoDi sconnect

Explicitly allow device to disconnect.

scsi Dont D sconnect

Explicitly prohibit device disconnection. If this flag
and the scsi DoDi sconnect flag are both 0, the

SIM determines whether to allow or prohibit
disconnection, based on performance criteria.

scsi Dat aReadyFor DVA

Data buffer is locked and non-cacheable.

scsi Dat aPhysi cal

Data buffer address is physical.

scsi SensePhysi cal

scsi Driver St orage

A pointer to the device driver’s private storage. This field is not
affected or used by the SCSI Manager.

SCSI I/O Parameter Block

Autosense data pointer is physical.

You use the SCSI1/O parameter block to pass information to the SCSI Execl Ofunction.

The SCSI1/O parameter block is defined by the SCSI Execl OPB data type.

#define SCSI _| O Macro \

SCSI PBHdr
U nt16
Ul nt 16
unt8
Sl nt 32
unt8
SInt8
unt8
Ul nt 16
Ul nt 32
unt8
SInt8
Ul nt16
Sl nt 32
CDB

SI nt 32
unt8
Ul nt 16
Ul nt16
unt8

scsi Resul t Fl ags;
scsi Reservedl?;
*scsi DataPtr;
scsi Dat aLengt h;
*scsi SensePtr;
scsi Senselengt h;
scsi CDBLengt h;
scsi SGELi st Count ;
scsi Reserved4;
scsi SCSI st at us;
scsi SenseResi dual ;
scsi Reserved>5;
scsi Dat aResi dual ;
scsi CDB;

scsi Ti neout ;
*scsi Reservedl3;
scsi Reservedl4;
scsi | OFl ags;

scsi TagActi on;

SCSI Manager 4.3 Reference

P e e e e e e e e

4-23

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

unt8 scsi Reserved®6; \
U nt16 scsi Reserved7; \
U nt16 scsi Sel ect Ti meout ; \
unt8 scsi Dat aType; \
unt8 scsi Transfer Type; \
Ul nt 32 scsi Reserveds; \
Ul nt 32 scsi Reserved9; \
U nt16 scsi Handshakel[8] ; \
Ul nt 32 scsi Reservedl0; \
Ul nt 32 scsi Reservedll; \
struct SCSI _I O *scsi ConmandLi nk; \
unt8 scsi Sl Mpublics[8]; \
unt8 scsi Appl eReserved6][8] ; \
Ul nt16 scsi Current Phase; \
SInt16 scsi Sel ector; \
OSErr scsi A dCal | Resul t; \
unt8 scsi SCSI nessage; \
U nt8 XPTpri vat eFl ags; \
unt8 XPTextras[12];

struct SCSI |10

{
SCSI _1 O _Macro
1
typedef struct SCSI |10 SCsl _|I G
t ypedef SCSI | O SCSI Execl OPB;

Field descriptions

SCSI PBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsi Resul t Fl ags
Output flags that modify the scsi Resul t field.

scsi SI MQFrozen
The SIM queue for this LUN is frozen because of
an error. You must call the SCSI Rel easeQ
function to release the queue and resume
processing requests.

scsi Aut osenseVal i d
An automatic REQUEST SENSE was performed
after this I/O because of a CHECK CONDI TI ON
status message from the device. The data
contained in the scsi SensePt r buffer is valid.

scsi BusNot Free
The SCSI Manager was unable to clear the bus
after an error. You may need to call the
SCSI Reset Bus function to restore operation.

4-24 SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

scsi Dat aPt r

scsi Dat aLengt h
scsi SensePtr

A pointer to a data buffer or scatter/gather list. You specify the data
type using the scsi Dat aType field.

The amount of data to be transferred, in bytes.

A pointer to the autosense data buffer. If autosense is enabled (the
scsi Di sabl eAut osense flag is not set), the SCSI Manager
returns REQUEST SENSE information in this buffer.

scsi SenselLengt h The size of the autosense data buffer, in bytes.

scsi CDBLengt h

The length of the SCSI command descriptor block, in bytes.

scsi SGLi st Count The number of elements in the scatter / gather list.

scsi SCSI st at us

The status returned by the SCSI device.

scsi SenseResi dual

The automatic REQUEST SENSE residual length (that is, the
number of bytes that were expected but not transferred). This
number is negative if extra bytes had to be transferred to force the
target off of the bus.

scsi Dat aResi dual

scsi CDB

scsi Ti meout

scsi | OFl ags

The data transfer residual length (that is, the number of bytes that
were expected but not transferred). This number is negative if extra
bytes had to be transferred to force the target off the bus.

This field can contain either the actual CDB or a pointer to the CDB.
You set the scsi CDBI sPoi nt er flag if this field contains a pointer.

The length of time the SIM should allow before reporting a timeout
of the SCSI bus. The time value is represented in Time Manager
format (positive values for milliseconds, negative values for
microseconds). The timer is started when the I/O request is sent to
the target. If the request does not complete within the specified

time, the SIM attempts to issue an ABORT message, either by
reselecting the device or by asserting the attention (/ ATN) signal.

A value of 0 specifies the default timeout for the SIM. The default
timeout for the SCSI Manager 4.3 SIM is infinite (that is, no timeout).

Additional I/O flags describing the data transfer.

scsi NoPari t yCheck
Disable parity error detection for this transaction.

scsi Di sabl eSel ect WAt n
Do not send the | DENTI FY message for LUN
selection. The LUN is still required in the
scsi Devi ce field so that the request can be
placed in the proper queue. The LUN field in the
CDB is untouched. The purpose is to provide
compatibility with older devices that do not
support this aspect of the SCSI-2 specification.

scsi SavePtr OnDi sconnect
Perform a SAVE DATA PO NTERoperation
automatically in response to a DI SCONNECT
message from the target. The purpose of this flag
is to provide compatibility with devices that do
not properly implement this aspect of the SCSI-2
specification.

SCSI Manager 4.3 Reference 4-25

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

scsi NoBucket I n
Prohibit bit-bucketing during the data-in phase
of the transaction. Bit-bucketing is the practice of
throwing away excess data bytes when a target
tries to supply more data than the initiator
expects. For example, if the CDB requests more
data than you specified in the scsi Dat aLengt h
field, the SCSI Manager normally throws away
the excess and returns the scsi Dat aRunEr r or
result code. If this flag is set, the SCSI Manager
refuses any extra data, terminates the I/O
request, and leaves the bus in the data-in phase.
You must reset the bus to restore operation. This
flag is intended only for debugging purposes.

scsi NoBucket Cut
Prohibit bit-bucketing during the data-out phase
of the transaction. If a target requests more data
than you specified in the scsi Dat aLengt h field,
the SCSI Manager normally sends an arbitrary
number of meaningless bytes (OxEE) until the
target releases the bus. If this flag is set, the
SCSI Manager terminates the I/ O request when
the last byte is sent and leaves the bus in the
data-out phase. You must reset the bus to restore
operation. This flag is intended only for
debugging purposes.

scsi Di sabl eW de
Disable wide data transfer negotiation for this
transaction if it had been previously enabled.
This option may not be supported by all SIMs.

scsilnitiateWde
Attempt wide data transfer negotiation for
this transaction if it is not already enabled. This
option may not be supported by all SIMs.

scsi Renegot i at eSense
Attempt to renegotiate synchronous or wide
transfers before issuing a REQUEST SENSE.
This is necessary when the error was caused
by problems operating in synchronous or wide
transfer mode. It is optional because some devices
flush sense data after performing negotiation.

scsi TagAction Reserved.

scsi Sel ect Ti meout
An optional SELECT timeout value, in milliseconds. The default
is 250 ms, as specified by SCSI-2. The accuracy of this period is
dependent on the HBA. A value of 0 specifies the default timeout.
Some SIMs ignore this parameter and always use a value of 250 ms.

4-26 SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

scsi Dat aType

The data type pointed to by the scsi Dat aPt r field. You specify
the type using one of the following constants:

scsi Dat aBuf f er
The scsi Dat aPt r field contains a pointer to a
contiguous data buffer, and the scsi Dat aLengt h
field contains the length of the buffer, in bytes.

scsi Dat aSG The scsi Dat aPt r field contains a pointer to a
scatter/ gather list. The scsi Dat aLengt h field
contains the total number of bytes to be transferred,
and the scsi SGLi st Count field contains the
number of elements in the scatter/ gather list.

scsi DataTl B Thescsi Dat aPt r field contains a pointer to a
transfer instruction block. This is used by the XPT
during original SCSI Manager emulation, when
communicating with a SIM that supports this.

scsi Transf er Type

The type of transfer mode to use during the data phase. You
specify the type using one of the following constants:

scsi TransferBlind
Use DMA, if available; otherwise, perform a blind
transfer using the handshaking information
contained in the scsi Handshake field.

scsi Transfer Pol | ed
Use polled transfer mode. The scsi Handshake
field is not required for this mode.

scsi Handshake[8]

scsi CommandLi nk

Handshaking instructions for blind transfers, consisting of an array
of word values, terminated by 0. The SIM polls for data ready after
transferring the amount of data specified in each successive

scsi Handshake entry. When it encounters a 0 value, the SIM
starts over at the beginning of the list. Handshaking always starts
from the beginning of the list every time a device transitions to data
phase. See “Handshaking Instructions,” beginning on page 4-9, for
more information.

A pointer to a linked parameter block. This field provides support for
SCSI linked commands. This optional feature ensures that a set of
commands sent to a device are executed in sequential order without
interference from other applications. You create a list of commands
using this pointer to link additional parameter blocks. Each
parameter block except the last should have thescsi CDBLi nked
flag set in the scsi Fl ags field. ACHECK CONDI TI ONstatus from
the device will abort linked command execution. Linked commands
may not be supported by all SIMs.

scsi Sl Mpubl i cs[8]

An additional input field available for use by SIM developers.

SCSI Manager 4.3 Reference 4-27

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

scsi Current Phase
The current SCSI bus phase reported by the SIM after handling an
original SCSI Manager function. This field is used only by the XPT and
SIM during original SCSI Manager emulation. The phases are defined
by the following constant values:

enum {
kDat aQut Phase,
kDat al nPhase,
kCommandPhase,
kSt at usPhase,
kPhasel | | egal 0,
kPhasel | | egal 1,
kMessageQut Phase,
kMessagel nPhase,
kBusFr eePhase,
KAr bi t r at ePhase,
kSel ect Phase

s

scsi Sel ect or The function selector code that was passed to the _SCSI Di spat ch
trap during original SCSI Manager emulation. The SIM uses this
field to determine which original SCSI Manager function to perform.

scsi O dCal | Resul t
The result code from an emulated original SCSI Manager function.
The SIM returns results to all original SCSI Manager functions in
this field, except for the SCSI Conpl et e result, which it returns in
scsi Resul t.

scsi SCSI Message The message byte returned by an emulated SCSI Conpl et e
function. This field is only used by the XPT and SIM during original
SCSI Manager emulation.

XPTpri vat eFl ags Reserved.

XPTextras[12] Reserved.

SCSI Bus Inquiry Parameter Block

You use the SCSI bus inquiry parameter block with the SCSI Bus| nqui ry function to
get information about a bus. The SCSI bus inquiry parameter block is defined by
the SCSI Bus| nqui r yPB data type.

struct SCSI Busl nqui ryPB
{
SCSI PBHdr
U nt16 scsi Engi neCount ;
Ul nt 16 scsi MaxTr ansf er Type;
Ul nt 32 scsi Dat aTypes;

4-28 SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

U nt16 scsi | OpbSi ze;
U nt16 scsi Maxl OpbSi ze;
Ul nt 32 scsi Feat ur eFl ags;
U nt8 scsi Ver si onNunber ;
unt8 scsi HBAI nqui ry;
unt8 scsi Tar get ModeFl ags;
unt8 scsi ScanFl ags;
Ul nt 32 scsi Sl MPri vat esPtr
Ul nt 32 scsi S| MPri vat esSi ze;
Ul nt 32 scsi AsyncFl ags;
unt8 scsi Hi Busl D
Ul nt8 scsilnitiatorlD;
U nt 16 scsi Bl ReservedO
Ul nt 32 scsi Bl Reservedl
Ul nt 32 scsi Fl agsSupport ed;
U nt16 scsi | OFl agsSupport ed;
U nt 16 scsi Wi rdSt uf f;
ul nt 16 scsi MaxTar get ;
U nt 16 scsi MaxLUN
SInt8 scsi SI Mendor [16] ;
SInt8 scsi HBAVendor [16] ;
SInt8 scsi Control | er Fam | y[16];
SInt8 scsi Control | er Type[16] ;
SInt8 scsi XPTversi on[4] ;
SInt8 scsi Sl Mversi on[4] ;
SInt8 scsi HBAver si on[4] ;
Ul nt8 scsi HBAsI ot Type;
U nt8 scsi HBAs| ot Nunber ;
U nt 16 scsi Sl MsRsr cl D
U nt16 scsi Bl Reserveds3;
U nt16 scsi Addi ti onal Lengt h;
b
typedef struct SCSI Busl nqui ryPB SCSI Busl nqui r yPB;

Field descriptions
SCSI PBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsi Engi neCount
The number of engines on the HBA. This value is 0 for a built-in
SCSI bus. See the CAM specification for information about HBA
engines.

scsi MaxTr ansf er Type
The number of data transfer types available on the HBA.

SCSI Manager 4.3 Reference 4-29

£'v 1oBeuep 1SOS -

4-30

CHAPTER 4

SCSI Manager 4.3

scsi Dat aTypes

scsi | OpbSi ze

A bit mask describing the data types supported by the SIM/HBA.
Bits 3 through 15 and bit 31 are reserved by Apple Computer, Inc.
Bits 16 through 30 are available for use by SIM developers. The
following bits are currently defined. These types correspond to the
scsi Dat aType field of the SCSI I/O parameter block.

enum {
scsi BusDat aBuf f er = 0x00000001,
scsi BusDat aTl B = 0x00000002,
scsi BusDat aSG = 0x00000004,

/* bits 3 to 15 are reserved by Apple */
/* bits 16 to 30 are available for 3rd parties */
scsi BusDat aReserved = 0x80000000

s

The minimum size of a SCSI I/ O parameter block for this SIM.

scsi Maxl QpbSi ze The minimum size of a SCSI1/O parameter block for all currently

registered SIMs. That is, the largest registered scsi | QpbSi ze.

scsi Feat ur eFl ags

These flags describe various physical characteristics of the SCSI bus.

scsi Busl nt er nal
The bus is at least partly internal to the computer.

scsi BusExt er nal
The bus extends outside of the computer.

scsi Busl nt er nal Ext er nal
The bus is both internal and external.

scsi Busl nt er nal Ext er nal Unknown
The internal/ external state of the bus is unknown.

scsi BusCacheCoher ent DVA
DMA is cache coherent.

scsi Busd dCal | Capabl e
The SIM supports the original SCSI Manager
interface.

scsi BusDi fferenti al
The bus uses a differential SCSI interface.

scsi BusFast SCSI
The bus supports SCSI-2 fast data transfers.

scsi BusDMAavai | abl e
DMA is available.

scsi Ver si onNumnmber

The version number of the SIM/HBA.

SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

scsi HBAI nqui ry Flags describing the capabilities of the bus.

scsi BusMDP Supports the MODI FY DATA PO NTER message.
scsi BusW de32 Supports 32-bit wide transfers.

scsi BusW del6 Supports 16-bit wide transfers.

scsi BusSDTR Supports synchronous transfers.

scsi BusLi nkedCDB
Supports linked commands.

scsi BusTagQ Supports tagged queuing.

scsi BusSof t Reset
Supports soft reset.

scsi Tar get ModeFl ags
Reserved.

scsi ScanFl ags Reserved.

scsi SI MPri vat esPtr
A pointer to the SIM’s private storage.

scsi SI MPri vat esSi ze
The size of the SIM’s private storage, in bytes.

scsi AsyncFl ags Reserved.

scsi Hi Busl D The highest bus number currently registered with the XPT. If no
buses are registered, this field contains OXFF (the ID of the XPT).

scsilnitiatorlD
The SCSI ID of the HBA. This value is 7 for a built-in SCSI bus.

scsi Fl agsSupport ed
A bit mask that defines which scsi Fl ags bits are supported.

scsi | OFI agsSupport ed
A bit mask that defines which scsi | OFl ags bits are supported.

scsi Wi rdstuff Flags that identify unusual aspects of a SIM’s operation.

scsi GddDi sconnect Unsaf eReadl
Indicates that a disconnect or other phase change
on a odd byte boundary during a read operation
will result in inaccurate residual counts or data
loss. If your device can disconnect on odd bytes,
use polled transfers instead of blind.

scsi GddDi sconnect UnsafeWitel
Indicates that a disconnect or other phase change
on a odd byte boundary during a write operation
will result in inaccurate residual counts or data
loss. If your device can disconnect on odd bytes,
use polled transfers instead of blind.

scsi BusErrorsUnsafe
Indicates that a delay of more than 16 microseconds
or a phase change during a blind transfer on a non-
handshaked boundary may cause a system crash.
If you cannot predict where delays or disconnects
will occur, use polled transfers.

SCSI Manager 4.3 Reference 4-31

£'v 1oBeuep 1SOS -

4-32

CHAPTER 4

SCSI Manager 4.3

scsi Requi r esHandshake
Indicates that a delay of more than 16 microseconds
or a phase change during a blind transfer on a
non-handshaked boundary may result in inaccurate
residual counts or data loss. If you cannot predict
where delays or disconnects will occur, use polled
transfers.

scsi Tar get Dri venSDTRSaf e
Indicates that the SIM supports target-initiated
synchronous data transfer negotiation. If your
device supports this feature and this bit is not set,
you must set the scsi Di sabl eSel ect WAt n flag
in the scsi | OFl ags field.

scsi MaxTarget The highest SCSI ID value supported by the HBA.
scsi MaxLUN The highest logical unit number supported by the HBA.

scsi S| MWendor [16]
An ASCII text string that identifies the SIM vendor. This field
returns ' Appl e Conput er' for a built-in SCSI bus.

scsi HBAVendor [16]
An ASCII text string that identifies the HBA vendor. This field
returns ' Appl e Conput er' for a built-in SCSI bus.

scsi Control |l er Fam | y[16]
An optional ASCII text string that identifies the family of parts to
which the SCSI controller chip belongs. This information is
provided at the discretion of the HBA vendor.

scsi Control | er Type[16]
An optional ASCII text string that identifies the specific type of SCSI

controller chip. This information is provided at the discretion of the
HBA vendor.

scsi XPTver si on[4]
An ASCII text string that identifies the version number of the XPT.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsi SI Mver si on[4]
An ASCII text string that identifies the version number of the SIM.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsi HBAver si on[4]
An ASCII text string that identifies the version number of the HBA.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsi HBAsl ot Type The slot type, if any, used by this HBA. You specify the type using
one of the following constants:

scsi Mot her boar dBus
A built-in SCSI bus.

scsi NuBus A NuBus slot.
scsi PDSBus A processor-direct slot.

SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

scsi HBAsl| ot Nunber
The slot number for the SIM. Device drivers should copy this value
into the dCt | Sl ot field of the device control entry. This value is 0
for a built-in SCSI bus.

scsi SI MsRsrcl D The sResource ID for the SIM. Device drivers should copy this value
into the dCt | Sl ot | Dfield of the device control entry. This value is
0 for a built-in SCSI bus.

scsi Addi ti onal Length
The additional size of this parameter block, in bytes. If this structure
includes extra fields to return additional information, this field
contains the number of additional bytes.

SCSI Abort Command Parameter Block

You use the SCSI abort command parameter block to identify the SCSI1/O parameter
block to be canceled by the SCSI Abor t Command function. The SCSI abort command
parameter block is defined by the SCSI Abor t CommandPB data type.

struct SCSI Abort CormandPB
{
SCSI PBHdr
SCSI _10 * scsilOptr;
1
t ypedef struct SCSI Abort CormandPB SCSI Abor t ConmandPB;

Field descriptions
SCSI PBHdAr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsil Optr A pointer to the parameter block to be canceled.

SCSI Terminate I/ O Parameter Block

You use the SCSI terminate I/O parameter block to identify the SCSII/O parameter
block to be canceled by the SCSI Ter mi nat el Ofunction. The SCSI terminate I/O
parameter block is defined by the SCSI Ter mi nat el OPB data type.

struct SCSI Ter m nat el OPB
{
SCSI PBHdr
SCSl 10 * scsilOptr;
b
t ypedef struct SCSI Terni nat el OPB SCSI Ter mi nat el OPB;

Field descriptions

SCSI PBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

SCSI Manager 4.3 Reference 4-33

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

scsil Optr A pointer to the parameter block to be canceled.

SCSI Virtual ID Information Parameter Block

You use the SCSI virtual ID information parameter block with the

SCSI Get Vi rt ual | DI nf o function to get the device identification record for a device
on the virtual bus. The SCSI virtual ID information parameter block is defined by

the SCSI Get Vi rt ual | DI nf oPB data type.

struct SCSI Get Virtual | Dl nf oPB

{
SCSI PBHdr
Ul nt 16 scsiAdCal |l | O
Bool ean scsi Exi sts;

}s

typedef struct SCSI GetVirtual | DI nfoPB SCSI Get Vi rt ual | DI nf oPB;

Field descriptions

SCSI PBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21. The device information record is returned
in the scsi Devi ce field of the parameter block header.

scsid dCal I I D The virtual SCSIID of the device you are searching for.

scsi Exi sts The XPT returns t r ue in this field if the scsi Devi ce field contains
a valid device identification record.

SCSI Load Driver Parameter Block

The Start Manager uses this parameter block with the SCSI LoadDr i ver function to
load a driver for a SCSI device. The SCSI load driver parameter block is defined by
the SCSI LoadDr i ver PB data type.

struct SCSI LoadDri ver PB

{
SCSI PBHdr
SInt 16 scsi LoadedRef Num
Bool ean scsi D skLoadFai |l ed;
}s

t ypedef struct SCSILoadDriver PB SCSI LoadDri ver PB;

Field descriptions
SCSI PBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsi LoadedRef Num
If the driver is successfully loaded, this field contains the driver
reference number returned by the SIM.

4-34 SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

scsi Di skLoadFai

| ed

If this field is set to t r ue, the SIM should attempt to load its own
driver regardless of whether there is one on the device. If this field
is set to f al se, the SIM has the option of loading a driver from the
device or using one of its own.

SCSI Driver Identification Parameter Block

You use the SCSI driver identification parameter block with the

SCSI Cr eat eRef Nu

mXr ef , SCSI LookupRef NuniXr ef , and SCSI RenoveRef NuniXr ef

functions to exchange device driver registration information. The SCSI driver
identification parameter block is defined by the SCSI Dr i ver PB data type.

struct SCSIDriv
{

SCsI PBHdr

SInt 16

Ul nt 16

Devi cel dent
}s

t ypedef struct

Field descriptions
SCSI PBHdr

scsi Driver

scsi Driver Fl ags

scsi Next Devi ce

er PB

scsi Driver;
scsi Driver Fl ags;
scsi Next Devi ce;

SCSI Dri ver PB SCSI Dri ver PB;

A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

The driver reference number of the device driver associated with
this device identification record.

Driver information flags. These flags are not interpreted by the XPT
but can be used to provide information about the driver to other
clients. The following flags are defined:

scsi Devi ceSensitive
Only the device driver should access this device.
SCSI utilities and other applications that bypass
drivers should check this flag before accessing a
device.

scsi Devi ceNoQ dCal | Access
This driver or device does not accept original
SCSI Manager requests.

The device identification record of the next device in the driver
registration list.

SCSI Manager 4.3 Reference 4-35

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

SIM Initialization Record

You use the SIM initialization record to provide information about your SIM when you
register it with the XPT using the SCSI Regi st er Bus function. The SIM initialization
record is defined by the SI M ni t | nf o data type.

struct SIMnitinfo {

unt8 *Sl MstaticPtr;
SInt 32 staticSize;
SIM ni tProc SIMnit;

SI MAct i onProc SI MActi on;

SCsl Pr oc SIM I SR;
InterruptPol | Proc SIMnterruptPoll;
SI MAct i onProc Newd dCal | ;

Ul nt16 i OPBSi ze;

Bool ean ol dCal | Capabl e;
unt8 si m nf oUnused1,;
SInt 32 si m nt ernal Use;
SCSI Proc XPT | SR,

SCsl Pr oc Ent eri ngSI M
SCSI Proc Exi ti ngSI M
MakeCal | backProc MakeCal | back;
U nt16 busl D;

Ul nt16 si m nf oUnused3;
Sl nt 32 si m nf oUnused4;

}s

typedef struct SIMnitlinfo SIMnitlnfo;

Field descriptions
Sl MstaticPtr

staticSize

SIMnit

Sl MAct i on

SIM I SR

SI M nt er r upt Pol |

4-36

A pointer to the storage allocated by the XPT for the SIM’s static
variables.

The amount of memory requested by the SIM for storing its static
variables.

A pointer to the SIM’s initialization function. See the description of
the SI M ni t function on page 4-60 for more information.

A pointer to the SIM function that handles SCSI Act i on requests.
See the description of the SI MAct i on function on page 4-61 for
more information.

Reserved.

A pointer to the SIM’s interrupt polling function. The Device
Manager periodically calls this routine while waiting for a
synchronous request to complete if the processor’s interrupt priority
level is not 0. This allows the Virtual Memory Manager to initiate
SCSI transactions when interrupts are disabled. See the description of
the SI M nt er r upt Pol | function on page 4-61 for more information.

SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

Newd dCal | If the ol dCal | Capabl e field is set to t r ue, this field contains a
pointer to the SIM function that handles original SCSI Manager
requests. See the description of the Newd dCal | function
beginning on page 4-63 for more information.

i oPBSi ze The minimum size that a SCSI I/ O parameter block must be for use
with this SIM.

ol dCal | Capabl e A Boolean value that indicates whether the SIM emulates original
SCSI Manager functions.

si m nf oUnusedl Reserved.

si m nternal Use Along word available for use by the SIM. This field is not affected
or used by the SCSI Manager.

XPT_I SR Reserved.

Enteri ngSI M A pointer to the XPT Ent er i ngSI Mfunction. This function
provides support for virtual memory. Your SIM must call this
function prior to executing any other SIM code. See the description
of the Ent er i ngSl Mfunction on page 4-58 for more information.

Exi tingSI M A pointer to the XPT Exi t i ngSI Mfunction. Your SIM must call this
function before passing control to any code that could cause a page
fault, including completion routines. See the description of the
Exi ti ngSI Mfunction on page 4-59 for more information.

MakeCal | back A pointer to the XPT MakeCal | back function. Your SIM must call
this function after completing a transaction. The XPT then calls the
completion routine specified in the scsi Conpl et i on field of the
parameter block header. See the description of the MakeCal | back
function on page 4-59 for more information.

busl D The bus number assigned by the XPT to this SIM/HBA.

SCSI Manager 4.3 Functions

This section describes the functions you use to communicate with SCSI devices and with
the XPT and SIM components of SCSI Manager 4.3.

= “Client Functions” describes the functions that applications and device drivers use to
communicate with SCSI devices and the XPT.

= “SIM Support Functions” describes the functions a SIM uses to register its bus and
communicate with the XPT.

= “SIM Internal Functions” describes the functions that a SIM must provide in order to
be compatible with SCSI Manager 4.3 and the functions that a SIM must include if it
supports original SCSI Manager emulation.

Client Functions

This section describes the functions that clients (applications and device drivers) use to
communicate with SCSI devices and the XPT.

SCSI Manager 4.3 Reference 4-37

£'v 1oBeuep 1SOS -

SCSIAction

CHAPTER 4

SCSI Manager 4.3

DESCRIPTION

4-38

You use the SCSI Act i on function to initiate a SCSI transaction or request a service from
the XPT or SIM.

OSErr SCSI Acti on(SCSI _PB *scsi PB);
scsi PB A pointer to a SCSI Manager parameter block.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsi Funct i onCode uint8 The function selector code.

- scsi Resul t OSEr r The returned result code.

- scsi Devi ce Devi cel dent A 4-byte value that uniquely
identifies the target device.

- scsi Conpl etion Cal | backProc A pointer to a completion

routine. If this field is set to
ni | , the function is executed
synchronously.

- scsi Fl ags Ul nt 32 Flags indicating the transfer
direction and any special
handling required for the
request. See page 4-22 for
descriptions of these flags.

- scsi Driver St or age unt8 * Optional pointer to the device
driver’s private storage.

The SCSI Act i on function initiates the request specified by the scsi Funct i onCode
field of the parameter block. Certain types of requests are handled by the XPT, but most
are handled by the SIM. Table 4-2 lists the function selector codes. See the following
sections for descriptions of the functions you access through SCSI Act i on.

When called asynchronously, SCSI Act i on normally returns the NoEr r result code,
indicating that the request was queued successfully. The result of the SCSI transaction is
returned in the scsi Resul t field upon completion. If the SCSI Act i on function returns
an error code, the request was not queued and the completion routine will not be called.

When the completion routine is called, it receives the A5 world that existed when the
SCSI Act i on request was received. If A5 was invalid when the request was made, it
is also invalid in the completion routine.

Your completion routine should use the following function prototype:
pascal void (*Call backProc) (void * scsiPB);

There is no implied ordering of asynchronous requests made to different devices. An
earlier request may be started later, and a later request may complete earlier. However, a
series of requests to the same device is issued to that device in the order received, except
when the scsi S| MQHead flag is set in the scsi Fl ags field of the parameter block.

SCSI Manager 4.3 Reference

RESULT CODES

CHAPTER 4

SCSI Manager 4.3

When called synchronously, the SCSI Act i on function returns the actual result of the
operation. It also places this result in the scsi Resul t field.

Table 4-2 SCSI Act i on function selector codes

Code Function Operation

00 SCSI Nop No operation.

01 SCSI Execl O Execute a SCSI I/O transaction.

02 Reserved

03 SCSI Busl nqui ry Bus inquiry.

04 SCSI Rel easeQ Release a frozen SIM queue.

05-0F Reserved

10 SCSI Abor t Commrand Abort a SCSI command.

11 SCSI Reset Bus Reset the SCSI bus.

12 SCSI Reset Devi ce Reset a SCSI device.

13 SCSI Ternmi natel O Terminate I/O transaction.

14-7F Reserved

80 SCSI Get Virtual I D nfo Return Devi cel dent of a virtual SCSI ID.

81 Reserved

82 SCSI LoadDri ver Load a driver from a SCSI device.

83 Reserved

84 SCSI A dCal | SIM support function for original SCSI
Manager emulation.

85 SCSI Cr eat eRef NunXr ef Register a device driver.

86 SCSI LookupRef NunXr ef Find a driver reference number.

87 SCSI RenmoveRef NunXr ef Deregister a device driver.

88 SCSI Regi st er W hNewXPT XPT was replaced; SIM needs to reregister.

89-BF Reserved

CO-FF Vendor unique Requests in this range are passed directly to
the SIM without evaluation by the XPT.

NoErr 0 Asynchronous request successfully queued, or synchronous request

successfully completed
Note

Result codes for specific SCSI Act i on function requests are listed
in the following sections. See page 4-90 for a list of all result codes. O

SCSI Manager 4.3 Reference

4-39

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

SCSINop

The SCSI Nop function does nothing.

OSErr SCSI Acti on(SCSI _PB *scsi PB);

scsi PB A pointer to a SCSI Manager parameter block.

Parameter block

- scsi Funct i onCode U nt8 The SCSI Nop function selector code (0x00).

DESCRIPTION

The SCSI Nop function performs no action, returns no values in the parameter block, and

does not call a completion routine. It is provided for compatibility with the CAM

specification, and may be useful for debugging.
RESULT CODES

nokErr 0 No error
SCSIExeclO

You use the SCSI Exec| Ofunction to perform SCSI I/O operations.

OSErr SCSI Acti on(SCSI Execl OPB *scsi PB) ;

scsi PB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block. This
value must be equal to or greater
than the scsi | OpbSi ze for the SIM.

-~ scsi Functi onCode Ul nt8 The SCSI Execl Ofunction selector
code (0x01).

~ scsiResult CSEr r The returned result code.

—~ scsiDevice Devi cel dent The device identification record.

-~ scsi Conpl etion Cal | backProc A pointer to a completion routine.

If this field is set to ni | , the function
is executed synchronously.

- scsiFlags Ul nt 32 Flags indicating the transfer direction
and any special handling required
for the request. See page 4-22 for
descriptions of these flags.

-~ scsiDriverStorage Unt8 * Optional pointer to the device
driver’s private storage.

4-40 SCSI Manager 4.3 Reference

DESCRIPTION

RESULT CODES

CHAPTER 4

SCSI Manager 4.3

~ scsiResultFl ags
-~ scsiDataPtr

-~ scsibatalength

-~ SCsi SensePtr

- scsi SenselLength
-~ scsi CDBLength

- scsi SA.i st Count

~ scsi SCSl st at us

~ scsi SenseResi dual
~ scsi Dat aResi dual
- scsi CDB

- scsi Ti meout

- scsil OFl ags

- scsi Sel ect Ti neout
- scsi Dat aType

-~ scsi TransferType

- scsi Handshake[8]
- scsi ConmandLi nk

U nt 16
unt8 *

Ul nt 32
unt8 *
Ul nt8
Ul nt8
U nt16

Ul nt 8
SInt8
Sl nt 32
CDB

SInt 32
U nt 16
U nt 16
unt8

unt8

Ul nt 16
SCsl_10 *

Output flags that modify the

scsi Resul t field. See page 4-24.
A pointer to a data buffer or
scatter/ gather list.

The amount of data to be transferred.
A pointer to the autosense bulffer.
The size of the autosense buffer.
The size of the CDB.

The number of elements in the
scatter / gather list.

Status returned by the SCSI device.
The autosense residual length.

The data transfer residual length.
The CDB, or a pointer to the CDB,
depending on the setting of the
scsi CDBI sPoi nt er flag.

The SCSI bus timeout period.
Additional I/O flags. See page 4-25.
Optional SELECT timeout value.
The data type pointed to by the
scsi Dat aPt r field. See page 4-27.
The transfer mode (polled or blind).
See page 4-27.

Handshaking instructions.
Optional pointer to a linked CDB.

The SCSI Execl Ofunction sends a request to a SIM to carry out a SCSI transaction. The
SIM performs all the actions necessary to fulfill the request, including arbitrating for the
bus, selecting the device, sending the CDB, receiving or sending data, performing
disconnect operations, and so on. The parameter block contains all the information
required for the SIM to complete the SCSI request, including issuing a REQUEST SENSE

command if necessary.

nokErr
scsi Request | nProgr ess
scsi CDBLengt hl nval i d

scsi Transfer Typel nval i d
scsi Dat aTypel nval i d
scsilDinvalid
scsiLUNInvalid

scsi TIDInvalid
scsi Buslnvalid

SCSI Manager 4.3 Reference

-7863

-7864

-7865

-7866
-7867
-7868
-7869

No error

Parameter block request is in progress
The CDB length supplied is not
supported by this SIM; typically this
means it was too big

The scsi Tr ansf er Type requested is
not supported by this SIM

SIM does not support the requested
scsi Dat aType

The initiator ID is invalid

The logical unit number is invalid
The target ID is invalid

The bus ID is invalid

4-41

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

scsi Requestinvalid
scsi Functi onNot Avai | abl e

scsi PBLengt hErr or

scsi Qinklnvalid
scsi NoSuchXr ef

scsi Devi ceConfli ct
scsi NoHBA

scsi Devi ceNot Ther e
scsi Provi deFai |

scsi Busy

scsi TooManyBuses
scsi CDBRecei ved
scsi NoNexus

scsi Ter m nat ed

scsi BDRsent

scsi WongDirection
scsi SequenceFai |
scsi Unexpect edBusFr ee
scsi Dat aRunErr or
scsi Aut osenseFai | ed

scsi ParityError
scsi SCSI BusReset

scsi MessageRej ect Recei ved
scsi |l denti f yMessageRej ect ed
scsi CommandTi neout

scsi Sel ect Ti neout

scsi Unabl eToTer mi nat e

scsi NonZer oSt at us

scsi Unabl eToAbor t
scsi Request Abort ed

SCSI Manager 4.3 Reference

-7870
-7871

-7872

-7881
-7882

-7883

-7884
-7885
-7886
-7887
-7888

-7910
-7911
-7912
-7913
-7915
-7916
-7917
-7918
-7920

-7921
-7922

-7923

-7924

-7925

-7926

-7927

-7932

-7933
-7934

The parameter block request is invalid
The requested function is not supported
by this SIM

The parameter block length supplied
was too small for this SIM

The gLi nk field was not 0

No driver has been cross-referenced
with this device

Attempt to register more than one driver
to a device

No HBA detected

SCSI device not installed or available
Unable to provide the requested service
SCSI subsystem is busy

SIM registration failed because the XPT
registry is full

The SCSI CDB was received

Nexus is not established

Parameter block request terminated by
the host

A SCSI bus device reset (BDR) message
was sent to the target

Data phase was in an unexpected
direction

Target bus phase sequence failure
Unexpected bus free phase

Data overrun/underrun error
Automatic REQUEST SENSE command
failed

An uncorrectable parity error occurred
Execution of this parameter block was
halted because of a SCSI bus reset
REJECT message received

The target issued a REJECT message in
response to the | DENTI FY message; the
LUN probably does not exist

The timeout value for this parameter
block was exceeded and the parameter
block was aborted

Target selection timeout

Unable to terminate I/O parameter
block request

The target returned non-zero status
upon completion of the request

Unable to abort parameter block request
Parameter block request aborted by the
host

CHAPTER 4

SCSI Manager 4.3

SCSIBusInquiry

You use the SCSI Busl nqui ry function to get information about a SCSI bus.

OSErr SCSI Act i on(SCSI Busl nqui ryPB *scsi PB);

scsi PB
on page 4-28.

Parameter block

- scsi PBLength
- scsi Functi onCode

~ scsiResult
- scsiDevice

- scsi Conpl etion
~ scsi Engi neCount
~ scsi MaxTransf er Type

~ scsi bataTypes
~ scsilOpbSi ze

~ scsi Maxl OpbSi ze

~ scsi FeatureFl ags

— scsi Versi onNunber

~ scsiHBAInquiry

—~ scsiSIMPrivatesPtr
—~ scsiSIMPrivatesSi ze
—~ scsiH BuslD

—~ scsilnitiatorlD

~ scsi Fl agsSupported

~ scsi |l OFl agsSupported

~ scsiWeirdstuff
~ scsi MaxTar get

~ scsi MaxLUN

~ scsi S| Mendor

~ scsi HBAVendor

~ scsiControllerFanly
~ scsiControllerType

~ scsi XPTversion

~ scsi Sl Mrersion

~ scsi HBAversi on

~ scsi HBAsl ot Type

SCSI Manager 4.3 Reference

Ul nt 16
Ul nt 8

CSEr r
Devi cel dent

Cal | backPr oc
Ul nt 16
Ul nt 16

Ul nt 32
U nt 16

U nt 16

Ul nt 32
unt8
unt8
Ul nt 32
Ul nt 32
unt8
unt8
Ul nt 32

U nt 16

U nt 16
U nt 16

Ul nt 16

SI nt 8[16]
SI nt 8[16]
SI nt 8[16]
SI nt 8[16]
SI nt 8 4]
SI nt 8 4]
SI nt 8 4]
U nt8

A pointer to a SCSI bus inquiry parameter block, which is described

The size of the parameter block.
The SCSI Bus| nqui ry function
selector code (0x03).

The returned result code.

The device identification record.
Only the bus number is required.
Unused. Must beni | .

The number of HBA engines.
The number of data transfer
types available on the HBA.

The data types supported.

The minimum parameter block
size for this SIM.

The largest parameter block size
currently registered.

Features of the SIM/HBA.

The version of the SIM/HBA
Features of the SIM/HBA.

A pointer to the SIM's storage.
The size of the SIM's storage.
The highest registered bus number.
SCSIID of the HBA.

Bit mask of supported

scsi Fl ags.

Bit mask of supported

scsi | OFl ags.

Additional flags.

The highest SCSI ID value
supported by the HBA.

The highest logical unit number
supported by the HBA.

SIM vendor string.

HBA vendor string.

Controller family string.
Controller type string.

XPT version string.

SIM version string.

HBA version string.

The slot type of the HBA.

4-43

£'v 1oBeuep 1SOS -

DESCRIPTION

RESULT CODES

CHAPTER 4

SCSI Manager 4.3

~ scsi HBAsl ot Number Ul nt8 The slot number of the HBA.

~ scsiSIMsRsrcl D Ul nt 16 The sResource ID of the SIM.

~ scsiAdditional Length Ul nt16 The additional size of this
parameter block, if any.

The SCSI Bus| nqui r y function returns information about the SIM and HBA for a bus.
This function is typically used to find the minimum size of the SCSI I/O parameter block
for a particular SIM. You can also use this function to determine whether a bus supports
various optional features such as synchronous or wide transfer modes. Because this
function is always executed synchronously, thescsi Conpl et i on field must be set toni | .

To find all buses, first request information about the XPT by setting the bus number in
the scsi Devi ce field to 0xFF, then use the value returned in the scsi Hi Busl| Dfield to
set the limits of the search.

noErr 0 No error

scsi Buslnvalid -7869 The bus ID is invalid

scsi Requestinvalid -7870 The parameter block request is invalid

scsi PBLengt hEr ror -7872 The parameter block is too small for this SIM
scsi Qinklnvalid -7881 The gLi nk field was not 0

scsi NoHBA -7884 No HBA detected

scsi Busy -7887 SCSI subsystem is busy

SCSIReleaseQ

DESCRIPTION

4-44

You use the SCSI Rel easeQfunction to release a frozen queue for a LUN.
OSErr SCSI Acti on(SCSI _PB *scsi PB);
scsi PB A pointer to a SCSI Manager parameter block.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsi Funct i onCode Ui nt8 The SCSI Rel easeQfunction
selector code (0x04).

- scsi Resul t CSEr r The returned result code.

- scsi Devi ce Devi cel dent The device identification record.

- scsi Conpl eti on Cal | backPr oc Unused. Must be set to ni | .

The SCSI Rel easeQfunction releases a frozen I/ O queue for the logical unit number
specified in the scsi Devi ce field. If an I/ O request returns with the scsi SI MQFr ozen
flag set in the scsi Resul t Fl ags field, you must call this function to restore normal
operation.

SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

Queue freezing provides the opportunity to insert error-handling requests at the
beginning of the queue using the scsi S| MQHead flag. You then release the queue using
this function. Subsequent errors will continue to freeze the queue, allowing you to step
through the queue one request at a time without aborting any other pending requests.

Because this function is always executed synchronously, the scsi Conpl et i on field
must be set to ni | . Unlike other synchronous functions, however, you can call
SCSI Rel easeQfrom a completion routine.

RESULT CODES
noErr 0 No error
scsilDinvalid -7866 The initiator ID is invalid
scsi LUNI nval id -7867 The logical unit number is invalid
scsi TI Dinvalid -7868 The target ID is invalid
scsi Buslnvalid -7869 The bus ID is invalid
scsi Requestinvalid -7870 The parameter block request is invalid
scsi PBLengt hEr ror -7872 The parameter block is too small for this SIM
scsi Qinklnvalid -7881 The gLi nk field was not 0
SEE ALSO
See “Error Recovery Techniques” on page 4-10 for more information about queue
freezing.
SCSIAbortCommand

You can use the SCSI Abor t Command function to cancel an I/O request.
OSErr SCSI Acti on(SCSI Abor t ConmandPB *scsi PB) ;

scsi PB A pointer to a SCSI abort command parameter block, which is described
on page 4-33.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsi Functi onCode U nt8 The SCSI Abor t Command function
selector code (0x10).

~ scsiResult CSEr r The returned result code.

- scsiDevice Devi cel dent The device identification record.

- scsi Conpl etion Cal | backProc A pointer to a completion routine.

If this field is set to ni | , the function
is executed synchronously.

-~ scsiDriverStorage Unt8 * Optional pointer to the device
driver’s private storage.
- scsilOptr SCSI_I10 * A pointer to the SCSI1/O parameter

block to be canceled.

SCSI Manager 4.3 Reference 4-45

£'v 1oBeuep 1SOS -

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

The SCSI Abor t Command function cancels the SCSI Execl Orequest identified by the
scsi | Optr field. If the request has not yet been delivered to the device, it is removed
from the queue and its completion routine is called with a result code of

scsi Request Abor t ed. If the request has already been started, the SIM attempts to
send an ABORT message to the device, either by asserting the / ATN signal or by
reselecting the device. The function returns the scsi Unabl eToAbor t result code if the
specified request has already been completed.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Because the interrupt that calls the completion routine can pre-empt the
SCSI Abor t Command request, this function can produce unexpected results if the
completion routine for the canceled request reuses the parameter block.

noErr 0 No error

scsi Buslnvalid -7869 The bus ID is invalid

scsi Request I nvalid -7870 The parameter block request is invalid

scsi PBLengt hErr or 7872 The parameter block is too small for this SIM
scsi Qi nklnvalid -7881 The gLi nk field was not 0

scsi Unabl eToAbor t -7933 Unable to abort parameter block request

See the description of the SCSI Ter ni nat el Ofunction on page 4-48 for information
about another method of canceling a request.

SCSIResetBus

1-46

You use the SCSI Reset Bus function to reset a SCSI bus.
OSErr SCSI Action(SCSI _PB *scsi PB);
scsi PB A pointer to a SCSI Manager parameter block.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsi Funct i onCode Ul nt8 The SCSI Reset Bus function
selector code (0x11).

- scsi Resul t CSEr r The returned result code.

= scsi Devi ce Devi cel dent The device identification record.
Only the bus number is required.

- scsi Conpl etion Cal | backProc A pointer to a completion

routine. If set to ni | , the function
is executed synchronously.

SCSI Manager 4.3 Reference

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

. scsi Dri ver St or age untg * Optional pointer to the device
driver’s private storage.

The SCSI Reset Bus function directs the HBA to assert the SCSI bus reset signal, causing
all devices on the bus to clear pending I/O and forcing the bus into the bus free phase. In
addition, the SIM calls the completion routines for all requests that were already
delivered to devices. The appropriate LUN queue is frozen for each of the requests that
were reset, unless the scsi S| MONoFr eeze flag is set.

SPECIAL CONSIDERATIONS

RESULT CODES

The SCSI Reset Bus function interrupts SCSI communications and can cause data loss.
You should use this function only to restore operation in the event that a device refuses
to release the bus. You can use the SCS| Reset Devi ce function to reset a single device
when the SCSI bus is operational and the device is still responding to selection.

NnoErr 0 No error

scsi Buslnvalid -7869 The bus ID is invalid

scsi Request I nvalid -7870 The parameter block request is invalid

scsi PBLengt hEr ror -7872 The parameter block is too small for this SIM
scsi @Qinklnvalid -7881 The gLi nk field was not 0

SCSIResetDevice

You use the SCSI Reset Devi ce function to reset a SCSI device.
OSErr SCSI Action(SCSI_PB *scsi PB);
scsi PB A pointer to a SCSI Manager parameter block.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsi Functi onCode Ul nt8 The SCSI Reset Devi ce function
selector code (0x12).

- scsi Resul t OSErr The returned result code.

- scsi Devi ce Devi cel dent The device identification record.

- scsi Conpl eti on Cal | backProc A pointer to a completion routine.

If set to ni | , the function is
executed synchronously.

- scsi Dri ver St or age untg * Optional pointer to the device
driver’s private storage.

SCSI Manager 4.3 Reference 4-47

£'v 1oBeuep 1SOS -

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

The SCSI Reset Devi ce function attempts to send a BUS DEVI CE RESET message to
the target. If the device is currently on the bus, the SIM asserts the /ATN signal and
sends the message at the next message-out phase. If the target is not on the bus, the SIM
selects it and sends an | DENTI FY message followed by a BUS DEVI CE RESET message.

SPECIAL CONSIDERATIONS

RESULT CODES

The BUS DEVI CE RESET message clears all I/O transactions for all logical units of the
target device. This function may result in data loss and should be used only to restore
operation in the event that a device fails to respond to other messages.

noErr 0 No error

scsiBuslnvalid -7869 The bus ID is invalid

scsi Request | nval i d -7870 The parameter block request is invalid

scsi PBLengt hError -7872 The parameter block is too small for
this SIM

scsi Qi nklnvalid -7881 The gLi nk field was not 0

scsi MessageRej ect Recei ved -7923 REJECT message received

SCSITerminatel O

4-48

You can use the SCSI Ter mi nat el Ofunction to cancel anI/O request.
OSErr SCSI Acti on(SCSI Ter mi nat el OPB *scsi PB);

scsi PB A pointer to a SCSI terminate I/O parameter block, which is described on
page 4-33.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsi Functi onCode unt8 The SCSI Ter ni nat el Ofunction
selector code (0x13).

~ scsiResult CSEr r The returned result code.

- scsiDevice Devi cel dent The device identification record.

- scsi Conpletion Cal | backProc A pointer to a completion routine.

If this field is set to ni | , the function
is executed synchronously.

- scsiDriverStorage U nt8 * Optional pointer to the device
driver’s private storage.
- scsilOptr SCSI_I10* A pointer to the SCSII/O parameter

block to be canceled.

SCSI Manager 4.3 Reference

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

The SCSI Ter ni nat el Ofunction cancels the SCSI Execl Orequest identified by the
scsi | Optr field. If the request has not yet been delivered to the device, it is removed
from the queue and its completion routine is called with a result code of

scsi Ter m nat ed. If the request has already been started, the SIM attempts to send a
TERM NATE | O PROCESS message to the device, either by asserting the / ATN signal or
by reselecting the device. The function returns the scsi Unabl eToTer mi nat e result
code if the specified request has already been completed.

The SCSI Ter mi nat el Ofunction differs from the SCSI Abor t Command function
(described on page 4-45) only in the message it sends over the SCSI bus. TERM NATE | O
PROCESS is an optional SCSI-2 message that instructs the device to complete a request
normally although prematurely, while attempting to maintain media integrity.

SPECIAL CONSIDERATIONS

RESULT CODES

Because the interrupt that calls the completion routine can pre-empt the
SCSI Ter mi nat el Orequest, this function can produce unexpected results if the
completion routine for the canceled request reuses the parameter block.

nokErr 0 No error

scsi Buslnvalid -7869 The bus ID is invalid

scsi Requestinvalid -7870 The parameter block request is invalid

scsi PBLengt hEr ror -7872 The parameter block is too small for this SIM
scsi Qinklnvalid -7881 The gLi nk field was not 0

scsi Unabl eToTer mi nat e -7927 Unable to terminate I/ O parameter block request

SCSIGetVirtuallDInfo

You can use the SCSI Get Vi r t ual | DI nf o funtion to get the device identification record
for a virtual SCSI ID.

OSErr SCSI Acti on(SCSI Get Vi rtual | nfoPB *scsi PB) ;

scsi PB A pointer to a SCSI virtual ID information parameter block, which is
described on page 4-34.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsiFunctionCode Unt8 The SCSI Get Virtual I DI nfo
function selector code (0x80).

~ scsiResult CSEr r The returned result code.

~ scsiDevice Devi cel dent The device identification record.

- scsi Conpl etion Cal | backProc Unused. Must besettoni | .

- scsiddcalllD U nt16 The virtual SCSI ID to search for.

SCSI Manager 4.3 Reference 4-49

£'v 1oBeuep 1SOS -

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

~ scsiExists Bool ean Returns t r ue if the scsi Devi ce
field contains a valid device
identification record.

The SCSI Get Vi rt ual | DI nf o function returns the device identification record of a
device on the virtual bus. This function is typically used by a device driver during the
transition from a ROM-based original SCSI Manager to SCSI Manager 4.3. If a device
with the specified SCSI ID is not found on the virtual bus, or the device exists but is not
accessible through the SCSI Manager 4.3 interface, the scsi Exi st s field returns f al se
and the scsi Devi ce field should be ignored.

Because this function is always executed synchronously, the scsi Conpl et i on field
mustbeni | .

RESULT CODES
noErr 0 No error
scsi TIDinvalid -7868 The target ID is invalid
scsi PBLengt hEr r or -7872 The parameter block is too small for this SIM
scsi Qi nklnvalid -7881 The gLi nk field was not 0
SCSILoadDriver

4-50

The Start Manager uses the SCSI LoadDr i ver function to provide an opportunity for a
SIM to load a driver other than one found on the media.

OSErr SCSI Acti on(SCSI LoadDri ver PB *scsi PB) ;

scsi PB A pointer to a SCSI load driver parameter block, which is described on
page 4-34.

Parameter block

- scsi PBLength Ul nt 16 The size of the parameter block.

- scsi Functi onCode U nt8 The SCSI LoadDr i ver function
selector code (0x82).

~ scsiResult CSEr r The returned result code.

— scsiDevice Devi cel dent The device identification record.

- scsi Conpl etion Cal I backProc A pointer to a completion routine.

If this field is set to ni | , the
function is executed synchronously.

- scsiDriverStorage unt8 * Optional pointer to the device
driver’s private storage.

~ scsi LoadedRef Num Ul nt 16 The driver reference number
returned by the SIM.

- scsiDiskLoadFai |l ed Bool ean Set to t r ue if a driver could not be

loaded from the media.

SCSI Manager 4.3 Reference

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

The SCSI LoadDr i ver function is called by the Start Manager to load device drivers for
SCSI devices. You can use this function to load a driver for a device that was not
available at system startup.

The Start Manager can call this function both before and after attempting to load a driver
from the media. On the first attempt, the scsi Di skLoadFai | ed field is set to f al se,
indicating to the SIM that it can choose to load a driver from the media or install another
(typically newer) driver of its own choosing.

If the first attempt to load a driver fails, the Start Manager calls the SCSI LoadDr i ver
function a second time, with the scsi Di skLoadFai | ed field set tot r ue to indicate
that a driver could not be loaded from the media. The SIM then loads its own driver, if
possible, or returns an error result.

SPECIAL CONSIDERATIONS

RESULT CODES

The SCSI LoadDr i ver function may move memory; you should not call it at interrupt
time.

noErr 0 No error
scsi Functi onNot Avai | abl e -7871 The requested function is not supported by
this SIM

SCSICreateRefNumXref

You use the SCSI Cr eat eRef NunXr ef function to register a device driver with the XPT.
OSErr SCSI Acti on(SCSI DriverPB *scsi PB);

scsi PB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

- scsi PBLength Ul nt 16 The size of the parameter block.

- scsiFunctionCode Unt8 The SCSI Cr eat eRef NunXr ef
function selector code (0x85).

~ scsiResult CSErr The returned result code.

- scsi Device Devi cel dent The device identification record.

- scsi Conpl etion Cal | backProc Unused. Must be set to ni | .

— scsiDriver SInt 16 The driver reference number.

- scsiDriverFl ags ulnt 16 Optional driver flags.

SCSI Manager 4.3 Reference 4-51

£'v 1oBeuep 1SOS -

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

The SCSI Cr eat eRef NunXr ef function adds an element to the XPT’s driver registration
table. You specify a device identification record in the scsi Devi ce field and a driver
reference number in the scsi Dri ver field. The scsi Dri ver Fl ags field provides
information about the driver that other clients can access using the

SCSI LookupRef NunmXr ef function. The XPT does not interpret these flags.

A device identification record can have only one driver reference number associated
with it, but a driver reference number may be registered to multiple devices. This
function returns the scsi Devi ceConf | i ct result code if a driver is already registered
to the specified device identification record.

Because this function is always executed synchronously, the scsi Conpl et i on field
must be settoni | .

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

The SCSI O eat eRef NunXr ef function is executed synchronously and may move
memory; you should not call it at interrupt time.

noErr 0 No error
scsi Qinklnvalid -7881 The gLi nk field was not 0
scsi Devi ceConfli ct -7883 Attempt to register more than one driver to a device

See “Loading and Initializing a Driver,” beginning on page 4-11, for more information
about how device drivers are registered with the XPT.

SCSILookupRefNumXref

4-52

You can use the SCSI LookupRef NumXr ef function to determine if a driver is installed
for a SCSI device.

OSErr SCSI Acti on(SCSI Dri ver PB *scsi PB) ;

scsi PB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsiFunctionCode UInt8 The SCSI LookupRef NunXr ef
function selector code (0x86).

~ scsiResult CSErr The returned result code.

— scsiDevice Devi cel dent The device identification record.

- scsi Conpl etion Cal | backProc Unused. Must be settoni | .

SCSI Manager 4.3 Reference

DESCRIPTION

RESULT CODES

CHAPTER 4

SCSI Manager 4.3

- scsi Driver SInt 16 The driver reference number.
~ scsiDriverFlags Ul nt 16 Optional driver flags.
~ scsi Next Devi ce Devi cel dent The device identification record of

the next device in the driver
registration table.

The SCSI LookupRef NumXr ef function returns the driver reference number for a
device. You specify a device identification record in the scsi Devi ce field, and the
function returns the driver reference number in the scsi Dri ver field. If no driver is
registered for the device, the function returns ni | in the scsi Dri ver field.

The scsi Dri ver Fl ags field returns the flags that were set when the driver was
registered. The scsi Next Devi ce field returns the device identification record of the
next device in the driver registration table. If this is the last device in the table, the
function returns OxFF in the scsi Next Devi ce. bus field.

To find all registered drivers you should first call this function with a value of OxFF in the
scsi Devi ce. bus field. The function returns the device identification record of the first
device in the list in the scsi Next Devi ce field. You can then find other drivers by
moving the scsi Next Devi ce value into the scsi Devi ce field and repeating the
operation until the function returns OxFF in the scsi Next Devi ce. bus field.

Because this function is always executed synchronously, the scsi Conpl et i on field
must be set to ni | .

nokErr 0 No error
scsi Qi nklnvalid -7881 The gLi nk field was not 0

SCSIRemoveRefNumXref

You use the SCSI RenoveRef NunXr ef function to deregister a device driver with the XPT.
OSErr SCSI Acti on(SCSI Driver PB *scsi PB);

scsi PB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

-~ scsi PBLength Ul nt 16 The size of the parameter block.

- scsiFunctionCode Unt8 The SCSI RenpveRef NunmXr ef
function selector code (0x87).

~ scsiResult CSEr r The returned result code.

- scsiDevice Devi cel dent The device identification record.

- scsi Conpl etion Cal | backProc Unused. Mustbesettoni | .

SCSI Manager 4.3 Reference 4-53

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

DESCRIPTION
The SCSI RenoveRef NunXr ef function removes a driver entry from the XPT’s driver
registration table. You specify the device identification record in the scsi Devi ce field.
Because this function is always executed synchronously, the scsi Conpl et i on field
must be set to ni | .
SPECIAL CONSIDERATIONS
The SCSI RenoveRef NunXr ef function is executed synchronously, and may move
memory; you should not call it at interrupt time.
RESULT CODES
noErr 0 No error
scsi Qi nklnvalid -7881 The gLi nk field was not 0
scsi NoSuchXr ef -7882 No driver has been cross-referenced with this device
SEE ALSO

See “Loading and Initializing a Driver,” beginning on page 4-11, for more information
about how device drivers are registered with the XPT.

SIM Support Functions

This section describes the functions a SIM uses to register its bus and communicate with
the XPT. If you are writing a SIM, you use these functions to

» register, deregister, or reregister your SIM with the XPT
= remove the existing XPT if you replace it
» inform the XPT when your code is running

= call a completion routine

SCSIRegisterBus

4-54

You use the SCSI Regi st er Bus function to register a SIM and HBA for use with the XPT.
OSErr SCSI Regi sterBus(SIMnitlnfo *SIM nfoPtr);
SI M nf oPtr A pointer to a SIM initialization record, which is described on page 4-36.

Parameter block

- Sl MstaticPtr unt8 * A pointer to the allocated
static storage.
- staticSize Sl nt 32 The amount of memory

requested for static storage.

SCSI Manager 4.3 Reference

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

- SIMnit
- S| MAct i on

N SI M nt errupt Pol |

o Newd dCal |
o i oPBSi ze

- ol dCal | Capabl e

- EnteringSI M
- ExitingSIM
- MakeCal | back

- busl| D

SIMni tProc
S| MAct i onPr oc

I nterrupt Pol | Proc

S| MAct i onPr oc
ul nt 16

Bool ean

SCSI Proc
SCSI Pr oc
MakeCal | backPr oc

U nt 16

A pointer to the SI M ni t
function.

A pointer to the SI MAct i on
function.

A pointer to the

SI M nt er r upt Pol |
function.

A pointer to the

Newd dCal | function.
The SCSII/O parameter
block size for this SIM.
Set to t r ue if the SIM
emulates original SCSI
Manager functions.

A pointer to the

Ent er i ngSI Mfunction.
A pointer to the

Exi ti ngSl Mfunction.

A pointer to the

MakeCal | back function.
The bus number assigned to
this SIM/HBA.

You use the SIM initialization record to specify the characteristics of the HBA, the SIM’s
function entry points, and the number of bytes required for static data storage (global
variables). The XPT returns a pointer to the allocated storage and a bus number that

identifies the bus in all future transactions. In addition, the XPT returns pointers to the
Ent eri ngSI M Exi ti ngSI M and MakeCal | back functions.

Before assigning a bus number, the XPT calls the SIM’s S| M ni t function, which
instructs the SIM to initialize itself. If the SI M ni t function returns noEr r, the XPT
assigns a bus number and returns from the SCSI Regi st er Bus function. At this point
the SIM is installed and should be ready to accept requests.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

The SCSI Regi st er Bus function may move memory; you should not call it at interrupt
time.

No error
SIM registration failed because the XPT registry is full

noEr r 0
scsi TooManyBuse -7888
S

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using this function.

SCSI Manager 4.3 Reference 4-55

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

SCSIDeregisterBus

DESCRIPTION

You can use the SCSI Der egi st er Bus function to deregister a bus that is no longer
available.

OSErr SCSI Der egi st er Bus(SCSI _PB *scsi PB);
scsi PB A pointer to a SCSI Manager parameter block.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.
- scsi Resul t OSEr r The returned result code.
o scsi Devi ce Devi cel dent The device identification record.

Only the bus number is required.
- scsi Conpl eti on Cal | backProc Unused. Must be settoni | .

The SCSI Der egi st er Bus function attempts to remove the SIM specified by the

scsi Devi ce. bus field of the parameter block. The XPT marks the bus number as
invalid and any subsequent requests to it are rejected. This function is not normally used
by the Macintosh Operating System and may not be supported in all implementations.

Because this function is always executed synchronously, the scsi Conpl et i on field
must be set to ni | .

SPECIAL CONSIDERATIONS

RESULT CODES

The SCSI Der egi st er Bus function may move memory; you should not call it at
interrupt time.

noErr 0 No error
scsiBuslnvalid -7869 The bus ID is invalid
scsi Functi onNot Avai | able -7871 The function is not supported by this SIM

SCSIReregisterBus

4-56

You can use the SCSI Rer egi st er Bus function to reregister a bus if its entry points
change or if the XPT is replaced.

OSErr SCSI Reregi sterBus(SIMnitlinfo *SIMnfoPtr);

SI M nfoPtr A pointer to a SIM initialization record, which is described on page 4-36.

SCSI Manager 4.3 Reference

DESCRIPTION

CHAPTER 4

SCSI Manager 4.3

Parameter block
- Sl MstatichPtr

N staticSi ze
5 SIMnit
5 SI MActi on

- SI M nt err upt Pol |

- Newd dCal |
- i oPBSi ze

N ol dCal | Capabl e

- Enteri ngSI M
- Exi ti ngSI M
- MakeCal | back

- busl| D

unt8 *

SInt 32

SI M ni t Proc
S| MAct i onPr oc

I nt errupt Pol | Proc

S| MAct i onPr oc
U nt16

Bool ean

SCSI Pr oc
SCSI Pr oc
MakeCal | backPr oc

U nt 16

A pointer to the SIM's
existing static storage.

The size of the SIM's static
storage.

A pointer to the SI M ni t
function.

A pointer to the SI MAct i on
function.

A pointer to the

SI M nt er r upt Pol |
function.

A pointer to the

Newd dCal | function.
The SCSI I/O parameter
block size for this SIM.

Set to t r ue if the SIM
emulates original SCSI
Manager functions.

A pointer to the

Ent er i ngSI Mfunction.
A pointer to the

Exi ti ngSI Mfunction.

A pointer to the

MakeCal | back function.
The bus number requested.

You normally call the SCSI Rer egi st er Bus function in response to a

SCSI Regi st er W t hNewXPT request. This function is identical to SCSI Regi st er Bus
except that the bus number and static storage pointer are passed fo the XPT, rather than
being returned by it. In addition, the XPT does not call the SI M ni t function.

This function allows a SIM to retain its bus number and static storage if the XPT changes.
It is also useful if you need to change the SIM’s function entry points or other

information.

SPECIAL CONSIDERATIONS

RESULT CODES

The SCSI Rer egi st er Bus function may move memory; you should not call it at

interrupt time.

noErr 0
scsi Buslnvalid -7869
scsi TooManyBuses -7888

SCSI Manager 4.3 Reference

No error

The bus ID is invalid

SIM registration failed because the XPT registry is full

4-57

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

SCSIKilIXPT

You use the SCSI Ki | | XPT function to remove an XPT that has been replaced.

OSErr SCSIKi | | XPT(void *);

DESCRIPTION

The SCSI Ki | | XPT function forces the XPT to release any memory it allocated and
remove any patches it may have installed. This function is typically called by a new XPT
after it has installed itself and reregistered all existing SIMs.

SPECIAL CONSIDERATIONS

The SCSI Ki | | XPT function may move memory; you should not call it at interrupt time.

RESULT CODES
noErr 0 No error

EnteringSIM

You use the Ent er i ngSI Mfunction to inform the XPT that your SIM code is running.

void EnteringSIM);

DESCRIPTION

The Ent er i ngSI Mfunction informs the XPT that subsequent code is not reentrant and
instructs the Virtual Memory Manager to defer execution of VBL tasks, Time Manager
tasks, completion routines, and any other code that could cause a page fault. A SIM must
call this function whenever its code begins executing and call the corresponding

Exi ti ngSl Mfunction on exit.

SPECIAL CONSIDERATIONS

You get the address of this function from the Ent er i ngSl Mfield of the SIM
initialization record.

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using this function.

4-58 SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

ExitingSIM

The Exi t i ngSl Mfunction is the counterpart to the Ent er i ngSI Mfunction.

void ExitingSIM);

DESCRIPTION
The EXi t i ngSl Mfunction informs the XPT that the SIM is about to pass control to an
external routine that might cause a page fault. A SIM must call this function before
returning to the XPT or calling a completion routine.
SPECIAL CONSIDERATIONS
You get the address of this function from the Exi t i ngSl Mfield of the SIM initialization
record.
SEE ALSO
See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using this function.
MakeCallback
You use the MakeCal | back function to signal the XPT to call a completion routine.
voi d MakeCal | back(SCSI _I O *scsi PB);
scsi PB A pointer to a SCSI I/O parameter block, which is described on page 4-23.
Parameter block
- scsiConpletion CallbackProc A pointer to a completion routine.
DESCRIPTION

The MakeCal | back function instructs the XPT to execute the completion routine in the
SCSI1/O parameter block. The XPT restores the client’s A5 world and then calls the
completion routine. A SIM should always use this function rather than calling
completion routines directly because the XPT may chose to defer the actual execution of
the routine until page faults are safe.

You should surround a call to MakeCal | back with calls to Exi t i ngSl Mand
Ent er i ngSI Mso that the Virtual Memory Manager can properly handle any page faults
caused by the completion routine.

SCSI Manager 4.3 Reference 4-59

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

SPECIAL CONSIDERATIONS

SEE ALSO

You get the address of this function from the MakeCal | back field of the SIM
initialization record.

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using this function.

SIM Internal Functions

This section describes the functions that a SIM must provide to be compatible
with SCSI Manager 4.3 and the functions that a SIM must include if it supports
original SCSI Manager emulation. These functions are called by the XPT to control
or provide information to the SIM.

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information
about using these functions.

SIMInit
The XPT calls this function to initialize a SIM. The SI M ni t function must conform to
the following type definition:
typedef OSErr (*SIMnitProc) (Ptr SIMnfoPtr);
SI M nf oPtr A pointer to a SIM initialization record, which is described on page 4-36.
DESCRIPTION
The XPT calls this function after a SIM has called SCSI Regi st er Bus. Before returning
from the SCSI Regi st er Bus function, the XPT calls this function to initialize the SIM.
The SIM is responsible for initializing the HBA.
The XPT passes a pointer to the SIM initialization record, which contains pointers to
the SIM’s static data storage and the required XPT entry points (Ent er i ngSI M
Exi ti ngSlI M and MakeCal | back).
RESULT CODES
noErr 0 No error
scsi NoHBA -7884 No HBA detected
4-60 SCSI Manager 4.3 Reference

SIMAction

CHAPTER 4

SCSI Manager 4.3

DESCRIPTION

RESULT CODES

The XPT calls this function when a SCSI Act i on request is received that needs to be
serviced by the SIM. The SI MAct i on function must conform to the following type
definition:

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMd obals);

scsi PB A pointer to a SCSI Manager parameter block.
SI M3 obal s A pointer to the SIM’s static data storage.

The SI MAct i on function is responsible for handling SCSI Act i on requests directed to
the SIM’s bus. The XPT passes the client’s parameter block to the SIM, which should
then queue the request, execute it, and call the completion routine. The SIM must
conform to the behavior defined for the SCSI Act i on function.

In addition to supporting all client functions, the SI MAct i on function may optionally
support two requests made by the XPT, SCSI A dCal | and SCSI Regi st er W t hNewXPT.

The SI MAct i on function returns a result code in thescsi Resul t field of the parameter
block. The code should be appropriate for the SCSI Act i on request being processed.

SIMInterruptPoll

DESCRIPTION

The XPT calls this function when interrupts are disabled during a synchronous wait
loop, to give the SIM an opportunity to handle interrupts from the HBA. The
SI MAct i on function must conform to the following type definition:

typedef void (*InterruptPoll Proc) (Ptr SIMd obals);

SI M3 obal s A pointer to the SIM’s static data storage.

If the Device Manager is waiting for a synchronous request to complete, and processor
interrupts are masked at level 2 (the level of NuBus interrupts) or higher, the XPT
periodically calls the SI M nt er r upt Pol | function for each SIM. The SIM can then
check whether an interrupt is pending from the HBA, and execute its interrupt service
routine if necessary.

SCSI Manager 4.3 Reference 4-61

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

SCSIOIdCall

DESCRIPTION

RESULT CODES

4-62

The XPT calls this function when a client calls the original SCSI Manager function
SCSI Sel ect.

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMd obals);

scsi PB A pointer to a SCSI I/ O parameter block, which is described on page 4-23.
SI M3 obal s A pointer to the SIM’s static data storage.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.

- scsi Functi onCode U nt8 The SCSI A dCal | function selector
code (0x84).

- scsiDevice Devi cel dent The device identification record.

- scsi Conpl etion Cal | backProc A pointer to a completion routine.

If this field is set to ni | , the function
is executed synchronously.

- scsiDriverStorage Unt8 * Optional pointer to the device
driver’s private storage.

— scsi Current Phase Ul nt 16 The current SCSI bus phase.

— scsi Sel ector SInt 16 The SCSI Sel ect trap selector (0x02).

~ scsiddCall Result OSErr The result code from SCSI Sel ect .

This function indicates the beginning of an original SCSI Manager transaction. A SIM
that supports original SCSI Manager emulation should attempt to select the device
described in the scsi Devi ce field. Because the entire SCSI transaction is not completed
by a call to SCSI A dCal |, the result code for this function is returned in the

scsi O dCal | Resul t field rather than the scsi Resul t field, as with other functions.
Subsequent original SCSI Manager function calls for this transaction are made through
the Newd dCal | function.

If the SIM successfully selects the device, it should queue the parameter block like any
other SCSI I/ O parameter block. The parameter block should not be removed until the
Newd dCal | function completes a SCSI Conpl et e command.

To provide full compatibility with the original SCSI Manager, a SIM must be able to
perform a SCSI arbitration and select process independent of a SCSI message-out or
command phase. If the SIM requires the CDB or message-out bytes it will not be able to
perform the select operation at the time of the SCSI O dCal | request. The SIM should
return NOEr r in the scsi O dCal | Resul t field and wait for a subsequent I/O request
before actually selecting the device.

The SCSI A dCal | function returns an appropriate SCSI Sel ect result code in the
scsi A dCal | Resul t field of the parameter block.

SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

NewOldCall

DESCRIPTION

RESULT CODES

The XPT calls this function when a client calls any of the original SCSI Manager
functions other than SCSI Sel ect (which is handled by SCSI A dCal |). The
NewQ dCal | function must conform to the following type definition:

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMd obals);

scsi PB A pointer to a SCSI I/O parameter block, which is described on page 4-23.
SI M3 obal s A pointer to the SIM’s static data storage.

Parameter block

- scsi PBLengt h Ul nt 16 The size of the parameter block.
~ scsiResult CSEr r The SCSI Conpl et e result code.
- scsiDevice Devi cel dent The device identification record.
- scsi Conpl etion Cal | backProc A pointer to a completion routine.

If this field is set to ni | , the function
is executed synchronously.

- scsiDriverStorage U nt8 * Optional pointer to the device
driver’s private storage.

« scsi Current Phase Ul nt 16 The current SCSI bus phase.

- scsi Sel ector SInt 16 The _SCSI Di spat ch trap selector.

~ scsiddCall Result OSErr The function result code.

~ scsi SCSl nessage unt8 The SCSI Conpl et e message byte.

After an original SCSI Manager transaction begins, theNewd dCal | function receives all
subsequent original SCSI Manager function requests until the transaction is completed.
The XPT converts all original SCSI Manager function requests (except SCSI Get and
SCSI St at) into SCSI Manager 4.3 parameter block requests and sends them to the
appropriate SIM.

A SIM uses the scsi Sel ect or field of the parameter block to determine which
function to perform and should return the current bus phase and message byte in the
appropriate fields after each request.

The XPT converts a SCSI Reset request into a SCSI Reset Bus request and sends it to
all SIMs that support original SCSI Manager emulation. The XPT handles SCSI St at
requests itself, using the information returned in the scsi Cur r ent Phase field.

Result codes from all emulated functions except SCSI Conpl et e are returned in the
scsi A dCal | Resul t field. The SCSI Conpl et e result is returned in scsi Resul t .
This indicates to the XPT that the transaction is complete and that the SIM is ready to
start a new original SCSI Manager transaction. See the chapter “SCSI Manager” in this
book for a list of original SCSI Manager result codes.

SCSI Manager 4.3 Reference 4-63

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

SCSIRegisterWithNewXPT

DESCRIPTION

RESULT CODES

4-64

This function informs a SIM that a new XPT layer has been installed. The SIM should call
the SCSI Rer egi st er Bus function to register itself with the new XPT.

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMd obals);

scsi PB A pointer to a SCSI Manager parameter block.
SI M3 obal s A pointer to the SIM’s static data storage.

Parameter block

- scsiPBLength U nt16 The size of the parameter block.
- scsiFunctionCode Unt8 The SCSI Regi st er W t hNewXPT
function selector code (0x88).

After a new XPT installs itself, and before it removes the old XPT, it sends the

SCSI Regi st er Wt hNewXPT request to all SIMs registered with the old XPT. Each SIM
should then call the SCSI Rer egi st er Bus function to register with the new XPT. This
allows SIMs to keep their existing bus number and static data storage when installing
themselves in a new XPT.

nokErr 0 No error
scsi Qi nklnvalid -7881 The gLi nk field was not 0

SCSI Manager 4.3 Reference

CHAPTER 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3

C Summary
Constants
enum {
scsi VERSI ON = 43
1
/* SCSI Manager function codes */
enum {
SCSI Nop = 0x00, /* no operation */
SCsSI Execl O = 0x01, /* execute a SCSI IO transaction */
SCsI Busl nqui ry = 0x03, /* bus inquiry */
SCSI Rel easeQ = 0x04, /* release a frozen SI M queue */
SCSI Abor t Command = 0x10, /* abort a SCSI comrand */
SCSI Reset Bus = 0Ox11, /* reset the SCSI bus */
SCSI Reset Devi ce = 0x12, /* reset a SCSI device */
SCSI Terni natel O = 0x13, /* termnate I/O transaction */
SCSI Get Virtual I DI nfo = 0x80, /* return Deviceldent of virtual ID */
SCSI LoadDri ver = 0x82, /* load a driver froma SCSI device */
SCSI A dCal | = 0x84, [/* begin old-APl enulation */
SCSI Cr eat eRef NumXr ef = 0x85, /* register a device driver */
SCSI LookupRef NumXr ef = 0x86, /* find a driver reference nunber */
SCSI RenpveRef NunXr ef = 0x87, [/* deregister a device driver */
SCSI Regi st er Wt hNewXPT = 0x88, [/* XPT replaced; SIMnust reregister */
vendor Uni que = 0xC0 /* 0xC0 through OxFF */
1
/* allocation |l engths for paraneter block fields */
enum {
handshakeDat aLengt h = 8, /* handshake data | ength */
maxCDBLengt h = 16, /* space for the CDB bytes/pointer */
vendor | DLengt h = 16 /* ASCI| string length for vendor ID */
1
Summary of SCSI Manager 4.3 4-65

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

/* types for the scsiTransferType field */

enum {
scsi TransferBli nd = 0, /* DVA if available, otherw se blind */
scsi TransferPol | ed /* polled */

b

/* types for the scsiDataType field */

enum {
scsi Dat aBuf f er = 0, /* single contiguous buffer supplied */
scsi Dat aTl B = 1, /* TIB supplied (ptr in scsibDataPtr) */
scsi Dat aSG =2 /* scatter/gather list supplied */

i

/* flags for the scsiResultFlags field */

enum {
scsi S| MJFrozen = 0x0001, /* the SIMqueue is frozen */
scsi Aut osenseVal i d = 0x0002, /* autosense data valid for target */
scsi BusNot Free = 0x0004 /* SCSI bus is not free */

1

/* bit nunbers of the scsiFlags field */
enum {

kbSCSI Di sabl eAut osense = 29, /* disabl e autosense feature */

kbSCSI Fl agReser vedA = 28,

kbSCSI Fl agReser vedO = 27,

kbSCSI CDBLI nked = 26, /* the PB contains a |inked CDB */
kbSCSI QEnabl e = 25, /* target queue actions are enabled */
kbSCSI CDBI sPoi nt er = 24, /* the CDB field contains a pointer */
kbSCSI Fl agReser vedl = 23,

kbSCSI I nitiateSynchata = 22, /* attenpt sync data transfer and SDTR */
kbSCSI Di sabl eSyncDat a = 21, /* disable sync, go to async */

kbSCSI SI MHead = 20, /* place PB at the head of SIM queue */
kbSCSI SI MJFr eeze = 19, /* freeze the SIM queue */

kbSCSI SI M)NoFr eeze = 18, /* disable SI M queue freezing */

kbSCSI DoDi sconnect = 17, /* definitely do disconnect */

kbSCsSI Dont Di sconnect = 16, /* definitely don't disconnect */
kbSCSI Dat aReadyFor DMA = 15, /* data buffer(s) are ready for DVA */
kbSCSI Fl agReser ved3 = 14,

kbSCSI Dat aPhysi cal = 13, /* S/ G buffer data ptrs are physical */
kbSCSI SensePhysi cal = 12, /* autosense buffer ptr is physical */
kbSCSI Fl agReser ved5 =11

kbSCSI Fl agReser ved6 = 10,

kbSCSI Fl agReser ved?7 =9,

kbSCSI Fl agReser ved8 = 8,

4-66 Summary of SCSI Manager 4.3

CHAPTER 4

SCSI Manager 4.3

£'v 1oBeuep 1SOS -

kbSCSI Dat aBuf f er Val i d =7, /* data buffer valid */
kbSCSI St at usBufferVvalid = 6, /* status buffer valid */
kbSCSI MessageBuf f er Val i d= 5, /* message buffer valid */
kbSCSI Fl agReser ved9 =4

b

/* bit masks for the scsiFlags field */

enum {
scsi Directi onMask = 0xC0000000, /* data direction mask */
scsi Directi onNone = 0xC0000000, /* data direction (11: no data) */
scsi DirectionReserved = 0x00000000, /* data direction (00: reserved) */
scsi Directi onCut = 0x80000000, /* data direction (10: DATA QUT) */
scsiDirectionln = 0x40000000, /* data direction (01: DATA IN) */
scsi Di sabl eAut osense = 0x20000000, /* disable auto sense feature */
scsi Fl agReser vedA = 0x10000000,
scsi Fl agReser vedO = 0x08000000,
scsi CDBLi nked = 0x04000000, /* the PB contains a |inked CDB */
scsi QEnabl e = 0x02000000, /* target queue actions enabled */
scsi CDBI sPoi nt er = 0x01000000, /* the CDB field is a pointer */
scsi Fl agReservedl = 0x00800000,
scsilnitiateSyncDat a = 0x00400000, /* attenpt sync data xfer & SDIR */
scsi Di sabl eSyncDat a = 0x00200000, /* disable sync, go to async */
scsi S| MHead = 0x00100000, /* place PB at the head of queue */
scsi S| MQFreeze = 0x00080000, /* freeze the SI M queue */
scsi SI MNoFr eeze = 0x00040000, /* disallow SIMQ freezing */
scsi DoDi sconnect = 0x00020000, /* definitely do disconnect */
scsi Dont Di sconnect = 0x00010000, /* definitely don't disconnect */
scsi Dat aReadyFor DVA = 0x00008000, /* buffer(s) are ready for DVA */
scsi Fl agReser ved3 = 0x00004000,
scsi Dat aPhysi cal = 0x00002000, /* S/ G buffer ptrs are physical */
scsi SensePhysi cal = 0x00001000, /* autosense ptr is physical */
scsi Fl agReser ved5 = 0x00000800,
scsi Fl agReser ved6 = 0x00000400,
scsi Fl agReser ved?7 = 0x00000200,
scsi Fl agReser ved8 = 0x00000100

i

/* bit masks for the scsilCOFlags field */

enum {
scsi NoPari t yCheck = 0x0002, /* disable parity checking */
scsi Di sabl eSel ect WAt n = 0x0004, /* disable select wAtn */
scsi SavePt r OnDi sconnect = 0x0008, /* SaveDat aPoi nter on di sconnect */
scsi NoBucket I n = 0x0010, /* don’t bit-bucket on input */
scsi NoBucket Qut = 0x0020, /* don’t bit-bucket on output */

Summary of SCSI Manager 4.3 4-67

CHAPTER 4

SCSI Manager 4.3

scsi Di sabl eW de
scsilnitiateWde

scsi Renegoti at eSense
scsi | OFl agReser ved0080
scsi | OFl agReser ved8000

b

/* SI M queue actions. */
enum {

scsi Si npl eQrag

scsi HeadQrag

scsi Order edQTag

b

/* scsiHBAInquiry field bit

enum {
scsi BusMDP = 0x80
scsi BusW de32 = 0x40
scsi BusW del6 = 0x20
scsi BusSDTR = 0x10
scsi BusLi nkedCDB = 0x08
scsi BusTagQ = 0x02
scsi BusSoft Reset = 0x01

1

/* scsiDataTypes field bits
/* bits 0-15 Appl e-defi ned,
enum {

scsi BusDat aBuf f er

scsi BusDat aTl B

scsi BusDat aSG

scsi BusDat aReser ved

b

S

0x0040
0x0080
0x0100
0x0080
0x8000

0x20,
0x21,
0x22

/*
/*
/*
/*
/*
/*
/*

*/

(1<<sc
(1<<sc
(1<<sc
0x8000

/* scsi ScanFlags field bits */

enum {
scsi BusScansDevi ces
scsi BusScansOnl ni t
scsi BusLoadsROVDx i vers

}s

0x80,
0x40,
0x20

4-68 Summary of SCSI Manager 4.3

, /* disable wi de negotiation */
, /* initiate wi de negotiation */
, /* renegotiate sync/w de */

/* tag for a sinple queue */
/* tag for head of queue */
/* tag for ordered queue */

supports Modify Data Poi nter nessage */

supports 32-bit wi de SCSI */
supports 16-bit wi de SCSI */
supports SDIR nessage */
supports |linked CDBs */
supports tag queue nmessage */
supports soft reset */

16- 30 vendor unique, 31 = reserved */

si DataBuffer), /* single buffer */
siDataTlB), /* TIB (ptr in scsiDataPtr)
si Dat aSG@) , /* scatter/gather |ist
0000

/* bus scans and nmi ntai ns device |ist
/* bus scans at startup */
/* may load ROM drivers for targets */

*/
*/

*/

CHAPTER 4

SCSI Manager 4.3

/* scsiFeatureFlags field bits */

enum {
scsi Busl nt er nal Ext er nal Mask = 0x000000C0, /* internal/external mask*/
scsi Busl nt er nal Ext er nal Unknown = 0x00000000, /* unknown if in or out */
scsi Busl nt er nal Ext er nal 0x000000C0, /* both inside and outside */

scsi Busl nt er nal = 0x00000080, /* bus goes inside the box */
scsi BusExt er nal = 0x00000040, /* bus goes outside the box */
scsi BusCacheCoher ent DVA = 0x00000020, /* DNA is cache coherent */
scsi Busd dCal | Capabl e = 0x00000010, /* SIM supports old APl */
scsi BusDifferenti al = 0x00000004, /* uses differential bus */
scsi BusFast SCSI = 0x00000002, /* HBA supports fast SCSI */
scsi BusDMAavai | abl e = 0x00000001 /* DWVA is available */

1

/* scsiWeirdStuff field bits */

enum {
/* di sconnects on odd byte boundries are unsafe with DVA or blind reads */
scsi OddDi sconnect Unsaf eReadl = 0x0001,
/* di sconnects on odd byte boundries unsafe with DVA or blind wites */
scsi OddDi sconnect UnsafeWitel = 0x0002,
/* non-handshaked del ays or disconnects on blind transfer may hang */
scsi BusErrorsUnsaf e = 0x0004,
/* non-handshaked del ays or disconnects on blind transfer nay corrupt */
scsi Requi r esHandshake = 0x0008,
/* targets that initiate synchronous negotiations are supported */
scsi Tar get Dri venSDTRSaf e = 0x0010

i

/* scsi HBAsl ot Type val ues */

enum {
scsi Mot her boar dBus = 0x01, /* a built-in Apple bus */
scsi NuBus = 0x02, /* a SIMon a NuBus card */
scsi PDSBus = 0x03 /* a SIMon a PDS card */

1

/* flags for the scsiDriverFlags field */

enum {
scsi Devi ceSensitive = 0x0001, /* only driver should access this device */
scsi Devi ceNoO dCal | Access = 0x0002 /* device does not support old APl */

b

Summary of SCSI Manager 4.3 4-69

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

/* SCSI Phases (used by SIM that support the original SCSI Mnager) */
enum {

kDat aQut Phase, /* encoded MSG, CD, I/Obits */

kDat al nPhase,

kCommandPhase,

kSt at usPhase,

kPhasel | | egal 0,

kPhasel | | egal 1,

kMessageQut Phase,

kMessagel nPhase,

kBusFr eePhase, /* additional phases */

kAr bi t r at ePhase,

kSel ect Phase

Data Types

/* SCSI callback function prototypes */

t ypedef pascal void (*Call backProc) (void * scsiPB);

t ypedef void (* AENCal | backProc) (void);

typedef OSErr (*SIMnitProc) (Ptr SIMnfoPtr);

t ypedef void (*SI MActionProc) (void * scsiPB, Ptr SIMd obals);
t ypedef void (*SCsl Proc) (void);

t ypedef void (*MakeCal | backProc) (void * scsiPB);

typedef SInt32 (*InterruptPollProc) (Ptr SIMd obals);

struct Devi cel dent

{
U nt 8 di Reserved,; /* reserved */
U nt 8 bus; /* SCSI - bus nunber */
U nt8 targetl D /* SCSI - target SCSI |ID */
U nt8 LUN /* SCSI - logical unit nunber */
b
t ypedef struct Devicel dent Devicel dent;
uni on CDB
{
U nt8 *cdbPtr; /* pointer to the CDB, or */
U nt 8 cdbByt es[naxCDBLengt h] ; /* the actual CDB to send */
1

t ypedef union CDB CDB, *CDBPtr;

4-70 Summary of SCSI Manager 4.3

C

S

struct SGRec
{

Ptr

Ul nt 32

s

typedef struct SCGRecord SCRecor d;

#defi ne SCS

HAPTER 4

CSI Manager 4.3

ord

SGAddr ;
SGCount ;

PBHdr \

struct SCSI Hdr *qLi nk

SInt 16

Ul nt 16
unt8
unt8
OSEr r

Devi cel de

Cal | backProc

Ul nt 32
unt8
Ptr

Sl nt 32

struct SCSI _

{
SCS| PBHdr

b
typedef stru

scsi Reservedl;
scsi PBLengt h;
scsi Funct i onCode;
scsi Reserved2
scsi Resul t;

nt scsi Devi ce;

scsi Fl ags;
*scsi Driver St or age;
scsi XPTpri vat e;

scsi Reserved3

PB

ct SCSI_PB SCSI _PB:;

#define SCSI _| O Macro \

SCsI PBHdr
U nt16
U nt16
unt8
Ul nt 32
unt8
unt8
unt8
U nt16
Ul nt 32
unt8
SInt8
Ul nt 16
Sl nt 32
CDB

Sl nt 32

Summary of SCSI Manager 4.3

scsi Resul t Fl ags;
scsi Reservedl12;
*scsi DataPtr;
scsi Dat aLengt h;
*scsi SensePtr;
scsi SenselLengt h;
scsi CDBLengt h;
scsi SALi st Count ;
scsi Reserved4;
scsi SCSI st at us;
scsi SenseResi dual
scsi Reserved5
scsi Dat aResi dual
scsi CDB
scsi Ti neout ;

scsi Conpl eti on;

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

buf f er

->

->

scatter/ gat her
size */

i nt er nal

use,

reserved for
[ength of the entire PB */
function selector */

reserved for output*/
returned result */

device I D (bus+target +LUN) */
conpl etion routine pointer */
assorted flags */

pointer for driver

buf f er

address */

must be nil */
i nput */

private field for XPT */
reserved */

header

fl ags that

information fields */

reserved */
data pointer */
data transfer

aut osense data buffer

nodi fy scsiResult */

[ength */
poi nter */

size of the autosense buffer */
nunber of bytes for the CDB */
of SIGIlist entries */

reserved for
returned SCSI

numnber

aut osense resi dual

reserved for
dat a resi dual

act ual

CDB or

out put */

device status */
| ength */
out put */

[ength */

poi nter to CDB */

ti meout val ue */

private use */

o o e e e e e e e e e e e e e —

— -

4-71

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

U nt8 *scsi Reservedl3; /[* -> reserved */ \
U nt 16 scsi Reservedl4; /* -> reserved */ \
Untl6é scsil OFl ags; /[* -> additional 1/0O flags */ \
unt8 scsi TagActi on; /* -> what to do for tag queuing */ \
unt8 scsi Reserved6; /* -> reserved for input */ \
U nt16 scsi Reserved?7; /* -> reserved for input */ \
U nt 16 scsi Sel ect Ti meout ; /* -> select timeout value */ \
unt8 scsi Dat aType; /* -> data description type */ \
unt8 scsi Transf er Type; /* -> transfer type (blind/polled) */ \
Ul nt 32 scsi Reserveds; /* -> reserved for input */ \
Ul nt 32 scsi Reserved9; /* -> reserved for input */ \
U nt16 scsi Handshake[handshakeDat aLength]; /* -> handshake info */ \
Ul nt 32 scsi Reservedl0; /* -> reserved for input */ \
Ul nt 32 scsi Reservedll,; /* -> reserved for input */ \
st ruct SCSI _1 O *scsi ConmandLi nk; /* -> linked conmand pointer */ \
unt8 scsi Sl Mpubl i cs[8]; /* ->reserved for SIMinput */ \
unt8 scsi Appl eReserved6[8] ; /* -> reserved for input */ \
[* XPT private fields for original SCSI Minager enul ation */ \
U nt16 scsi Curr ent Phase; /* <- bus phase after old call */ \
SInt16 scsi Sel ector; /* -> selector for old call */ \
OSErr scsi A dCal | Resul t; /* <- result of old call */ \
unt8 scsi SCSI nessage; /* <- SCSI Conpl ete nessage byte */ \
unt8 XPTpri vat eFl ags; /* <> XPT private flags */ \
U nt8 XPTextras[12] ; /* reserved */

struct SCSI _I0O
{
SCSI _1 O_Macro
b
typedef struct SCSI_IO SCSI_IQ
t ypedef SCSI | O SCSI Execl OPB

struct SCSI Busl nqui ryPB

{
SCSI PBHdAr /* header information fields */
U nt 16 scsi Engi neCount ; /* <- nunber of engines on HBA */
U nt16 scsi MaxTr ansf er Type; /* <- nunber of xfer types supported */
Ul nt 32 scsi Dat aTypes; /* <- data types supported by this SIM*/
U nt 16 scsi | OpbSi ze; /* <- size of SCSI 1O PB for this SIM™*/
U nt16 scsi Maxl OpbSi ze; /* <- largest SCSI_10O PB for all SIMs */
Ul nt 32 scsi Feat ur eFl ags; /* <- supported features flags field */
U nt8 scsi Ver si onNunber ; /* <- version nunber for the SIMHBA */
unt8 scsi HBAI nqui ry; /* <- mimc of INQbyte 7 for the HBA */
U nt8 scsi Tar get ModeFl ags; /* <- flags for target node support */

4-72 Summary of SCSI Manager 4.3

CHAPTER 4

SCSI Manager 4.3

unt8 scsi ScanFl ags; /* <- scan related feature flags */

Ul nt 32 scsi SI MPrivatesPtr; /* <- pointer to SIMprivate data */

Ul nt 32 scsi Sl MPri vat esSi ze; /* <- size of SIMprivate data */

Ul nt 32 scsi AsyncFl ags; /* <- reserved for input */

unt8 scsi Hi Busl D /* <- highest path ID in the subsystem */
unt8 scsilnitiatorl D /* <- 1D of the HBA on the SCSI bus */
U nt 16 scsi Bl Reser vedO; /* reserved */

Ul nt 32 scsi Bl Reservedl; /* reserved */

Ul nt 32 scsi Fl agsSupport ed; /* <- which scsiFlags are supported */
U nt16 scsi | OFl agsSupport ed; /* <- which scsil OFl ags are supported */
Ul nt16 scsi Wi rdSt uf f; /* <- flags for strange behavior */
Untl6é scsi MaxTarget; /[* <- maxi mumtarget |D supported */

U nt16 scsi MaxLUN; /* <- maxi mum LUN supported */

SInt 8 scsi SI MWendor [vendor | DLength]; /* <- vendor ID of the SIM*/
SI nt 8 scsi HBAVendor [vendor | DLength]; /* <- vendor ID of the HBA */
SInt8 scsi Controll erFam | y[vendorl DLength]; /* <- controller famly */

SInt8 scsi Control |l er Type[vendor | DLengt h] ; /* <- controller nodel */
Sl nt 8 scsi XPTversi on[4]; [* <- version nunber of XPT */

SInt8 scsi Sl Mersion[4]; /* <- version nunber of SIM*/

SInt 8 scsi HBAver si on[4] ; /* <- version nunber of HBA */

unt8 scsi HBAsI ot Type; /[* <- type of slot this HBAis in */
U nt8 scsi HBAs!| ot Nunber ; /* <- slot nunber of this HBA */

U nt 16 scsi Sl MsRsr cl D /* <- sResource ID of this SIM*/

U nt16 scsi Bl Reser veds3; /* <- reserved for input */

U nt16 scsi Addi ti onal Lengt h; /* <- additional length of PB */
b
typedef struct SCSI BuslnquiryPB SCSI Busl nqui ryPB;

£'v 1oBeuep 1SOS -

struct SCSI Abort CommandPB

{
SCSI PBHdr /* header information fields */

SCSI 10 *scsilOptr; /* -> pointer to the PB to abort */
1
typedef struct SCSI Abort CormandPB SCSI Abor t CommandPB;

struct SCSI Ter m nat el OPB

{
SCSI PBHdr /* header information fields */

SCSI _1O *scsilOptr; /[* -> pointer to the PBto term nate */
1
typedef struct SCSI Term nat el OPB SCSI Ter m nat el OPB;

Summary of SCSI Manager 4.3 4-73

CHAPTER 4

SCSI Manager 4.3

struct SCSI Get Virtual | DI nfoPB

{
SCSI PBHdr /* header information fields */
U nt16 scsiddCallID;, /* -> SCSI ID of device in question */
Bool ean scsi Exi sts; /* <- true if device exists */

b

t ypedef struct SCSI GetVirtual | DI nfoPB SCSI Get Vi rt ual | DI nf oPB;

struct SCSIDriver PB

{
SCSI PBHdAr /* header information fields */
SInt16 scsi Driver; /* -> driver refNum for CreateRef NumXref */
/* <- for LookupRef NunXref */
Ul nt 16 scsiDriverFlags; [/* <> details of driver/device */
Devi cel dent scsi Next Devi ce; /* <- Deviceldent of the next driver */
b

t ypedef struct SCSIDriverPB SCSIDriver PB;

struct SCSI LoadDri ver PB

{
SCSI PBHdr /* header information fields */
SInt 16 scsi LoadedRef Num /* <- SIMreturns driver reference nunber */
Bool ean scsiDiskLoadFailed; /* ->if true, previous call failed */

b

typedef struct SCSI LoadDriver PB SCSI LoadDri ver PB;

struct SIMnitinfo

{
unt8 *Sl MstaticPtr; [/* <- pointer to the SIMs static data */
Sl nt 32 staticSi ze; /* -> size requested for SIMstatic data */
SIM ni tProc SIMnit; /* -> pointer to the SIMnit function */
SI MActionProc Sl MActi on; /* -> pointer to the SIMAction function */
SCsl Pr oc SIM I SR; /* reserved */
InterruptPoll Proc SiIMnterruptPoll; /* -> pointer to SIMnterruptPoll */
SI MActionProc Newd dCall; /* -> pointer to Newd dCall function */
U nt 16 i oPBSi ze; /* -> size of SCSI _ 1O PB for this SIM™*/
Bool ean ol dCal | Capable; /* -> true if SIMhandles old-APl calls */
U nt8 si m nf oUnusedl; /* reserved */
Sl nt 32 simnternal Use; /* not affected or viewed by XPT */
SCSI Proc XPT | SR; /* reserved */
SCSI Pr oc Ent eri ngSI M /* <- pointer to EnteringSIMfunction */
SCsl Pr oc Exi ti ngSI M /* <- pointer to ExitingSIMfunction */
MakeCal | backProc MakeCal | back; /* <- pointer to MikeCall back function */
U ntl6 busl D; /* <- bus nunber for the registered bus */

4-74 Summary of SCSI Manager 4.3

CHAPTER 4

SCSI Manager 4.3

U ntl16 si m nf oUnused3; /* <-
Sl nt 32 si m nf oUnused4; /* <-

b

typedef struct SIMnitinfo SIMnitlnfo;

Functions

reserved */
reserved */

OSErr SCSI Acti on (SCsSl _PB *scsi PB);
OSErr SCsSI Regi st er Bus (SIMnitinfo *SIM nfoPtr);
OSErr SCSI Der egi st erBus (SCSI _PB *scsi PB)
OSErr SCSI ReregisterBus (SIMnitinfo *SIMnfoPtr);

OSErr SCSIKi | | XPT (void *);

Pascal Summary

Constants

CONST
scsi VERSI ON = 43;

{SCSI Manager function codes}

SCSI Nop = $00;
SCSI Execl O = $01
SCSI Busl nquiry = $03;
SCSI Rel easeQ = $04;
SCSI Abor t Command = $10;
SCSI Reset Bus = $11
SCSI Reset Devi ce = $12;
SCSI Termi natel O = $13;
SCSI Get Virtual I DI nfo = $80;
SCSI LoadDri ver = $82;
SCsI d dcal | = $84;
SCSI Cr eat eRef NunXr ef = $85
SCSI LookupRef NunXr ef = $86;
SCSI RenpveRef NunXr ef = $87;
SCSI Regi st er Wt hNewXPT = $88;
vendor Uni que = $Co;

Summary of SCSI Manager 4.3

{no operation}

{execute a SCSI |0 transaction}
{bus inquiry}

{rel ease a frozen SI M queue}
{abort a SCSI comand}

{reset the SCSI bus}

{reset a SCSI device}

{terminate |1/O transacti on}
{return Deviceldent of virtual |D}
{load a driver froma SCSI device}
{begi n ol d- APl enul ati on}
{register a device driver}

{find a driver reference nunber}
{deregister a device driver}

{XPT replaced; SIMnust reregister}

{$C0 through $FF}

4-75

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

{allocation | engths for

handshakeDat aLengt h
maxCDBLengt h
vendor | DLengt h

par amet er

8;
16;
16;

bl ock fi el ds}

{handshake data | engt h}
{space for the CDB bytes/pointer}
{ASCI| string | ength for Vendor |D}

{types for the scsi TransferType fiel d}

scsi TransferBli nd
scsi Transfer Pol | ed

{types for the scsiDataType field}

scsi Dat aBuf f er
scsi DataTl B
scsi Dat aSG

{flags for the scsi ResultFl

scsi SI MFrozen
scsi Aut osenseVal i d
scsi BusNot Fr ee

{bit nunbers in the scsiFlags field}

kbSCSI Di sabl eAut osense
kbSCSI Fl agReser vedA
kbSCSI Fl agReser vedO
kbSCSI CDBLi nked

kbSCsSI Qenabl e
kbSCSI CDBI sPoi nt er
kbSCSI Fl agReser vedl
kbSCSI | ni ti at eSyncDat a
kbSCSI Di sabl eSyncDat a
kbSCsI SI MHead
kbSCsI SI MJFr eeze
kbSCSI SI MQNoFr eeze
kbSCSI DoDi sconnect
kbSCSI Dont Di sconnect
kbSCSI Dat aReadyFor DVA
kbSCSI Fl agReser ved3
kbSCSI Dat aPhysi ca
kbSCSI SensePhysi ca
kbSCSI Fl agReser ved5
kbSCSI Fl agReser ved6
kbSCSI Fl agReser ved7
kbSCSI Fl agReser ved8
kbSCSI Dat aBuf f er Val i d

4-76 Summary of SCSI Manager 4.3

0;
1;

{DMA if avail abl e, otherw se blind}
{pol I ed}

= 0; {single contiguous buffer supplied}
= 1; {TIB supplied (ptr in scsiDataPtr)}
= 2; {scatter/gather list supplied}

ags field}

= $0001; {the SIM queue is frozen}

= $0002; {autosense data valid for target}

$0004; {SCSI bus is not free}

29;
28;
27;
26;
25;
24;
23;
22;
21;
20;
19;
18;
17;

= 16;
= 15;

14;
13;

= 12;

11;
10;
9;
8;
7,

{di sabl e auto sense feature}

{the PB contains a |inked CDB}
{target queue actions are enabl ed}
{the CDB field contains a pointer}

{attenmpt sync data transfer and SDTR}
{di sabl e sync, go to async}

{place PB at the head of SIM queue}
{freeze the SI M queue}

{di sabl e SI M queue freezing}
{definitely do di sconnect}
{definitely don't disconnect}

{data buffer(s) are ready for DVA}

{S/ G buffer data ptrs are physical}
{aut osense buffer ptr is physical}

{data buffer valid}

CHAPTER 4

SCSI Manager 4.3

kbSCSI St at usBufferVval i d
kbSCSI MessageBufferVvalid
kbSCSI Fl agReser ved9

6; {status buffer valid}
{message buffer valid}

I
o

4

{bit masks for the scsiFlags field}

scsi Directi onMask = $00000000; {data direction nmask}

scsi Directi onNone = $C0000000; {data direction (11: no data)}

scsi DirectionReserved = $00000000; {data direction (00: reserved)}

scsi Directi onCut = $80000000; {data direction (10: DATA QUT)}
scsiDirectionln = $40000000; {data direction (01: DATA IN)}

scsi Di sabl eAut osense = $20000000; {di sabl e auto sense feature}

scsi Fl agReser vedA = $10000000;

scsi Fl agReser ved0 = $08000000;

scsi CDBLi nked = $04000000; {the PB contains a |inked CDB}

scsi QEnabl e = $02000000; {target queue actions enabl ed}

scsi CDBI sPoi nt er = $01000000; {the CDB field is a pointer}

scsi Fl agReservedl = $00800000;

scsilnitiateSyncDat a = $00400000; {attenpt sync data xfer & SDTR}

scsi Di sabl eSyncDat a = $00200000; {di sabl e sync; go to async}

scsi S| MHead = $00100000; {place PB at the head of queue}

scsi S| MJFreeze = $00080000; {freeze the SI M queue}
scsi SI MNoFr eeze = $00040000; {disallow SIM Q freezi ng}

scsi DoDi sconnect = $00020000; {definitely do disconnect} g
scsi Dont Di sconnect = $00010000; {definitely don't disconnect} ()
scsi Dat aReadyFor DVA = $00008000; {buffer(s) are ready for DVA} §
scsi Fl agReser ved3 = $00004000; é
scsi Dat aPhysi cal = $00002000; {S/ G buffer ptrs are physical} i
scsi SensePhysi cal = $00001000; {aut osense ptr is physical} w
scsi Fl agReser ved5 = $00000800;

scsi Fl agReser ved6 = $00000400;

scsi Fl agReser ved?7 = $00000200;

scsi Fl agReser ved8 = $00000100;

{bit masks for the scsil OFl ags fi el d}

scsi NoPari t yCheck = $0002; {di sabl e parity checki ng}

scsi Di sabl eSel ect WAt n = $0004; {di sabl e sel ect w Atn}

scsi SavePt r OnDi sconnect = $0008; { SaveDat aPoi nter on di sconnect}
scsi NoBucket I n = $0010; {don’t bit-bucket on input}
scsi NoBucket Cut = $0020; {don’ t bit-bucket on output}
scsi Di sabl eW de = $0040; {di sabl e wi de negoti ati on}
scsilnitiateWde = $0080; {initiate w de negoti ation}
scsi Renegoti at eSense = $0100; {renegoti ate sync/wi de}

scsi | OFl agReser ved0080 = $0080;

scsi | OFl agReser ved8000 = $8000;

Summary of SCSI Manager 4.3 4-77

CHAPTER 4

SCSI Manager 4.3

{SI M queue actions}

scsi Si npl eQrag = $20;
scsi HeadQrag = $21
scsi Order edQrag = $22;
{scsi HBAInquiry field bits}

scsi BusMDP = $80;
scsi BusW de32 = $40;
scsi BusW del6 = $20;
scsi BusSDTR = $10;
scsi BusLi nkedCDB = $08;
scsi BusTagQ = $02;
scsi BusSof t Reset = $01

{scsi Dat aTypes field bits}

{tag for a sinple queue}
{tag for head of queue}
{tag for ordered queue}

{supports Modify Data Pointer nessage}
{supports 32-bit w de SCSI}

{supports 16-bit w de SCSI}

{supports SDIR nessage}

{supports |inked CDBs}

{supports tag queue nessage}

{supports soft reset}

{bits 0-15 Appl e-defined, 16-30 vendor uni que, 31 = reserved}

scsi BusDat aBuf f er
scsi BusDat aTl B
scsi BusDat aSG

$00000001; {single buffer}
$00000002; {TIB (pointer in scsiDataPtr)}
$00000004; {scatter/gather list}

scsi BusDat aReser ved = $80000000;
{scsi ScanFl ags field bits}
scsi BusScansDevi ces = $80; {bus scans and nmi ntains device list}

$40;
$20;

scsi BusScansOnl ni t
scsi BusLoadsROVDx i ver s

{scsi FeatureFl ags field bits}
scsi Busl nt er nal Ext er nal Mask
scsi Busl nt er nal Ext er nal Unknown
scsi Busl nt er nal Ext er na

scsi Busl nt er nal

scsi BusExt er nal

scsi BusCacheCoher ent DVA

scsi BusQ dCal | Capabl e
scsiBusDifferentia

scsi BusFast SCS

scsi BusDMAavai | abl e

{scsiWeirdStuff field bits}
scsi GddDi sconnect Unsaf eReadl
scsi OddDi sconnect Unsaf eWitel
scsi BusErrorsUnsaf e

scsi Requi r esHandshake

scsi Tar get Dri venSDTRSaf e

4-78 Summary of SCSI Manager 4.3

{bus scans at startup}
{may |l oad ROM drivers for targets}

$000000C0; {internal/external mask}
$00000000; {unknown if in or out}
$000000C0; {both inside and outside}
$00000080; {bus goes inside the box}
$00000040; {bus goes outside the box}
$00000020; {DMA is cache coherent}
$00000010; {SI M supports ol d- API'}
$00000004; {uses differential bus}
$00000002; {HBA supports fast SCSI}
$00000001; {DMA is avail abl e}

$0001; {odd byte disconnects unsafe}
$0002; {odd byte disconnects unsafe}
$0004; {del ays or disconnects nmay hang}
$0008; {del ays/di sconnects may corrupt}
$0010; {target-driven STDR supported}

CHAPTER 4

SCSI Manager 4.3

{scsi HBAsI ot Type val ues}
scsi Mot her boar dBus

scsi NuBus

scsi PDSBus

$01; {a built-in Apple bus}
$02; {a SIMon a NuBus card}
$03; {a SIMon a PDS card}

{flags for the scsiDriverFlags field}
scsi Devi ceSensitive = $0001; {only driver should access the device}
scsi Devi ceNod dCal | Access = $0002; {device does not support old API}

{SCSI Phases (used by SIM that support the original SCSI Mnager)}

kDat aCut Phase = $00; {encoded MSG, C/'D, 1/0 bits}
kDat al nPhase = $01;
kCommandPhase = $02;
kSt at usPhase = $03;
kPhasel | | egal 0 = $04;
kPhasel | | egal 1 = $05;
kMessageQut Phase = $06;
kMessagel nPhase = $07;
kBusFr eePhase = $08; {addi tional phases}
KAr bi t r at ePhase = $09;
kSel ect Phase = $0A
Data Types
TYPE
{SCSI callback function prototypes}
Cal | backProc = ProcPtr;
AENCal | backPr oc = ProcPtr;
SIM ni tProc = ProcPtr;
SI MAct i onProc = ProcPtr;
SCSI Pr oc = ProcPtr;
MakeCal | backProc = ProcPtr;
I nterruptPol | Proc = ProcPtr;
TYPE
D =
PACKED RECORD
di Reserved: Byt e; {reserved}
bus: Byt e; {SCSI - bus nunber}
targetlD: Byt e; {SCSI - target SCSlI |D}
LUN: Byt e; {SCSI - logical unit nunber}
END;

Devi cel dent = Dl ;

Summary of SCSI Manager 4.3 4-79

£'v 1oBeuep 1SOS -

4-80

CHAPTER 4

SCSI Manager 4.3

CDBRec =
PACKED RECORD
CASE | nteger OF

0: cdbPtr:
1: cdbBytes:
END;
CDB = CDBRec;

CDBPtr = ~CDBRec;

SGR =

PACKED RECORD
SGAddr :
SGCCount :

END;

SGRecord = SGR

SCSl Hdr =

PACKED RECORD
gLi nk:
scsi Reservedl:
scsi PBLengt h:
scsi Funct i onCode:
scsi Reserved2
scsi Resul t:
scsi Devi ce:
scsi Conpl eti on:
scsi Fl ags:

scsi Dri ver St or age:

scsi XPTpri vat e:
scsi Reserved3
END;
SCSlI _PB = SCSI Hdr ;

SCsl 10 =

PACKED RECORD
gLi nk:
scsi Reservedl:
scsi PBLengt h:
scsi Funct i onCode:
scsi Reserved2
scsi Resul t:
scsi Devi ce:
scsi Conpl eti on:
scsi Fl ags:

"Byt e;
ARRAY [0. . 15]

Ptr;
Longl nt ;

ASCSI Hdr ;

I nt eger;

I nt eger;
Byt e;

Byt e;

CSErr;
Devi cel dent ;
Cal | backPr oc;
Longl nt ;
"Byt e;

Ptr;
Longl nt ;

ASCSI Hdr ;

I nt eger;

I nt eger;
Byt e;

Byt e;

CSErr;
Devi cel dent ;
Cal | backPr oc;
Longl nt;

Summary of SCSI Manager 4.3

OF Byte;

{pointer to the CDB, or}
{the actual CDB to send}

{scatter/gather buffer address}
{buf fer size}

i nternal use, must be N L}
reserved for input}

I ength of the entire PB}
function sel ector}

reserved for output}
returned result}

device I D (bus+target +LUN)}
conpl etion routine pointer}
assorted fl ags}

pointer for driver private use}
private field for XPT}
reserved}

LI Y A WL
vV VvV Vv ' ' V V V

A
\Y

Lt N et W et Wt W e W s W N N W T e B et

i nternal use, must be N L}
reserved for input}

[ength of the entire PB}
function sel ector}

reserved for output}
returned result}

device I D (bus+target +LUN)}
conpl etion routine pointer}
assorted fl ags}

A N Vv
'Y vV V. vV

1
vV V V

latn N et B et B et W et W et W e W e e

CHAPTER 4

SCSI Manager 4.3

scsi Driver St orage: "Byt e; {<> pointer for driver private use}
scsi XPTpri vat e: Ptr; { private field for XPT}
scsi Reserveds3: Longl nt; { reserved}
scsi Resul t Fl ags: I nt eger; {<- flags that nodify scsi Result}
scsi Reservedl12: I nt eger; {-> reserved}
scsi DataPtr: "Byt e; {-> data pointer}
scsi Dat aLengt h: Longl nt; {-> data transfer |ength}
scsi SensePtr: "Byt e; {-> autosense data buffer pointer}
scsi SenselLengt h: Byt e; {-> size of the autosense buffer}
scsi CDBLengt h: Byt e; {-> nunber of bytes for the CDB}
scsi SGELi st Count : I nt eger; {-> nunber of S/IGIlist entries}
scsi Reserved4: Longl nt; {<- reserved for output}
scsi SCSI st at us: Byt e; {<- returned SCSI device status}
scsi SenseResi dual : Char ; {<- autosense residual |ength}
scsi Reserved5: I nt eger; {<- reserved for output}
scsi Dat aResi dual : Longl nt; {<- data residual |ength}
scsi CDB: CDB; {-> actual CDB or pointer to CDB}
scsi Ti meout : Longl nt; {-> tinmeout val ue}
scsi Reservedl13: "Byt e; {-> reserved}
scsi Reservedl4: I nt eger; {-> reserved}
scsi | OFl ags: I nt eger; {-> additional 1/0O flags}
scsi TagAct i on: Byt e; {-> what to do for tag queuing}
scsi Reserved6: Byt e; {-> reserved for input}
scsi Reserved7: I nt eger; {-> reserved for input}
scsi Sel ect Ti meout : I nt eger; {-> select tinmeout val ue}
scsi Dat aType: Byt e; {-> data description type}
scsi Transf er Type: Byt e; {-> transfer type (blind/polled)}
scsi Reserved8: Longl nt; {-> reserved for input}
scsi Reserved9: Longl nt ; {-> reserved for input}
scsi Handshake: ARRAY [0..7] OF Integer; {-> handshake info}
scsi Reservedl0: Longl nt; {-> reserved for input}
scsi Reservedll: Longl nt ; {-> reserved for input}
scsi ConmandLi nk: ASCSI_1 O {-> linked conmand pointer}
scsi Sl Mpubl i cs: ARRAY [0..7] OF Byte; {-> reserved for SIMinput}
scsi Appl eReserved6: ARRAY [0..7] OF Byte; {-> reserved for input}
scsi Current Phase: I nt eger; {<- bus phase after old call}
scsi Sel ector: I nt eger; {-> selector for old call}
scsi O dCal | Resul t: OSErr; {<- result of old call}
scsi SCSI nessage: Byt e; {<- SCSI Conpl et e nmessage byt e}
XPTpri vat eFl ags: Byt e; {<> XPT private flags}
XPTextr as: ARRAY [0..11] OF Byte; {reserved}

END;

SCS| Execl OPB = SCSI _I O

Summary of SCSI Manager 4.3 4-81

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

SCSI Busl nqui ryPB =
PACKED RECORD

gLi nk:

scsi Reservedl:

scsi PBLengt h:

scsi Funct i onCode:
scsi Reserved2:

scsi Resul t:

scsi Devi ce:

scsi Conpl eti on:
scsi Fl ags:

scsi Driver St or age:
scsi XPTpri vat e:

scsi Reserveds3:

scsi Engi neCount :
scsi MaxTr ansf er Type:
scsi Dat aTypes:

scsi | OpbSi ze:

scsi Max| OpbSi ze:
scsi Feat ur eFl ags:
scsi Ver si onNumber :
scsi HBAI nqui ry:

scsi Tar get ModeFl ags:
scsi ScanFl ags:

scsi S| MPri vat esPtr:
scsi SI MPri vat esSi ze:
scsi AsyncFl ags:

scsi Hi Busl D:
scsilnitiatorl D
scsi Bl Reser vedO:
scsi Bl Reservedl:
scsi Fl agsSupport ed:
scsi
scsi Wei rdst uf f:
scsi MaxTar get :
scsi MaxLUN:
scsi S| Mendor :
scsi HBAVendor :

scsi Control | erFamnily:

scsi Control | er Type:
scsi XPTver si on:
scsi Sl Mver si on:
scsi HBAver si on:

| OFl agsSupport ed:

ASCSI Hdr ;
I nt eger;
I nt eger;
Byt e;

Byt e;
OSErr;
Devi cel dent ;
Cal | backPr oc;
Longl nt;
"Byt e;
Ptr;

Longl nt;

I nt eger;

I nt eger;
Longl nt;

I nt eger;

I nt eger;
Longl nt;
Byt e;

Byt e;

Byt e;

Byt e;
Longl nt;
Longl nt;
Longl nt ;
Byt e;

Byt e;

I nt eger;
Longl nt;
Longl nt;

I nt eger;

I nt eger;

I nt eger;

I nt eger;
ARRAY [O..
ARRAY [O. .
ARRAY [O..
ARRAY [O..

15]
15]
15]
15]

ARRAY [0..3] OF Char;
ARRAY [0..3] OF Char;
ARRAY [0..3] OF Char;

Summary of SCSI Manager 4.3

A ANV
' vV VvV

1
V V V

A
\Y

Lt N et N et B et W e W e e e N o Nt

i i i i i e e e e e i e N e N e N e N)
N N N N NN A N

i nternal use, rmnust
reserved for input}
Il ength of the entire PB}
function sel ector}

reserved for output}

returned result}

device I D (bus+target +LUN) }
conpl etion routine pointer}
assorted fl ags}

pointer for driver private use}
private field for XPT}
reserved}

nunmber of engi nes on HBA}
nunber of xfer types supported}
data types supported by SIM
size of SCSI_IOPB for SIM

| argest SCSI _|1 O PB registered}
supported features flags field}
version nunber for the SIM HBA}
mmc of INQbyte 7 for HBA}
flags for target node support}
scan rel ated feature flags}
pointer to SIMprivate data}
size of SIMprivate data}
reserved for input}

be NI L}

hi ghest bus I D regi stered}

I D of the HBA on the SCSI bus}
reserved}

reserved}

{<- which scsi Flags are supported}
{<- which scsil OFl ags support ed}
{<- flags for strange behavior}
{<- maxi numtarget |D supported}
{<- maxi mum LUN support ed}
OF Char; {<- vendor ID of the SIM
OF Char; {<- vendor ID of the HBA}
OF Char; {<- controller famly}
OF Char; {<- controller nodel}

{<- version nunber of XPT}

{<
{<

versi on nunmber of SIM
versi on nunber of HBA}

CHAPTER 4

SCSI Manager 4.3

scsi HBAsI ot Type:

scsi HBAs| ot Number :

scsi Sl MsRsr cl D

scsi Bl Reserved3

scsi Addi ti onal Lengt h:
END;

SCSI Abor t CormandPB
PACKED RECORD
gLi nk:
scsi Reservedl:
scsi PBLengt h:
scsi Funct i onCode:
scsi Reserved?
scsi Resul t:
scsi Devi ce:
scsi Conpl eti on:
scsi Fl ags:
scsi Dri ver St or age:
scsi XPTpri vat e:
scsi Reserved3
scsil Optr:
END;

SCSI Ter ni nat el OPB =
PACKED RECORD
gLi nk:
scsi Reservedl:
scsi PBLengt h:
scsi Funct i onCode:
scsi Reserved2
scsi Resul t:
scsi Devi ce:
scsi Conpl eti on:
scsi Fl ags:
scsi Driver St or age:
scsi XPTpri vat e:

scsi Reserved3
scsil Optr:
END;

SCSI Get Vi rtual | DI nfoPB =
PACKED RECORD
gLi nk:

Byt e;
Byt e;
I nt eger;
I nt eger;
I nt eger;

{<
{<
{<
{<
{<

ASCSI Hdr ;

I nt eger;

I nt eger;
Byt e;

Byt e;

OSErr;
Devi cel dent ;
Cal | backProc;
Longl nt;
"Byt e,

Ptr;

Longl nt;
ASCSI_ 1O

LI | /\AIII
v VvV v ' ' VvV V V

N
\Y

1
\Y

Lt W et Wt W e W e W e N e e R N N et W et B oY
1

ASCSI Hdr ;

I nt eger;

I nt eger;
Byt e;

Byt e;

OSErr;
Devi cel dent ;
Cal | backProc;
Longl nt;
"Byt e;

Ptr;

Longl nt;
ASCSI 1O

A AN Vv
'V V V

1
V V V

A
\Y

Lt N et Wt W e W e N e N N N i e B e W e WP
1

1
\Y

ASCSI Hdr ; {

Summary of SCSI Manager 4.3

type of slot this HBA is in}
sl ot nunber of this HBA}
sResource ID of this SIM
reserved for input}

additional |ength of PB}
i nternal use, must be N L}
reserved for input}

I ength of the entire PB}
function sel ector}

reserved for output}
returned result}

device I D (bus+target +LUN) }
conpl etion routine pointer}
assorted fl ags}

pointer for driver private use}
private field for XPT}
reserved}

pointer to the PB to abort}

i nternal use, rmnust
reserved for input}
Il ength of the entire PB}
function sel ector}

reserved for output}

returned result}

device I D (bus+target +LUN)}
conpl etion routine pointer}
assorted fl ags}

pointer for driver private use}
private field for XPT}
reserved}

pointer to the PB to terninate}

be NI L}

£'v 1oBeuep 1SOS -

i nternal use, must be NI L}

4-83

CHAPTER 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3

scsi Reservedl: I nt eger; {-> reserved for input}
scsi PBLengt h: I nt eger; {-> length of the entire PB}
scsi Functi onCode: Byt e; {-> function selector}
scsi Reserved2: Byt e; {<- reserved for output}
scsi Resul t: OSErr; {<- returned result}
scsi Devi ce: Devi cel dent ; {-> device I D (bus+target+LUN)}
scsi Conpl eti on: Cal | backProc; {-> conpletion routine pointer}
scsi Fl ags: Longl nt ; {-> assorted flags}
scsi Driver St or age: "Byt e; {<> pointer for driver private use}
scsi XPTpri vat e: Ptr; { private field for XPT}
scsi Reserveds3: Longl nt ; { reserved}
scsid dCal 'l D I nt eger; {-> SCSI ID of device in question}
scsi Exi st s: Bool ean; {<- true if device exists}
END;
SCSI DriverPB =
PACKED RECORD
gLi nk: ASCSI Hdr ; { i nternal use, must be N L}
scsi Reservedl: I nt eger; {-> reserved for input}
scsi PBLengt h: I nt eger; {->length of the entire PB}
scsi Funct i onCode: Byt e; {-> function selector}
scsi Reserved2: Byt e; {<- reserved for output}
scsi Resul t: OSErr; {<- returned result}
scsi Devi ce: Devi cel dent ; {-> device ID (bus+target+LUN)}
scsi Conpl eti on: Cal | backProc; {-> conpletion routine pointer}
scsi Fl ags: Longl nt; {-> assorted flags}
scsi Driver St or age: "Byt e; {<> pointer for driver private use}
scsi XPTpri vat e: Ptr; { private field for XPT}
scsi Reserveds3: Longl nt; { reserved}
scsi Driver: I nt eger; {<> driver reference nunber}
scsi Dri ver Fl ags: I nt eger; {<> details of driver/device}
scsi Next Devi ce: Devi cel dent ; {<- Deviceldent of the next driver}
END;
SCSI LoadDri ver PB =
PACKED RECORD
gLi nk: ASCSI Hdr ; { i nternal use, must be N L}
scsi Reservedl: I nt eger; {-> reserved for input}
scsi PBLengt h: I nt eger; {->length of the entire PB}
scsi Funct i onCode: Byt e; {-> function sel ector}
scsi Reserved2: Byt e; {<- reserved for output}
scsi Resul t: OSErr; {<- returned result}
scsi Devi ce: Devi cel dent ; -> device I D (bus+target +LUN)}
scsi Conpl eti on: Cal | backPr oc; -> conpletion routine pointer}

CHAPTER 4

SCSI Manager 4.3

scsi Fl ags: Longl nt; {-> assorted flags}
scsi Driver St or age: "Byt e; {<> pointer for driver private use}
scsi XPTpri vat e: Ptr; { private field for XPT}
scsi Reserveds3: Longl nt; { reserved}
scsi LoadedRef Num I nt eger; {<- SIMreturns driver refNumn
scsi Di skLoadFai | ed: Bool ean; {->if true, previous call failed}
END;
SIMnitinfo =
PACKED RECORD
Sl MstaticPkPtr: "Byt e; {<- pointer to SIMs static data}
staticSi ze: Longl nt; {-> requested SIMstatic data size}
SIMnit: SI M ni t Proc; {-> SIMnit function pointer}
S| MActi on: SI MActionProc; {-> SIMAction function pointer}
SIM I SR SCsl Pr oc; { reserved}
SI M nt errupt Pol | : InterruptPoll Proc; {-> SIMnterruptPoll function}
Newd dCal | : SI MActionProc; {-> Newd dCall function pointer}
i oPBSi ze: I nt eger; {-> size of SCSI 10 PB for SIM
ol dCal | Capabl e: Bool ean; {->true if SIMsupports ol d-API}
si m nf oUnused?l: Byt e; { reserved}
si m nt ernal Use: Longl nt; { not affected or viewed by XPT}
XPT_I SR SCSl Pr oc; { reserved}
Ent eri ngSI M SCSI Pr oc; {<- EnteringSIMfunction pointer}
Exi ti ngSI M SCsl Pr oc; {<- ExitingSIMfunction pointer}
MakeCal | back: MakeCal | backProc; {<- MakeCal |l back function ptr}
busl D: I nt eger; {<- bus nunber assigned by XPT}
si m nf oUnused3: I nt eger; {<- reserved}
si m nf oUnused4: Longl nt ; {<- reserved}
END;
Routines
FUNCTI ON SCSI Act i on (VAR ioPtr: SCSI_PB): COSErr;
FUNCTI ON SCSI Regi st er Bus (VAR ioPtr: SIMnitinfo): OSErr;
FUNCTI ON SCSI Der egi sterBus (VAR ioPtr: SIMnitIinfo): OSErr;
FUNCTI ON SCSI Reregi sterBus (VAR ioPtr: SIMnitinfo): OSErr;
FUNCTI ON SCSI Ki | | XPT (VAR ioPtr: SIMnitinfo): OSErr;

Summary of SCSI Manager 4.3

4-85

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

Assembly-Language Summary

Data Structures

The Device Identification Record

0 di Reserved byte reserved

1 bus byte bus number

2 targetl D byte target SCSI ID

3 LUN byte logical unit number

The Command Descriptor Block Record

0 cdbPtr long CDB buffer pointer
4 cdbByt es 16 bytes CDB buffer

The Scatter/Gather List Element
0 SGAddr long buffer pointer
4 SGCount long buffer size

The SCSI Manager Parameter Block Header

0 gLi nk long used internally by the SCSI Manager
4 scsi Reserved word reserved
6 scsi PBLengt h word parameter block size
8 scsi Functi onCode byte function selector code
9 scsi Reserved?2 byte reserved
10 scsi Resul t word result code
12 scsi Devi ce 4 bytes device ID (bus number, target ID, LUN)
16 scsi Conpl etion long completion routine
20 scsi Fl ags long flags
24 scsi Driver St orage long driver private data
28 scsi XPTprivate long reserved
32 scsi Reserved3 long reserved

The SCSI I/O Parameter Block

0 SCSI PBHdr 36 bytes parameter block header
36 scsi Resul t Fl ags word I/O result flags
38 scsi Reservedl12 word reserved
40 scsi Dat aPt r long data buffer pointer
44 scsi Dat aLengt h long data buffer size
48 scsi SensePt r long autosense buffer pointer
52 scsi Senselengt h byte autosense buffer size
53 scsi CDBLengt h byte CDB size
54 scsi SA.i st Count word number of scatter/ gather list entries
56 scsi Reserved4 long reserved
60 scsi SCSI st at us byte SCSI device status

4-86 Summary of SCSI Manager 4.3

61
62
64
68
84
88
92
94
96
97
98
100
102
103
104
108
112
128
132
136
140
148
156
158
160
162
163
164

CHAPTER 4

SCSI Manager 4.3

scsi SenseResi dual
scsi Reserved5
scsi Dat aResi dual
scsi CDB
scsi Ti meout

scsi Reservedl13
scsi Reservedl4
scsi | OFl ags

scsi TagActi on
scsi Reserved6
scsi Reserved?7
scsi Sel ect Ti nmeout
scsi Dat aType

scsi Transf er Type
scsi Reserved8
scsi Reserved9
scsi Handshake
scsi Reservedl10
scsi Reservedl
scsi CommandLi nk
scsi Sl Mpublics
scsi Appl eReser ved6
scsi Current Phase
scsi Sel ect or

scsi d dCal | Resul t
scsi SCSI nessage
XPTpri vat eFl ags
XPTextras

byte
word
long

16 bytes
long
long
long
word
byte
byte
word
word
byte
byte
long
long

16 bytes
long
long
long

8 bytes
8 bytes
word
word
word
byte
byte

12 bytes

The SCSI Bus Inquiry Parameter Block

0
36
38
40
44
46
48
52
53
54
55
56
60
64
68
69
70
72
76

SCSI PBHdr

scsi Engi neCount

scsi MaxTr ansf er Type
scsi Dat aTypes
scsi | OpbSi ze

scsi Max| OpbSi ze
scsi Feat ur eFl ags
scsi Ver si onNunmber
scsi HBAI nqui ry

scsi Tar get ModeFl ags
scsi ScanFl ags

scsi Sl MPri vat esPtr
scsi Sl MPri vat esSi ze
scsi AsyncFl ags
scsi Hi Busl D
scsilnitiatorlD
scsi Bl Reserved0
scsi Bl Reservedl
scsi Fl agsSupport ed

36 bytes
word
word
long
word
word
long
byte
byte
byte
byte
long
long
long
byte
byte
word
long
long

Summary of SCSI Manager 4.3

autosense residual length

reserved

data transfer residual length

command descriptor block record
timeout value, in Time Manager format
reserved

reserved

I/0 flags

reserved

reserved

reserved

selection timeout value, in milliseconds
data type of scsi Dat aPtr

transfer mode (polled or blind)
reserved

reserved

handshaking instructions

reserved

reserved

linked parameter block pointer
additional input to SIM

reserved

bus phase after original SCSI Manager function
_SCsSI bi spat ch selector for original function
result code of original function

SCSI Conpl et e message byte
reserved

reserved

parameter block header

number of engines on the HBA

number of data transfer types supported
bit map of supported data types

SCSI1/O parameter block size for this SIM
largest parameter block for any registered SIM
bus feature flags

SIM/HBA version number

bus capability flags

reserved

scan feature flags

SIM private data pointer

SIM private data size

reserved

highest registered bus number

SCSI ID of the HBA

reserved

reserved

bit map of supported scsi Fl ags

4-87

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

80 scsi | OFl agsSupport ed word bit map of supported scsi | OFl ags
82 scsi Wi rdSt uf f word miscellaneous flags
84 scsi MaxTar get word highest SCSI ID supported by the HBA
86 scsi MaxLUN word highest LUN supported by the HBA
88 scsi SI M/endor 16 bytes SIM vendor string

104 scsi HBAVendor 16 bytes HBA vendor string

120 scsi Control lerFam |y 16 bytes SCSI controller family string

136 scsi Control | er Type 16 bytes SCSI controller type string

152 scsi XPTver si on 4 bytes XPT version string

156 scsi SI Mver si on 4 bytes SIM version string

160 scsi HBAver si on 4 bytes HBA version string

164 scsi HBAs! ot Type byte HBA slot type

165 scsi HBAs!| ot Nunber byte HBA slot number

166 scsi SI MsRsrcl D word SIM sResource ID

168 scsi Bl Reser ved3 word reserved

170 scsi Addi ti onal Length word additional size of the parameter block

The SCSI Abort Command Parameter Block

0 SCSI PBHdr 36 bytes parameter block header
36 scsil Optr long SCSI1/O parameter block pointer

The SCSI Terminate I/O Parameter Block

0 SCSlI PBHdr 36 bytes parameter block header
36 scsilOptr long SCSI1/O parameter block pointer

The SCSI Virtual ID Information Parameter Block

0 SCSI PBHdr 36 bytes parameter block header
36 scsiddCalllD word virtual SCSI ID of the device to search for
38 scsi Exi sts byte Boolean (t r ue if the device was found)

The SCSI Load Driver Parameter Block

0 SCSI PBHdr 36 bytes parameter block header
36 scsi LoadedRef Num word driver reference number
38 scsi Di skLoadFai | ed byte Boolean (t r ue if a driver could not be loaded)

The SCSI Driver Identification Parameter Block

0 SCSI PBHdr 36 bytes parameter block header
36 scsi Driver word driver reference number
38 scsi Driver Fl ags word driver flags
40 scsi Next Devi ce 4 bytes device ID of the next device in the list

4-88 Summary of SCSI Manager 4.3

CHAPTER 4

SCSI Manager 4.3

The SIM Initialization Record

0

4

8
12
16
20
24
28
30
31
32
36
40
44
48
52
54
56

SI MstaticPtr
staticSize
SIMni t

SI MActi on

SIM ISR

SI M nt er rupt Pol |
Newd dcCal |

i oPBSi ze

ol dCal | Capabl e
si m nf oUnusedl
si m nt er nal Use
XPT_|I SR

Enteri ngSI M
ExitingSIM
MakeCal | back
busl| D

si m nf oUnused3
si m nf oUnused4

Trap Macros

long
long
long
long
long
long
long
word
byte
byte
long
long
long
long
long
word
word
long

SIM private data pointer

SIM private data size

SI M ni t function pointer

S| MAct i on function pointer

reserved

SI M nt er rupt Pol | function pointer
Newd dCal | function pointer

SCSI 1/O parameter block size for this SIM
Boolean (t r ue if SIM accepts original functions)
reserved

SIM private data

reserved

Ent er i ngSI Mfunction pointer

EXi t i ngSI Mfunction pointer

MakeCal | back function pointer

bus number

reserved

reserved

Trap Macros Requiring Routine Selectors

_SCSI At ommi c

Selector Routine

$0001 SCSI Act i on

$0002 SCSI Regi st er Bus
$0003 SCsSI Der egi st er Bus
$0004 SCSI Rer egi st er Bus
$0005 SCSI Ki | | XPT

Summary of SCSI Manager 4.3

4-89

£'v 1oBeuep 1SOS -

CHAPTER 4

SCSI Manager 4.3

Result Codes

noErr
scsi Request | nProgr ess
scsi CDBLengt hl nval i d

scsi Transf er Typel nval i d
scsi Dat aTypel nval i d
scsilDinvalid

scsi LUNI nval i d

scsi TIDinvalid

scsi Buslnvalid

scsi Requestinvalid
scsi Functi onNot Avai | abl e
scsi PBLengt hEr r or
scsi Qui nklnvalid
scsi NoSuchXr ef

scsi Devi ceConflict
scsi NoHBA

scsi Devi ceNot Ther e
scsi Provi deFai |

scsi Busy

scsi TooManyBuses
scsi CDBRecei ved
scsi NoNexus

scsi Term nat ed

scsi BDRsent

scsi WongDirection
scsi SequenceFai |

scsi Unexpect edBusFr ee
scsi Dat aRunErr or

scsi Aut osenseFai | ed
scsi ParityError

scsi SCSI BusReset

scsi MessageRej ect Recei ved
scsi l denti f yMessageRej ect ed

scsi ConmandTi neout
scsi Sel ect Ti meout

scsi Unabl eToTer m nat e
scsi NonZer oSt at us

scsi Unabl eToAbort
scsi Request Abort ed

4-90

-7863

-7864
-7865
-7866
-7867
-7868
-7869
-7870
-7871
-7872
-7881
-7882
-7883
-7884
-7885
-7886
-7887
-7888
-7910
-7911
-7912
-7913

-7915
-7916
-7917
-7918
-7920
-7921
-7922

-7923
-7924

-7925
-7926
-7927
-7932

-7933
-7934

Summary of SCSI Manager 4.3

No error

Parameter block request is in progress

The CDB length supplied is not supported by this SIM;
typically this means it was too big

The scsi Tr ansf er Type is not supported by this SIM
SIM does not support the requested scsi Dat aType
The initiator ID is invalid

The logical unit number is invalid

The target ID is invalid

The bus ID is invalid

The parameter block request is invalid

The requested function is not supported by this SIM
The parameter block length is too small for this SIM
The gLi nk field was not 0

No driver has been cross-referenced with this device
Attempt to register more than one driver to a device
No HBA detected

SCSI device not installed or available

Unable to provide the requested service

SCSI subsystem is busy

SIM registration failed because the XPT registry is full
The SCSI CDB was received

Nexus is not established

Parameter block request terminated by the host

A SCSI bus device reset (BDR) message was sent to

the target

Data phase was in an unexpected direction

Target bus phase sequence failure

Unexpected bus free phase

Data overrun/underrun error

Automatic REQUEST SENSE command failed

An uncorrectable parity error occurred

Execution of this parameter block was halted because of
a SCSI bus reset

REJECT message received

The target issued a REJECT message in response to the
| DENTI FY message; the LUN probably does not exist
The timeout value for this parameter block was
exceeded and the parameter block was aborted

Target selection timeout

Unable to terminate I/O parameter block request

The target returned non-zero status upon completion of
the request

Unable to abort parameter block request

Parameter block request aborted by the host

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	SCSI Manager 4.3
	About SCSI Manager 4.3
	Transport
	SCSI Interface Modules
	System Performance
	Compatibility

	Using SCSI Manager 4.3
	Locating SCSI Devices
	Describing Data Buffers
	Handshaking Instructions
	Error Recovery Techniques
	Optional Features

	Writing a SCSI Device Driver
	Loading and Initializing a Driver
	Selecting a Startup Device
	Transitions Between SCSI Environments
	Handling Asynchronous Requests
	Handling Immediate Requests
	Virtual Memory Compatibility

	Writing a SCSI Interface Module
	SIM Initialization and Operation
	Supporting the Original SCSI Manager
	Handshaking of Blind Transfers
	Supporting DMA
	Loading Drivers

	SCSI Manager 4.3 Reference
	Data Structures
	Simple Data Types
	Device Identification Record
	Command Descriptor Block Record
	Scatter/Gather List Element
	SCSI Manager Parameter Block Header
	SCSI I/O Parameter Block
	SCSI Bus Inquiry Parameter Block
	SCSI Abort Command Parameter Block
	SCSI Terminate I/O Parameter Block
	SCSI Virtual ID Information Parameter Block
	SCSI Load Driver Parameter Block
	SCSI Driver Identification Parameter Block
	SIM Initialization Record

	SCSI Manager 4.3 Functions
	Client Functions
	SIM Support Functions
	SIM Internal Functions

	Summary of SCSI Manager 4.3
	C Summary
	Constants
	Data Types
	Functions

	Pascal Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

