

C H A P T E R 7

7

S
erial D

river

Serial Driver 7

This chapter describes how you can use the Serial Driver to transfer data to a device
connected to a Macintosh modem or printer port. The Serial Driver supports
asynchronous serial data communication between applications and serial devices
through these ports.

The Serial Driver provides low-level support for communicating with serial devices
that cannot be accessed through the Communications Toolbox or Printing Manager. For
example, a scientific instrument or a printer that does not support QuickDraw. Before
you decide to use the Serial Driver, you should determine whether it is the appropriate
solution for your communication needs.

The Communications Toolbox is the recommended method for integrating modems
and other telecommunications devices into the Macintosh environment. The
Communications Toolbox provides hardware-independent services and a standard
interface that offers compatibility with all Macintosh models. To find out more about
the Communications Toolbox, see Inside the Macintosh Communications Toolbox.

Likewise, the Printing Manager is the recommended interface for printers and similar
output devices. Using the Printing Manager makes your hardware or software product
compatible with every other device or application that supports this standard interface.
Refer to Inside Macintosh: Imaging With QuickDraw for more information.

To use the Serial Driver, you should understand how to open, close, and communicate
with device drivers using the Device Manager. You can find this information in the
chapter “Device Manager” in this book. For information about the Macintosh serial port
hardware, including circuit diagrams and signal descriptions, see Guide to the Macintosh
Family Hardware, second edition.

This chapter begins with a brief summary of key concepts in serial data communication,
then describes how you can use the Serial Driver to

■ configure a Macintosh serial port

■ specify a data transfer buffer

■ send and receive data through a serial port

■ interpret serial communication errors

 Introduction to Serial Communication 7

Serial Communication, like any data transfer, requires coordination between the sender
and receiver. For example, when to start the transmission and when to end it, when one
particular bit or byte ends and another begins, when the receiver’s capacity has been
exceeded, and so on. A protocol defines the specific methods of coordinating
transmission between a sender and receiver.

The scope of serial data transmission protocols is large and complex, encompassing
everything from electrical connections to data encoding methods. This section
summarizes the most important protocols and standards related to using the
Serial Driver.
Introduction to Serial Communication 7-3

C H A P T E R 7

Serial Driver

Asynchronous and Synchronous Communication 7
Serial data transfers depend on accurate timing in order to differentiate bits in the
data stream. This timing can be handled in one of two ways: asynchronously or
synchronously. In asynchronous communication, the scope of the timing is a single byte.
In synchronous communication, the timing scope comprises one or more blocks of bytes.
The terms asynchronous and synchronous are slightly misleading, because both kinds of
communication require synchronization between the sender and receiver.

Asynchronous communication is the prevailing standard in the personal computer
industry, both because it is easier to implement and because it has the unique advantage
that bytes can be sent whenever they are ready, as opposed to waiting for blocks of data
to accumulate.

IMPORTANT

Do not confuse asynchronous communication with asynchronous execution.
Asynchronous communication is a protocol for coordinating serial data
transfers. Asynchronous execution refers to the capability of a device driver
to carry out background processing. The Serial Driver supports both
asynchronous communication and asynchronous execution. ▲

The Serial Driver does not support synchronous communication protocols. However, it
does support synchronous clocking supplied by an external device.

Duplex Communication 7
Another important characteristic of digital communication is the extent to which
simultaneous two-way transfers of data can be achieved.

In a simple connection, the hardware configuration is such that only one-way
communication is possible (for example, from a computer to a printer that cannot send
status signals back to the computer). In a half-duplex connection, two-way transfer
of data is possible, but only in one direction at a time. That is, the two parties to the
connection take turns transmitting and receiving data. In a full-duplex connection, both
parties can send and receive data simultaneously. The Serial Driver supports full-duplex
operation.

Flow Control Methods 7
Because a sender and receiver can’t always process data at the same rate, some method
of negotiating when to start and stop transmission is required. The Serial Driver
supports two methods of controlling serial data flow. One method relies on the serial
port hardware, the other is implemented in software.

Hardware flow control uses two of the serial port signal lines to control data
transmission. When the Serial Driver is ready to accept data from an external device,
it asserts the Data Terminal Ready (DTR) signal on pin 1 of the serial port, which the
external device receives through its Clear to Send (CTS) input. Likewise, the Macintosh
receives the external device’s DTR signal through the CTS input on pin 2 of the serial
7-4 Introduction to Serial Communication

C H A P T E R 7

Serial Driver

7

S
erial D

river

port. When either the Macintosh or the external device is unable to receive data,
it negates its DTR signal and the sender suspends transmission until the signal is
asserted again.

Flow control can also be handled in software by using an agreed-upon set of characters
as start and stop signals. The Serial Driver supports XON/XOFF flow control, which
typically assigns the ASCII DC1 character (also known as control-Q) as the start signal
and the DC3 character (control-S) as the stop signal, although you can choose different
characters.

Asynchronous Serial Communication Protocol 7
This section provides an overview of the protocol that governs the lowest level of data
transmission—how serialized bits are sent over a single electrical line. This standard
rests on more than a century of evolution in teleprinter technology.

When a sender is connected to a receiver over an electrical connecting line, there is an
initial state in which communication has not yet begun, called the idle or mark state.
Because older electromechanical devices operate more reliably with current continually
passing through them, the mark state employs a positive voltage level. Changing the
state of the line by shifting the voltage to a negative value is called a space. Once this
change has occurred, the receiver interprets a negative voltage level as a 0 bit, and a
positive voltage level as a 1 bit. These transitions are shown in Figure 7-1.

The change from mark to space is known as the start bit, and this triggers the
synchronization necessary for asynchronous serial transmission. The start bit delineates
the beginning of the transmission unit defined as a character frame. The receiver then
samples the voltage level at periodic intervals known as the bit time, to determine
whether a 0-bit or a 1-bit is present on the line.

Figure 7-1 The format of serialized bits

The bit time is expressed in samples per second, known as baud (in honor of
telecommunication pioneer Emile Baudot). This sampling rate must be agreed upon by

Mark

Space

Idle Idle

Character frame

Bit time

Parity

bit

5, 6, or 7 data bitsStart

bit

Stop

bits
Introduction to Serial Communication 7-5

C H A P T E R 7

Serial Driver

sender and receiver prior to start of transmission in order for a successful transfer to
occur. Common values for the sampling rate are 1200 baud and 2400 baud. In the case
where one sampling interval can signal a single bit, a baud rate of 1200 results in a
transfer rate of 1200 bits per second (bps). Note that because modern protocols can
express more than one bit value within the sampling interval, the baud rate and the data
rate (bps) are not always identical.

Prior to transmission, the sender and receiver agree on a serial data format; that is, how
many bits of data constitute a character frame, and what happens after those bits are
sent. The Serial Driver supports frames of 5, 6, 7, or 8 bits in length. Character frames
of 7 or 8 data bits are commonly used for transmitting ASCII characters.

After the data bits in the frame are sent, the sender can optionally transmit a parity bit
for error-checking. There are various parity schemes, which the sender and receiver
must agree upon prior to transmission. In odd parity, a bit is sent so that the entire frame
always contains an odd number of 1 bits. Conversely, in even parity, the parity bit results
in an even number of 1 bits. No parity means that no additional bit is sent. Other
less-used parity schemes include mark parity, in which the extra bit is always 1,
and space parity, in which its value is always 0. Using parity bits for error checking,
regardless of the scheme, is now considered a rudimentary approach to error detection.
Most communication systems employ more reliable techniques for error detection
and correction.

To signify the end of the character frame, the sender places the line back to the mark
state (positive voltage) for a minimum specified time interval. This interval has one of
several possible values: 1 bit time, 2 bit times, or 1-1/2 bit times. This signal is known as
the stop bit, and returns the transmission line back to idle status.

Electrical lines are always subject to environmental perturbations known as noise. This
noise can cause errors in transmission, by altering voltage levels so that a bit is reversed
(flipped), shortened (dropped), or lengthened (added). When this occurs, the ability of
the receiver to distinguish a character frame may be affected, resulting in a framing error.

The break signal is a special signal that falls outside the character frame. The break signal
occurs when the line is switched from mark (positive voltage) to space (negative voltage)
and held there for longer than a character frame. The break signal resembles an ASCII
NUL character (a string of 0-bits), but exists at a lower level than the ASCII encoding
scheme (which governs the encoding of information within the character frame).

The RS-422 Serial Interface 7
The electrical characteristics of a serial communication connection are specified by
various interfacing standards, one of which is the RS-422 standard used in all Macintosh
computers. This standard is an enhancement of the RS-232 standard, with electrical
characteristics modified to allow higher transmission rates over longer lines. Although
the electrical voltage differences can be critical at times and should therefore not be
ignored, most of the terminology and concepts remain the same across these two
standards. For purposes of this discussion, it is convenient to treat these two standards
as a single entity.
7-6 Introduction to Serial Communication

C H A P T E R 7

Serial Driver

7

S
erial D

river

The specifications of the RS-422 and RS-232 interfacing standards are contained in
documents available from the Electronic Industries Associations (EIA). The specifications
cover several aspects of the connection between data terminal equipment and data
communication equipment. These aspects include the electrical signal characteristics,
the mechanical description of the interface circuits, and the functional description
of the circuits.

The principal interface signals specified by the EIA are described in the following list.
The term data terminal equipment (DTE) is used to describe the initiator or controller of
the serial connection, typically the computer. The term data communication equipment
(DCE) describes the device that is connected to the DTE, such as a modem or printer.

The RS-422/RS-232 signals are described below. For specific information about how
these signals are used in Macintosh computers, see Guide to the Macintosh Family
Hardware, second edition.

■ Data Terminal Ready (DTR). The DTR signal indicates that the DTE (that is, your
computer) is ready to communicate. Deasserting this signal causes the DCE to
suspend transmission. The DTR signal is the most important control line for a
modem, because when it is deasserted, most modem functions cease and the modem
disconnects from the telephone line. In Macintosh computers, the DTR signal is
connected to the CTS signal, discussed next.

■ Request to Send (RTS) and Clear to Send (CTS). The RTS signal was originally intended
to switch a half-duplex modem from transmit to receive mode. The computer would
send an RTS signal to the modem and wait for the modem to respond by asserting
CTS. Since most communications between microcomputers are full-duplex nowadays,
RTS/CTS handshaking is not often used in its original form. Rather, in most
full-duplex modems, the CTS signal is permanently asserted, and the RTS signal is
not used. In Macintosh computers, the CTS signal is connected to the DTR signal.

■ Data Set Ready (DSR). The DSR signal is not used by Macintosh computers and is
usually permanently asserted on microcomputer modems. It was intended to signal
the computer that the modem had made a proper connection to the telephone line
and received an answer tone from the modem on the other end. Modern modems
communicate this information by sending messages to the computer.

■ Transmitted Data (TD). The TD signal carries the serial data stream from the DTE to the
DCE. The EIA specifications dictate that the DTR, RTS, CTS, and DSR signals must be
asserted before data can be transmitted, but this requirement is not strictly followed in
the computer industry.

■ Received Data (RD). The RD signal is the counterpart of the TD signal, and carries data
from the DCE to the DTE. Although the EIA specifies that this signal be in the mark
state when no carrier is present, this requirement is rarely adhered to.

■ Data Carrier Detect (DCD). The DCD signal is not used by Macintosh computers. In
systems that use the signal, it is asserted by the DCE when a carrier signal is received.

■ Ring Indicator (RI). The RI signal is not used by Macintosh computers. In systems that
use the signal, it is asserted by the DCE when the telephone line is ringing.

As you can see, implementations of the RS-422/RS-232 interface do not always
correspond to the specifications set forth by the EIA. This is especially true when the
DCE is not a modem.
Introduction to Serial Communication 7-7

C H A P T E R 7

Serial Driver

About the Serial Driver 7

The Serial Driver is a part of the Macintosh Operating System that provides low-level
support for asynchronous, interrupt-driven serial data transfers through the modem and
printer ports.

The Serial Driver provides routines that allow you to

■ initialize and terminate communication

■ transmit and receive data

■ examine and change communication settings

You access the Serial Driver routines using standard Device Manager functions such as
open, close, read, write, control, and status. The Serial Driver also includes some
convenience routines that you can call from Pascal or C.

The Serial Driver supports the following communication settings

■ 5, 6, 7, or 8 data bits per character

■ odd, even, or no parity

■ 1, 1.5, or 2 stop bits

■ 300 to 57600 baud transmission rates (depending on hardware capability)

■ hardware or software flow control

The Serial Driver default settings are 9600 baud, 8 data bits per character, no parity, and
2 stop bits. Hardware handshaking is the default under System 7, although some earlier
versions of the Serial Driver defaulted to software handshaking.

Additional control and status functions allow you to

■ determine the version number of the Serial Driver

■ change the input buffer from the default buffer to one that you specify

■ obtain information about transmission errors such as overrun, framing, parity, and
break signals.

■ enable the automatic replacement of characters that have parity errors

■ use an external timing signal for synchronous clocking

Macintosh Serial Architecture 7
The Serial Driver consists of a set of four Macintosh device drivers and assorted
convenience routines that interface to the Device Manager. Within the overall Macintosh
software architecture, the location and boundaries of the Serial Driver are not sharply
defined. This is because its role as mediator between applications and devices is
supplemented by routines belonging to the Device Manager.

Although the hardware architecture of the serial ports varies, the Serial Driver provides
a universal interface for applications. For example, some Macintosh computers use the
7-8 About the Serial Driver

C H A P T E R 7

Serial Driver

7

S
erial D

river

Zilog Z8530 Serial Communications Controller (SCC) microchip, while others use
custom devices. By using the Serial Driver rather than relying on a particular hardware
configuration, your application is compatible with all Macintosh computers.

Figure 7-2 shows the Serial Driver and its relation to the Macintosh serial architecture.
Conceptually, there are three functional layers: the application layer, the system software
layer, and the hardware layer. The Serial Driver, the Device Manager, and the four serial
device drivers all exist within the system software layer. Although you normally access
the Serial Driver through Device Manager routines, the Serial Driver interface includes
a set of convenience routines such as SerStatus that provide a high-level interface
to some functions.

Figure 7-2 The role of the Serial Driver

The four device drivers that control the serial ports differ from other Macintosh device
drivers in that they share common internal routines and data structures, as illustrated
by the horizontal interconnecting arrows in Figure 7-2. Each driver is associated with a
communication channel, either Channel A or Channel B, and each channel is associated
with a serial port. Channel A controls the modem port, and Channel B controls the
printer port. Each channel has both an input driver and an output driver associated with

System

software

.AOut.AIn

Serial Driver

convenience routines

Device Manager

Channel A

Application

Hardware

.BOut.BIn

Channel B

Printer portModem port
About the Serial Driver 7-9

C H A P T E R 7

Serial Driver

it. The drivers for the modem port are named .AIn and .AOut, and those for the printer
port are named .BIn and .BOut.

Each input driver receives data from a serial port and transfers it to the application. Each
output driver takes data from the application and sends it out its serial port. Although
the input and output drivers for a port are closely related and share some of the same
routines, each driver has its own device control entry data structure. This means that
read and write operations can be processed simultaneously, which allows the Serial
Driver to support full-duplex communication.

Because the input and output drivers are not completely distinct entities, some functions
(for example, the SerReset function) only need to be invoked on the output driver—
the desired operation occurs on the input side as well. Note, however, that you must
always explicitly open and close both the input and output drivers.

Serial Communication Errors 7
Data received from the serial port passes through a hardware buffer and then into a
software buffer managed by the input driver for the port. Characters are removed from
the input driver’s buffer each time an application calls the driver’s read routine. Each
input driver’s buffer can initially hold up to 64 characters, but you can specify a larger
buffer using the SerSetBuf function. You need to increase the input buffer size if the
buffer fills up faster than your application can read from it, as indicated by overrun
errors and lost data.

Because the serial hardware in some Macintosh computers relies on processor interrupts
during I/O operations, overrun errors are possible if interrupts are disabled while data
is being received at the serial port. To prevent such errors, the Disk Driver and other
system software components are designed to store any data received by the modem port
while they have interrupts disabled, and then pass this data to the port’s input driver.
Because the system software only monitors the modem port, the printer port is not
recommended for two-way communication at data rates above 300 baud.

Note
AppleTalk is not subject to the same limitations because it is not
interrupt-driven and does not use the Serial Driver. ◆

You can use the SerStatus function to detect the most common serial communication
errors:

■ Hardware overrun errors occur when the serial hardware input buffer overflows,
usually because the input driver doesn’t read it often enough.

■ Software overrun errors occur when an input driver’s buffer overflows, usually
because the application doesn’t issue read calls to the driver often enough.

■ Parity errors occur when the serial hardware detects an incorrect parity bit.

■ Framing errors occur when the serial hardware detects an error in the stop bits.

■ Break errors occur when a break signal is received.
7-10 About the Serial Driver

C H A P T E R 7

Serial Driver

7

S
erial D

river

Overrun, parity, and framing errors are usually handled by requesting that the sender
retransmit the affected data. Break errors are typically initiated by the user and handled
as appropriate for the particular application. When an input driver receives a break
signal, it terminates any pending read requests. You can terminate pending write
requests by sending a KillIO request to the output driver.

Using the Serial Driver 7

The basic steps in using the Serial Driver are

1. Open the output device driver for the serial port, then open the input device driver.
Always open both drivers, even if you only need one.

2. Optionally, allocate a buffer that is larger than the default 64-byte input buffer, and
then use the SerSetBuf function to select the alternate buffer.

3. Set the handshaking mode.

4. Set the baud rate and data format.

5. Read or write the desired data.

6. When you are finished using the Serial Driver, terminate any pending I/O with the
Device Manager KillIO function.

7. Restore the default input buffer.

8. Close the input and output drivers. Always close the input driver first.

The program shown in Listing 7-1 illustrates these steps. The following sections describe
each step in more detail.

Listing 7-1 Using the Serial Driver

PROGRAM UsingTheSerialDriver;

{An example of the basic steps required to set up and use the Serial Driver.}

{ Note that all function calls demonstrated here are synchronous and thus }

{ should not be called at interrupt time. }

USES

Serial;

VAR

gOutputRefNum: Integer; {output driver reference number}

gInputRefNum: Integer; {input driver reference number}

gInputBufHandle: Handle; {handle to my input buffer}

gOSErr: OSErr; {function results}
Using the Serial Driver 7-11

C H A P T E R 7

Serial Driver

PROCEDURE MyOpenSerialDriver;

{Use the Device Manager OpenDriver function to open the drivers.}

BEGIN

gOSErr := OpenDriver('.AOut', gOutputRefNum); {always open output first}

IF gOSErr = noErr THEN

gOSErr := OpenDriver('.AIn', gInputRefNum); {then open the input driver}

END;

PROCEDURE MyChangeInputBuffer;

{Replace the default input buffer with a larger buffer.}

CONST

 kInputBufSize = 1024; {size of my input buffer in bytes}

BEGIN

gInputBufHandle := NewHandle(kInputBufSize); {allocate storage}

HLock(gInputBufHandle); {lock it}

SerSetBuf(gInputRefNum, gInputBufHandle^, kInputBufSize); {set the buffer}

END;

PROCEDURE MySetHandshakeOptions;

{Set flow control method and other options. Note that you only need to set}

{ the output driver; the settings are reflected on the input side.}

VAR

mySerShkRec: SerShk; {serial handshake record}

BEGIN

WITH mySerShkRec DO

BEGIN

fXOn := 0; {turn off XON/XOFF output flow control}

fCTS := 0; {turn off CTS/DTR flow control}

errs := 0; {clear error mask}

evts := 0; {clear event mask}

fInX := 0; {turn off XON/XOFF input flow control}

fDTR := 0; {turn off DTR input flow control}

END;

{Use control call 14 instead of the SerHShake function}

{ because it allows control over DTR handshaking.}

gOSErr := Control(gOutputRefNum, 14, @mySerShkRec); {csCode = 14}

END;

PROCEDURE MyConfigureThePort;

{Set baud rate and data format. Note that you only need to set the}

{ output driver; the settings are reflected on the input side.}

CONST

kConfigParam = baud2400+data8+noParity+stop10; {create bit field}
7-12 Using the Serial Driver

C H A P T E R 7

Serial Driver

7

S
erial D

river

BEGIN

gOSErr := SerReset(gOutputRefNum, kConfigParam); {configure the port}

END;

PROCEDURE MySendMessage;

{Use the Device Manager PBWrite function to send data to the output driver.}

VAR

myMessage: Str255; {the data to send}

myMsgLen: LongInt; {number of bytes to send}

myParamBlock: ParamBlockRec; {parameter block for the PBWrite function}

myPBPtr: ParmBlkPtr; {pointer to the parameter block}

BEGIN

myMessage := 'The Eagle has landed.';

myMsgLen := Length(myMessage); {get the size of the message string}

WITH myParamBlock DO {fill in required fields of the parameter block}

BEGIN

ioRefNum := gOutputRefNum; {write to the output driver}

ioBuffer := @myMessage[1]; {pointer to the data}

ioReqCount := myMsgLen; {number of bytes to send}

ioCompletion := NIL; {no completion routine specified}

ioVRefNum := 0; {not used by the Serial Driver}

ioPosMode := 0; {not used by the Serial Driver}

END;

myPBPtr := @myParamBlock

gOSErr := PBWrite(myPBPtr, FALSE); {synchronous Device Manager request}

END;

PROCEDURE MyReceiveMessage;

{Use the Device Manager PBRead function to read data from the input driver.}

VAR

myBuffer: Str255; {a buffer to receive the data}

myReadCount: LongInt; {number of bytes to read}

myParamBlock: ParamBlockRec; {parameter block for the PBRead function}

myPBPtr: ParmBlkPtr; {pointer to the parameter block}

BEGIN

myBuffer := '';

myReadCount := 0;

gOSErr := SerGetBuf(gInputRefNum, myReadCount); {determine how many bytes}

{ are in the input buffer}

IF myReadCount > 0 THEN

BEGIN

WITH myParamBlock DO {fill in required fields of the parameter block}

BEGIN
Using the Serial Driver 7-13

C H A P T E R 7

Serial Driver

ioRefNum := gInputRefNum; {read from the input driver}

ioBuffer := @myBuffer[1]; {pointer to my data buffer}

ioReqCount := myReadCount; {number of bytes to read}

ioCompletion := NIL; {no completion routine specified}

ioVRefNum := 0; {not used by the Serial Driver}

ioPosMode := 0; {not used by the Serial Driver}

END;

myPBPtr := @myParamBlock;

gOSErr := PBRead(myPBPtr, FALSE);{synchronous Device Manager request}

END;

END;

PROCEDURE MyRestoreInputBuffer;

{Restore the default input buffer.}

BEGIN

SerSetBuf(gInputRefNum, gInputBufHandle^, 0); {0 means restore default}

HUnlock(gInputBufHandle); {release my old buffer}

END;

PROCEDURE MyCloseSerialDriver;

{Use the Device Manager KillIO function to terminate all current and pending}

{ operations, then close the drivers. Note that you only need to call KillIO}

{ on the output driver to terminate both input and output operations.}

BEGIN

gOSErr := KillIO(gOutputRefNum); {terminate all pending I/O operations}

IF gOSErr = noErr THEN

gOSErr := CloseDriver(gInputRefNum); {close the input driver first}

IF gOSErr = noErr THEN

gOSErr := CloseDriver(gOutputRefNum); {then close the output driver}

END;

BEGIN {UsingTheSerialDriver}

MyOpenSerialDriver; {open the output and input drivers}

MyChangeInputBuffer; {replace the default input buffer}

MySetHandshakeOptions; {select flow control method}

MyConfigureThePort; {set baud rate and data format}

MySendMessage; {send some bytes to the output driver}

MyReceiveMessage; {read some bytes from the input driver}

MyRestoreInputBuffer; {restore the default input buffer}

MyCloseSerialDriver; {terminate I/O and close the drivers}

END.
7-14 Using the Serial Driver

C H A P T E R 7

Serial Driver

7

S
erial D

river

Opening the Serial Driver 7
Because the Serial Driver uses separate device drivers for the input and output
functions, you need to open both drivers for two-way communication. On Macintosh
computers with two serial ports, you access the modem port through the .AIn
and .AOut drivers, and the printer port through the .BIn and .BOut drivers.

On computers with a single serial port, such as the Macintosh PowerBook Duo models,
the serial port can be used for either modem or printer connections. There is only one
serial channel on these models, which you access through the .AIn and .AOut drivers.

You open the serial port drivers using the Device Manager OpenDriver or PBOpen
functions. You should always open the output driver first because the Serial Driver
initializes its local variables for both the input and output drivers when you open the
output driver. Opening the output driver also installs interrupt handlers and allocates
and locks buffer storage for both input and output.

When the Serial Driver receives an open request it first verifies that the serial port
is available and correctly configured. If the port is unavailable or not configured, the
Serial Driver returns the result code portInUse or portNotCf. Any other errors, such
as attempting to open the .BIn or .BOut driver on a Macintosh with only one serial
port, return the openErr result code.

When a device driver is opened successfully, the Device Manager returns a driver
reference number, which you use to identify the driver in subsequent I/O requests.
Although the reference numbers of the serial input and output drivers have remained
constant for some time, you should not assume these values are fixed. Because future
versions of the Operating System may assign other reference numbers to these drivers,
your application should always use the reference numbers returned by the Device
Manager.

Because of hardware differences between the serial ports in some Macintosh models, you
should use the printer port for output-only connections to devices such as printers, at a
maximum data rate of 9600 baud. The printer port is not recommended for two-way
communication at data rates above 300 baud.

Note
If AppleTalk is active you cannot open the printer port for serial
communication unless AppleTalk is using an alternate connection, such
as EtherTalk or TokenTalk. ◆

Specifying an Alternate Input Buffer 7
An optional but recommended practice is to increase the size of the input driver’s buffer.
The default buffer size, 64 bytes, is not always sufficient for sustained transfers at data
rates above 300 baud. A larger buffer will help avoid buffer overruns and consequent
loss of data. You can specify a buffer size of up to 32 KB, but 1 to 2 KB is usually
sufficient.
Using the Serial Driver 7-15

C H A P T E R 7

Serial Driver
You use the SerSetBuf function to specify an alternate input buffer, and also to reset
the default buffer. To ensure compatibility and avoid heap fragmentation you must
reset the default buffer before closing the input driver.

Setting the Handshaking Options 7
The recommended method of setting handshaking options is to send a control request to
the output driver, with a csCode value of 14. This is equivalent to using the SerHShake
function, but allows you to select DTR handshaking. To specify the desired options, you
pass the following data structure to the driver:

TYPE SerShk =

PACKED RECORD

fXOn: Byte; {XON/XOFF output flow control enabled flag}

fCTS: Byte; {CTS hardware handshake enabled flag}

xOn: Char; {XON character}

xOff: Char; (XOFF character}

errs: Byte; {error mask for input errs that cause abort}

evts: Byte; {mask for status changes that cause events}

fInX: Byte; {XON/XOFF input flow control flag}

fDTR: Byte; {DTR input flow control (for csCode=14 only)}

END;

The Data Terminal Ready (DTR) signal is normally asserted when the Serial Driver is
opened and negated when it is closed. You can change this behavior using one of several
control routines described in the section “Low-Level Routines,” beginning on page 7-27.

The fields of the SerShk data structure are described in the section “Serial Driver
Reference,” beginning on page 7-18.

Setting the Baud Rate and Data Format 7
When you open the Serial Driver it configures the selected port with default settings of
9600 baud, 8 data bits, no parity bit, and 2 stop bits. You can change these settings using
the SerReset function, described on page 7-19.

Reading and Writing to the Serial Ports 7
Once you have configured the serial port, you can read and write data using the
Device Manager PBRead and PBWrite functions. These functions can be called either
synchronously or asynchronously, as described in the chapter “Device Manager” in
this book.
7-16 Using the Serial Driver

C H A P T E R 7

Serial Driver

7
S

erial D
river
Synchronous I/O Requests 7

When you make a synchronous request to a device driver, the Device Manager places
your request at the end of the driver’s I/O queue and does not return control to your
application until the request completes. To avoid hanging, your application needs to take
steps to ensure that a request will complete properly before calling the Device Manager.

For example, because the PBRead function requires you to specify the number of bytes
to be read, you need to determine how many bytes are in the input driver’s buffer before
you call PBRead. You can use the SerGetBuf function to determine how many
characters are in the input buffer, as shown in Listing 7-1.

If you try to read more bytes than are available in the input buffer, the driver waits until
it receives enough characters to satisfy your request. If the external serial device does not
send the required number of bytes, there is no way for your application regain control of
the processor or terminate the read request.

Similarly, the PBWrite function will not complete until the specified number of bytes
have been transmitted to the external serial device. If the external device is holding off
transfers through hardware or software handshaking, the Device Manager will never
return control to your application. You can use the SerStatus function, described on
page 7-25, to query the status of the output driver and determine if output is suspended
by handshaking.

For more information about how synchronous I/O requests are processed, see the
chapter “Device Manager” in this book.

Asynchronous I/O Requests 7

Asynchronous execution allows your application to continue to process user input or
perform other tasks while waiting for serial I/O requests to complete. To take full
advantage of asynchronous operation you should supply a completion routine for the
Device Manager to call when an asynchronous request completes. You should also
implement a timer function to notify your application if a request is not satisfied within
a reasonable period.

See the chapter “Device Manager” in this book for information about how asynchronous
I/O requests are processed.

Closing the Serial Driver 7
Before closing the Serial Driver you must restore the default input buffer using the
SerSetBuf function. After restoring the default buffer, you can terminate any pending
I/O using the Device Manager KillIO function. Finally, you should close the input and
output drivers using the Device Manager CloseDriver or PBClose functions.
Using the Serial Driver 7-17

C H A P T E R 7

Serial Driver
Synchronous Clocking 7
Although the Serial Driver does not support synchronous communication protocols, it
does allow you to select an external timing signal for synchronous clocking between the
sender and receiver. You connect the external timing signal to the handshake input
(HSKi) signal on pin 2 of the serial port, and select external clocking by sending a control
request to the output driver with a csCode value of 16 and bit 6 set in the csParam
field. See the section “Low-Level Routines,” beginning on page 7-27, for more
information.

Serial Driver Reference 7

This section describes the programming interface to the Serial Driver. This interface
consists of the Serial Driver routines and the Device Manager functions for accessing
them. The Serial Driver defines two data structures, the serial handshake record and the
serial status record, which are described along with the routines that use these structures
(the SerHShake and SerStatus functions, respectively).

Serial Driver Routines 7
You can use the Serial Driver routines to

■ reset and configure the serial port device drivers

■ set the size of the serial input buffer

■ set handshaking options

■ set or clear a break signal

■ determine the number of characters in the input buffer

■ get status information for a serial port

This section describes the control and status routines unique to the Serial Driver, as
well the convenience routines for accessing them. Other Serial Driver functions, such as
reading and writing, are accessed through the Device Manager. For information about
the Device Manager functions for opening, closing, and communicating with device
drivers, see the chapter “Device Manager” in this book.

IMPORTANT

The Serial Driver convenience routines described in this section are
always executed synchronously when called using the high-level
interface. To execute these functions asynchronously you must use
the equivalent low-level Device Manager control or status call
(PBControlAsync or PBStatusAsync). The csCode value for
each routine is listed in the assembly-language information section
of the routine description. ▲
7-18 Serial Driver Reference

C H A P T E R 7

Serial Driver

7
S

erial D
river
SerReset 7

You can use the SerReset function to reset the serial port drivers and configure the port
for a specified transmission rate and character frame.

FUNCTION SerReset (refNum: Integer; serConfig: Integer): OSErr;

refNum The driver reference number of the serial output driver.

serConfig A 16-bit value that specifies the configuration information.

DESCRIPTION

The SerReset function resets the output and input device drivers for the serial port,
and also configures the port according to the format of the serConfig parameter
shown in Figure 7-3.

Figure 7-3 The serConfig parameter format

You can use the following constants to set the values of the bit fields in the serConfig
parameter:

CONST

baud300 = 380; {300 baud}

baud600 = 189; {600 baud}

baud1200 = 94; {1200 baud}

baud1800 = 62; {1800 baud}

baud2400 = 46; {2400 baud}

baud3600 = 30; {3600 baud}

baud4800 = 22; {4800 baud}

baud7200 = 14; {9600 baud}

baud9600 = 10; {3600 baud}

baud14400 = 6; {14400 baud}

baud19200 = 4; {19200 baud}

14 13 12 11 10 9 8 7 6 5 4 3 2 1 015

BaudParity

Stop bits Data bits per character
Serial Driver Reference 7-19

C H A P T E R 7

Serial Driver
baud28800 = 2; {28800 baud}

baud38400 = 1; {38400 baud}

baud57600 = 0; {57600 baud}

stop10 = 16384; {1 stop bit}

stop15 = -32768; {1.5 stop bits}

stop20 = -16384; {2 stop bits}

noParity = 0; {no parity}

oddParity = 4096; {odd parity}

evenParity = 12288; {even parity}

data5 = 0; {5 data bits}

data6 = 2048; {6 data bits}

data7 = 1024; {7 data bits}

data8 = 3072; {8 data bits}

For example, the default setting of 9600 baud, eight data bits, two stop bits, and no parity
bit is equivalent to passing the following value in the serConfig parameter:

baud9600 + data8 + stop20 + noParity.

This value has a binary representation of 1100110000001010 and a hexadecimal
representation of $CC0A.

ASSEMBLY-LANGUAGE INFORMATION

The SerReset function is equivalent to a Device Manager control request with a
csCode value of 8. You pass the serConfig parameter in the csParam field
(csParam[0] = serConfig).

RESULT CODES

SerSetBuf 7

You can use the SerSetBuf function to increase the size of the serial input buffer, or to
restore the driver’s default buffer.

FUNCTION SerSetBuf (refNum: Integer; serBPtr: Ptr;

serBLen: Integer): OSErr

refNum The driver reference number of the serial input driver.

serBPtr A pointer to the new input buffer.

serBLen The size of the new input buffer, or 0 to restore the default buffer.

noErr 0 No error
7-20 Serial Driver Reference

C H A P T E R 7

Serial Driver

7
S

erial D
river
DESCRIPTION

The SerSetBuf function replaces the input buffer for the specified input driver. The
serBPtr parameter points to the buffer, and the serBLen parameter specifies the
number of bytes in the buffer. The buffer must be locked while in use. Before closing the
driver you must restore the default buffer by calling SerSetBuf with the serBLen
parameter equal to 0.

ASSEMBLY-LANGUAGE INFORMATION

The SerSetBuf function is equivalent to a Device Manager control request with a
csCode value of 9. You pass the serBPtr and serBLen parameters in the csParam
field (csParam[0] = serBPtr; csParam[4] = serBLen).

RESULT CODE

SerHShake 7

You can use the SerHShake function to set software handshaking options and other
control information.

FUNCTION SerHShake (refNum: Integer; flags: SerShk): OSErr;

refNum The driver reference number of the serial output driver.

flags A pointer to a serial handshake record.

DESCRIPTION

The SerHShake function enables flow control, sets flow control characters, and specifies
which conditions will cause input requests to be aborted.

Note that the SerHShake function has been superseded by a newer function that allows
control over DTR handshaking. There is no high-level interface to the new function, you
access it using a Device Manager control request with a csCode value of 14. This
function uses the same SerShk data structure, but adds an additional field for DTR
hardware flow control. See the section “Low-Level Routines,” beginning on page 7-27,
for a description of control routine 14.

The serial handshake record is defined by the SerShk data type:

TYPE SerShk =

PACKED RECORD

fXOn: Byte; {XON/XOFF output flow control flag}

fCTS: Byte; {CTS output flow control flag}

xOn: Char; {XON character}

noErr 0 No error
Serial Driver Reference 7-21

C H A P T E R 7

Serial Driver
xOff: Char; {XOFF character}

errs: Byte; {mask for errors that will terminate input}

evts: Byte; {mask for status changes that cause events}

fInX: Byte; {XON/XOFF input flow control flag}

fDTR: Byte; {DTR input flow control flag (csCode 14 only)}

END;

Field descriptions

fXOn Set this byte to a non-zero value to enable XON/XOFF output flow
control.

fCTS Set this byte to a non-zero value to enable CTS output flow control.
xOn If XON/OFF flow control is enabled, this field specifies the

character to use for XON.
xOff If XON/XOFF flow control is enabled, this field specifies the

character to use for XOFF.
errs Indicates which errors will cause input requests to be terminated,

using the bit mask constants shown below.
evts Indicates whether changes in the CTS signal or the break signal will

cause the Serial Driver to post device driver events, using the bit
mask constants shown below.

fInX Set this byte to a non-zero value to enable XON/XOFF input flow
control.

fDTR Set this byte to a non-zero value to enable DTR input flow control.
This field is only used by control function 14; it is ignored by the
SerHShake function.

You can use the following constants as bit mask values for the errs field, to specify
which errors will cause input requests to be aborted. Because these are bit mask values,
you can sum them to specify more than one error condition.

CONST

parityErr = 16; {parity error}

hwOverrunErr = 32; {hardware overrun error}

framingErr = 64; {framing error}

You can use the following constants as bit mask values for the evts field, to specify
which status changes will cause the Serial Driver to post device driver events. Because
these are bit mask values, you can sum them to specify more than one event.

CONST

ctsEvent = 32; {change in CTS signal}

breakEvent = 128; {change in break signal}
7-22 Serial Driver Reference

C H A P T E R 7

Serial Driver

7
S

erial D
river
▲ W A R N I N G

Using device driver events is discouraged because interrupts are
disabled during the event posting process, which may cause serial data
to be lost or other events to be missed. Instead, you should use the
SerStatus function to check the value of the ctsHold or breakErr
flags in the serial status record. ▲

ASSEMBLY-LANGUAGE INFORMATION

The SerHShake function is equivalent to a Device Manager control request with a
csCode value of 10. To specify DTR flow control, use a csCode value of 14 and set the
fDTR flag to a non-zero value. You pass the flags parameter in the csParam field
(csParam[0] = flags).

RESULT CODES

SerSetBrk 7

You can use the SerSetBrk function to assert a break signal.

FUNCTION SerSetBrk (refNum: Integer): OSErr;

refNum The driver reference number of the serial output driver.

DESCRIPTION

The SerSetBrk function forces the output data line into the space state. To form a break
signal, the line must be left in this state longer than a character frame.

ASSEMBLY-LANGUAGE INFORMATION

The SerSetBrk function is equivalent to a Device Manager control request with a
csCode value of 12.

RESULT CODES

noErr 0 No error

noErr 0 No error
Serial Driver Reference 7-23

C H A P T E R 7

Serial Driver
SerClrBrk 7

You can use the SerClrBrk function to deassert the break signal.

FUNCTION SerClrBrk (refNum: Integer): OSErr;

refNum The driver reference number of the serial output driver.

DESCRIPTION

The SerClrBrk function restores the output driver to normal operation after asserting a
break signal with the SerSetBrk function.

ASSEMBLY-LANGUAGE INFORMATION

The SerClrBrk function is equivalent to a Device Manager control request with a
csCode value of 11.

RESULT CODES

SerGetBuf 7

You can use the SerGetBuf function to determine the number of characters available in
the driver’s input buffer.

FUNCTION SerGetBuf (refNum: Integer; VAR count: LongInt): OSErr;

refNum The driver reference number of the serial input driver.

count On exit, the number of characters in the input buffer.

DESCRIPTION

The SerGetBuf function returns, in the count parameter, the number of characters
present in the input buffer.

ASSEMBLY-LANGUAGE INFORMATION

The SerGetBuf function is equivalent to a Device Manager status request with a
csCode value of 2. The count value is returned in csParam as a long word
(csParam[0] = count).

RESULT CODES

noErr 0 No error

noErr 0 No error
7-24 Serial Driver Reference

C H A P T E R 7

Serial Driver

7
S

erial D
river
SerStatus 7

You can use the SerStatus function to obtain status information from the Serial Driver.

FUNCTION SerStatus (refNum: Integer; VAR serSta: SerStaRec):OSErr;

refNum The driver reference number of the serial input or output driver.

serSta A pointer to a serial status record.

DESCRIPTION

The SerStatus function returns status information for the specified input or output
driver. This information includes error conditions, flow control status, and whether there
are read or write operations pending. Because the serial status record is shared, the
SerStatus function returns the same information whether you reference the input or
output driver. The serial status record is defined by the SerStaRec data type:

TYPE SerStaRec =

PACKED RECORD

cumErrs: Byte; {cumulative errors}

xOffSent: Byte; {XOFF sent as input flow control}

rdPend: Byte; {read pending flag}

wrPend: Byte; {write pending flag}

ctsHold: Byte; {CTS flow control hold flag}

xOffHold: Byte; {XOFF flow control hold flag}

END;

Field descriptions

cumErrs A bit field that indicates what errors have occurred since the last
time the SerStatus function was called. You can use the bit mask
constants shown below to test for particular errors. Errors detected
include software overrun, break asserted, parity error, hardware
overrun, and framing error.

xOffSent A bit field that indicates if the driver has initiated input flow control
by sending an XOFF character or negating the DTR signal. You can
use the bit mask constants shown below to test for these conditions.

rdPend This field contains a non-zero value if the driver has a read
operation pending.

wrPend This field contains a non-zero value if the driver has a write
operation pending.

ctsHold This field contains a non-zero value if the driver has suspended
output due to the CTS handshake signal.

xOffHold This field contains a non-zero value if the driver has suspended
output due to receiving an XOFF character.
Serial Driver Reference 7-25

C H A P T E R 7

Serial Driver
You can use the following constants as bit mask values for the cumErrs field, to detect
which errors have occurred since the last time the SerStatus function was called.
Because these are bit mask values, you can sum them to specify more than one error
condition. The remaining bit values in the cumErrs field are reserved.

CONST

swOverrunErr = 1; {software overrun error}

breakErr = 8; {break signal asserted}

parityErr = 16; {parity error}

hwOverrunErr = 32; {hardware overrun error}

framingErr = 64; {framing error}

You can use the following constants as bit mask values to test the xOffSent field for the
specified conditions. The remaining bit values in the xOffSent field are reserved.

CONST

dtrNegated = 64; {DTR signal was negated}

xOffWasSent = 128; {XOFF character was sent}

IMPORTANT

Calling SerStatus resets cumErrs and other fields of the serial status
record, so repeated calls to SerStatus may not return identical
results. ▲

ASSEMBLY-LANGUAGE INFORMATION

The SerStatus function is equivalent to a Device Manager status request with a
csCode value of 8; the serial status record is returned in the first 6 bytes of the csParam
field (csParam[0] = SerStaRec).

You can execute the status request immediately, bypassing the I/O queue, by setting
bit 9 of the trap word. You can set this bit by appending the word IMMED as the second
argument to the trap macro. For example:

_Status, IMMED

This technique is recommended when you need to determine the current status of a port
before issuing a subsequent I/O request.

RESULT CODES

noErr 0 No error
7-26 Serial Driver Reference

C H A P T E R 7

Serial Driver

7
S

erial D
river
Low-Level Routines 7
This section describes the low-level Serial Driver routines that you can call using the
Device Manager control and status functions. These calls should be made to the output
device driver—they affect the input driver as well.

Serial Driver Version[status code 9] 7

csCode = 9 csParam = word

This status routine returns the version number of the Serial Driver in the csParam field.
The version number is an integer value.

Set Baud Rate[control code 13] 7

csCode = 13 csParam = word

This control routine provides an additional method (besides the SerReset function) of
setting the baud rate. You specify the baud rate value as an integer in the csParam field
(for example, 9600). The Serial Driver attempts to set the serial port to the specified baud
rate, or the closest baud rate supported by the hardware. The actual baud rate selected is
returned in the csParam field.

Set Handshaking Options[control code 14] 7

csCode = 14 csParam = SerShk record

This control routine is identical to the SerHShake function (control code 10) with the
additional specification of the fDTR flag in the eighth byte of the SerShk record.
You enable DTR input flow control by setting this flag to a non-zero value. See the
description of the SerHShake function on page 7-21 for information about the other
fields of the SerShk record.

Set Miscellaneous Options[control code 16] 7

csCode = 16 csParam = byte

This control routine sets miscellaneous control options. Bits 0-5 are reserved and should
be set to 0 for compatibility with future options. Bit 6 enables external clocking through
the CTS handshake line (the HSKi signal on pin 2 of the serial port). Set bit 6 to 1 to allow
an external device to drive the serial data clock. Set bit 6 to 0 to restore internal clocking.
Bit 7 controls the state of the DTR signal when the driver is closed. When bit 7 is 0 (the
default) the DTR signal is automatically negated when the driver closes. Set bit 7 to 1 if
you want the DTR signal to be left unchanged when the driver is closed. This can be
used to prevent a modem from hanging up or a printer from going offline when the
driver closes.

Assert DTR[control code 17] 7

csCode = 17

This control routine asserts the DTR signal.
Serial Driver Reference 7-27

C H A P T E R 7

Serial Driver
Negate DTR[control code 18] 7

csCode = 18

This control routine negates the DTR signal.

Simple Parity Error Replacement[control code 19] 7

csCode = 19 csParam = char

This control routine enables simple parity error replacement, in which incoming
characters with parity errors are replaced by the ASCII character specified in csParam
(for example, $FF). If a valid incoming character matches the replacement character, the
most significant bit of the character is cleared. Therefore, if it is possible for your
replacement character to appear in the data stream, you should use control code 20
instead. Set csParam to 0 to disable parity error replacement.

Extended Parity Error Replacement[control code 20] 7

csCode = 20 csParam[0] = char csParam[1] = char

This control routine enables extended parity error replacement. Incoming characters
with parity errors are replaced by the ASCII character specified in csParam[0]. The
difference between this routine and the simple version (control code 19) is that if a valid
incoming character matches the parity replacement character, it is replaced by the
alternate character specified in csParam[1]. Set csParam[0] to 0 to disable parity
error replacement.

Note
The ASCII NUL character ($00) can be used as the alternate character
but not as the parity replacement. ◆

Set XOFF State[control code 21] 7

csCode = 21

This control routine unconditionally sets the xOffHold flag, which is equivalent to
receiving an XOFF character. If software handshaking is enabled, data transmission is
halted until an XON character is received, or until you clear the XOFF state using control
code 22.

Clear XOFF State[control code 22] 7

csCode = 22

This control routine unconditionally clears the xOffHold flag, which is equivalent
to receiving an XON character. If software handshaking is enabled, data transmission
is resumed.
7-28 Serial Driver Reference

C H A P T E R 7

Serial Driver

7
S

erial D
river
Send XON Conditional[control code 23] 7

csCode = 23

This control routine sends an XON character for input flow control if the last input flow
control character sent was XOFF.

Send XON Unconditional[control code 24] 7

csCode = 24

This control routine unconditionally sends an XON character for input flow control,
regardless of the current state of input flow control.

Send XOFF Conditional[control code 25] 7

csCode = 25

This control routine sends an XOFF character for input flow control if the last input flow
control character sent was XON.

Send XOFF Unconditional[control code 26] 7

csCode = 26

This control routine unconditionally sends an XOFF character for input flow control,
regardless of the current state of input flow control.

Serial Hardware Reset[control code 27] 7

csCode = 27

This control routine resets the serial port hardware for a channel. Because this routine
may leave the serial port in an unknown state, you must call the SerReset function
before you use the port.
Serial Driver Reference 7-29

C H A P T E R 7

Serial Driver
Summary of the Serial Driver 7

Pascal Summary 7

Constants 7

CONST

{values for the transmission rate in the SerConfig parameter}

baud300 = 380; {300 baud}

baud600 = 189; {600 baud}

baud1200 = 94; {1200 baud}

baud1800 = 62; {1800 baud}

baud2400 = 46; {2400 baud}

baud3600 = 30; {3600 baud}

baud4800 = 22; {4800 baud}

baud7200 = 14; {7200 baud}

baud9600 = 10; {9600 baud}

baud14400 = 6; {14400 baud}

baud19200 = 4; {19200 baud}

baud28800 = 2; {28800 baud}

baud38400 = 1; {38400 baud}

baud57600 = 0; {57600 baud}

{values for the number of stop bits in the SerConfig parameter}

stop10 = 16384; {1 stop bit}

stop15 = -32768; {1.5 stop bits}

stop20 = -16384; {2 stop bits}

{values for the parity in the SerConfig parameter}

noParity = 0; {no parity}

oddParity = 4096; {odd parity}

evenParity = 12288; {even parity}

{values for the number of data bits in the SerConfig parameter}

data5 = 0; {5 data bits}

data6 = 2048; {6 data bits}

data7 = 1024; {7 data bits}

data8 = 3072; {8 data bits}
7-30 Summary of the Serial Driver

C H A P T E R 7

Serial Driver

7
S

erial D
river
{bit mask values to test for indicated errors}

swOverrunErr = 1; {software overrun error}

breakErr = 8; {break occurred}

parityErr = 16; {parity error}

hwOverrunErr = 32; {hardware overrun error}

framingErr = 64; {framing error}

{bit mask values for the evts field in the SerShk record}

ctsEvent = 32; {CTS change}

breakEvent = 128; {break status change}

{bit mask value for the xOffHold field of the SerStaRec record}

dtrNegated = 64; {DTR signal was negated}

xOffWasSent = 128; {XOFF character was sent}

Data Types 7

TYPE

SerShk =

PACKED RECORD

fXOn: Byte; {XON/XOFF output flow control flag}

fCTS: Byte; {CTS output flow control flag}

xOn: Char; {XON character}

xOff: Char; {XOFF character}

errs: Byte; {mask for errors that will terminate input}

evts: Byte; {mask for status changes that cause events}

fInX: Byte; {XON/XOFF input flow control flag}

fDTR: Byte; {DTR input flow control flag (csCode 14 only)}

END;

SerStaRec =

PACKED RECORD

cumErrs: Byte; {cumulative errors}

xOffSent: Byte; {XOFF sent as input flow control}

rdPend: Byte; {read pending flag}

wrPend: Byte; {write pending flag}

ctsHold: Byte; {CTS flow control hold flag}

xOffHold: Byte; {XOFF flow control hold flag}

END;
Summary of the Serial Driver 7-31

C H A P T E R 7

Serial Driver
Routines 7

FUNCTION SerReset (refNum: Integer; serConfig: Integer): OSErr;

FUNCTION SerSetBuf (refNum: Integer; serBPtr: Ptr;
serBLen: Integer): OSErr;

FUNCTION SerHShake (refNum: Integer; flags: SerShk): OSErr;

FUNCTION SerSetBrk (refNum: Integer): OSErr;

FUNCTION SerClrBrk (refNum: Integer): OSErr;

FUNCTION SerGetBuf (refNum: Integer; VAR count: LongInt): OSErr;

FUNCTION SerStatus (refNum: Integer; VAR serSta: SerStaRec): OSErr;

C Summary 7

Constants 7

enum {

/*values for the transmission rate in the SerConfig parameter*/

baud300 = 380, /*300 baud*/

baud600 = 189, /*600 baud*/

baud1200 = 94, /*1200 baud*/

baud1800 = 62, /*1800 baud*/

baud2400 = 46, /*2400 baud*/

baud3600 = 30, /*3600 baud*/

baud4800 = 22, /*4800 baud*/

baud7200 = 14, /*7200 baud*/

baud9600 = 10, /*9600 baud*/

baud14400 = 6, /*14400 baud*/

baud19200 = 4, /*19200 baud*/

baud28800 = 2, /*28800 baud*/

baud38400 = 1, /*38400 baud*/

baud57600 = 0, /*57600 baud*/

/*values for the number of stop bits in the SerConfig parameter*/

stop10 = 16384, /*1 stop bit*/

stop15 = -32768, /*1.5 stop bits*/

stop20 = -16384, /*2 stop bits*/

/*values for the parity in the SerConfig parameter*/

noParity = 0, /*no parity*/

oddParity = 4096, /*odd parity*/

evenParity = 12288, /*even parity*/
7-32 Summary of the Serial Driver

C H A P T E R 7

Serial Driver

7
S

erial D
river
/*values for the number of data bits in the SerConfig parameter*/

data5 = 0, /*5 data bits*/

data6 = 2048, /*6 data bits*/

data7 = 1024, /*7 data bits*/

data8 = 3072, /*8 data bits*/

/*bit mask values to test for indicated errors*/

swOverrunErr = 1, /*software overrun error*/

breakErr = 8, /*break occurred*/

parityErr = 16, /*parity error*/

hwOverrunErr = 32, /*hardware overrun error*/

framingErr = 64, /*framing error*/

/*bit mask values for the evts field in the SerShk record*/

ctsEvent = 32, /*CTS change*/

breakEvent = 128, /*break status change*/

/*bit mask value for the xOffHold field of the SerStaRec record*/

dtrNegated = 64, /*DTR signal was negated*/

xOffWasSent = 128 /*XOFF character was sent*/

};

Data Types 7

struct SerShk {

char fXOn; /*XON/XOFF output flow control flag*/

char fCTS; /*CTS output flow control flag*/

unsigned char xOn; /*XON character*/

unsigned char xOff; /*XOFF character*/

char errs; /*mask for errors that will terminate input*/

char evts; /*mask for status changes that cause events*/

char fInX; /*XON/XOFF input flow control flag*/

char fDTR; /*DTR input flow control flag (csCode 14 only)*/

};

typedef struct SerShk SerShk;

struct SerStaRec {

char cumErrs; /*cumulative errors*/

char xOffSent; /*XOFF sent as input flow control*/

char rdPend; /*read pending flag*/

char wrPend; /*write pending flag*/

char ctsHold; /*CTS flow control hold flag*/
Summary of the Serial Driver 7-33

C H A P T E R 7

Serial Driver
char xOffHold; /*XOFF flow control hold flag*/

};

typedef struct SerStaRec SerStaRec;

Functions 7

pascal OSErr SerReset (short refNum, short serConfig);

pascal OSErr SerSetBuf (short refNum, Ptr serBPtr, short serBLen);

pascal OSErr SerHShake (short refNum, const SerShk *flags);

pascal OSErr SerSetBrk (short refNum);

pascal OSErr SerClrBrk (short refNum);

pascal OSErr SerGetBuf (short refNum, long *count);

pascal OSErr SerStatus (short refNum, SerStaRec *serSta);

Assembly-Language Summary 7

Data Structures 7

Serial Handshake Record

Serial Status Record

0 fXOn byte XON/XOFF output flow control flag
1 fCTS byte CTS output flow control flag
2 xOn byte XOn character
3 xOff byte XOff character
4 errs byte mask for errors that will terminate input
5 evts byte mask for status changes that cause events
6 fInX byte XON/XOFF input flow control flag
7 fDTR byte DTR input flow control flag (csCode 14 only)

0 cumErrs byte cumulative errors
1 xOffSent byte XOFF sent as input flow control
2 rdPend byte read pending flag
3 wrPend byte write pending flag
4 ctsHold byte CTS flow control hold flag
5 xOffHold byte XOFF flow control hold flag
7-34 Summary of the Serial Driver

C H A P T E R 7

Serial Driver

7
S

erial D
river
Device Manager Interface 7

Status Routines

Control Routines

Result Codes 7

Code Parameters Function

2 long Return the number of bytes currently in the input data buffer (SerGetBuf).

8 6 bytes Return status information (SerStatus).

9 word Return driver version number.

Code Parameters Function

8 word Set data rate and character frame (SerReset).

9 long, word Specify either a new input buffer or the default buffer (SerSetBuf).

10 8 bytes Set software handshaking and other control information (SerHShake).

11 Deassert the break signal (SerClrBrk).

12 Assert the break signal (SerSetBrk).

13 word Set baud rate.

14 8 bytes Equivalent to control code 10, plus DTR handshaking.

16 byte Set miscellaneous control options.

17 Assert DTR.

18 Negate DTR.

19 byte Simple parity error replacement.

20 2 bytes Extended parity error replacement.

21 Set XOFF state.

22 Clear XOFF state.

23 Send XON for input flow control if XOFF was sent last.

24 Unconditionally send XON for input flow control.

25 Send XOFF for input flow control if XON was sent last.

26 Unconditionally send XOFF for input flow control.

27 Reset serial hardware channel.

noErr 0 No error
openErr –23 Unable to open device driver
portInUse –97 Port is in use
portNotCf –98 Port is not configured
Summary of the Serial Driver 7-35

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	 ADB Manager
	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	Serial Driver
	Introduction to Serial Communication
	Asynchronous and Synchronous Communication
	Duplex Communication
	Flow Control Methods
	Asynchronous Serial Communication Protocol
	The RS-422 Serial Interface

	About the Serial Driver
	Macintosh Serial Architecture
	Serial Communication Errors

	Using the Serial Driver
	Opening the Serial Driver
	Specifying an Alternate Input Buffer
	Setting the Handshaking Options
	Setting the Baud Rate and Data Format
	Reading and Writing to the Serial Ports
	Synchronous I/O Requests
	Asynchronous I/O Requests

	Closing the Serial Driver
	Synchronous Clocking

	Serial Driver Reference
	Serial Driver Routines
	Low-Level Routines

	Summary of the Serial Driver
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Functions

	Assembly-Language Summary
	Data Structures
	Device Manager Interface

	Result Codes

	 Glossary
	 Index
	 Colophon

