

C H A P T E R 3

3

C
atalog S

ervice A
ccess M

odules

Catalog Service Access Modules 3

This chapter describes how to write a catalog service access module (CSAM), a device
driver that gives PowerTalk users access to external catalogs. Read this chapter if you
want to integrate an external catalog into an AOCE system. You do not need to read this
chapter if you simply want to use the Standard Catalog Package or the Catalog Manager
to obtain catalog services.

To write a CSAM, you must already be familiar with the Catalog Manager application
program interface (API). It is essential that you read the chapters “AOCE Utilities” and
“Catalog Manager” in Inside Macintosh: AOCE Application Interfaces before reading this
chapter. This chapter assumes that you understand the Catalog Manager’s functions and
data types.

Because a CSAM is implemented as a Macintosh device driver, you also need to be
familiar with the Device Manager. For information about the Device Manager and
writing a device driver, see Inside Macintosh: Devices.

To allow the user to add and remove your CSAM and its catalogs from an AOCE system,
you need to provide an AOCE setup template. The chapter “AOCE Templates” in Inside
Macintosh: AOCE Application Interfaces describes how to write an AOCE template. The
chapter “Service Access Module Setup” in this book describes the setup template
specifically, including how the setup template adds and removes a CSAM and its
catalogs from the Setup catalog.

This chapter provides a brief introduction to CSAMs. Then it describes

■ the components of a CSAM

■ a CSAM’s driver resource, including the Open and Close driver subroutines

■ a CSAM’s catalog service and parse functions, which respond to requests from clients
of the Catalog Manager

■ the method of indicating the features a catalog can support

■ the impact of various catalog features on the user’s experience with a catalog

Introduction to Catalog Service Access Modules 3

The Catalog Manager provides a consistent interface for applications that use AOCE
catalog services, regardless of whether the catalog is external to or part of AOCE
software. Apple PowerShare catalogs and personal catalogs are part of AOCE software.
Any other type of catalog is referred to as an external catalog. An external catalog is
made available within an AOCE system by means of a CSAM, which supports the
Catalog Manager API.

A CSAM provides these basic functions:

■ accepting Catalog Manager requests

■ translating the requests into a form that its external catalog understands

■ processing the requests, including activities such as obtaining information from the
external catalog and adding information to the external catalog
Introduction to Catalog Service Access Modules 3-3

C H A P T E R 3

Catalog Service Access Modules

■ translating information for the Catalog Manager client into AOCE data formats such
as records and attributes

■ returning the information to the Catalog Manager

AOCE data formats are described in detail in the chapter “AOCE Utilities.” The Catalog
Manager API is described in the chapter “Catalog Manager.” Both chapters are in Inside
Macintosh: AOCE Application Interfaces.

A CSAM is not invoked directly by an application but indirectly through the Catalog
Manager. The CSAM hides any underlying differences in how data is accessed and
stored in its external catalog. For example, suppose an application wants to add a record
to a catalog. The application calls the DirAddRecord function. If the target catalog is an
external catalog, the Catalog Manager passes the request to the CSAM that supports that
catalog. The CSAM then adds the record to its catalog and provides the creation ID of the
new record. Thus, a Catalog Manager client can interact with all catalogs in the same
way and can use standard AOCE data types to manipulate data. Figure 3-1 shows the
relationship of an application, the Catalog Manager, a CSAM, and an external catalog.
Although the figure shows a single external catalog, a CSAM can actually support any
number of catalogs. The application and the Catalog Manager communicate through the
Catalog Manager API. The Catalog Manager and the CSAM communicate through the
CSAM’s catalog service and parse functions, which are introduced in the next section.

Figure 3-1 Relationship of an application, the Catalog Manager, and a CSAM

PowerShare catalog Personal catalog

Catalog

Manager API

CSAM

catalog service

and parse

routines

CSAM

External catalog

Catalog Manager

Application
3-4 Introduction to Catalog Service Access Modules

C H A P T E R 3

Catalog Service Access Modules

3

C
atalog S

ervice A
ccess M

odules

Every CSAM should support Catalog Manager requests to

■ examine the contents of a dNode by real-time browsing, a search mechanism, or both

■ enumerate the attribute types within a record

■ look up attribute values

■ detect changes within a dNode or a record

■ get access controls for a dNode, record, or attribute type

A CSAM resides on a user’s Macintosh computer and provides personal access to an
external catalog. The catalog itself can exist anywhere—on the user’s Macintosh, on a
network server, or at a remote site accessed by a modem connection.

You can package a CSAM as a stand-alone driver file or as part of an AOCE messaging
service access module. A messaging service access module (MSAM) translates and
transfers messages between an AOCE messaging system and another messaging system.
If you choose the stand-alone option, you provide a file of type 'dsam' that contains the
resources described in the section “Writing a Driver Resource for a CSAM” beginning on
page 3-7. The file must also contain the resources that constitute your setup template. If
you package your CSAM with a messaging service access module, include your CSAM,
its setup template, and the MSAM in a file of type 'csam' (for “combined SAM”).
MSAMs are documented in the chapter “Messaging Service Access Modules” in this
book. The setup template resources are described in the chapter “Service Access Module
Setup” in this book.

Note
For historical reasons, the string dsam (or DSAM) rather than csam
(or CSAM) is often part of a function name, field name, or data type name
referring to a CSAM. ◆

Components of a CSAM 3

A CSAM consists of two main components: a driver resource that includes at least your
driver’s Open and Close subroutines, and the collection of functions that implement
Catalog Manager functions. In addition, you must provide an AOCE setup template that
allows the user to add, remove, and configure the CSAM and its catalogs. It can be
helpful to think of the template as the third component of a CSAM product.

The setup template consists of a set of associated resources that reside in the resource
fork of the CSAM file. A template code resource calls the Catalog Manager functions that
add, remove, and configure the CSAM and its catalogs. The setup template is described
in the chapter “Service Access Module Setup” in this book. Figure 3-2 shows the calling
relationships between an application, a setup template, the Catalog Manager, the Device
Manager, and a CSAM.
Components of a CSAM 3-5

C H A P T E R 3

Catalog Service Access Modules

Figure 3-2 Calling relationships

Requests for catalog services tend to be real-time in nature. Because Macintosh device
drivers lend themselves to implementing real-time responses, you implement a CSAM
as a Macintosh device driver.

A CSAM has two interfaces to Macintosh system software—one through the Device
Manager and the other through the Catalog Manager. For the Device Manager interface,
you must provide Open and Close driver subroutines. The Catalog Manager calls the
Device Manager to open and close your driver. The Device Manager, in turn, calls your
driver’s Open and Close subroutines. You may provide the Prime, Status, and Control
driver subroutines in accordance with the needs of your driver, but the Catalog Manager
does not call these subroutines to communicate with your driver. The Open and Close
driver subroutines are described in the section “Writing a Driver Resource for a CSAM”
beginning on page 3-7. The Prime, Status, and Control driver subroutines are described
in Inside Macintosh: Devices.

For the Catalog Manager interface, you provide a catalog service function and a parse
function. When an application calls a Catalog Manager function, the Catalog Manager
calls the CSAM’s catalog service or parse function and passes it the application’s catalog
service request. A catalog service function accepts requests for catalog services from the
Catalog Manager and calls CSAM-defined routines to implement those services. A parse
function accepts requests to parse data about the CSAM’s catalogs and their contents
and calls CSAM-defined routines to implement those services.

Figure 3-3 illustrates who calls your driver subroutines and your catalog service and
parse functions.

Catalog Manager

Setup Template

CSAM

Device Manager

Application
3-6 Components of a CSAM

C H A P T E R 3

Catalog Service Access Modules

3

C
atalog S

ervice A
ccess M

odules

Figure 3-3 Who calls the CSAM driver subroutines and the catalog service and
parse functions

The sections that follow describe the CSAM’s driver resource and the CSAM catalog
service and parse functions.

Writing a Driver Resource for a CSAM 3

This section provides information about the required resources that constitute your
CSAM’s device driver.

The driver resource that you must provide in your CSAM, like all resources, has a type, a
resource ID, a resource name, and resource attributes. The resource type is 'DRVR'. You
may set your 'DRVR' resource ID to any valid value. The Catalog Manager properly
installs your driver. The 'DRVR' resource name must be the same as the name of your
driver. This point is illustrated later in this section.

For your driver to work properly with the Catalog Manager, you must configure your
'DRVR' resource as follows:

■ Set the resSysHeap resource attribute to guarantee that your driver is loaded into
the system heap.

■ Set the resLocked resource attribute so that your driver is always available and
nonrelocatable in memory.

You may set other attributes needed for your CSAM. See Inside Macintosh: Devices for
more detailed information about the 'DRVR' resource. See the chapter “Resource Manager”
in Inside Macintosh: More Macintosh Toolbox for information on resource attributes.

Device Manager

Catalog Manager

CSAM

Open subroutine

Close subroutine

MyCSAMCatalogProc

MyCSAMParseProc

OpenDriver

CloseDriver
Writing a Driver Resource for a CSAM 3-7

C H A P T E R 3

Catalog Service Access Modules

A resource of type 'DRVR' contains header information and the driver’s subroutines.
The header information specifies certain settings for the driver and the offsets of the
Open, Close, Status, Prime, and Control subroutines. The book Inside Macintosh: Devices
provides information on setting up the header information. The header is followed by
the driver subroutines themselves. Listing 3-1 illustrates the header of a sample CSAM’s
driver resource in Rez format.

Listing 3-1 A sample CSAM’s driver resource header

#define DriverID 0x0b // unused, placeholder value

resource 'DRVR' (DriverID, ".SampleCSAM", sysheap, locked)

{

/* driver flags */

needLock, dontNeedTime, dontNeedGoodbye, noStatusEnable,

ctlEnable, noWriteEnable, noReadEnable,

0, /* driver delay in ticks */

0, /* desk accessory mask */

0, /* desk accessory menu */

".SampleCSAM", /* driver name */

/* the driver code follows the header fields */

};

Your Open subroutine handles initialization functions. It must do the following:

■ Allocate and initialize any memory required. You need to allocate memory now
because you cannot do so when the Catalog Manager calls your catalog service or
parse function with an asynchronous request. Your CSAM must allocate its memory
in the system heap and store the handle to the memory in the dCtlstorage field of
the device control entry (DCtlEntry) structure.

■ Call the DirInstantiateDSAM function to provide the Catalog Manager with
pointers to your catalog service and parse functions. You can also provide a pointer to
your private data, which the Catalog Manager passes back to you when it calls your
catalog service and parse functions.

■ Do any other preparation required to make the CSAM ready to receive and process
service requests.

Your Open subroutine is always called synchronously.

In your Close subroutine, you should release any memory that you allocated in your
Open subroutine. The Close subroutine is always called synchronously.
3-8 Writing a Driver Resource for a CSAM

C H A P T E R 3

Catalog Service Access Modules

3

C
atalog S

ervice A
ccess M

odules

Depending on the needs of your driver, your Status, Prime, and Control subroutines may
perform some work or simply return if called.

Note
The Device Manager interface requires you to use some assembly
language. You can write your driver subroutines in a high-level
language if you provide a dispatching mechanism, written in assembly
language, between the Device Manager and the subroutines. See Inside
Macintosh: Devices for instructions on writing subroutines in a high-level
language and for detailed descriptions of all of the driver subroutines. ◆

When writing a device driver, you ordinarily write software that installs the driver in
the Device Manager’s unit table and opens the driver. For a CSAM, you do not need
to provide software to install and open your driver directly. Instead, an AOCE setup
template that you provide calls the DirAddDSAM function. This causes the Catalog
Manager to install and open your driver. (Setup templates are discussed in the chapter
“Service Access Module Setup” in this book.)

In addition to the 'DRVR' resource, you must also provide a resource of type 'STR '
containing a single string that is both the name of your driver and the name of your
'DRVR' resource. This string resource must have the resource name DashName. If you
use another name for the string resource, the Catalog Manager will not be able to install
your driver. Listing 3-2 illustrates the string resource. The name contained in this string
resource must be the same as the name of the 'DRVR' resource.

Listing 3-2 A CSAM’s driver name string resource

/* The Driver's name must be in the resource named DashName." */

 resource 'STR ' (128, "DashName", purgeable) {

".SampleCSAM"

};

Listing 3-1, Listing 3-2, and Figure 3-4 illustrate the following example. A file named
My CSAM File contains a CSAM. The filename can be any string and is editable by
a user. The file contains a 'STR ' resource named DashName that contains the
string .SampleCSAM. The file also contains a 'DRVR' resource whose resource name
is .SampleCSAM. The driver itself is also named .SampleCSAM. The content of the
string resource, the name of the 'DRVR' resource, and the name of the driver are all
the same.

Note that a driver name should always start with a period, followed by printable
uppercase or lowercase characters, not to exceed a total of 31 characters.
Writing a Driver Resource for a CSAM 3-9

C H A P T E R 3

Catalog Service Access Modules
Figure 3-4 Relationship of 'DRVR' and 'STR ' resources

Responding to the Catalog Manager 3

When an application makes a request for catalog services and specifies an external
catalog for which your CSAM is responsible, the Catalog Manager calls your CSAM’s
catalog service or parse function. The catalog service and parse functions are essentially
dispatching functions that receive all Catalog Manager requests. They in turn call other
functions that you provide to service the request.

A CSAM does not need to support every function in the Catalog Manager API.
The Catalog Manager itself handles calls to the DirGetDirectoryInfo,
DirGetExtendedDirectoriesInfo, DirEnumerateDirectoriesGet, and
DirEnumerateDirectoriesParse functions and, therefore, does not pass these
requests to a CSAM. Other Catalog Manager functions that are not passed to a
CSAM include

■ DirAddADAPDirectory

■ DirNetSearchADAPDirectoriesGet

■ DirNetSearchADAPDirectoriesParse

■ DirFindADAPDirectoryByNetSearch

■ DirCreatePersonalDirectory

■ DirOpenPersonalDirectory

■ DirClosePersonalDirectory

■ DirMakePersonalDirectoryRLI

■ DirGetOCESetupRefNum

Filename = My CSAM file

File type = 'dsam'

.SampleCSAM

.SampleCSAM

(followed by the driver code)

Resource type = 'STR '

Resource name = DashName

Resource type = 'DRVR'

Resource name = .SampleCSAM
3-10 Responding to the Catalog Manager

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
You must provide a dispatch function. You can provide both a catalog service function
and a parse function for this purpose. However, because Catalog Manager request codes
for catalog service and parse requests do not overlap, you can process all Catalog
Manager requests through a single dispatch function. To do this, specify the same
address for your catalog service function and your parse function when you call the
DirInstantiateDSAM function.

The Catalog Service Function 3
The Catalog Manager calls your catalog service function when an application calls a
Catalog Manager function (other than one of the parse functions) and specifies a catalog
that you support. Your catalog service function must determine the type of request that
the application is making and then service that request.

The catalog service function has the following declaration:

pascal OSErr MyDSAMDirProc (Ptr dsamData,

DirParamBlockPtr paramBlock,

Boolean async);

The dsamData parameter contains the private value that you provided to the
DirInstantiateDSAM function in the dsamData field of that function’s parameter
block. You define this value for your own use. Typically, it is a pointer to your private
data area. The paramBlock parameter contains a pointer to the DirParamBlock
parameter block that the application provided to the Catalog Manager when the
application made the service request. The async parameter is a Boolean value that
specifies if the request must be processed synchronously or asynchronously. If this
parameter is true, you must process the request asynchronously; otherwise, you
process the request synchronously.

You determine the type of request by examining the reqCode field of the
DirParamBlock parameter block. Requests for catalog services map one-to-one to
functions in the Catalog Manager API. The method by which you service the request (that
is, implement the Catalog Manager function) is up to you. See the section “Data Types
and Constants” beginning on page 3-42 for a complete list of request codes for Catalog
Manager requests. See the function descriptions in the chapter “Catalog Manager” in
Inside Macintosh: AOCE Application Interfaces for information on the type of service each
function performs, the behavior of the function, and the information it returns.

When an application calls a Catalog Manager function synchronously, the Catalog
Manager passes the request to your CSAM within the calling application’s context.
Therefore, the CSAM can allocate, move, or purge memory and can call any function.
The CSAM must process a synchronous request immediately. (See Inside Macintosh:
Processes for a discussion of application context.)

When an application calls a Catalog Manager function asynchronously, the Catalog
Manager passes the request to your CSAM at interrupt time. You cannot allocate, move,
or purge memory at interrupt time, nor can you call a function that allocates, moves, or
purges memory. If you can service the asynchronous request immediately—that is, if you
Responding to the Catalog Manager 3-11

C H A P T E R 3

Catalog Service Access Modules
can service the request without performing tasks that are likely to consume a relatively
large amount of time, such as an I/O operation—do so. Otherwise, your catalog service
function should place the request in a private queue that it maintains and return control
to the Catalog Manager with a result code of noErr. The Catalog Manager will already
have set the ioResult field of the DirParamBlock parameter block to 1 before passing
the asynchronous request to your catalog service function. As your function receives
time to execute, service the request.

The CSAM can defer processing an asynchronous request until it is convenient to
complete the request. It can install a VBL task, a Time Manager task, a Deferred Task
Manager task, or a Notification Manager task to ensure that it receives system time
at some point in the future. See Inside Macintosh: Processes for more information on
these topics.

Note
When you have insufficient memory to service an asynchronous request,
you should return an error. However, before returning, you can attempt
to acquire additional memory for future requests. Set the dNeedTime
flag in the dCtlflags field in your driver’s DCtlEntry structure.
Later, after a process calls the SystemTask or WaitNextEvent
function, the Device Manager calls your Control subroutine with the
accRun control code. At this time, you can safely allocate memory.

Do not queue an asynchronous request for which you have insufficient
memory in the hope that you can acquire the memory later and
successfully complete the request. This may result in a system freeze
condition. ◆

Your catalog service function returns both a function result and a value in the ioResult
field of the DirParamBlock parameter block to indicate the outcome of its handling of
the request. For each type of service request (function) that you process, you should
return only those result codes that are defined by the Catalog Manager for the function.
The description of each Catalog Manager function provides the result codes that a given
function can return.

If your function was called synchronously, set the ioResult field and return the
appropriate function result code when you finish servicing the request.

If your function was called asynchronously, do the following when you finish servicing
the request: Set the ioResult field to the appropriate result code. If the application
provided a completion routine (the value of the ioCompletion field of the
DirParamBlock parameter block is not nil), restore the application’s A5 register by
setting register A5 to the value of the saveA5 field of the DirParamBlock parameter
block and call the application’s completion routine; otherwise, return. When the
completion routine returns control to your catalog service function, you may service
another pending request or return.

Listing 3-3 is an example of a simple catalog service function, the DoMyDSAMDirProc
function, that determines the type of request and then calls another function to service
the request. DoMyDSAMDirProc passes the called function a pointer to the CSAM’s
global data area, myGlobalInfoPtr. This is the value the CSAM originally gave to the
3-12 Responding to the Catalog Manager

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
Catalog Manager when it called the DirInstantiateDSAM function. The Catalog
Manager passes the value back to the catalog service function to use in servicing the
request. In this example, the functions that service a particular catalog service request,
such as the DoProcessDirGetDNodeMetaInfoReqt function, set the ioResult field
of the DirParamBlock parameter block. Before returning, the DoMyDSAMDirProc
function calls the DoProcessCallCompletion function, which calls the completion
routine if the calling application specified one. See Listing 3-6 on page 3-28 for an
example of calling an application’s completion routine.

Listing 3-3 A catalog service function

pascal OSErr DoMyDSAMDirProc(

register Ptr myGlobalInfoPtr,

register DirParamBlockPtr myParamBlock,

Boolean async)

{

switch (myParamBlock->header.reqCode) { /* determine type of request */

case kDirGetDirectoryIcon:

DoProcessDirGetDirIconRequest(myGlobalInfoPtr, myParamBlock, async);

break;

case kDirGetDNodeMetaInfo:

DoProcessDirGetDNodeMetaInfoReqt(myGlobalInfoPtr, myParamBlock, async);

break;

case kDirGetRecordMetaInfo:

DoProcessDirGetRecrdMetaInfoReqt(myGlobalInfoPtr, myParamBlock, async);

break;

/* process other catalog service requests */

}

return (DoProcessCallCompletion(myParamBlock->header.ioResult, async));

}

The Catalog Manager defers calling your catalog service function until a time, sometimes
called deferred-task time, when your function will work properly if the Macintosh is using
virtual memory. See Inside Macintosh: Memory for information about memory
management issues, including virtual memory.

The Parse Function 3
The Catalog Manager calls your parse function each time an application makes a parse
request for a catalog that you support. A parse request corresponds to one of the Catalog
Manager’s parse functions, such as DirLookupParse, DirEnumerateParse, and so
forth. Your parse function must determine the type of parse request that the application
is making and then service that request.
Responding to the Catalog Manager 3-13

C H A P T E R 3

Catalog Service Access Modules
The parse function has the following declaration:

pascal OSErr MyDSAMDirParseProc (Ptr dsamData,

DirParamBlockPtr paramBlock,

Boolean async);

The information in the section “The Catalog Service Function” beginning on page 3-11
also applies to the parse function. That information is not repeated here.

When you service a Catalog Manager parse request, you return information to the
application by two methods. The first method, common to all Catalog Manager requests,
consists of storing information in the appropriate fields of the DirParamBlock
parameter block. The second, unique to parse requests, consists of passing data in
predefined units to an application’s callback routine.

It might be helpful to review here how Catalog Manager parse functions work. Each
Catalog Manager parse function is paired with an associated get function. The
DirEnumerateDirectoriesGet/DirEnumerateDirectoriesParse and
DirLookupGet/DirLookupParse functions are examples of the get/parse function
pairs in the Catalog Manager API. An application calls a Catalog Manager get function
to obtain information about catalogs, records, attribute types, and so forth. If the target
catalog is a catalog that you support, the Catalog Manager calls your CSAM’s catalog
service function to service the request. You place the requested data into a buffer
provided by the application. You can use any format you wish for the data in this buffer;
the data is therefore unreadable by the application. To retrieve the data from the buffer in
a format that it understands, the application calls the corresponding Catalog Manager
parse function, providing a pointer to a callback routine. The Catalog Manager, in turn,
calls your CSAM’s parse function. Your parse function passes data to the application
by repeatedly calling the application’s callback routine, each time passing it a defined
chunk of data. The chapter “Catalog Manager” in Inside Macintosh: AOCE Application
Interfaces provides descriptions of the application callback routines associated with
different Catalog Manager parse functions and the type of data you need to return
with each.

Note
Not all Catalog Manager get/parse function pairs work in exactly the
same way. For example, most support starting or continuing an
enumeration from a specified starting point, but some do not. Be sure to
read the Catalog Manager function descriptions carefully to make sure
your CSAM properly implements the Catalog Manager functions. ◆

You determine which Catalog Manager function the application has called by examining
the reqCode field of the DirParamBlock parameter block. Then you process the
request, just as you would when servicing a catalog service request. In addition, you call
the application’s callback routine as part of processing every parse request. You must set
the A5 register to the value of the saveA5 field of the DirParamBlock parameter block
before calling the callback routine. You typically restore your own A5 register when you
regain control.
3-14 Responding to the Catalog Manager

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
Listing 3-4 illustrates how you call an application’s callback routine. The
DoEnumerateParse function is called by another CSAM function in the course
of servicing the parse request that results from an application calling the
DirEnumerateParse function. The DoEnumerateParse function gets a pointer to
the DirEnumerateParse function’s parameter block and a pointer to the buffer
the CSAM previously filled in response to the DirEnumerateGet function. The
application’s callback routine expects to get a DirEnumSpec structure that provides
information about one record, alias, pseudonym, or child dNode in a given dNode.
Inside its main processing loop, the DoEnumerateParse function performs the
following tasks:

■ It initializes the dataLength fields inside the DirEnumSpec structure to the
maximum size RString that the CSAM supports.

■ It calls its DoFillEnumSpec function to extract data about one record, alias,
pseudonym, or child dNode from the buffer the CSAM previously filled and
stores the data in a DirEnumSpec structure. If this function does not return the
noErr result code, DoEnumerateParse exits the loop immediately, knowing it
has extracted all the data from the buffer or it has encountered an error.

■ It sets register A5 to the application’s register A5 so the callback routine can access the
application’s global variables and saves its own register A5 value.

■ It calls the application’s callback routine, passing it the value of the clientData field
from the DirEnumerateParse parameter block and the enumeration specification
just constructed.

■ It restores register A5 to its own register A5 value.

The DoEnumerateParse function continues to execute the loop until it runs out of data
to parse or encounters an error, or until the application’s callback routine returns true.

Listing 3-4 Calling an application’s callback routine

OSErr DoEnumerateParse (DirParamBlockPtr myParamBlock, Ptr buffer)

{

DirEnumSpec enumSpec;

RString64 name, type;

long oldA5, saveSeq;

Boolean done = false;

OSErr myErr = 0;

enumSpec.u.recordIdentifier.recordName = (RString*)&name;

enumSpec.u.recordIdentifier.recordType = (RString*)&type;

enumSpec.indexRatio = 0;

while(!done) {

name.dataLength = kRString64Size;

type.dataLength = kRString64Size;
Responding to the Catalog Manager 3-15

C H A P T E R 3

Catalog Service Access Modules
/* extract data from the buffer and fill enumSpec appropriately */

myErr = DoFillEnumSpec(buffer, &enumSpec);

if (myErr != noErr) /* if no more data in the buffer, exit the loop */

break;

/* save my A5 register and call application's callback routine */

oldA5 = SetA5(myParamBlock->enumerateParsePB.saveA5);

done = (*myParamBlock->enumerateParsePB.eachEnumSpec)

(myParamBlock->enumerateParsePB.clientData, &enumSpec);

/* restore my A5 register */

(void) SetA5(oldA5);

}

return myErr;

}

To avoid problems when virtual memory is in use, you must call an application’s
callback routine at deferred-task time. See the chapters “Virtual Memory Manager” in
Inside Macintosh: Memory and “Deferred Task Manager” in Inside Macintosh: Processes for
more information on the handling of virtual memory and deferred tasks.

Determining the Version of the Catalog Manager 3
To determine the version of the Catalog Manager that is available, call the Gestalt
function with the selector gestaltOCEToolboxVersion. The function returns the
version number of the Collaboration toolbox in the low-order word of the response
parameter. For example, a value of 0x0101 indicates version 1.0.1. If the Collaboration
toolbox is not present and available, the Gestalt function returns 0 for the version
number. You can use the constant gestaltOCETB for AOCE Collaboration toolbox
version 1.0.

Indicating the Features You Support 3

A catalog may not support all of the features of the Catalog Manager API. Therefore,
you must identify to the Catalog Manager the features supported by each catalog to
which your CSAM provides access. The Catalog Manager API defines the data type
DirGestalt that consists of bits that specify the features supported by a given catalog.

This section defines those bits, sometimes referred to as feature flags or capability flags. The
support or lack thereof for certain features affects the human interface of some
components of PowerTalk. The impact of various feature settings on the human interface
is discussed in “Human Interface Considerations” beginning on page 3-22.
3-16 Indicating the Features You Support

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules

The features represented by the bits can be grouped into six general categories (the
corresponding bits are listed for each category):

■ supplying identifying information
n kSupportsDNodeNumberBit

n kSupportsRecordCreationIDBit

n kSupportsAttributeCreationIDBit

n kSupportsPartialPathNamesBit

■ pattern-matching for record names in an enumeration
n kSupportsMatchAllBit

n kSupportsBeginsWithBit

n kSupportsExactMatchBit

n kSupportsEndsWithBit

n kSupportsContainsBit

■ ordering the results of an enumeration
n kSupportsOrderedEnumerationBit

n kCanSupportNameOrderBit

n kCanSupportTypeOrderBit

n kSupportSortBackwardsBit

n kSupportIndexRatioBit

■ enumerating from a specified starting point
n kSupportsEnumerationContinueBit

n kSupportsLookupContinueBit

n kSupportsEnumerateAttributeTypeContinueBit

n kSupportsEnumeratePseudonymContinueBit

■ other capabilities
n kSupportsFindRecordBit

n kSupportsAliasesBit

n kSupportsPseudonymsBit

■ reserved features
n kSupportsAuthenticationBit

n kSupportsProxiesBit

The bits in a variable of type DirGestalt are defined as follows:

enum {

kSupportsDNodeNumberBit = 0,

kSupportsRecordCreationIDBit = 1,

kSupportsAttributeCreationIDBit = 2,

kSupportsMatchAllBit = 3,

kSupportsBeginsWithBit = 4,

kSupportsExactMatchBit = 5,
Indicating the Features You Support 3-17

C H A P T E R 3

Catalog Service Access Modules
kSupportsEndsWithBit = 6,

kSupportsContainsBit = 7,

kSupportsOrderedEnumerationBit = 8,

kCanSupportNameOrderBit = 9,

kCanSupportTypeOrderBit = 10,

kSupportSortBackwardsBit = 11,

kSupportIndexRatioBit = 12,

kSupportsEnumerationContinueBit = 13,

kSupportsLookupContinueBit = 14,

kSupportsEnumerateAttributeTypeContinueBit= 15,

kSupportsEnumeratePseudonymContinueBit = 16,

kSupportsAliasesBit = 17,

kSupportsPseudonymsBit = 18,

kSupportsPartialPathNamesBit = 19,

kSupportsAuthenticationBit = 20,

kSupportsProxiesBit = 21,

kSupportsFindRecordBit = 22

};

Bit descriptions

kSupportsDNodeNumberBit
Set this bit if the catalog can identify a dNode by a dNode number.
All catalogs must be able to identify a dNode by its pathname.

kSupportsRecordCreationIDBit
Set this bit if a catalog can identify a record by a record creation ID.
If a catalog cannot identify a record by a record creation ID, you
must set any record creation IDs that you return to 0. All catalogs
must support identification of records by record name and record
type. If a catalog does not additionally support record creation IDs,
the record name and record type must be unique for each record.
Note that to assure the proper behavior of aliases, a record creation
ID must persist through system shutdown and startup.

kSupportsAttributeCreationIDBit
Set this bit if a catalog can identify an attribute value by specifying
its attribute creation ID and attribute type. All catalogs must be able
to identify an attribute value by specifying the attribute value and
attribute type.

kSupportsMatchAllBit
Set this bit if the catalog supports browsing of record names
and record types; that is, when an application calls the
DirEnumerateGet or DirFindRecordGet function, the catalog
can service a request to return information about all the records
in a dNode or catalog.
3-18 Indicating the Features You Support

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
kSupportsBeginsWithBit
Set this bit if the catalog supports a search for record names and
record types beginning with a certain string; that is, when an
application calls the DirEnumerateGet or DirFindRecordGet
function, the catalog can service a request to provide information
about all records whose record name or record type begins with the
string provided by the application.

kSupportsExactMatchBit
Set this bit if the catalog supports a search for a record based on an
exact match with the record name or record type; that is, when an
application calls the DirEnumerateGet or DirFindRecordGet
function, the catalog can service a request to provide information
about the record whose record name or record type is provided by
the application.

kSupportsEndsWithBit
Set this bit if the catalog supports a search for record names and
record types ending with a certain string; that is, when an
application calls the DirEnumerateGet or DirFindRecordGet
function, the catalog can service a request to provide information
about all records whose record name or record type ends with the
string provided by the application.

kSupportsContainsBit
Set this bit if the catalog supports a search for record names and
record types that contain a certain string; that is, when an
application calls the DirEnumerateGet or DirFindRecordGet
function, the catalog can service a request to provide information
about all records whose record name or record type contains the
string provided by the application.

kSupportsOrderedEnumerationBit
Set this bit if the catalog provides requested information in some
sorted order when an application calls the DirEnumerateGet
function. The catalog may provide the information in an
unspecified sorted order. If it returns the information sorted by
name or by type, set one or both of the two following bits.

kCanSupportNameOrderBit
Set this bit if the catalog supports the sorting by name option in the
DirEnumerateGet function. If you set this bit, you must also set
the kSupportsOrderedEnumerationBit bit.

kCanSupportTypeOrderBit
Set this bit if the catalog supports the sorting by type option in the
DirEnumerateGet function. If you set this bit, you must also set
the kSupportsOrderedEnumerationBit bit.

kSupportSortBackwardsBit
Set this bit if the catalog supports the backward sort direction
option in the DirEnumerateGet function; that is, the catalog
can provide entries preceding a certain point and sort those
entries in reverse order.
Indicating the Features You Support 3-19

C H A P T E R 3

Catalog Service Access Modules
kSupportIndexRatioBit
Set this bit if the catalog supports the index ratio feature in the
DirEnumerateGet function; that is, the catalog can provide the
approximate position of a record among all records in a dNode
as a percentile.

kSupportsEnumerationContinueBit
Set this bit if the catalog supports the continue feature in the
DirEnumerateGet function.

kSupportsLookupContinueBit
Set this bit if the catalog supports the continue feature in the
DirLookupGet function.

kSupportsEnumerateAttributeTypeContinueBit
Set this bit if the catalog supports the continue feature in the
DirEnumerateAttributeTypesGet function.

kSupportsEnumeratePseudonymContinueBit
Set this bit if the catalog supports the continue feature in the
DirEnumeratePseudonymGet function.

kSupportsAliasesBit
Set this bit if the catalog supports adding an alias with
the DirAddAlias function, deleting an alias with the
DirDeleteRecord function, and enumerating aliases with
the DirEnumerateGet function.

kSupportsPseudonymsBit
Set this bit if the catalog supports the DirAddPseudonym,
DirDeletePseudonym, and DirEnumeratePseudonymGet
functions, and if it supports enumerating pseudonyms with
the DirEnumerateGet function.

kSupportsPartialPathNamesBit
Set this bit if a catalog can specify a catalog node by using the
dNode number of an intermediate dNode and a partial pathname
starting from the intermediate dNode to the target dNode.

kSupportsAuthenticationBit
Reserved. Do not set this bit.

kSupportsProxiesBit
Reserved. Do not set this bit.

kSupportsFindRecordBit
Set this bit if the catalog supports the DirFindRecordGet and
DirFindRecordParse functions, that is, it can provide informa-
tion about records in the entire catalog, rather than in a given
dNode. The DirFindRecordGet function requests information
about records in an entire catalog; the DirEnumerateGet function
requests information about records in a particular dNode.

These bits are also described from the application’s perspective in the chapter “Catalog
Manager” in Inside Macintosh: AOCE Application Interfaces.
3-20 Indicating the Features You Support

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
You can use the following mask values to set the bits in a variable of type DirGestalt.

enum {

kSupportsDNodeNumberMask = 1L<<kSupportsDNodeNumberBit,

kSupportsRecordCreationIDMask = 1L<<kSupportsRecordCreationIDBit,

kSupportsAttributeCreationIDMask = 1L<<kSupportsAttributeCreationIDBit,

kSupportsMatchAllMask = 1L<<kSupportsMatchAllBit,

kSupportsBeginsWithMask = 1L<<kSupportsBeginsWithBit,

kSupportsExactMatchMask = 1L<<kSupportsExactMatchBit,

kSupportsEndsWithMask = 1L<<kSupportsEndsWithBit,

kSupportsContainsMask = 1L<<kSupportsContainsBit,

kSupportsOrderedEnumerationMask = 1L<<kSupportsOrderedEnumerationBit,

kCanSupportNameOrderMask = 1L<<kCanSupportNameOrderBit,

kCanSupportTypeOrderMask = 1L<<kCanSupportTypeOrderBit,

kSupportSortBackwardsMask = 1L<<kSupportSortBackwardsBit,

kSupportIndexRatioMask = 1L<<kSupportIndexRatioBit,

kSupportsEnumerationContinueMask = 1L<<kSupportsEnumerationContinueBit,

kSupportsLookupContinueMask = 1L<<kSupportsLookupContinueBit,

kSupportsEnumerateAttributeTypeContinueMask =

1L<<kSupportsEnumerateAttributeTypeContinueBit,

kSupportsEnumeratePseudonymContinueMask =

1L<<kSupportsEnumeratePseudonymContinueBit,

kSupportsAliasesMask = 1L<<kSupportsAliasesBit,

kSupportsPseudonymsMask = 1L<<kSupportsPseudonymsBit,

kSupportsPartialPathNamesMask = 1L<<kSupportsPartialPathNamesBit,

kSupportsAuthenticationMask = 1L<<kSupportsAuthenticationBit,

kSupportsProxiesMask = 1L<<kSupportsProxiesBit,

kSupportsFindRecordMask = 1L<<kSupportsFindRecordBit

};

You can define the features that a catalog supports by adding the values of the appro-
priate masks and storing the resulting value in the CSAM file, where it is available to
both your CSAM and your setup template. Listing 3-5 provides an example of specifying
the features that a given catalog supports.

Listing 3-5 Setting the feature flags for a catalog

#define kPDirFeatures(\

kSupportsRecordCreationIDMask\

+ kSupportsAttributeCreationIDMask \

+ kSupportsMatchAllMask \

+ kSupportsBeginsWithMask\

+ kSupportsExactMatchMask \

+ kSupportsOrderedEnumerationMask \
Indicating the Features You Support 3-21

C H A P T E R 3

Catalog Service Access Modules
+ kCanSupportNameOrderMask \

+ kSupportSortBackwardsMask \

+ kSupportsEnumerationContinueMask \

+ kSupportsLookupContinueMask \

)

Once you define the features for a given catalog, your setup template passes that
information to the Catalog Manager when it calls the DirAddDSAMDirectory function
to add that catalog to the Setup catalog. The Catalog Manager, in turn, provides the
feature flags for a given catalog to an application when the application calls the
DirGetDirectoryInfo function for a given catalog.

Human Interface Considerations 3

Although a CSAM itself has no human interface, the features that its catalogs can
support affect the human interface provided for those catalogs by certain components
of PowerTalk system software. The following components of PowerTalk system software
make information in a catalog available to the user:

■ the Catalogs Extension (CE)

■ the Catalog-Browsing panel in the mailer

■ the Find panel in the mailer

■ the Find in Catalog command in the Apple menu

The mailer is described in the chapter “Standard Mail Package” in Inside Macintosh:
AOCE Application Interfaces. For a description of how these elements appear to the user,
see the book PowerTalk User’s Guide.

You need to understand how the settings of certain feature flags affect the user’s ability
to make use of the information in a catalog using the PowerTalk human interface
components. This section notes the capabilities a catalog must support to provide a
particular service to the user through the PowerTalk components and the implications of
not supporting those capabilities. Here are some service guidelines:

■ For catalogs that may contain multiple records with the same name and type, support
record creation IDs.

■ For catalogs that may contain more than one attribute value of a given attribute type,
support attribute creation IDs.

■ For a browsable catalog, support “match all” and “exact match” capabilities.

■ For proper searching of a catalog, support the “exact match” and “begins with”
capabilities and either the “match all” or “find record” capability.

■ For efficient handling of large catalogs, support “ordered enumeration,” “sort
backward,” and “enumeration continue” capabilities.

■ For best scrolling with large catalogs, support index ratios.

■ For efficient attribute lookups, support the “lookup continue” capability.
3-22 Human Interface Considerations

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
This information is based on release 1 of the PowerTalk components and is subject to
change in future releases.

Supporting Records Having the Same Name and Type 3
If a catalog allows multiple records to have the same name and type, then it must
support record creation IDs. Allowing more than one record with the same name and
type without support for record creation IDs creates problems with the CE’s user
interface. For instance, if a user opens such a catalog, the CE displays the records having
the same name and type. If the user then opens one of the records, it is indeterminate
which record’s attributes are shown to the user. Likewise, if the user makes an alias to
such a record, it is not guaranteed that the alias will resolve to the correct record.

Supporting Multiple Attribute Values of the Same Type 3
If a record in a catalog can contain more than one attribute value of a given attribute
type, then you need to support attribute creation IDs for that catalog. The CE requires an
attribute creation ID. In the absence of attribute creation IDs, the only way to distinguish
among attribute values of the same type is by specifying the attribute value itself. Since
attribute values may be as large as 64 KB, this is not efficient, and the attribute creation
ID is required for performance reasons. For instance, imagine a record that contains
many attributes whose type is Lyric and whose value is the lyric of a popular song. If a
user wants to view all of the lyrics, you might run out of buffer space while responding
to the DirLookupGet function. When the CE calls DirLookupGet again to continue
the enumeration, it needs a practical way to indicate from which point to continue the
enumeration.

If your catalog is unable to support a genuine attribute creation ID that permanently and
uniquely identifies an attribute value, then it must support for each attribute value a
unique identifier that persists from the time the CSAM is opened at system startup until
system shutdown. This unique identifier is called a pseudo-persistent attribute creation
ID. The pseudo-persistent attribute creation ID for a given attribute value is not, by
definition, consistent between one session and the next.

Because the CE requires an attribute creation ID when a catalog may contain
more than one attribute value of a given attribute type, you must set the
kSupportsAttributeCreationIDBit bit, regardless of whether the type of
attribute creation ID your catalog supports is genuine or pseudo-persistent.

It is desirable that you not reuse a value for a pseudo-persistent attribute creation ID
once a session has ended. One way of achieving this is to generate values that incor-
porate a number derived from the date and time of the session with an incrementing
number. This guarantees uniqueness both within and between sessions.

Note
If a catalog’s records contain only one attribute value per attribute type,
the CE does not require you to support attribute creation IDs. ◆
Human Interface Considerations 3-23

C H A P T E R 3

Catalog Service Access Modules
Supporting Browsing and Finding 3
If the user can view all of the records in a catalog through the CE or the Catalog-Browsing
panel in the mailer, the catalog is browsable. If the user cannot view a catalog’s contents,
the catalog is nonbrowsable.

A catalog is browsable when both the kSupportsMatchAllBit and
kSupportsExactMatchBit bits are set. A catalog with the “match all” capability
supports user browsing by servicing requests to return information on all the records in
a dNode or catalog. A browsable catalog must also support an “exact match” capability
because, while browsing, a user may make an alias for any object. The “exact match”
capability is needed to resolve an alias.

Finding or searching a catalog differs from browsing in that the user specifies, in whole
or in part, a particular record name as the target of interest. The Find panel in the mailer
and the Find in Catalog command in the Apple menu do not search a catalog unless the
following bits are set:

■ either the kSupportsMatchAllBit or the kSupportsFindRecordBit bit

■ the kSupportsExactMatchBit bit

■ the kSupportsBeginsWithBit bit

■ the kSupportsEnumerationContinue bit

Supporting Large Catalogs 3
The CE and the Catalog-Browsing panel in the mailer attempt to achieve efficiencies in
memory requirements and response time when dealing with large catalogs containing
many records. This behavior is called large-catalog mode.

The CE and the Catalog-Browsing panel in the mailer can operate in large-catalog mode
only if the catalog supports the following capabilities (the relevant bit that must be set
is in parentheses):

■ catalog can provide records in some sorted order
(kSupportsOrderedEnumerationBit)

■ catalog can provide, in reverse sorted order, the records preceding a specific point
(kSupportSortBackwardsBit)

■ catalog can continue an enumeration from a specified starting point
(kSupportsEnumerationContinueBit)

If your CSAM provides access to a large catalog that does not provide records in some
sorted and reverse sorted order and that cannot continue an enumeration from a
specified starting point, you should make the catalog nonbrowsable. This avoids
subjecting the user to heavy performance penalties and large memory requirements
when working with that catalog. For example, when the CE is not operating in large-
catalog mode, it attempts to enumerate all of the records in a given dNode of a catalog,
bring the records into memory, and then sort them in the user’s system script before
displaying any records to the user. If the DirEnumerateGet function returns the
kOCEMoreData result code, the CE calls the function again with a bigger buffer. It starts
3-24 Human Interface Considerations

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
the enumeration from the first record since the catalog does not support continuing the
enumeration from the last record read. The CE continues to re-enumerate with a bigger
buffer until the catalog dNode is completely enumerated or the Macintosh runs out of
memory. It could take an unacceptable amount of memory and an unacceptably long
time to open a catalog window for a large catalog that does not support large-catalog
mode. (When the CE is operating in large-catalog mode, it enumerates either 60 records
or three times the number of the records visible in the catalog window, whichever
is greater.)

A user can still search for specific records in a large catalog that does not support large-
catalog mode, although he or she is unable to view all of the records. The AppleLink
address list is an example of a searchable but nonbrowsable catalog.

With large catalogs (those setting the kSupportsOrderedEnumerationBit,
kSupportSortBackwardsBit, and kSupportsEnumerationContinueBit bits),
the CE and the Catalog-Browsing panel use three different methods of managing
scroll bars in a catalog window or panel:

■ ratio-approximation

■ letter-approximation

■ three-position-thumb

The choice of method depends on the capabilities of the catalog being displayed and
the script used in the catalog. If the catalog can provide the approximate position
of a record within a catalog as a percentile value (an index ratio), it sets the
kSupportIndexRatioBit bit. When this bit is set, the CE and the Catalog-Browsing
panel always use the ratio-approximation method. The ratio-approximation method
results in scroll bars that best indicate the true position of a record in a sorted catalog.

If a catalog cannot supply an index ratio, the scrolling method depends on whether the
catalog can provide records sorted by record name (kCanSupportNameOrderBit) and
whether the script used by the Macintosh system software matches the script used by
the catalog.

If the catalog can return records in name order and the same script is used by both
the catalog and the system software, the letter-approximation method is used. The
letter-approximation method uses a table that maps each letter or range of letters in
a given script to a number. After determining where the first visible record fits in the
complete range of letters, the thumb is set accordingly.

If the scripts differ, the CE and the Catalog-Browsing panel have no idea where the
record belongs within the range of letters in the catalog script. Therefore, they use the
three-position-thumb method. They also use this method if a catalog cannot provide
records sorted by record name. The three-position-thumb method is the least desirable
method. It provides a scroll bar having only three positions–at the top of the scroll bar,
at the bottom, and in the middle. These positions correspond to the first record in a
catalog, the last record, and any other record. Thus, it gives no real information about
the majority of records contained in a catalog. It is used as a last resort.
Human Interface Considerations 3-25

C H A P T E R 3

Catalog Service Access Modules
Table 3-1 summarizes the factors that determine the scrolling method.

Supporting Attribute Lookups 3
When the user is looking up attribute values through the CE, the efficiency of the
operation depends a great deal on whether the catalog supports the continuation
of the attribute lookup (indicated by the kSupportsLookupContinueBit bit). If a
catalog does not support this feature and the DirLookupGet function returns the
kOCEMoreData result code, the CE calls the function again with a bigger buffer instead
of continuing the lookup from the last attribute. The CE continues to do this until all
attribute values are completely enumerated or the Macintosh runs out of memory.

Providing Access Controls 3

You may want to provide access controls to safeguard the content of the catalogs that
you support. If a catalog that you support already has its own system of controlling
access, you can translate AOCE access controls into those of the external catalog, and
vice versa. If a catalog has no access controls, you can implement them in your CSAM.
You may provide access controls at the dNode, record, and attribute-type level to limit
who may browse the contents of a dNode, record, or attribute type; who may modify the
contents; and so forth. See the chapter “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces for a complete description of access controls.

To implement access controls, you must know who is making a particular service
request. The identity field in the DirParamBlock parameter block indicates who is
making the service request. It may contain the local identity, a specific identity, or 0.

The local identity is a reference value that identifies the principal user of the Macintosh
computer on which your CSAM is installed. If your CSAM implements access controls,
you should obtain the local identity by calling the AuthGetLocalIdentity function.
When you receive requests for catalog service, compare the value in the identity field

Table 3-1 Determining the scrolling method for a catalog

Supports
index ratio

Supports
name order Scripts Scrolling method

Yes Not applicable Not applicable Ratio approximation

No Yes Match Letter-approximation

No Yes Do not match Three-position-thumb

No No Not applicable Three-position-thumb
3-26 Providing Access Controls

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
in the DirParamBlock parameter block with the local identity. If the local identity is
making the request, you can then determine if the access privileges of the local identity
are sufficient to perform the requested operation.

If the identity field contains neither the local identity nor 0, it contains a specific
identity. A specific identity is a reference value that identifies a user, other than the
principal user, who has a PowerShare account. Your CSAM should take whatever action
is appropriate, depending on how you choose to handle specific identities. One option,
for example, is to treat a specific identity as a guest.

If the identity field contains 0, it indicates that a guest made the catalog service
request. A guest is anyone other than the principal user and alternate users with
PowerShare accounts. If the target catalog supports guest access, you can then determine
if the access privileges for a guest are sufficient to perform the requested operation.

See the chapter “Authentication Manager” in Inside Macintosh: AOCE Application
Interfaces for descriptions of the local identity, specific identities, and the
AuthGetLocalIdentity function.

Handling Application Completion Routines 3

An application may provide a pointer to a completion routine when it makes an
asynchronous Catalog Manager service request. The completion routine takes a single
parameter—a pointer to the parameter block associated with the request.

Your CSAM must call the completion routine that an application provides. You need to

■ push the pointer to the parameter block onto the stack (in case the completion routine
was written in C or Pascal)

■ store the pointer to the parameter block in register A0 (in case the completion routine
was written in assembly language)

■ store the result code for the function you just serviced in register D0 (in case the
completion routine was written in assembly language)

■ put the result code for the function in the ioResult field of the parameter block

After taking these steps, you set the A5 register to the value of the saveA5 field of the
DirParamBlock parameter block and call the completion routine.

You must call a completion routine at deferred-task time to avoid problems when virtual
memory may be in use. See the chapters “Virtual Memory Manager” in Inside Macintosh:
Memory and “Deferred Task Manager” in Inside Macintosh: Processes for more information
on the handling of virtual memory and deferred tasks.
Handling Application Completion Routines 3-27

C H A P T E R 3

Catalog Service Access Modules
Listing 3-6 illustrates how you can call an application’s completion routine.

Listing 3-6 Calling an application’s completion routine

DirParamHeader record 0 ; struct DirParamBlock {

qLink ds.l 1 ; Ptr qLink;

reserved_H1 ds.l 1 ; long reserved_H1;

reserved_H2 ds.l 1 ; long reserved_H2;

ioCompletion ds.l 1 ; ProcPtr ioCompletion;

ioResult ds.w 1 ; OSErr ioResult;

saveA5 ds.l 1 ; long saveA5;

reqCode ds.w 1 ; short reqCode;

endr ; };

CallCompletion proc export

with DirParamHeader

move.l 4(sp),a0 ;A0 -> parameter block

move.w ioResult(a0),d0 ;D0 == ioResult

move.l ioCompletion(a0),d1 ;get application completion

beq.s @1 ;exit if none

move.l a5,-(sp) ;save my A5

move.l saveA5(a0),a5 ;restore application A5

link a6,#0 ;establish new stack frame

move.l a0,-(sp) ;push param block on stack

move.l d1,a1 ;put completion routine in A1

tst.w d0 ;set condition codes

jsr (a1) ;call appl completion routine

unlk a6 ;clean out the stack

move.l (sp)+,a5 ;restore my A5

@1 rts ;exit from CallCompletion

endwith

endp

end

Catalog Service Access Module Reference 3

This section describes the Catalog Manager functions that a CSAM or its setup template
calls and the functions that a CSAM provides. The structures and data types used by
these functions are described in the chapters “AOCE Utilities” and “Catalog Manager”
in Inside Macintosh: AOCE Application Interfaces. The Catalog Manager functions that your
CSAM supports are described in the chapter “Catalog Manager.”
3-28 Catalog Service Access Module Reference

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
CSAM Functions 3
This section describes the Catalog Manager functions that you use to initialize a CSAM
and to add and remove a CSAM and the external catalogs that it supports.

All of these functions take a pointer to a catalog parameter block as input. Each
function description includes a list of the fields in the parameter block that are used
by the function.

To call a Catalog Manager function from assembly language, push the address of the
DirParamBlock parameter block and the async flag onto the stack using the Pascal
calling convention, and place the selector value for the _oceTBDispatch trap macro in
register D0. Each function description includes the selector value for that function. The
function returns its result code in the ioResult field of the parameter block. (The
DirParamBlock parameter block is described in the chapter “Catalog Manager” in
Inside Macintosh: AOCE Application Interfaces.)

A CSAM must support asynchronous requests. See the sections “The Catalog Service
Function” on page 3-11 and “The Parse Function” on page 3-13 for information on how
to support an asynchronous request.

Initializing a CSAM 3

A CSAM must call the DirInstantiateDSAM function before it can receive catalog
service requests.

DirInstantiateDSAM 3

The DirInstantiateDSAM function provides the Catalog Manager with the addresses
of a CSAM’s catalog service and parse functions.

pascal OSErr DirInstantiateDSAM (DirParamBlockPtr paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

← ioResult OSErr Result code
→ dsamName RStringPtr CSAM name
→ dsamKind OCEDirectoryKind CSAM kind
→ dsamData Ptr CSAM private data
→ dsamDirProc ProcPtr CSAM’s catalog

service function
→ dsamDirParseProc ProcPtr CSAM’s parse function
→ dsamAuthProc ProcPtr Reserved; set to nil
Catalog Service Access Module Reference 3-29

C H A P T E R 3

Catalog Service Access Modules
Field descriptions

ioResult The result of the function.
dsamName A pointer to the name of the CSAM. You define the name of your

CSAM. Use the same name that your setup template provides to the
DirAddDSAM function.

dsamKind You define this field to identify your CSAM further. Typically,
you provide the signature of your CSAM. Use the same value that
your setup template provides to the DirAddDSAM function.

dsamData A pointer to data that is private to the CSAM. You provide this
pointer. The Catalog Manager passes this pointer to the CSAM’s
catalog service or parse function when an application calls a
Catalog Manager function and specifies a catalog that you support.

dsamDirProc A pointer to the CSAM’s catalog service function. The Catalog
Manager calls the CSAM’s catalog service function to process all
application requests for catalog services except parse requests. You
must provide this value.

dsamDirParseProc
A pointer to the CSAM’s parse function. The Catalog Manager
calls the CSAM’s parse function to process an application’s parse
request. You must provide this value. You can pass the same pointer
as you provided in the dsamDirProc field if you process all
Catalog Manager requests through a single function.

dsamAuthProc Reserved. Set this field to nil.

DESCRIPTION

Your CSAM’s Open subroutine must call the DirInstantiateDSAM function to
provide the Catalog Manager with the addresses of the CSAM’s catalog service and
parse functions. Until you do this, no application can use the services of the CSAM. Note
that the addresses (or entry points) can be identical if you simply dispatch the incoming
requests to other functions within your CSAM.

The DirInstantiateDSAM function is the only function in the Catalog Manager API
that is called exclusively by a CSAM.

If the values that you provide in the dsamName and dsamKind fields do not match
those provided by your setup template to the DirAddDSAM function, then the
DirInstantiateDSAM function returns the kOCEDSAMInstallErr result code. If
this occurs, the Catalog Manager never sends the CSAM any requests.

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0127
3-30 Catalog Service Access Module Reference

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
RESULT CODES

SEE ALSO

The DirAddDSAM function, described next, causes the Catalog Manager to install and
open a CSAM.

A CSAM’s catalog service and parse functions are described in the section
“Application-Defined Functions” beginning on page 3-37.

Application signatures are described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

Adding a CSAM and Its Catalogs 3

The Catalog Manager provides the DirAddDSAM and DirAddDSAMDirectory
functions so that your setup template can add a CSAM and the catalogs it supports
to a user’s Setup catalog.

DirAddDSAM 3

The DirAddDSAM function opens a CSAM that you specify and adds a record
representing the new CSAM to the Setup catalog.

pascal OSErr DirAddDSAM (DirParamBlockPtr paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

Field descriptions

ioResult The result of the function.
dsamRecordCID The creation ID of the record that the function adds to the Setup

catalog. This record represents the CSAM. You pass the CSAM
record’s creation ID to the DirAddDSAMDirectory function when
you want to add a catalog that the CSAM supports.

noErr 0 No error
kOCELocalAuthenticationFail

–1561 User hasn’t entered Key Chain password
kOCEDSAMInstallErr –1628 Mismatch on CSAM name and kind
kOCEOCESetupRequired –1633 Local identity is not set up
kOCEDSAMRecordNotFound –1634 CSAM record not in Setup catalog

← ioResult OSErr Result code
← dsamRecordCID CreationID Creation ID of CSAM record
→ dsamName RStringPtr CSAM name
→ dsamKind OCEDirectoryKind CSAM kind
→ fsSpec FSSpecPtr CSAM file specification
Catalog Service Access Module Reference 3-31

C H A P T E R 3

Catalog Service Access Modules
dsamName A pointer to the name of the CSAM. You define the name of your
CSAM. Use the same name that your CSAM provides to the
DirInstantiateDSAM function.

dsamKind You define this field to further identify your CSAM. Typically, you
provide the signature of your CSAM. Use the same value that your
CSAM provides to the DirInstantiateDSAM function.

fsSpec A pointer to the file system specification structure that identifies the
file containing the CSAM.

DESCRIPTION

Your setup template calls the DirAddDSAM function to install a CSAM and make it
available to the user. You call this function before calling the DirAddDSAMDirectory
function.

The function installs the CSAM in the Device Manager’s unit table and opens the
driver. The function creates a record for the CSAM. The CSAM record name is the string
that you provide in the dsamName field; its record type is aoce DSAMxxxx, where xxxx
is the value you provide in the dsamKind field. The function then adds the new
CSAM record to the Setup catalog and returns the record’s creation ID.

The dsamName and dsamKind fields are provided to identify your CSAM. For example,
the name of an AppleLink CSAM might be AppleLink CSAM whereas its kind might be
ALNK. The combination of name and kind must be unique among CSAMs installed on
the computer.

If the CSAM is already installed, the function provides you with the creation ID of the
CSAM record and returns the kOCEDSAMRecordExists result code.

SPECIAL CONSIDERATIONS

If your CSAM is a component of a personal MSAM, your setup template calls the
DirAddDSAM function as part of the combined access module initialization procedure,
described in the chapter “Service Access Module Setup” in this book.

This function is always executed synchronously.

There is no registry to guarantee that your CSAM name and kind are unique. To ensure
uniqueness, set your CSAM name to your company name or product name and set your
CSAM kind to your CSAM’s signature that is registered with Macintosh Developer
Technical Services.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $011D
3-32 Catalog Service Access Module Reference

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

The DirAddDSAMDirectory function is described next.

To remove a CSAM that you added, use the DirRemoveDSAM function (page 3-35).

For more information about the Setup catalog and the CSAM record, see the chapter
“Service Access Module Setup” in this book.

Application signatures are described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

DirAddDSAMDirectory 3

The DirAddDSAMDirectory function adds a record for an external catalog to the
Setup catalog.

pascal OSErr DirAddDSAMDirectory (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock Pointer to a parameter block.

async A Boolean value that specifies if the function is to be executed
asynchronously. Set async to true if you want the function to be
executed asynchronously.

Parameter block

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCELocalAuthenticationFail

–1561 User hasn’t entered Key Chain password
kOCEDSAMInstallErr –1628 CSAM could not be installed
kOCEDSAMRecordExists –1636 CSAM record is already in Setup catalog

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
→ dsamRecordCID CreationID Creation ID of CSAM record
→ directoryName DirectoryNamePtr Name of the catalog
→ discriminator DirDiscriminator Discriminator value
→ features DirGestalt Feature flags
→ directoryRecordCID

CreationID Creation ID of Catalog record
Catalog Service Access Module Reference 3-33

C H A P T E R 3

Catalog Service Access Modules
Field descriptions

ioCompletion A pointer to a completion routine that you can provide. If you call
this function asynchronously, it calls your completion routine when
it completes execution. Set this field to nil if you don’t provide a
completion routine. The function ignores this field if you call it
synchronously.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 as soon as the function has
been queued for execution. When the function completes execution,
it sets this field to the actual function result code.

clientData Reserved for your use. If you call the DirAddDSAMDirectory
function asynchronously, you can use this field to pass a private
value to your completion routine.

dsamRecordCID The creation ID of the record representing the CSAM associated
with the catalog you want to add. You can obtain the CSAM’s
record creation ID from the DirAddDSAM function.

directoryName A pointer to the name of the catalog that you want to add.
discriminator A value that distinguishes between two or more catalogs with the

same name. You define this value for the catalog you want to add.
features The set of feature flags for the catalog you want to add. The flags

are described in the section “Indicating the Features You Support”
beginning on page 3-16.

directoryRecordCID
The creation ID of the record for the catalog that you want to add.
You obtain the creation ID by using the CallBackDET macro to call
the kDETcmdGetDSSpec callback routine. This provides you with
the Catalog record’s complete record ID, from which you can
extract the creation ID.

DESCRIPTION

Your setup template calls the DirAddDSAMDirectory function to add to the Setup
catalog a Catalog record for an external catalog that you specify. Once the function
successfully completes execution, the external catalog is accessible to the user.

When you add a record for an external catalog, the catalog becomes visible to the
DirEnumerateDirectoriesGet function. The catalog remains visible and available
for use with other Catalog Manager functions until its Catalog record is explicitly
removed from the Setup catalog by the DirRemoveDirectory function.

(AOCE software creates the Catalog record whose creation ID you provide in the
directoryRecordCID field. It does this when the user adds a catalog to his or her
available catalog services.)

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0133
3-34 Catalog Service Access Module Reference

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
RESULT CODES

SEE ALSO

The DirRemoveDirectory function is described on page 3-37.

The DirEnumerateDirectoriesGet function is described in the chapter “Catalog
Manager” in Inside Macintosh: AOCE Application Interfaces.

The DirAddDSAM function is described on page 3-31.

For more information about the Setup catalog and the Catalog record, see the chapter
“Service Access Module Setup” in this book.

Catalog feature flags are described in the section “Indicating the Features You Support”
beginning on page 3-16.

The CallBackDET macro and the kDETcmdGetDSSpec callback routine are described
in the chapter “AOCE Templates” in Inside Macintosh: AOCE Application Interfaces.

Removing a CSAM and Its Catalogs 3

The Catalog Manager provides the DirRemoveDSAM and DirRemoveDirectory
functions. Your template uses these functions to remove records for CSAMs and external
catalogs from the Setup catalog.

DirRemoveDSAM 3

The DirRemoveDSAM function removes a record for a specific CSAM from the
Setup catalog.

pascal OSErr DirRemoveDSAM (DirParamBlockPtr paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

noErr 0 No error
kOCEAlreadyExists –1510 Catalog with same name and kind

already exists
kOCELocalAuthenticationFail

–1561 User hasn’t entered Key Chain password
kOCEDSAMInstallErr –1628 CSAM doesn’t exist
kOCEDSAMNotInstantiated –1635 CSAM is not instantiated

← ioResult OSErr Result code
→ dsamRecordCID CreationID Creation ID of CSAM record
Catalog Service Access Module Reference 3-35

C H A P T E R 3

Catalog Service Access Modules
Field descriptions

ioResult The result of the function.
dsamRecordCID The creation ID of the CSAM record in the Setup catalog for the

CSAM that you want to remove. This creation ID is stored in the
kParentDSAMAttrTypeNum attribute type in the template’s record.

DESCRIPTION

Your setup template calls the DirRemoveDSAM function to remove a CSAM record from
the Setup catalog. The function also closes the CSAM driver and removes from the Setup
catalog all Catalog records for catalogs supported by the CSAM.

You can obtain the creation ID of the CSAM record by using the CallBackDET macro
to call the kDETcmdGetDSSpec callback routine. Specify kDETSelf as the target to
retrieve the DSSpec structure that identifies your template record. Then pass that DSSpec
structure to the DirLookupGet function to read the kParentDSAMAttrTypeNum
attribute type.

Once a CSAM’s record is removed from the Setup catalog, the catalogs it serves are
unavailable.

Ordinarily, you do not call this function. It is included to provide setup templates with
flexibility in handling the CSAM record. For instance, if a user deletes all of the catalogs
a CSAM supports, its setup template may remove the CSAM.

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

For more information about the Setup catalog, see the chapter “Service Access Module
Setup” in this book.

You can add a CSAM to the Setup catalog by calling the DirAddDSAM function
(page 3-31).

Trap macro Selector

_oceTBDispatch $0120

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEDSAMInstallErr –1628 CSAM doesn’t exist
3-36 Catalog Service Access Module Reference

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
For information about the CallBackDET macro and the kDETcmdGetDSSpec callback
routine, see the chapter “AOCE Templates” in Inside Macintosh: AOCE Application
Interfaces.

The DirLookupGet function is described in the chapter “Catalog Manager” in Inside
Macintosh: AOCE Application Interfaces.

DirRemoveDirectory 3

The DirRemoveDirectory function removes from the Setup catalog a record that
represents a catalog.

Because the function is not limited to removing external catalogs, it is described in the
chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces.

Application-Defined Functions 3
You provide the catalog service and parse functions described in this section. You pass
their addresses to the Catalog Manager when you call the DirInstantiateDSAM
function. The Catalog Manager calls your functions when an application requests a
service from an external catalog that you support. It is through these functions that you
supply catalog services.

MyDSAMDirProc 3

The MyDSAMDirProc function accepts and processes Catalog Manager requests for
catalog services. You must provide this function as part of your CSAM.

pascal OSErr MyDSAMDirProc (Ptr dsamData,

DirParamBlockPtr paramBlock,

Boolean async);

dsamData A pointer to the CSAM’s private data. This is the value that you
previously passed to the DirInstantiateDSAM function in the
dsamData field of its DirParamBlock parameter block.

paramBlock A pointer to the parameter block that the application passed to the
Catalog Manager when the application called a Catalog Manager
function.

async A Boolean value that specifies if the request must be processed synchro-
nously or asynchronously. If this field is set to true, you must process the
request asynchronously.
Catalog Service Access Module Reference 3-37

C H A P T E R 3

Catalog Service Access Modules
DESCRIPTION

The Catalog Manager calls your catalog service function when an application requests
a service, other than parse, from a catalog supported by your CSAM. You determine
the type of request by examining the reqCode field in the DirParamBlock parameter
block. Each possible value of the reqCode field corresponds to a Catalog Manager
function. You then process the request and return the necessary information in the fields
of the paramBlock parameter block.

RESULT CODES

Each type of service request that you may receive corresponds to a single Catalog
Manager function. For each type of service request that you process, you should return
only those result codes that are defined by the Catalog Manager for the corresponding
function. See the description of each Catalog Manager function for the list of result codes
you can return for that function.

SEE ALSO

The section “The Catalog Service Function” on page 3-11 provides general information
on the actions that your MyDSAMDirProc function should take while servicing a request
for catalog services. You decide how to implement a given Catalog Manager function for
the catalog that you support.

The DirInstantiateDSAM function is described on page 3-29.

The chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces contains
descriptions of each Catalog Manager function.

The request codes that may appear in the reqCode field in the DirParamBlock
parameter block are listed in “Data Types and Constants” beginning on page 3-42.

MyDSAMDirParseProc 3

The MyDSAMDirParseProc function accepts and processes Catalog Manager parse
requests. You may provide this function as part of your CSAM.

pascal OSErr MyDSAMDirParseProc (Ptr dsamData,

DirParamBlockPtr paramBlock,

Boolean async);

dsamData A pointer to the CSAM’s private data. This is the value that you
previously passed to the DirInstantiateDSAM function in the
dsamData field of its DirParamBlock parameter block.
3-38 Catalog Service Access Module Reference

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
paramBlock A pointer to the parameter block that the application provided to the
Catalog Manager when the application made a parse request.

async A Boolean value that specifies if the request must be processed synchro-
nously or asynchronously. If this field is set to true, you must process the
request asynchronously.

DESCRIPTION

The Catalog Manager calls your parse function when an application makes a parse
request and specifies a catalog that your CSAM supports. You determine the specific
type of parse request by examining the reqCode field in the DirParamBlock
parameter block. Each possible value of the reqCode field corresponds to a Catalog
Manager function. You then process the request by returning the necessary information
in the fields of the parameter block and calling the application’s callback routine.

SPECIAL CONSIDERATIONS

You can choose to dispatch all service requests through a single function. In that case,
you don’t provide a separate and distinct parse function. Instead, you pass the same
address to the DirInstantiateDSAM function in both the dsamDirProc and
dsamDirParseProc fields.

RESULT CODES

Each type of parse request that you may receive corresponds to a single Catalog
Manager function. For each type of parse request that you process, you should return
only those result codes that are defined by the Catalog Manager for the corresponding
function. See the description of each Catalog Manager function for the list of result codes
you can return for that function.

SEE ALSO

The sections “The Catalog Service Function” on page 3-11 and “The Parse Function” on
page 3-13 provide general information on the actions that your MyDSAMDirParseProc
function should take while servicing a parse request. You decide how to implement a
given Catalog Manager parse function for the catalog that you support.

The chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces contains
descriptions of each Catalog Manager function.

The request codes that may appear in the reqCode field in the DirParamBlock
parameter block are listed in the section “Data Types and Constants” beginning on
page 3-42.
Catalog Service Access Module Reference 3-39

C H A P T E R 3

Catalog Service Access Modules
Resources 3
This section describes the 'DRVR' resource type that you provide in a CSAM.

The Driver Resource 3

The driver resource contains the executable code that implements support for the
Catalog Manager API. Listing 3-7 shows the Rez definition of the 'DRVR' resource type.

Listing 3-7 'DRVR' resource definition

type 'DRVR' {

boolean = 0; /* unused */

boolean dontNeedLock, needLock; /* lock driver in memory */

boolean dontNeedTime, needTime; /* for periodic action */

boolean dontNeedGoodbye,needGoodbye; /* call before heap reinit */

boolean noStatusEnable, statusEnable; /* responds to Status */

boolean noCtlEnable, ctlEnable; /* responds to Control */

boolean noWriteEnable, writeEnable; /* responds to Write */

boolean noReadEnable, readEnable; /* responds to Read */

byte = 0; /* unused */

unsigned integer; /* driver delay (ticks) */

integer; /* DA event mask */

integer; /* driver menu ID */

unsigned integer = 50; /* offset to DRVRRuntime Open */

unsigned integer = 54; /* offset to DRVRRuntime Prime */

unsigned integer = 58; /* offset to DRVRRuntime Control */

unsigned integer = 62; /* offset to DRVRRuntime Status */

unsigned integer = 66; /* offset to DRVRRuntime Close */

pstring[31]; /* driver name */

hex string; /* driver code */

};

The driver resource contains the following fields:

■ An unused Boolean value.

■ A Boolean value that indicates if your driver should be locked in memory. You must
set this to needLock for a CSAM.

■ A Boolean value that indicates if your driver should receive processor time
periodically. Set this according to the needs of your CSAM.

■ A Boolean value that indicates if your driver should be notified before the application
heap is reinitialized. Because your CSAM driver must reside in the system heap, this
Boolean value is irrelevant.
3-40 Catalog Service Access Module Reference

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
■ A Boolean value that indicates if your driver responds to Status calls from the
Device Manager.

■ A Boolean value that indicates if your driver responds to Control calls from the
Device Manager.

■ A Boolean value that indicates if your driver responds to Write calls from the
Device Manager.

■ A Boolean value that indicates if your driver responds to Read calls from the
Device Manager.

■ An unused value.

■ A value that indicates the number of ticks between your periodic time intervals. If you
have already specified the Boolean value needTime, set this according to the needs
of your CSAM.

■ A value for desk accessories. It is irrelevant to a CSAM.

■ A value for desk accessories. It is irrelevant to a CSAM.

■ Five 4-byte values that specify the offsets to your Open, Prime, Control, Status, and
Close driver subroutines, respectively.

■ The name of your CSAM driver. You can use uppercase and lowercase letters when
naming your driver, but the first character must be a period.

■ The hexadecimal representation of your executable code. Your driver subroutines
must be aligned on a word boundary.
Catalog Service Access Module Reference 3-41

C H A P T E R 3

Catalog Service Access Modules
Summary of Catalog Service Access Modules 3

C Summary 3

Data Types and Constants 3

enum { /* feature flag bits */

kSupportsDNodeNumberBit = 0,

kSupportsRecordCreationIDBit = 1,

kSupportsAttributeCreationIDBit = 2,

kSupportsMatchAllBit = 3,

kSupportsBeginsWithBit = 4,

kSupportsExactMatchBit = 5,

kSupportsEndsWithBit = 6,

kSupportsContainsBit = 7,

kSupportsOrderedEnumerationBit = 8,

kCanSupportNameOrderBit = 9,

kCanSupportTypeOrderBit = 10,

kSupportSortBackwardsBit = 11,

kSupportIndexRatioBit = 12,

kSupportsEnumerationContinueBit = 13,

kSupportsLookupContinueBit = 14,

kSupportsEnumerateAttributeTypeContinueBit= 15,

kSupportsEnumeratePseudonymContinueBit = 16,

kSupportsAliasesBit = 17,

kSupportsPseudonymsBit = 18,

kSupportsPartialPathNamesBit = 19,

kSupportsAuthenticationBit = 20,

kSupportsProxiesBit = 21,

kSupportsFindRecordBit = 22

};

enum { /* feature flag masks */

kSupportsDNodeNumberMask = 1L<<kSupportsDNodeNumberBit,

kSupportsRecordCreationIDMask = 1L<<kSupportsRecordCreationIDBit,

kSupportsAttributeCreationIDMask = 1L<<kSupportsAttributeCreationIDBit,

kSupportsMatchAllMask = 1L<<kSupportsMatchAllBit,

kSupportsBeginsWithMask = 1L<<kSupportsBeginsWithBit,

kSupportsExactMatchMask = 1L<<kSupportsExactMatchBit,
3-42 Summary of Catalog Service Access Modules

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
kSupportsEndsWithMask = 1L<<kSupportsEndsWithBit,

kSupportsContainsMask = 1L<<kSupportsContainsBit,

kSupportsOrderedEnumerationMask = 1L<<kSupportsOrderedEnumerationBit,

kCanSupportNameOrderMask = 1L<<kCanSupportNameOrderBit,

kCanSupportTypeOrderMask = 1L<<kCanSupportTypeOrderBit,

kSupportSortBackwardsMask = 1L<<kSupportSortBackwardsBit,

kSupportIndexRatioMask = 1L<<kSupportIndexRatioBit,

kSupportsEnumerationContinueMask = 1L<<kSupportsEnumerationContinueBit,

kSupportsLookupContinueMask = 1L<<kSupportsLookupContinueBit,

kSupportsEnumerateAttributeTypeContinueMask =

1L<<kSupportsEnumerateAttributeTypeContinueBit,

kSupportsEnumeratePseudonymContinueMask =

1L<<kSupportsEnumeratePseudonymContinueBit,

kSupportsAliasesMask = 1L<<kSupportsAliasesBit,

kSupportsPseudonymsMask = 1L<<kSupportsPseudonymsBit,

kSupportsPartialPathNamesMask = 1L<<kSupportsPartialPathNamesBit,

kSupportsAuthenticationMask = 1L<<kSupportsAuthenticationBit,

kSupportsProxiesMask = 1L<<kSupportsProxiesBit,

kSupportsFindRecordMask = 1L<<kSupportsFindRecordBit

};

/* request codes for Catalog Manager functions */

#define kDirEnumerateParse 0x101

#define kDirLookupParse 0x102

#define kDirEnumerateAttributeTypesParse 0x103

#define kDirEnumeratePseudonymParse 0x104

#define kDirNetSearchADAPDirectoriesParse 0x105

#define kDirEnumerateDirectoriesParse 0x106

#define kDirFindADAPDirectoryByNetSearch 0x107

#define kDirNetSearchADAPDirectoriesGet 0x108

#define kDirAddRecord 0x109

#define kDirDeleteRecord 0x10A

#define kDirAddAttributeValue 0x10B

#define kDirDeleteAttributeValue 0x10C

#define kDirChangeAttributeValue 0x10D

#define kDirVerifyAttributeValue 0x10E

#define kDirAddPseudonym 0x10F

#define kDirDeletePseudonym 0x110

#define kDirEnumerateGet 0x111

#define kDirEnumerateAttributeTypesGet 0x112

#define kDirEnumeratePseudonymGet 0x113

#define kDirGetNameAndType 0x114

#define kDirSetNameAndType 0x115

#define kDirGetRecordMetaInfo 0x116
Summary of Catalog Service Access Modules 3-43

C H A P T E R 3

Catalog Service Access Modules
#define kDirLookupGet 0x117

#define kDirGetDNodeMetaInfo 0x118

#define kDirGetDirectoryInfo 0x119

#define kDirEnumerateDirectoriesGet 0x11A

#define kDirAbort 0x11B

#define kDirAddAlias 0x11C

#define kDirAddDSAM 0x11D

#define kDirOpenPersonalDirectory 0x11E

#define kDirCreatePersonalDirectory 0x11F

#define kDirRemoveDSAM 0x120

#define kDirGetDirectoryIcon 0x121

#define kDirMapPathNameToDNodeNumber 0x122

#define kDirMapDNodeNumberToPathName 0x123

#define kDirGetLocalNetworkSpec 0x124

#define kDirGetDNodeInfo 0x125

#define kDirFindValue 0x126

#define kDirInstantiateDSAM 0x127

#define kDirGetOCESetupRefNum 0x128

#define kDirGetDNodeAccessControlGet 0x12A

#define kDirGetRecordAccessControlGet 0x12C

#define kDirGetAttributeAccessControlGet 0x12E

#define kDirGetDNodeAccessControlParse 0x12F

#define kDirDeleteAttributeType 0x130

#define kDirClosePersonalDirectory 0x131

#define kDirMakePersonalDirectoryRLI 0x132

#define kDirAddDSAMDirectory 0x133

#define kDirGetRecordAccessControlParse 0x134

#define kDirRemoveDirectory 0x135

#define kDirGetExtendedDirectoriesInfo 0x136

#define kDirAddADAPDirectory 0x137

#define kDirGetAttributeAccessControlParse 0x138

#define kDirFindRecordGet 0x140

#define kDirFindRecordParse 0x141

struct DirInstantiateDSAMPB {

AuthDirParamHeader /* parameter block header */

RStringPtr dsamName; /* CSAM name */

OCEDirectoryKind dsamKind; /* CSAM kind */

Ptr dsamData; /* CSAM private data */

ProcPtr dsamDirProc; /* catalog service function */

ProcPtr dsamDirParseProc; /* parse function */

ProcPtr dsamAuthProc; /* reserved, set to nil */

};

typedef struct DirInstantiateDSAMPB DirInstantiateDSAMPB;
3-44 Summary of Catalog Service Access Modules

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
struct DirAddDSAMPB {

AuthDirParamHeader /* parameter block header */

CreationID dsamRecordCID; /* CSAM record creation ID */

RStringPtr dsamName; /* CSAM name */

OCEDirectoryKind dsamKind; /* CSAM kind */

FSSpecPtr fsSpec; /* CSAM's file specification */

};

typedef struct DirAddDSAMPB DirAddDSAMPB;

struct DirAddDSAMDirectoryPB {

AuthDirParamHeader /* parameter block header */

CreationID dsamRecordCID; /* CSAM record creation ID */

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* catalog discriminator value */

DirGestalt features; /* feature flags for the catalog */

CreationID directoryRecordCID;

/* Catalog record creation ID */

};

typedef struct DirAddDSAMDirectoryPB DirAddDSAMDirectoryPB;

struct DirRemoveDSAMPB {

AuthDirParamHeader /* parameter block header */

CreationID dsamRecordCID; /* CSAM record creation ID */

};

typedef struct DirRemoveDSAMPB DirRemoveDSAMPB;

CSAM Functions 3

Initializing a CSAM

pascal OSErr DirInstantiateDSAM
(DirParamBlockPtr paramBlock);

Adding a CSAM and Its Catalogs

pascal OSErr DirAddDSAM (DirParamBlockPtr paramBlock);

pascal OSErr DirAddDSAMDirectory
(DirParamBlockPtr paramBlock, Boolean async);

Removing a CSAM and Its Catalogs

pascal OSErr DirRemoveDSAM (DirParamBlockPtr paramBlock);
Summary of Catalog Service Access Modules 3-45

C H A P T E R 3

Catalog Service Access Modules
Application-Defined Functions 3

pascal OSErr MyDSAMDirProc (Ptr dsamData, DirParamBlockPtr paramBlock,
Boolean async);

pascal OSErr MyDSAMDirParseProc
(Ptr dsamData, DirParamBlockPtr paramBlock,
Boolean async);

Pascal Summary 3

Data Types and Constants 3

CONST

{ feature flag bits }

kSupportsDNodeNumberBit = 0;

kSupportsRecordCreationIDBit = 1;

kSupportsAttributeCreationIDBit = 2;

kSupportsMatchAllBit = 3;

kSupportsBeginsWithBit = 4;

kSupportsExactMatchBit = 5;

kSupportsEndsWithBit = 6;

kSupportsContainsBit = 7;

kSupportsOrderedEnumerationBit = 8;

kCanSupportNameOrderBit = 9;

kCanSupportTypeOrderBit = 10;

kSupportSortBackwardsBit = 11;

kSupportIndexRatioBit = 12;

kSupportsEnumerationContinueBit = 13;

kSupportsLookupContinueBit = 14;

kSupportsEnumerateAttributeTypeContinueBit = 15;

kSupportsEnumeratePseudonymContinueBit = 16;

kSupportsAliasesBit = 17;

kSupportsPseudonymsBit = 18;

kSupportsPartialPathNamesBit = 19;

kSupportsAuthenticationBit = 20;

kSupportsProxiesBit = 21;

kSupportsFindRecordBit = 22;

{ feature flag masks }

kSupportsDNodeNumberMask = $00000001;

kSupportsRecordCreationIDMask = $00000002;

kSupportsAttributeCreationIDMask = $00000004;
3-46 Summary of Catalog Service Access Modules

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
kSupportsMatchAllMask = $00000008;

kSupportsBeginsWithMask = $00000010;

kSupportsExactMatchMask = $00000020;

kSupportsEndsWithMask = $00000040;

kSupportsContainsMask = $00000080;

kSupportsOrderedEnumerationMask = $00000100;

kCanSupportNameOrderMask = $00000200;

kCanSupportTypeOrderMask = $00000400;

kSupportSortBackwardsMask = $00000800;

kSupportIndexRatioMask = $00001000;

kSupportsEnumerationContinueMask = $00002000;

kSupportsLookupContinueMask = $00004000;

kSupportsEnumerateAttributeTypeContinueMask = $00008000;

kSupportsEnumeratePseudonymContinueMask = $00010000;

kSupportsAliasesMask = $00020000;

kSupportsPseudonymsMask = $00040000;

kSupportsPartialPathNamesMask = $00080000;

kSupportsAuthenticationMask = $00100000;

kSupportsProxiesMask = $00200000;

kSupportsFindRecordMask = $00400000;

{ request codes for Catalog Manager requests }

kDirEnumerateParse $101

kDirLookupParse $102

kDirEnumerateAttributeTypesParse $103

kDirEnumeratePseudonymParse $104

kDirNetSearchADAPDirectoriesParse $105

kDirEnumerateDirectoriesParse $106

kDirFindADAPDirectoryByNetSearch $107

kDirNetSearchADAPDirectoriesGet $108

kDirAddRecord $109

kDirDeleteRecord $10A

kDirAddAttributeValue $10B

kDirDeleteAttributeValue $10C

kDirChangeAttributeValue $10D

kDirVerifyAttributeValue $10E

kDirAddPseudonym $10F

kDirDeletePseudonym $110

kDirEnumerateGet $111

kDirEnumerateAttributeTypesGet $112

kDirEnumeratePseudonymGet $113

kDirGetNameAndType $114

kDirSetNameAndType $115

kDirGetRecordMetaInfo $116
Summary of Catalog Service Access Modules 3-47

C H A P T E R 3

Catalog Service Access Modules
kDirLookupGet $117

kDirGetDNodeMetaInfo $118

kDirGetDirectoryInfo $119

kDirEnumerateDirectoriesGet $11A

kDirAbort $11B

kDirAddAlias $11C

kDirAddDSAM $11D

kDirOpenPersonalDirectory $11E

kDirCreatePersonalDirectory $11F

kDirRemoveDSAM $120

kDirGetDirectoryIcon $121

kDirMapPathNameToDNodeNumber $122

kDirMapDNodeNumberToPathName $123

kDirGetLocalNetworkSpec $124

kDirGetDNodeInfo $125

kDirFindValue $126

kDirInstantiateDSAM $127

kDirGetOCESetupRefNum $128

kDirGetDNodeAccessControlGet $12A

kDirGetRecordAccessControlGet $12C

kDirGetAttributeAccessControlGet $12E

kDirGetDNodeAccessControlParse $12F

kDirDeleteAttributeType $130

kDirClosePersonalDirectory $131

kDirMakePersonalDirectoryRLI $132

kDirAddDSAMDirectory $133

kDirGetRecordAccessControlParse $134

kDirRemoveDirectory $135

kDirGetExtendedDirectoriesInfo $136

kDirAddADAPDirectory $137

kDirGetAttributeAccessControlParse $138

kDirFindRecordGet $140

kDirFindRecordParse $141

DirInstantiateDSAMPB = RECORD

qLink: Ptr; { reserved }

reserved1: LONGINT; { reserved }

reserved2: LONGINT; { reserved }

ioCompletion: ProcPtr; { your completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { reserved }

reqCode: INTEGER; { Catalog Manager function request code }

reserved: ARRAY[1..2] OF LONGINT;

{ reserved }
3-48 Summary of Catalog Service Access Modules

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
serverHint: AddrBlock; { PowerShare server’s AppleTalk address }

dsRefNum: INTEGER; { personal catalog reference number }

callID: LONGINT; { reserved }

identity: AuthIdentity; { requestor’s authentication identity }

gReserved1: LONGINT; { reserved }

gReserved2: LONGINT; { reserved }

gReserved3: LONGINT; { reserved }

clientData: LONGINT; { you define this field }

dsamName: RStringPtr; { CSAM name }

dsamKind: OCEDirectoryKind;

{ CSAM kind }

dsamData: Ptr; { CSAM private data }

dsamDirProc: ProcPtr; { CSAM’s catalog service routine }

dsamDirParseProc: ProcPtr; { CSAM’s parse routine }

dsamAuthProc: ProcPtr; { reserved }

END;

DirAddDSAMPB = RECORD

qLink: Ptr; { reserved }

reserved1: LONGINT; { reserved }

reserved2: LONGINT; { reserved }

ioCompletion: ProcPtr; { your completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { reserved }

reqCode: INTEGER; { Catalog Manager function request code }

reserved: ARRAY[1..2] OF LONGINT;

{ reserved }

serverHint: AddrBlock; { PowerShare server’s AppleTalk address }

dsRefNum: INTEGER; { personal catalog reference number }

callID: LONGINT; { reserved }

identity: AuthIdentity; { requestor’s authentication identity }

gReserved1: LONGINT; { reserved }

gReserved2: LONGINT; { reserved }

gReserved3: LONGINT; { reserved }

clientData: LONGINT; { you define this field }

dsamRecordCID: CreationID; { creation ID of CSAM record }

dsamName: RStringPtr; { CSAM name }

dsamKind: OCEDirectoryKind;

{ CSAM kind }

fsSpec: FSSpecPtr; { CSAM file specification }

END;
Summary of Catalog Service Access Modules 3-49

C H A P T E R 3

Catalog Service Access Modules
DirAddDSAMDirectoryPB = RECORD

qLink: Ptr; { reserved }

reserved1: LONGINT; { reserved }

reserved2: LONGINT; { reserved }

ioCompletion: ProcPtr; { your completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { reserved }

reqCode: INTEGER; { Catalog Manager function request code }

reserved: ARRAY[1..2] OF LONGINT;

{ reserved }

serverHint: AddrBlock; { PowerShare server’s AppleTalk address }

dsRefNum: INTEGER; { personal catalog reference number }

callID: LONGINT; { reserved }

identity: AuthIdentity; { requestor’s authentication identity }

gReserved1: LONGINT; { reserved }

gReserved2: LONGINT; { reserved }

gReserved3: LONGINT; { reserved }

clientData: LONGINT; { you define this field }

dsamRecordCID: CreationID; { creation ID of CSAM record }

directoryName: DirectoryNamePtr; { catalog name }

discriminator: DirDiscriminator; { discriminator value }

features: DirGestalt; { feature flags for the catalog }

directoryRecordCID: CreationID; { creation ID of catalog record }

END;

DirRemoveDSAMPB = RECORD

qLink: Ptr; { reserved }

reserved1: LONGINT; { reserved }

reserved2: LONGINT; { reserved }

ioCompletion: ProcPtr; { your completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { reserved }

reqCode: INTEGER; { Catalog Manager function request code }

reserved: ARRAY[1..2] OF LONGINT;

{ reserved }

serverHint: AddrBlock; { PowerShare server’s AppleTalk address }

dsRefNum: INTEGER; { personal catalog reference number }

callID: LONGINT; { reserved }

identity: AuthIdentity; { requestor’s authentication identity }

gReserved1: LONGINT; { reserved }

gReserved2: LONGINT; { reserved }

gReserved3: LONGINT; { reserved }

clientData: LONGINT; { you define this field }

dsamRecordCID: CreationID; { creation ID of CSAM record }

END;
3-50 Summary of Catalog Service Access Modules

C H A P T E R 3

Catalog Service Access Modules

3
C

atalog S
ervice A

ccess M
odules
CSAM Functions 3

Initializing a CSAM

FUNCTION DirInstantiateDSAM (paramBlock: DirParamBlockPtr): OSErr;

Adding a CSAM and Its Catalogs

FUNCTION DirAddDSAM (paramBlock: DirParamBlockPtr): OSErr;

FUNCTION DirAddDSAMDirectory (paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

Removing a CSAM and Its Catalogs

FUNCTION DirRemoveDSAM (paramBlock: DirParamBlockPtr): OSErr;

Application-Defined Functions 3

FUNCTION MyDSAMDirFunc (dsamData: Ptr; paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION MyDSAMDirParseFunc (dsamData: Ptr; paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

Assembly-Language Summary 3

Trap Macros 3

Trap Macros Requiring Routine Selectors

_oceTBDispatch

Selector Routine

0$127 DirInstantiateDSAM

0$11D DirAddDSAM

0$133 DirAddDSAMDirectory

0$120 DirRemoveDSAM

0$135 DirRemoveDirectory
Summary of Catalog Service Access Modules 3-51

C H A P T E R 3

Catalog Service Access Modules
Result Codes 3
noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEAlreadyExists –1510 Catalog with same name and kind already exists
kOCELocalAuthenticationFail

–1561 User hasn’t entered Key Chain password
kOCEDSAMInstallErr –1628 CSAM could not be installed or doesn’t exist
kOCEOCESetupRequired –1633 Local identity is not set up
kOCEDSAMRecordNotFound –1634 CSAM record not in Setup catalog
kOCEDSAMNotInstantiated –1635 CSAM is not instantiated
kOCEDSAMRecordExists –1636 CSAM record is already in Setup catalog
3-52 Summary of Catalog Service Access Modules

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Service Access Modules TOC
	 Introduction to Service Access Modules
	 Messaging Service Access Modules TOC
	 Messaging Service Access Modules, Part 1 (Intro, Using and Reference: Data Types & Constants)
	 Messaging Service Access Modules, Part 2 (Reference: Functions Part 1)
	 Messaging Service Access Modules, Part 3 (Reference: Functions Part 2)
	 Messaging Service Access Modules, Part 4 (Summary)
	 Catalog Service Access Modules TOC
	Catalog Service Access Modules
	Introduction to Catalog Service Access Modules
	Components of a CSAM
	Writing a Driver Resource for a CSAM
	Responding to the Catalog Manager
	The Catalog Service Function
	The Parse Function
	Determining the Version of the Catalog Manager

	Indicating the Features You Support
	Human Interface Considerations
	Supporting Records Having the Same Name and Type
	Supporting Multiple Attribute Values of the Same T...
	Supporting Browsing and Finding
	Supporting Large Catalogs
	Supporting Attribute Lookups

	Providing Access Controls
	Handling Application Completion Routines
	Catalog Service Access Module Reference
	CSAM Functions
	Initializing a CSAM
	Adding a CSAM and Its Catalogs
	Removing a CSAM and Its Catalogs

	Application-Defined Functions
	Resources
	The Driver Resource

	Summary of Catalog Service Access Modules
	C Summary
	Data Types and Constants
	CSAM Functions
	Application-Defined Functions

	Pascal Summary
	Data Types and Constants
	CSAM Functions
	Application-Defined Functions

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Service Access Module Setup TOC
	 Service Access Module Setup
	 Glossary
	 Index
	 Colophon

