

C H A P T E R 2

Messaging Service Access Modules 2

MSAM Functions 2
This section describes the functions that you use to retrieve messages from and submit
messages to the IPM Manager. Most functions handle messages of all types, but certain
functions in the API are specific to letters or reports. Unless the function description
refers to a specific message type, you should assume that the function handles all types
of messages.

Functions whose names begin with MSAMPut apply to incoming messages; functions
whose names begin with MSAMGet apply to outgoing messages. Functions whose
names begin with PMSAM apply only to personal MSAMs; those whose names begin
with SMSAM apply only to server MSAMs.

You must completely specify any structure that you provide to a function unless the
description states otherwise.

All of the functions take a pointer to an MSAMParam parameter block as input.
Each function description includes a list of the fields in the parameter block that
are used by the function.

Most functions in the MSAM API have the following form:

pascal OSErr function (MSAMParam *paramBlock, Boolean asyncFlag);

You should call those functions asynchronously so that you can receive and process an
AOCE high-level event at any time.

Some functions can be called only synchronously or asynchronously; therefore, they do
not have the asyncFlag parameter. The form of those functions is:

pascal OSErr function (MSAMParam *paramBlock);

You can call a function from assembly language. Listing 2-16 illustrates one way to do
this for a function that takes both the parameter block pointer and the Boolean value
asyncFlag as parameters. (If a function can be called only synchronously or
asynchronously, the assembly code would not manipulate the asyncFlag value.)

Listing 2-16 Calling an MSAM function from assembly language

_oceTBDispatch OPWORD $aa5e

subq #2,a7 ; make room for function result

movea paramBlock,-(sp) ; push the param block pointer

onto stack

move.q asyncFlag, d0 ; move async flag into D0

move.b d0,-(sp) ; push the flag (byte) onto stack

moveq #opCode, d0 ; move op code into D0

move.w d0,-(sp) ; place the op code on the stack

_oceTBDispatch ; trap call

move.w (sp)+, d0 ; get result code
2-130 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2

M
essaging S

ervice A
ccess M

odules

The function returns its result code in the ioResult field of the parameter block.

When you call a function synchronously, the function returns its result both as the
function result and in the ioResult field of the MailParamBlockHeader structure.
Note that the function also clears the ioCompletion field.

When you call a function asynchronously and the function has successfully queued the
request, it returns noErr and sets the ioResult field to 1. After the call completes, the
function sets the ioResult field to the actual result and calls the completion routine,
if one is specified. There is one exception to this behavior: if the IPM Manager is not
currently ready to accept a request, it may return corErr as the function result. In
this case, the ioResult field has an indeterminate value and the completion routine
is not called.

IMPORTANT

If you choose to poll the ioResult field to determine if the request has
completed, it is safest to check that it has changed from 1 to some other
value. While the IPM Manager does not return positive error codes,
system utilities may return positive error codes, and these may be
passed through without being caught. Nominally, this would be due to
an IPM Manager bug; however, you can and should attempt to protect
against this. ▲

Initializing an MSAM 2

You use the routines in this section to initialize an MSAM. A personal MSAM begins by
calling the PMSAMGetMSAMRecord function to obtain the creation ID of its record in the
Setup catalog. Then it calls the PMSAMOpenQueues function for each of its slots to obtain
the queue references for each slot. A server MSAM calls the SMSAMSetup function to
obtain identifying information about itself and then calls the SMSAMStartup function
to obtain its outgoing queue reference.

PMSAMGetMSAMRecord 2

The PMSAMGetMSAMRecord function provides you with the record creation ID of the
record that represents your personal MSAM in the Setup catalog.

pascal OSErr PMSAMGetMSAMRecord (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

← ioResult OSErr Result code
← msamCID CreationID Creation ID of personal MSAM record
Messaging Service Access Module Reference 2-131

C H A P T E R 2

Messaging Service Access Modules

Field descriptions

msamCID The creation ID of the record in the Setup catalog that represents
your personal MSAM.

DESCRIPTION

You call the PMSAMGetMSAMRecord function to obtain the record creation ID of your
personal MSAM’s MSAM record in the Setup catalog.

The MSAM record contains a list of all the slots associated with the MSAM. In addition,
your MSAM and its associated setup template may store private data that is global to the
MSAM in the MSAM record.

The IPM Manager knows that a personal MSAM exists by its MSAM record in the
Setup catalog.

IMPORTANT

The PMSAMGetMSAMRecord function is intended to be called
only by a personal MSAM. Calling it from anywhere else yields
indeterminate results. ▲

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for more information on the
MSAM record in the Setup catalog.

Trap macro Selector

_oceTBDispatch $0506

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM
kMailNoMSAMErr –15056 No such MSAM
2-132 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2

M
essaging S

ervice A
ccess M

odules

PMSAMOpenQueues 2

The PMSAMOpenQueues function obtains the queue references for a slot that you specify.

pascal OSErr PMSAMOpenQueues (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

Field descriptions

inQueueRef If the slot you specify in the msamSlotID field is a mail slot, this
value is the queue reference for the slot’s incoming queue. If the slot
you specify in the msamSlotID field is a messaging slot, this value
identifies the slot itself. (The MSAMQueueRef data type is long.)

outQueueRef The queue reference for the outgoing queue of the slot you specify
in the msamSlotID field. (The MSAMQueueRef data type is long.)

msamSlotID The identification number of the slot for which you are requesting
queue references. This number is the slot ID that you generated and
stored in the slot’s record in the Setup catalog after receiving a
kMailEPPCCreateSlot high-level event.

DESCRIPTION

A personal MSAM calls the PMSAMOpenQueues function to get the queue references
associated with a slot. You need to provide the appropriate queue reference in
subsequent operations.

Only mail slots have an incoming queue into which an MSAM places letters coming
from an external messaging system that are addressed to the user. In the case of a
messaging slot, the value in the inQueueRef field is a reference to the slot itself.

Typically, you call the function when starting up or after you respond to an
kMailEPPCCreateSlot high-level event. On startup, you should call this function
for every slot that you manage.

If you specify a suspended slot, the function returns a kMailSlotSuspended result
code, but the queue references are still valid. (A slot is suspended when a personal
MSAM calls the PMSAMLogError function to indicate a serious operational error
associated with the slot.) In general, you should not attempt operations on a
suspended slot.

← ioResult OSErr Result code
← inQueueRef MSAMQueueRef Incoming queue reference
← outQueueRef MSAMQueueRef Outgoing queue reference
→ msamSlotID MSAMSlotID Address slot identification number
Messaging Service Access Module Reference 2-133

C H A P T E R 2

Messaging Service Access Modules
If you specify an inactive slot (if the active field in the
MailStandardSlotInfoAttribute structure is set to false), the queue references
are valid. However, in general, you should not attempt operations on an inactive slot.

After you respond with a noErr result to the kMailEPPCCreateSlot high-level event,
it is possible that the IPM Manager will encounter an error instantiating the new slot. If
this happens, when you call the PMSAMOpenQueues function to obtain the new slot’s
queue references, the function returns a kMailNoSuchSlot result code.

Queue references remain valid as long as the slot is not deleted and the Macintosh
remains running. The conservative approach is to call the function each time your
personal MSAM starts up.

IMPORTANT

The PMSAMOpenQueues function is intended to be called
only by a personal MSAM. Calling it from anywhere else
yields indeterminate results. ▲

SPECIAL CONSIDERATIONS

There is a very small period immediately after you respond to a kMailEPPCCreateSlot
high-level event during which the PMSAMOpenQueues function returns a
kMailNoSuchSlot result code even if no error occurred. You should call the
function periodically until it completes successfully.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See the description of the kMailEPPCCreateSlot high-level event on page 2-221 for
more information about slot IDs.

Trap macro Selector

_oceTBDispatch $0500

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting

down
kOCEInvalidRef –1502 Invalid message reference number
kOCEInternalErr –1506 Serious internal error
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM
kMailNoMSAMErr –15056 No such personal MSAM
kMailNoSuchSlot –15062 No such slot
kMailBadMSAM –15066 MSAM unusable for unspecified

reason
2-134 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
SMSAMSetup 2

The SMSAMSetup function creates the MSAM’s Forwarder record.

pascal OSErr SMSAMSetup (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

Field descriptions

serverMSAM A pointer to the record ID of the server MSAM’s Forwarder record.
Set the recordName field to the name of the server MSAM and the
recordType field to the constant kMnMForwarderRecTypeNum.
The function returns the Forwarder record’s creation ID in the cid
field and the record location information.

password A pointer to the server MSAM’s password string.
gatewayType The MSAM’s 4-character extension type.
gatewayTypeDescription

A pointer to an RString containing a user-readable description of
the MSAM type. For example, an AppleLink MSAM whose type is
'ALNK' might provide the string “AppleLink”.

catalogServerHint
The AppleTalk address of the PowerShare catalog server that
created the MSAM’s Forwarder record. The MSAM can later pass
this value to a Catalog Manager function (in the serverHint field
of the function’s parameter block) if it wants to direct the request to
that particular catalog server.

DESCRIPTION

You call the SMSAMSetup function as part of a server MSAM’s initialization process.
The function creates the MSAM’s Forwarder record. Before calling the function, you need
to obtain from the system administrator the server MSAM’s name and password, its
extension type, and a string describing the extension type. (A server MSAM may also
have built-in knowledge of its extension type.) When the function completes successfully,
you should save knowledge of the fact that the function completed successfully in your
preferences file in the Preferences folder so that you do not call the function again after a
subsequent launch.

← ioResult OSErr Result code
↔ serverMSAM RecordIDPtr Server MSAM’s record ID pointer
→ password RStringPtr Pointer to server MSAM’s password
→ gatewayType OSType Server MSAM’s extension type
→ gatewayTypeDescription

RStringPtr Description of extension type
← catalogServerHint

AddrBlock Catalog server address
Messaging Service Access Module Reference 2-135

C H A P T E R 2

Messaging Service Access Modules
SPECIAL CONSIDERATIONS

After calling the SMSAMSetup function, call the SMSAMStartup function to get the
server MSAM’s queue reference.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For a description of the server MSAM initialization process, see “Initializing a Server
MSAM” beginning on page 2-40.

The SMSAMStartup function is described next.

SMSAMStartup 2

The SMSAMStartup function informs a PowerShare mail server that the server MSAM
that you specify has started up.

pascal OSErr SMSAMStartup (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

Field descriptions

msamIdentity The server MSAM’s authentication identity. You obtain this identity
from the AuthBindSpecificIdentity function.

queueRef A value that identifies the outgoing queue for the server MSAM
that you specify.

Trap macro Selector

_oceTBDispatch $0523

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access privileges
kOCETargetDirectoryInaccessible

–1613 Target catalog is not currently available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoDupAllowed –1641 Duplicate name and type

← ioResult OSErr Result code
→ msamIdentity AuthIdentity Server MSAM identifier
← queueRef MSAMQueueRef Queue reference
2-136 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
DESCRIPTION

You call the SMSAMStartup function to inform the PowerShare mail server that a server
MSAM is active and that the PowerShare mail server can send the MSAM high-level
events and request status information. You must call this function every time your server
MSAM starts up.

The function returns a queue reference for the server MSAM’s outgoing queue. You
provide the queue reference to the MSAMOpen function when you want to open an
outgoing message. In addition, you provide the queue reference to the MSAMCreate
function when you want to create an incoming message. In that situation, the queue
reference identifies the MSAM itself.

You must have successfully called the SMSAMSetup function to create the MSAM’s
Forwarder record before you call the SMSAMStartup function. Otherwise,
SMSAMStartup returns the kMailNoSuchSlot result code.

The queue reference is valid until the server MSAM’s PowerShare mail server quits. You
know that the PowerShare mail server is not running when any of the MSAM API
functions return the corErr result code. When the PowerShare mail server starts up
again, you need to call the SMSAMStartup function again to get a new queue reference.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthBindSpecificIdentity function and authentication identities are
discussed in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

The SMSAMSetup function is described on page 2-135.

The AppleTalk Transition Queue is described in the chapter “Link-Access Protocol (LAP)
Manager” in Inside Macintosh: Networking.

A server MSAM’s initialization process is described in the section “Initializing a Server
MSAM” beginning on page 2-40.

Trap macro Selector

_oceTBDispatch $0501

noErr 0 No error
corErr –3 PowerShare mail server not running
memFullErr –108 Not enough memory
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kMailNoSuchSlot –15062 Unknown server MSAM
Messaging Service Access Module Reference 2-137

C H A P T E R 2

Messaging Service Access Modules
Enumerating Messages in a Queue 2

Both personal and server MSAMs can use the MSAMEnumerate function to list messages
in an outgoing queue. Personal MSAMs can also use the function to list letters in an
incoming queue.

MSAMEnumerate 2

The MSAMEnumerate function returns information about the messages in a queue that
you specify.

pascal OSErr MSAMEnumerate (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

queueRef The value that identifies the queue about which you want
information. A personal MSAM specifies either the outgoing queue
reference or the incoming queue reference that it obtained from
the PMSAMOpenQueues function, depending on which queue it
wants to enumerate. A server MSAM specifies the outgoing queue
reference that it obtained from the SMSAMStartup function.

startSeqNum The sequence number of the message in the queue at which you
want the MSAMEnumerate function to start the enumeration. Set
this field to 1 to begin the enumeration with the first message in the
queue. When you call the function and there is insufficient space in
your buffer to hold information about all of the remaining messages
in the queue, the function returns in the nextSeqNum field the
sequence number of the next message. Use that number in the
startSeqNum field the next time you call the function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ startSeqNum long Starting message
← nextSeqNum long Message to continue next enumeration
↔ buffer MailBuffer Your buffer structure
2-138 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
nextSeqNum The sequence number of the first message in the queue whose
information did not fit into your buffer. The function sets this field
when your buffer is too small to hold all the information you
requested. To continue the enumeration, call the MSAMEnumerate
function again and set the startSeqNum field to the current value
of the nextSeqNum field. The MSAMEnumerate function sets the
nextSeqNum field to 0 when it has returned information about all
of the messages in the queue.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in
your buffer. Because the number of messages in the queue
varies, use your best estimate to choose the size of the buffer.
The MSAMEnumerate function retrieves information about the
messages in the queue that you specify and writes it into your
buffer, the buffer field. It sets the value of the dataSize field to
the number of bytes of data it placed in the buffer.

DESCRIPTION

You call the MSAMEnumerate function to obtain information about messages in a queue
that you specify. The function stores this information in a buffer that you provide. If your
buffer is not large enough to hold all of the information, you can call this function
repeatedly. When the function sets the nextSeqNum field to 0, you have retrieved
information on all of the messages in the queue.

Both personal and server MSAMs can enumerate an outgoing queue. When an MSAM
enumerates an outgoing queue, the function returns information about all of the
messages in the queue, including letters and non-letter messages.

Only a personal MSAM can enumerate an incoming queue to get information about the
letters in the queue because incoming queues are specific to personal MSAMs.

No matter which type of queue you enumerate, the function places the data in your
buffer in the form of a MailReply structure. The first 2 bytes contain a count of the
total number of structures that follow it in the buffer. The structures that follow
are either MSAMEnumerateOutQReply (if you enumerate an outgoing queue) or
MSAMEnumerateInQReply structures (if you enumerate an incoming queue). See
the descriptions of the MSAMEnumerateInQReply and MSAMEnumerateOutQReply
structures, respectively, for information on what specific data you retrieve when you
enumerate an incoming or an outgoing queue.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0503
Messaging Service Access Module Reference 2-139

C H A P T E R 2

Messaging Service Access Modules
RESULT CODES

SEE ALSO

The MSAMEnumerateOutQReply structure is described on page 2-97.

The MSAMEnumerateInQReply structure is described on page 2-98.

The MailReply structure is described on page 2-97.

The MailBuffer structure is described on page 2-96.

Opening an Outgoing Message 2

Call the MSAMOpen function to open a message in an outgoing queue. Once a message is
open, you can read its contents.

MSAMOpen 2

The MSAMOpen function opens a message in an outgoing queue.

pascal OSErr MSAMOpen (MSAMParam *paramBlock

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult and
ioCompletion fields.

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEBufferTooSmall –1503 Buffer is too small
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ seqNum long Sequence number of message in queue
← mailMsgRef MailMsgRef Message reference number
2-140 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Field descriptions

queueRef The queue reference of the queue that contains the message you
want to open. For a personal MSAM, specify the outgoing queue
reference you obtained from the PMSAMOpenQueues function. For a
server MSAM, specify the queue reference you obtained from the
SMSAMStartup function.

seqNum The sequence number that identifies the message you want
to open. You get this number from the seqNum field in the
MSAMEnumerateOutQReply structure returned by the
MSAMEnumerate function.

mailMsgRef A message reference number that identifies the opened message.
The MSAMOpen function returns a reference number for the message
that you use in subsequent function calls to read the message.

DESCRIPTION

You call the MSAMOpen function to open a message in the outgoing queue you specify in
the queueRef field.

The MSAMOpen function provides a unique message reference number to each MSAM
that opens a given message. Once you close the message by calling the MSAMClose
function, the message reference number becomes invalid and you cannot use it in
subsequent function calls. (In contrast, the value of the seqNum field is a reference to the
message that remains valid until you delete the message by calling the MSAMDelete
function.)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO
The MSAMEnumerateOutQReply structure is described on page 2-97.

The PMSAMOpenQueues function is described on page 2-133.

The SMSAMStartup function is described on page 2-136.

The MSAMClose function is described on page 2-167.

The MSAMDelete function is described on page 2-202.

Trap macro Selector

_oceTBDispatch $0508

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such letter
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down
Messaging Service Access Module Reference 2-141

C H A P T E R 2

Messaging Service Access Modules
Reading Header Information 2

To read letter attributes from an open letter, use the MSAMGetAttributes function. You
can read the recipients of a message with the MSAMGetRecipients function. To read
the header of a non-letter message, use the MSAMGetMsgHeader function.

MSAMGetAttributes 2

The MSAMGetAttributes function reads attributes from the header of an open letter
that you specify.

pascal OSErr MSAMGetAttributes (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter whose attributes you
want to read. You obtain the reference number when you call the
MSAMOpen function.

requestMask A bit field structure that specifies which attributes in the letter’s
header you want to read. The attributes whose values you may
retrieve with this function are listed below. Set the bit for each
attribute that you want to read. Clear the remaining bits.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in
your buffer. The MSAMGetAttributes function writes attribute
values into your buffer (the buffer field) and sets the value
of the dataSize field to the number of bytes of data it placed in
the buffer.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ requestMask MailAttributeBitmap Attribute types requested
↔ buffer MailBuffer Your buffer structure
← responseMask MailAttributeBitmap Attribute types returned
← more Boolean Is there more data?
2-142 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
responseMask A bit field structure that specifies the attributes for which the
MSAMGetAttributes function returned values in the buffer. If the
function did not return an attribute because either a requested
attribute does not exist in the letter or you did not request the
attribute, the function sets the corresponding bit in the structure to 0.

more A Boolean value that indicates whether there are more attribute
values than can fit in your buffer. If your buffer is too small
to hold all of the attribute values that you requested, the
MSAMGetAttributes function sets this field to true; otherwise,
it sets this field to false. If the value of the more field is true,
you can call the MSAMGetAttributes function again, setting the
bits in the request mask for the attributes you did not yet receive.

DESCRIPTION

You call the MSAMGetAttributes function to read letter attributes by setting the
appropriate bits in the requestMask field. You can request any combination of the
following attributes:

The MSAMGetAttributes function reads the attribute values you requested from the
letter header and writes them into your buffer, starting with the attribute specified by the
least significant bit in the requestMask field and continuing in ascending order. If the
length of an attribute value is odd, it adds a pad byte so that each attribute value starts
on an even boundary.

You can request attributes for any letter you have previously opened.

You cannot read a letter’s to, from, cc, or bcc attributes by calling the
MSAMGetAttributes function. Call the MSAMGetRecipients function for this
purpose. The MSAMGetAttributes function ignores the bits in the request mask
that correspond to recipient attributes and sets the equivalent bits in the response
mask to 0 to indicate that it is not returning the values for these attributes. The
MSAMGetAttributes function does not return an error in this case.

Letter attribute Bit constant Mask constant

Indications kMailIndicationsBit kMailIndicationsMask

Letter creator & type kMailMsgTypeBit kMailMsgTypeMask

Letter ID kMailLetterIDBit kMailLetterIDMask

Send timestamp kMailSendTimeStampBit kMailSendTimeStampMask

Nesting level kMailNestingLevelBit kMailNestingLevelBMask

Message family kMailMsgFamilyBit kMailMsgFamilyMask

Reply ID kMailReplyIDBit kMailReplyIDMask

Conversation ID kMailConversationIDBit kMailConversationIDMask

Subject kMailSubjectBit kMailSubjectMask
Messaging Service Access Module Reference 2-143

C H A P T E R 2

Messaging Service Access Modules
SPECIAL CONSIDERATIONS

Because the MailAttributeBitmap data type is defined as a bit field structure, you
cannot use the predefined masks such as kMailSubjectMask, kMailMsgTypeMask,
and so forth to set or test the value of a bit field in the requestMask or responseMask
field. The masks operate on variables of type long.

You cannot read a letter’s letterFlags attribute by calling the MSAMGetAttributes
function. Only incoming letters have that attribute.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailAttributeBitmap structure, including the complete list of letter attributes, is
described on page 2-100.

The MailBuffer structure is described on page 2-96.

The MSAMGetRecipients function is described next.

See the section “Reading Letter Attributes” beginning on page 2-47 for an example of
reading attributes from a letter header.

MSAMGetRecipients 2

The MSAMGetRecipients function returns recipient information from the header of an
open message that you specify.

pascal OSErr MSAMGetRecipients (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $050B

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
2-144 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message about which you
want recipient information. You obtain the reference number when
you call the MSAMOpen function.

attrID A constant that identifies the type of recipient about which you
want information. Specify kMailResolvedList if you want
information about resolved recipients. If you want information
about an original recipient type, specify kMailFromBit,
kMailToBit, kMailCcBit, or kMailBccBit.You can specify one
type of recipient each time you call the MSAMGetRecipients
function.

startIndex The position in the recipient list at which you want the
MSAMGetRecipients function to begin extracting information
to store in your buffer. Set this field to 1 to start with the first
recipient of the type specified by the attrID field.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. The MSAMGetRecipients function writes recipient
information into your buffer (the buffer field) and sets the value
of the dataSize field to the number of bytes of data it placed in the
buffer. The function places the data in your buffer in the form of a
MailReply structure. The first 2 bytes contain a count of the
number of recipient structures that follow in your buffer. If you
request information about an original recipient type (to, cc, bcc,
from), the MSAMGetRecipients function returns the recipient
information as one or more MailOriginalRecipient structures.
If you request information about resolved recipients, the function
returns the information as one or more MailResolvedRecipient
structures. If a recipient structure has an odd length, the function
adds a pad byte so that the next structure can start on a word
boundary.

nextIndex If the value of the more field is true, the nextIndex field
indicates the position in the recipient list of the first attribute that
did not fit into your buffer. If the value of the more field is false,
the nextIndex field is undefined.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ attrID MailAttributeID Recipient type requested
→ startIndex unsigned short Recipient to start from
↔ buffer MailBuffer Your buffer structure
← nextIndex unsigned short Recipient to continue from

next time
← more Boolean Is there more data?
Messaging Service Access Module Reference 2-145

C H A P T E R 2

Messaging Service Access Modules
more A Boolean value that indicates whether there is more recipient
information than can fit in your buffer. If your buffer is too small
to hold all of the recipient information that you requested, the
MSAMGetRecipients function sets this field to true; otherwise,
it sets this field to false. If the function sets this field to true,
you can call it again to retrieve additional information by setting
the startIndex field for the next call to the value of the
nextIndex field.

DESCRIPTION

You call the MSAMGetRecipients function to get a list of original or resolved recipients
for the message that you specify in the mailMsgRef field. You need to get original
recipients so that you can properly display them as From, To, cc, or bcc recipients in the
message you send to an external messaging system. You need to get a list of resolved
recipients so that you know to which recipients you must send the message.

By setting the attrID field appropriately, you can specify either a resolved recipient or
one type of original recipient each time you call the MSAMGetRecipients function.

If you specify an original recipient type in the attrID field, the function returns data in
the form of one or more MailOriginalRecipient structures. Each of these structures
contains the absolute index of the recipient followed immediately by information about
one recipient. The absolute index is useful if you need to match an original recipient with
the corresponding resolved recipient.

If you specify a resolved recipient in the attrID field, the function returns data in the
form of one or more MailResolvedRecipient structures. Each of these structures
contains the absolute index of the recipient, the Boolean variable responsible, and
recipient flags, followed immediately by information about one recipient. If the value of
the responsible field is true, you are responsible for delivering the message to that
recipient and submitting delivery and non-delivery reports to the sender if those are
requested. Naturally, you should not attempt to deliver a message to a recipient for
which the responsible field is set to false. If the kIPMBCCRecBit bit in the
recipientFlags field is set, the recipient is a bcc recipient.

Note
A From recipient may appear in the resolved list, but in
that case the responsible field is always set to false. ◆

As you read MailResolvedRecipient structures from your buffer, you must save the
ordinal-position value for each resolved recipient. The first recipient’s ordinal-position
value is 1; the second recipient’s ordinal-position value is 2; the nth recipient’s ordinal-
position value is n, and so forth. The MSAMnMarkRecipients function requires you to
provide the ordinal-position value to identify a recipient you want to mark. If you need
to call MSAMGetRecipients more than once to get all of the resolved recipients, do not
set the ordinal-position value back to 0 on successive calls to the function. Rather,
increment the ordinal-position value continuously across multiple calls to the
MSAMGetRecipients function for a given letter so that each resolved recipient is
associated with a unique ordinal-position value.
2-146 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Personal MSAMs will find a one-to-one correspondence between their resolved
recipients and their displayable (original) recipients because all group addresses are
expanded into individual recipients before the MSAMGetRecipients function returns
recipient information to the personal MSAM.

Server MSAMs may find they have more resolved recipients than original recipients.
This is because the PowerShare mail server expands PowerShare group addresses into
individual addresses when you ask for resolved recipients. However, it does not
necessarily expand PowerShare group addresses when you ask for original recipients.
The MSAMGetRecipients function does not expand any external group addresses.

Server MSAMs may also find that there are resolved recipients that are not exactly the
same as the corresponding original recipients. These have been resolved by the AOCE
software to a more specific form.

The PowerShare mail server does not suppress duplicate external addresses. Sometimes
it suppresses duplicate addresses resulting from the expansion of a PowerShare group
address. However, you are not guaranteed that the MSAMGetRecipients function will
not return duplicate addresses.

SPECIAL CONSIDERATIONS

For non-letter messages, the From recipient is a reply queue address, a return address
that is not necessarily the same as the sender’s address.

This function does not apply to delivery and non-delivery reports. You cannot read the
recipient attribute of a report.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailOriginalRecipient structure is described on page 2-108.

The MailResolvedRecipient structure is described on page 2-108.

Original and resolved recipients are discussed in the section “Reading Addresses”
beginning on page 2-51.

The MailBuffer structure is described on page 2-96.

Trap macro Selector

_oceTBDispatch $050C

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting

down
kOCEInvalidRef –1502 Invalid message reference number
kOCEBufferTooSmall –1503 Buffer is too small
Messaging Service Access Module Reference 2-147

C H A P T E R 2

Messaging Service Access Modules
The MailReply structure is described on page 2-97.

Reply queues are discussed with the MSAMPutMsgHeader function on page 2-183.

The MSAMnMarkRecipients function is described on page 2-163.

MSAMGetMsgHeader 2

The MSAMGetMsgHeader function reads data from the header of a non-letter message
that you specify.

pascal OSErr MSAMGetMsgHeader (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message for which you want
header information. You obtain the reference number when you call
the MSAMOpen function.

selector A constant that indicates the type of header information that you
are requesting. The possible values are defined below. You cannot
add or combine constant values in the selector field.

offset The byte position, relative to the beginning of the header
information specified in the selector field, from which you want
the MSAMGetMsgHeader function to begin reading. To read from
the beginning of the header information field, set this field to 0. If
your buffer is too small to hold all of the data you requested, you
can call the MSAMGetMsgHeader function again and compute a
new value for the offset field using the dataSize value that the
function returns in the MailBuffer structure.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ selector IPMHeaderSelector Type of header data requested
→ offset unsigned long Begin reading from here
↔ buffer MailBuffer Your buffer
← remaining unsigned long Number of bytes still to read
2-148 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in
your buffer. The MSAMGetMsgHeader function writes header
information into your buffer and sets the value of the dataSize
field to the number of bytes of data it placed in the buffer.

remaining The number of bytes of data remaining to be read. The
MSAMGetMsgHeader function sets this field to 0 when it has
returned all of the information that you requested.

DESCRIPTION

You call the MSAMGetMsgHeader function to obtain information from the header of a
non-letter message. Do not call this function to read headers of letters or reports.

If the buffer you provide is not large enough to hold the information requested, you
must make additional calls to the MSAMGetMsgHeader function to obtain it.

The format of the information that the MSAMGetMsgHeader function places in your
buffer varies according to the value of the selector field. You may use any of the
following constants in the selector field:

ASSEMBLY-LANGUAGE INFORMATION

Selector value Description

kIPMTOC The function returns an array of TOC structures, one for each
block in the message. Each entry in the array contains the
block’s size, creator, type, offset, and up to 4 bytes of private
data that the application that created the block may have
added for its own purposes when it created the block. The
array of TOC structures is ordered; the sequential position of a
block entry in the table of contents is a message block’s index.
The index of the first block is 1. You can identify a message
block by its index number.

kIPMSender The function returns the identity of the sender of the message
in an IPMSender structure.

kIPMProcessHint The function returns a Pascal string of up to 32 characters. The
application that created the message may add a string for its
own purposes when it creates the message.

kIPMMessageTitle The function returns the title of the message in an
RString structure.

kIPMMessageType The function returns the creator and type of the message
in an IPMMsgType structure.

kIPMFixedInfo The function returns selected header information in an
IPMFixedHdrInfo structure.

Trap macro Selector

_oceTBDispatch $0511
Messaging Service Access Module Reference 2-149

C H A P T E R 2

Messaging Service Access Modules
RESULT CODES

SEE ALSO

The TOC, IPMSender, IPMFixedHdrInfo, and IPMMsgType structures are described
in the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

The MSAMGetMsgHeader function is virtually identical to the IPMReadMsgHeader
function. An application creating a message adds the process hint Pascal string when
it calls the IPMNewMsg function and the private data in a message block when it
calls the IPMNewBlock function. All of these functions are described in the chapter
“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

The RString structure is described in the chapter “AOCE Utilities” in Inside Macintosh:
AOCE Application Interfaces.

The MailBuffer structure is described on page 2-96.

Reading a Message 2

The MSAM API provides a number of functions to read outgoing messages that have
been opened. The functions MSAMGetContent and MSAMGetEnclosure apply only to
letters. The MSAMEnumerateBlocks, MSAMGetBlock, and MSAMOpenNested
functions apply to any type of message.

MSAMGetContent 2

The MSAMGetContent function returns information about (and if requested, data from)
a single segment in a letter’s content block.

pascal OSErr MSAMGetContent (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCEBufferTooSmall –1503 Buffer is too small
2-150 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter whose content you
want to read. You obtain the reference number when you call the
MSAMOpen function.

segmentMask The types of segments that you want to read. The content of a letter
consists of text, pictures, sound, QuickTime movies, and styled text
segments. The constants that you use to specify the segment types
you want are described on page 2-110.
You can request any combination of segment types in the same
request except text and styled text segments. If you request styled
text segments, the function returns both plain text and styled text
segments. If you request plain text segments, it returns any plain
text segments that are in the letter and also converts styled text
segments to plain text segments and returns them to you.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. If the current segment is one of the types that you specified
in the segment mask, the MSAMGetContent function writes the
segment into your buffer and sets the value of the dataSize field
to the number of bytes of data it placed in the buffer.

textScrap A pointer to a style scrap structure (StScrpRec). If you request
styled text segments, you can choose to allocate the structure,
depending on which of two methods you want to use to read styled
text. Both methods are described in the discussion below.
If you choose to allocate the style scrap structure, set its
scrpNStyles field to the number of styles your buffer can hold.
When the function writes styled text to your buffer, it returns style
information in the style scrap structure and sets the scrpNStyles
field to the actual number of styles returned.
If you are not requesting styled text segments, the function ignores
this field.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ segmentMask MailSegmentMask Segment type you want to read
↔ buffer MailBuffer Your buffer structure
↔ textScrap StScrpRec* Pointer to style scrap structure
← script ScriptCode Character set
← segmentType MailSegmentType Segment type returned
← endOfScript Boolean End of data of one character set?
← endOfSegment Boolean End of segment data?
← endOfContent Boolean End of letter content?
← segmentLength long Length of segment
↔ segmentID long Segment identifier
Messaging Service Access Module Reference 2-151

C H A P T E R 2

Messaging Service Access Modules
script A value that indicates the character set (Roman, Arabic, Kanji, etc.) of
the text that the function placed in your buffer. The function sets this
field only when it returns text data (it sets the segmentType field to
kMailTextSegmentType or kMailStyledTextSegmentType).

segmentType A constant that indicates the type of the current data segment. A
segment can contain text, pictures, sound, QuickTime movies, or
styled text. The constants that the function may return in this field
are described on page 2-109. (If you are reading data from the
segment and you need to call the MSAMGetContent function more
than once to retrieve all of the data from the segment, the function
returns a value in this field only the first time you call it for that
segment.)

endOfScript A Boolean value that indicates whether the text in your buffer is the
end of a script run. The function sets this flag only when it returns
data from a plain text or styled text segment. If there is more text in
the current script run, it sets this field to false.

endOfSegment A Boolean value that indicates whether the MSAMGetContent
function has reached the end of a segment. If you did not request
the current segment type in your segment mask, the function
always sets this field to true. If you requested the current segment
type in your segment mask, the function sets this field to true if it
has returned all of the data in the current segment and to false if
there is more data in the current segment.

endOfContent A Boolean value that indicates whether the MSAMGetContent
function has reached the end of the letter’s content block. The
MSAMGetContent function sets the endOfContent field to true
when it reaches the end of the last segment in the content block;
otherwise it sets this field to false.

segmentLength The number of bytes in the current segment. The MSAMGetContent
function returns a value in this field the first time you call it for a
given segment.

segmentID A segment identifier. This is both an input and an output. Set this
field to 0 the first time you call it for a given letter. The function
returns a value in this field the first time it reads each segment in a
letter. On subsequent calls to the function, you set it to 0 or to a
known segment ID. If you set it to 0, the function continues reading
sequentially the current segment (or if endOfSegment is set to
true, the next segment). If you set it to a segment ID, the function
reads the segment specified by the segment ID.

DESCRIPTION

The MSAMGetContent function returns information about a single segment in a letter’s
content block each time you call it. If the current segment type is one that you specified
in your segment mask, the function also returns actual segment data from the segment.
You must previously have opened the letter by calling either the MSAMOpen or
MSAMOpenNested function.
2-152 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
A content block contains a series of segments in standard interchange format; that is,
each segment consists of either text, pictures, sound, styled text, or QuickTime movies.
You tell the MSAMGetContent function what types of segments you want to read by
setting the segmentMask field appropriately. The function examines the value of the
segmentMask field the first time you call it for a given letter and at the beginning of
each segment in the letter to determine whether it should write the segment data into the
buffer that you provide.

At the beginning of each segment, the MSAMGetContent function sets the
segmentType, segmentLength, segmentID, endOfSegment, and endOfContent
fields. You can detect a new segment by examining the endOfSegment flag: if its
value is true you know that you will get information on a new segment the
next time you call the MSAMGetContent function.

You can read the segments in a letter’s content block in sequential order or in any order
you wish, depending on the value you specify for the segment ID. To read segments in
the order they are stored in the content block, specify 0 in the segmentID field. The first
time it reads a given segment, the function returns the segment ID. Because it is both an
input and output value, be sure to clear the segmentID field after the start of a new
segment to continue reading segments sequentially. If you do not set the segmentID
field to 0, you will read the same segment over and over again.

To read segments in random order, you must know the segment’s segment ID. Provide
the ID in the segmentID field to access the segment randomly. When you specify a
segment ID other than 0, the function repositions the offset at which it begins reading to
the start of the segment you identify.

Note
To build a table of contents of segments, their segment types, their
lengths, and their segment IDs, set the segmentMask field to 0 and call
the MSAMGetContent function repeatedly until the endOfContent
field returns true. ◆

There are two types of text data: plain text and styled text. If you request styled text
segments, the function returns both plain text and styled text segments. If you request
plain text segments, it returns any plain text segments that are in the letter and also
converts styled text segments to plain text segments and returns them to you.

A text segment contains one or more script runs. A script run is a string of text
in the same character set. When the function returns text data (that is, when
the function sets the segmentType field to kMailTextSegmentType or
kMailStyledTextSegmentType), the script field indicates the character set. The
function identifies the end of a script run by setting the endOfScript field to true.

When you request plain text (that is, when you specify kMailTextSegmentMask in
your segment mask), the MSAMGetContent function retrieves styled text as plain text.
You lose all style information when you do this (except for the character set specified in
the script field).

A styled text segment consists not of a stream of bytes but rather of a series of “style
runs” akin to style runs in TextEdit.
Messaging Service Access Module Reference 2-153

C H A P T E R 2

Messaging Service Access Modules
To read a styled text segment, you allocate a style scrap structure and set the textScrap
field to point to it. You should allocate a StScrpRec structure of a size appropriate to
your MSAM. The function places the text into your buffer and the style information into
the style scrap structure. It sets the scrpStartChar field in each ScrpSTElement
structure in the style scrap structure to the offset of the text to which it applies, relative to
the start of your buffer. The function completes when it has returned all the styled text or
when it runs out of room for either the style information or text. If additional styled text
exists, it sets endOfSegment to false.

If the function completes because it runs out of room for either the style information or
the text, then the next time you call the function, it continues writing text from the same
segment into your buffer and putting text styles in your style scrap structure. In this
case, the offsets in the scrpStartChar field of the ScrpSTElement structure in your
style scrap structure apply only to the data currently in your buffer, not to the offsets in
the original segment in the letter.

For example, suppose that the next segment in the letter to be read is a styled text
segment 120 bytes in length containing 12 different styles. The eleventh style starts at an
offset of 90 (that is, at the 91st byte of the segment). Suppose further that your text buffer
is 200 bytes but your style scrap structure can hold only 10 styles. In this case, the
MSAMGetContent function stops writing data to your buffer after it has placed 10 styles
in your style scrap structure. Because these 10 styles applied to the first 90 bytes of text,
the dataSize field of your MailBuffer structure indicates that 90 bytes of data were
written to your buffer, and the value of the endOfSegment field is false.

The next time you call the function, it writes the last 30 bytes of text into your buffer
and puts the last two styles into your style scrap structure. It returns a value of 2 in
the scrpNStyles field of your style scrap structure and sets the endOfSegment field
to true. In this case, the first offset in the scrpStartChar field of the script table in
the style scrap structure is 0, indicating that the first style in the text scrap starts with
the first byte of text currently in your buffer. (The offset is not 90, as it would have been
for this portion of text had your style scrap structure been able to hold all of the styles
at once.)

You cannot specify kMailTextSegmentMask and kMailStyledTextSegmentMask
at the same time.

SPECIAL CONSIDERATIONS

Different Macintosh computers may use the same font number for different fonts. That
is, font numbers may vary from computer to computer, but font names are supposed to
be unique. The SMPAddContent function in the Standard Mail Package creates a block
containing a table that maps font numbers to font names. To ensure that you apply the
right fonts to styled text, you need to read this font block. Its block creator is 'fish'
and its block type is 'font'.

You can use the following format information to read the font block. The first word in
the block contains the number of font information elements in the block, followed by a
packed array of font information elements. Each element consists of a word containing a
font number followed by a Pascal string containing the font name and, if necessary, a
pad byte for word alignment.

Constants are not defined for the 'fish' and 'font' block creator and type.
2-154 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

The values that you can use in the segmentType and segmentMask fields are
described in the section “The Segment Types” beginning on page 2-109.

A script run is a sequence of text in a single character set. For more information about
script runs, see Inside Macintosh: Text.

The ScrpSTElement and the StScrpRec structures are described in Inside
Macintosh: Text.

MSAMGetEnclosure 2

The MSAMGetEnclosure function reads file enclosures from a letter that you specify.

pascal OSErr MSAMGetEnclosure (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $050D

noErr 0 No error
kOCEParamErr –50 Requested both plain and styled text

segments
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kMailInvalidRequest –15045 Message reference number does not

refer to a letter
kMailMalformedContent –15061 Content data malformed

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
← contentEnclosure Boolean Is enclosure main letter content?
↔ buffer MailBuffer Your buffer structure
← endOfFile Boolean End of file?
← endOfEnclosures Boolean All enclosures read?
Messaging Service Access Module Reference 2-155

C H A P T E R 2

Messaging Service Access Modules
See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter whose enclosures you
want to read. You obtain the reference number when you call the
MSAMOpen function.

contentEnclosure
A Boolean value that indicates whether the enclosure is the content
enclosure for the letter. A content enclosure contains the content of a
letter. It is typically a file in an application’s native format. When
you call the MSAMGetEnclosure function the first time, it sets this
field to true if the enclosure is a content enclosure or to false if it
is not. The function also sets the value of this field the first time you
call it after the function sets the endOfFile flag to true. At other
times, consider the value of this field invalid.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in
your buffer. The MSAMGetEnclosure function writes the
information that you request into your buffer and sets the value
of the dataSize field to the number of bytes of data it placed
in the buffer.

endOfFile A Boolean value that indicates whether an entire enclosure file has
been read. If your buffer is not large enough to hold the entire
enclosure file, the MSAMGetEnclosure function sets the
endOfFile field to false. You can call the function repeatedly
until it sets the endOfFile field to true, at which point an entire
enclosure file has been read. The MSAMGetEnclosure function
does not put data belonging to more than one enclosure file into
your buffer at the same time, even when the end of file is reached
on one enclosure file, there are additional enclosure files to read,
and your buffer is not full.
When a letter has no enclosures, the function sets this field to
false. To detect the no-enclosure condition, test only the
endOfEnclosures field.

endOfEnclosuresA Boolean value that indicates whether the MSAMGetEnclosure
function has reached the end of all of the enclosures for the letter
that you specify. When the MSAMGetEnclosure function has
retrieved all enclosures for the current nesting level, it sets the
endOfEnclosures field to true.

DESCRIPTION

You call the MSAMGetEnclosure function to retrieve all file enclosures for a letter that
you specify. To get all of the enclosures in a letter, you should call the function repeatedly
until the value of the endOfEnclosures field is true.

A letter’s enclosures can be folders or Macintosh files in AppleSingle stream format. The
MSAMGetEnclosure function returns all of the files to you; it does not return any folder
2-156 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
information.That is, you do not know how the files might have been organized and
stored in the letter.

Because the PowerTalk system software works with the hierarchical file system, it is
possible for an outgoing letter to contain more than one enclosed file with the same
name, so long as the files are in different enclosed folders. You may need to adjust the
filenames of identically named enclosed files so that each one is unique. Otherwise, it is
possible that only one of such files will be retained by the external messaging system.

Note
An enclosure is not a nested letter. A nested letter is a letter that a
recipient has forwarded or replied to. Enclosures are files or folders
that the sender has enclosed with a letter. ◆

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

 For more information on AppleSingle stream format, see the APDA document
AppleSingle/AppleDouble Formats for Foreign Files Developer Note.

MSAMEnumerateBlocks 2

The MSAMEnumerateBlocks function returns an array of message block descriptors for
the blocks in a message.

pascal OSErr MSAMEnumerateBlocks (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $050E

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kMailInvalidRequest –15045 Nested letter already created for this letter
Messaging Service Access Module Reference 2-157

C H A P T E R 2

Messaging Service Access Modules
Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message whose message
blocks you want to enumerate. You obtain the reference number
when you call the MSAMOpen function.

startIndex The sequence number of the block about which you want informa-
tion. Set this field to 1 to start with the first message block. When
you call the function and there is insufficient space in your buffer to
hold information about all of the remaining blocks, the function
returns in the nextIndex field the sequence number of the next
block. Use that number in the startIndex field the next time you
call the function.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. The MSAMEnumerateBlocks function places data in your
buffer in the form of a MailReply structure. The first 2 bytes in
the MailReply structure are a count of the number of
MailBlockInfo structures, followed immediately by the
structures. The function sets the value of the dataSize field to
the number of bytes of data it placed in the buffer.

nextIndex The sequence number of the first block whose information did not
fit into your buffer. The function sets this field when your buffer is
too small to hold all the information you requested. If there is no
more information to return, the value of the nextIndex field is
undefined. You must check the value of the more field before
interpreting the value in the nextIndex field. The nextIndex
field contains meaningful data only when the value of the more
field is true.

more A Boolean value that indicates whether there is more message
block information than can fit in your buffer. If your buffer is too
small to hold all of the block information that you requested,
the MSAMEnumerateBlocks function sets this field to true;
otherwise, it sets this field to false. If the function sets this field
to true, you can call it again to retrieve additional information
by setting the startIndex field for the next call to the value of the
nextIndex field.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ startIndex unsigned short Message block to start from
↔ buffer MailBuffer Your buffer structure
← nextIndex unsigned short Message block to continue

from next time
← more Boolean Is there more data?
2-158 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
DESCRIPTION

You call the MSAMEnumerateBlocks function to get information about all of the blocks
in a message. For each block, the function returns a MailBlockInfo structure that
specifies the block’s creator and type, its offset in bytes from the beginning of the
message (the offset is zero-based), and its length in bytes. You can use this information to
read specific blocks in the message.

struct MailBlockInfo {

OCECreatorType blockType; /* block creator and type */

unsigned long offset; /* offset from start of msg */

unsigned long blockLength;/* number of bytes in block */

};

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

The MailReply structure is described on page 2-97.

MSAMGetBlock 2

The MSAMGetBlock function reads a block from a message that you specify.

pascal OSErr MSAMGetBlock (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $050F

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCEBufferTooSmall –1503 Buffer is too small
Messaging Service Access Module Reference 2-159

C H A P T E R 2

Messaging Service Access Modules
Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message whose blocks you
want to read. You obtain the reference number when you call the
MSAMOpen function.

blockType A structure that specifies the creator and the type of the block that
you want to read. You cannot specify a wildcard value for either the
creator or block type.

blockIndex A value that indicates the relative position of the block of type
blockType that you want to read. To read all blocks of a specific
block type, set this field to 1 the first time you call the
MSAMGetBlock function and increment it by 1 in subsequent calls
to the function until you have read all blocks of that type in the
message. (Note that the value you supply here is distinct from
the index used in the MSAMEnumerateBlocks function.)

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. The MSAMGetBlock function writes the information that
you request into your buffer and sets the value of the dataSize
field to the number of bytes of data it placed in the buffer.

dataOffset The byte position relative to the beginning of the block at which you
want the MSAMGetBlock function to begin reading. Set this field to
0 to read from the beginning of the block.

endOfBlock A Boolean value that indicates whether the MSAMGetBlock
function has returned the entire block. If the buffer that you provide
is not large enough to contain an entire block, the MSAMGetBlock
function sets this field to false. You can call the function again
with an updated value in the dataOffset field to retrieve
additional data. When the MSAMGetBlock function has returned
the entire block, it sets the value of the endOfBlock field to true.

remaining The number of bytes of data remaining in the block that the
MSAMGetBlock function has not returned to you. If the
endOfBlock field is set to true, the value of this field is 0.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ blockType OCECreatorType Block creator and type
→ blockIndex unsigned short Sequential position of block
↔ buffer MailBuffer Your buffer structure
→ dataOffset unsigned long Byte offset within block
← endOfBlock Boolean End of block?
← remaining unsigned long Number of bytes not read in block
2-160 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
DESCRIPTION

You call the MSAMGetBlock function to read data from a block in a message. You
identify the block that you want to read by the values of the blockType and
blockIndex fields. Use the dataOffset field to identify the point at which you
want to begin reading within your chosen block.

Typically, you call the MSAMGetBlock function to read report blocks, image blocks, and
private blocks because the MSAM API provides no other way to read these types of
blocks. Although it is possible to call the MSAMGetBlock function to read blocks that
contain letter content, attributes, enclosures, and so forth, the internal format of these
blocks is private. You should use the specific functions provided in the MSAM API for
reading these types of blocks.

There are no restrictions on the number of times that you may read a given block. You
may read the blocks in a message in any order.

To read a report block, in the blockType field, set the block creator to
kMailAppleMailCreator and set the block type to kMailReportType. Set the
blockIndex field to 1. The MSAMGetBlock function places a report block in your buffer.
The data in a report block consists of a header, IPMReportBlockHeader, followed by
an array of elements, each of type OCERecipientReport. (You can detect a report in
your outgoing queue when you call the MSAMEnumerate function. The message creator
is always kIPMSignature and the message type is kIPMReportNotify.)

To read an image block, in the blockType field, set the block creator to
kMailAppleMailCreator and set the block type to kMailImageBodyType. The
data that the MSAMGetBlock function places in your buffer is a structure of type
TPfPgDir, followed by the actual picture elements (PICTs).

Blocks of type kMailMSAMType contain data whose format and content are private to an
MSAM. To read a private block, in the blockType field, set the block creator to a value
that you define, and set the block type to kMailMSAMType.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMReportBlockHeader, OCECreatorType, and OCERecipientReport
structures are described in the chapter “Interprogram Messaging Manager” in Inside
Macintosh: AOCE Application Interfaces.

Trap macro Selector

_oceTBDispatch $0510

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kIPMBlkNotFound –15107 No such block
Messaging Service Access Module Reference 2-161

C H A P T E R 2

Messaging Service Access Modules
The MailBuffer structure is described on page 2-96.

The TPfPgDir structure is described on page 2-113.

For more information about PICT format, see Inside Macintosh: Imaging With QuickDraw.

The MailIndications structure is described beginning on page 2-102.

MSAMOpenNested 2

The MSAMOpenNested function opens a message that is nested within a message that
you specify.

pascal OSErr MSAMOpenNested (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message that contains a
nested message that you want to open. You obtain the reference
number when you call the MSAMOpen function.

nestedRef A reference number that identifies the nested message opened by
the MSAMOpenNested function.

DESCRIPTION

Call MSAMOpenNested to open a message that is nested within a message. You can open
only one message nested within a message at a given nesting level. A nested message
itself may contain a nested message.

The MSAMOpenNested function returns a reference number to the opened nested
message. The nested message reference number is analogous to the message reference
number of the parent message. Use the nested message reference number when calling
functions to read or close the nested message.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
← nestedRef MailMsgRef Reference number of the nested message
2-162 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
You can call the MSAMClose function to close the nested message explicitly. Alternately,
you can close a nested message by closing its parent message. The MSAMClose function
always closes the message you specify and all messages nested within it.

SPECIAL CONSIDERATIONS

Although a letter, by definition, can have only one nested letter per nesting level, a
non-letter message may actually have more than one nested message per nesting level.
The IPM Manager API allows applications to create such messages. However, you can
open only the first message nested within a message at a given nesting level.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Nested messages are described in the section “Letters” beginning on page 2-17.

The MSAMClose function is described on page 2-167.

Marking a Recipient 2

When you have completed your attempts to deliver a message to a recipient, you should
mark the recipient, indicating that you have completed your delivery attempts. The
MSAMnMarkRecipients function allows you to do that. If you need to mark a recipient
of a message you have closed, you can use the MSAMMarkRecipients function.

MSAMnMarkRecipients 2

The MSAMnMarkRecipients function allows you to indicate that you have completed
your attempts to deliver a given open message to the recipients that you specify.

pascal OSErr MSAMnMarkRecipients (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $0509

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCEVersionErr –1504 Wrong version of nested message
Messaging Service Access Module Reference 2-163

C H A P T E R 2

Messaging Service Access Modules
asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A message reference number that identifies an open message whose
recipients you want to mark. You obtain this reference number from
the MSAMOpen function. It is valid if you have not yet closed the
message by calling the MSAMClose function.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. You place data in your buffer in the form of a MailReply
structure. The first 2 bytes in the buffer contain the number of
identifying values that follow. Then you store a value that identifies
each recipient that you want to mark. Each identifying value is
2 bytes long. The dataSize field in the MailBuffer structure
is unused.

DESCRIPTION

Calling the MSAMnMarkRecipients function for one or more recipients indicates that
you have delivered the specified message or have finished attempting to deliver the
message to those recipients. You may have delivered the message directly to a recipient
or to an agent within the non-AOCE system that has responsibility for delivery to the
final destination.

The value that identifies a recipient that you want to mark is its ordinal position
in the buffer returned by the MSAMGetRecipients function. When you call the
MSAMGetRecipients function to get resolved recipients, MSAMGetRecipients places
some number of MailResolvedRecipient structures in your buffer. You must save
the ordinal-position value of each resolved recipient as you retrieve these structures. The
first recipient’s ordinal-position value is 1; the second recipient’s ordinal-position value
is 2 (the nth recipient’s ordinal-position value is n). Do not use the absolute index of the
recipient contained in a MailResolvedRecipient structure to identify a recipient. The
MSAMnMarkRecipients function will not work correctly if you do so.

The MSAMnMarkRecipients function clears the responsible flag for the
recipients you specify. If you call the MSAMGetRecipients function after calling
MSAMnMarkRecipients, the marked recipients have the responsible field of their

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message identifier
↔ buffer MailBuffer Your buffer structure
2-164 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
corresponding MailResolvedRecipient structures set to false. After you mark
all of the recipients for a message, the done field in the MSAMEnumerateOutQReply
structure is set to true for that message when you enumerate the outgoing queue.

You can call the MSAMnMarkRecipients function more than once for a given message,
specifying one or more recipients each time you call it.

Note
Calling the MSAMnMarkRecipients function for a given recipient does
not necessarily mean that you have successfully delivered the message.
You should use a report to indicate whether or not you have successfully
delivered a message. ◆

SPECIAL CONSIDERATIONS

If you must mark a recipient of a message you have closed, you can call the earlier
version of this function, the MSAMMarkRecipients function. Instead of a message
reference number, you provide the reference number of the outgoing queue that contains
the message and the message sequence number. The MSAMMarkRecipients function
produces the same result, but it executes much more slowly.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailResolvedRecipient structure is described on page 2-108.

The MailBuffer structure is described on page 2-96.

The MailReply structure is described on page 2-97.

The MSAMGetRecipients function is described beginning on page 2-144.

The MSAMMarkRecipients function is described next.

Trap macro Selector

_oceTBDispatch $0512

noErr 0 No error
kOCEParamErr –50 Incoming queue reference not allowed
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such letter
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down
Messaging Service Access Module Reference 2-165

C H A P T E R 2

Messaging Service Access Modules
MSAMMarkRecipients 2

The MSAMMarkRecipients function, like the MSAMnMarkRecipients function,
allows you to indicate that you have completed your attempts to deliver a particular
message to the recipients that you specify, but it executes much more slowly.

pascal OSErr MSAMMarkRecipients (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

queueRef The value that identifies the outgoing queue that contains the
message whose recipients you want to mark.

seqNum A value that identifies the message whose recipients you want to
mark. You obtain this value from the MSAMEnumerate function.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. You place data in your buffer in the form of a MailReply
structure. The first 2 bytes in the buffer contain the number of
identifying values that follow. Then you store a value that identifies
each recipient that you want to mark. Each identifying value is 2
bytes long. The identifying value is described on page 2-164. The
dataSize field in the MailBuffer structure is unused.

DESCRIPTION

The MSAMMarkRecipients function produces the same result as the
MSAMnMarkRecipients function, described in the previous section.

SPECIAL CONSIDERATIONS

It is strongly recommended that you do not call this function unless you must mark a
recipient for a message that you have already closed. Instead, you should call the
MSAMnMarkRecipients function, which executes much more quickly.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ seqNum long Message sequence number
↔ buffer MailBuffer Your buffer structure
2-166 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailResolvedRecipient structure is described on page 2-108.

The MailBuffer structure is described on page 2-96.

The MSAMGetRecipients function is described on page 2-144.

The MSAMnMarkRecipients function is described on page 2-163.

Closing a Message 2

When you have finished reading a message, whether it is nested or not, use the function
MSAMClose to close the message.

MSAMClose 2

The MSAMClose function closes an open message that you specify.

pascal OSErr MSAMClose (MSAMParam *paramBlock, Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Trap macro Selector

_oceTBDispatch $0505

noErr 0 No error
kOCEParamErr –50 Incoming queue reference not allowed
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such letter
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
Messaging Service Access Module Reference 2-167

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

mailMsgRef A reference number that identifies the message that you want to
close. You obtain the reference number when you call the
MSAMOpen function. When the MSAMClose function completes
successfully, this reference number is no longer valid.

DESCRIPTION

The MSAMClose function closes any message or nested message that you have
previously opened. Closing a letter automatically closes any open nested messages
within it.

You should close a message once you have read it and have marked the recipients for the
message. Closing a message releases system resources. You can reopen a message you
previously closed by calling the MSAMOpen function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMOpen function is described on page 2-140.

Creating, Reading, and Writing Message Summaries 2

A personal MSAM must create a message summary for each letter it transfers from an
external messaging system to an AOCE system. Message summaries are stored in the
incoming queue for a slot and are used by the Finder to display information about the
letters to the user. You use the PMSAMCreateMsgSummary function to create a new
message summary. Once you have created a message summary, you can modify portions
of it. To do so, first call the PMSAMGetMsgSummary function to read the message
summary; then modify it; and, finally, call the PMSAMPutMsgSummary function to write
it again.

Note that a personal MSAM creates message summaries only for letters, not for other
types of messages.

Trap macro Selector

_oceTBDispatch $050A

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
2-168 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
PMSAMCreateMsgSummary 2

The PMSAMCreateMsgSummary function creates a message summary in an incoming
queue that you specify.

pascal OSErr PMSAMCreateMsgSummary (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

inQueueRef The reference number that identifies the queue into which you want
to place the message summary. You obtain the queue reference from
the PMSAMOpenQueues function.

seqNum The sequence number of the new message summary. You use
the sequence number with the PMSAMGetMsgSummary and
PMSAMPutMsgSummary functions to identify the message summary.

msgSummary A pointer to an MSAMMsgSummary structure that you allocate. You
must provide values for some of the fields of the structure.

buffer A pointer to a MailBuffer structure. You set the value of the
bufferSize field in the MailBuffer structure to the number of
bytes in your buffer. Your buffer size may not exceed the number
of bytes specified by the kMailMaxPMSAMMsgSummaryData
constant. You provide a pointer to your buffer in the buffer field
of the structure and store in the buffer private data that you want to
add to the message summary. The function reads your data from
the buffer and sets the value of the dataSize field to the number
of bytes of data it wrote to the message summary. Set this field
to nil if you do not want to add any private data to the message
summary.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ inQueueRef MSAMQueueRef Incoming queue reference
← seqNum long Message summary sequence

number
→ msgSummary MSAMMsgSummary* Summary information for a letter
↔ buffer MailBuffer* Your private data
Messaging Service Access Module Reference 2-169

C H A P T E R 2

Messaging Service Access Modules
DESCRIPTION

You call the PMSAMCreateMsgSummary function to create a message summary for an
incoming letter. You must create a message summary for each incoming letter. The
Finder uses the message summary to display information about the letter to the user.
(Because only letters are displayed to the user, you do not create a message summary for
a message that is not a letter.)

Prior to assigning a particular value to any field of a new MSAMMsgSummary structure,
you should initialize all of its fields to 0. The section “The Personal MSAM Message
Summary Structures” beginning on page 2-124 describes all of the fields of the message
summary and indicates whether you or the IPM Manager is responsible for providing a
value for a given field. Note that when the IPM Manager adds a value in the message
summary, it updates the MSAMMsgSummary.MailMasterData.attrMask field if
appropriate.

With one exception, the values of the letter attributes that you provide when you create a
message summary must be exactly the same values as those you provide to the
MSAMPutAttribute function when you write the associated letter to the incoming
queue. If the attribute values do not match, the consequences are unpredictable. The
exception is the subject attribute. It may be truncated in the message summary due to
size limitations in the MSAMMsgSummary structure.

You can provide private data that the IPM Manager stores with the message summary. If
your private data exceeds kMailMaxPMSAMMsgSummaryData bytes, the function
returns the kOCEParamErr result code.

You can modify your private data. To do so, call the PMSAMGetMsgSummary function to
read your private data associated with the message summary; then modify your data;
and, finally, call the PMSAMPutMsgSummary function to write your modified private data.

The PMSAMCreateMsgSummary function returns a sequence number. You must provide
the sequence number to the MSAMCreate function when you create the letter for this
message summary. The sequence number correctly associates the letter and the message
summary.

SPECIAL CONSIDERATIONS

The private data area associated with a message summary is a sort of scratch pad,
intended for brief notations for MSAM-specific uses. Storing large amounts of data
degrades system performance and is strongly discouraged. For best results, you should
use no more than 8–16 bytes of private data.

The sender and subject fields of the MailCoreData structure in the message
summary require special handling. Be sure to read the information in the section
“Creating a Letter’s Message Summary” beginning on page 2-64 for an understanding
of how to manipulate these fields.
2-170 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMMsgSummary structure is described on page 2-127.

The MailCoreData structure is described on page 2-125.

The PMSAMGetMsgSummary function is described next.

The PMSAMPutMsgSummary function is described on page 2-173.

The MSAMPutAttribute function is described on page 2-179.

For more information on the use of message summaries and for sample code that shows
how to create a message summary, see the section “Creating a Letter’s Message
Summary” beginning on page 2-64.

PMSAMGetMsgSummary 2

The PMSAMGetMsgSummary function reads a message summary, an MSAM’s private
data associated with a message summary, or both.

pascal OSErr PMSAMGetMsgSummary (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $0522

noErr 0 No error
dskFulErr –34 All allocation blocks on the

volume are full
kOCEParamErr –50 Private data too large
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kMailInvalidPostItVersion –15046 Message summary is wrong version
kMailNotASlotInQ –15047 Queue reference does not refer to an

incoming queue
Messaging Service Access Module Reference 2-171

C H A P T E R 2

Messaging Service Access Modules
Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

inQueueRef The value identifying the incoming queue that holds the message
summary you want to read. You obtain the queue reference from
the PMSAMOpenQueues function.

seqNum The sequence number that identifies the message summary in the
incoming queue. You obtain this value from the
PMSAMCreateMsgSummary function.

msgSummary A pointer to a buffer in which the function stores the
MSAMMsgSummary structure. You provide this buffer. Set this field
to nil if you do not want to read the message summary.

buffer A pointer to a MailBuffer structure. You set the value of the
bufferSize field in the MailBuffer structure to the number of
bytes in your buffer. The PMSAMGetMsgSummary function stores
your private data associated with the message summary into the
buffer and sets the value of the dataSize field to the number of
bytes of data it actually placed in your buffer. Set this field to nil if
you do not want to read your private data.

msgSummaryOffset
The offset from the beginning of your private data area identifying
the point at which you want to begin reading. If the buffer field is
set to nil, the function ignores this field.

DESCRIPTION

You call the PMSAMGetMsgSummary function to read an existing message summary, the
private data associated with the message summary, or both.

You can modify the letterFlags field of the MSAMMsgSummary structure or your
private data, or both.

If the msgUpdated flag in the message summary was set to true, the IPM Manager
resets it to false after the PMSAMGetMsgSummary function returns with no error.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ inQueueRef MSAMQueueRef Incoming queue reference
→ seqNum long Message summary

sequence number
↔ msgSummary MSAMMsgSummary* Message summary
↔ buffer MailBuffer* Buffer for private data
→ msgSummaryOffset

unsigned short Point at which to begin reading
2-172 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
SPECIAL CONSIDERATIONS

Reading your private data area is slower than reading the MSAMMsgSummary structure.
Each read request may result in two additional disk accesses. You should avoid reading
your private data whenever it is reasonable to do so.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the PMSAMPutMsgSummary function to write the modified message summary,
private data, or both. The PMSAMPutMsgSummary function is described next.

The MSAMMsgSummary structure is described on page 2-127.

The MailBuffer structure is described on page 2-96.

PMSAMPutMsgSummary 2

The PMSAMPutMsgSummary function writes a modified message summary, private data
associated with the message summary, or both.

pascal OSErr PMSAMPutMsgSummary (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $0526

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEToolboxNotOpen –1500 Collaboration toolbox is

shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such message summary
kMailNotASlotInQ –15047 Queue reference does not refer

to an incoming queue
Messaging Service Access Module Reference 2-173

C H A P T E R 2

Messaging Service Access Modules
Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

inQueueRef The value that identifies the queue in which the message summary
resides. You obtain this value from the PMSAMOpenQueues function.

seqNum The sequence number that identifies the message summary that
you want to modify or whose associated private data you want
to modify.

letterFlags A pointer to a MailMaskedLetterFlags structure, which
consists of a set of user and system flags and their values. The
flags indicate certain aspects of the status of your letter. You can
modify the kMailReadBit bit in the user flags portion of the
letter flags. Set this field to nil if you do not want to modify the
kMailReadBit bit.

buffer A pointer to a MailBuffer structure that contains your private
data associated with the message summary. You set the value of the
bufferSize field in the MailBuffer structure to the number of
bytes in your buffer. Your buffer size may not exceed the number
of bytes specified by kMailMaxPMSAMMsgSummaryData. The
PMSAMPutMsgSummary function stores your private data with the
message summary and sets the value of the dataSize field to the
number of bytes of data it actually wrote. Set this field to nil if you
do not want to modify your private data.

DESCRIPTION

You use the PMSAMPutMsgSummary function to overwrite your private data associated
with a message summary, to modify the user flags portion of the letter flags, or both.

You can modify the kMailReadBit bit in the user portion of letter flags in a letter’s
message summary. Typically, you do this to reflect, in the incoming queue, changes in a
letter’s status on the external messaging system. For example, when you write a letter to
an incoming queue, you initially set the kMailReadBit bit to 0 to indicate that the user
has not read the letter. Assume that the user logs onto the external account directly,
perhaps while travelling, and reads the letter. The next time you connect to the external
system, you note that the letter has been read. At this point, you can call the
PMSAMPutMsgSummary function to set the kMailReadBit bit to 1, indicating that the
user read the letter. Note that the kMailReadBit bit applies to the letter in general, not
simply a local copy of the letter.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ inQueueRef MSAMQueueRef Slot’s incoming queue reference
→ seqNum long Message summary’s

sequence number
→ letterFlags MailMaskedLetterFlags*

System and user flags
↔ buffer MailBuffer* Private data buffer
2-174 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
You manage your private data for your own purposes. If you provide more than the
maximum number of bytes (kMailMaxPMSAMMsgSummaryData) of private data in your
buffer, the function returns the kOCEParamErr result code.

SPECIAL CONSIDERATIONS

Writing your private data area is slower than writing the letter flags in a message
summary. Each write request may result in two additional disk accesses. You should
avoid writing your private data whenever it is reasonable to do so.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailMaskedLetterFlags structure is described on page 2-124. The user portion
of the letter flags is defined by the MailLetterUserFlags data type, described on
page 2-122.

The MSAMMsgSummary structure is described on page 2-127.

The PMSAMGetMsgSummary function is described on page 2-171.

The MailBuffer structure is described on page 2-96.

Trap macro Selector

_oceTBDispatch $0527

noErr 0 No error
dskFulErr –34 All allocation blocks on the

volume are full
kOCEParamErr –50 Invalid parameter
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such message summary
kMailInvalidPostItVersion –15046 Message summary is wrong version
kMailNotASlotInQ –15047 Queue reference does not refer

to an incoming queue
Messaging Service Access Module Reference 2-175

C H A P T E R 2

Messaging Service Access Modules
Creating a Message 2

To create a new message going to an AOCE address, use the function MSAMCreate.

MSAMCreate 2

The MSAMCreate function begins the process of creating a message and returns a
reference number for the message.

pascal OSErr MSAMCreate (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult and
ioCompletion fields.

Field descriptions

queueRef For a personal MSAM, specify the incoming queue reference that
you obtained from the PMSAMOpenQueues function. The queue
reference must belong to the slot to which the message is addressed.
For a mail slot, the queue reference identifies the slot’s actual
incoming queue in which you want to deposit a letter. For a
messaging slot, the queue reference identifies the slot itself. For a
server MSAM, specify the server MSAM’s queue reference that you
obtained from the SMSAMStartup function.

asLetter A Boolean value that indicates whether the message you are
creating is a letter.

msgType An IPMMsgType structure. If you are creating a letter, you
must set the format field of the IPMMsgType structure to
kIPMOSFormatType to indicate that the remainder of the
IPMMsgType structure consists of an OCECreatorType structure.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ asLetter Boolean Create a letter?
→ msgType IPMMsgType Message creator and type
→ refCon long Reserved for your use
→ seqNum long Sequence number of new message
→ tunnelForm Boolean Always false
→ bccRecipients Boolean Are there blind copy recipients?
← newRef MailMsgRef Message reference number
2-176 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Then set the message creator and type appropriately. If you are
creating a non-letter message, you can set the IPMMsgType field
to either format type, kIPMOSFormatType or
kIPMStringFormatType.

refCon A value reserved for your private use when you create a non-letter
message. You may provide a value to be interpreted by the
recipient. This field is ignored when you create a letter. If you
provide a value in the refCon field, it is stored in the message
header. The recipient can retrieve the value by calling the
MSAMGetMsgHeader function and specifying kIPMFixedInfo in
the selector field of its parameter block.

seqNum This field applies only to personal MSAMs. If you are creating
a message that is not a letter, you do not provide a value for
this field. Otherwise, you provide the sequence number that
identifies the message summary associated with the letter that
you want to create. You obtain the sequence number from the
PMSAMCreateMsgSummary function.

tunnelForm You must always set this field to false.
bccRecipients This field applies only when you want to create a letter. You set this

field to true if you intend to specify blind copy recipients for the
letter when you call the MSAMPutRecipient function.

newRef A value that uniquely identifies the message that has just been
created. The MSAMCreate function returns a reference number
for the message that you use in subsequent function calls to write
the message.

DESCRIPTION

You call the MSAMCreate function to begin the process of writing a message from an
external messaging system to an AOCE system. The function returns a reference number
that you need to provide to the MSAMPut functions that write the various parts of
the message.

If you are creating a letter that contains data in standard interchange format, image
format, or a regular enclosure, you should set the message creator to 'lap2' and the
message type to kMailLtrMsgType. In this case, the AppleMail application opens the
letter. If the letter contains only a content enclosure, you can set the message creator to
the signature of the application that created the content enclosure. If the letter contains a
content enclosure or private block and if you set the message creator to the signature of
the application that created the enclosure or private block, then you can use a message
type that you define consistent with the message creator.

You set the message creator and message type in the msgCreator and msgType fields
of the OCECreatorType structure, part of theIPMMsgType structure.

If you are creating a non-letter message, use an application-defined creator and type. You
can set the format field of the IPMMsgType structure to either kIPMOSFormatType
(which specifies that the message creator and message type information is formatted as
type OCECreatorType) or kIPMStringFormatType (which specifies that the message
Messaging Service Access Module Reference 2-177

C H A P T E R 2

Messaging Service Access Modules
creator and message type information is formatted as type Str32). Typically, you use
type OCECreatorType; type Str32 is included for compatibility with the Program-to-
Program Communications (PPC) Toolbox.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The types of data that constitute standard letter content are described on page 2-109.

The IPMMsgType and the format types, kIPMOSFormatType and
kIPMStringFormatType, are described in the chapter “Interprogram Messaging
Manager” in Inside Macintosh: AOCE Application Interfaces.

The OCECreatorType structure is described in the chapter “Interprogram Messaging
Manager” in Inside Macintosh: AOCE Application Interfaces.

The PMSAMOpenQueues function is described on page 2-133.

The PMSAMGetMsgSummary function is described on page 2-171.

The MSAMPutRecipient function is described on page 2-180.

See the section “Choosing Creator and Type for Messages and Blocks” beginning on
page 2-64 for a discussion of message creators and types.

Writing Header Information 2

To write letter attributes into a newly created letter, use the MSAMPutAttribute
function. You can add recipients to a message with the MSAMPutRecipient function.
To write the header of a non-letter message, use the MSAMPutMsgHeader function.

Trap macro Selector

_oceTBDispatch $0514

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid queue reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailNotASlotInQ –15047 Queue reference refers to a personal
MSAM’s outgoing queue

kIPMInvalidMsgType –15091 Only kIPMOSFormatType allowed when
creating a letter
2-178 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MSAMPutAttribute 2

The MSAMPutAttribute function adds a letter attribute to a letter you are writing.

pascal OSErr MSAMPutAttribute (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter to which you want to
add an attribute. You obtain the reference number when you call the
MSAMCreate function.

attrID A value that identifies the type of attribute that you want to add to
the letter.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. You store the value of the attribute that you want to add to
the letter in your buffer. The MSAMPutAttribute function writes
the information from the buffer to the letter and sets the value of the
dataSize field to the number of bytes of data it actually wrote.

DESCRIPTION

You call the MSAMPutAttribute function to add a letter attribute to a letter header. The
attrID field can have any of the following values:

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ attrID MailAttributeID Type of letter attribute
↔ buffer MailBuffer Your buffer structure

Constant Value Description

kMailIndicationsBit 3 Indications and priority

kMailSendTimeStampBit 6 Send timestamp

kMailMsgFamilyMask 8 Message family

kMailReplyIDBit 9 Reply ID

kMailConversationIDBit 10 Conversation ID

kMailSubjectBit 11 Subject
Messaging Service Access Module Reference 2-179

C H A P T E R 2

Messaging Service Access Modules
You cannot use the MSAMPutAttribute function to add recipients to a letter. Use the
MSAMPutRecipient function to add the From, To, cc, and bcc attributes to a letter.

There are three attributes—the letter’s creator and type, its letter ID, and its nesting
level—that you can read from a letter header with the MSAMGetAttributes function
but cannot write to the letter header with MSAMPutAttribute. You set the letter’s
creator and type when you call the MSAMCreate function to create the letter, and the
IPM Manager sets the letter ID and nesting level of any letters that you create.

The letterFlags attribute is stored in a letter’s message summary rather than in
the letter header. Therefore, you add the letterFlags attribute when you call the
PMSAMCreateMsgSummary function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

Letter attributes and their formats are defined in the section “The Letter Attribute
Structures” beginning on page 2-99.

The MSAMGetAttributes function is described on page 2-142.

The PMSAMCreateMsgSummary function is described on page 2-169.

The MSAMPutRecipient function is described next.

MSAMPutRecipient 2

The MSAMPutRecipient function adds a recipient to a message you are writing.

pascal OSErr MSAMPutRecipient (MSAMParam *paramBlock,

Boolean asyncFlag);

Trap macro Selector

_oceTBDispatch $0518

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCEAlreadyExists –1510 Attribute already exists in the letter header
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailInvalidRequest –15045 Cannot call function with this message
reference number
2-180 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message to which you want
to add recipient information. You obtain the reference number from
the MSAMCreate function.

attrID A constant that indicates the type of recipient you want to add to
the message. If you are adding a recipient to a letter, you can use
any of the following constants; if you are adding a recipient to a
non-letter message, kMailToBit is the only valid value you can
specify in this field.
Constant Value Recipient type
kMailFromBit 12 From
kMailToBit 13 To
kMailCcBit 14 cc
kMailBccBit 15 bcc

recipient A pointer to a MailRecipient structure in which you provide
complete addressing information about the recipient.

responsible A Boolean value that indicates whether the IPM Manager is
responsible for delivering this message to the recipient identified
by the rcpt field.

DESCRIPTION

You call the MSAMPutRecipient function to add a recipient to a message that you
specify. You can add one recipient each time you call the function. To add a list of
recipients, you must call the function multiple times.

If you are adding a recipient to a letter, you can specify any type of recipient: From, To,
cc, or bcc. If you are adding a recipient to a non-letter message, you can specify only a To
recipient. To add a From recipient to a non-letter message, call the MSAMPutMsgHeader
function and specify the From recipient in the replyQueue field.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ attrID MailAttributeID Type of recipient
→ recipient MailRecipient* Recipient information
→ responsible Boolean Must server MSAM deliver message?
Messaging Service Access Module Reference 2-181

C H A P T E R 2

Messaging Service Access Modules
When you add the From address to a letter, you should set the recordName field in the
MailRecipient structure to the value you provided in the sender field when you
created the letter’s message summary.

You must add all recipients of a given recipient type in consecutive calls to the
MSAMPutRecipient function. If you attempt to intermingle calls to add different
recipient types, the function returns a kOCEAlreadyExists result code. For example,
if you call the function to add a To recipient, call it again to add a cc recipient, and call
it a third time to add a second To recipient, the function returns the error the third
time you call it.

A personal MSAM should check each recipient address to see if it maps to the owner
of the computer. If so, you need to set the recordName field in the MailRecipient
structure to the owner’s name, sometimes referred to as the Key Chain name or local
identity name. You can obtain the owner’s name by looking up the record attribute
indexed by the constant kLocalNameAttrTypeNum in the Setup record in the
Setup catalog.

Every time you add a recipient, you must indicate if the IPM Manager is responsible for
delivering the message to that recipient. If you are adding a From recipient, you should
always set the responsible field to false.

A personal MSAM should set the responsible field as follows. If you are adding
a recipient to a letter, always set the responsible field to false. If you are adding a
recipient to a non-letter message, set the responsible field to true for the recipients
that are local to the computer on which the MSAM is running. These are the ones for
which you want the AOCE system to be responsible for delivering the message. Take,
for example, an application that sends the same non-letter message to three other
applications, each of which is running on a separate computer. A personal MSAM
receiving this message would call the MSAMPutRecipient function three times, setting
the responsible field to true for the recipient that is local and to false for the other
two recipients.

To modify the example a bit, suppose an application sends the same non-letter message
to three other applications, all of which are running on the same computer. In this case,
the personal MSAM receiving the message would call the MSAMPutRecipient function
three times, setting the responsible field to true for all three of the recipients.

For incoming non-letter messages, it is the task of the personal MSAM and its external
messaging system to identify addresses that are local to the computer on which the
personal MSAM is running so that the personal MSAM can set the responsible field
appropriately. When a personal MSAM sets the responsible field to true, the AOCE
software attempts to deliver the message to the named queue on the local computer.

Server MSAMs should set the responsible field to true for any To, cc, or bcc recipient
to which they want the AOCE system to deliver a message, regardless of the type
of message.

Note that when you call the MSAMCreate function, you create a letter or a non-letter
message by setting the asLetter field to true or false, respectively.
2-182 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailRecipient structure is defined to be an OCERecipient structure, which is
described on page 2-106.

Recipient types are included in letter attributes. Letter attributes and their formats are
defined in the section “The Letter Attribute Structures” beginning on page 2-99.

The MSAMPutMsgHeader function is described next.

MSAMPutMsgHeader 2

The MSAMPutMsgHeader function writes information to the header of a non-letter
message that you specify.

pascal OSErr MSAMPutMsgHeader (MSAMParam *paramBlock,
Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0519

noErr 0 No error
dskFulErr –34 All allocation blocks on

the volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCEAlreadyExists –1510 Duplicate recipient type
kOCEInvalidRecipient –1514 Bad recipient
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailMalformedContent –15061 Content data malformed

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ replyQueue OCERecipient* Return address
→ sender IPMSender* Sender’s record ID
→ deliveryNotification

IPMNotificationType Delivery notification option
→ priority IPMPriority Delivery priority setting
Messaging Service Access Module Reference 2-183

C H A P T E R 2

Messaging Service Access Modules
See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the non-letter message whose
header you want to write. You obtain the reference number when
you call the MSAMCreate function.

replyQueue A pointer to an OCERecipient structure that specifies a reply
queue—that is, a return address. You allocate the structure and
completely specify it. The receiving application uses this address
when it replies to the message. The IPM Manager sends reports to
the reply queue address. You are free to specify that replies and
reports go to an alternate address, instead of to the sender.

sender A pointer to an IPMSender structure that contains the packed
record ID or string that identifies the sender of the message.

deliveryNotification
A bit array that indicates the type of information you want to
receive about the delivery of the message. Set the bit values
appropriately to request reports with delivery indications
(kIPMDeliveryNotificationMask), reports with non-delivery
indications (kIPMNonDeliveryNotificationMask), or no
reports (kIPMNoNotificationMask).

priority A value that specifies the priority for delivering the message. Set
this field to kIPMHighPriority to specify high priority. Set this
field to kIPMLowPriority to specify low priority. Set this field to
kIPMNormalPriority to specify normal priority.

DESCRIPTION

You call the MSAMPutMsgHeader function to write information to the header of the
non-letter message that you are creating. Do not use this function with messages that are
letters or reports. The information that you provide to the MSAMPutMsgHeader function
includes an address for replies, the sender, the type of report information you want, and
the priority for delivering the message.

You should understand the distinction between the use of the sender and the
replyQueue fields. The address that you provide in the replyQueue field shows up as
the From recipient when the message is delivered. It allows a sender to designate an
address to which replies should be sent. For example, cooperating applications can agree
to define reply queue addresses that are associated with specific message creators,
message types, and message families. In addition, the IPM Manager sends reports
to the reply queue address.

In contrast, the sender field simply identifies the originator of the message. A recipient
can retrieve the value of the sender field by calling the MSAMGetMsgHeader function.
The record ID portion of the return address need not be the same as that which you
provide in the sender field.
2-184 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
The IPM Manager defines several masks for delivery notification options. However, the
only valid values that you can use to set bits in the deliveryNotification field are
kIPMDeliveryNotificationMask, kIPMNonDeliveryNotificationMask, and
kIPMNoNotificationMask. The IPM Manager ignores the settings of all other bits
because the IPM Manager never includes a copy of the original message in an MSAM
report and the IPM Manager may include more than one indication (delivery,
non-delivery, or both) in a single report, depending on the number of recipients and
other factors.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCERecipient structure is described on page 2-106.

The IPMSender, IPMNotificationType, and IPMPriority structures are defined in
the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces. The chapter also has a discussion of IPM queues.

All of the delivery notification constants are described in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

To add a To recipient attribute to your message header, call the MSAMPutRecipient
function, described on page 2-180.

Writing a Message 2

To write the various parts of a message, use the functions MSAMPutBlock,
MSAMBeginNested, and MSAMEndNested. The functions MSAMPutContent and
MSAMPutEnclosure are used for writing the main content and enclosure portions
of letters.

Trap macro Selector

_oceTBDispatch $051D

noErr 0 No error
dskFulErr –34 All allocation blocks on the

volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCEInvalidRecipient –1514 Invalid recipient
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailInvalidRequest –15045 Message reference number
refers to a letter
Messaging Service Access Module Reference 2-185

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Service Access Modules TOC
	 Introduction to Service Access Modules
	 Messaging Service Access Modules TOC
	 Messaging Service Access Modules, Part 1 (Intro, Using and Reference: Data Types & Constants)
	Messaging Service Access Modules, Part 2 (Reference: Functions Part 1)
	Messa ging Servic e Access Modu le Refer ence
	MSAM Functions
	Initializing an MSAM
	Enumerating Messages in a Queue
	Opening an Outgoing Message
	Reading Header Information
	Reading a Message
	Marking a Recipient
	Closing a Message
	Creating, Reading, and Writing Message Summaries
	Creating a Message
	Writing Header Information
	Writing a Message

	 Messaging Service Access Modules, Part 3 (Reference: Functions Part 2)
	 Messaging Service Access Modules, Part 4 (Summary)
	 Catalog Service Access Modules TOC
	 Catalog Service Access Modules
	 Service Access Module Setup TOC
	 Service Access Module Setup
	 Glossary
	 Index
	 Colophon

