CHAPTER 2

Messaging Service Access Modules

This chapter describes Apple Open Collaboration Environment (AOCE) messaging
service access modules. A messaging service access module is a software component that
provides the PowerTalk user with access to external mail and messaging services. You
do not need to read this chapter if you are writing a mail or messaging application or
adding mail or messaging capabilities to your application.

To write a messaging service access module, you need to be familiar with many
components of AOCE software. You should read the chapters “Introduction to the Apple
Open Collaboration Environment” and “AOCE Utilities” in Inside Macintosh: AOCE
Application Interfaces before reading this chapter to get a general overview of AOCE
software components and the shared AOCE data types and the utility routines that act
on them. This chapter assumes that you are familiar with AOCE catalogs and records
and their structures, and that you know how to read and write data to them. The
chapters “Standard Catalog Package” and “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces describe the high-level application programming interface (API)
and the low-level API to AOCE catalogs, respectively.

To read and write AOCE records, you must obtain an authentication identity. Identities
are described in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

Along with your messaging service access module, you need to provide a type of AOCE
template called an address template to allow the user to enter address information. If you
are writing a personal messaging service access module, you also need to provide a
setup template that allows the user to configure your access module. The chapter
“AOCE Templates” in Inside Macintosh: AOCE Application Interfaces describes how to
write an AOCE template. The chapter “Service Access Module Setup” in this book
provides additional specific information about setup and address templates and their
interaction with messaging service access modules and the PowerTalk Key Chain.

All messaging service access module developers need to be familiar with high-level
events. See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials
for information about high-level events.

This chapter starts with an introduction to messaging service access modules.
Subsequent sections describe

= personal messaging service access modules

= server messaging service access modules

= the types of messages that are read and written by messaging service access modules
= AOCE addresses

s the AOCE high-level events

= how to get messages out of an AOCE system

= how to put messages into an AOCE system

= the structures and routines in the messaging service access module API

2-5

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Introduction to Messaging Service Access Modules

2-6

A messaging system is a combination of hardware and software that provides people
and processes with the ability to exchange electronic messages—it provides messaging
services. Apple’s AOCE messaging system consists of PowerTalk system software and
PowerShare mail servers that allow Macintosh users and processes accessible over a
network or via a modem to exchange electronic messages. Today there are many types of
messaging systems, such as Internet, AppleLink, QuickMail, and so forth, with which
AOCE users might want to communicate. To facilitate the exchange of messages between
an AOCE messaging system and other existing and future messaging systems, the AOCE
architecture defines a messaging service access module (MSAM). An MSAM links
Apple’s AOCE messaging system to another messaging system, extending the reach of
messaging service clients.

The AOCE architecture defines two kinds of MSAMs. A personal MSAM translates
messages and transfers them between a user’s Macintosh and the user’s account on
another messaging system. It runs on a user’s Macintosh. A server MSAM translates
and transfers messages between a PowerShare mail server and a non-AOCE messaging
system. A server MSAM transfers messages for any number of users located on the
AppleTalk network to which it is connected. It runs on a Macintosh with a PowerShare
mail server. Thus, the MSAM component of AOCE software architecture is scalable. It
can provide service to a single user who uses a non-networked Macintosh computer or
to large numbers of users in large internetworks.

Figure 2-1 shows how adding an MSAM to an AOCE system extends the reach of AOCE
users. Prior to adding an MSAM, AOCE users cannot exchange electronic messages with
others who are accessible only on a non-AOCE messaging system. Once an MSAM that
connects to the non-AOCE messaging system is added, the AOCE users can exchange
messages with people accessible on the non-AOCE messaging system.

The basic services provided by both personal and server MSAMs include

» transferring messages between an AOCE messaging system and another
messaging system
» translating the content of messages between AOCE-defined formats and other formats
» translating message addresses between AOCE-defined formats and other formats
= reporting the results of attempts to deliver messages

Personal and server MSAMs are described in more detail in the following sections.

A note on terminology

Throughout this chapter, the term message is used as an inclusive term
to refer to all types of messages. When information applies only to
letters (a specific type of message), the term letter is used. When
information applies only to messages that are not letters, the term
non-letter message is used. Letters and messages are defined in the
section “Types of Messages” beginning on page 2-16.

Introduction to Messaging Service Access Modules

CHAPTER 2

Messaging Service Access Modules

Figure 2-1 Adding an MSAM

AOCE messaging system before adding an MSAM

Server
Macintosh

External
messaging
system

PowerShare
server

AOCE messaging system after adding an MSAM

Server
Macintosh

External
messaging
system

PowerShare Server
server MSAM

Messaging systems that are not provided automatically with PowerTalk
system software and PowerShare servers are collectively referred to as
external messaging systems. An external messaging system may handle
only letters or non-letter messages or both.

The term mail refers to letters. Messaging systems that handle only
letters are sometimes referred to as mail systems.

As a convention, this chapter refers to messages coming into an AOCE
system from an external messaging system as incoming messages and
to those that are leaving an AOCE system to go into an external
messaging system as outgoing messages.

Throughout the chapter, the text distinguishes between personal and
server MSAMs where appropriate. The term MSAM is used when the
text applies to both personal and server MSAMs, unless it is clear from
the context that only a personal or server MSAM is meant. O

An MSAM is a low-level component in the AOCE software hierarchy. It does not directly
provide services to a user or process; rather, it provides services indirectly through either
the Standard Mail Package or the Interprogram Messaging (IPM) Manager. Thus, a client
has a standard interface to all messaging systems, including those that are accessible via

Introduction to Messaging Service Access Modules 2-7

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

MSAMs as well as Apple’s PowerTalk and PowerShare services, regardless of underlying
differences in how messages are accessed and formatted. Figure 2-2 shows the relation-
ship of two clients, the Standard Mail Package, the IPM Manager, an MSAM, and an
external messaging system.

Figure 2-2 An MSAM's relationship to AOCE software

<:> AOCE Standard
Mail Package
Mail application H

External
@ 0| PMManager [Tl MsaM || SR em

Messaging
application

MSAMs interact with the IPM Manager. Either the MSAM or the IPM Manager can
initiate communication with the other. Figure 2-3 illustrates the way the IPM Manager
and an MSAM initiate communications with each other. An MSAM initiates communi-
cation with the IPM Manager by calling one of the functions provided in the MSAM APL
These functions are described in detail in the section “MSAM Functions” beginning on
page 2-130.

The IPM Manager initiates communication with an MSAM by sending it a high-level
event. The events that the IPM Manager may send to an MSAM, which typically instruct
the MSAM to take some action or advise it of a status change, are described in the
section “High-Level Events” beginning on page 2-220.

Figure 2-3 Communication between the IPM Manager and an MSAM

2-8

MSAM API functions

IPM Manager ‘ MSAM

AOCE high-level events

Introduction to Messaging Service Access Modules

CHAPTER 2

Messaging Service Access Modules

Personal MSAMs

A personal MSAM allows a user or a mail or messaging application to transfer messages
between the user’s Macintosh and users or applications on one or more external
messaging systems. A personal MSAM connects to an external messaging system and
transfers messages between the user’s Macintosh and the external messaging system.
The user or process must have an account on the external messaging system to which the
personal MSAM provides access. The user’s Macintosh does not need to be connected to
an AppleTalk network.

A personal MSAM is a background-only application; that is, it has no user interface.

Every personal MSAM must be accompanied by AOCE templates that allow the user to
configure the MSAM and to enter address information. These templates, called the setup
template and address template, are described in the chapter “Service Access Module Setup”
in this book. Information that applies to all AOCE templates is provided in the chapter
“AOCE Templates” in Inside Macintosh: AOCE Application Interfaces.

A file containing a personal MSAM must have a file type of either ' msam or' csam .If
you provide both a personal MSAM and a catalog service access module (CSAM) in the
same file, use the file type' csam (for “combined service access module”). If you
provide a personal MSAM only, use the file type ' msan . You must include your setup
and address templates in the same file as your personal MSAM.

Although personal MSAMs and server MSAMs both connect to external messaging
systems and translate and transfer messages, there are a number of differences between
them. See Table 2-1 on page 2-11 for a list of these differences.

A slot, as the term is used in the MSAM API and in this chapter, refers to a collection of
information about one account on an external messaging system. The information
includes whatever is necessary to allow an MSAM to access the account and retrieve and
send messages. Slot information determines what external messaging system the MSAM
connects to. The term mail slot refers to a slot that allows the transfer of letters. The term
messaging slot refers to a slot that allows the transfer of non-letter messages.

Slot information is stored in the form of AOCE record attributes in records in the
PowerTalk Setup catalog. The record types in which the information is stored differ
depending on whether you provide a combined MSAM /CSAM or a stand-alone MSAM.
If you provide a combined MSAM /CSAM, slot information and its associated catalog
information is stored in a single Combined record. If you provide a stand-alone MSAM,
slot information is stored in a Mail Service record (sometimes called a slot record) and
associated catalog information is stored in a Catalog record. The setup template that you
provide with your MSAM writes slot information to some of these records; the PowerTalk
Key Chain writes to others. The chapter “Service Access Module Setup” in this book
describes the required attributes of the Combined, Mail Service, and Catalog records,
and it explains who is responsible for writing those attributes to the different types of
records in the Setup catalog.

Personal MSAMs 2-9

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

In addition to the required record attributes, slot information includes whatever is
necessary to allow the MSAM to service the slot—for instance, an access telephone
number and the line speed. MSAMs can define record attribute types to store slot
configuration information.

A personal MSAM can manage more than one slot. For example, if a user had two
accounts on an external messaging system of a given type, a personal MSAM

would manage two slots, one for each of the user’s accounts on that messaging system.
A personal MSAM also can connect to more than one external messaging system.

For example, if a user has an account on each of two independent messaging systems,
the same personal MSAM can connect to each system and manage a slot for the

user’s account there.

Each mail slot that a personal MSAM manages has two queues: an incoming queue and
an outgoing queue.

Each messaging slot that a personal MSAM manages has an outgoing queue. The notion
of an incoming queue does not apply to messaging.

An incoming queue contains AOCE letters that the personal MSAM translates from mail
received from its external messaging system and each letter’s associated message
summary. (See the section “MSAM Modes of Operation” beginning on page 2-12 for
information about message summaries.) An outgoing queue contains messages that the
personal MSAM must deliver to an external messaging system. A personal MSAM
retrieves a message from an outgoing queue, translates it, and delivers it to the intended
recipients on the external messaging system.

Note that any given queue contains either letters and message summaries or non-letter
messages. It does not contain both. Figure 2-4 shows an example of a personal MSAM
with three slots and their associated queues.

Figure 2-4 Personal MSAM with its slots and queues
Personal MSAM
[\(0
Slot 1 Slot 2 Slot 3
for letters for letters for messages
Incoming Incoming Outgoing
queuel queue2 queue3
Outgoing Qutgoing
queuel queue2

2-10 Personal MSAMs

CHAPTER 2

Messaging Service Access Modules

IMPORTANT

In release 1 of the AOCE software, the handling of non-letter messages is
not fully supported for personal MSAMs. Therefore it is not advisable
for a personal MSAM to implement the transfer of non-letter messages
using release 1 of the AOCE software. a

Server MSAMs

A server MSAM allows users and processes on an AppleTalk network to exchange
messages with other users and processes on one or more external messaging systems. It
serves its clients indirectly by acting as a conduit for messages between a PowerShare
mail server and the external systems to which the MSAM is connected. It must run on
the same Macintosh as its PowerShare mail server.

Server MSAMs route messages between different messaging systems rather than between
individual accounts on those systems. Therefore, a server MSAM does not necessarily
need to know about specific accounts on an external messaging system, and, as a result, it
has no concept of slots.

A server MSAM can connect to different types of messaging systems. For instance, a
single server MSAM might connect to one or more Simple Mail Transfer Protocol
(SMTP), X.400, and X.500 systems.

A server MSAM is a foreground Macintosh application. Once a server MSAM is
launched, it should run continuously.

(A server MSAM and its PowerShare mail server do not have to run on a dedicated
Macintosh. However, performance of other applications on the same Macintosh may
suffer when the MSAM and server are very busy.)

Table 2-1 summarizes the differences between personal MSAMs and server MSAMs.
(Not all of the differences have been discussed at this point.) You may want to refer to
this table as you read succeeding sections in this chapter.

Table 2-1 Differences between personal MSAMs and server MSAMs

Characteristic Personal MSAM Server MSAM

Application type Background-only Foreground

Interconnects User/process to Multiple users/
specific account processes to

messaging system

Needs specific account Yes No

information

Uses slots Yes No

continued

Server MSAMs 2-11

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Table 2-1

Differences between personal MSAMs and server MSAMs (continued)

Characteristic

Queues

Writes message summaries

Can write incoming letters
on demand

Needs setup template
Needs address template

Runs on

Must be connected to an
AppleTalk network

Transfers messages for more
than one user

Mode of operation
File type

Linked to its catalogs through

Represented by

Personal MSAM

1 outgoing queue per
slot; 1 incoming queue

per mail slot
Yes
Yes

Yes
Yes

A user’s Macintosh
No
No

Standard, online,
quasi-batch

‘csam or' nsamn

Mail Service and
Catalog records in
the Setup catalog

MSAM record in the
Setup catalog

Server MSAM

1 outgoing queue

Yes

A server Macintosh with
a PowerShare mail server
Yes

Yes

Standard

* APPL'

Foreign dNodes in
AOQOCE catalog

Forwarder record

MSAM Modes of Operation

2-12

In addition to its type (either personal or server), another important characteristic of an
MSAM is its mode of operation. Mode of operation refers to the degree of control an
MSAM retains over messages that it puts into an AOCE system. Some MSAMs function
in some respects like a standard store-and-forward gateway; others function as an agent
for the user. This section explains these modes in more detail.

The store-and-forward gateway model consists of a source messaging system, a series
of one or more store-and-forward gateways, and a destination messaging system. A
store-and-forward gateway links different systems, providing temporary data storage
and, where necessary, address translation. Figure 2-5 illustrates the store-and-forward
gateway model. In such a model, the gateway hands off a message to the next link in the
store-and-forward chain. Once it transfers a message, its responsibility for (and control
of) that message ends. MSAMs that operate in this fashion are said to operate in
standard mode.

MSAM Modes of Operation

CHAPTER 2

Messaging Service Access Modules
Figure 2-5 Store-and-forward gateway model
External
User Server i
Macintosh |:> Macintosh messaging system
) L J Lara
{Wmumm‘ {Wummm‘
T Store-and-forward Store-and-forward il
gateway 1 gateway n E
PowerShare Server Max |
server [0 msam |<) G % E

The online model consists of a source messaging system, a destination messaging

system, and a personal MSAM that acts as an agent for the user in connecting those
systems. In the online model, a personal MSAM does not act simply as a link in a series
of store-and-forward gateways. Rather, it actively manages letters in a user’s AOCE
mailbox and in the user’s accounts on external messaging systems, reflecting changes in

one to the other, and keeping both ends synchronized as much as possible. Figure 2-6

illustrates the online model. MSAMs that operate in this fashion are said to operate
in online mode. A personal MSAM operating in online mode can affect the user’s
experience quite directly, something an MSAM operating in standard mode cannot do.

Figure 2-6 Online model

User's
Macintosh

messaging system

Finder | co

AOCE
llaboration
toolbox

Personal
MSAM

Network
Connection

User account
on external

Max

A significant difference between standard mode and online mode is the point at which
the MSAM is active. In standard mode, an MSAM is removed from any contact with the
user. In online mode, the MSAM is actively involved with the user experience through
the MSAM API and Finder interface.

MSAM Modes of Operatio

n

2-13

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-14

CHAPTER 2

Messaging Service Access Modules

A server MSAM always operates in standard mode. It delivers messages to a PowerShare
mail server, at which point the MSAM's responsibility for the message ends. The AOCE
system is responsible for delivering the message to its final destination. Similarly, from
an AOCE system perspective, a server MSAM is a store-and-forward gateway in that
messages sent to a server MSAM are addressed to a particular messaging system, not a
specific address within that system.

A personal MSAM may operate in standard mode, online mode, or a variation of online
mode referred to as quasi-batch mode. A personal MSAM always operates in standard
mode when it is dealing with incoming non-letter messages. Much as a server MSAM
hands off a message to a PowerShare mail server, the personal MSAM hands off a
non-letter message to the IPM Manager resident on the Macintosh. Once it submits
such a message to an AOCE system, the personal MSAM has no further control of or
responsibility for the message. The AOCE system delivers the message to its final
destination on the Macintosh. When a personal MSAM is dealing with incoming letters,
however, it operates in online mode or quasi-batch mode.

IMPORTANT

A single personal MSAM may operate in both standard and online or
quasi-batch modes; that is, it may handle both letters and non-letter
messages. The MSAM API is general enough to cover all variations. As a
result, the API contains features that do not apply in every case.

However, as noted earlier, the handling of non-letter messages is not
fully supported for personal MSAMs in release 1 of the AOCE software.
Therefore it is not advisable for a personal MSAM to implement the
transfer of non-letter messages using release 1 of AOCE software. a

The AOCE software architecture allows a personal MSAM to operate in online mode (act
as a user agent) by providing it with the means to deliver an incoming letter to a specific
queue and to manipulate that letter after placing it in the queue.

The user’s AOCE mailbox is a repository for letters from all of the different sources to
which the user has access. These sources include an incoming queue for each mail slot
managed by a personal MSAM installed on the Macintosh. On any given Macintosh with
AOCE software installed, there are some number of destination queues for incoming
messages, each of which contains either letters or non-letter messages. An incoming
queue is a special type of destination queue for letters. It is special because a personal
MSAM can manipulate an incoming queue and its contents. All other destination queues
are under the control of the IPM Manager.

A personal MSAM submitting letters to an AOCE system must conform to certain
minimal requirements of online mode. These requirements are to create, manage, and
delete information blocks about the letters that it puts into an incoming queue. The
information blocks are called message summaries. The AOCE Mailbox extension to the
Finder uses message summaries to display information about the letters to the user.
Message summaries are also the means by which a personal MSAM reflects changes in
the status of a letter from the local Macintosh computer to the remote system and vice
versa. Only personal MSAMs create message summaries for incoming letters.

MSAM Modes of Operation

CHAPTER 2

Messaging Service Access Modules

Before a personal MSAM puts a letter into an incoming queue, it must first create
the letter’s message summary and put it into the incoming queue. A message
summary contains

» information that is needed to display the letter to the user (this includes the subject of
the letter, its timestamp, the sender’s name, and so forth)

» status information, such as whether the user has read the letter or deleted the letter (a
personal MSAM uses the status flags to maintain consistency between the letter’s
status on an AOCE system and on an external system)

» state information about the letter, such as whether the letter itself currently exists in
the incoming queue

» whatever private data that you wish to attach to this letter (for instance, you may
want to store the ID or reference number that uniquely identifies the letter on the
external messaging system)

A message summary is defined by the MSAMMsgSumar y structure, described on
page 2-127.

After creating and submitting a message summary for a letter, a personal MSAM may
immediately translate the letter into the AOCE letter format and put it into the incoming
queue. Alternately, the MSAM can delay writing the letter until the user actually opens
it. (The MSAM receives a high-level event when a user opens a letter.)

In general, a personal MSAM that connects to an external messaging system over a slow
link should create the message summary and put the letter into the incoming queue at
the same time. This gives a user faster access to the letter when he or she decides to

read the letter. Also, when a link is slow or expensive, the MSAM might keep the copy of
the letter the user has already read to avoid a retransmission if the user wants to read the
letter again.

A personal MSAM that connects to an external messaging system over a fast link such
as a local area network may choose to create just the message summary without auto-
matically translating and transferring the letter itself. The MSAM can retrieve the letter
on demand, that is, only when the user actually wants to read the letter. In these
circumstances, it can delete the letter after the user reads it because retransmission
would not cause much of a delay.

A personal MSAM may implement some features of online mode but not all, and it may
thus operate somewhere in between standard and online modes. Quasi-batch mode
represents a continuous gradation between standard and online modes. In quasi-batch
mode, a personal MSAM may simply create a message summary, transfer the letter to an
AOCE system, and do nothing further with regard to the letter. For example, a personal
MSAM for fax transmissions might simply download a fax and put it into the incoming
queue. Such a personal MSAM complies with only the minimal requirements of online
mode and operates as much as possible like a standard store-and-forward gateway.

MSAM Modes of Operation 2-15

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Table 2-2 shows the types of operating modes available to server and personal MSAMs.

Table 2-2 MSAM operating modes

Operating mode Type of MSAM

Standard Personal MSAM (for non-letter messages) and server MSAM
Online Personal MSAM (for letters)
Quasi-batch Personal MSAM (for letters)

This section has described the incoming queue as a special queue for incoming letters,
available only to personal MSAMs with mail slots. There is no analogous construct on
the outgoing side. All MSAMs, personal and server alike, have an outgoing queue from
which they obtain outgoing messages. A server MSAM has a single outgoing queue that
contains all of the messages addressed to external messaging systems to which it is
connected. A personal MSAM, regardless of its operating mode, has one outgoing queue
for each of its slots. Each queue contains the outgoing messages for the associated slot.

Types of Messages

2-16

The following sections discuss messages, letters, and reports.

Basic Messages

A message is the basic unit of communication defined by the Interprogram Messaging
(IPM) Manager. A message consists of a message header followed by zero or more
message blocks, each of which is a sequence of any number of bytes. The message
header contains control information about the message, such as the message creator and
message type, the total length of the message, the time it was submitted, addressing
information, and so forth. It also contains the length, creator, and type of each block in
the message. For more detailed information on the structure of messages and more
information on the IPM Manager and the services it provides, see the chapter
“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

Every message has a message creator and a message type. The message creator and type
are analogous to a Macintosh file’s creator and type. The message creator indicates
which application created the message. A message type indicates the semantics of the
message, the type of blocks the message should contain, and the relationships among the
various blocks in the message.

Similarly, every block has a block creator and a block type. The block creator indicates
which application created the block. A block type indicates the format of the data
contained within the block.

Types of Messages

CHAPTER 2

Messaging Service Access Modules

In addition to message types, AOCE software defines the concept of message families. A
message that belongs to a message family shares a similar form with all other messages
that belong to the same message family. Messages of the same family conform to the
syntax of a defined set of message block types and their associated semantics. The syntax
specifies which block types are optional and which are mandatory and specifies the
relationships between the various blocks. Messages that belong to the same message
family may also contain additional blocks whose types are not defined as part of the
message family.

Apple defines three message families for an MSAM’s use. All non-letter messages that an
MSAM transfers belong to the kI PMFami | yUnspeci f i ed family. Letters may belong to
either the kMai | Fami | 'y or kMai | Fami | yFi | e family, both of which are defined in the
next section. Although it is possible to distinguish a new class of messages by defining a
new message family, it is not recommended that you do so.

IMPORTANT

Apple Computer, Inc., reserves all values for message and block types,
message and block creators, and message families that consist entirely of
lowercase letters and special characters. You are free to create and use
other values except 0 and ' ????" . Apple Computer, Inc., does not
provide a registry for message and block types, message and block
creators, and message families. a

A message can contain another message. A message that is contained within another
message is called a nested message.

Letters

A letter is a type of message, consisting of a defined set of message blocks, that is
intended to be read by a person.

A letter must contain a letter header block. Aletter header block contains the address of
the sender and of each recipient. It also contains the letter’s attributes.

Letter attributes are bits of information about a letter. They include such things as the
time the letter was sent, the subject of the letter, the priority assigned to the letter by the
sender, and so forth.

Note

In this chapter, letter attributes are usually referred to simply as
attributes. Do not confuse these letter attributes with record attributes. A
record attribute refers to a part of an AOCE record. For information
about record attributes, see the chapters “AOCE Utilities” and “Catalog
Manager” in Inside Macintosh: AOCE Application Interfaces. O

A letter may have blocks that contain letter content, a nested letter, enclosures, and an
image of the letter content. The MSAM API provides functions that you can use to read
and write most of these blocks without specifying the block type. For example, the
function MSAMPut Cont ent automatically creates a block of type kMai | Cont ent Type.
However, to add a block of type image (kMai | | mageBodyType) or a private data block

Types of Messages 2-17

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

(kMai | MSAMType), you need to provide the block type to the MSAMPut Bl ock function.
Table 2-3 lists the AOCE-defined block types that a letter may contain and the functions
you use to read and write a block of a given type.

Table 2-3 Predefined letter block types

Block type Value Block contents To read/write

kMai | Lt r Hdr Type "I'thd Letter header MBAMGet Reci pi ent's
MBAMPUt Reci pi ent

MSAMZet At tri but es
MSAMPuUt At tri but e

kMai | Cont ent Type ' body' Body of letter MBAMZet Cont ent
MBAMPuUt Cont ent

el st' List of enclosures MSAMZet Encl osur e
MSAMPut Encl osur e

kMai | Encl osur eDeskt opType " edsk’ Desktop Manager MSAMCet Encl osur e

kMai | Encl osur eLi st Type

information for MSAMPuUt Encl osur e
enclosures
kMai | Encl osur eFi | eType "asgl’ A file enclosure MSAMGet Encl osur e
MBAMPuUt Encl osur e
kMai | | mageBodyType "img' Image of letter MBAMCet Bl ock
MSAMPut Bl ock
kMai | MSAMTIy pe gwyi MSAM-defined VMBAMZet Bl ock
information VBAMPuUt Bl ock
kl PMENC| osedMsgType ' ensg' Nested letter MBAMOpenNest ed
MSAMBegi nNest ed
k1 PVDI gi t al Si gnat ure "dsig Digital signature MSAMCet Bl ock
MBAMPuUt Bl ock

Letter content is that part of the letter that the sender typically wants the recipient
to read first, like the body of a conventional hard-copy letter. Letter content may be
in three forms:

= a content block (block type is kMai | Cont ent Type)
= an image block (block type is kMai | | mageBody Type)

= a content enclosure (block type is kMai | Encl osur eFi | eType)

A content block contains the body of a letter in one or more data segments. Each
segment contains data of one of the following types:

= Plain text. A text segment contains data in one or more character sets (Roman, Arabic,
Kanji, and so on) with 1-byte or 2-byte character codes, depending on the character set.

2-18 Types of Messages

CHAPTER 2

Messaging Service Access Modules

= Styled text. The segment contains text and a St Scr pRec structure containing the style
information for that text.

= Pictures. The segment contains data in PICT format.
= Sounds. The segment contains data in Audio Interchange File Format (AIFF).
= Movies. The segment contains data in QuickTime movie file format (‘MooV').

These five data formats are collectively called standard content or standard interchange
format, sometimes referred to as AppleMail format. All MSAMs must support standard
content to facilitate interoperability. Any user with AOCE software installed can read
and write letters containing standard content using the AppleMail application.

Another way of communicating a letter’s content is to include it in an image block.
Data in an image block is stored in a structure of type TPf PgDi r followed by picture
elements (PICTs). The format of data in an image block is sometimes referred to as
snapshot format.

The AppleMail application can read image blocks. Thus, by including an image block in
a letter, an application that uses formats other than standard interchange format can
ensure that a user having the AppleMail application can view the formatted content. A
receiver cannot edit image data. MSAMs should support image blocks.

The third form in which letter content may be transmitted or received is a content
enclosure, sometimes referred to as a main enclosure. Such an enclosure is typically in
the native format of the sending application. An MSAM is not required to support
translations of various application file formats. A recipient must have a copy of the
sending application to read a content enclosure. A letter can have only one content
enclosure.

The contents (if any) of a letter may be in any or all of these three forms. Typically, you
can expect letters to contain a content block as well as a content enclosure.

An enclosure is a file or folder sent along with a letter. An enclosure may be either a
regular enclosure or a content enclosure. A regular enclosure is a file or folder included
in a letter like an attachment in a conventional hard-copy letter. That letter may or may
not contain a content block.

Aletter can have up to 50 enclosures. An enclosure file can be of any type. If an
enclosure is a folder, it can contain any number of files of any type, so long as the total
number of enclosures does not exceed 50. Each file and folder counts as one enclosure.
For example, if a letter had as an enclosure a folder containing three files, the total
number of enclosures in the letter is four: one folder and three files. A content enclosure
counts when totaling the number of enclosures in a letter.

Types of Messages 2-19

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

A nested letter is a complete letter included whole within another letter. A letter can
have only one letter nested within it. However, the nested letter itself may contain a
nested letter. Figure 2-7 illustrates this concept.

Figure 2-7 Nested letters

Outermost letter

Nested letter

Nested letter

The nesting level of a letter indicates how many letters are nested within it. The nesting
level of a letter that contains no nested letters is 0. A letter that contains a letter with a
nesting level of n has a nesting level of n + 1. Thus, if a reply letter contains a copy of the
original letter, the nesting level of the reply is one greater than the nesting level of the
original letter. Figure 2-8 illustrates an example of nesting letters. Sue sends a memo to
Dan. Her original memo has a nesting level of 0. Dan replies to Sue and includes a copy
of Sue’s original memo in the reply. His reply has a nesting level of 1. Sue sends a
different memo to Tim and includes Dan’s reply. The nesting level of her memo to Tim is
2. The theoretical limit to the number of nesting levels is very large.

2-20 Types of Messages

CHAPTER 2

Messaging Service Access Modules

A forwarded letter is always a nested letter. It is nested within a letter that has no content
and no enclosures. The letter that contains the forwarded letter has a nesting level of
n + 1, where n is the nesting level of the forwarded letter.

Figure 2-8 How the nesting level increments

Memo to Tim
Nested level = 2

" Nested level =1

Memo to Dan
Nested level = 0

Memo to Sue
Nested level = 1

Memo to Dan
Nested level = 0

Memo to Dan
Nested level =0

Figure 2-9 illustrates the structure of a hypothetical letter. In the message header, the
message creator and type (' | ap2' and ' | ttr')indicate that this message is a letter
that was created by the AppleMail application. Next is the letter header block. The letter
header information includes the letter’s nesting level, set to 2, indicating that this letter
has two letters nested within it. The letter contains a content block. The blocks of type
kMai | Encl osur eLi st Type (' el st')and kMai | Encl osur eDeskt opType (' edsk')
are private to Macintosh system software. There are two enclosures in the letter, one

of which is a content enclosure. An image block is present. It contains an alternate
representation of the data in the content block. The letter also contains a nested letter in a

Types of Messages 2-21

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

nested letter block. The nested letter is a complete letter consisting of a message header, a
letter header block, a content block, and a nested letter block. Its letter header shows that
its nesting level is 1. The nested letter block contains a complete letter consisting of a
message header, a letter header block, and a content block. Its nesting level is 0.

Figure 2-9 Structure of a letter

Message header
Message creator =" | ap2'
Message type="1lttr"'
Letter header block
Block creator =" apmi '
Block type=" 1t hd'
Nesting level = 2
Content block

Block creator =" apmni '
Block type ="' body'
Private block

Block creator =" apm '
Block type=" el st
Private block

Block creator =" apm '
Block type ="' edsk’

Enclosure block

Block creator =" apm ' 3 Message header

Block type =" asgl ' + | Messagecreator="1ap2'

Main enclosure =t r ue s Messagetype="lttr"'

Enclosure block N Letter header block | Message header
Block creator ="' apm ') Block creator =" apm ' | Message creator =' | ap2'
Block type="asgl ' . Blocktype=" 1t hd' . Messagetype="1lttr"'
Main enclosure = f al se R Nesting level = 1 N Letter header block
Image block N Content block S Block creator =" apni '
Block creator =" apmi ' N Block creator =" apm ' N Block type="11t hd'
Block type="i mag' N Block type =" body" s Nesting level = 0
Nested letter block Nested letter block Content block

Block creator =" apmi Block creator ="' apm ' Block creator =" apmi '
Block type =" ensQ’ Block type =* €MB Q" Block type ="' body"'

Ordinarily, letters belong to one of two message families defined by AOCE software. A
letter that belongs to the kMai | Fami | y family may contain either a content block or any
type of enclosure or both. A letter that belongs to the kMai | Fani | yFi | e family does
not contain a content block or a content enclosure, but may contain a regular enclosure.
You should not put a content block into or expect to get a content block from a letter in
the kMai | Fanmi | yFi | e family.

2-22 Types of Messages

CHAPTER 2

Messaging Service Access Modules

Reports

A report communicates delivery information about a message to the sender of the
message. A report, like a letter, is a message with a defined set of message blocks.

The sender of a message can request information about successful delivery of the
message, failure to deliver the message, or both, for a message. The sender’s request
applies to all of the message’s recipients.

A single report may contain information about the outcome of delivery attempts to one
or more recipients of a message; that is, it may contain delivery indications, non-delivery
indications, or both. A delivery indication indicates the successful delivery of a specific
message to one or more specified recipients. A non-delivery indication indicates failure
to deliver a specific message to one or more specified recipients. A delivery or
non-delivery indication is sometimes referred to as a recipient report.

An MSAM can both create a report about an outgoing message and receive a report
about an incoming message.

Note

A report that an MSAM creates or receives (an MSAM report) differs
somewhat from a report created or received by other clients of the IPM
Manager (an IPM report). An IPM report may contain a copy of the
original message, but an MSAM report never does. An IPM report goes
directly to an IPM Manager client. An MSAM report goes to an AOCE
agent, which interprets the information in the MSAM report and creates
an IPM report to send to the ultimate report recipient. O

The sections “Generating a Report” on page 2-61 and “Receiving a Report” on page 2-80
describe how an MSAM generates and receives reports. For information on IPM reports,
see the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

AOCE Addresses

The AOCE software architecture provides for the exchange of messages among different
types of messaging systems. The exchange of messages requires a way of uniquely
specifying the sender and receiver of a message. This unique specification is called an
address. This section discusses the syntax and semantics of the AOCE address structure.

To provide connectivity between AOCE messaging systems and other messaging
systems, the AOCE address structure is designed to accommodate already existing
address formats, in addition to address formats that may be developed for future
messaging systems.

One way that messaging systems can be differentiated is by the syntax and semantics of
their addresses. Messaging systems that share the same addressing conventions are said
to be of the same type.

AOCE Addresses 2-23

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

An address is unique within a messaging system. To exchange messages between
messaging systems, a sender must specify an address plus the messaging system in
which the address is unique.

At the most general level, you can think of an AOCE address structure as having two
parts: a messaging system specifier and an entity specifier that uniquely identifies a
person or process within that messaging system. When an address specifies a recipient
within an AOCE messaging system, the AOCE software delivers the message to the
specific address. When an address specifies a recipient in a non-AOCE messaging
system, the AOCE software delivers the message to the MSAM responsible for that
messaging system.

For AOCE routing software, the basic problem can be stated as follows: assume an
external messaging system is named System X. System X contains many addressable
entities (users and processes). To send a message to an entity Y in System X, AOCE needs
a way to say “Y in System X.” AOCE doesn’t care what Y is. Y is internal to, and should
be unique in, System X.

Figure 2-10 shows an AOCE messaging system, an AppleLink system, and two SMTP
systems. (SMTP stands for Simple Mail Transfer Protocol. Computers connected to the
Internet often use SMTP to exchange messages.) Within this environment, AOCE routing
software needs a way to specify each messaging system. Each messaging system is
partially described by a four-character extension type. An extension type identifies a
type of messaging system that uses a specific addressing convention—for example, an
AppleLink system or an X.400 system. Because there can be more than one messaging
system of a given type, an address based on the extension type alone is not sufficient to
distinguish between two or more messaging systems of the same type. In the illustration,
AOCE routing software could not distinguish between the two SMTP systems on the
basis of type. To solve this problem, AOCE software requires that each messaging system
have a unique name by which it is known within an AOCE system. In Figure 2-10, the
names Felines and Canines distinguish between the two SMTP messaging systems.

Figure 2-10 AOCE system connected to external messaging systems

2-24

AppleLink system SMTP system

Name: Fel i nes
Type:' SMIP'

Name: Surf Gty
Type: ALNK'

AOCE system

Name: Li ncol n Center
Type:' ACAP'

SMTP system

Name: Cani nes
Type:' SMIP

AOCE Addresses

CHAPTER 2

Messaging Service Access Modules

In some cases, there is only one messaging system of a given type, and the messaging
system already has a unique, well-known name. The Internet is a good example of this.
In cases like this, if your MSAM provides a preassigned name, it should use the well-
known name. A unique name for each messaging system is fundamental to AOCE
addressing.

Within some messaging systems, multiple address formats are allowed. The Internet, for
example, accepts both UUCP and SMTP addresses. An Internet MSAM has one unique
name associated with it, but it may service multiple extension types, one for each form of
Internet address that it knows how to translate.

Note

There is no registry for extension types. If you want to use an existing
extension type, you are responsible for ensuring that the extension type
always represents the same address syntax and semantics. If you want
to create a new extension type, it is recommended that you use your
application’s signature type, registered with Macintosh Developer
Technical Services, to ensure uniqueness. O

Before describing an AOCE address structure, it is helpful to understand a little about
how the AOCE software implements unique names for messaging systems. Within an
AOCE system, each external messaging system is associated with a unique catalog name.
The catalog name identifies to AOCE software the messaging system and the set of
addresses that belong to that messaging system.

For server MSAMs, the AOCE system administrator creates a reference to an external
messaging system by creating a dNode, sometimes called a foreign dNode, in an AOCE
catalog. Figure 2-11 illustrates the addition of a dNode that represents an external
messaging system. The original AOCE configuration has a catalog named Catalog A that
contains dNodes named Artists Unlimited and Legal Services. AOCE software routes
messages only among addresses in Catalog A. There exists an external messaging system
called TriColor Labs. People within the original AOCE messaging system may want to
communicate with people who are accessible only via the TriColor Labs messaging
system. A server MSAM is installed within the AOCE system to extend the messaging
environment to include people within the TriColor Labs messaging system. The AOCE
system administrator creates a new dNode representing the TriColor Labs system and
gives the dNode a unique name, TCL, within Catalog A. AOCE software still routes
messages only among addresses in Catalog A, but Catalog A now includes a new set of
addresses represented by the dNode TCL.

AOCE Addresses 2-25

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Figure 2-11

Adding a dNode for a messaging system

Before adding dNode

AOCE Catalog A

Artists Legal
Unlimited Services

Original messaging system

PowerShare
server

TriColor Labs
messaging
system

After adding dNode

AOCE Catalog A

Artists Legal
Unlimited Services

TCL

Expanded AOCE messaging system

PowerShare server
Server MSAM

TriColor Labs
messaging
system

For personal MSAMs, the PowerTalk Key Chain creates a Catalog record in the Setup
catalog to represent the set of addresses belonging to a given messaging system. See the
chapter “Service Access Module Setup” for more information.

The name that uniquely identifies an external messaging system in an AOCE system is
the name of the dNode (for server MSAMs) or the name of the Catalog record in the
Setup catalog (for personal MSAMs).

Figure 2-12 illustrates the following points about MSAMs, messaging system names, and

extension types:

= An external messaging system must have a unique name.

= Different MSAMs may connect to different external messaging systems of the same

extension type.

= Asingle MSAM may connect to more than one external messaging system, each
having a different extension type (it may also connect to more than one external
messaging system having the same extension type).

= A single external messaging system may have more than one extension type.

2-26 AOCE Addresses

CHAPTER 2

Messaging Service Access Modules

Figure 2-12 MSAMs, messaging system names, and extension types

Name: Wor | dwi de X400
Type: ' X400'

Name: Appl eLi nk
Type: ' ALNK'

[wsam mlﬁ
AOCE Name: Pri vat e X400

(messaging MSAM [N Type: ' X400°

system

D

Name: Pri vat e STMP
Type: ' STMP

Name: I nt er net
Type: ' STMP' , ' UUCP

Now look at the AOCE address structure. AOCE software already defines a Recor dl D
structure to uniquely identify a record in an AOCE catalog. This structure is adapted and
extended for use as an address structure. In an AOCE messaging system, an address is
specified as an OCEReci pi ent structure, which is identical to a DSSpec structure.

struct DSSpec {

Recordl D *entitySpecifier;
OSType ext ensi onType;
unsi gned short ext ensi onSi ze;
Ptr ext ensi onVal ue;
1

t ypedef DSSpec OCEReci pi ent;

(The Recor dI Dstructure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.)

AOCE Addresses 2-27

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Figure 2-13 shows an exploded view of an OCEReci pi ent structure. An AOCE address
is a two-level specification that first identifies a messaging system and then identifies

an individual entity within it. This is roughly analogous to an address on a piece of
hard-copy mail that specifies a large organization and a mailstop within it. The postal
service uses part of the address—organization name, street number, city, state, and zip
code—to deliver the mail to the organization. The organization itself uses the remainder
of the address, the mailstop number, to deliver the mail to a specific internal address. With
an AOCE address, the OCEReci pi ent .enti t ySpeci fi er.rl i substructure identifies
the messaging system. The value pointed to by the OCEReci pi ent .ext ensi onVal ue
field identifies the individual entity within that messaging system.

Fi

gure 2-13

Exploded view of an OCEReci pi ent structure

Unpacked
form of RLI
¢| Field name: .
. . |-
.| di rect oryNarme D rectoryNane
_’ Type: Field name:
= PackedRLI + | DirectoryNanept r char Set
Field name: « | Field name: Type:
OCEReci pi ent I ength > | discrininator Char act er Set
Field name: Type: > | Type: Field name:
entitySpecifier unsi gned short b | DirDiscrimnator datalength
Type: Field name: Field name: Typg: 4 sh
Recor dl DPt r Recor dl D dat a[KRLI MaxByt es] dNodeNunber unsigned s ort
Field name: Field name: Type: Type: Eleljd nin;i o vNaTENEEY
ext ensi onType ol [~ | byte DNodeN.;m T;)pz[rect or yNameMaxByt es]
Type: Type: . Fleldhname: byt e
OSType * | pa
Fiold name: PackedRLIPtr | | gcal Recordl D | Type:
ext ensi onSi ze aolane Field name: *.| PackedPat hNanePt r PackedPat hNane
Type: I ocal cid Field name:
P Type: Type: dat aLengt h
ype:
o gnod shert Local RecordiD] | creat i onl D RSt ri ng Type:
ield name: " : >
ext ensi onVal ue . Field name: Field name: unsi gned short L.
Type: L * | recordNane char Set Field name: Unpacked
Ptr Address o | Type: Type: data [*] pathname
* |RStringPtr Char act er Set Type: an array of
| Field name: Field name: byt e RSt ri ng
* |recordType dat aLengt h * Structures
'. Type: Type:
«|RStringPtr unsi gned short
Field name:

*

[kPat hNameMaxByt es — size of (unsigned short)]

body[kRSt ri ngMaxByt es]
Type:

byt e

2-28

AOCE Addresses

CHAPTER 2

Messaging Service Access Modules

Table 2-4 lists the elemental fields of the address structure and the type of information
each field contains when it is used to specify an address on an external system. The
structure identifies both the external system and a specific sender or receiver within it
that is the source or destination of a message.

Table 2-4

External address: Contents of an OCEReci pi ent structure

Field name
di rect or yNane

di scri m nat or

dNodeNunber
pat h
cid

r ecor dNanme

recordType

ext ensi onType

ext ensi onSi ze

ext ensi onVal ue

AOCE Addresses

Contents

A pointer to an RSt r i ng structure containing the unique name
of a catalog in the AOCE environment. The name identifies the
external messaging system to AOCE. The name is limited to

32 characters.

An 8-byte value that further describes the catalog. The first

4 bytes indicate the extension type of the associated messaging

system, for example, ALNK or SMTP. It is the same as the value
in the ext ensi onType field. The second 4 bytes are private to

the catalog.

Unused. Set to 0.
Unused. Settoni | .
Unused. Set to 0.

A pointer to an RSt r i ng structure containing the name of the
sender or receiver. This should be a displayable string.

A pointer to an RSt r i ng structure containing the type of the
sender or receiver—for example, “user” or “group”. This should
be a displayable string.

The four-character extension type that specifies a type of
messaging system, for example, ' ALNK' or' SMIP'. The
extension type is the same as the first 4 bytes of the associated
catalog’s discriminator value.

The length, in bytes, of the ext ensi onVal ue field.

A pointer to a buffer that contains the address of the sender or
receiver on the external system. The address is used only by the
MSAM. Its content and format are not examined by AOCE
software. However, for the type-in addressing feature in the
mailer to work, the address must be a single RSt r i ng structure.

2-29

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-30

CHAPTER 2

Messaging Service Access Modules

Table 2-5 lists the elemental fields of the OCEReci pi ent structure and the type of infor-
mation each field contains when it is used to specify an address within an AOCE system.

Table 2-5 AOCE address: Contents of an OCEReci pi ent structure

Field name
di rect or yName

di scri m nat or

dNodeNunber

pat h

cid

r ecor dNanme

recordType

ext ensi onType

ext ensi onSi ze

ext ensi onVal ue

Contents

A pointer to an RSt r i ng structure containing the name of the
PowerShare catalog that contains the record representing the
sender or receiver. The name is limited to 32 characters.

The discriminator value of the catalog that contains the record
representing the sender or receiver.

A value that identifies the dNode that contains the record
representing the sender or receiver. Set to 0 if you use the pat h
field to specify the dNode.

A pointer to a buffer that contains the names of all of the
dNodes on the path from the catalog node in which the sender
or receiver record resides, up to the catalog root node. Set

this field to ni | if you use the dNodeNunber field to identify
the dNode.

The creation ID of the record that represents the sender
or receiver.

A pointer to an RSt r i ng structure containing the name of the
sender or receiver. This is a displayable string.

A pointer to an RSt r i ng structure containing the type of the
sender or receiver. It tells you what the entity is, such as a user.
This is a displayable string.

A four-character extension type that specifies the format of the
data pointed to by the ext ensi onVal ue field. AOCE defines
the following extension types: KOCEal anXt n, kOCEent nXt n,
kOCEaphnXt n.

The length, in bytes, of the ext ensi onVal ue field.

A pointer to a buffer that contains the address of the sender or
receiver on the AOCE system. The address is used only by the
AOCE software. Its content and format need not be examined
by the MSAM.

Table 2-6 lists the extension types for addresses within an AOCE messaging system.
These extension types are discussed in more detail in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application Interfaces. You do not need
to understand the semantics of the extension types. You do need to be sure that a
recipient to whom you transmit a message from an AOCE system can reply to the
message. Your MSAM might include the extension information with the outgoing
message and reconstruct it when it submits the reply to the AOCE system. Alternatively,

AOCE Addresses

CHAPTER 2

Messaging Service Access Modules

your MSAM might maintain mapping tables to convert between addresses within the
AOCE messaging system and external addresses. In this way, it can avoid sending to its
external system information that is only relevant inside an AOCE system. This
implementation decision is up to you.

Table 2-6 AOCE extension types

Constant Value Description

kQOCEal anXt n "al an' Indicates an Ent i t yNane structure (an NBP name)
plus a queue name in the form of a Pascal string. It is
used for an address accessible on the local AppleTalk
network.

kOCEent nXt n "entn' Indicates a DSSpec structure. It is used for an address
accessible through a PowerShare mail server.

kOCEaphnXt n " aphn’ Indicates a structure that specifies an address
accessible by telephone.

Before you submit an incoming message to AOCE, you must construct OCEReci pi ent
structures containing the addresses of the sender and each of the recipients. Table 2-4 on
page 2-29 describes the information you must provide in each field of the address
structure for (a) the sender from your external messaging system and (b) any recipient
in an external messaging system. Table 2-5 on page 2-30 describes the information

you must provide in each field of the address structure for a recipient within the

AOCE system.

When you read an outgoing message from AOCE, you must translate the OCEReci pi ent
structures that contain the address information for the sender and each of the recipients
into a format that your external messaging system understands. Table 2-4 on page 2-29
describes what information you will find in each field of the address structure when the
structure specifies a recipient on an external messaging system. Table 2-5 on page 2-30
describes the information contained in each field of the address structure when the
structure specifies the sender of an outgoing message or a PowerTalk recipient.

The address of a recipient in an AOCE messaging system might include only the entity
specifier portion of the OCEReci pi ent structure; that is, it may not have any data in the
ext ensi onType, ext ensi onSi ze, and ext ensi onVal ue fields. This form is called
an indirect address because it is not actually an address but points to a record in an AOCE
catalog that contains the address. It uniquely identifies the messaging system and
provides a displayable name and type to identify the sender or receiver. The direct form
of an address always includes both the entity specifier and the extension information.
The extension information gives a more detailed form of address. Addresses in external
messaging systems are always in the direct form. Addresses in PowerShare catalogs may
be in either the direct or indirect form. For more information about direct and indirect
addressing, see the chapter “Interprogram Messaging Manager” in Inside Macintosh:
AOCE Application Interfaces.

AOCE Addresses 2-31

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Table 2-7 shows examples of the content of the fields of an OCEReci pi ent structure for
an indirect AOCE address and an SMTP address.

Table 2-7 Sample addresses

AOCE system
OCEReci pi ent fields (indirect address form) SMTP system

di rect or yNane Engineering Finance

di scrim nat or ACAP1234 SMTP0000
dNodeNunber 6 0

pat h ni ni |

creationl D 44894489 00000000

r ecor dNane Joe Bernard Suzy Durksen
recordType aoce User aoce User

ext ensi onType Not applicable 'SMIP

ext ensi onSi ze Not applicable 16

ext ensi onVal ue Not applicable Suzy@finance.com

When the ent i t ySpeci fi er portion of the OCEReci pi ent structure contains infor-
mation about a sender or receiver on an external system, that information does not
specify a record in a PowerShare catalog that represents the sender or receiver. However,
when the structure contains information on a sender or receiver inside an AOCE
messaging system, it does specify an existing record.

With your MSAM, you need to provide a special kind of AOCE template, called an
address template, that allows a user to enter address information. Basic information about
AOCE templates is provided in the chapter “AOCE Templates” in Inside Macintosh:
AOCE Application Interfaces. Specific information about address templates is provided in
the chapter “Service Access Module Setup” in this book.

AOCE High-Level Events

2-32

Both personal and server MSAMs must be prepared to receive and respond to high-level
events defined by AOCE software. The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials describes the use of high-level events in detail; that
information is not repeated in this section.

AOCE High-Level Events

CHAPTER 2

Messaging Service Access Modules

Personal MSAMs may receive the following high-level events:

Constant Event ID Description

kMai | EPPCCr eat eS| ot "crsl’ Slot created

kMai | EPPCMbdi f y Sl ot " mdsl’ Slot modified

kMai | EPPCDel et eSl ot “dl sl Slot deleted

kMai | EPPCMai | boxOpened " mbop' User opened mailbox

kMai | EPPCMai | boxCl osed "nbcl User closed mailbox

kMai | EPPCVsgPendi ng " msgp’ Messages waiting to be sent
kMai | EPPCSendl medi at e "sndi’ Send letter now

kMai | EPPCShut Down ‘quit’ Shut down operations and quit
kMai | EPPCCont i nue ‘cont’ Resume operation after error fixed
kMai | EPPCSchedul e ' sked' Time for scheduled activity
kMai | EPPCI nQUpdat e "ingqu' Incoming queue updated

kMai | EPPCMsgOpened ' msgo’ User opened letter

kvai | EPPCDel et eQut Qvsg " dl omi Delete outgoing queue message
kMai | EPPCWakeup "wkup' Launched due to wakeup

kMai | EPPCLocat i onChanged "l occ' System location changed

Server MSAMs may receive these high-level events:

Constant Event ID Description
kMai | EPPCAdN n "adm’ Server administration function
kMai | EPPCVsgPendi ng " megp' Messages waiting to be sent

”

Detailed descriptions of these events can be found in the section “High-Level Events
beginning on page 2-220.

When an MSAM receives an AOCE high-level event, it manipulates a standard

Event Recor d structure (defined in the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials). The fields of an event record associated with an AOCE
high-level event have a particular meaning.

struct EventRecord {

short what ;
| ong nessage;
| ong when;
| ong wher e;
short nodi fiers;
1
Field descriptions
what Always contains the constant kHi ghLevel Event.
nmessage Always contains the event class kMai | Appl eMai | Cr eat or.

AOCE High-Level Events

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-34

CHAPTER 2

Messaging Service Access Modules

when Unused.

wher e Contains the event ID that identifies a specific event—for example,
kMai | EPPCAdNi n.

nodi fiers For personal MSAMs, this field contains the slot ID when the event

applies to a particular slot; otherwise, it is set to 0. Server MSAMs
can ignore this field.

Some AOCE high-level events require more information than that provided in the event
record. After you receive such an event, you should call the Accept Hi ghLevel Event
function to get the additional data associated with the event. The additional data is in the
form of a Mai | EPPCMs g structure.

A Mai | EPPCMs g structure consists of a version number and a union field. The union
field may have any of the following contents: a pointer to an SMCAstructure; a letter
sequence number; a Mai | Locat i onl nf o structure.

The version number indicates the version of the event. The MSAM should compare the
version number in the Mai | EPPCMs g structure with kMai | EPPCVsg\Ver si on. If they

are not the same, software incompatibilities may exist between the PowerTalk software
and the MSAM, and there is no guarantee that the Mai | EPPCMVs g structure used by the
MSAM and by the IPM Manager are the same. The MSAM should ignore the event.

Most of the AOCE high-level events are informational in nature. For example, a

kMai | EPPCMsgPendi ng event tells an MSAM that it has a new outgoing message.
Informational events sent by the IPM Manager are not guaranteed to be received by the
MSAM. The MSAM should consider these events as hints; that is, it should not rely on
them as the only mechanism to initiate an action. For example, to make sure it transfers
outgoing messages in a timely manner, it could check its outgoing queues every 20
minutes, each time it is launched, and each time it receives a kMai | EPPCVsgPendi ng
event.

A few events are more than informational in nature. An MSAM must receive the

kMai | EPPCCr eat eSl ot , kivai | EPPCVodi f y Sl ot , kMai | EPPCDel et eSl ot

kMai | EPPCMsgOpened, and kMai | EPPCSendl nmedi at e events in order to take the
relevant actions. For these events, the Mai | EPPCMB g structure contains a pointer to an
SMCA structure. The MSAM needs to set the r esul t field of the SMCA structure to
acknowledge the event or to report the outcome of its effort to handle the event.
Additionally, the IPM Manager informs the client if the event does not reach the MSAM.
(An MSAM cannot acknowledge or set a result for an event whose Mai | EPPCVsg
structure does not contain a pointer to an SMCAstructure.)

Once the MSAM sets the r esul t field to acknowledge the event or to signal completion,
the SMCA structure is no longer valid.

An MSAM defines the error codes that it returns in response to the

kMai | EPPCCr eat eSl ot , kivai | EPPCModi f y Sl ot , kMai | EPPCDel et eSl ot , and
kMai | EPPCMsgOpened events. For the kMai | EPPCSendl nmedi at e event, it typically
should return the kMai | Sl ot Suspended or kMai | TooManyEr r result code.

AOCE High-Level Events

CHAPTER 2

Messaging Service Access Modules

System Location

The concept of location serves users with mobile Macintosh computers. Personal MSAMs
must understand the concept of location, whereas server MSAMs need not. A personal
MSAM, residing on a user’s Macintosh, must be aware of the possibility that the system
location may change. For instance, a personal MSAM installed on a PowerBook may be
launched at different locations, such as the user’s business office, the user’s home, a
customer site, an airport, and so forth. The personal MSAM is likely to be affected by
such changes of location. A fax MSAM, for example, would use different telephone
numbers when running at home or in the office; an Internet MSAM cannot work if a
TCP/IP network connection is not available.

After it is launched, a personal MSAM gets the current system location from the Setup
record in the Setup catalog. Then it determines, for each slot, whether the slot is active at
that location by checking the location flags in the slot’s standard slot information. See
the section “Initializing a Personal MSAM” on page 2-37 for a description of how you
do this.

If a slot is not active at the current location, the personal MSAM should not perform any
work on behalf of that slot. If none of the personal MSAM'’s slots are active at the current
location, the MSAM should quit.

If the system location changes, the IPM Manager sends the MSAM one

kMai | EPPCLocat i onChanged high-level event for each slot. The event tells the
MSAM the slot to which it applies, the current system location, and the location flags
for the slot. If the location flags show that the slot is inactive at the current location,
the MSAM should immediately stop performing any activity on behalf of the slot,
such as downloading or sending letters.

A user can activate or deactivate a mail slot in a given location. In response, the IPM
Manager updates the location flags in the Mai | St andar dSl ot | nf oAt tri but e
structure for that slot and sends a kMai | EPPCLocat i onChanged high-level event to
the MSAM. At that point, the MSAM needs to determine if the slot is active at the
current location. If the slot is active, the MSAM should continue to act for the slot; if it
is not, the MSAM should cease acting for the slot.

Using the MSAM API

This section shows you how to

» determine whether the Collaboration toolbox is available
» launch a personal MSAM

= initialize personal and server MSAMs

» transfer an outgoing letter from an AOCE system to another messaging system

System Location 2-35

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-36

CHAPTER 2

Messaging Service Access Modules

transfer an incoming letter from another messaging system to an AOCE system

delete a message

translate addresses

log personal MSAM operation errors

Determining Whether the Collaboration Toolbox Is Available

Before calling any of the functions in the MSAM AP]I, a server MSAM should verify

that the Collaboration toolbox is available by calling the Gest al t function with the
selector gest al t OCETool boxAt t r. If the Collaboration toolbox is present but not
running (for example, if the user deactivated it from the PowerTalk Setup control

panel), the Gest al t function sets the bit gest al t OCETBPr esent in the r esponse
parameter. If the Collaboration toolbox is running and available, the function sets the

bit gest al t OCETBAvai | abl e in the r esponse parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” in Inside Macintosh: Operating System Ultilities.
Because a personal MSAM is launched by the IPM Manager, it can assume that the
Collaboration toolbox is available.

If you want to be informed when the IPM Manager starts up or shuts down, you can
install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk
Link-Access Protocol Manager calls your ATQ routine with the transition selector

ATTr ansl PMSt ar t when the IPM Manager has finished starting up and with the
selector ATTr ans| PMshut down when the IPM Manager has started to shut down. The
ATQ is described in the “Link-Access Protocol (LAP) Manager” chapter in Inside
Macintosh: Networking.

Determining the Version of the IPM Manager

To determine the version of the IPM Manager that is available, call the Gest al t function
with the selector gest al t OCETool boxVer si on. The function returns the version
number of the Collaboration toolbox in the low-order word of the r esponse parameter.
For example, a value of 0x0101 indicates version 1.0.1. If the Collaboration toolbox is not
present and available, the Gest al t function returns 0 for the version number. You can
use the constant gest al t OCETB for AOCE Collaboration toolbox version 1.0.

Launching a Personal MSAM

A personal MSAM must be launched by the IPM Manager. If you launch a personal
MSAM in any other manner, it will not work properly with the IPM Manager.

If a personal MSAM is not already running, the IPM Manager launches it in response to
any of the following events:

» The MSAM's setup template calls the Mai | Cr eat eMai | Sl ot or
Mai | Modi fyMai | Sl ot function.

= An application calls the Mai | WakeupPMSAMfunction.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The MSAM'’s scheduled send or receive time occurs, or its send / receive time
interval elapses.

Initializing a Personal MSAM

Before the IPM Manager launches a personal MSAM for the first time, the setup template
you provide with your personal MSAM must obtain information about the MSAM,

the accounts on external messaging systems to which it will connect, and the catalogs
associated with those external messaging systems. It gets this information from the user
and stores it in the Setup catalog.

Once launched, a personal MSAM needs to obtain a variety of information, much of it in
the Setup catalog. The information includes:

the current system location

information about each slot for which it is responsible (each slot represents one
account on a messaging system)

the incoming and outgoing queue references for each of its slots

any additional configuration or private information it may require

A personal MSAM obtains much of the necessary information by reading records in the
Setup catalog. It then often copies this information into private structures.

The following steps illustrate a typical sequence of actions your MSAM can take to
obtain the necessary startup information after it has been launched:

1. Get the creation ID of the MSAM'’s record in the Setup catalog by calling the

PMBAMGet MSAMRecor d function. Build a record ID that contains your MSAM’s
record creation ID.

2. Get the local identity by calling the Aut hGet Local | dent i ty function. If the user

Using the MSAM API

hasn’t set up a local identity yet, the function returns the KOCESet upRequi r ed
result code. If the local identity is locked, the function returns the

kOCELocal Aut henti cati onFai | result code. In either case, call the

Aut hAddToLocal | dent i t yQueue function to be notified when the local identity
is set up and unlocked. If the Aut hGet Local | dent i t y function returned
kOCELocal Aut henti cati onFai |, you can pass the locked local identity provided
by the function to the Di r LookupGet and Di r LookupPar se functions. Therefore,
you should proceed with the initialization process.

. Get the reference number of the Setup catalog and the creation ID of the Setup

record by calling the Di r Get OCESet upRef numfunction. You need to provide the
catalog’s reference number in the dsRef Numfield of the Di r LookupGet and

Di r LookupPar se parameter blocks when you want to read the records in the
Setup catalog. You need the creation ID to build a record ID for the Setup record.

. Get the current location from the Setup record in the Setup catalog by calling the

Di r LookupGCet and Di r LookupPar se functions. As the target of the aRecor dLi st
field in the Di r LookupGet parameter block, specify the record ID of the Setup record.
You can set all fields of the record ID except the creation ID to ni | . Set the creation ID
to the value you obtained in the previous step. Instead of providing record location
information, you provide the catalog’s reference number in the dsRef Numfield of the

2-37

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-38

CHAPTER 2

Messaging Service Access Modules

Di r LookupCet function’s parameter block. As the target of the at t r TypeLi st field
in the parameter block, specify the At t r i but eType structure referenced by the
attribute type index kLocat i onAt t r TypeNum The function reads the Setup record
and places the location information into a buffer in a private data format.

Call the Di r LookupPar se function to read the data in the buffer. The function calls a
callback routine that you provide and passes it a pointer to an At t r i but e structure
containing the location information (type OCESet upLocat i on) that you requested.

. Get a reference to each Mail Service or Combined record that belongs to the MSAM

by calling the Di r LookupGet and Di r LookupPar se functions. If you provide a
stand-alone MSAM, attributes for a slot and its associated catalog are stored in a Mail
Service and a Catalog record, respectively. If you provide a combined MSAM/CSAM,
attributes for a slot and its associated catalog are stored in a single Combined record.

As the target of the aRecor dLi st field in the Di r LookupGet parameter block,
specify the Recor dI Dstructure that you created that contains the creation ID of

your MSAM record. As the target of the at t r TypeLi st field in the parameter

block, specify the At t r i but eType structure referenced by the attribute type index
kMai | Servi ceAtt r TypeNum The function reads the MSAM record and places the
packed record ID of each Mail Service or Combined record that it finds into a buffer in
a private data format.

Call the Di r LookupPar se function to read the data in the buffer. The function calls
your callback routine and passes it a pointer to an At t r i but e structure containing
a packed record ID that points to either a Mail Service or a Combined record. The

Di r LookupPar se function calls your callback routine once for each packed record
ID in the buffer, each of which corresponds to a slot for which your MSAM is
responsible. Now you know how many slots you are responsible for and in what
records their specific information is stored.

. Unpack the packed record IDs of the Mail Service or Combined records by calling the

OCEUnpackRecor dl Dutility function.

. Get the slot ID, standard slot information, and associated catalog information for each

slot by calling the Di r LookupGet and Di r LookupPar se functions. As the target of
the aRecor dLi st field in the Di r LookupGet parameter block, specify the unpacked
record IDs that point to your Mail Service or Combined records. As the target of the
attr TypelLi st field in the parameter block, specify At t r i but eType structures that
are referenced by the following attribute type indexes: kSl ot | DAt t r TypeNum

kSt dSl ot I nf oAt t r TypeNum and kAssoDi r ect or yAtt r TypeNum

Call the Di r LookupPar se function. It repeatedly calls your callback routine and
passes it a pointer to an At t r i but e structure containing one of the record attributes
you requested for each of your Mail Service or Combined records.

The value of each kS| ot | DAt t r TypeNumattribute is the slot ID you previously
assigned to the slot while processing the kMai | EPPCCr eat eSl ot high-level event
for that slot. It is a number (type Mai | S| ot | D) that uniquely identifies the slot. (If
you have never received and processed a kMai | EPPCCr eat eS| ot high-level event,
no kSl ot | DAt t r TypeNumattributes exist.)

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

10.

11.

Using the MSAM API

The value of each kSt dSI ot | nf 0At t r TypeNumattribute is a

Mai | St andar dSl ot | nf oAt t ri but e structure that indicates if the slot is active

and provides its send and receive timer information. For each slot, you must
determine if the slot is active at the current system location. The act i ve field of the
Mai | St andar dSl ot | nf oAt t ri but e structure is a bit array; each bit corresponds to
a possible system location. If the slot is active at that location, the bit is set. You can
test the bits with the Mai | Locat i onMask macro (see page 2-115)

The value of each kAssoDi r ect or yAt t r TypeNumattribute is a packed record ID
that points to the Catalog record associated with this slot or to the Combined record.

. If you provide a stand-alone MSAM, unpack the packed record ID for each slot’s

associated Catalog record by calling the OCEUnpackRecor dl D utility function. (If
you provide a combined MSAM /CSAM, attributes for the slot and catalog are both
stored in the Combined record— you already unpacked the Combined record IDs.)

. Get information about the catalog associated with each slot by calling the

Di r LookupGet and Di r LookupPar se functions. As the target of the aRecor dLi st
field in the Di r LookupGet parameter block, specify the unpacked record IDs that
point to your Catalog or Combined records. As the target of the at t r TypeLi st

field in the parameter block, specify At t ri but eType structures that are

referenced by the following attribute type indexes: kConmment At t r TypeNum

kReal NameAt t r TypeNum and kDi scri nmi nat or At t r TypeNum If you provide a
combined MSAM /CSAM, also specify kSFI agsAt t r TypeNum

Call the Di r LookupPar se function. It repeatedly calls your callback routine and
passes it a pointer to an At t r i but e structure containing one of the attributes you
requested from each Catalog or Combined record. Table 2-8 on page 2-40 describes
the information contained in those attributes.

Get the user’s account name and decrypted password by calling the
OCESet upGet Di r ect or yI nf o function. If the local identity is still locked, this
function returns an error. You cannot proceed until the local identity is unlocked.

Note that the value of the nat i veNane field returned by the

OCESet upGet Di r ect or yl nf o function is the value of the Real Name attribute
(kReal NareAt t r TypeNum) in the Catalog or Combined record. The content and use
of the Real Name attribute and the nat i veNare field are defined by the personal
MSAM and its setup template. A setup template can store the user’s account name

in the Real Name attribute.

At this point, you have obtained all of the standard information stored in your MSAM
and Combined records (or MSAM, Mail Service, and Catalog records) in the Setup
catalog. Using the Di r LookupGet and Di r LookupPar se functions, you may read
other attributes of private types that your setup or address template has added to

the records.

Get the incoming and outgoing queue references for each of the slots by calling the
PMSAMOpenQueues function for each slot.

2-39

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Now the personal MSAM can begin performing its primary functions of translating and
transferring messages between an AOCE system and external messaging systems.

Table 2-8 Selected Catalog record attributes

Data type of

Attribute type attribute value Description
kDi scrim natorAttr TypeNum DirDi scrim nat or Discriminator value for this catalog.
kSFl agsAt t r TypeNum | ong Bit array indicating the features

supported by this catalog. Present for
combined MSAM /CSAM only.

kConmment At t r TypeNum RStri ng Displayable string describing this

catalog/external messaging system.

kReal NaneAt t r TypeNum RString Defined by the MSAM and its setup

2-40

template. For example, it may be the
user’s account (logon) name or the
name of the external messaging
system and its address catalog.

The chapter “Service Access Module Setup” in this book describes the information that
your setup template obtains from the user and stores in the Setup catalog as well as the
process it uses to do so. See the chapter “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces for descriptions of the Di r Get OCESet upRef num Di r LookupGet,
and Di r LookupPar se functions. For a description of the OCEUnpackRecor dI D
function and the record and attribute type indexes, see the chapter “AOCE Utilities” in
Inside Macintosh: AOCE Application Interfaces. The OCESet upGet Di r ect oryl nf o
function is described in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

Initializing a Server MSAM

The first time a server MSAM is launched, it needs to solicit user input to obtain
information about itself. Then it initializes itself within the AOCE system by calling
the SMBSAMBet up and SMSAMSt ar t up functions.

The SM5AMSet up function creates the server MSAM’s Forwarder record. The Forwarder
record (record type index KMhMFor war der Rec Ty peNum) contains information about
the server MSAM. The Forwarder record name is the name of the server MSAM. The
record contains the record ID of the MSAM’s PowerShare mail server, an optional
comment string describing the server MSAM, and a list of the foreign dNodes to which
the server MSAM is connected. (See the chapter “Catalog Manager” in Inside Macintosh:
AOCE Application Interfaces for information about PowerShare catalogs, dNodes, and
foreign dNodes, as well as other concepts that pertain to AOCE catalogs.)

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

After being launched for the first time, a server MSAM must find out its name,
password, messaging system extension type, and a descriptive comment string about
the extension type. The MSAM should display one or more dialog boxes to obtain its
name and password from the system administrator. Typically, an MSAM has built-in
knowledge of the extension type it supports and a descriptive comment string about
the extension type; if it does not, it must obtain that information from the system
administrator.

Once a server MSAM has all this information, it calls the SMSAMSet up function to

create its Forwarder record. Prior to calling the function, the MSAM must allocate a
Recor dl Dstructure for its Forwarder record. Then the MSAM sets the r ecor dName
field to its name that the user provided, and the r ecor dType field to the constant
kMnhMFor war der Rec TypeNum The MSAM passes to the function a pointer to the
Recor dI Dstructure, the MSAM’s password, its extension type, and a string describing
its extension type. In the Recor dI Dstructure, the function returns the creation ID for
the newly created Forwarder record and the record location information. In the

cat al ogSer ver Hi nt field, the function returns the AppleTalk address (an Addr Bl ock
structure) of the PowerShare catalog server that created the Forwarder record. The
MSAM can pass this address to a Catalog Manager function (in the ser ver Hi nt field of
the function’s parameter block) if it wants to direct the request to that particular catalog
server. This can be helpful in preventing failures in the setup process due to delays in
replicating the MSAM'’s Forwarder record.

During the execution of the SMSAMSet up function, the PowerShare mail server prompts
the user for the system administrator’s name and password. You may find it helpful to
consult the PowerShare System Manager’s Guide, which describes the setup process from
the system administrator’s perspective.

If the system administrator does not provide this information, the function returns an
error. The function will also return an error if

» the PowerShare catalog server was unreachable

s the MSAM'’s name is not unique

» the disk is full

= an error occurred in creating the Forwarder record (any record creation error)

If an error occurs, the MSAM must display an appropriate dialog box telling the user
about the error. If the PowerShare catalog server was unreachable, the MSAM should
give the user the option of trying the operation again and, if the user chooses to try
again, the MSAM should call the SM5AMSet up function once more. If the user chooses
not to try again, the MSAM should quit. If the MSAM’s name was not unique, the
MSAM should allow the user to enter another name. In any error, the MSAM should fix
the problem when it can or quit when it cannot. Until the SMSAMBet up function
executes successfully, the MSAM cannot proceed with its initialization process.

When the SMSAMSet up function completes successfully, the server MSAM must save
knowledge of this fact so that if it is launched again in the future, it does not call the
SMBAMBet up function again. It is recommended that the server MSAM create a
preferences file in the Preferences folder and save the record ID of its Forwarder record
in its preferences file.

Using the MSAM API 2-41

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-42

CHAPTER 2

Messaging Service Access Modules

Once the SMSAMSet up function completes successfully, the server MSAM should call
the Aut hBi ndSpeci fi cl denti ty function, providing the record ID of its Forwarder
record and its encrypted password, to obtain its authentication identity. Once a server
MSAM has obtained its authentication identity, it should provide that information on
subsequent calls to AOCE functions that require an identity.

At this point, the server MSAM may present dialog boxes to the user to obtain any
additional configuration information it needs to function within an AOCE system and to
connect to its external messaging system, such as an IP address, a telephone number,
how often it should connect, and so forth. In general, an MSAM should ask for more
generic information first—that is, information that applies independently of a messaging
system. Then it should prompt for specific information for each messaging system that it
supports. It should then add this information to its Forwarder record in MSAM-defined
attribute types.

Note

In addition to its Forwarder record, a server MSAM should store a copy
of its configuration information in its preferences file for quick, efficient
access.

A server MSAM should keep a backup copy of its preferences file in

case the file is lost or damaged. If its preferences file is lost or damaged
and a server MSAM does not have a backup copy, it can retrieve the
information stored in the MSAM’s Forwarder record and rebuild the file.
To read its Forwarder record, an MSAM must have the Forwarder record
ID (which it obtains from the SMSAMSet up function). O

As the final step in the server MSAM’s initialization process, the MSAM calls the
SMBAMSL ar t up function to obtain a reference number for its outgoing queue. After
the SMSAMSt ar t up function completes successfully, the PowerShare mail server
may send high-level events to the server MSAM. The MSAM should respond to
high-level events, connect to external messaging systems, and begin to translate and
transfer messages.

A server MSAM must run on the same Macintosh computer as its PowerShare mail
server. If the PowerShare mail server is not running, the SMSAMSt ar t up function
returns the cor Err result code. You can detect when the PowerShare mail server
becomes available by

= repeatedly calling the Gest al t function and using the
gest al t OCESFSer ver Avai | abl e mask on its r esponse parameter to determine if
a PowerShare mail server is running on the local Macintosh computer

= repeatedly calling the SMSAMSt ar t up function

= adding an entry to the AppleTalk Transition Queue and waiting to receive a
notification that the PowerShare mail server is available

Using the AppleTalk Transition Queue is the recommended approach. The transition
event code ATTr ansSFSt ar t indicates that the PowerShare mail server has finished
starting up, and the code ATTr ans SFShut down indicates that the PowerShare mail
server has started to shut down.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The AppleTalk Transition Queue is described in the chapter “Link-Access Protocol (LAP)
Manager” in Inside Macintosh: Networking.

If the PowerShare mail server quits, your queue reference becomes invalid. You know
that the PowerShare mail server is not running when any of the MSAM API functions
return the cor Er r result code or you receive notification of the ATTr ans SFShut down
AppleTalk transition event. If the PowerShare mail server quits unexpectedly, you do not
receive an AppleTalk transition event.

When it starts up again, the PowerShare mail server does not know that your server
MSAM exists. You need to call the SMSAMSt ar t up function again to get a new queue
reference. You detect the restarting of the PowerShare mail server by any of the three
methods listed previously.

If the PowerShare mail server quits, your server MSAM can keep running. Although you
can no longer retrieve messages from your outgoing queue, you can continue to process
any outgoing messages you queued separately. You can mark recipients and send reports
for those messages after the PowerShare mail server resumes operations. If you have a
separate spool area to hold them, you can continue to process incoming messages while
the PowerShare mail server is not running.

Handling Outgoing Messages

This section describes what you need to do with messages in an outgoing queue. It
assumes you have already initialized your MSAM. Each subsection addresses a specific
task, such as

= enumerating messages in an outgoing queue
= opening and closing messages

» determining the message family

s determining what is in a message

= reading letter attributes

= reading addresses

= reading letter content

= reading nested messages

= marking recipients

= generating reports

There are some differences between how you read letters and how you read non-letter
messages. These differences are noted in the sections that address the specific tasks. For
convenience, Table 2-9 lists the tasks you perform while handling messages in an
outgoing queue and the functions you use to accomplish the task for a letter and a
non-letter message.

Using the MSAM API 2-43

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Table 2-9 Outgoing tasks and functions
Task Letters Non-letter messages
Enumerate a queue MSAMENnuner at e MSAMENnuner at e
Open a message MBAMOXpen MSAMODpen
MSAMOpenNest ed MBAMOpenNest ed
Read header information MBAMGet At tri but es MBAMGet MsgHeader
MBAMZet Reci pi ent's MBAMCZet Reci pi ent's
Read letter content MSAMCet Cont ent Not applicable
Read an enclosure MSAMCet Encl osur e Not applicable
Enumerate a block MSAMEnuner at eBl ocks MSAMEnuner at eBl ocks
Read a block MSAMCet Bl ock MSAMCet Bl ock
Close a message MSAMCI ose MSAMCI ose
Generate a report MSAMCr eat eReport MSAMCr eat eRepor t
MSAMPUt Reci pi ent Report MSAMPuUt Reci pi ent Report
MSAMSuUbni t MSAMSuUbni t
Mark a recipient MBAWnMar kReci pi ent s MBAWnhMar kReci pi ent s
Set message status PMBAMSet St at us PMBAMSet St at us
(personal MSAMs only)
The order in which functions are listed in Table 2-9 corresponds to the sequence in which
you would call the functions to process a message in an outgoing queue. You first
enumerate the messages in the queue. Then you open a specific message and read its
header information. Header information consists of such items as the message creator
and type, and address (recipient) information. Next, you read the substance of the
message—for a letter, its content block, other blocks it may contain, and enclosures; for a
non-letter message, its blocks. When you have finished reading the message, you close it.
After you have transmitted the message to the recipients for which you are responsible,
you indicate the outcome of your delivery attempts—that is, you generate a report
containing delivery and non-delivery indications if required and mark the recipients.
Setting the status of a message is a task that you perform at several points while you are
processing the message.
You should call the functions that handle outgoing messages asynchronously so that you
can receive and process an AOCE high-level event at any time.
Enumerating Messages in an Outgoing Queue
Before you can read a message from an outgoing queue, you must obtain its sequence
number. A sequence number uniquely identifies the message in the queue. You provide
it when you open the message. You get the sequence number of a message by calling the
MSAMEnuner at e function.
To make sure it transfers outgoing messages in a timely manner, an MSAM should
enumerate an outgoing queue on a regular basis. The MSAM should enumerate each
2-44 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

time it is launched and each time it receives a kMai | EPPCMsgPendi ng event. It should
also enumerate at periodic intervals—for instance, every 20 minutes. If an MSAM puts
itself into an idle state, it should enumerate before entering the idle state. A personal
MSAM should also enumerate when it receives a kMai | EPPCSchedul e event.

Listing 2-1 illustrates one way that you can enumerate messages in an outgoing queue.
For convenience, the function DoEnuner at eQut goi ngMessages in Listing 2-1 defines
the type MyEnunOut QRepl yType, a structure that contains a buffer that can hold a
2-byte count value plus exactly one MSAMEnurrer at eQut QRepl y structure. As a result,
each time DoEnuner at eQut goi ngMessages calls the MSAMEnuner at e function,
MSAMEnuner at e returns exactly one MSAMEnuner at eQut QRepl y structure, which
provides identifying information about one message in the queue, including its
sequence number.

Before the DoEnuner at eQut goi ngMessages function calls the MSAMEnuner at e
function, it always initializes the fields of the parameter block. It sets the queue reference
to an outgoing queue reference previously obtained from the PMSAMOpenQueues
function. The first time through the loop, DoEnuner at eCut goi ngMessages sets the
starting sequence number to 1 to start with the first message in the queue. On subse-
quent executions of the loop, it sets the starting sequence number to the sequence
number of the next message in the queue, which is returned by MSAMEnuner at e.

The DoEnurer at eQut goi ngMessages function calls the MSAMEnuner at e function
once for each message in the queue. Into your buffer, MSAMEnuner at e places the count
of the number of MSAMVEnuner at eQut QRepl y structures followed by the reply
structures themselves. In Listing 2-1, the count is always 1.

Listing 2-1 Enumerating outgoing messages

OSErr DoEnurrer at eQut goi ngMessages(MSAMQueueRef myQut goi ngQRef)

{

typedef struct MyEnunfut QRepl yType {
Mai | Repl y reply; /* nunber of structures returned */
MSAMENnuner at eQut QRepl y nessage; /* enunerate reply structure */

} MyEnumQut QRepl yType;

OSEr r myErr;
MSAMEnuner at ePB nmyPar anBl ock;
MyEnuntut QRepl yType nyEnunfut QRepl vy;
| ong myNext MsgSeq;
myNext MsgSeq = 1;

nmyErr = nokErr;

Using the MSAM API 2-45

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

do {

}

myPar anBl ock. i oConpl eti on
nmyPar amBl ock. queueRef my Qut goi ngQRef ;

nmyPar anBl ock. st art SeqNum myNext MsgSeq;

myPar anBl ock. buf fer. bufferSi ze = si zeof (MyEnunut QRepl yType) ;
nyPar anBl ock. buf f er. buf fer (Ptr) &ryEnunut QRepl vy;

(ProcPtr) DoMSAMConpl et i on;

MSAMVEnuner at e((MSAMPar am *) &y Par anBl ock, true) ;
/* poll for completion */

nyErr = DoWai t PBDone(&myPar anBl ock) ;
myNext MsgSeq = nyPar anBl ock. next SeqNum

/* save the MSAMEnunerateQut QReply structure */
DoSaveDat a((Pt r) &vyEnunmlut Qrepl y) ;

while (nmyErr == noErr && nyNext MsgSeq != 0);

return nyErr;

2-46

The DoWi t PBDone function, called here and in the listings in the following sections,
polls the i oResul t field to determine when an asynchronous request has completed.
While it is polling, it also yields time to other processes running on the computer by
calling the Wi t Next Event function. When the MSAMEnuner at e function completes,
DoWai t PBDone returns the MSAMEnurrer at e result code as its result code.

The DoMSAMConpl et i on completion routine, called when the MSAMEnumer at e function
completes execution, calls the WakeUpPr ocess function. Then WakeUpPr ocess makes
the MSAM process, which suspended itself by calling the Wai t Next Event function,
eligible to receive CPU time.

After the MSAMENnumer at e function completes, DOEnuner at eQut goi ngMessages
saves the enumeration information elsewhere by calling its DoSaveDat a function. It
needs to do this because MSAMENuUner at e overwrites the My EnunQut QRepl yType
structure each time through the loop.

Opening and Closing a Message

Before you can read any part of an outgoing message, you must open it. To open a
specific message, you call the MSAMOpen function and provide the queue reference of
the outgoing queue in which the message is located and the sequence number of the
message. The MSAMOpen function returns a reference number for the opened message
that you use when you call other functions to read the various parts of the message, such
as the message header, recipient information, and the content data in the message. If the
message is a letter, you can also read the letter’s attributes. You cannot modify a message
in an outgoing queue.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

When you have finished reading a message, call the MSAMCl ose function to close it.
Closing a message reduces PowerTalk software memory requirements. Once you have
closed a message, the message reference number is no longer valid, even though

the message itself remains in the outgoing queue. If you want to read any part of the
message again, you must call the MSAMOpen function and get a new reference number.
You can open and close a message as many times as you wish.

Determining the Message Family

You must determine if a message that you want to read is a letter or a non-letter message
because the functions you use to read a letter or a non-letter message differ somewhat (see
Table 2-9 on page 2-44). You determine the message family to which a message belongs
by examining the msgFamni | y field in the MSAMEnuner at eCut QRepl y structure.
Letters may belong to either the kMai | Fami | y or KMai | Fani | yFi | e family. Non-
letter messages belong to the kI PMFami | yUnspeci fi ed family. Once you know the
message family, you can call the appropriate MSAM functions to read the attributes,
addresses, and contents of the letter or non-letter message.

Determining What Is in a Message

Typically, when you read a letter, you call the MSAMGet Cont ent , MSAMCet Bl ock,
MSAMGet Encl osur e, and MSAMOpenNest ed functions to read the letter’s content
block, image block, enclosures, and nested letter, respectively.

When you want to read a non-letter message, you need to enumerate the blocks in the
message. The MSAMEnuner at eBl ocks function returns each block’s creator and type,
its offset in bytes from the beginning of the message, and its length in bytes. When you
want to read a given block, you call the MSAMGet Bl ock function and provide the
block’s creator and type.

Reading Letter Attributes

Every letter contains attributes that provide information about the letter, such as whether
the sender wants to receive a report containing delivery or non-delivery indications,
when the letter was sent, and so forth. You should read this information and include in
the letter as much of the information as is meaningful in your messaging system. You
can read most letter attributes with the MSAMGet At t ri but es function. However, to
read the recipients of a letter—the f rom t o, cc, and bcc attributes—you call the
MBAMGet Reci pi ent s function.

To the MSAMGet At t r i but es function, you provide a set of bit flags, known as the request
mask, that represents the attributes whose values you want to read and a buffer to hold
the attribute values. The Mai | At t ri but eBi t nap structure, described on page 2-100,
defines the attributes that the bit flags in the request mask represent. The function
returns a second set of bit flags, known as the response mask, that indicates which of the
requested attribute values it has returned in your buffer.

Using the MSAM API 2-47

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

The function DoReadLet t er At t ri but es in Listing 2-2 shows how you can

request attribute values, test for their presence in your buffer, and save the value

in a file. The DoReadLet t er At t ri but es function defines the structure type

Maxi mumlLet t er At t ri but es that is large enough to hold a value for each

of the attributes that the MSAMGet At t r i but es function can return. The

DoReadLet t er Attri but es function declares a variable of that type, nyAt t r i bBuf,
and sets a pointer, nyAt t ri bPt r, to point to the start of the buffer. Next, it initializes
the request mask to 0 and then sets the request mask to specify every attribute that
the MSAMGet At t ri but es function can return. If the messaging system to which you
provide access does not use some of this information, don’t ask for it. For instance, if
you know that your messaging system does not understand a reply ID, do not set the
bit for the reply ID in the attribute request mask.

Note

Because the Mai | Attri but eBi t map data type is defined as a

bit field structure, you cannot use predefined masks such as

kMai | Subj ect Mask, kMai | MsgTypeMask, and so forth to set or test
the value of a bit field in a variable of type Mai | At t ri but eBi t map.
The masks operate on variables of type | ong. O

After the DoReadLet t er At t ri but es function sets its attribute request mask, it calls
the MSAMGet At t ri but es function. The MSAMGet At t ri but es function returns the
attributes that you request (if they are present in the letter header) packed into your
buffer, starting with the attribute specified by the least significant bit in the request mask.
The MSAMGet At t r i but es function also sets the bits in the response mask
corresponding to those attributes for which it returned a value.

Next, DoReadLet t er At t ri but es tests the bits in the response mask to find

out which attributes are in the buffer. Initially, myAt t ri bPt r points to the
beginning of the nyAt t ri bBuf buffer. For each bit in the response mask that is set,
DoReadLet t er At tri but es writes the corresponding attribute value to a file and
adds the size of the attribute value’s data type to myAt t ri bPt r to position the
pointer to the start of the next attribute value in nyAt t ri bBuf .

Listing 2-2 Reading letter attributes

OSErr DoReadLetterAttri butes(Mail MsgRef myMai |l Ref)

{

/* maxi mum si ze structure for calling MSAMGet Attri butes */

typedef str

Mai | | ndi
OCECr eat
Mai | Let t
Mai | Ti e
Mai | Nest
OSType

Mai | Let t

2-48

uct Maxi munietterAttributes {

cations i ndi cati ons;

or Type msgType;

erlD letterl D
sendTi neSt anp;

i ngLevel nestinglLevel;
nmessageFam | y;

erlD repl yl D;

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Mai | Letterl D conver sati onl D;
RSt ri ng subj ect ;

} Maxi munLetterAttri butes;

OSEr r nmyErr;

MSAMGet At tri but esPB nmyPar anBl ock;

Mai | Attri buteBitnmap nmyRequest Bi t map;

Maxi munmLetter Attri butes nyAttri bBuf;

char *nyAttribPtr;

| ong *nyd ear Bi t nap;

nyAttri bPtr = (char *)&nyAttri bBuf; /* point to start of buffer

/* initialize the request mask to 0 */
nmyC ear Bi t nap (long *) &myRequest Bi t map;
*myC ear Bi t map oL;

/* set bits for the attributes you want */

myRequest Bi t map. i ndi cati ons = nyRequest Bi t map. nsgType =
nyRequest Bi tmap. l etterl D = nyRequest Bi t map. sendTi meSt anp =
nmyRequest Bi t map. nesti ngLevel = nyRequestBitmap. nsgFam |y
myRequest Bi t map. repl yl D = nyRequest Bi t nap. conversati onl D
nmyRequest Bi t map. subj ect = 1;

[* fill in the fields of the parameter block */

nyPar anBl ock. i oConpl eti on (ProcPtr) DoMSAMConpl et i on;

nmyPar anBl ock. nai | MsgRef nmyMai | Ref;

myPar anBl ock. r equest Mask myRequest Bi t map;

nmyPar anmBl ock. buf fer. buf fer Si ze = si zeof (Maxi nurmLetter Attri butes);
nmyPar anBl ock. buf f er. buf fer = myAttribPtr;

my Par anBl ock. nor e = fal se;

/* call function to get the attributes */
MSAMGet At t ri but es((MSAMPar am *) &y Par anBl ock, true) ;
nyErr = DoWii t PBDone(&ryPar anBl ock) ;
if (nmyErr!=noErr)
return nyErr;

/* save returned attributes to disk */
i f (myParanBl ock.responseMask. i ndi cations) {
nyErr = DoWiteToFil e(kMillndicationsMask, nyAttribPtr,
si zeof (Mai | I ndi cations));

Using the MSAM API

*/

2-49

SO|NPOIA SS9V 92IAIaS Bulbessay -

/*

*/

2-50

CHAPTER 2

Messaging Service Access Modules

if (nmyErr!=noErr)
return nyErr;
nmyAttri bPtr += sizeof (Maillndications);

(myPar anBl ock. responseMask. msgType) {
nyErr = DoWiteToFil e(kMail MsgTypeMask, myAttribPtr,
si zeof (OCECr eat or Type)) ;
if (nyErr!=noErr)
return nyErr;
myAttri bPtr += sizeof (OCECreat or Type);

(myPar anBl ock. responseMask. l etterl D) {
nyErr = DoWiteToFil e(kMail Letterl Dvask, myAttribPtr,
si zeof (Mai |l LetterlID));
if (myErr!=noErr)
return nyErr;
nyAttribPtr += sizeof (MailLetterlD);

Test for presence of the send tinme stanp, nesting |evel, nmessage
famly, reply ID, and conversation ID attributes. If present, wite
themto file.

(myPar anBl ock. responseMask. subj ect) {
nyErr = DoWiteToFil e(kMil Subj ect Mask, nyAttribPtr, sizeof (RString));
if (nmyErr!=noErr)
return nyErr;
nyAttribPtr += sizeof (RString);

You can read information such as the message creator and message type from the
message header of non-letter messages by calling the MSAMGet MsgHeader function.

Interpreting Creator and Type for Messages and Blocks

An outgoing message may have any message creator and any message type. Typically,
an application that generates a message uses its own application signature as the
message creator and its document type as the message type.

The message creator value ' | ap2' indicates that the AppleMail application created
the message.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

If the message type of an outgoing message is KMai | Lt r MsgType, the message is a
letter that contains any or all of the following: data in standard interchange format, data
in image format, or a regular enclosure.

Each block in an outgoing message has a block creator and block type. The AppleMail
application sets the block creator to kMai | Appl eMai | Cr eat or for blocks that it
creates. The block types that you may find in a letter are listed in Table 2-3 on page 2-18.

Reading Addresses

When you read the addresses associated with an outgoing message, you must get both
the original and the resolved recipients for that message. That gives you complete
addressing information for both display and routing purposes.

An original recipient can be a To, From, cc, or bec recipient. These four types of original
recipients are defined as follows:

= From: the sender of a message
= To: a primary recipient of a message
= cc: a secondary recipient receiving a copy of a letter

= bcc: a secondary recipient whose address does not appear on the letter as received by
the To and cc recipients and other bcc recipients

An original recipient may be a group address (distribution list).

A resolved recipient is a recipient to which you are responsible for delivering the
message. Usually, a resolved recipient is an individual address; sometimes it can be a
group address.

Reading Original Recipients

To get a list of original recipients, you call the MSAMGet Reci pi ent s function. You need
to get original recipients so that you can properly display them as From, To, cc, or bec
recipients in the message you send to an external messaging system. The function
returns information about one type of original recipient. You specify the type of original
recipient you want by setting the at t r | D field of the MSAMGet Reci pi ent sPB
parameter block appropriately. You can set the at t r | Dfield to any of the following
constants:

Constant Value Recipient type
kMai | FronBi t 12 From

kMai | ToBi t 13 To

kMai | CcBi t 14 cc

kMai | BccBi t 15 bec

If you are reading a letter, you need to get each original recipient type so that when you
translate the letter, it includes display information about all of the recipients. Display
address information refers to an address that may not be usable for routing within a
given messaging system but nevertheless shows that the letter went to the addressee.

Using the MSAM API 2-51

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-52

CHAPTER 2

Messaging Service Access Modules

(A bcce recipient is an exception, as it should be displayed only to the sender and the bcc
recipient itself.)

If you are reading a non-letter message, the only original recipient types that apply are
From and To. You may not need to get display information. If that is the case, do not call
the MBAMCet Reci pi ent s function to retrieve the To recipients. You may still want to
call it to get the From recipient. (You could also get the From recipient by calling the
MBAMGet MsgHeader function.)

When a letter has a bcc recipient, you must make every attempt to conform to the
following AOCE guidelines for bce recipients: A bee recipient must know that he or she
is a bec recipient. A To or a cc recipient must not see any bec recipient. It is less desirable,
but acceptable, for a bec recipient to see other bec recipients.

To support these guidelines, your MSAM may need to generate a separate copy of the
letter for each bcece recipient for which it is responsible or employ other implementations
that are less straightforward or more expensive than usual. As a last resort, if your
MSAM cannot support AOCE guidelines, it must reject bee recipients. In that case, it
must still apply the guidelines to the letter—that is, no other recipient must know of the
bcc recipients.

Reading Resolved Recipients

To get a list of resolved recipients, call the MSAMGet Reci pi ent s function and specify
the kMai | Resol vedLi st constant in the at t r | Dfield of the MSAMZet Reci pi ent sPB
parameter block. You need to get a list of resolved recipients so that you know to which
recipients you must send the message.

As you read the Mai | Resol vedReci pi ent structures that the MSAMCet Reci pi ent s
function places in your buffer, you must save the ordinal-position value for each
resolved recipient. The first recipient’s ordinal-position value is 1; the second recipient’s
ordinal-position value is 2; and so forth. The MSAMhMar kReci pi ent s function requires
you to provide the ordinal-position value to identify a recipient for whom you have
completed delivery attempts. If you need to call MSAMCet Reci pi ent s more than

once to get all of the resolved recipients, you must increment the ordinal-position

value continuously so that each resolved recipient is associated with a unique ordinal-
position value.

Personal MSAMs always find a one-to-one correspondence between their resolved
recipients and their displayable (original) recipients because the MSAMGet Reci pi ent s
function expands all group addresses into individual recipients before it returns
recipient information to the personal MSAM.

Server MSAMs may find more recipients in the resolved list than in the displayable
lists for this reason: the PowerShare mail server expands PowerShare group addresses
into individual addresses for the resolved list, but the original recipient lists may
have included PowerShare group addresses that were not expanded. The

MSAMGet Reci pi ent s function does not expand external group addresses.

Server MSAMs may also find that there are recipients in the resolved list that are not
exactly the same as the corresponding recipients in the original list. These have been
resolved by the AOCE software to a more specific form.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The PowerShare mail server does not suppress duplicate external addresses. It does
suppress duplicate addresses resulting from the expansion of a PowerShare group
address. However, you are not guaranteed that the MSAMGet Reci pi ent s function will
not return duplicate PowerShare addresses.

Listing 2-3 illustrates a dispatch routine that calls the DoReadGener i cAddr ess
function (shown in Listing 2-4 on page 2-55) to get a list of resolved recipients and lists
of the original recipients that are appropriate to a letter or a non-letter message.

Listing 2-3 Getting resolved and original recipients

OSErr DoReadAddr ess(Mai | MsgRef nyMsgRef)

{

FSSpec nmy TenpFi | eSpec;
OSEr r nmyErr;

/* initialize the file specification */

nyErr = DoReadCeneri cAddr ess(&ryTenpFi |l eSpec, nyMsgRef,
kMai | Resol vedLi st);
if (myErr!= noErr)
return nyErr;

myErr = DoReadCeneri cAddress(&y TenpFi | eSpec, nyMsgRef, kMail FronBit);
if (nyErr!= noErr)
return nyErr;

nyErr = DoReadCeneri cAddr ess(&ryTenpFil eSpec, nyMsgRef, kMail ToBit);
if (nmyErr!= noErr)
return nyErr;

if (nmyMsg->nsgFami|ly == kMail Fanily) { /* it's a letter */
myErr = DoReadCeneri cAddress(&y TenpFi | eSpec, nmyMsgRef, kMail CcBit);
if (nyErr!= noErr)
return nyErr;

nyErr = DoReadCeneri cAddr ess(&ryTenpFi |l eSpec, nyMsgRef, kMail BccBit);

if (nmyErr!= noErr)
return nyErr;

return nyErr;

Using the MSAM API 2-53

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-54

CHAPTER 2

Messaging Service Access Modules

The function DoReadGener i cAddr ess shown in Listing 2-4 actually reads the addresses
from an outgoing message and writes them to a disk file. The DoReadGener i cAddr ess
function takes three parameters: the file system specification of a temporary disk file to
which it writes the addresses, the message reference number for a given message, and an
attribute ID that identifies the type of address that the caller wants to retrieve from the
message.

First DoReadGener i cAddr ess allocates a buffer, pointed to by the addr essBuf f er
field, that it uses to hold addresses returned by the MSAMGet Reci pi ent s function. It
sets the size of the buffer to 1024 bytes. Your MSAM should determine the buffer size

that is appropriate for your needs.

Next, DoReadGener i cAddr ess determines if it is handling a request to get resolved or
original recipients and sets the doi ngResol ved Boolean variable accordingly. If it is
handling resolved recipients, DoReadGener i cAddr ess initializes its local variable

or di nal Posi ti on to 0. It uses or di nal Posi ti on to save the ordinal position of each
resolved recipient. It needs this information to mark a recipient when it has finished its
efforts to deliver the letter to the recipient. The ordinal-position value must be unique for
each recipient.

Then, DoReadGener i cAddr ess fills in all but one of the fields of the local variable
myPar anBl ock, which is an MSAMGet Reci pi ent sPB parameter block. It sets the
myPar anBl ock.mai | MsgRef field to its message reference number parameter

(nyMai | Ref) to identify the message and sets the myPar anBl ock.at t r | Dfield to its
attribute ID parameter (at t r | D) to indicate which type of address (To, From, cc, bcc,
or resolved) it wants the MSAMGet Reci pi ent s function to return. Although the

next | ndex and nor e fields are outputs of the MSAMGet Reci pi ent s function,
DoReadGener i cAddr ess sets them here to execute the f or statement that follows
and to initialize the myPar anBl ock.st ar t | ndex field properly the first time through
the loop.

To accomplish its main work, DoReadGener i cAddr ess uses two f or loops, one nested
inside the other. Note that the outer f or statement contains only the logical expression
controlling the iteration of the loop. The loop executes as long as the value of

nyPar anBl ock.nor e is t r ue and no error has occurred. The MSAMGet Reci pi ent s
function sets the nor e field to t r ue when there are more addresses to return than it
could fit into the caller’s buffer.

The outer f or loop sets the myPar anBl ock.st ar t | ndex field to the value of the
myPar anBl ock.next | ndex field, which it previously set to 1. This tells the
MBAMGet Reci pi ent s function that it should begin returning addresses starting
with the first address of the specified type. Then DoReadCener i cAddr ess calls
MSAMGet Reci pi ent s asynchronously and polls for its completion.

If no error has occurred, DoReadGener i cAddr ess initializes two variables used by the
inner f or loop. The MSAMZet Reci pi ent s function always puts at the beginning of
your buffer the count of the number of addresses it placed in your buffer, followed by
the addresses themselves. Therefore, DoOReadGener i cAddr ess sets r eci pi ent Pt r to
point into the address buffer at the byte where address information actually begins,
skipping over the count. It next sets the variable nunReci pi ent s to the count of the

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

number of addresses in the buffer. Then, it executes the inner f or loop to manipulate the
addresses returned in the buffer.

The inner f or loop extracts an address from the buffer and writes it to a disk file.

It executes until all of the addresses have been extracted and written or until an

error occurs. For convenience, DoReadGener i cAddr ess defines two new types,

Mai | Ori gi nal Reci pi ent Ext and Mai | Resol vedReci pi ent Ext . Each consists of
aMai | Oi gi nal Reci pi ent or Mai | Resol vedReci pi ent structure, respectively,
followed by an OCEPackedReci pi ent structure. The new types enable
DoReadGeneri cAddr ess to manipulate all of the relevant information associated
with a particular address using a single structure.

If it is extracting resolved recipients, DoReadGener i cAddr ess first increments

the or di nal Posi t i on local variable. Then it sets the pointer r esol vedPt r to

reci pi ent Pt r, which in turn points to the beginning of the first resolved address.
The DoReadGener i cAddr ess function writes the Mai | Resol vedReci pi ent Ext
structure to a disk file, tagging it with its address type (attribute ID) and ordinal-position
value for later identification. Once that is done, DoReadGener i cAddr ess advances
the r eci pi ent Pt r pointer to the next address in the buffer. It moves r eci pi ent Pt r
past the Mai | Resol vedReci pi ent structure, past the dat aLengt h field in the
COCEPackedReci pi ent structure, and then past the number of bytes specified

in the dat aLengt h field. If r eci pi ent Pt r points to an odd byte address,
DoReadCener i cAddr ess increments it by 1 to point to an even byte boundary.

At this point, the f or loop is ready to execute again.

Because of differences in the sizes of the applicable structures, the f or loop has separate
but parallel logic to extract and write resolved and original recipients.

The logic of DoReadCener i cAddr ess assumes that after it writes the addresses to disk,
the MSAM translates them from AOCE address format into the format of the destination
messaging system.

Listing 2-4 Reading addresses from an outgoing message

OSErr DoReadGeneri cAddr ess(FSSpec *nyTenpFi | eSpec, Mail MsgRef nyMi | Ref,
Mai |l AttributelD attrl D)

typedef struct Mail Origi nal Reci pi ent Ext {
Mai | Ori gi nal Reci pi ent prefix;
OCEPackedReci pi ent packedReci p;

} Mail Origi nal Reci pi ent Ext;

typedef struct Mil Resol vedReci pi ent Ext {
Mai | Resol vedReci pi ent prefix;
OCEPackedReci pi ent packedReci p;

} Mail Resol vedReci pi ent Ext ;

Using the MSAM API 2-55

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

OSEr r nmyErr;
MSAMGet Reci pi ent sPB my Par anBl ock;
short count, nunReci pients, ordinal Position;

Mai | Ori gi nal Reci pi ent Ext *origPtr;

Mai | Resol vedReci pi ent Ext *resol vedPtr;

Ptr addressBuffer, recipientPtr;
Bool ean doi ngResol ved;

addressBuffer = NewPtr(1024L);
if (MenkError()!= noErr)
return Mentrror();

if (attrlD == kMail Resol vedList) {

doi ngResol ved = true;
ordi nal Posi tion = 0;
el se

doi ngResol ved = fal se;

nmyPar anBl ock. i oConpl eti on = (ProcPtr) DoMSAMConpl eti on;

myPar anBl ock. nai | MsgRef = nyMai | Ref;

nmyPar amBl ock. attrl D = attrl D

nmyPar anBl ock. buf f er. buf fer = addressBuffer;

myPar anBl ock. buf fer. bufferSi ze = 1024L;

nmyPar anmBl ock. nore =true; /* to get into "for" loop */
nmyPar anBl ock. next | ndex = 1;

nmyErr = nokErr;
for (; nyParanBl ock.more == true && nyErr == noErr;) {
nmyPar anmBl ock. start| ndex = nyParanBl ock. next | ndex;
MSAMZet Reci pi ent s((MSAMPar am *) &y Par anBl ock, true) ;
myErr = DoWi t PBDone(&y Par anBl ock) ;
if (nyErr !'= noErr) {
Di sposPtr (addressBuffer);
return nyErr;
} /* endif */
reci pientPtr
nunReci pi ents

addressBuf fer + sizeof(short);
(Mai | Reply *) addressBuffer->tupl eCount;

for (count = 0; count < nunRecipients & nyErr == noErr;
count ++) {
i f (doi ngResol ved) {
resol vedPtr = (Mail Resol vedReci pi ent Ext *)recipientPtr;

or di nal Posi ti on++;
myErr = WiteRecipient(nmyTenpFil eSpec, attrlD, resol vedPtr,
or di nal Posi tion);

2-56 Using the MSAM API

}

/*

CHAPTER 2

Messaging Service Access Modules

reci pientPtr += (sizeof(Mil Resol vedReci pi ent) + sizeof (short)
+ resol vedPt r - >packedReci p. dat aLengt h) ;
if ((unsigned long)recipientPtr % 2)/*pad to even boundary */
reci pi ent Ptr ++;
} /* endif */
el se {
origPtr = (Mai | Ori gi nal Reci pi ent Ext *)recipientPtr;
myErr = WiteRecipient(nmyTenpFil eSpec, attrID, origPtr, 0);
reci pientPtr += (sizeof (Mail Oiginal Recipient) + sizeof(short)
+ origPtr->packedReci p. dat aLengt h) ;
if ((unsigned long)recipientPtr % 2)/*pad to even boundary */
reci pi ent Pt r ++;
} /* end else */
/* end inner for |oop */
end outer for |loop */

Di sposPtr(addressBuffer);
return nyErr;

Reading Letter Content

You read a letter’s content block by calling the MSAMGet Cont ent function. A content
block consists of a series of data segments. A segment contains data in any of these
formats: plain text, styled text, pictures, sound, and QuickTime movies. You select which
types of segment you want to read by setting the segnment Mask field in the function’s
parameter block appropriately.

To read the segments sequentially, set the segnent | Dfield to 0. The MSAMCGet Cont ent
function returns data from the first segment of a type that you requested in your
segment mask. Continue resetting the segnent | Dfield to 0 on subsequent calls to the
MBAMGet Cont ent function to read the segments of interest sequentially.

To access the segments in any order you choose, set the segnent | Dfield to a given
segment’s segment ID. You can obtain the segment ID for each segment in a letter’s
content block by scanning the segments without actually reading in any data. To do this,
set the segnent Mask and segment | D fields to 0 before calling the MSAMGet Cont ent
function. This tells the function that you do not want it to return data for any segment
type and that you want it to return information about the segments starting with the first
segment in the block. Save the values of the segnment Type, segnent Lengt h, and
segnent | Dfields that the function returns. Reset the segment | Dfield to 0 and call the
function again to get information about the next segment in the block. Continue saving
the values of the segment Type, segnent Lengt h, and segrent | D fields, resetting the
segnent | Dfield to 0, and calling the function. The function provides information about
the next segment in the content block. When it returns information about the last
segment in the content block, the function returns t r ue in the endCf Cont ent field.

Using the MSAM API 2-57

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

At this point, you know the order of the segments in the block, the type of data each
contains, the number of bytes in the segment, and the segment IDs. You can then read
the data in the segments in any order you choose. Set the segnment Mask field to indicate
the types of segments from which you want to retrieve data. The types of segment data
you request depends on the capabilities of your messaging system. For instance, if your
messaging system understands only plain text data, there is no point in reading
segments that contain QuickTime movie data.

The function DoReadLet t er Cont ent in Listing 2-5 reads a letter’s content block. It
allocates buffer space for the segment data. In the MSAMGet Cont ent PB parameter block,
it sets the segment mask to request data from segments containing plain text, pictures,
and sound. Then it repeatedly calls the MSAMGet Cont ent function until the function
returns t r ue in the endOf Cont ent field, always resetting the segment ID to 0 to
proceed sequentially through the blocks. If MSAMGet Cont ent completes successfully,
DoReadLet t er Cont ent writes the segment data to a file. Later, it can read this file and
build its message in the format acceptable to its external messaging system.

Listing 2-5 Reading a letter’'s content block

#define kMaxBufferSi ze 32767L

OSErr DoReadLett er Cont ent (FSSpec *nyTenpFi | eSpec, Mail MsgRef mnyMail Ref)

{

MSAMGet Cont ent PB my Par anBl ock;
Ptr dat aBuf fer;
OSEr r myErr;

Bool ean start O Bl ock;
unsi gned short bl ockl ndex;

/* allocate data buffer */
dat aBuf fer = NewPtr (kMaxBuffer Si ze) ;
if (Menkrror() != noErr)

return Menkrror();

/* fill in paraneter block */
nyPar anBl ock. i oConpl eti on
nmyPar anBl ock. nai | MsgRef nmyMai | Ref;
myPar anBl ock. buf f er. buf fer dat aBuf fer;
nmyPar anBl ock. buf fer. buf ferSi ze = kMaxBuffer Si ze;
nmyPar anBl ock. segnment Mask kMai | Text Segnment Mask |

kMai | Pi ct Segnment Mask | kMai | SoundSegnent Mask;
nmyPar anmBl ock. t ext Scr ap =nil;

(ProcPtr) DoMSAMConpl eti on;

2-58 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

/* read letter content */
start O Bl ock = true;

bl ockl ndex = 0;

do {

myPar anBl ock. segnment | D = 0;

MBAMZet Cont ent ((MSAMPar am *) &y Par anBl ock, t rue) ;

nyErr = Wit PBDone(&y Par anBl ock) ;

if ((nyErr == noErr) && (myParanBl ock. buffer.dataSize > 0)) {

if (startOFBlock) {
DoW it eCont ent ToFi | e(myTenpFi | eSpec, myParanBl ock. segnent Type,
myPar anBl ock. buf fer. buffer,
nyPar anBl ock. buf f er. dat aSi ze, bl ockl ndex);
start O Bl ock = fal se;
}
el se
DoAppendCont ent ToFi | e(myTenpFi | eSpec, myPar anBl ock. segnent Type,
myPar anBl ock. buf f er. buf fer
nyPar anBl ock. buf f er. dat aSi ze, bl ockl ndex);
i f (myParanBl ock. endOF Segnent == true) {
start O Bl ock = true;
bl ockl ndex++;

} while ((nyErr == noErr) && (nyParanBl ock.endO Content == fal se));

Di sposPt r Chk(dat aBuffer);

return nyEgrr;

Reading a Nested Message

A message can have other messages nested within it. If you are reading a letter, you
can determine if the letter contains nested letters by calling the MSAMGet At t r i but es
function and requesting the nest i ngLevel attribute. A nesting level of 0 means there
are no nested letters; a nesting level of 1 means there is one nested letter, and so forth.
If you are reading a non-letter message, you can determine if it contains a nested
message by calling the MSAMEnumrer at eBl ocks function and looking for a block of
type kI PMEncl osedMsgType. Such a block contains a complete message. That nested
message may in turn contain a message block of type kI PMEncl osedMsgType that
contains a complete message, and so on.

To open a nested message, you call the MSAMOpenNest ed function, which returns a
reference number to the nested message. To read the nested message, you pass this
nested message reference number to functions. An MSAM can call MSAMOpenNest ed
repeatedly to open a hierarchy of nested messages.

Using the MSAM API 2-59

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-60

CHAPTER 2

Messaging Service Access Modules

You can close a nested message explicitly by calling the MSAMCl ose function or you can
close it implicitly when you close the parent message.

Note

A letter can have only one nested letter per nesting level, although each
nested letter can itself contain a nested letter, and so forth. A non-letter
message may actually have more than one nested message per nesting
level. The IPM Manager API allows applications to create such
messages. However, the MSAM API restricts you to reading one nested
message per nesting level. You can read only the first occurrence of a
nested message in a sequence of message blocks. O

Marking Recipients

Once you have read a message from the outgoing queue, translated it into the format
understood by your external messaging system, and transmitted it, you can mark
one or more recipients. Marking a recipient indicates that you have completed your
efforts to deliver the message to that recipient. You mark a recipient by calling the
MSAMnMar kReci pi ent s function.

Marking a recipient does not indicate that you have successfully delivered the message,
but only that you are finished with your efforts to deliver it to that recipient.

You can use the MSAMhMar kReci pi ent s function to help you keep track of your
delivery status for a message. The function clears the r esponsi bl e flag in the

Mai | Resol vedReci pi ent structure for the recipients you specify. Thus, if you later
call the MSAMCet Reci pi ent s function to get the resolved recipients for the message,
the r esponsi bl e flag indicates those recipients you have already processed.

You identify a recipient that you want to mark by its ordinal position in the buffer
returned by the MSAMGet Reci pi ent s function. That is, when you call the

MBAMCet Reci pi ent s function to get your resolved recipients, it places recipient
information in your buffer, and you must save the ordinal-position value of each
resolved recipient as you retrieve the recipient information from the buffer. The

first recipient’s ordinal-position value is 1; the second recipient’s ordinal-position

value is 2; and so forth. It is this value that you provide to the MSAMhMar kReci pi ent s
function to identify the recipient. If you use the recipient’s absolute index, contained

in a Mai | Resol vedReci pi ent structure, the MSAMnMar kReci pi ent s function does
not work correctly.

After you mark all of the recipients for a given message, the function sets the done
field in the MSAMEnumer at eQut QRepl y structure to t r ue. If you later call the
MSAMEnuner at e function to check the messages in your outgoing queue, you can
determine if you have finished processing a given message by checking the done field.

You can call the MSAMhMar KReci pi ent s function as many times as necessary for a
given message, specifying one or more recipients each time as you complete your
delivery efforts for those recipients.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Generating a Report

When you have completed your delivery attempts for an outgoing message, you may
need to generate a report to the sender. An MSAM determines whether it must create a
report for an outgoing message by reading information in the message header. An
MSAM should create a report about an outgoing message only in response to the
sender’s request.

If the message is a letter, an MSAM calls the MSAMCet At t r i but es function to

read the Mai | | ndi cat i ons structure. In the Mai | | ndi cat i ons structure, the
kMai | NonRecei pt Report sBit bit and the kMai | Recei pt Report sBit bit, if set,
indicate that the letter’s sender requested non-delivery and delivery indications,
respectively.

If the message is not a letter, an MSAM calls the MSAMGet MsgHeader function

with the constant kI PMFi xed| nf 0 as the value of the sel ect or field. The

| PMFi xedHdr | nf o structure returned by MSAMGet MsgHeader contains the

noti fi cati on field, which contains the k| PMNonDel i ver yNot i fi cati onBi t bit
and the kI PMDel i ver yNot i fi cati onBit bit. These bits, if set, indicate that the
sender of the message requested non-delivery and delivery indications, respectively.
Test these bits to determine if you need to create a report.

If a sender asks for delivery indications, non-delivery indications, or both, an MSAM
must provide information on the outcome of delivery attempts (a delivery or non-
delivery indication) for every recipient for which the MSAM is responsible. It is
important that an MSAM provide delivery information on all of the MSAM'’s recipients
whenever a sender requests any type of delivery information because an MSAM report
does not go directly to the report requestor. Instead, the report goes to an AOCE agent
that uses the MSAM report information to prepare an IPM report according to the
requestor’s specifications. If an MSAM fails to provide delivery information on all of its
recipients, the requestor may receive inaccurate IPM reports.

An MSAM should ignore the bit fields having to do with including a copy of the original
message in the report. If necessary, a copy of the original is added by the AOCE agent.

To create a report, an MSAM must
1. call the MSAMCr eat eReport function

2. call the MSAMPut Reci pi ent Report function to add delivery and non-delivery
indications for recipients for which it was responsible

3. call the MSAMBUbni t function to deliver its finished report

An MSAM must have certain information about a message in order to create a report
about the message. The MSAMCr eat eReport function requires the letter or message ID
of the message to which the report applies and the address of the sender. You obtain
this information from either the MSAMGet At t r i but es and MSAMGet Reci pi ent s
functions (for a letter) or the MSAMGet MsgHeader function (for a non-letter message).
The MSAMPuUt Reci pi ent Report function requires the recipient index to identify
which recipient is being reported upon. You obtain this information from the

MSAMZet Reci pi ent s function.

Using the MSAM API 2-61

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-62

CHAPTER 2

Messaging Service Access Modules

Depending on how the external messaging system works, an MSAM may save this
information in its own data store or include it with the message. If, for example, more
than one MSAM connects to the same external messaging system, and the system
might acknowledge receiving the message to any of those MSAMs, an MSAM should
include the information with the message. This enables the external messaging system
to extract the information from the message and then include the information with
the acknowledgment of the message. As a result, any MSAM that receives the
acknowledgment has the information necessary to create a report for that message.
You decide how to make sure that the information required to create a report is
available, given the characteristics of the external messaging system to which your
MSAM connects.

Your MSAM and its external messaging system define what constitutes successful or
failed delivery for outgoing messages.

Writing Incoming Messages

This section describes how you create and submit an incoming letter for delivery to its
AOCE recipients. It assumes you have already initialized your MSAM. Each subsection
addresses a specific task, such as

» creating a message summary for an incoming letter (for personal MSAMs only)
= creating a letter

= creating a non-letter message

= writing letter attributes

= writing addresses

= writing letter content

= submitting a letter for delivery

= receiving a report

The differences between writing letters and writing non-letter messages are noted in the
sections that address the specific tasks. For convenience, Table 2-10 lists the tasks you
perform while handling incoming messages and the functions you use to accomplish
each task for a letter and a non-letter message.

The order in which functions are listed in Table 2-10 corresponds to the sequence in
which you would call the functions to process an incoming message. A personal MSAM
first creates a message summary if it is dealing with a letter. Then all MSAMs create the
message itself and begin adding information to it. First, you write header information
consisting of message attributes, such as the priority of the message, and address
(recipient) information. Next, you write the substance of the message—for a letter, its
content block, other blocks it may contain, and enclosures; for a non-letter message, its
blocks. You can include an entire message within another message by defining its
beginning and end with the MSAMBegi nNest ed and MSAMEndNest ed functions and

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Table 2-10

Incoming tasks and functions

Task

Create a messaging summary

(personal MSAMs only)
Create a message

Write header information

Write letter content
Write an enclosure
Write a block

Write a nested letter

Submit a message

Delete a message
(personal MSAMs only)

Set message status
(personal MSAMs only)

Enumerate a queue
(personal MSAMs only)

Letters
PMSAMCr eat eMsgSunmmar y

MSAMCr eat e

MBAMPuUt Attri but e
MBAMPUt Reci pi ent

MSAMPut Cont ent
MSAMPuUt Encl osur e
MSAMPut Bl ock

MBSAMBegi nNest ed
MSAMENdNest ed

MSAMSubmi t
MSAMDel et e

PMSAMBet St at us

MSAMEnuner at e

Non-letter messages
Not applicable

MSAMCr eat e

MBAMPUt MsgHeader
MBAMPUt Reci pi ent

Not applicable
Not applicable
MSAMPut Bl ock

MSAMBegi nNest ed
MSAMENdNest ed

MSAMBubmi t
Not applicable

Not applicable

Not applicable

calling the appropriate functions to write the nested message’s header information,
blocks, enclosures, and so forth. When you have finished writing the message, you

submit it to the AOCE system for delivery to its recipients.

A personal MSAM may also delete a letter, or both the letter and the letter’s message
summary, from an incoming queue. For example, the MSAM may delete a letter (but
not the message summary) if it no longer wants the letter to be cached locally. If the

SO|NPOIA SS9V 92IAIaS Bulbessay -

personal MSAM is mirroring the letter’s status on the external messaging system, it can
delete the letter and message summary when the letter is removed from the external
messaging system.

A personal MSAM may also set the status of a letter and enumerate an incoming queue.
Setting the status of a letter is a task that the MSAM performs at several points while it is
processing the letter. Enumerating an incoming queue is a task it may do in response to
receiving a KMai | EPPCI nQUpdat e high-level event.

You should call the functions that handle incoming messages asynchronously so that
you can receive and process an AOCE high-level event at any time.

The sample code in Listing 2-6 through Listing 2-15 illustrates one way a personal
MSAM can write a letter to an incoming queue. Most of the sample code and the text
also apply to a server MSAM. The text notes differences between the operation of
personal and server MSAMs where applicable.

Using the MSAM API 2-63

2-64

CHAPTER 2

Messaging Service Access Modules

Most of these listings contain code fragments from the Dol nconi nglLet t er function,
but only Listing 2-6 on page 2-67 shows the Dol ncomi ngLet t er function definition
and its local variables.

Choosing Creator and Type for Messages and Blocks

When you create an incoming message, you set the message creator to indicate the
application that should open the message. If you set the message creator for a letter to

"l ap2', the signature of the AppleMail application, the AppleMail application opens
the letter when the user double-clicks the letter’s icon. If the letter contains a content
enclosure, you can set the message creator to the signature of the application that created
the content enclosure. In this case, if the user has that application, that application will
open the letter.

The message type kMai | Lt r MsgType designates an AOCE letter that contains data in
standard interchange format or image format, or a regular enclosure. When you create
an incoming letter, you should use this message type when the letter contains data in
standard interchange format or image format, or when it contains a regular enclosure.
If the letter also contains a content enclosure or a private block, and you set the
message creator to the signature of the application that created the enclosure or private
block, then you can use a message type that you define that is consistent with the
message creator.

When you create a non-letter message, you typically use an application-defined message
creator and message type.

Each block in an incoming message has a block creator and block type. When you create
blocks such as header, content, enclosure, and report blocks by calling the appropriate
MSAM function, the function sets the block creator to kMai | Appl eMai | Cr eat or and
the block type to the correct predefined type. (Letter block types are listed in Table 2-3 on
page 2-18.)

When you call the MSAMPut Bl ock function to add a block to an incoming message, you

set the block creator and block type to values that you select. If you are writing a block of
a predefined type such as an image block or a private block, be sure to set the block type

to kMai | | mageBody Type or kiai | MSAMTy pe, respectively.

Creating a Letter's Message Summary

A personal MSAM must create a message summary for an incoming letter before
creating the letter itself. Server MSAMs do not create message summaries at any time,
and personal MSAMSs do not create message summaries for non-letter messages. The
need to create a message summary is related to the mode of operation in the personal
MSAM. See the section “MSAM Modes of Operation” beginning on page 2-12 for
information on this topic.

The function Dol ncom ngLet t er shown in Listing 2-6 on page 2-67 illustrates how you
can create a message summary for an incoming letter. It assumes that you previously
read the letter from an external messaging system, translated it into AOCE data formats,

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

and saved it to disk. (Note that this method is just one way an MSAM can handle
incoming letters.)

The Dol ncomi nglLet t er function first allocates the buffer dat aBuf f er that it uses to
hold a variety of data throughout the function’s execution. Then it initializes all of

the fields of the message summary structure to 0 prior to setting the fields that a
personal MSAM should set. At the top level of the message summary structure,

Dol ncomi nglLet t er sets only the ver si on field. You always set it to the constant
kMai | MsgSunmmar yVer si on.

You set the bits in the attribute mask that correspond to the attributes that are present in
the letter. In the at t r Mask field of the mast er Dat a substructure, Dol nconi nglLet t er
sets the bits for the send timestamp, indications, the sender of the letter, the subject of the
letter, the message type, and the message family. Each external messaging system may
differ in the attribute information it routinely provides. In the sample code, the external
messaging system always provides a timestamp and does not provide a reply ID. For
this reason, the corresponding bits in the attribute mask in the message summary are set
and not set accordingly.

Once you have set the bits in the attribute mask, you write the attributes to the message
summary. At a minimum, you must write the message type, send timestamp, sender,
and subject attributes to the message summary. The Dol ncomi nglLet t er function first
writes the send timestamp to the message summary by calling its DoGet Ti neSt anp
routine. Next, it calls its DoCet Let t er Lengt h utility routine to get the approximate
size of the letter.

In the cor eDat a substructure, Dol nconi nglLet t er explicitly provides a value for all
of the fields except agent | nfo and | et t er Fl ags. (The Dol ncomi nglLet t er function
implicitly set the | et t er Fl ags field to 0 when it initialized the entire message
summary structure to 0.) In the | et t er | ndi cat i ons field, it sets those bits that
indicate the letter has normal priority and that it has a content block. This technique
assumes that the incoming letter has no priority setting, so Dol ncom nglLet t er
supplies a default value here. (The Dol ncomi nglLet t er function also supplies a default
value for content if the letter has no content. See Listing 2-11 on page 2-78.)

The Dol ncomi nglLet t er function sets the message type to the constant

kMai | Lt r MsgType to indicate a standard AOCE letter. It sets the message creator to
kLett er Or eat or, a constant for ' | ap2', the signature of the AppleMail application.
As a result, when a user double-clicks the letter, the Finder launches the AppleMail
application to open the letter. Usually, an MSAM does not set a letter’s creator to its own
signature because the MSAM cannot open the letter and allow the user to view and edit
it. However, if your MSAM is associated with a particular letter application, you should
use that application’s signature so that the application will launch when the user opens
the letter.

The Dol ncomi nglLet t er function sets the message family to kMai | Fani | y, indicating
that the letter falls into the general class of mail messages. Next, it sets the nessageSi ze
field to the value returned by the DoGet Let t er Lengt h utility routine. The Finder uses
this value when a user chooses the Get Info command from the File menu.

Using the MSAM API 2-65

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-66

CHAPTER 2

Messaging Service Access Modules

The sender and subj ect fields in the message summary deserve special attention.
Each is declared as an RSt r i ng32 structure in the Mai | Cor eDat a structure in the
message summary. However, those declarations only serve to allocate space and indicate
the relative order of the sender and subject data. They do not represent the actual data
layout. You should treat these two fields as a common buffer containing variable-length
sender and subject data. The correct order of information in the common buffer is an

RSt r i ng32 structure containing the sender information (character set, data length, and
sender data), padded to an even byte boundary if necessary, and followed immediately
by an RSt r i ng32 structure containing the subject information. (You should also pad the
subject information to an even byte boundary if necessary.) Thus, sender information
always starts at a fixed place whereas subject information does not. Neither subject nor
sender information may exceed kKRSt r i ng32Si ze bytes although either, of course, may
be smaller.

The Dol ncomi nglLet t er function illustrates one way to write the sender and subject
information to a message summary. The Dol ncom nglLet t er function calls its
DoReadFr onfFi | e utility routine to read a PackedDSSpec structure containing the
sender’s address information from the letter stored on disk. (The DoReadFr onFi | e
routine reads a file in which an incoming letter is stored and returns in a buffer the
requested letter component and the number of bytes it placed in the buffer.) If the read
operation succeeds, Dol ncom nglLet t er unpacks the packed address and calls its
DoCopyFi t RSt ri ng utility routine. The DoCopyFi t RSt r i ng routine copies the
displayable string that identifies the sender from the r ecor dNane field of the unpacked
address into the sender field of the message summary, truncating it if it is longer than
kRSt ri ng32Si ze bytes.

Next, Dol ncomi nglLet t er reads into its local variable subj ect an RSt ri ng structure
containing the subject from the stored letter. Every AOCE letter must have a subject. If
the read operation fails, Dol ncom nglLet t er converts a constant C string containing a
default value for the subject into an RSt r i ng and writes it to its local variable subj ect .
Finally, it calls its DoCopyFi t RSt r i ng routine to copy its local variable subj ect into
the message summary, truncating it if it is longer than kRSt r i ng32Si ze bytes. (The
Dol ncom nglLet t er function copies the subject into its local variable subj ect instead
of directly into the message summary because it uses the local variable when adding the
subject attribute to the letter header. See Listing 2-8 on page 2-72.)

Now that both the subject and sender information are in a common buffer in the
message summary, Dol ncom nglLet t er adjusts the byte position at which the subject
information begins. The subject information must start immediately after the sender
information. Dol ncomi ngLet t er calculates the total length of the sender RSt ri ng,
including the fields for length and character set. If the total is an odd number, it adds

1 to get an even word boundary, then calls the Bl ockMbve routine to move the subject
information immediately after the end of the sender information.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

IMPORTANT

Because the sender and subj ect fields form one common buffer
into which the information is packed, using the subj ect field to
access the subject information does not produce the desired result.
You must compute the beginning of the subject information in the
common buffer. a

At this point, the Dol nconi nglLet t er function has filled in the relevant fields of

the message summary. Next, it sets up the fields of the parameter block for the
PMSAMCr eat eMsgSunmar y function. One of the parameters to Dol ncomi nglLet t er
is a MySl ot Spec structure, a data type defined by the personal MSAM that contains
information about a slot. The personal MSAM of which Dol nconi ngLet ter isa
part previously stored the incoming queue reference that it obtained from the
PMSAMOpenQueues function in the My Sl ot Spec structure. The Dol ncom nglLetter
function uses that incoming queue reference to fill in the queueRef field of the
MSAMCr eat e parameter block. Next, it sets the msgSunmar y field of the parameter
block to the address of the message summary structure it has just initialized.
Although Dol ncomi nglLet t er does not do it, you can add up to

kMai | Max PMSAMVs gSummar yDat a bytes of private data in the buffer structure
pointed to by the buf f er field of the PMSAMCr eat eMsgSummar y parameter block.

It is a convenient way for you to store additional information related to a specific
letter. Then Dol nconi nglLet t er calls the PMSAMCr eat eMsgSunmar y function, which
returns a sequence number for the letter. The Dol ncom nglLet t er function must use
this sequence number when it calls the MSAMCr eat e function to create the letter itself.

Listing 2-6 Creating a message summary

CSErr Dol ncom ngLetter (FSSpec *nmyTenpFil eSpec, M/SI ot Spec *sl ot Spec)

{
CSEr r

nmyEerr;

MSAMPar am nmyPar anBl ock;
MSAMMS gSunmrar y myMsgSum

Ptr dat aBuf f er;

unsi gned | ong buf f er Len;

unsi gned | ong cont ent Lengt h;

RString subj ect;

Recordl D entitySpecifier;

OCEReci pi ent f romAddr ess;

Mai | MsgRef | etterRef;

| ong | etter SegNum

char def aul t Text [256] ;

unsi gned char *subj ect O f set ;

#defi ne kLetterCreator "l ap2' /* signature of AppleMiil app */
#defi ne kDef aul t Subj ect "<no subj ect>"

Using the MSAM API 2-67

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

#def i ne kDef aul t Body "<no nmessage>"
#defi ne kMaxBufferSize 32767L

/* constants to identify conmponents of stored letter on disk */
#defi ne kFronType ' 2FRM

#define KkToType ' 2MIO

#define kCCType ' 2MCC

#defi ne kBCCType ' 2BCC

#defi ne kText Cont ent ' 2TXT

#defi ne kPi ct Cont ent '2PI C

#define kSoundCont ent ' 2SND

#define KkContentSectionType '2RTY

#def i ne kSubj ect Type ' 2SUB'

/* allocate buffer
buf ferLen
dataBuffer =
if (MenError()

for

return Menkrror();

readi ng fromdisk */
= kMaxBufferSi ze;
NewPt r (buf f er Len) ;

I'= noErr)

/* initialize the message sunmary structure to 0 */
Dodl ear Buf f er (&nyMsgSum si zeof (MSAMVBgSUnmary)) ;

/* set the version and attribute nmask fields */

nmyMsgSum ver si on

myMsgSum nast er Dat a.
myMsgSum mast er Dat a.
myMsgSum nmast er Dat a.
myMsgSum nast er Dat a.
myMsgSum mast er Dat a.
myMsgSum nmast er Dat a.

attr Mask

.sendTi meSt anp
at tr Mask.
attr Mask.
at tr Mask.
at tr Mask.
attr Mask.

i ndi cations
from

subj ect
nmsgType
nsgFam | y

kMai | MsgSunmar yVer si on;
true;
true;

= true,
= true;
= true;

true;

/* get the tinestanp and wite it to nessage sunmary */
DoGet Ti neSt anp(nyTenpFi | eSpec, &y MsgSum cor eDat a. sendTi ne) ;

/* get

contentLength = kMaxBufferSi ze;

contentlLength =

/* set other

core data fields */
myMsgSum coreData. |l etterlndications.priority

length of stored letter data in bytes */

nmyMsgSum cor eDat a. | ett erl ndi cati ons. hasCont ent
nmyMsgSum cor eDat a. | etterl ndi cati ons. hasSt andar dContent = true;

2-68

Using the MSAM API

DoGet Lett er Lengt h(myTenpFi | eSpec) ;

kl PMNormal Priority;
true;

/*

/*

/*

/*

*/

CHAPTER 2

Messaging Service Access Modules

myMsgSum cor eDat a. mnessageType. nsgType
myMsgSum cor eDat a. nessageType. nsgCr eat or
nyMsgSum cor eDat a. nessageFamni | y
nmyMsgSum cor eDat a. nessageSi ze

myMsgSum cor eDat a. addr essedToMe

kMai | Lt r MsgType;
kLett er Creator;
kMai | Fam | y;
cont ent Lengt h;
kAddr essedAs_TG,

get sender nane fromstored letter and wite it to nessage sumary */
bufferLen = kMaxBuf fer Si ze;
nyErr = DoReadFronFil e(nyTenpFi | eSpec, kFronType, dataBuffer,
&uf ferLen);
if (myErr !'= noErr) {
Di sposPtr (dataBuffer);
return nyErr;
}
OCEUnpackDSSpec((PackedDSSpec*) dat aBuf f er, &f romAddr ess,
&entitySpecifier);
DoCopyFi t RSt ri ng(entitySpecifier.local.recordNane,
(RStringPtr)&yMsgSum cor eDat a. sender, kRString32Si ze);

get subject fromstored letter and wite it to nessage sumary */
buf ferLen = kMaxBufferSi ze;
myErr = DoReadFrontFil e(myTenpFi | eSpec, kSubject Type, &subject,
&buf ferLen);
if (myErr != noErr)
OCECToRSt ri ng(kDef aul t Subj ect, snmRoman, &subject, kRStringMaxBytes);
DoCopyFi t RStri ng(&subj ect, (RStringPtr)&wyMgSum coreDat a. subj ect,
kRSt ri ng32Si ze) ;

cal cul ate subject offset and nove subject flush with sender */
subject O0ffset = ((unsigned char *)&nnyMsgSum cor eDat a. sender) +
myMsgSum cor eDat a. sender . dat aLength + si zeof (1 ong);
if ((unsigned |ong)subjectOfset % 2)
subj ect O f set ++;
Bl ockMove(&y MsgSum cor eDat a. subj ect, subject O fset,
nyMsgSum cor eDat a. subj ect . dat aLength + si zeof (1 ong));

Al required fields have been set. Create the message summary. Save the

letter's sequence nunber.

nyPar anBl ock. header . i oConpl eti on
nmyPar anBl ock. prmsanCr eat eMsgSunmary. i nQueueRef = sl ot Spec- >i nQueue;

Using the MSAM API

= (ProcPtr) DoMSAMConpl et i on;

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

nmyPar anBl ock. pnmsanCr eat eMsgSummary. msgSumar y
myPar anBl ock. pmsantCr eat eMsgSummar y. buf f er
PMSAMCr eat eMsgSummar y(&y Par anBl ock, true) ;
nyErr = DoWai t PBDone(&mryPar anBl ock) ;
if (myErr !'= noErr) {

Di sposPtr(dataBuffer);

return nyErr;

&nyMsgSum
nil;

}
| etter SegqNum = nyPar anBl ock. pnsanCr eat eMsgSunmar y. seqNum

Creating a Letter

After creating a message summary, a personal MSAM may write the letter associated
with the message summary to the incoming queue immediately or at a later time. The
choice of methods should depend on the speed of the link connecting your personal
MSAM to its external messaging system. If the link is fast, you can download the letter
on demand—that is, when the user opens it. If the link is slow, you should cache the
letter locally so that there is no untimely delay when the user opens it. The function
Dol ncom nglLet t er writes the letter immediately. Listing 2-7 is a code fragment from
Dol ncom ngLett er that shows how you create a letter.

The Dol ncomi nglLet t er function sets up the fields of the parameter block for the
MSAMCr eat e function. It checks whether the letter has a blind copy recipient and sets
the bccReci pi ent s field accordingly. It uses the incoming queue reference originally
obtained from the PMSAMOpenQueues function to fill in the queueRef field of the
parameter block. Then Dol nconi nglLet t er sets theasLet t er field tot r ue to indicate
that the message it is creating is a letter. Because it is creating a letter, it must set the
msgType.f or mat field to kl PMOSFor mat Type. This setting indicates that the rest of
the | PMMs g Ty pe structure contained in the nsgType.f or mat field consists of an
OCECr eat or Type structure. Then Dol nconi nglLet t er sets the letter’s creator and
type to the same values it used when it created the letter’s message summary. It sets the
seqNumfield to the sequence number it obtained from the PMSAMCr eat eMsgSummar y
function.

Once Dol ncom nglLet t er has finished initializing the parameter block, it calls the
MSAMCr eat e function. The function returns a reference to the new letter, which
Dol ncomi ngLet t er saves. The Dol ncomi nglLett er function must provide the
reference to all subsequent functions that add various components to the letter.

Listing 2-7 Creating a letter

/* check for bcc recipients */

buf f erLen = kMaxBufferSi ze;

nyErr = DoReadFronFil e(nyTenpFi | eSpec, kBCCType, dataBuffer, &bufferlLen);
nmyPar anBl ock. nsantCr eat e. bccReci pients = (nyErr == noErr);

2-70 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

/* fill in the rest of the paraneter block and create the letter */
nyPar anBl ock. header . i oConpl eti on (ProcPtr) DoMSAMConpl eti on;
nmyPar anBl ock. nsanCr eat e. queueRef sl ot Spec- >i nQueue;
nmyPar anBl ock. nsantCr eat e. asLetter true;
nmyPar anBl ock. nsantCr eat e. nsgType. f or mat kl PMOSFor mat Type;
nmyPar amBl ock. nsanCr eat e. nsgType. t heType. nsgOSType. nsgCreat or =
kLetter Creator;
nmyPar anBl ock. nsantCr eat e. nsgType. t heType. nsgOSType. nsgType =
kMai | Lt r MsgType;
nmyPar anmBl ock. nsanCr eat e. segNum | etter SeqNum
nmyPar anBl ock. nsantCr eat e. t unnel Form = fal se;
MSAMCr eat e(&y Par anBl ock, true);
nyErr = DoWai t PBDone(&mryPar anBl ock) ;
if (nyErr !'= noErr) {
Di sposPtr(dataBuffer);
return nyErr;

}
| etter Ref = nyPar anBl ock. msantCr eat e. newRef ;

A server MSAM does basically the same things to create a letter, with the following
differences. A server MSAM uses the queue reference that it obtained from the
SMBAMSt ar t up function to fill in the queueRef field. Because server MSAMs do not
create message summaries, there is no need to ascertain that the values provided to the
MBAMCr eat e function for the creator and type exactly match those in the message
summary. A server MSAM does not supply a value in the seqNumfield of the

MSAMCr eat e parameter block.

Creating a Non-Letter Message

When you create a non-letter message instead of a letter, the following differences apply
for both personal and server MSAMs:

= You must set the myPar anBl ock. nsanCr eat e. asLett er field tof al se.

= You can set the myPar anBl ock. nsanCr eat e. nsgType.f or mat field to either
kI PMOSFor mat Type (which specifies that the message creator and message type
information is formatted as type OCECr eat or Type) or k| PMSt ri ngFor mat Type
(which specifies that the message creator and message type information is formatted
as type St r 32). Typically, you use type OCECr eat or Type; type St r 32 is included
for compatibility with the Program-to-Program Communications (PPC) Toolbox.

= You may set the myPar anBl ock. msantCr eat e. r ef Con field to a private value. The
MSAMCr eat e function stores that value in the message header. A recipient can
retrieve the value with the MSAMGet MsgHeader function.

= You do not supply a value in the myPar anBl ock. nsanCr eat e. bccReci pi ents
field.

In addition, a personal MSAM does not supply a value in the
nmyPar anBl ock. nsanCr eat e. seqgNumfield.

Using the MSAM API 2-71

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Writing Letter Attributes

Once you have created a letter, you add the component parts to the letter. To add
information to a letter’s header, you use the MSAMPut At t r i but e function. Listing 2-8, a
code fragment from the Dol ncomi nglLet t er function, shows how you add attributes to
a letter header.

The MSAMPut At t r i but e function allows you to add one attribute each time you call it.
The Dol ncomi nglLet t er function adds the send timestamp, indications, message
family, and subject attributes to the letter’s header by copying the values it previously
stored in the letter’s message summary. Each time it calls the MSAMPut At t ri but e
function, Dol ncomni nglLet t er sets the mai | MsgRef field to indicate the letter to which
it wants to add the attribute. It sets the at t r | Dfield to a constant that indicates the type
of attribute it wants to add. Then it specifies the buffer in which the attribute data is
located, specifies the buffer size, and calls the MSAMPut At t r i but e function to add the
attribute to the letter header. Note that when it writes the subject, Dol nconi nglLetter
does not use the C function si zeof to get the size of the subject attribute because that
would return the size of an RSt r i ng structure. Instead, it computes the exact size of the
subject string in the buffer by using the actual length of the subject, which is specified

in the subj ect . dat aLengt h field, and then adding 4 bytes for the dat aLengt h and
char Set fields of the RSt ri ng structure. If the number of bytes turns out to be odd, it
adds 1 to make an even length.

The Dol ncomi nglLet t er function does not add the letter creator and type to the letter
header. That information was already added when Dol ncom nglLet t er called the
MSAMCr eat e function.

Once the parameter block is initialized, Dol ncom ngLet t er calls the

MSAMPuUt At t ri but e function. If the function returns an error, Dol ncom nglLett er
calls its DoCancel OnSubmi t function, which disposes of the data buffer, calls the
MSAMBuUbmi t function to delete the unfinished letter, and calls the MSAMDel et e function
to delete the message summary.

Listing 2-8 Adding attributes to a letter header

/*

add the tinme */
nmyPar anBl ock. nsanPut At tri but e. mai | MsgRef
myPar anBl ock. nsanmPut Attri bute.attrl D

| etterRef;
kMai | SendTi neSt anpBi t ;

nmyPar amBl ock. nsanPut At tri but e. buf fer. buffer =

(Ptr)&myMsgSum cor eDat a. sendTi ne;

myPar anBl ock. nsanPut Attri bute. buffer. bufferSi ze = sizeof (Mail Ti ne);
MBAMPuUt At t ri but e(&ryPar anBl ock, true);

nmyErr

DoWai t PBDone(&myPar anBl ock) ;

if (myErr !'= noErr) {

2-72

DoCancel OnSubnit (1 etterRef, |etterSeqNum sl ot Spec->i nQueue,

dat aBuffer);

return nyErr;

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

/* add the indications */
nmyPar anBl ock. nsanPut Attri but e. mai | MsgRef
nmyPar amBl ock. nsanPut Attri bute.attri D
nmyPar anmBl ock. nsanPut At tri but e. buf fer. buffer
(Ptr)&myMsgSum coreDat a. | etterl ndi cati ons;

nyPar anBl ock. nsanPut Attri bute. buffer. bufferSize = sizeof (Millndications);
MSAMPut At t ri but e(&ryPar anBl ock, true);
/*

Cal | DoWai t PBDone and check for error. Then use the sane | ogic used

to add the time and indications to add the nessage famly.

| etterRef;
kMai | I ndi cationsBit;

*/

/* add the subject */

nmyPar anBl ock. nsanPut Attri but e. mai | MsgRef = | etterRef;
nmyPar amBl ock. nsanPut Attri bute.attrl D = kMai | Subj ectBit;
nmyPar anmBl ock. nsanPut At tri but e. buf fer. buffer = (Ptr)&subject;

nmyPar anBl ock. nsanPut Attri bute. buffer. bufferSize = subject.datalLength + 4;
i f ((nyParanBl ock. nsanPut Attribute. buffer.bufferSize %2) != 0)
nmyPar amBl ock. msanPut At tri but e. buf fer. bufferSi ze++;
MSAMPut At t ri but e(&y Par anBl ock, true);
/* call DoWiitPBDone and check for error */

A server MSAM does not have a message summary from which to copy attribute values,
so it would extract the attribute values from the incoming letter itself.

Note
The MSAMPut At t ri but e function does not apply to non-letter
messages. In dealing with an incoming non-letter message, both

personal and server MSAMs can add attributes to the message header
by calling the MSAMPut MsgHeader function. O

Writing Addresses

Although the different types of recipients—From, To, cc, and bcc—are letter attributes,
you do not add them to a letter using the MSAMPut At t r i but e function. Instead, you
use the MSAMPut Reci pi ent function. Each time you call the MSAMPut Reci pi ent
function, you can add one recipient to a letter. This function requires you to add all of the
recipients of one type before adding any recipient of another type. The code fragment
from the Dol ncomi nglLet t er function shown in Listing 2-9 demonstrates how you can
add recipients to a letter.

The Dol ncomi nglLet t er function calls its DoAddTheReci pi ent s function four times,
once for each type of recipient, to actually add the recipient information to the letter. It
passes several parameters to DoAddTheReci pi ent s:

» the reference number of the letter to which it wants to add a recipient

= a pointer to the file specification of the temporary file containing the translated
incoming letter

Using the MSAM API 2-73

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

= a constant that identifies the disk file component for a given type of recipient
= the type of recipient to add (an attribute ID)

= a pointer to its buffer

= the size of the buffer

If DoAddTheReci pi ent s returns an error for any type of recipient,
Dol ncom nglLett er terminates writing the letter.

Listing 2-9 Adding recipients to a letter

/*
Add the recipients. Check for error after calling DoAddTheReci pi ents
for each recipient type.(Shown only the first tinme in the follow ng
code.)
*/
nyErr = DoAddTheReci pi ents(l etterRef, nmyTenpFil eSpec, kFronilype,
kMai | FronBit, dataBuffer, kMaxBufferSize);
if (nyErr !'= noErr) {
DoCancel OnSubnit (l etterRef, |etterSeqNum sl ot Spec->i nQueue,
dat aBuffer);
return nyErr;

}

nyErr = DoAddTheReci pi ents(l etterRef, nyTenpFil eSpec, kToType, kMil ToBit,
dat aBuf fer, kMaxBufferSize);

nyErr = DoAddTheReci pi ents(l etterRef, nyTenpFil eSpec, kCcType, kMil CcBit,
dat aBuf fer, kMaxBufferSize);

nmyErr = DoAddTheReci pi ents(l etterRef, nmyTenpFil eSpec, kBccType,

kMai | BccBit, dataBuffer, kMaxBufferSize);

The DoAddTheReci pi ent s function is shown in Listing 2-10. It is a utility routine that
can add any type of recipient to a given letter. It assumes that the MSAM has previously
written the letter’s recipient information to a file in the form of a PackedDSSpec
structure. For a given type of recipient, DoAddTheReci pi ent s reads one recipient at a
time, and places the information in a buffer. Then it unpacks the PackedDSSpec
structure and fills in the fields of the parameter block for the MSAMPut Reci pi ent
function.

The DoAddTheReci pi ent s function sets the mai | MsgRef and at t r | Dfields to the
values it was passed by Dol ncomi nglLet t er for the letter’s reference number and the
recipient type attribute ID, respectively. It sets the r eci pi ent field to the unpacked
DSSpec structure it got by calling the OCEUnpackDSSpec routine. Then it sets the
responsi bl e field to f al se.

2-74 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

A personal MSAM always sets the r esponsi bl e field of the parameter block for
MSAMPut Reci pi ent tof al se when it is adding a recipient to a letter. For a non-letter
message, however, it should set the r esponsi bl e field to f al se only when the
recipient address is not local to the computer on which the personal MSAM is running.
Setting the r esponsi bl e field to t r ue for a non-letter message indicates that you want
the AOCE system to be responsible for delivering the message to its destination on the
local computer.

A server MSAM should set the r esponsi bl e field to t r ue to indicate that the AOCE
system should deliver the message to the recipient. This applies to both letter and
non-letter messages.

Finally, DoAddTheReci pi ent s calls the MSAMPut Reci pi ent function. The
DoAddTheReci pi ent s function repeats this cycle until either the MSAMPut Reci pi ent
function returns an error or there are no more recipients of a given type for the letter.

Listing 2-10 Adding a specific type of recipient

OSErr DoAddTheReci pi ent s(Mai | MsgRef mai | Ref, FSSpec *nyTenpFi | eSpec,
OSType reci pType, Mail AttributelD attrlD,
Ptr dataBuffer, unsigned | ong bufferLen)
{
CSErr myErr;
Bool ean nor eReci pi ents = true;

unsi gned | ong gotLength;
OCEReci pi ent recipient;

Recordl D entitySpecifier;
MSAMPar am nmyPar anBl ock;
do {

got Lengt h = bufferLen;

nyErr = DoReadFronFil e(nyTenpFi | eSpec, recipType, dataBuffer,
&got Lengt h) ;

if (nyErr == noErr && gotlLength > 0) {

/* unpack a recipient, initialize the paraneter bl ock,
add the recipient */
OCEUnpackDSSpec((PackedDSSpec*) dat aBuf fer, &reci pi ent,
&entitySpecifier);
nyPar anBl ock. msanPut Reci pi ent. i oConpl eti on =
(ProcPtr) DoMSAMConpl eti on;
nmyPar anmBl ock. nsanPut Reci pi ent . mai | MsgRef mai | Ref ;
nmyPar anBl ock. nsanPut Reci pient.attrI D attrl D

Using the MSAM API 2-75

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

nmyPar anBl ock. nsanPut Reci pi ent . reci pi ent = &recipient;
myPar anBl ock. nsanPut Reci pi ent.responsi ble = fal se;
MBAMPut Reci pi ent (&y Par anBl ock, true);

nyErr = DoWai t PBDone(&myPar anBl ock) ;

}
el se {
nor eReci pi ents = fal se;
nmyErr = nokErr;
}

} while (nmyErr == noErr && noreReci pients);

return nyErr;

2-76

Writing Letter Content

Aletter’s content block consists of a series of one or more segments, each containing
data of one of the following types: plain text, styled text, pictures, sounds, and
QuickTime movies. To add a content block to an incoming letter, you call the
MSAMPut Cont ent function.

You provide the function with a buffer containing data of a given type and tell it what
type of data is in the buffer. The first time you call the MSAMPut Cont ent function, set
the append field to f al se to tell the function to begin a new segment. On subsequent
calls to the function, you set the append field to t r ue or f al se, depending on whether
you want your data placed in a new segment or appended to the current one.

When you add a text segment, you must specify values for the st ar t NewScr i pt

and scri pt fields. The value of the st art NewScr i pt field (t r ue or f al se) tells the
MSAMPuUt Cont ent function whether the data in your buffer uses a different character
set than that of text data you previously wrote. You set the scri pt field to a code

that indicates the character set of your data. (See Inside Macintosh: Text for a list of
script codes.)

When you add a styled text segment, you provide the style information in a style scrap
structure (St Scr pRec structure). You should allocate the St Scr pRec structure
dynamically because it is a very large structure. See the MSAMPut Cont ent function
description on page 2-186 for more information on adding styled text.

You must add all of a letter’s content sequentially. For instance, you cannot call

MSAMPut Cont ent to add some of the content, call MSAMPut Bl ock to add a private
block, and then call MSAMPut Cont ent again to add the remainder of the content. Once
you call MSAMPut Cont ent, calling any other function in the MSAM API terminates the
content block for the letter. If you call the MSAMPut Cont ent function again for the same
letter, it returns the kMai | | nval i dOr der result code. The MSAMPuUt Cont ent function
adds the segments to the letter in the order you provide them.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The DoW i t eLet t er Cont ent function in Listing 2-11 shows one way to add content to
an incoming letter. It assumes the MSAM has previously stored a letter from its external
messaging system in a disk file. The file is composed of a series of sections corresponding
to different components of the letter. The content component of the stored letter consists
of a series of sections, similar to the segments in a letter’s content block, each of which
contains a single type of data.

The DoW i t eLet t er Cont ent function starts by initializing the fields of the

MSAMPuUt Cont ent function’s parameter block that won’t change regardless of what it
reads from its file. It sets the mai | MsgRef field to the letter’s reference number. It sets
the t ext Scr ap field to ni | because it does not handle styled text. Because this MSAM
handles just one character set, DOW i t eLet t er Cont ent sets the scri pt field to
snmRonman and never changes this setting. It sets the append field to f al se because it
intends that each block of data that it previously stored on disk be written to a separate
segment in the letter’s content block.

The DoW i t eLet t er Cont ent function initializes its local variable cont ent Type to
indicate that it wants to read the content section of its stored letter. It sets the local
variable cont ent Wi tt en to f al se because it has not yet written a segment to the
incoming letter.

Then DoW i t eLet t er Cont ent reads sequentially through the content sections of

the stored letter. It repeatedly calls the DoReadFr onFi | e utility routine to read a buffer
of data from the file. The DoReadFr onFi | e function returns one content section from the
file each time it is called. The buffer is large enough to hold any content section that

the MSAM previously stored. After reading each section, DoW i t eLet t er Cont ent
determines the type of data in the section and sets the segment Type field accordingly.
Because this MSAM handles only plain text, picture, or sound data, the content sections
can contain only these types of data. If DoOReadFr onFi | e returns plain text data,

DoW it elLetterContent setsthestart NewScri pt field tot r ue. This tells the
MSAMPuUt Cont ent function to examine the scri pt field to discover the character

set of the text in the buffer. Typically, you set this field tot r ue when you first add a plain
text segment and thereafter whenever the character set of the text changes (which does
not apply to this MSAM) or you've called MSAMPut Cont ent to add some other type of
segment. Last, DOW i t eLet t er Cont ent sets the buf f er Si ze field to the number

of bytes it read from its disk file and calls the MSAMPut Cont ent function to write

the data to the letter’s content block. If the MSAMPut Cont ent function returns
successfully, DOW i t eLet t er Cont ent sets the local variable cont ent Wi tten to
true. The DoWi t eLet t er Cont ent function continues to read from its file and write
segments to the letter’s content block until it has read all the content sections in the file or
it encounters an error.

When DoW i t eLet t er Cont ent has finished reading the content sections, it tests

the local variable cont ent Wi t t en. If it failed to write any data successfully,
DoWiteletterContent copies a default string into its buffer and calls the

MSAMPut Cont ent function. It must do this to provide some content since it set the
hasCont ent bitin thei ndi cati ons attribute in the letter’s header. (See Listing 2-6 on
page 2-67.)

Using the MSAM API 2-77

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Listing 2-11 Writing letter content

OSErr DoWitelLetterContent(FSSpec *nyTenpFil eSpec, Mail MsgRef nyMai | Ref,
Ptr dat aBuffer)
{
unsi gned | ong bufferlLen;
OSType cont ent Type;
Bool ean contentWitten;
MSAMPar am my Par anBl ock;
CSErr myErr, myErr 2;
myPar anBl ock. header . i oConpl eti on = (ProcPtr) MSAMConpl eti on;
nyPar anBl ock. msanPut Cont ent . mai | MsgRef = nyMai | Ref;
nmyPar anBl ock. nsanPut Cont ent . t ext Scr ap =nil;
myPar anBl ock. nsanmPut Cont ent . buf fer. buf fer = dat aBuffer;
nmyPar amBl ock. nsanPut Cont ent . scri pt = snmRoman;
nmyPar anBl ock. nsanPut Cont ent . append = fal se;

cont ent Type

kCont ent Sect i onType;

contentWitten = fal se;

do { /* for each content section in the tenp file */

2-78

buf ferLen = kMaxBufferSi ze;
myErr = DoReadFrontil e(myTenpFi | eSpec, content Type, dataBuffer,
&buf ferLen);
switch (contentType) { /* determ ne segnent type */
case kTextContent:

nyPar anBl ock. msanPut Cont ent . segnent Type = kMai | Text Segnent Type;

nmyPar anBl ock. nsanPut Cont ent . start NewScri pt = true;
br eak;

case kPictContent:
nmyPar anBl ock. nsanPut Cont ent . segnent Type
br eak;

case kSoundContent:

nmyPar anBl ock. nsanPut Cont ent . segnent Type = kMai | SoundSegnent Type;

br eak;
} /* endswitch */
nmyPar anBl ock. nsanPut Cont ent . buf f er. buf fer Si ze= buf ferLen;
if (myErr == noErr) {
MSAMPuUt Cont ent (&y Par anBl ock, t rue) ;
nyErr2 = Wi t PBDone(&y Par anBl ock) ;
if (myErr2 !'= noErr)
return nyErr2;
contentWitten = true; /* don't need default content */

Using the MSAM API

kMai | Pi ct Segnent Type;

}

/*

CHAPTER 2

Messaging Service Access Modules

endi f */

} while (nmyErr !'= noErr);

if (myErr == KEndCOf Cont ent Sect i ons)
nmyErr

/*

= nokErr;

if no content witten, wite default content */

if (contentWitten == false) {

strcpy(dat aBuf f er, kDef aul t Body) ;

myPar anBl ock. nsanPut Cont ent . segnent Type = kMai | Text Segnent Type;

myPar anBl ock. nsanmPut Cont ent . buf fer. buf fer Si ze = strl en(kDef aul t Body) ;
MSAMPuUt Cont ent (&y Par anBl ock, t rue) ;

nyErr = Wit PBDone(&y Par anBl ock) ;

return nyErr;

You call the MSAMPut Cont ent function to add content to letters only. You do not call it
to write data to a non-letter message.

Submitting a Message

After composing a message, an MSAM calls the MSAMSubmi t function to submit the
message to the AOCE system for delivery. A message must be complete before you
submit it because, when the MSAMSuUbni t function completes execution, the message’s
reference number is invalid and you cannot change the message in any way.

Listing 2-12 is a code fragment from the Dol ncomi ngLett er function that shows
how you can submit a letter for delivery. The Dol ncomi nglLet t er function sets

the mai | MsgRef field to the letter’s reference number and the subni t Fl ag field to
t r ue to indicate that the letter is ready for delivery. If you set the submi t Fl ag field
to f al se, the function deletes the letter. Then Dol nconi ngLet t er calls the
MSAMSubmi t function.

If MSBAMBubmi t returns an error, Dol ncomi nglLet t er calls the MSAMDeI et e function
to delete the message summary associated with the letter. The Dol ncomi ngLet t er
function sets the queueRef field to the reference value that identifies the incoming
queue in which the message summary is located. (It originally obtained this value from
the PMSAMOpenQueues function.) Then it sets the seqNumfield to the sequence number
that identifies the message summary. Last, Dol ncomi nglLet t er sets the nsgOnl y field
to f al se. This tells MSAMDel et e to delete the letter and its message summary. In this
case, there is no letter to delete. The MSAMDel et e function deletes the message summary
and returns the result code noErr.

Using the MSAM API 2-79

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Listing 2-12 Submitting a letter

/* submt the letter */

nyPar anBl ock. nsanBubmi t. mai | MsgRef = | etterRef;
nmyPar anBl ock. msanBubmi t. submit Fl ag = true;
nyErr = MSAMSubmi t (&y Par anBl ock) ;
if (myErr !'= noErr) { /* del ete nessage sumary */
nmyPar anBl ock. nsanmDel et e. queueRef = sl ot Spec- >i nQueue;
nyPar anBl ock. msanDel et e. seqNum = nsgSegNum
nyPar anBl ock. nsanDel ete. negOnly = fal se;
nmyPar anBl ock. nsamDel et e. resul t = nokErr;

MSAMDel et e(&y Par anBl ock, true);
DoWai t PBDone(&mryPar anBl ock) ;

}
Di sposPtr(dataBuffer);

return nyErr;

If Dol ncom ngLett er had been dealing with a non-letter message, it would not need to
delete a message summary, because a personal MSAM only creates a message summary
for a letter. A server MSAM, of course, does not need to delete a message summary
because it never creates one.

Because it normally has continuous access to the PowerShare mail server, a server
MSAM should translate incoming messages immediately and submit them to the
PowerShare mail server. If the PowerShare mail server quits, the server MSAM should
either stop accepting incoming messages or store the incoming messages until the
PowerShare mail server is available again.

Receiving a Report

An MSAM can receive reports about incoming messages. Server MSAMs can receive
reports on both letters and non-letter messages. Personal MSAMs can receive reports on
non-letter messages only.

To request a report on a non-letter message, an MSAM should set the appropriate

bits in the del i ver yNot i fi cat i on field when it calls the MSAMPut MsgHeader
function. You set the bits by using the kI PMDel i ver yNot i fi cat i onMask or

k1 PMNonDel i ver yNot i fi cat i onMask masks to request delivery and non-delivery
indications.

To request a report on a letter, a server MSAM should set the r ecei pt Repor t s bit, the
nonRecei pt Repor t s bit, or both in the letter’s Mai | | ndi cat i ons attribute.

Because personal MSAMs do not receive reports on letters, the IPM Manager ignores
the setting of the r ecei pt Repor t s and nonRecei pt Report s bits in a letter’s

Mai | | ndi cat i ons attribute for any letter submitted by a personal MSAM. Instead,
the result code of the MSAMSUbmi t function tells a personal MSAM if the letter delivery
attempt was successful or not.

2-80 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The report that an MSAM receives never includes a copy of the original message. Thus,
the IPM Manager ignores the bits in a letter’s indications attribute and a non-letter
message’s header that have to do with enclosing a copy of the original with the report.

An MSAM can identify a report from the IPM Manager in its outgoing queue because
all such reports have a message creator of kI PMSi gnat ur e and a message type of
kl PMReport Not i fy.

An MSAM reads a report by calling the MSAMOpen, MSAMGet MsgHeader, and
MSAMCGet Bl ock functions. Reports consist of a recipient report block (type

kMai | Repor t Type) and possibly a private data block (type kMai | MSAMIype).
The recipient report block contains a report header and information about some
number of recipients. (See the chapter “Interprogram Messaging Manager” in
Inside Macintosh: AOCE Application Interfaces for a description of the report

header | PMRepor t Bl ockHeader and the recipient report information structure
OCEReci pi ent Report.)If an MSAM added a private data block to a message, the
IPM Manager includes a copy of that block in the report.

A report may contain information on one or more AOCE recipients. The IPM Manager
attempts to report as quickly as possible on each recipient. If there is some difficulty in
reporting, it sends a report on the recipients about which it has information and sends
another report about the remaining recipients at a later time. Therefore, if a message that
the MSAM put into an AOCE system has several recipients, the MSAM may get several
reports. If the MSAM plans to forward that information to its external messaging system,
it may want to consolidate the information from the reports before forwarding it.

Note

The AOCE software defines successful delivery to mean that the
message was placed in the recipient’s incoming queue. It does not imply
that the message was actually opened or read. O

Deleting a Message

A personal MSAM should not delete messages from its outgoing queues. Messages
should stay in an outgoing queue so that the user can look at them. An exception to

this rule occurs when a user wants to delete a letter rather than send it. In that case,

the IPM Manager sends the personal MSAM a kMai | EPPCDel et eQut QVsg event, and
the MSAM should delete the letter. A server MSAM does delete messages from its
outgoing queue.

A personal MSAM can delete letters from an incoming queue. It can delete only a letter
or both a letter and the associated message summary. For example, the MSAM may want
to delete a letter, but not the message summary, when it decides the letter no longer
needs to be cached locally. If the MSAM is trying to mirror the letter’s status on its
external messaging system, it can delete the letter and the message summary when the
letter is removed from the external messaging system.

Using the MSAM API 2-81

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-82

CHAPTER 2

Messaging Service Access Modules

Note

The IPM Manager may also delete a letter from a personal MSAM's
incoming queue in response to a user action. In that case, it sets the
msgDel et ed flag in the letter’s message summary and sends the
kMai | EPPCI nQUpdat e event. O

The MSAMDel et e function removes a message from the queue that you specify.

You identify the message by its sequence number, which you obtain from the
MSAMEnuner at e function. Once you have deleted a message, it is no longer available
to you on the Macintosh computer on which your MSAM is running. (The message
may still exist on the external messaging system.)

Translating Addresses

One of an MSAM'’s primary tasks is translating address information from AOCE format
to the format of its external messaging system and vice versa. Within AOCE software, an
address is defined by an OCEReci pi ent structure, a complex structure that contains
other structures and elemental fields. It is described on page 2-106. Figure 2-13 on

page 2-28 illustrates the fields in an OCEReci pi ent structure and their relationship to
each other. Table 2-4 on page 2-29 lists what each field should contain for a non-AOCE
address. Table 2-5 on page 2-30 lists the contents of each field when the OCEReci pi ent
structure contains an AOCE address. If you are already familiar with the information in
Figure 2-13, Table 2-4, and Table 2-5, you'll find the listings and descriptions in the
sections “Translating From an AOCE Address” and “Translating to an AOCE Address”
easier to understand.

Note that an OCEReci pi ent structure is identical to a DSSpec structure.

Within this chapter and the MSAM API, an address is often referred to as an xxx recipient,
where xxx specifies a type of recipient—To, From, cc, or bcc.

A non-letter message contains only From and To recipients. A letter may contain any
type of recipients.

An address can become known to an AOCE system by any of the following methods:

= the user provides the address information by means of an address template
(see the chapter “Service Access Module Setup” in this book for an explanation
of address templates)

= the address is read from an incoming message

= the user types in the address when using a mailer (this works only if the extension
value portion of the address is formatted as a single RSt r i ng; see the chapter
“Standard Mail Package” in Inside Macintosh: AOCE Application Interfaces for an
explanation of the mailer and type-in addressing)

= the address exists in a catalog and can be retrieved by the user or an application

The MSAM whose code is shown in the sections that follow is a personal MSAM that
connects to an SMTP messaging system. The address format understood by the SMTP
messaging system is a string of this form: username@systemlocation. The information
presented applies to server MSAMs as well.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Translating From an AOCE Address

Prior to transmitting a letter to its external messaging system, an MSAM must convert
the address information from AOCE format (an OCEReci pi ent structure) to the format
understood by its external messaging system.

The function DoBui | dSMIPAddr essl nf o in Listing 2-13 provides an example

of building a non-AOCE address from an OCEReci pi ent structure. The

DoBui | dSMIPAddr essl nf o function first allocates a buffer pointed to by

addr essBuf . This address buffer will eventually hold all of the SMTP address
information for a given letter except the bcc recipients, which are stored in a
separate buffer. The DoBui | dSMIPAddr ess| nf o function sets the first byte in the
address buffer to 0 to indicate an empty string.

When it is launched, this MSAM creates and maintains a My Sl ot Spec structure

for each mail slot for which it is responsible. This privately defined structure contains
all the information relevant to a individual slot. To build the From address, the

DoBui | dSMIPAddr essl nf o function begins by copying the user name from the

My Sl ot Spec structure for the slot it is processing into the local variable f r omAddr .
Then the function appends to the user name the @character and the SMTP server name,
which it also copies from the MySI ot Spec structure. Once it has finished building the
string holding the actual From address, DoBui | dSMIPAddr ess| nf o builds a second
string in the address buffer that includes formatting information. First, it copies the
constant KMyFr onmHeader into addr essBuf to label the address. The constant’s value
is"From ".Next, it appends the From address in f r omAddr to the contents of the
address buffer. Finally, it appends a carriage return. At this point, the contents of the
address buffer look like this:

From usernane@ystenlocati on(CR)0

Next, DoBui | dSMTPAddr ess| nf o adds the To addresses. To the address buffer, it adds
the string " To: " to label the address. It initializes the hasReci pi ent Boolean variable
to f al se to indicate that at this point it has found no To recipients. Then it repeats the
following procedure until it encounters an error:

= Read a To address from a temporary file. The MSAM created this file when it read the
letter from AOCE. If there are no more To addresses, it will get an error here.
» If the read succeeded

o call the DOACCEToSMIPAddr ess function (see Listing 2-14 on page 2-87), which
converts an AOCE address into an SMTP address

o append the SMTP address and a comma to the contents of the address buffer
o set the hasReci pi ent Booleantotrue

At this point, DoBui | dSMIPAddr essl nf o completes the formatting. If it added any To
addresses to the address buffer, it overwrites the last comma with the string terminator 0
and then appends a carriage return. The contents of the address buffer now look like this:

From usernane@ysteniocati on(CR)To: recipientl@ ocation,
reci pi ent2@ocation, ..., recipi ent N@ocati on(CR)0

Using the MSAM API 2-83

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

If it has not added any To addresses to the address buffer, it positions the string
terminator 0 immediately before the " To: " label, in effect erasing it.

The DoBui | dSMIPAddr ess| nf o function processes a letter that has no To recipient

for two reasons. First, AOCE software considers valid a letter whose header has at least
one To, cc, or bec recipient. Therefore, it is possible for an MSAM to get a letter from

its AOCE system that has no To recipient. Second, as you will see in Listing 2-14 on

page 2-87, this MSAM translates only SMTP addresses. It is possible that all of the To
recipients for a given letter are non-SMTP addresses, but that one or more of the cc or bce
addresses are SMTP addresses. This topic is discussed in more detail in the explanation
of Listing 2-14.

The DoBui | dSMIPAddr essl nf o function adds the cc addresses to the address buffer
in exactly the same manner as it added the To address. At this point, the address buffer
contains a string that includes the From, To, and cc addresses, formatted with commas
and carriage returns, and terminated by a NULL character.

For bee addresses, DoBui | dSMIPAddr ess| nf o uses the same procedure but a separate
buffer, bccBuf . Typically, an SMTP messaging system does not display a bcc address
even to a bee recipient. Therefore, DoBui | dSMIPAddr ess| nf o places any bec addresses
in a separate buffer so they can be handled separately. In code not shown in Listing 2-13,
the DoBui | dSMIPAddr essl nf o function uses the information in the address buffer for
both routing and display purposes, but it uses the address information in the bee buffer
for routing only.

When DoBui | dSMIPAddr ess| nf o has finished building its two address buffers, it
adds them to the letter.

Listing 2-13 Building SMTP addresses

OSErr DoBui | dSMITPAddr essl nf o(FSSpec *nyTenpFi | eSpec, MSI ot Spec *sl ot Spec)

{
#def |

#def i
#def i
#def i
#def i
#def i
#def i

OSEr r
char
char
char
char

ne

ne
ne
ne
ne
ne
ne

kMyMaxAddr Buf Si ze 4096 /* this MSAMs linit on address
info */

kMyFr onmHeader "From "

kMyToHeader "To: "

kMyCCHeader "Cc: "

kMyBCCHeader "Bcc: "

kMyAddr essDel imter ", "

kMyCRSt r "\r"

nmyEerr,

t npSt ri ng[256] ;
bccBuf [256] ;

f romAddr [256] ;
*addr essBuf ;

unsi gned | ong tnpLen;

2-84

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

char packedReci p[kMaxReci pSi ze] ;
Bool ean hasReci pi ent;

/* allocate nmenory to hold addresses in external form?*/
addr essBuf = NewPt r (kMyMaxAddr Buf Si ze) ;
if (MenkError() != noErr) {

return (Mentrror();

}
addressBuf[0] = O;

/* build '"from address */

strcpy(fromAddr, slotSpec->dirldentity.userNane);
strcat(fromAddr, "@);

strcat (fromAddr, sl ot Spec->speclnfo. sntpServer);
st rcpy(addressBuf, kMyFronHeader);

strcat (addressBuf, fromAddr);

strcat (addressBuf, kKMyCRStr);

/* build 'To' address */
hasReci pi ent = fal se;
strcat (addressBuf, kMyToHeader);
for (myErr = noErr; myErr == noErr;) {
t mpLen = kMaxReci pSi ze;
nyErr = DoReadFronFil e(nyTenpFi | eSpec, kToType, (Ptr)packedRecip,
& nmplLen) ;
if (myErr == noErr) {
i f (DoACCETOSMIPAddr ess(
(OCEPackedReci pi ent *)packedRecip, tnpString)) {
strcat (addressBuf, tnpString);
strcat (addressBuf, kMyAddressDelimter);
hasReci pi ent = true;

}

i f (hasRecipient) {
addressBuf [strl en(addressBuf) - strlen(kM/AddressDelimter)] = O;
strcat (addressBuf, kKMyCRStr);

}
el se {
addressBuf [strl en(addressBuf) - strlen(kMyToHeader)] = O;
}
/* not shown here -- build 'cc' address just like 'To'" address */

Using the MSAM API 2-85

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

/* build '"bcc' address just like 'To' address but in separate buffer */
hasReci pi ent = fal se;
st rcpy(bccBuf , kMyBCCHeader) ;
for (myErr=noErr; nmyErr==noErr;) {
t mpLen = kMaxReci pSi ze;
nyErr = DoReadFronFi |l e(nyTenpFi | eSpec, kBCCType, (Ptr)packedReci p,
& nmplLen) ;
if (myErr==noErr) {
i f (DoACCETOSMIPAddr ess(
(OCEPackedReci pi ent *)packedReci p,tmpString)) {
strcat (bccBuf, t mpString);
strcat (bccBuf, kM/AddressDel imiter);
hasReci pi ent = true;

}

i f (hasRecipient) {
bccBuf [strl en(bccBuf)-strlen(kM/AddressDelimter)] = O;
strcat (bccBuf, KM/CRSt) ;

/* not shown here -- add address information to the letter */

Di sposPtr (addressBuf);
return nokErr;

The DOACCEToSMTIPAddr ess function in Listing 2-14 converts an SMTP address
contained in an OCEPackedReci pi ent structure into string format. It returns t r ue
when it produces an SMTP address from an OCEPackedReci pi ent structure.

The DoACCEToSMIPAddr ess function calls the OCEUnpackDSSpec AOCE utility
routine to unpack the packed recipient information pointed to by its packedReci p
parameter. If the extension type of the unpacked address specifies an SMTP address, it
calls the Bl ockMbve function to copy the value from the ext ensi onVal ue field into
the RSt r i ng structurer eci pRSt ri ng, converts the RSt ri nginreci pRStri nginto a
C string, and stores the C string in the buffer pointed to by its uni xReci p parameter.
Then it returns t r ue. If the extension type specifies some other type of address, the
DoACCEToSMIPAddr ess function makes no effort to translate the address and simply
returns f al se.

A user can send a single letter to recipients in different types of messaging systems; thus,
a single AOCE letter header may contain addresses with different extension types. This
creates a potential problem for an MSAM, which is illustrated in the following example.
The SMTP messaging system to which our sample MSAM is connected understands

2-86 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Listing 2-14 Converting from AOCE to SMTP address

Bool ean DoACCEToSMIPAddr ess(OCEPackedReci pi ent *packedReci p,

#def i ne

char *uni xReci p)

kMy SMTPAddr Type' SMTP

OCEReci pi ent recip;

Recordl D entitySpecifier;
OSType reci pType;
RStri ng reci pRString;

OCEUnpackDSSpec((PackedDSSpec*) packedReci p, &recip, &entitySpecifier);
reci pType = recip. extensi onType;
switch (recipType) {

case

kMy SMTPAddr Type:

Bl ockMove(reci p. extensi onVal ue, &reci pRString, recip.extensionSize);
DoRTOCSt ri ng(& eci pRStri ng, uni xRecip);
br eak;
defaul t: /* if not SMIP address, don't convert it */
return fal se;
br eak;

}

return true;

only SMTP addresses. When the messaging system receives a letter, it tries to route the
letter to all of the addresses in the letter header. If it cannot do this, it generates an error
reply to the sender. Suppose an AOCE user sends a letter to a fax address and sends a
copy to a recipient with an SMTP address. Our sample MSAM is responsible for this
SMTP address and must deliver the letter to the SMTP recipient. How should the MSAM
handle the fax address? It cannot add the fax address as the To recipient because the
SMTP messaging system will complain. Yet, it should provide the SMTP recipient with a
letter that shows that the letter’s primary recipient was a fax address.

The solution to this dilemma is up to the MSAM and its messaging system. For instance,
the MSAM can copy the displayable strings from the r ecor dNane and r ecor dType
fields of an address into a display area in the letter header. A messaging system does not
interpret information in the header’s display area. If no such display area exists, the
MSAM can append the displayable strings to the body of the letter and note that the
letter was also sent to that address.

An MSAM can add an actual address for which it is not responsible instead of the
displayable strings from the r ecor dNane and r ecor dType fields of the address. To do
this, it must know the address format specified by a given extension type and how an

Using the MSAM API 2-87

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-88

CHAPTER 2

Messaging Service Access Modules

addpress of that type is stored in an OCEReci pi ent structure. Knowing this, the MSAM
can translate the extension value into an actual address. (Apple does not define the
syntax and semantics for non-AOCE address extension types. MSAM developers must
work together to define agreed-upon extension types, and the associated address syntax
and semantics.)

Suppose, for example, an AppleLink MSAM knows how an SMTP address is stored in
an OCEReci pi ent structure. If an AOCE user sends a letter to an AppleLink address
and to an SMTP address, the AppleLink MSAM can translate the SMTP address to its
proper SMTP form and add it to the letter header as a display address.

Remember that an MSAM only delivers a letter to those recipients for which it is
responsible. All other recipient information with the letter is for display purposes only,
regardless of whether the other recipient information is included in actual address
format or as displayable strings, and regardless of where the information is stored (a
display area in the letter header or the body of the letter).

Note

Given that an MSAM routes a letter only to those recipients for which it
is responsible, a recipient on the MSAM’s messaging system cannot
necessarily reply to all other recipients. An MSAM must consider what
to do when a recipient wants to reply to addresses that the MSAM
cannot reach. Regardless of how it handles this situation, the MSAM
should avoid sending the AOCE user a reply that looks as if it went to
all recipients of the original message if in fact it did not. O

Although an MSAM is limited by the characteristics of the messaging system to which it
is connected, it should always attempt to represent all recipients of an outgoing letter
that it translates and transmits.

Translating to an AOCE Address

When an MSAM receives a message from its external messaging system, it must
translate the addresses associated with the message before it can deliver the message
to an AOCE system.

The function DoConver t TOAOCEAddr ess in Listing 2-15 on page 2-90 provides an
example of building an AOCE OCEReci pi ent address structure from a non-AOCE
address. The DoConver t TOACCEAddr ess function takes an address from a letter it
received from its SMTP system and puts that address into AOCE format. The
DoConvert TOAOCEAddr ess function calls several AOCE utility routines to facilitate
the process of constructing an AOCE address; the utility routines are described in the
chapter “AOCE Utilities” in Inside Macintosh: AOCE Application Interfaces.

Listing 2-15 picks up at the point where DoConver t TOAOCEAddr ess begins assembling
the pieces of an OCEReci pi ent structure. The DoConver t TOAOCEAddr ess function
begins by constructing the record ID part of the OCEReci pi ent . A record ID, in turn,
consists of a local record ID and record location information. It makes an RLI structure
that contains the record location information by calling the AOCE utility routine
OCENewRL| and providing it with an RLI structure’s component parts: a catalog name,

a discriminator, a dNode number, and a path. The OCENewRL| function returns

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

the RLI structure. The MSAM retrieves the catalog name from the private slot
specification structure (type My Sl ot Spec) that the MSAM builds when it is
launched. Because dNode numbers and paths are not used with non-AOCE
addresses, DoConver t TOAOCEAddr ess passes OCCENewRLI a nul | dNode number
and a ni | pointer to a path. After OCENewRL| returns the RLI structure,

DoConver t TOAOCEAddr ess calls the AOCE utility routine OCEVal i dRLI to check
its validity.

Next, DoConver t TOAOCEAddr ess calls the OCEPackRLI utility routine to convert the
RLI structure into packed form and calls the OCEVal i dPackedRLI utility routine to
check the validity of the packed form.

Having prepared the record location information, DoConver t TOACCEAddr ess next
prepares the local record ID, which consists of a creation ID, a record name, and a record
type. A creation ID is not used in a non-AOCE address, so DoConver t TOACCEAddr ess
calls the OCESet Cr eat i onl Dt oNul | utility routine to set the Cr eat i onl Dstructure to
0. The buffer pointed to by the local variable r eal Name contains a displayable form of
the sender or receiver’s name in C string format. The DoConver t TOACCEAddr ess
function converts the C string into an RSt r i ng and stores the RSt r i ng in the local
variable r ecor dName. It tells the OCCECTORSt r i ng utility routine what character set the
string uses and how many bytes, at maximum, it should place in the data portion of

the RStri ng, which in this example is the maximum number of bytes. Then
DoConvert TOACCEAddr ess calls the OCECTORSt r i ng utility routine again to get an
RSt ri ng that contains the sender or receiver’s type. In this example, the type is always
set to the constant kUser Rec Ty peBody, indicating a user.

At this point, DoConver t TOACCEAddr ess calls the OCENewLocal Recor dl D utility
routine to build a local record ID from the creation ID, record name, and record type. The
DoConver t TOACCEAddr ess function then calls the OCENewRecor dI D utility routine
to build a record ID from its packed RLI and local record ID.

At last, DoConver t TOAOCCEAddr ess is ready to build the OCEReci pi ent itself. It sets
theent i t ySpeci fi er field to point to the record ID it has just constructed. Then it sets
the extension fields. It specifies its extension type in the ext ensi onType field. The
buffer pointed to by the local variable st ar t Addr contains the SMTP address in C
string format. The DoConver t TOACCEAddr ess function converts the C string into

an RSt ri ng and stores the RSt r i ng in the local variable xt nVal ueRSt ri ng. (The
DoConver t TOACCEAddr ess function converts the extension value from C string to
RSt r i ng format so that the mailer can correctly display the SMTP address to the user.)
Then, DoConver t TOACCEAddr ess sets the ext ensi onSi ze field to the number

of bytes in the body field of xt nVal ueRSt ri ng plus 4 more to account for the

dat aLengt h and char Set fields in an RSt r i ng structure. This produces a count of
the total number of bytes in xt nVal ueRSt ri ng. Last, DoConver t TOACCEAddr ess
sets the ext ensi onVal ue field to point to xt nVal ueRSt ri ng.

Before writing the address to a disk file, DoConver t TOAOCEAddr ess converts the
address into packed form. It calls the OCEPackedDSSpecSi ze utility routine, passing
it the unpacked structure. In response, OCEPackedDSSpecSi ze returns the size

of the packed structure into which the unpacked structure could be converted. Then
DoConver t TOACCEAddr ess calls the OCEPackDSSpec utility routine and passes the

Using the MSAM API 2-89

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

size value to it. Finally, DoConver t TOAOCEAddr ess writes the packed structure to a
disk file.

Listing 2-15 Building an OCEReci pi ent structure

OSErr DoConvert TOAOCEAddr ess(FSSpec *nmyTenpFi | eSpec, MSI ot Spec *sl ot Spec)
{

#defi ne kMySMIPAddr Type ' SMIP

#define kMyDirectoryType ' SMIP'

#defi ne kMyDi scri mi nat or {kMyDi rect oryType, OL}

CSErr myErr;

char *start Addr, *real Naneg;
RLI nyRLI ;

PackedRLI nmyPackedRLI ;

DirDiscrimnator discrimnator = kMyDi scri mi nator;

Creationl D ci d;
RStri ng recor dNane, r ecordType;
Local Recordl D | ocal RI D
Recordl D RI D;
OCEReci pi ent t heReci pi ent;
char packedReci pi ent [kMaxReci pSi ze] ;
unsi gned | ong packedReci pLengt h;
RSt ri ng xt nVal ueRSt ri ng;
/*
Not shown here -- parse the address information in the letter fromthe

ext ernal nessagi ng system Put the SMIP address into a buffer pointed
to by start Addr. Put the displayable string that identifies the sender
or receiver into a buffer pointed to by real Nane.

*/

/* make an RLI and check it for validity */
OCENewRLI (&myRLI, (DirectoryNanePtr) &sl ot Spec->direct or yNane,
&di scri m nator, kNULLDNodeNumber, nil);
if (!OCEvalidRLI(&myRLI))
return kUnexpect edOCEConditi on;

/* pack the RLI and check it for validity */
nyErr = OCEPackRLI (&yRLI, &nyPackedRLI, kRLI MaxBytes);

2-90 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

if (nmyErr !'= noErr)
return nyErr;

i f (!OCEValidPackedRLI (&yPackedRLI))
return kUnexpect edOCEConditi on;

/* prepare nane and type rstrings and creation ID for local RID */
OCESet Creationl Dt oNul | (&ci d) ; /* set cid to null */
OCECToRSt ri ng(real Nane, smRonman, &recordName, kRStringMaxBytes);
OCECToRSt ri ng(kUser RecTypeBody, snRoman, &recordType, kRStringMaxBytes);

/* the conponents have been prepared; make the local RID and the RID */
OCENewLocal Recordl D (& ecordNane, &recordType, &cid, & ocal RID);
OCENewRecor dl D(&ryPackedRLI, & ocal RID, &RID);

/* build the OCEReci pi ent address structure */
t heReci pient.entitySpecifier = &RID;

t heReci pi ent . ext ensi onType = kMySMIPAddr Type;

OCECToRSt ri ng(start Addr, snRoman, &xtnVal ueRString, kRStringMaxChars);
t heReci pi ent . ext ensi onSi ze = xtnVal ueRSt ri ng. | engt h+4;

t heReci pi ent . ext ensi onVal ue = (Ptr) &t nVal ueRStri ng;

/* pack the OCERecipient and wite it to a disk file */
packedReci pLengt h = OCEPackedDSSpecSi ze(& heReci pi ent);
OCEPackDSSpec(& heReci pi ent, (PackedDSSpec *) &packedReci pi ent,
packedReci pLengt h) ;
myErr = DoW it eAddressToFil e(myTenpFi | eSpec, (Ptr) &packedReci pi ent,
packedReci pLengt h) ;

Note

If a personal MSAM receives an incoming letter that contains more than
one AOCE recipient, the MSAM translates all of the addresses. However,
a personal MSAM cannot forward letters from the user’s Macintosh to
other AOCE users. A personal MSAM can deliver an incoming letter
only to the owner of the local Macintosh computer, even if the letter
contains the addresses of other AOCE users. O

Logging Personal MSAM Operational Errors

When an operational error occurs, such as a modem not functioning properly or an
access number being out of service, the personal MSAM should log the error by calling
the PMBAMLOQET r or function.

You can log four general classes of information: informational messages, warnings,
errors that are not correctable by the user, and errors that are correctable by the user.

Using the MSAM API 2-91

SO|NPOIA SS9V 92IAIaS Bulbessay -

enum {

kMai | ELECorrect abl e
kMai | ELEEr r or =
kMai | ELEVr ni ng =
kMai | ELEI nf or nat i onal

2-92

CHAPTER 2

Messaging Service Access Modules

These classes are referred to as error types; they are represented by four enumerated
constants. You use one of these constants in the er r or Type field of the
Mai | Er r or LogEnt r yl nf o structure when you log an error:

/* error correctable by user */

/* error not correctable by user */

/* warning requiring no user intervention */
/* informational nmessage */

wN PP o

For example, you would log an error of type kMai | ELEI nf or mat i onal if you wanted
to inform the user that it took 12 connection attempts before a connection with the
external messaging system was actually achieved. If you wanted to warn the user that
his or her password on the external messaging system was about to expire, you would
log an error of type kMai | ELEWAr ni ng. You use the kMai | ELEEr r or error type to log
an error that cannot be fixed by the user, for example, a missing resource in the personal
MSAM. If an error occurs that requires user intervention, you log an error of type

kMai | ELECorr ect abl e.

In general, you should log all errors that require user intervention, but you should be
selective about logging other types of errors. Logging many warnings and informational
messages can fill the error log and cause problems at the user interface.

An error may apply to a specific slot or to the personal MSAM as a whole. When you log
an error, you set the msanf| ot | Dfield of the Mai | Er r or LogEnt r yI nf o structure to 0
if the error applies to the personal MSAM as a whole. Otherwise, you set it to the slot ID
of the affected slot.

When you log an error of type kMai | ELECor r ect abl e, the IPM Manager considers
either the personal MSAM or the affected slot to be suspended. While a personal MSAM
is suspended, the IPM Manager does not send it any high-level events or restart it at
scheduled times if it quits. While a slot is suspended, the user cannot modify or delete it.
Moreover, if you specify the suspended slot in a call to the PMSAMOpenQueues function,
the function returns the kMai | Sl ot Suspended result code. Other than these
exceptions, a personal MSAM can continue whatever activity it deems appropriate
while it or one of its slots is suspended.

For example, suppose a user configures an SMTP personal MSAM to start up every night
at midnight. At midnight, the IPM Manager launches the MSAM, and the MSAM fails to
connect to its external messaging system because MacTCP, which is required for this
MSAM, is not installed. The MSAM should log an error of type kMai | ELECor r ect abl e.
The IPM Manager will not try to launch the SMTP personal MSAM again until the user
has installed MacTCP.

Because logging an error of type kMai | ELECor r ect abl e implies that the problem is
not transient in nature, the PMSAMLOGETr r or function does not provide you with a
mechanism for canceling these errors or accessing logged entries. Correctable errors,
by their definition, require a user’s attention, and you should not log them unless
absolutely necessary.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

AOCE software defines the following error codes:

enum { /* predefined val ues of Mail LogErrorCode */
kMai | MSAMVETr r or Code = 0, /* NMSAM defined error */
kMai | M scErr or = -1, /* miscellaneous error */
kMai | NoMbdem =-2 /* nodem required, but mssing */
i

Because a personal MSAM is a background application, it has no user interface and
therefore cannot notify the user of runtime errors. Because each MSAM can potentially
encounter errors specific to its implementation, the Finder cannot adequately notify the
user of these errors without help from the MSAM. To solve this problem, an MSAM
needs to provide two ' STR#' string list resources. The first' STR#' resource contains a
list of the MSAM'’s error messages, each describing a problem that may occur. This
resource must have a resource ID of kMai | MSAMEr r or St ri ngLi st | D. The second

' STR#' resource contains a list of strings specifying the action that the user can take to
fix a specific error. It must have a resource ID of kMai | MSAMAct i onSt ri ngLi st | D.

To cause the Finder to display one of your error messages, you must set the er r or Code

field of the Mai | Er r or LogEnt r yl nf o structure to kMai | MSANVEr r or Code and set the
error Resour ce field. The er r or Resour ce field is an index into the list of your error

messages in the ' STR#' resource. The index of the first message in the string list is 1.

When you log an error that requires user intervention (kMai | ELECor r ect abl e), you
must specify an action that the user should take to correct the error. You provide the action
messages ina' STR#' resource (resource ID =kMai | MSAMAct i onSt ri ngLi st | D). You
set the act i onResour ce field to an index into the list of your action messages in the

' STR#' resource. The index of the first message in the string list is 1.

The Finder displays all errors to the user, regardless of the error type. A user reports that
an error is corrected by clicking the Resolve button on a problem report in his or her In
Tray. (See the PowerTalk User’s Guide for a description of the PowerTalk user interface.)

The IPM Manager reinstates a suspended personal MSAM or slot when the user reports
that the error is corrected or when the computer on which the personal MSAM is
running is restarted. If the personal MSAM is not running when the user reports that the
problem has been corrected, the IPM Manager launches it. If the personal MSAM is
running, it gets a kMai | EPPCCont i nue high-level event.

Messaging Service Access Module Reference

This section describes the structures and functions that constitute the messaging
service access module API. It also includes descriptions of the high-level events an
MSAM might receive.

Messaging Service Access Module Reference 2-93

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Data Types and Constants

This section describes the data structures in the MSAM APL The chapters “AOCE
Utilities” and “Interprogram Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces contain descriptions of other structures that you use.

The MSAM Parameter Block

Every function in the MSAM API takes a pointer to an MSAMPar amparameter block as
input. The parameter block has a standard header followed by function-specific fields.
Each function description in the section “MSAM Functions” describes the fields of that
function’s parameter block.

MailParamBlockHeader

The parameter block header for an MSAMPar amstructure has the following definition:

define Mil ParanBl ockHeader

Ptr gLi nk; /* reserved */\

| ong reservedHi; /* reserved */\

| ong reservedHz; /* reserved */\

ProcPtr i oConpl etion; /* your conpletion routine */\

OSErr i oResul t; /* result code */\

| ong saveAb; /* location of app global variables */\
short r eqCode; /* reserved */

Field descriptions

gLi nk Reserved.
reser vedHl Reserved.
reservedH2 Reserved.

i oConpl etion Pointer to a completion routine that you can provide. When a
function that you called asynchronously completes execution, it
calls your completion routine. See page 2-219 for a description of
the completion routine. Set this field to ni | if you do not wish to
provide a completion routine. This field is ignored if you call a
function synchronously.

i oResul t The result of a function. You can poll the i oResul t field to
determine when a function has finished executing. When you
execute the function asynchronously, the function sets this field
to 1 as soon as the function has been queued for execution. When
the function completes execution, it sets this field to the actual
result code.

saveA5 The contents of your application’s A5 register.
reqCode Reserved.

2-94 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MSAMParam

The MSAMPar amstructure is a union of function-specific substructures, each of which
contains standard header fields.

uni on MSAMPar am{
struct {Mail ParanBl ockHeader} header;

PMSAMGet MSAMRecor dPB prmsanGet MSAMRecor d;
PMSAMOpenQueuesPB pmsanOpenQueues;
PMSAMSet St at usPB prsantet St at us;
PMSAM_ogEr r or PB pnmsaniogError;
SVBSAMSet upPB snmsantet up;

SMVBAMSt ar t upPB snmsantt art up;
SMSANMShut downPB snmsantShut down;
MSAMEnuner at ePB nmsanEnuner at e;
MSAMDel et ePB nsanDel et e;
MSAMOpenPB msanOpen,;
MSAMOpenNest edPB msanmOpenNest ed;
MSAMCI osePB nsanCl ose;

MSAMZet MsgHeader PB nsantet MsgHeader ;
MSAMGet At t ri but esPB nmsantet Attri but es;
MBAMGet Reci pi ent sPB nsantGet Reci pi ent s;
MSAMGet Cont ent PB msantet Cont ent ;
MSAMGet Encl osur ePB nsantzet Encl osur e;
MSAMENnuner at eBl ocksPB nmsanEnuner at eBl ocks;
MSAMGet Bl ockPB nsantet Bl ock;
MSAMVar kReci pi ent sPB msamnivar kReci pi ent s;
MSAMhMar kReci pi ent sPB nmsamMar kReci pi ent s;
MSAMCr eat ePB msantCr eat e;
MSAMBegi nNest edPB nmsanBegi nNest ed;
MSAMENndNest edPB nmsanEndNest ed;
MSAMSubmi t PB nsanSubmi t;

MSAMPut MsgHeader PB msanPut MsgHeader ;
MSAMPut At t ri but ePB msanPut At tri but e;
MSAMPuUt Reci pi ent PB nsanPut Reci pi ent ;
MSAMPut Cont ent PB nmsanPut Cont ent ;
MSAMPut Encl osur ePB nmsanPut Encl osur e;
VMSAMPut Bl ockPB nsanPut Bl ock;
MSAMCr eat eReport PB nmsanCr eat eReport;

MSAMPut Reci pi ent Report PB nsanPut Reci pi ent Report;
PMSAMCr eat eMsgSunmar yPB pnsantCr eat eMsgSunmary;
PMSAMPUt MsgSunmar yPB prsanPut MsgSunmar y;
PMBAMGet MsgSuntrar yPB prsanCet MsgSuntrar y;

Messaging Service Access Module Reference 2-95

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Mai | WakeupPMSAMPB wak eupPNVSAM
Mai | Cr eat eMni | Sl ot PB createMil Sl ot
Mai | Modi fyMai | Sl ot PB nodi f yMai | Sl ot ;

}s

t ypedef uni on MSAMPar am MBSAMPar am

The Mail Buffer

You use the Mai | Buf f er structure to pass data between your MSAM and the
IPM Manager.

MailBuffer

The mail buffer structure is defined by the Mai | Buf f er data type.

struct Mail Buffer {

| ong bufferSize; /* size of your buffer */
Ptr buf fer; /* pointer to your buffer */
| ong dat aSi ze; /* armount of data returned in or read out

of your buffer */

1
typedef struct Mail Buf fer Mail Buffer;

Field descriptions

bufferSi ze When reading, you set this field to the size of your buffer in bytes.
When writing, you set this field to the number of bytes that you
want to write.

buf f er A pointer to your buffer. You allocate a buffer of whatever size
you need.
dat aSi ze When it successfully completes execution, the function sets this

field to the actual number of bytes that it read or wrote.

The Mail Reply Structure

A Mai | Repl y structure is a model. Many functions in the MSAM API format the data
they place in a Mai | Buf f er structure according to the Mai | Repl y model format.

2-96 Messaging Service Access Module Reference

MailReply

CHAPTER 2

Messaging Service Access Modules

A structure of type Mai | Repl y consists of a single field, t upl eCount, that contains
a count. It is followed immediately by t upl eCount occurrences of a data item or
structure. The format of the data item or structure depends on the particular
function that returns the data in the Mai | Repl y structure format. For instance, the
MSAMENnuner at e function returns MSAMEnumer at eQut QRepl y or

MSAMENnuner at el nQRepl y structures.

struct Mail Reply {
unsi gned short tupl eCount;
/* tupl e[tupl eCount] */

1

typedef struct Mil Reply Mil Reply;

The Enumeration Structures

The enumeration structures, MSAMEnuner at eQut QRepl y and

MSAMENnumer at el nQRepl y, return information about messages in an outgoing or
incoming queue, respectively. The MSAMEnuner at e function returns a list of one
or the other of these structures. Each structure gives enough information about a
message for you to know what to do next with the message.

MSAMEnumerateOutQReply

When a personal or server MSAM calls the MSAMEnumer at e function to enumerate an

outgoing queue, the function returns information about the messages in the outgoing

queue in a list of MSAMEnuner at eQut QRepl y structures, one for each message.

struct MSAMEnuner at eQut Qreply {

| ong segNum /* sequence nunber of nessage */
Bool ean done; /* resolution of nessage */

| PMPriority priority; /* priority of nessage */
OSType msgFanmily; /* nessage famly */

| ong approxSi ze; /* size of nmessage */

Bool ean tunnel Form /* reserved */

Byt e padByt e; /* pad to even byte boundary */
Net wor kSpec next Hop; /* reserved */

OCECr eat or Type nsgType; /* message creator and type */

b

typedef struct MSAMEnuner at eCut QReply MSAMEnumer at eQut QRepl y;

Messaging Service Access Module Reference

2-97

SO|NPOIA SS9V 92IAIaS Bulbessay -

MSAMEnumerateInQReply

CHAPTER 2

Messaging Service Access Modules

Field descriptions
segNum

done

priority

nmsgFami |y

appr oxSi ze

t unnel For m
next Hop
msgType

A sequence number that identifies a specific message in the
outgoing queue. It is valid until you delete the message. You
pass this value to the MSAMOpen function to identify a message
you want to open.

A Boolean value that indicates if you have sent—or completed your
attempts to send—the message to each of the recipients for which
you are responsible. The IPM Manager sets this field to t r ue when
you have finished sending or attempting to send the message to all
of the recipients for which you are responsible. You tell the IPM
Manager which recipients you have processed by calling the
MSAMhMar kReci pi ent s function.

A value that indicates the priority with which the message was sent.
Possible values are: kI PMNor mal Priority, kl PMLowPriority,
and kI PVMHi ghPriority.

A value that indicates the message family to which the message
belongs. The AOCE-defined message families are KMai | Fami |y,
kMai | Fami | yFi | e, and kI PMFami | yUnspeci fi ed. Developers
can define other message families.

The size of the message itself, not including some overhead bytes
associated with the message when it resides in the outgoing queue.

Reserved.
Reserved.

A structure that specifies the creator and type of the message. The
creat or field indicates the creator of the message. The t ype field
identifies the type of message.

2-98

When a personal MSAM calls the MSAMEnuner at e function to enumerate an incoming
queue, the function returns information about the letters in the queue in a list of
MSAMENnuner at el nQRepl y structures, one for each letter.

struct MSAMEnuner at el nQReply {
| ong segNum /* letter sequence nunber */
Bool ean msgDel eted; /* should letter be deleted? */
Bool ean nmsgUpdated; /* was nessage sumary updated? */
Bool ean msgCached; /* is letter in the incom ng queue? */
Byt e padByt e; /* pad to even byte boundary */

b

t ypedef struct

MSAMENnuner at el nQRepl y MSAMEnuner at el nQRepl v;

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Field descriptions

segNum A sequence number for a specific letter in the incoming queue. It is
valid until you delete the letter.
msgDel et ed A Boolean value that indicates whether you should delete the letter.

Only the IPM Manager sets and clears this field. If this field is set to
t r ue, you should delete the letter.

msgUpdat ed A Boolean value that indicates if the IPM Manager has updated the
message summary associated with the letter. Only the IPM Manager
sets and clears this field. This field is set to t r ue if the IPM
Manager has updated the message summary.

msgCached A Boolean value that indicates if the letter is attached to its message
summary. Only the IPM Manager sets and clears this field. This
field is set to t r ue if you wrote the letter into the incoming queue.

The Mail Time Structure

MailTime

The Mai | Ti e structure appears in the sendTi neSt anp attribute in a letter’s header
and in the sendTi e field of a letter’s message summary.

The Mai | Ti me structure is the standard structure for reporting time in an AOCE system.

struct Mail Tinme {
UTCTi ne time; /* current UTC(GMI) */
UTCO f set offset; [/* offset fromUTC */
}s

typedef struct Mail Time Mil Ti ne;

Field descriptions

tinme Current time expressed as universal coordinated time (UTC) in
seconds since 00:00 hours, January 1, 1904. (The UTCTi ne data type
isunsi gned | ong.)

of f set Offset from UTCin seconds. The offset is a signed value added to
the t i me value. (The UTCOf f set data type is | ong.)

The Letter Attribute Structures

Letter attributes identify a letter and indicate who wrote it, when it was sent, what its
priority for delivery is, who the recipients are, and so forth. Most attributes are stored in
the letter header; a few are stored in the message summary.

Messaging Service Access Module Reference 2-99

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

MailAttributeID

When calling the MSAMPut At t ri but e or MSAMPut Reci pi ent function, you use the
Mai | Attri but el Ddata type to indicate the letter attribute whose value you are
passing to the function. When calling the MSAMGet Reci pi ent s function, you use it
to indicate the recipient type about which you want information.

t ypedef unsigned short Mail Attri butel D,

A variable of type Mai | Att ri but el Dmay have any of the following values:

enum {
kMai | Lett er Fl agsBit =1, /* letter flags bit */
kMai | | ndi cati onsBit =3, /* indications bit */
kMai | MsgTypeBi t =4, [* letter creator & type bit */
kMai | Letter| DBit =5, [* letter IDbit */
kMai | SendTi neSt anpBi t =6, /* send tinestanp bit */
kMai | Nest i ngLevel Bi t =7, [/* nesting level bit */
kMai | MsgFani | yBi t =8, [/* nessage famly bit */
kMai | Repl yI DB t =9, /* reply IDbit */
kMai | ConversationlDBit = 10, /* conversation ID bit */
kMai | Subj ect Bi t = 11, /* subject bit */
kMai | FronBi t = 12, /* Fromrecipient bit */
kMai | ToBi t = 13, /* To recipient bit */
kMai | CcBi t = 14, /* cc recipient bit */
kMai | BccBit = 15 /* bcc recipient bit */
1
MailAttributeBitmap
When calling the MSAMGet At t ri but es function, you use a Mai | At t ri but eBi t map
structure to indicate the letter attributes about which you want information. Each
defined bit in the attribute bitmap represents a letter attribute. This structure is also a
component part of the MSAMVsgSummar y structure.
struct Mail AttributeBitmp {
unsi gned i nt /* 32 bits */
reservedA: 16, /[* bits 17 to 32--reserved */
reservedB: 1, /* bit 16--reserved */
bcc: 1, /* bit 15--blind carbon copy recipients */
cc: 1, /* bit 14--carbon copy recipients */
to: 1, /* bit 13--To recipients */
from1, /* bit 12--sender of letter */
2-100 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

subj ect: 1,
conversationlD: 1,
replyl D: 1,
nmsgFanmi | y: 1,
nesti nglLevel : 1,
sendTi neSt anp: 1,
letterlD:1;
nmegType: 1,

i ndi cations: 1,
reservedC: 1,
letterFl ags: 1

b

/* bit 11--subject of letter */

/* bit 10--1D of conversation thread */
/[* bit 09--1D of letter being replied to */
/* bit 08--nmessage fanily */

/* bit 07--nesting level of letter */
/* bit 06--tine letter was sent */

/* bit 05--letter's unique |ID nunber */
/* bit 04--letter's creator and type */
/* bit 03--indications */

/* bit 02--reserved */

/* bit O01l--letter flags */

typedef struct Mail AttributeBitmap Miil AttributeBit map;

Field descriptions
bcc

cc
to

from

subj ect
conversationl D

replyl D
msgFam | y

nesti ngLevel

sendTi neSt anp
letterl D

msgType
i ndi cati ons

| etterFl ags

Messaging Service Access Module Reference

Secondary recipients whose addresses do not appear on the letter as
received by the To and cc recipients and other bcc recipients.

Recipients who are being sent a courtesy copy of the letter.
Primary recipients of the letter.

The sender of the letter.

The subject of the letter.

The letter ID number of the original letter that began a sequence of
replies or forwards that resulted in the current letter.

The letter ID number of the letter to which the current letter is

a reply.

A value that indicates the message family to which the message
belongs.

The nesting level of the letter. A letter that is newly created (that is,
not a reply to or forward of an existing letter) has a nesting level of
0. A reply to or forward of a letter whose nesting level is 0 has a
nesting level of 1. A reply to or forward of a letter whose nesting
level is 1 has a nesting level of 2, and so on. See the section “Letters”
beginning on page 2-17 for information on nested letters.

The time the letter was sent.

The letter ID number for the letter. This number is generated by the
IPM Manager.

The creator and type of the letter. Each letter has a creator and type.

Indications of the properties of the letter, such as whether the letter
contains a digital signature, whether the originator requested
non-delivery reports, and so on. The Mai | | ndi cat i ons structure
is described on page 2-102.

Flags that indicate the status of the letter, such as whether it has
been opened by the user. The Mui | Let t er Fl ags structure is

described on page 2-123. Server MSAMs should ignore this attribute.

2-101

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

The following table summarizes letter attributes. In the column headed “O/M”, an M
indicates mandatory—that is, this attribute must always be present. An O means optional—
the attribute may or may not be present in a letter. In the column headed “F/V”, an F
indicates fixed—that is, this attribute has a fixed size—while a V means variable—the
attribute size is variable.

Constant Value Attribute data type O/M FIvV
kMai | Let t er Fl agsBi t 1 Mai | Lett er Fl ags M F
kMai | | ndi cati onsBi t 3 Mai | | ndi cati ons M F
kMai | MsgTypeBi t 4 OCECr eat or Type M F
kMai | Letter! DBit 5 Mai | Letterl D M F
kMai | SendTi meSt anpBi t 6 Mai | Ti me M F
kMai | Nesti ngLevel Bi t 7 Mai | Nest i ngLevel M F
kMai | MsgFani | yBi t 8 OSType M F
kMai | Repl yl DBi t 9 Mai | Letterl D 0 F
kMai | Conver sat i onl DBi t 10 Mai | Letterl D) F
kMai | Subj ect Bi t 11 RString o) \Y%
kMai | FronBi t 12 OCEReci pi ent M \Y%
kMai | ToBi t 13 OCEReci pi ent M \Y%
kMai | CcBi t 14 OCEReci pi ent o) \Y%
kMai | BccBi t 15 OCEReci pi ent o) \Y%

An MSAM should allocate the largest possible buffer for attributes whose size is variable.

Note

All letter attributes except the | et t er Fl ags attribute are stored in the
letter header. Both personal and server MSAMs read or set all letter
attributes in the letter header. The | et t er Fl ags attribute is stored in a
letter’s message summary. Server MSAMs do not create message
summaries and therefore do not set or read a |l et t er Fl ags attribute
for letters they handle. The | et t er Fl ags attribute applies only to
letters submitted by a personal MSAM. O

Maillndications

The Mai | | ndi cat i ons structure further defines the letter attribute called

i ndi cati ons.Itis a bit field structure that contains information about several
characteristics of the letter, such as what priority level the originator set for the
letter, whether it has been sent, what type of reports the originator wants, and so
on. An MSAM sets many of these bits for an incoming letter and reads the bits
for an outgoing letter.

2-102 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

The following constants define bits in the Mai | | ndi cat i ons structure:

enum {
kMai | Ori gi nal | nReportBit =1
kMai | NonRecei pt Report sBit =3
kMai | Recei pt ReportsBit =4
kMai | For war dedBi t = 5,
kMai | PriorityBit =6
kMai | | sReport WthOriginalBit =8
kMai | | sReportBit =9

kMai | HasCont ent Bi t = 10,
kMai | HasSi gnat ur eBi t =11
kMai | Aut henti cat edBi t = 12,
kMai | Sent Bi t = 13
b
Note

Constants for the has St andar dCont ent, hasl mageCont ent, and
hasNat i veCont ent bit fields are not defined. O

struct Maillndications {
unsi gned i nt
reservedB: 16,
hasSt andardContent:1,/* letter has a content block */

hasl mageContent: 1, /* letter has an i mage bl ock */
hasNativeContent:1, /* letter has a content enclosure */
sent: 1, /* letter sent, not just conposed */
aut henti cated: 1, /* letter was created and transported with

aut hentication */
hasSi gnat ure: 1, /* letter was signed with a digital signhature */
hasContent: 1, /* this letter or a nested letter has content */
i sReport:1, /* not a letter, is really a report */
i sSReportWthOriginal:1,/* report contains the original letter */
priority:2, /* letter has normal, low, or high priority */
forwarded: 1, /* letter contains a forwarded letter */
recei pt Reports: 1, /* originator requests delivery indications */

nonRecei pt Reports: 1, /* originator requests non-delivery indications */
originallnReport:2, /* originator wants original letter enclosed in
reports */

b

typedef struct Maillndications Millndications;

Messaging Service Access Module Reference 2-103

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-104

CHAPTER 2

Messaging Service Access Modules

Field descriptions

hasSt andar dCont ent

hasl| nageCont ent

If this bit is set, this letter has a block of type kMai | Cont ent Type
that contains data in standard interchange format.

If this bit is set, this letter has a block of type kMai | | mageBody Type
that contains data in standard image format.

hasNat i veCont ent

sent

aut henti cat ed

hasSi gnat ure

hasCont ent

i sReport

If this bit is set, this letter contains content in the form of a
content enclosure.

If this bit is set, this letter was sent, not just composed. This bit is
clear for nested letters and those that exist on disk and have not yet
been submitted.

If this bit is set, this letter was created by an authenticated user and
transported over a secure path using the Apple Secure Data Stream
Protocol. In release 1, a letter entering an AOCE system via an
MSAM is not authenticated. This bit will always be set to 0 on
letters read by a personal MSAM. On letters read by a server
MSAM, the bit may be set or clear. In either case, it is for

the MSAM'’s information only.

If this bit is set, the sender signed the letter with a digital signature.
The signature applies to the letter as a whole. If a portion of the
letter is signed, the bit is not set. See the chapter “Digital Signature
Manager” in Inside Macintosh: AOCE Application Interfaces for
information about digital signatures. The AOCE software sets this
bit to 0 for letters submitted by an MSAM. If this bit is set for an
outgoing letter, the MSAM can ignore it or add a note to the letter
indicating that the letter was originally signed with a digital
signature.

If this bit is set, this letter, or a letter nested within it, contains
content. The content can be a content block, an image block,

or a content enclosure. Although this bit doesn’t indicate the
type of content or the nesting level at which the content exists,
it provides useful information to AOCE letter applications that
display letter content by indicating if a letter has some type of
content at some nesting level.

If this bit is set, this is an IPM report. Because an IPM report is not a
report that an MSAM creates or receives, you never set this bit for a
report that you create, nor will it be set on a report that you receive.
For more information about reports, see the section “Reports” on
page 2-23. IPM reports are discussed in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

i sSReport Wt hOri

priority

f or war ded
recei pt Reports

nonRecei pt Repor

ori gi nal | nRepor

gi nal

If this bit is set, this is an IPM report that contains the original letter
to which the report pertains. Because an IPM report is not a report
that an MSAM creates or receives, you never set this bit for a report
that you create, nor will it be set on a report that you receive. For
more information about reports, see the section “Reports” on

page 2-23. IPM reports are discussed in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces.

The priority of the letter, as set by the sender. This 2-bit field can be
set to any of the following values: k| PMNor nal Priority,
kl PMLowPriority, or kl PVHi ghPriority.

enum {
kl PMAnyPriority
kl PMNor mal Priority
kl PMLowPriority,
kl PMHi ghPriority

0,/* not used by NMSAM */
11

b

It is up to the recipient to decide how to handle letters of
different priorities.

If this bit is set, this letter is a forwarded letter.
If this bit is set, the originator of this letter has requested a report
containing delivery indications.

ts

If this bit is set, the originator of this letter has requested a report
containing non-delivery indications.

t

This 2-bit field can be set to either of the following values:

enum {
kMai | NoOri gi nal = 0,
kMai | Encl oseOnNonRecei pt= 3

b

If this field is set to KMai | NoOr i gi nal , the originator of this letter
specified that the original letter not be enclosed in reports. If this
field is set to kMai | Encl osedOnNonRecei pt, the originator of
this letter specified that the original letter be enclosed in reports
containing non-delivery indications. An MSAM ignores this field
and never includes a copy of the original letter in a report it creates.
The AOCE toolbox is responsible for including originals when
appropriate.

Messaging Service Access Module Reference 2-105

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

The following table indicates who sets the bits in the Mai | | ndi cat i ons structure for
an incoming letter. In the column labeled “Responsible for setting,” MSAM refers to both
personal and server MSAMs.

Maillndications bit field Responsible for setting
hasSt andar dCont ent MSAM

has| mageCont ent MSAM
hasNat i veCont ent MSAM

sent IPM Manager
aut henti cat ed IPM Manager
hasSi gnat ur e IPM Manager
hasCont ent MSAM

i sReport Not applicable
i SReport Wt hOri gi nal Not applicable
priority MSAM

f or war ded MSAM

recei pt Reports MSAM
nonRecei pt Reports MSAM

ori gi nal I nReport MSAM

The Recipient Structures

The structures in this section define the sender or receiver of a message. You use these
structures when you get recipient information from a message that you have opened or
when you put recipient information into a message that you are creating. The chapter
“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces also
describes the OCEReci pi ent and OCEPackedReci pi ent structures. The structures are
described here from the perspective of an MSAM'’s use of them.

OCERecipient

2-106

The OCEReci pi ent structure completely specifies an address. It should contain
whatever information is needed to deliver a message to that address.

You use an OCEReci pi ent structure to specify a reply address when you call the
MSAMPut MsgHeader function.

An OCEReci pi ent structure is the unpacked form of the OCEPackedReci pi ent
structure (described next). The utility routines OCEPackReci pi ent and
OCEUnpackReci pi ent allow you to transform the address information from one
format to the other. The routines are described in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

struct OCEReci pi ent {

Recor dl D* entitySpecifier;
OSType ext ensi onType;
unsi gned short extensionSize;
Ptr ext ensi onVal ue;

b

Field descriptions

entitySpecifier
Pointer to a Recor dl Dstructure. The record ID contains part of the
address. The section “AOCE Addresses” beginning on page 2-23
explains what each field of the Recor dl Dstructure should contain
when it holds either an AOCE address or an external address.

ext ensi onType Identifies the type of messaging system with which this recipient is
associated. It determines the format and the meaning of the data
pointed to by the ext ensi onVal ue field. You must provide an
extension type.

ext ensi onSi ze The number of bytes in the ext ensi onVal ue field.

ext ensi onVal ue A pointer to the part of the address that is specific to the messaging
system. You should provide the address extension information in an
RSt r i ng structure. This allows the information to be displayed
properly to the user and allows the user to create new addresses of
this type using the type-in addressing feature. (Type-in addressing
is a feature of PowerTalk software’s human interface.)

Table 2-5 on page 2-30 and Table 2-4 on page 2-29 list the contents of each field in an
OCEReci pi ent structure for an AOCE address and an external address, respectively.

t ypedef OCEReci pi ent Mil Reci pi ent;

The Mui | Reci pi ent structure is defined as an OCEReci pi ent data type. You use it
in exactly the same way as you would an OCEReci pi ent structure. You provide a
Mai | Reci pi ent structure to specify a recipient of a letter or a report when you call
the MSAMPut Reci pi ent or MSAMCr eat eRepor t function, respectively.

OCEPackedRecipient

An OCEPackedReci pi ent structure is the packed form of the OCEReci pi ent
structure (described in the previous section).

You cannot read the packed address directly. Before you can read it, you must

convert it to the unpacked format using the OCEUnpackReci pi ent utility routine.

The utility routines OCESi zePackedReci pi ent, OCECGet Reci pi ent Type, and
OCESet Reci pi ent Type allow you to manipulate an OCEPackedReci pi ent structure.
They are described in the chapter “Interprogram Messaging Manager” in Inside
Macintosh: AOCE Application Interfaces.

Messaging Service Access Module Reference 2-107

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

A structure of type OCEPackedReci pi ent is a minimum-sized structure and should
not be allocated on the stack. Instead, use the NewPt r or NewHand| e routine to allocate
the structure.

struct OCEPackedReci pi ent {

unsi gned short dat aLengt h; /* length of recipient data */
Byt e dat a[kOCEPackedReci pi ent MaxByt es] ;
b
Field descriptions
dat aLengt h Length of the packed recipient address that immediately follows
this field.
dat a Packed recipient address.

MailOriginalRecipient

The Mai | Ori gi nal Reci pi ent structure consists of a single field, i ndex, that contains
an index value for a given recipient. The Mai | Ori gi nal Reci pi ent structureis a
model of how address information is stored in a buffer. It is always followed immedi-
ately by an OCEPackedReci pi ent structure that contains the address information of
that recipient. The MSAMGet Reci pi ent s function returns recipient information in

Mai | Ori gi nal Reci pi ent format when you call the function requesting information
about recipients of a particular type (From, To, cc, or bcc).

struct Mil Oigi nal Reci pi ent {
short i ndex; /* index for recipient */
/* foll owed by OCEPackedReci pient structure */

1
typedef struct Mail Origi nal Reci pi ent Mail Oigi nal Reci pi ent;

Field descriptions
i ndex An absolute index value associated with the recipient.

MailResolvedRecipient

2-108

The Mui | Resol vedReci pi ent structure contains an index value for the recipient,
an indication of whether the recipient is a bec recipient, and a Boolean value that
indicates whether you are responsible for delivering the message to this recipient.
The Mai | Resol vedReci pi ent structure is a model of how address information is
stored in a buffer. The fields of the structure are always followed immediately by an

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

OCEPackedReci pi ent structure that contains the address information of the
recipient. The MSAMGet Reci pi ent s function returns recipient information in

Mai | Resol vedReci pi ent format when you call the function requesting informa-
tion about resolved recipients.

struct Mail Resol vedReci pi ent {

short i ndex; /* index for recipient */

short reci pientFlags;/* recipient informtion */
Bool ean responsi bl e; /* responsible for delivery? */
Byt e padByt e

/* foll owed by OCEPackedReci pi ent structure */
b

typedef struct Mail Resol vedReci pi ent Mi | Resol vedReci pi ent;

Field descriptions

i ndex An absolute index value associated with the recipient. You need this
value when you call the MSAMPut Reci pi ent Report function to
identify the recipient to whom the report pertains. The index is also
useful if you want to match an original recipient with a resolved
recipient.

reci pi ent Fl ags A value that tells you if this recipient is a bec recipient. Use
the mask kI PMBCCRecMask to determine if this recipient is
a bec recipient.

responsi bl e A Boolean value that is set to t r ue if you are responsible for
sending the message to this recipient.

The Segment Types

A content block (type kMai | Cont ent Type) contains the body or main content of a letter
in standard interchange format (see the section “Letters” beginning on page 2-17 for more
information about interchange format). A content block consists of segments of data in
plain text, styled text, picture, sound, or movie format. The Mai | Segnent Type data
type identifies one of the five standard data segment types. The Mai | Segrment Mask data
type specifies one or more of these segment types. You read and write content blocks with
the MSAMGet Cont ent (page 2-150) and MSAMPut Cont ent functions (page 2-186).

MailSegmentType

A variable of the Mai | Segnent Type data type specifies the format of data in a
data segment.

t ypedef unsi gned short Mail Segnent Type;

Messaging Service Access Module Reference 2-109

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

A variable of type Mai | Segnment Type can contain one of the following values:

enum { /* val ues of Mail Segrment Type */
kMai | I nval i dSegnent Type = 0,
kMai | Text Segnent Type =
kMai | Pi ct Segnent Type =
kMai | SoundSegnent Type
kMai | St yl edText Segnent Type
kMai | Movi eSegnent Type

1

}s

Constant descriptions

kMai | I nval i dSegnent Type
This value is included as a convenience. An MSAM can initialize a
variable of type Mai | Segrent Type to this known value before
calling the MSAMZet Cont ent function.

kMai | Text Segnent Type
The segment contains plain text in one or more character sets. The
text data must consist of 1-byte or 2-byte character codes,
depending on the character set (Roman, Arabic, Kanji, and so on).

kMai | Pi ct Segnent Type
The segment contains picture data in PICT format. For more
information about PICT format, see Inside Macintosh: Imaging With
QuickDraw.

kMai | SoundSegnent Type
The segment contains data in Audio Interchange File Format
(AIFF). For more information about AIFF format, see Inside
Macintosh: More Macintosh Toolbox.

kMai | Styl edText Segnent Type
The segment contains text and a St Scr pRec structure containing
the style information corresponding to that text. The text data
consists of 1-byte or 2-byte character codes, depending on the
character set (Roman, Arabic, Kanji, and so on). For more
information on the St Scr pRec structure, the style record, and the
style table, see Inside Macintosh: Text.

kMai | Movi eSegnent Type
The segment contains QuickTime movie data in QuickTime movie
file format ('MboV'). For more information about the 'MboV file
format, see Inside Macintosh: QuickTime.

MailSegmentMask

You use the Mui | Segment Mask data type to indicate the kinds of data segments that
you want to read when you call the MSAMGet Cont ent function.

t ypedef unsi gned short Mail Segnent Mask;

2-110 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

The bits in the segment mask are defined as follows:

enum{
kMai | Text Segnent Bi t,
kMai | Pi ct Segnent Bi t,
kMai | SoundSegnent Bi t,
kMai | Styl edText SegnentBi t,
kMai | Movi eSegnent Bi t

};
You can use a combination of the following values to set bits in the segment mask:

enum { /* val ues of Mail Segnent Mask */
kMai | Text Segnment Mask 1L<<kMai | Text SegnentBi t,
kMai | Pi ct Segnment Mask 1L<<kMai | Pi ct Segnment Bi t
kMai | SoundSegnent Mask 1L<<kMni | SoundSegnent Bi t,
kMai | Styl edText Segnent Mask = 1L<<kMai | Styl edText SegnentBit,
kMai | Movi eSegnent Mask 1L<<kMai | Movi eSegnent Bi t

b

The Enclosure Information Structure

You add an enclosure to a letter by calling the MSAMPut Encl osur e function. The
function takes a Mai | Encl osur el nf o structure as input. This structure describes the
enclosure being added to the letter.

MailEnclosurelnfo

You pass a Mai | Encl osur el nf o structure to the MSAMPut Encl osur e function when
you enclose a file that resides in memory.

struct Mail Encl osurel nfo {
StringPtr encl osur eNane;
/* nanme of the encl osure */

ClnfoPBPtr catlnfo; /* HFS catal og i nfo about encl osure*/
StringPtr comment ; /* conment for CGet |Info wi ndow */
Pt r i con /* icon for enclosure file */

b

typedef struct Mail Encl osurel nfo Mail Encl osur el nf o;

Messaging Service Access Module Reference 2-111

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Field descriptions
encl osur eNamne

catlnfo

conmment

i con

A pointer to the name of the file that you want to enclose. Format
the filename as a Pascal-style string—that is, add a leading length
byte. The name must be 1 to 31 bytes long, excluding the length
byte, and must not contain colons (:).

A pointer to a fully specified Cl nf oPBRec structure (defined in
Inside Macintosh: Files), which is returned by the PBGet Cat | nf o
function. Set the fields for which you cannot obtain appropriate
values to 0, with the exception of the i oNamePt r and

i oFl Fndr | nf o fields. Ignore the i oNanePt r field because you
pass the filename in the encl osur eNane field. The first 8 bytes of
the i oFl Fndr | nf o field contain values for the file’s type and
creator. Because the type and creator determine the application
associated with the file and the icon that the Finder displays for that
file, omitting a value for the i oFlI Fndr | nf o field renders the file
unusable. Therefore, you should make every attempt to provide
meaningful values for the file’s creator and type. If you do not
know the application associated with the file, set the cr eat or field
to four question marks ('????"). If you do not know the file’s type,
set the t ype field to ('????') as well.

A pointer to a Pascal-style string containing the file’s comment; it is
the information that the Get Info command in the Finder displays
for the file. The string cannot be longer than 199 characters,
excluding the length byte. The Finder truncates a longer string
when it places the file on an HFS volume. If the file has no
comment, set the conment field toni | .

A pointer to the file’s icon: the standard black-and-white icon (32 by
32 bits) consisting of 128 bytes of bitmap followed by 128 bytes of
mask. Enclosures in a letter are stored in AppleSingle format.
AppleSingle format typically provides a single black-and-white
icon so that non-Macintosh file systems can easily read an icon
without needing to know how to get at the icon resources stored

in AppleSingle format. This field preserves compatibility with
AppleSingle format. It is not used by AOCE software. You can set
this field toni | .

The Image Block Information Structure

2-112

You use the TPf PgDi r structure when reading or writing an image block.

Messaging Service Access Module Reference

TPfPgDir

CHAPTER 2

Messaging Service Access Modules

An image block starts with an image block information structure (the TPf PgDi r data
type defined by the Printing Manager), followed by a series of PICT elements.

struct TPfPgDir{
short i Pages; /* nunber of pages in image block */
long i PgPos[129]; [* array [O..iPfMaxPgs] of offsets */

};

Field descriptions

i Pages The number of pages in the image. The image block contains one
PICT for each page.

i PgPos An array of offsets from the start of the block to the picture elements

that follow the TPf PgDi r structure.

The i PgPos array contains offsets to the picture elements that follow the TPf PgDi r
structure. The offset from the start of the image block to the image of page n + 1 is

i PgPos|[n] (because page numbers start at 1 and the array elements start at 0). The array
contains i PgPos[n + 1] elements for a document of n pages. The last element is the offset
of the end of the last page from the beginning of the block. You can determine the size of
a page by subtracting the offset of the current page from the offset of the next page, that
is, the size of page n is i PgPos[n] —i PgPos[n —1].

The High-Level Event Structures

The Mai | EPPCMs g, SMCA, OCESet upLocat i on, Mai | Locat i onFl ags, and
Mai | Locat i onl nf o structures are used in conjunction with high-level events.

MailEPPCMsg

When you call the Accept Hi ghLevel Event function after receiving an AOCE
high-level event, the function returns a buffer that contains a Mai | EPPCVs g structure.

struct Mail EPPCMsg {

short versi on; /* message version */
uni on {
SMCA * t he SMCA,; /* pointer to SMCA */
| ong sequenceNunber ; /* letter sequence nunber */

Mai | Locationlnfo locationlnfo;/* |ocation information */
bPous
b

t ypedef struct Mail EPPCMsg Mai | EPPCMVsQ;

Messaging Service Access Module Reference 2-113

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Field descriptions
version

u. t heSMCA

The version number of the AOCE high-level event. You should
verify that this version number matches the value of the

kMai | EPPCMsgVer si on constant in the PowerTalk interface files
you used when you built your MSAM.

A pointer to an SMCA structure that contains additional information
relevant to the event. The IPM Manager uses this field when it
sends any of the following events: kMai | EPPCCr eat eSl ot

kMai | EPPCModi fySl ot, kai | EPPCDel et eSl ot

kMai | EPPCMsgOpened, kMai | EPPCSendl mredi at e,

kMai | EPPCAdNI n.

u. seqguenceNumnber

u.l ocationlnfo

The sequence number of the letter to which the event applies.
The IPM Manager uses this field when it sends either the
kMai | EPPCI nQUpdat e or kVai | EPPCDel et eQut QVsg event.

A Mai | Locat i onl nf o structure. The IPM Manager uses this field
when it sends the kMai | EPPCLocat i onChanged event.

SMCA
The shared memory communication area, defined by the SMCA structure, is used to pass
information between the IPM Manager and an MSAM, in addition to the data passed in
the Event Recor d structure.
struct SMCA {
unsi gned short sntalength; /* length of entire SMCA
(including the length field) */
CSEr r result; /* result code */
| ong userBytes; [/* event-specific data */
uni on{
Creationl D slotClD /* creation ID of record
containing slot information */
| ong msgHi nt ; /* message reference val ue */
b
b
typedef struct SMCA SMCA
Field descriptions
sntalLength The total length of the SMCAstructure, including the 2 bytes for the
sntalengt h field itself. The IPM Manager sets this field.
resul t You set this field to acknowledge receipt of the event to the IPM
Manager or to indicate that you have handled the event. Set it to the
NoEr r result code to acknowledge receipt of the event or to report
success. Otherwise, set it to an MSAM-defined error code. See the
individual event descriptions for details.
2-114 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

user Byt es The interpretation of this field is dependent on the particular event
that is being processed. See the individual event descriptions for
information on how this field is used for that event.

u.slotClD If the event applies to a particular slot, this field contains the
creation ID of the slot’s record in the Setup catalog. If the event
applies to the MSAM as a whole, this field contains 0. The IPM
Manager sets this field. It is irrelevant to server MSAMs.

u. megHi nt A reference value associated with a specific letter. The IPM Manager
sets this field.

OCESetupLocation

The OCESet upLocat i on data type defines the current system location.
t ypedef char OCESet uplLocati on;

The values 0-8 are valid values for a variable of type OCESet upLocat i on. Values 1-8
refer to an actual location. The value 0 is a special case that indicates the offline or
disconnected state. When the current system location is 0, a personal MSAM should not
be executing.

The following enumeration defines constants for two of the valid values of type
OCESet upLocat i on:

enum {
kOCESet upLocat i onNone
kOCESet upLocat i onMax

0, /* disconnect state */
8 /* maxi mum | ocati on val ue */

}s

MailLocationFlags

The Mai | Locat i onFl ags data type defines a bit array. Each bit corresponds to a
system location. If the bit is set, the slot to which the location flags apply is active at that
location. The Mai | Locat i onFl ags data type is used in the Mai | Locat i onl nf 0 and
Mai | St andar dSl ot | nf oAt tri but e structures.

t ypedef unsigned char Mail Locati onFl ags;

A system location is identified by a value ranging from 1 to 8. To test a bit in a variable of
type Mai | Locat i onFl ags, the following mask is defined:

#define Mail Locati onMask(Il ocati onNunber) (1<<((locationNunber)-1))

Messaging Service Access Module Reference 2-115

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

Note that for the special location value 0, which corresponds to the disconnected or
offline state, the mask value is 0. The slot is inactive at all locations when the current
system location is 0.

MailLocationInfo

The Mui | Locat i onl nf o structure contains the current system location and a bit

array defining the locations at which a given slot is active. The Mai | Locat i onl nf o
structure is part of the Mai | EPPCMs g structure. A personal MSAM receives a

Mai | Locat i onl nf o structure when it receives a kMai | EPPCLocat i onChanged event.

struct Mail Locationlnfo {
OCESet upLocat i on | ocati on; /* the current location */
Mai | Locat i onFl ags active; /* slot's location flags */

1
typedef struct Mail Locationlnfo Mil Locationl nfo;

Field descriptions

| ocation A value that identifies the current system location. It may contain
any integer value between 0-8.

active Abit array that defines whether or not a given slot is active at each
system location.

The Server MSAM Administrative Event Structures

The IPM Manager provides a server MSAM with administrative information by means
of the kMai | EPPCAdNI n high-level event (page 2-235).

SMSAMAdminCode

2-116

The SMSAMAdNi nCode data type defines a set of codes for server MSAM administrative
actions.

t ypedef unsi gned short SMSAMAdAN nCode;

A variable of type SMSAMAD nCode can have any of the following values:

enum {
kSMSAMNot i f yFwdr Set upChange=
kSMsAMNot i f yFwdr NaneChange
kSMBAWMNot i f yFwdr PmdChange
k SM5AMzet Dynani cFwdr Par ans

1
PODNPRE

b

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

SMSAMAdminEPPCRequest

The user Byt es field of the SMCA structure associated with a kMai | EPPCAdmi n
high-level event provides a pointer to an SMSAMAdM nEPPCRequest structure. The
SMSAMAdM nEPPCRequest structure contains an administrative code followed by
data whose type is determined by the code.

struct SMSAMADN nEPPCRequest {

SMSAMAdM nCode adm nCode; /* admi n code */
uni on {
SMBAMSet upChange set upChange; /* setup change */
SMBAMNaneChange naneChange; /* reserved */
SMBAMPasswor dChange passwor dChange; /* reserved */
SMBAMDynam cPar ams dynami cPar ans; /* reserved */
}ous

b
typedef struct SMBAMAAN nEPPCRequest SMSAMAdni nEPPCRequest ;

Field descriptions

adni nCode A value that indicates the type of administrative action requested
by the kMai | EPPCAdni n high-level event. The value in this field
determines the type of structure contained in the u field. In release 1
of PowerTalk system software, this should always be the
k SMSAMNot i f yFwdr Set upChange code.

u Contains a structure that varies depending on the value of the
adni nCode field. In release 1 of PowerTalk system software, this
should always be an SMSAMSet upChange structure.

SMSAMSetupChange

The SMSAMSet upChange structure contains connectivity information about a
server MSAM.

struct SMBAMBet upChange {
SMSAMSI ot Changes what Changed; /* what paraneters changed */
Addr Bl ock serverH nt; /* ACCE server address */

b
t ypedef struct SMSAMSet upChange SMSAMSet upChange;
Field descriptions

what Changed A value that indicates the connectivity information that
has changed.

Messaging Service Access Module Reference 2-117

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

server H nt The AppleTalk address of the PowerShare catalog server that the
MSAM should use to read its Forwarder record containing the
changed connectivity information. Because an AOCE system is a
distributed system, the changed data may not have propagated to
other servers yet.

SMSAMSlotChanges

enum {

The SMSAMSI ot Changes data type defines a bit array that indicates the kind of
connectivity information that has changed.

t ypedef unsi gned | ong SMSAMS| ot Changes;
The bits in the SMSAMS| ot Changes data type are defined as follows:

enum {
k SMsSAMFwdr Honel nt er net ChangedBi t
k SM5SAMFwdr Connect edToChangedBi t
k SMSAMFwdr For ei gnRLI sChangedBi t,
k SMBAMFwdr MhiVBer ver ChangedBi t

b

You can use the following values to test the bits in a variable of type
SMBAMSI ot Changes:

/* val ues of SMSAMSI ot Changes */

kSMSAMFwdr Ever yt hi ngChangedivask = -1
k SMSAMFwdr Honel nt er net ChangedMask= 1L<<kSMSAM~wdr Honel nt er net ChangedBi t

k SM5SAMFwdr Connect edToChangedMask
k SMSAMFwdr For ei gnRLI sChangedMask
k SMBAMFwdr MhiVBer ver ChangedMask

2-118

1L<<k SMSAMFwdr Connect edToChangedBi t
1L<<k SMSAMFwdr For ei gnRLI sChangedBi t ,
1L<<k SMSAMFwWdr MhMSer ver ChangedBi t

Constant descriptions

k SMSAMFwdr Ever yt hi ngChangedMask
In release 1 of the AOCE software, this constant has the same
definition as that of the k SMSAMFwdr For ei gnRLI sChangedMask
constant.

k SMSAMFwdr Horrel nt er net ChangedMask
Reserved.

kSMSAMFwdr Connect edToChangedMask
Reserved.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

k SMSAMFwdr For ei gnRLI sChangedMask
The record location information that points to a catalog associated
with the MSAM’s external messaging system has changed. The
information changes when the PowerShare system administrator

adds or deletes a catalog for a messaging system served by the
MSAM.

k SMSAMFwdr MhVBer ver ChangedMask
Reserved.

The Personal MSAM Setup Structures

MailTimer

The Mai | Ti mer and Mai | Ti mer Ki nd data types and the Mai | Ti mer s and
Mai | St andar dSI ot | nf oAt t ri but e structures contain the user’s send and receive
requirements for a given slot and location information for that slot.

A variable of type Mai | Ti mer specifies a number of seconds. The value is interpreted as
a frequency interval or a specific time, depending on which union field is used.

union Mail Ti mer {
| ong frequency; /* how often to connect */
[ong connect Ti ne; /* time since mdnight */

1
t ypedef union Mail Ti mer Mail Ti ner;

Field descriptions

frequency A value that tells a personal MSAM how often it should connect to
its messaging system to send or retrieve mail. The frequency
interval is specified in seconds.

connect Ti ne A value that tells a personal MSAM at what time it should connect
to its messaging system to send or retrieve mail. The time is
specified as the number of seconds since midnight. The midnight
used is that of the internal time on the Macintosh as set by the user.

MailTimerKind

A variable of type Mai | Ti mer Ki nd specifies the type of timer that a user wants to use
with a given mail slot.

t ypedef Byte Mail Ti nerKi nd;

Messaging Service Access Module Reference 2-119

SO|NPOIA SS9V 92IAIaS Bulbessay -

MailTimers

CHAPTER 2

Messaging Service Access Modules

A variable of type Mai | Ti mer Ki nd can have any of the following values:

enum {
kMai | Ti mer O f 0O, /* no tiner specified */
kMai | Ti mer Ti me =1, [/* timer relative to mdnight */
kMai | Ti mer Fr equency 2 |* frequency timer*/

}s

Constant descriptions
kKMai | Ti mer OFf Specifies that the user has not requested a timer.

kMai | Ti mer Ti me Specifies that a personal MSAM should send or retrieve messages at
a particular time.

kMai | Ti mer Fr equency
Specifies that a personal MSAM should send or retrieve messages at
regular intervals.

2-120

The Mai | Ti mer s structure indicates how frequently a personal MSAM connects to its
external messaging system. A personal MSAM'’s setup template sets the fields of the

Mai | Ti mer s structure in response to user actions. The user can express the frequency as
a particular clock time at which the personal MSAM automatically connects every day
(for example, connect at 3:00 A.M. to send and receive letters) or as a periodic occurrence
(for example, connect every two hours). The IPM Manager uses the information in this
structure to determine when it should send a kMai | EPPCSchedul e event to the
personal MSAM.

struct Mail Tiners {

Mai | Ti mer Ki nd sendTi nmeKi nd; /* timer kind for sending */

Mai | Ti merKind receiveTinmeKind; /* timer kind for receiving */

Mai | Ti mer send; /* connect tine or frequency
for sending letters */

Mai | Ti mer receive; /* connect tine or frequency

for receiving letters */

1
typedef struct Mail Tinmers Mail Ti ners;

Field descriptions

sendTi mekKi nd A constant that indicates what type of timer the user wants the
personal MSAM to use for sending messages for a particular slot.
The setup template sets this field to one of the following values:
kMai | Ti mer Ti me, kMai | Ti mer Fr equency, or kMai | Ti mer OF f .

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

recei veTi meKi nd
A constant that indicates what type of timer the user wants the
personal MSAM to use for retrieving messages for a particular slot.
The setup template sets this field to one of the following values:
kMai | Ti mer Ti me, kMai | Ti mer Fr equency, or kMai | Ti mer OF f .

send A value that specifies either the time interval that elapses before the
personal MSAM sends messages to its external messaging system
or a specific time at which the MSAM sends these messages.
The MSAM interprets this field according to the value in the
sendTi meKi nd field. If that value is kMai | Ti mer OF f , the MSAM
ignores this field.

receive A value that specifies either the time interval that elapses before the
personal MSAM retrieves messages from its external messaging
system or a specific time at which the MSAM retrieves these
messages. The MSAM interprets this field according to the value in
the r ecei veTi meKi nd field. If that value is kMai | Ti mer O f, the
MSAM ignores this field.

MailStandardSlotInfoAttribute

struct

s

The personal MSAM's setup template obtains location and timing information from the
user to set the act i ve and sendRecei veTi ner fields of this structure appropriately.
Then it adds the structure to the slot’s Combined or Mail Service record in the Setup
catalog, where the information is available to the IPM Manager.

Mai | St andardSl ot I nfoAttribute {
short versi on; /* version of this slot structure */
Mai | Locati onFl ags acti ve; /* active at location i if
Mai | Locat i onMask(i) is set */
Byt e padByt e;
Mai | Ti mer s sendRecei veTi mer ;

typedef struct Mail StandardSl ot nfoAttribute Mil StandardSl ot nfoAttribute;

Field descriptions

version The version of the Mai | St andar dSl ot | nf oAt t ri but e structure.
You should set this field to 1. There is no constant defined for it.
active Abit array that defines whether or not the slot is active at a given

location. If the bit is set, the slot is active at the corresponding loca-
tion. A slot is active if a personal MSAM is able to send and receive
messages for the slot.

sendRecei veTi ner
The frequency at which the IPM Manager should schedule the
personal MSAM to send and receive messages for the user account
represented by this slot. (The IPM Manager does this by sending the
MSAM a kMai | EPPCSchedul e event.)

Messaging Service Access Module Reference 2-121

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

The Personal MSAM Letter Flag Structures

The letter flags provide information about a letter in an incoming queue. Only personal
MSAMs use the structures in this section.

MailLetterSystemFlags

The IPM Manager sets the letter system flags.
t ypedef unsigned short Mil Letter SystenFl ags;

The bit in the system flags bytes that you can test is defined as follows:

enum {
kMai | I sLocal Bit = 2

b

You can use the following value to test the bit flag in the Mai | Let t er Syst enfl ags
data type.

enum {
kMai | | sLocal Mask = 1L<<kMil | sLocal Bi t
}s

Constant descriptions

kMai | | sLocal Mask
The letter exists in an incoming queue on the local computer. If the
kMai | | sLocal Bi t bit is not set, the letter is stored on an external
messaging system, and only its message summary is currently
available locally.

MailLetterUserFlags

2-122

The IPM Manager and a personal MSAM can set letter user flags in response to a
user action.

t ypedef unsigned short Mail LetterUserFl ags;
The bits in the user flags bytes are defined as follows:

enum({
kMai | ReadBi t
kMai | Dont Ar chi veBi t,
kMai | I nTrashBi t

b

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

You can use the following values to test the flags in the Mai | Let t er User FI ags
data type.

enum{
kMai | ReadMask
kMai | Dont Ar chi veMask
kMai | | nTr ashMask

1L<<kMni | ReadBi t,
1L<<kMni | Dont Archi veBi t,
1L<<kMni | I nTrashBi t

s

Constant descriptions

kMai | ReadMask The user has opened this letter. A personal MSAM sets the letter
user flags to 0 when it creates the letter’s message summary. The
IPM Manager sets the kMai | ReadBi t bit to 1 when the user opens
the letter. A personal MSAM can also modify this bit by calling the
PMSAMPuUt MsgSummar y function.

kMai | Dont Ar chi veMask
Reserved.

kMai | I nTr ashMask
Reserved.

MailLetterFlags

The Mai | Let t er FI ags structure contains both system and user letter flags to indicate
the status of a letter.

struct Mail LetterFlags {
Mai | Let t er Syst enfl ags sysFl ags; /* systemflags */
Mai | Lett er User Fl ags userFlags; [/* user flags */

b
typedef struct Mail LetterFl ags Mail LetterFl ags;

Field descriptions

sysFl ags A set of bit flags managed by the IPM Manager. You can test the
kMai | | sLocal Bi t bit to determine if a given letter is actually
stored on the local computer.

user Fl ags A set of bit flags that indicate state changes that are controlled by
the user. The only bit flag that is relevant to an MSAM is the
kMai | ReadBi t bit, which indicates whether the user has opened
the letter. You can test this bit with the kMai | ReadMask constant.

Messaging Service Access Module Reference 2-123

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

MailMaskedLetterFlags

Use the Mai | MaskedLet t er Fl ags structure to set the letter flags attribute in a letter.
This structure is used by the MSAMPut MsgSunmar y function.

struct Mail MaskedLetterFl ags {
Mai | Let t er Fl ags fl agMask; /* flags that are to be set */
Mai | Let t er Fl ags flagVal ues; /* their values */

1
typedef struct Mail MaskedLetterFl ags Mai | MaskedLett er Fl ags;

Field descriptions
f | agMask The flags that are to be set.
f1 agVal ues The values of the flags that you want to set.

The Personal MSAM Message Summary Structures

A personal MSAM creates a message summary to store summary information about a
letter. The Finder uses message summary information to display incoming letters to the
user. The MSAMVsgSunmar y structure defines a message summary. A message summary
consists of a few individual fields and two groups of letter attributes. The two groups of
letter attributes are defined by the Mai | Mast er Dat a and Mai | Cor eDat a structures,
described in this section.

MailMasterData

The attributes specified in the Mai | Mast er Dat a structure are not critical to the Finder
when it displays information about the letter to which the message summary belongs.

struct Mail MasterData {

Mai | AttributeBitmap attrMask; /* indicates attributes present in
letter */

Mai | Letterl D nmessagel D /* IDof this letter *

Mai |l Letterl D repl yl D; /* ID of letter this is areply to */

Mai | Letterl D conversationlD;/* ID of letter that started this

conversation */

b

typedef struct Mail Mast erData Mil Mast er Dat a;

2-124 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Field descriptions

at t r Mask A bit array that indicates letter attributes. You must set the bits that
correspond to the attributes that are present in the letter. See the
description of the Mai | At t ri but eBi t map structure on page 2-100
for a description of the bits in the attribute bitmap.

messagel D The letter ID of this letter. The letter ID is a value that uniquely
identifies the letter. The letter ID is provided by the IPM Manager.
replyl D The letter ID of the letter to which this letter is a reply. You provide

this value if it exists in the letter.

conversationl D The letter ID of the original letter that began a sequence of replies or
forwards that resulted in this letter. You provide this value if it
exists in the letter.

MailCoreData

The Finder uses the attributes specified in the Mai | Cor eDat a structure when it displays
information about the letter to which the message summary belongs. You provide values
for the fields of the structure, except where otherwise noted in the field descriptions.

/* defines for the addressedToMe field */
#def i ne kAddressedAs_ TO 0x1

#defi ne kAddressedAs CC 0x2

#def i ne kAddressedAs BCC 0x4

struct Mail CoreData {

Mai | Lett er Fl ags | etterFl ags; /* letter status flags */
unsi gned | ong nmessageSi ze /* size of letter */
Mai | | ndi cati ons [etterlndications;
/* indications for this letter */
OCECr eat or Type nessageType; /* message creator and type of this
letter */
Mai | Ti me sendTi ne; /* time this letter was sent */
OSType messageFami ly; /* nessage famly */
unsi gned char reserved;
unsi gned char addressedToMe; /* user is To, cc, or bcc recipient */
char agentInfo[6]; /* reserved (set to 0) */
/* these are variable |l ength and even padded */
RSt ri ng32 sender ; /* sender of this letter */
RSt ri ng32 subj ect ; /* subject of this letter */

b

t ypedef struct Mail CoreData Mail CoreData

Messaging Service Access Module Reference 2-125

SO|NPOIA SS9V 92IAIaS Bulbessay -

2-126

CHAPTER 2

Messaging Service Access Modules

Field descriptions
| etterFl ags

nessageSi ze

A set of bit flags that indicate the status of the letter, such as
whether it has been opened by the user. Set this field to 0. See the
description of the Mai | Let t er Fl ags structure on page 2-123 for
more information on these bit flags. You can modify the user
portion of the letter flags when you call the PMSAMPut MsgSunmar y
function.

The size of the letter in bytes. You provide this value.

| etterlndications

messageType

sendTi ne
nessageFam |y

reserved
addr essedToMwe

agent I nfo
sender

subj ect

Indications of additional properties of the letter, such as whether the
letter contains a digital signature, whether or not the originator
requested non-delivery indications, and so on. See the description
of the Mui | I ndi cat i ons structure on page 2-102. You provide
this value.

The creator and type of the letter. Every letter has a creator and
type. You must provide this value.

The time the letter was sent. You provide this value.

A value that indicates the message family to which the message
belongs. Set this field to KMai | Fami | y.

Reserved.

Indicates how the letter was sent to the addressee: as a To address, a
cc address, or a bcc address; possible values are kAddr essedAs_TQ
kAddr essedAs_CC, and kAddr essedAs_BCC. You must set this
field appropriately. You can set more than one bit.

Reserved. Set this field to 0.

The sender of the letter. You must provide a value for this field.

If your sender information consists of an odd number of bytes,
add a pad byte so that it ends on an even byte boundary. The IPM
Manager treats this field and the subj ect field that follows as a
single common buffer that contains variable-length sender and
subject information. See the section “Creating a Letter’s Message
Summary” beginning on page 2-64 for information on how to
correctly assign a value to this field.

The subject of the letter. You must provide this value. If your subject
information consists of an odd number of bytes, add a pad byte so
that it ends on an even byte boundary. The IPM Manager treats this
field and the sender field before it as a single common buffer that
contains variable-length sender and subject information. You add
the subject on the first even-byte boundary following the sender
information, which is not necessarily the same as the beginning of
this field. See the section “Creating a Letter’s Message Summary”
beginning on page 2-64 for information on how to correctly assign a
value to this field.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MSAMMsgSummary

struct

}s

t ypedef struct

short

Bool ean
Bool ean
Bool ean
Byt e

Mai | Mast er Dat a

Mai | Cor eDat a

An MSAMVsgSummar y structure provides summary information about an incoming
letter. You must create one of these structures for each incoming letter. (In addition

to the fields defined in the message summary structure, the IPM Manager stores up
to kMai | MaxPMSAMVs gSummar y Dat a bytes of MSAM-specific private data with a

message summary.)

MSAMVBgSUmMary {

versi on; /*

nsgDel et ed; /*
nsgUpdat ed; /*
nmsgCached; /*
padByt e;

nmast er Dat a; /*
cor eDat a; /*

Field descriptions

versi on of the MBAMMsgSuUmmary
structure */

should letter be deleted? */

was nessage sunmary updat ed? */

is letter in the incom ng queue? */

attributes not essential to
di splay */

attributes critical to display *

MSAVMMsgSunmrary MSAMMsgSumar y;

The version of the message summary structure. You must set this

field to the constant kMai | MsgSunmar yVer si on.

A Boolean value indicating whether you should delete this letter.

You do not provide a value for this field. The IPM Manager initially
sets this field to f al se. It sets this field to t r ue when the user
deletes a letter. If this field is t r ue, you should delete the letter on
your external messaging system and delete the letter’s message

A Boolean value indicating whether the IPM Manager updated

information in the message summary. You do not provide an
initial value for this field. The IPM Manager initially sets this
field to f al se. It sets this field to t r ue when it updates any
of the following fields in the message summary: nsgDel et ed,

nder | nf 0. You read this field to determine

if the message summary has changed. If it has, you should
reexamine the message summary and take appropriate action,
if any, based on the changed information. After taking the action,

version
nsgDel et ed
summary.
msgUpdat ed
msgSt or eFl ags, fi
you should reset this field to f al se.
nsgCached

A Boolean value indicating whether the letter associated with the

message summary exists in an incoming queue. You do not provide
a value for this field. The IPM Manager initially sets this field

to f al se. It sets this field to t r ue when you write the letter
corresponding to this message summary into the incoming queue.

Messaging Service Access Module Reference

2-127

SO|NPOIA SS9V 92IAIaS Bulbessay -

CHAPTER 2

Messaging Service Access Modules

mast er Dat a A Mai | Mast er Dat a structure that contains letter attributes not
essential to the ability of the Finder to display the letter. See the
structure description on page 2-124 for an explanation of the
information that you must provide.

coreDat a A Mai | Cor eDat a structure that contains the attributes crucial to
the Finder’s ability to display the letter. See the structure
description on page 2-125 for an explanation of the information that
you must provide.

The Personal MSAM Error Log Entry Structure

The error log is where a personal MSAM can report errors that require a user’s
intervention to correct. The personal MSAM reports errors using the PMSAMLOgEr r or
function. The function takes a pointer to a Mai | Err or LogEnt r yI nf o structure

as input.

MailErrorLogEntryInfo

You provide a Mai | Error LogEnt ryl nf o structure to the PMSAMLOgEr r or function
when you want to report an operational error to the IPM Manager and ultimately to
the user.

t ypedef unsi gned short Mail LogError Type;

/* val ues of Mail LogErrorType */
enum {
kMai | ELECorrect abl e
kMai | ELEEr r or =
kMai | ELEVr ni ng
kMai | ELEI nf or nat i onal

/* error correctable by user */

/* error not correctable by user */

/* warning requiring no user intervention */
/* informational message */

I
wpnhNEeo

1
t ypedef short Mail LogErr or Code;

/* predefined val ues of Mil LogErrorCode */
enum {

kMai | MSANMETr r or Code = 0, /* NMSAM defined error */
kMai | M scErr or = -1, /* miscellaneous error */
kMai | NoMbdem =-2 /* nodem required, but mssing */
1
struct Mail ErrorLogEntrylnfo {
short versi on; /* log entry version */
UTCTi e ti meCccurred; /* time of error */
Str31 reporti ngPVSAM /* MSAM reporting the error */
Str31 reporti ngMSAMSI ot ; /* slot having the error */

2-128 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Mai | LogError Type errorType; /* level of error */

Mai | LogEr r or Code error Code; /* error code */

short error Resour ce; /* error string resource index */
short acti onResource; /* action string resource index */
unsi gned | ong filler; /* reserved */

unsi gned short filler2; /* reserved */

b

typedef struct Mail ErrorLogEntrylnfo Mil ErrorLogEntrylnfo;

Field descriptions
version

ti meQccurred

reporti ngPNSAM

The version of the error log entry. Set this field to
kMai | Error LogEnt ryVer si on.

The time that the error occurred. This is filled in by the
IPM Manager.

A string identifying the personal MSAM that is logging the error.
This is filled in by the IPM Manager.

reporti ngMsSAMSI ot

error Type

err or Code

error Resource

acti onResour ce

A string identifying the slot that is experiencing the error, if the
error is associated with a specific slot. This is filled in by the IPM
Manager.

A value that indicates the type of error that you are logging. Set this
field to one of the following constants: kMai | ELECor r ect abl e,
kMai | ELEEr r or, KMai | ELEWAr ni ng,

kMai | ELEI nf or mat i onal

A value that indicates the error you are logging. There are three
predefined errors; you can define others. If you want to log an error
that you define, set this field to kMai | MSAVEr r or Code and set the
error Resour ce field to the index into your string list (" STR#')
resource for the string that describes the error. The constants for the
predefined errors are kVai | MSAMET r or Code, kMai | M scError,
and kMai | NoMbdem

An index into your list of error messages. An error message
describes the problem that has occurred. The resource ID of the
' STR#' resource containing the list of error messages must be
kMai | MSAMET ror St ri ngLi st | D. If you are logging an
AOCE-defined error, the IPM Manager ignores this field.

The index into your list of action messages. An action message is
always associated with an error of type kMai | ELECor r ect abl e.
The action message recommends the action that the user should
take to correct the error. The resource ID of the ' STR#' resource
containing the list of action messages must be

kMai | MSAVAct i onSt ri ngLi st | D. If you are logging an
AOCE-defined error, the IPM Manager ignores this field.

See the section “Logging Personal MSAM Operational Errors” on page 2-91 for more
information about operational errors.

Messaging Service Access Module Reference 2-129

SO|NPOIA SS9V 92IAIaS Bulbessay -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Service Access Modules TOC
	 Introduction to Service Access Modules
	 Messaging Service Access Modules TOC
	Messaging Service Access Modules, Part 1 (Introduction and Using)
	Introduction to Messaging Service Access Modules
	Personal MSAMs
	Server MSAMs
	MSAM Modes of Operation
	Types of Messages
	Basic Messages
	Letters
	Reports

	AOCE Addresses
	AOCE High-Level Events
	System Location
	Using the MSAM API
	Determining Whether the Collaboration Toolbox Is A...
	Determining the Version of the IPM Manager
	Launching a Personal MSAM
	Initializing a Personal MSAM
	Initializing a Server MSAM
	Handling Outgoing Messages
	Enumerating Messages in an Outgoing Queue
	Opening and Closing a Message
	Determining the Message Family
	Determining What Is in a Message
	Reading Letter Attributes
	Interpreting Creator and Type for Messages and Blo...
	Reading Addresses
	Reading Letter Content
	Reading a Nested Message
	Marking Recipients
	Generating a Report

	Writing Incoming Messages
	Choosing Creator and Type for Messages and Blocks
	Creating a Letter’s Message Summary
	Creating a Letter
	Creating a Non-Letter Message
	Writing Letter Attributes
	Writing Addresses
	Writing Letter Content
	Submitting a Message
	Receiving a Report

	Deleting a Message
	Translating Addresses
	Translating From an AOCE Address
	Translating to an AOCE Address

	Logging Personal MSAM Operational Errors

	Messaging Service Access Module Reference
	Data Types and Constants
	The MSAM Parameter Block
	The Mail Buffer
	The Mail Reply Structure
	The Enumeration Structures
	The Mail Time Structure
	The Letter Attribute Structures
	The Recipient Structures
	The Segment Types
	The Enclosure Information Structure
	The Image Block Information Structure
	The High-Level Event Structures
	The Server MSAM Administrative Event Structures
	The Personal MSAM Setup Structures
	The Personal MSAM Letter Flag Structures
	The Personal MSAM Message Summary Structures
	The Personal MSAM Error Log Entry Structure

	 Messaging Service Access Modules, Part 2 (Reference: Functions Part 1)
	 Messaging Service Access Modules, Part 3 (Reference: Functions Part 2)
	 Messaging Service Access Modules, Part 4 (Summary)
	 Catalog Service Access Modules TOC
	 Catalog Service Access Modules
	 Service Access Module Setup TOC
	 Service Access Module Setup
	 Glossary
	 Index
	 Colophon

