

C H A P T E R 2

Messaging Service Access Modules 2

MSAMPutContent 2

The MSAMPutContent function writes the content block of a letter.

pascal OSErr MSAMPutContent (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter to which you want to
add content segments. You obtain the reference number when you
call the MSAMCreate function.

segmentType A value that indicates the segment type of the data that you want
to write to the letter. Letter segments may be text, picture, sound,
QuickTime movies, or styled text. You can specify only one segment
type in this field each time you call the MSAMPutContent function.
The values that you can specify in this field are described on
page 2-109.

append A Boolean value that indicates whether you want the
MSAMPutContent function to write the data in your buffer to a new
segment or append it to an existing segment. Set this field to false
when you first call the MSAMPutContent function to begin writing
a new segment. On subsequent calls to the function, set this field to
false if you want to start a new segment. Set this field to true if
you want to append the data in your buffer to the segment currently
being written by the MSAMPutContent function.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ segmentType MailSegmentType Text, picture, sound, movie,

or styled text
→ append Boolean Append data to current

segment?
↔ buffer MailBuffer Your buffer structure
→ textScrap StScrpRec* Style scrap structure
→ startNewScript Boolean Start a new character set?
→ script ScriptCode Character set
2-186 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2

M
essaging S

ervice A
ccess M

odules

buffer. You place the data that you want to write in your buffer. The
MSAMPutContent function writes the information from the buffer
to the letter and sets the value of the dataSize field to the number
of bytes of data it actually wrote.

textScrap A pointer to a style scrap structure (StScrpRec) that you may
provide when you are writing a styled text segment. It contains the
style information for the text data in your buffer. Set this field to
nil if you are not writing a styled text segment.

startNewScript A Boolean value that indicates whether the data in your buffer uses
a new character set. You set this field when you are writing either a
plain text segment or a styled text segment. Set this field to true
the first time you call the MSAMPutContent function to write the
text segment. After that, set this field to true only if the text data
in your buffer is in a different character set than that which you
previously provided to the function. The function ignores this field
when you set the segmentType field to any value other than
kMailTextSegmentType or kMailStyledTextSegmentType.

script A value that indicates the character set (Roman, Arabic, Kanji, and
so on) of the data in your buffer. If you set startNewScript to
true, set this field to the code for the text segment’s character set.
The MSAMPutContent function ignores this field when you set
startNewScript to false or the segmentType field to any
value other than kMailTextSegmentType or
kMailStyledTextSegmentType.

DESCRIPTION

You call the MSAMPutContent function to write data segments in standard interchange
format to a content block of a letter that you specify. You must have previously
created the letter by calling the MSAMCreate function. The first time you call the
MSAMPutContent function for a given letter, it creates a new block and puts the data
into the block. Each time you call the function to add content to the same letter, it adds
the data to that same block.

A content block consists of data segments, each of a specific type. You add one segment
or a portion of a segment of data each time you call the function. The function writes the
segments to the block in the order that you provide them. A single letter may contain
more than one segment of a given type.

The IPM Manager does not interpret the data that you write to a segment except when
you specify kMailTextSegmentType or kMailStyledTextSegmentType in the
segmentType field.

When you write a text segment, you are responsible for establishing the script code of
the text. You do this by setting the startNewScript field to true and the script field
to the proper script code. A text segment may contain one or more script runs. Therefore,
you need to call the MSAMPutContent function once for each script run in the segment,
setting the startNewScript field to true and the script field to the proper script
code for each script run.
Messaging Service Access Module Reference 2-187

C H A P T E R 2

Messaging Service Access Modules
The value that you provide in the script field must be a valid script in the range 0
to 64. You cannot specify the implicit script codes smSystemScript (the system script)
and smCurrentScript (the font script). If necessary, you can obtain the system
script by calling the GetScriptManagerVariable function with a selector constant
of smSysScript. The font script is considered to be the one returned by the
FontScript function.

When you write a plain text segment (segment type is kMailTextSegmentType), the
function writes a styled text segment, using the following default values in the
ScrpSTElement structure that it generates.

The first font family ID for a non-Roman script is calculated as follows:

■ Scripts with script codes in the range 1–32:

firstID = 16384 + 512 * (scriptCode — 1)

■ Scripts with script codes in the range 33–64:

firstID = —32768 + 512 * (scriptCode — 33)

To write styled text, you provide a pointer to a style scrap structure in the textScrap
field. The scrpNStyles field in a StScrpRec structure indicates the number of
ScrpSTElement elements that follow. You should allocate a StScrpRec structure of
a size appropriate to your MSAM. The style information in the style scrap structure
applies to the text in your buffer. The IPM Manager uses the text in your buffer and the
style information in the style scrap structure to create the segment. You can append
additional text to the segment in subsequent calls to the function by providing the text in
your buffer, placing the style information that applies to that text in the style scrap
structure, and setting the append field to true.

Specifying systemFont or applFont in the scrpFont field of the ScrpSTElement
structure is not recommended. If you want to specify the font family ID of the current
system font or the current application font, use the functions GetSysFont and
GetAppFont to obtain the appropriate font family ID.

Once you begin writing a letter’s content block, you must not call other MSAM func-
tions until you finish writing the block. Calling a function other than the

Field name Default value

scrpStartChar 0

scrpHeight 12

scrpAscent 10

scrpFont monaco if the script code is smRoman.
The default value for non-Roman scripts
is set to the font family ID of the “first”
font within the range for the script.

scrpFace 0

scrpSize 9

scrpColor {0, 0, 0}
2-188 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MSAMPutContent function closes the content portion of the letter. If you then call
the MSAMPutContent function again, it returns the kMailInvalidOrder result code.

It is not necessary to call the MSAMPutAttribute and MSAMPutRecipient functions
prior to calling the MSAMPutContent function.

SPECIAL CONSIDERATIONS

Different Macintosh computers may use the same font number for different fonts. That
is, font numbers may vary from computer to computer, but font names are supposed to
be unique. To ensure that the right fonts can be applied to the styled text when it is read
by a letter application, you can map font numbers to font names when you add styled
text to a letter.

Put the mapping of font numbers to font names in a block that has a block creator of
'fish' and a block type of 'font'. Then add the block to the letter. The first word in
the block must contain the number of font information elements in the block, followed
by a packed array of font information elements. Each element consists of a word
containing a font number followed by a Pascal string containing the font name and, if
necessary, a pad byte for word alignment.

Constants are not defined for the 'fish' and 'font' block creator and type.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO
The MailBuffer structure is described on page 2-96.

See Inside Macintosh: Text for more information about script runs, script code constants,
style runs, the style scrap structure, and the functions GetScriptManagerVariable,
GetSysFont, and GetAppFont.

The segment types that you can specify in the segmentType field and the data format
for each segment type are described on page 2-109.

Trap macro Selector

_oceTBDispatch $051A

noErr 0 No error
dskFulErr –34 All allocation blocks on the

volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailInvalidOrder –15040 Content already closed
kMailInvalidRequest –15045 Message reference number does

not refer to a letter
Messaging Service Access Module Reference 2-189

C H A P T E R 2

Messaging Service Access Modules
MSAMPutEnclosure 2

The MSAMPutEnclosure function adds an enclosure to a letter that you specify.

pascal OSErr MSAMPutEnclosure (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult field.

Field descriptions

mailMsgRef A reference number that identifies the letter to which you want to
add an enclosure. You obtain this reference number from the
MSAMCreate function.

contentEnclosure
A Boolean value that indicates whether this enclosure contains the
main content of the letter. A letter with a content enclosure may or
may not contain a content block. A content block contains data in
standard interchange format. A content enclosure typically is a file
in an application’s native format. Given a letter that contains both a
content block and a content enclosure, the block and the enclosure
are alternate representations of the same basic data.
Set this field to true if the enclosure you are adding is a content
enclosure. You can identify only one enclosure as a content
enclosure for each letter.

hfs A Boolean value that indicates the location of the enclosure that you
want to add to the letter. Set this field to true to indicate that your
enclosure is located on disk in the Macintosh file system. Set this
field to false to indicate that your enclosure resides in memory.

append A Boolean value that indicates whether you want the function to
append the data in your buffer to the current enclosure. The
MSAMPutEnclosure function ignores this field when you set the
hfs field to true. When you set the hfs field to false, set this
field to false for your first call to the function. Set it to true on
subsequent calls to continue writing the enclosure.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ contentEnclosure Boolean Is enclosure main letter content?
→ hfs Boolean Is enclosure in HFS or memory?
→ append Boolean Append data to enclosure?
↔ buffer MailBuffer Your buffer structure
→ enclosure FSSpec File specification
→ addlInfo MailEnclosureInfo

Additional enclosure info
2-190 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
buffer A MailBuffer structure. The MSAMPutEnclosure function
ignores this field when you set the hfs field to true. You set the
value of the bufferSize field in the MailBuffer structure to
the number of bytes in your buffer. You store the enclosure file’s
resource and data forks in your buffer. The MSAMPutEnclosure
function writes the information from the buffer to the letter and sets
the value of the dataSize field to the number of bytes of data it
actually wrote.

enclosure A file system specification record that identifies the file or folder
that you want to enclose. You specify this field when the file or
folder that you want to enclose is located on disk on either
the local computer or a mounted file server volume. The
MSAMPutEnclosure function ignores this field when the hfs
field is set to false.

addlInfo A structure that you provide to specify file system information for
the enclosure, such as the filename, icon, HFS catalog information,
and so forth. You provide this information when you add an
enclosure that resides in memory. The MSAMPutEnclosure
function creates a file according to your specifications and puts your
data in it. The function ignores this field when you add an enclosure
that already exists as a file on disk (when the hfs field is set
to true).

DESCRIPTION

You call the MSAMPutEnclosure function to enclose a file, a folder, or both in a letter
that you specify. The enclosure that you specify may exist in memory or in the Macintosh
hierarchical file system. In the memory form, you provide your enclosure data in buffers,
and you specify additional information that defines the filename or file catalog
information, and other characteristics of the enclosure. In the HFS form, you supply
a path specification to an existing file or folder in the Macintosh file system, and the
function encloses that file or folder in the letter.

To enclose a file or folder that resides in the Macintosh Hierarchical File System, set
the enclosure field to point to the file or folder that you want to enclose. If you set the
enclosure field to point to a folder, the function encloses the folder and all of the files
and folders within it in the letter. Set the hfs field to true and specify the letter to
which you want to add the enclosure in the mailMsgRef field. Then call the
MSAMPutEnclosure function to enclose the file or folder.

To enclose a file that resides in memory, fully specify the addlInfo field. Set the hfs
field to false, the append field to false, and specify the letter to which you want to
add the enclosure in the mailMsgRef field. Store the enclosure file’s resource fork and
data fork into your buffer. Always store the resource fork before the data fork. Padding is
not required. If a particular fork is empty, do not write any bytes for that fork. Call the
MSAMPutEnclosure function to write the enclosure data to the letter. The function
writes the file data in AppleSingle format. (AppleSingle format accommodates the
Macintosh file structure.)
Messaging Service Access Module Reference 2-191

C H A P T E R 2

Messaging Service Access Modules
If you have more data to add to the enclosure, set the append field to true and store
additional enclosure data in your buffer. Call the MSAMPutEnclosure function to write
the enclosure data to the letter. You can repeatedly call the function with new data in
your buffer until you have written the entire enclosure file. When the append field is set
to true, the function ignores the addlInfo field.

With the memory form, you can enclose a folder instead of a file by specifying file catalog
information in the CInfoPBRec structure (a component of the MailEnclosureInfo
structure). Set the catalog bit in the ioFlAttrib field to identify the enclosure as a
folder. In this case, the function ignores the icon field in the MailEnclosureInfo
structure and the buffer and append fields (because folders don’t have data or
resource forks).

To enclose a file or a folder within a parent folder using the memory form of the
function, first enclose the parent folder. Set the volume reference number (the
ioVRefNum field in the CInfoPBRec structure) of the nested file or folder to the value
of the parent folder’s volume reference number (ioVRefNum) and set the parent folder
ID (ioFlParID) of the nested file or folder to the parent folder’s catalog ID (ioDirID).

You can add up to 50 enclosures to a letter, including a content enclosure. Each file and
folder that you add counts as one enclosure. For example, if you add as an enclosure
a folder containing three files, the total number of enclosures in the letter is four:
one folder and three files.

For each letter, you can designate one enclosure as a content enclosure. A content
enclosure typically is a file in an application’s native format. A letter with a content
enclosure may or may not contain a content block. A content block contains data in
standard interchange format. Given a letter that contains both a content block and a
content enclosure, the block and the enclosure are alternate representations of the same
basic data. The standard interchange format content block maximizes the probability
that the recipient will be able to read the letter. The application native format content
enclosure may provide a richer representation of the basic data, but it can be read only
if the recipient has the application. (Image blocks are a third form of letter content.
See the discussion on page 2-18 for more information about different representations of
letter content.)

IMPORTANT

Although it is technically possible to enclose a folder as a content
enclosure, doing so may cause problems with later releases of the AOCE
system software that use the services of the Translation Manager. ▲

SPECIAL CONSIDERATIONS

The MSAMPutEnclosure function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $051B
2-192 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

The MailEnclosureInfo structure is described on page 2-111.

For more information on AppleSingle stream format, see the APDA document
AppleSingle/AppleDouble Formats for Foreign Files Developer Note.

The CInfoPBRec structure is described in Inside Macintosh: Files.

MSAMPutBlock 2

The MSAMPutBlock function adds data to a block in a message.

pascal OSErr MSAMPutBlock (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies if the function is to be
executed asynchronously. Set this to true if you want
the function to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailBadEnclLengthErr –15044 Invalid data length
kMailInvalidRequest –15045 Nested letter already created for this letter

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ refCon long Reserved for your use
→ blockType OCECreatorType Block type
→ append Boolean Append data to current block?
↔ buffer MailBuffer Your buffer
→ mode MailBlockMode Location of mark in block
→ offset unsigned long Byte offset from mark location
Messaging Service Access Module Reference 2-193

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

mailMsgRef A reference number that identifies the message to which you want
to write a block. You obtain the reference number when you call the
MSAMCreate function.

refCon A value reserved for your private use when you add a block to a
non-letter message. You may provide a value to be interpreted by
the recipient. This field is ignored when you add a block to a letter.
If you provide a value in the refCon field, it is stored in the
message header. The recipient can retrieve the value by calling the
MSAMGetMsgHeader function and specifying kIPMTOC in the
selector field of its parameter block.

blockType A structure that specifies the creator and type of the block that you
want to write. The creator field indicates the creator of the block,
for example, kMailAppleMailCreator if the block was created
by AOCE software. The type field identifies the type of block.

append A Boolean value that indicates whether you want the
MSAMPutBlock function to append the data in your buffer to the
current block. Set this field to false when you call the function to
start a new block. If you set this field to true, the function uses
the values in the mode and offset fields to determine where to
begin writing to the current block.

buffer A pointer to a MailBuffer structure in which you store the data
that you want to write to the message that you specify. You set the
value of the bufferSize field in the MailBuffer structure to the
number of bytes in your buffer. The MSAMPutBlock function reads
the information that you placed in your buffer and sets the value
of the dataSize field to the number of bytes of data it wrote into
the block.

mode A value that specifies the mode in which the function interprets the
offset field. The MSAMPutBlock function uses the mode and
offset to determine where in the current block to begin writing the
data from your buffer. The function ignores this field when the
value of the append field is false.

offset A value that specifies an offset that the function uses to determine
the starting point of the write operation. Set this field to 0 when you
start a new block. The function ignores this field when the value of
the append field is false.

DESCRIPTION

You call the MSAMPutBlock function to write data into a block whose type you specify
in the blockType field. The function writes the data into a new block unless you set the
append field to true.
2-194 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
You use the mode and offset fields to specify the point in the block at which the
MSAMPutBlock function starts writing. You can set a variable of type MailBlockMode
(the mode field) to any one of the following values:

enum {

kMailFromStart = 1,

kMailFromLEOB = 2,

kMailFromMark = 3

};

Constant descriptions

kMailFromStart The function interprets the value in the offset field as an offset
from the beginning of the block. When you use this mode, you
cannot set the offset field to a negative value.

kMailFromLEOB The function interprets the value in the offset field as an offset
from the current end of the block. The offset must always be
negative and cannot extend beyond the beginning of the block.

kMailFromMark The function interprets the value in the offset field as an offset
from the current position of the mark. The mark points to the end of
the last byte written. Use a 0 offset value to indicate a starting point
right at the mark. Use a negative offset value to indicate a starting
point prior to the current position of the mark and a positive offset
value to indicate a starting point following the current position of
the mark. You cannot specify a negative offset that extends beyond
the beginning of the block.

If your buffer is too small to hold all of the data that you want to write to a block,
you can call the function repeatedly until you have written the entire block. The
first time you call the function, set the append field to false, the mode field to
kMailFromStart, and the offset field to 0. On subsequent calls to write additional
data to the same block, set the append field to true, the mode field to kMailFromMark,
and the offset field to 0.

You can overwrite data you have already written to a block, but cannot modify a
completed block once you start a new block.

Once you begin writing a block, you must not call other MSAM functions until you
finish writing the block. Calling a function other than MSAMPutBlock closes the
current block.

Typically, you call the MSAMPutBlock function to write image blocks (block type is
kMailImageBodyType) or private blocks (block type is kMailMSAMType) because the
MSAM API provides no other way to write these types of blocks. Although it is possible
to call the MSAMPutBlock function to write blocks that contain letter content, attributes,
enclosures, and so forth, you should use the specific functions provided for writing that
type of information.
Messaging Service Access Module Reference 2-195

C H A P T E R 2

Messaging Service Access Modules
The kMailMSAMType block type indicates a block whose format and content are private
to the MSAM. If you add a private block to a message, AOCE software includes the
private block when it generates a report on the message.

If you are adding an image block to a message, you provide the block’s data in the
format of a TPfPgDir structure, followed by the picture elements (PICTs).

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCECreatorType structure is described in the chapter “Interprogram Messaging
Manager” in Inside Macintosh: AOCE Application Interfaces.

The TPfPgDir structure is described on page 2-113.

MSAMBeginNested 2

The MSAMBeginNested function begins the process of creating a nested message.

pascal OSErr MSAMBeginNested (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $051C

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kIPMMsgTypeReserved –1511 Message creator and/or type

specified not allowed
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down
2-196 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult and
ioCompletion fields.

Field descriptions

mailMsgRef A reference number that identifies the message to which you want
to add a nested message. You obtain the reference number when
you call the MSAMCreate function.

refCon A value reserved for your private use when you create a non-letter
nested message. You may provide a value to be interpreted by the
recipient. This field is ignored when you create a nested letter.

msgType The creator and type of the nested message that you are creating.

DESCRIPTION

You call the MSAMBeginNested function to begin the process of creating a message
nested within a message that you have already created but not yet submitted for
delivery. The function increments the nesting level of the existing message. All
subsequent calls that you make to MSAMPut functions refer to this nesting level until
you call either the MSAMEndNested function or the MSAMBeginNested function.
You can call the MSAMBeginNested function repeatedly to create a hierarchy of nested
messages, but you cannot create more than one nested message per nesting level.

If you provide a value in the refCon field when you create a non-letter nested message,
it is stored in its message header. The recipient can retrieve the value by calling the
MSAMOpenNested function to obtain the nested message’s reference number and then
calling the MSAMGetMsgHeader function, specifying that reference number and setting
the selector field of its parameter block to kIPMFixedInfo.

▲ W A R N I N G

You cannot delete the nested portion of a message once you put data
(recipients, blocks, enclosures, and so on) in it. Furthermore, an empty
nested message is not allowed. If you call the MSAMEndNested function
immediately after you call the MSAMBeginNested function, the
function returns the kMailHdrAttrMissing result code, indicating
that the nested message is incomplete. In this case, the function deletes
the entire message, not just the nested message. ▲

SPECIAL CONSIDERATIONS

You do not get a separate reference number for a nested message. You always use the
reference number of the outermost message when adding any kind of data to a nested
message, regardless of how deeply it is nested.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ refCon long Reserved for your use
→ msgType IPMMsgType Message type of nested message
Messaging Service Access Module Reference 2-197

C H A P T E R 2

Messaging Service Access Modules
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMMsgType structure is described in the chapter “Interprogram Messaging
Manager” in Inside Macintosh: AOCE Application Interfaces.

MSAMEndNested 2

The MSAMEndNested function ends the nested message currently being written.

pascal OSErr MSAMEndNested (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message that contains the
message letter that you want to end. You obtain the reference
number when you call the MSAMCreate function.

Trap macro Selector

_oceTBDispatch $0515

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

kMailHdrAttrMissing –15043 Required attribute not written into header
kMailInvalidRequest –15045 Nested letter already created for this letter

← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
2-198 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
DESCRIPTION

You call the MSAMEndNested function to indicate that you have finished constructing
your nested message. After the function successfully completes, you cannot make any
additions to the nested message. Subsequent calls that you make to MSAMPut functions
apply to the next higher nesting level.

▲ W A R N I N G

An empty nested message is not allowed. If you call the
MSAMEndNested function immediately after you call the
MSAMBeginNested function, the MSAMEndNested function
returns the kMailHdrAttrMissing result code, indicating that
the nested message is incomplete. In this case, MSAMEndNested
deletes the entire message, not just the nested message. ▲

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMBeginNested function is described on page 2-196.

Trap macro Selector

_oceTBDispatch $0516

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

kMailHdrAttrMissing –15043 Required attribute not added to message
kMailBadEnclLengthErr –15044 Number of bytes written not equal to

number of bytes needed for memForm
enclosure in progress
Messaging Service Access Module Reference 2-199

C H A P T E R 2

Messaging Service Access Modules
Submitting a Message 2

When you have finished composing a letter, report, or non-letter message, use the
function MSAMSubmit to submit it for delivery into the AOCE system.

MSAMSubmit 2

The MSAMSubmit function submits a completed letter, report, or non-letter message for
delivery to the addressee or requests that it be deleted.

pascal OSErr MSAMSubmit (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult field.

Field descriptions

mailMsgRef A reference number that identifies the message to which the request
applies. You obtain the reference number when you call the
MSAMCreate function.

submitFlag A Boolean value that indicates whether you want the MSAMSubmit
function to accept the message that you specify for delivery or to
delete it. Set this field to true to indicate that the message is
complete and ready for delivery. Set this field to false if you want
the function to delete the message.

DESCRIPTION

You call the MSAMSubmit function to request delivery of a incoming message to an
AOCE addressee or to request that the message be deleted.

A message must be complete at the time you call the MSAMSubmit function to submit
the message for delivery. To be complete, you must have added to the message header
at least a to, a from, and a sendTimeStamp attribute. You should also add all nested
messages, enclosures (letters only), blocks, content (letters only), attributes, and
recipients before you submit the message for delivery. After you call the MSAMSubmit
function, the message reference number is invalid and you can make no further changes
to the message.

You can call the MSAMSubmit function to delete a message at any time after you create
the message.

← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ submitFlag Boolean Submit or delete message?
2-200 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
If you submit a message to which you did not add a msgFamily attribute, AOCE
software adds a msgFamily attribute and sets it to kIPMFamilyUnspecified for a
non-letter message and to kMailFamily for a letter. If you submit a letter to which you
did not add an indications attribute, AOCE software adds it and sets the priority
bit field to kIPMNormalPriority and all of the other bit fields to 0.

If a personal MSAM sets the submitFlag field to false for a letter, the function deletes
the letter, but not the letter’s message summary. To delete a letter’s message summary,
call the MSAMDelete function.

SPECIAL CONSIDERATIONS

The MSAMSubmit function is always executed synchronously.

Because it normally has continuous access to the PowerShare mail server, a server
MSAM should translate incoming messages immediately and submit them to the
PowerShare mail server. If the PowerShare mail server quits, the server MSAM should
either stop accepting incoming messages or store the incoming messages until the
PowerShare mail server is available again.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Methods of detecting when a PowerShare mail server quits and starts are discussed on
page 2-42.

The MSAMDelete function is described next.

Letter attributes and the MailIndications data type are described on page 2-100 and
page 2-102, respectively.

Trap macro Selector

_oceTBDispatch $0517

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

kMailHdrAttrMissing –15043 Required attribute not added to message
kMailBadEnclLengthErr –15044 Number of bytes written not equal

to number of bytes needed for memForm
enclosure in progress
Messaging Service Access Module Reference 2-201

C H A P T E R 2

Messaging Service Access Modules
Deleting a Message 2

A server MSAM uses the MSAMDelete function to delete a message from its outgoing
queue. A personal MSAM uses the function to delete letters and message summaries
from its incoming queues.

MSAMDelete 2

The MSAMDelete function deletes a message from a queue that you specify.

pascal OSErr MSAMDelete (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

queueRef The queue that contains the message that you want to delete. A
personal MSAM may specify either an outgoing queue reference or
an incoming queue reference. It obtains queue references from the
PMSAMOpenQueues function. A server MSAM specifies the queue
reference that it obtained from the SMSAMStartup function, which
refers to its outgoing queue.

seqNum The sequence number that identifies the message that you want to
delete. You obtain this value from the MSAMEnumerate function.

msgOnly A Boolean value that indicates whether a personal MSAM wants to
delete only a letter or both a letter and its message summary from
an incoming queue. You set this field to true if you want to delete
only the letter itself. If you set this field to false, you delete both
the letter and its associated message summary. A personal MSAM
that is deleting a letter from an outgoing queue, and all server
MSAMs, should set this field to false.

result Reserved. Set this field to the noErr result code.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ seqNum long Sequence number of message in the

queue
→ msgOnly Boolean Delete letter, not message summary?
→ result OSErr Reserved
2-202 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
DESCRIPTION

You call the MSAMDelete function to delete a message that you specify. You identify the
message by its sequence number. Once you have deleted a message, it is no longer
available to you on the local computer.

Generally, a personal MSAM should not call this function to delete a letter from an
outgoing queue. Instead, it should leave letters in an outgoing queue so that the user can
peruse them. An exception to this rule occurs when a user wants to delete a letter rather
than send it. In that case, the IPM Manager sends the personal MSAM a
kMailEPPCDeleteOutQMsg event, and the personal MSAM should delete the letter.

A server MSAM calls this function to delete messages from its outgoing queue.

The MSAMDelete function allows a personal MSAM to delete a letter, with or without
the message summary, from an incoming queue. For example, it may want to delete a
letter, but not the message summary, when it decides the letter no longer needs to be
cached locally. If the personal MSAM is trying to mirror the letter’s status on its external
messaging system, it can delete the letter and the message summary when the letter is
removed from the external messaging system. If a personal MSAM sets the msgOnly
field to false and only the message summary is present in the queue, the function
deletes it and returns the noErr result code.

The MSAMDelete function closes a message if it is open.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Message summaries are discussed in the section “MSAM Modes of Operation”
beginning on page 2-12.

The IPM Manager may also delete a letter from a personal MSAM’s incoming queue in
response to a user action. In that case, it sets the msgDeleted flag in the letter’s message
summary and sends the kMailEPPCInQUpdate event. The kMailEPPCInQUpdate
event is described on page 2-228.

The kMailEPPCDeleteOutQMsg event is described on page 2-231.

Trap macro Selector

_oceTBDispatch $0504

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCEDoesntExist –1511 No such letter
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down
Messaging Service Access Module Reference 2-203

C H A P T E R 2

Messaging Service Access Modules
Generating Log Entries and Reports 2

A personal MSAM may run into operational problems. Use the function
PMSAMLogError to log such problems.

Use MSAMCreateReport and MSAMPutRecipientReport to create delivery and
non-delivery reports when the originator of a message has requested them.

PMSAMLogError 2

The PMSAMLogError function reports operational errors in a personal MSAM.

pascal OSErr PMSAMLogError (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

Field descriptions

msamSlotID A value that indicates whether the error you are logging applies to
the personal MSAM as a whole or to one of its slots. Set this field
to 0 to indicate that the error applies to the personal MSAM.
Otherwise, set it to the slot ID of the slot to which the error applies.

logEntry A pointer to a MailErrorLogEntryInfo structure that contains
information about the error that you are logging.

DESCRIPTION

You call the PMSAMLogError function to log information about an operational error in a
personal MSAM or in one of its slots. In some cases, you also log suggested actions a
user can take to correct the problem.

To log an error, you must provide values in the version, errorType, and errorCode
fields of the MailErrorLogEntryInfo structure. In addition, you must fill in the
errorResource field if the errorCode field has the value kMailMSAMErrorCode,
and you must fill in the actionResource field if the errorType field has the value
kMailELECorrectable.

Errors of type kMailELEError, kMailELEWarning, and kMailELEInformational
either require no user intervention or cannot be corrected by user intervention. Errors of
type kMailELECorrectable do require user intervention to correct the problem.

When you log a correctable error (kMailELECorrectable), the IPM Manager
considers either the personal MSAM or one of its slots to be suspended. While the
personal MSAM is suspended, the IPM Manager does not send it any high-level events

← ioResult OSErr Result code
→ msamSlotID MSAMSlotID Personal MSAM or slot ID
→ logEntry MailErrorLogEntryInfo* Error log record
2-204 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
or restart it at scheduled times if it quits. While a slot is suspended, the user cannot
modify or delete it. Moreover, if you specify the suspended slot in a call to the
PMSAMOpenQueues function, it returns the kMailSlotSuspended result code. Other
than these exceptions, a personal MSAM can continue whatever activity it deems
appropriate while it or one of its slots is suspended. The IPM Manager reinstates a
suspended personal MSAM or a slot when the user informs the IPM Manager that the
error is corrected or when the computer on which the personal MSAM is running is
restarted. If the personal MSAM is not running when the error is marked as corrected,
the IPM Manager launches it. If the personal MSAM is running, it receives an
kMailEPPCContinue high-level event.

Because logging a correctable error implies that the problem is not transient in nature,
the PMSAMLogError function does not provide you with a mechanism for canceling
correctable errors or accessing logged entries. Also, because correctable errors by
definition require a user’s attention, you should not log them unless absolutely necessary.

You can supply your own error messages. To do so, you must set the errorCode field
to kMailMSAMErrorCode. You must also set the errorResource field in the
MailErrorLogEntryInfo structure. This field is an index into a list of error
messages. The list is a 'STR#' (string list) resource in the personal MSAM’s resource
file. The first index into the string list is 1. The resource ID for the string list is
kMailMSAMErrorStringListID. This method ensures that all error messages
are localizable.

When the value of errorType is kMailELECorrectable, you must specify an action
that a user should take to correct the error. The procedure is the same as the one just
described for MSAM-defined error messages, except that the resource ID of the string list
is kMailMSAMActionStringListID and the field that you set is actionResource.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO
The MailErrorLogEntryInfo structure is described on page 2-128.

See the section “Logging Personal MSAM Operational Errors” on page 2-91 for more
information about logging operational errors.

Trap macro Selector

_oceTBDispatch $0521

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid queue reference
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailNoMSAMErr –15056 No such MSAM
kMailNoSuchSlot –15062 No such slot
Messaging Service Access Module Reference 2-205

C H A P T E R 2

Messaging Service Access Modules
MSAMCreateReport 2

The MSAMCreateReport function creates a report about a message that you specify and
returns a reference number for the report.

pascal OSErr MSAMCreateReport (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

queueRef A reference number that identifies the queue from which the MSAM
read the message about which it is reporting. A personal MSAM
specifies an outgoing queue reference that it obtained from the
PMSAMOpenQueues function. A server MSAM specifies the queue
reference that it obtained from the SMSAMStartup function.

mailMsgRef A reference number that identifies the report that you create. The
MSAMCreateReport function returns this to you upon successfully
completing execution.

msgID A value that identifies the message about which you want to create
a report. If the message is a letter, you provide the letter’s letter ID
attribute. If it is a non-letter message, you provide the message ID
from the message header’s fixed information.

sender A pointer to a MailRecipient structure that contains the address
of the sender of the message about which you want to report. If the
message is a letter, you provide the value of the letter’s From
recipient. If it is a non-letter message, you provide the value of the
reply queue address in the message header.

DESCRIPTION

You call the MSAMCreateReport function to create a report about a message that you
are responsible for delivering. Use the MSAMPutRecipientReport function to fill in
the report information.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
← queueRef MSAMQueueRef Queue reference number
← mailMsgRef MailMsgRef Report reference number
→ msgID MailLetterID Message the report applies to
→ sender MailRecipient* Sender of the message
2-206 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailRecipient structure is defined to be of type OCERecipient. The
OCERecipient structure is described on page 2-106.

You get the value of the reply queue address in the message header by calling
the MSAMGetMsgHeader function with the selector field set to kIPMSender. The
MSAMGetMsgHeader function is described on page 2-148.

The section “Generating a Report” beginning on page 2-61 explains how to determine
when you are required to create a report.

MSAMPutRecipientReport 2

The MSAMPutRecipientReport function adds information about one recipient
to a report.

pascal OSErr MSAMPutRecipientReport (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $051F

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid queue reference
kOCEInvalidRecipient –1514 Bad recipient
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Report reference number
→ recipientIndex short Message recipient
→ result OSErr Result of delivery attempt
Messaging Service Access Module Reference 2-207

C H A P T E R 2

Messaging Service Access Modules
See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the report to which you want to
add recipient information. You obtain this reference number from
the MSAMCreateReport function.

recipientIndex A value that identifies the recipient about which you are
reporting. You obtain this value from the index field of the
MailResolvedRecipient structure returned by the
MSAMGetRecipients function.

result A value that indicates the result of your delivery attempts. The
constants that you may use here are described below.

DESCRIPTION

You call the MSAMPutRecipientReport function to report on the result of your
attempt to deliver a message to a recipient that you specify. You can specify only
one recipient to the MSAMPutRecipientReport function. To report on more than one
recipient, make multiple calls to the function. Use the report reference number that you
obtained from the MSAMCreateReport function to associate your recipient report
information with a particular report. When you have finished adding recipient infor-
mation to the report, you must call the MSAMSubmit function to request delivery of
the report.

The result field contains either a delivery or a non-delivery indication for a given
recipient. Set the result field to noErr to add a delivery indication. The values you can
use for a non-delivery indication are described in the following list:

Constant descriptions

kIPMNoSuchRecipient
The recipient does not exist.

kIPMRecipientMalFormed
The address is malformed. An MSAM detects an invalid
extension value.

kIPMRecipientAmbiguous
The MSAM is unable to resolve, look up, or find the specified
recipient.

kIPMRecipientAccessDenied
The recipient probably exists and may be valid, but the MSAM
doesn’t have access to deliver the message.

kIPMGroupExpansionProblem
The MSAM was unable to expand a group address completely. It
may have delivered the message to some of the recipients in the
group address.

kIPMMsgUnreadable
The MSAM cannot read the message; it’s corrupted or missing.
2-208 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
kIPMMsgExpired The MSAM’s time limit ran out before it was able to confirm
delivery of the message to the specified recipient. Note that this
does not mean that the message was not successfully delivered to
the recipient.

kIPMMsgNoTranslatibleContent
The message is missing information that is considered critical to its
delivery—for example, there is no subject, no content, or no image
content (for a fax MSAM).

kIPMRecipientReqStdCont
The MSAM could not deliver the message to a particular recipient
because the message did not contain a required standard inter-
change format block.

kIPMRecipientReqSnapShot
The MSAM could not deliver the message to a particular recipient
because the message did not contain a required snapshot (image)
format block.

kIPMNoTransferDiskFull
The destination system refused delivery because of a disk/system
full condition.

kIPMNoTransferMsgRejectedbyDest
The destination system refused delivery for an unspecified reason.

kIPMNoTransferMsgTooLarge
The destination system refused delivery because the message
exceeded the maximum size limit for messages in that system.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMGetRecipients function is described beginning on page 2-144.

The MailResolvedRecipient structure is described on page 2-108.

The MSAMSubmit function is described on page 2-200.

Trap macro Selector

_oceTBDispatch $0520

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailInvalidRequest –15045 Nested letter already created for this letter
Messaging Service Access Module Reference 2-209

C H A P T E R 2

Messaging Service Access Modules
For more information about adding delivery or non-delivery indications to a report, see
the section “Generating a Report” on page 2-61.

The non-delivery indication constants for use in the result field are also documented
in the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

Shutting Down a Server MSAM 2

A server MSAM calls the SMSAMShutdown function to notify its PowerShare mail server
that it is shutting down.

SMSAMShutdown 2

The SMSAMShutdown function informs a PowerShare mail server that a server MSAM is
shutting down.

pascal OSErr SMSAMShutdown (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

queueRef A value that identifies the queue belonging to the server MSAM
that is shutting down. Set this field to the queue reference value you
obtained from the SMSAMStartup function.

DESCRIPTION

You call the SMSAMShutdown function as part of the process of shutting down a server
MSAM. The queue reference is not valid after the function successfully completes.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Outgoing queue reference

Trap macro Selector

_oceTBDispatch $0502
2-210 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
RESULT CODES

Setting Message Status 2

A personal MSAM calls the PMSAMSetStatus function to set the status of a message in
a queue.

PMSAMSetStatus 2

The PMSAMSetStatus function sets the status of a message in a queue.

pascal OSErr PMSAMSetStatus (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

queueRef The value that identifies the queue that holds the message whose
status you want to set.

seqNum The sequence number of the message whose status you want
to set. For an outgoing message, you obtain the sequence
number of a message from the MSAMEnumerateOutQReply
structure returned by the MSAMEnumerate function. For an
incoming letter, you obtain the sequence number either from
the MSAMEnumerateInQReply structure returned by the
MSAMEnumerate function or from the SMCA structure associated
with a kMailEPPCMsgOpened event.

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEInvalidRef –1502 Invalid queue reference
kOCERefIsClosing –1516 Server MSAM’s mail server is shutting down

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef ID number of queue
→ seqNum long Message sequence number
→ msgHint long Letter reference value
→ status PMSAMStatus Status to set
Messaging Service Access Module Reference 2-211

C H A P T E R 2

Messaging Service Access Modules
msgHint A reference value associated with a letter. You set this field to the
reference value when you are reporting a problem with retrieving a
letter that the user has opened. You obtain this value from the
SMCA structure associated with a kMailEPPCMsgOpened event.
Set this field to 0 when you are reporting status for a letter in an
outgoing queue.

status The status that you want to set.

DESCRIPTION

A personal MSAM calls the PMSAMSetStatus function to set the status of a message.

You call the function to set the status of a letter in an incoming queue after you have
received a kMailEPPCMsgOpened high-level event for that letter. The Finder uses the
status information that you provide to display the status of the letter to the user. To
provide an acceptable response time for the user, it is very important that you call the
PMSAMSetStatus function in a timely manner. Note that you set the status only for
incoming letters, not non-letter messages.

You set the status of all messages in an outgoing queue. You call the PMSAMSetStatus
function as a result of your personal MSAM’s handling of the message. The Finder uses
the status information that you provide to display the status of outgoing letters to the
user. It is important to call the PMSAMSetStatus function in a timely manner for
outgoing messages, although it is not as critical as it is with incoming letters. With
incoming letters, you must respond to a user action; with outgoing messages, you do not.

The following table describes the status settings:

Constant Value Description

kPMSAMStatusPending 1 Applies to all types of messages in the out-
going queue. Set this status when you have
not yet tried to deliver a message, or when you
have tried and failed but will try again.

kPMSAMStatusError 2 Applies to letters in an incoming queue. Set this
status when you have failed to retrieve a letter
from the external messaging system and to
write it to the incoming queue.

kPMSAMStatusSending 3 Applies to all types of messages in the outgoing
queue. Set this status to indicate that you are in
the process of sending the message.

kPMSAMStatusCaching 4 Applies to letters in the incoming queue.
Set this status to indicate that you are in
the process of writing the letter into the
incoming queue.

kPMSAMStatusSent 5 You do not set this status. When all of the
recipients of a message in the outgoing queue
have been marked as delivered, the IPM
Manager sets this status for the message.
2-212 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Personal MSAM Template Functions 2

The functions described in this section are called not by a personal MSAM itself, but by
its AOCE setup template.

MailCreateMailSlot 2

The MailCreateMailSlot function creates a new mail slot.

pascal OSErr MailCreateMailSlot (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Field descriptions

mailboxRef Reserved. Set this field to 0.
timeout The amount of time, expressed in ticks, that you are willing to wait

for a response from the personal MSAM. It is recommended that
you set the timeout period to be a number of seconds. If the timeout
period elapses without a response from the personal MSAM, the
function completes with a noRelErr result code.

Trap macro Selector

_oceTBDispatch $0527

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid queue reference number
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailInvalidSeqNum –15041 Invalid message sequence number
kMailNotASlotInQ –15047 If you set msgHint, it does not refer

to a slot’s incoming queue
kMailBadState –15068 Invalid status setting

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailboxRef MailboxRef Reserved
→ timeout long Timeout interval
→ pmsamCid CreationID Creation ID of personal MSAM record
↔ smca SMCA Shared communications area
Messaging Service Access Module Reference 2-213

C H A P T E R 2

Messaging Service Access Modules
pmsamCid The creation ID of the MSAM record, which represents the personal
MSAM to which you want to add a mail slot.

smca An SMCA structure. You set the slotCID field to the creation ID of
the Mail Service or Combined record, which contains information
about the newly created mail slot. The IPM Manager sets the
result field to 1 before sending the kMailEPPCCreateSlot
high-level event to the personal MSAM. When the
MailCreateMailSlot function completes, the result field
contains the MSAM’s result, if the personal MSAM has processed
the kMailEPPCCreateSlot event. Otherwise, it still contains 1.

DESCRIPTION

Your setup template calls the MailCreateMailSlot function to add a new mail slot to
a personal MSAM. This causes the IPM Manager to send a kMailEPPCCreateSlot
high-level event to the personal MSAM.

Do not poll the smca.result field to determine when the function has completed. If
you poll, poll the ioResult field. Then check the value of the smca.result field.

If the MSAM responds to the event, the MailCreateMailSlot function completes
with the noErr result code, regardless of the value of the smca.result field. Therefore,
you should always check the value of the smca.result field to get the result of the
MSAM’s processing of the event. You cannot assume that if the MailCreateMailSlot
function returns noErr, the MSAM also reported no error.

If the personal MSAM is not running at the time the associated template calls this
function, the IPM Manager launches the MSAM before sending it the
kMailEPPCCreateSlot event.

SPECIAL CONSIDERATIONS

The MailCreateMailSlot function is always executed asynchronously. After calling
MailCreateMailSlot, you should call the kDETcmdBusy callback routine to provide
time for the personal MSAM to receive and respond to the kMailEPPCCreateSlot
high-level event.

Your template does not need to delete a mail slot. The AOCE software deletes a mail slot
in response to a user action.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $052B
2-214 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for information about the
personal MSAM’s record.

The kMailEPPCCreateSlot high-level event is described on page 2-221.

The kDETcmdBusy callback routine is described in the chapter “AOCE Templates” in
Inside Macintosh: AOCE Application Interfaces.

MailModifyMailSlot 2

The MailModifyMailSlot function modifies the information in a mail slot.

pascal OSErr MailModifyMailSlot (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
noRelErr –1101 Timer expired before MSAM responded
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailIgnoredErr –15053 MSAM ignored high-level event
kMailLengthErr –15054 Error occurred in sending the event
kMailTooManyErr –15055 IPM Manager too busy to send event
kMailNoMSAMErr –15056 No such MSAM
kMailMSAMSuspended –15059 MSAM is suspended
kMailBadSlotInfo –15060 Invalid slot information

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailboxRef MailboxRef Reserved
→ timeout long Timeout interval
→ pmsamCid CreationID Creation ID of personal MSAM record
↔ smca SMCA Shared communications area
Messaging Service Access Module Reference 2-215

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

mailboxRef Reserved. Set this field to 0.
timeout The amount of time, expressed in ticks, that you are willing to wait

for a response from the personal MSAM. It is recommended
that you set the timeout period to be a number of seconds. If the
timeout period elapses without a response from the personal
MSAM, the function completes with a noRelErr result code.

pmsamCid The creation ID of the MSAM record, which represents the personal
MSAM whose mail slot you want to modify.

smca An SMCA structure. You set the slotCID field to the creation ID of
the new Mail Service or Combined record, which contains
information about the modified mail slot. The IPM Manager sets
the result field to 1 before sending the kMailEPPCModifySlot
high-level event to the personal MSAM. When the function
completes, if the personal MSAM has processed the
kMailEPPCModifySlot event, the result field contains the
MSAM’s result. Otherwise, it still contains 1.

DESCRIPTION

Your setup template calls the MailModifyMailSlot function to change the informa-
tion in a mail slot. This causes the IPM Manager to send a kMailEPPCModifySlot
high-level event to the personal MSAM. You invoke the function after you have created a
new Mail Service record in the Setup catalog that contains the changed information.

Do not poll the smca.result field to determine when the function has completed. If
you poll, poll the ioResult field. Then check the value of the smca.result field.

If the MSAM responds to the event, the MailModifyMailSlot function completes
with the noErr result code, regardless of the value of the smca.result field. Therefore,
you should always check the value of the smca.result field to get the result of the
MSAM’s processing of the event. You cannot assume that if the MailModifyMailSlot
function returns noErr, the MSAM also reported no error.

If the MSAM specifies noErr in the result field of the SMCA structure, you should
delete the old Mail Service record and update the slot attribute (attribute type index is
kMailServiceAttrTypeNum) in the MSAM record in the Setup catalog to point to the
new Mail Service record. If the MSAM reports an error, you should leave the original Mail
Service record intact, delete the new Mail Service record, and report the error to the user.

SPECIAL CONSIDERATIONS

The MailModifyMailSlot function is always executed asynchronously. After calling
MailModifyMailSlot, you should call the kDETcmdBusy callback routine to provide
time for the personal MSAM to receive and respond to the kMailEPPCModifySlot
high-level event.
2-216 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for information about the
personal MSAM’s record, Mail Service records, and the Setup catalog.

The kDETcmdBusy callback routine is described in the chapter “AOCE Templates” in
Inside Macintosh: AOCE Application Interfaces.

MailWakeupPMSAM 2

The MailWakeupPMSAM function causes the IPM Manager to send a kMailEPPCWakeup
event to the personal MSAM that you specify.

pascal OSErr MailWakeupPMSAM (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion
and ioResult fields.

Trap macro Selector

_oceTBDispatch $052C

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
noRelErr –1101 Timer expired before MSAM responded
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailIgnoredErr –15053 MSAM ignored high-level event
kMailLengthErr –15054 Error in sending the event
kMailTooManyErr –15055 IPM Manager too busy to send event
kMailNoMSAMErr –15056 No such MSAM
kMailNoSuchSlot –15062 No such slot

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ pmsamCid CreationID Record ID of MSAM record
→ mailSlotID MailSlotID Reserved
Messaging Service Access Module Reference 2-217

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

pmsamCid The creation ID of the MSAM record in the Setup catalog that
represents the personal MSAM you want to launch.

mailSlotID Reserved. Set this field to 0.

DESCRIPTION

You call the MailWakeupPMSAM function to request that the IPM Manager send a
kMailEPPCWakeup event to the personal MSAM that you specify.

Typically, you call this function in response to unpredictable events that require action by
the MSAM. For example, a fax modem driver might call the MailWakeupPMSAM
function when it receives an incoming call so that the MSAM can put the letter in the
incoming queue.

If the MSAM is not running at the time you call the MailWakeupPMSAM function, the
IPM Manager launches it.

The kMailEPPCWakeup event is not infallible. Therefore, you cannot count on it as a
mechanism to force something to happen. However, the IPM Manager makes every
attempt to inform you of possible failures so that you can retry the operation if you wish.

SPECIAL CONSIDERATIONS

The MailWakeupPMSAM function is always executed asynchronously. After calling
MailWakeupPMSAM, you must call the WaitNextEvent function, which provides time
for the personal MSAM to be launched.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for more information about
the personal MSAM’s record.

Trap macro Selector

_oceTBDispatch $0507

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailNoMSAMErr –15056 No such MSAM
2-218 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Application-Defined Function 2

This section describes the completion routine that you may provide when you call a
function in the MSAM API asynchronously.

MyCompletionRoutine 2

When you call an MSAM API function asynchronously, you can provide a pointer to a
completion routine.

void MyCompletionRoutine (MSAMParam *paramBlock);

paramBlock A pointer to the parameter block that you provided when you called the
MSAM function that is calling your completion routine.

DESCRIPTION

You can provide a completion routine to any MSAM function that you can call
asynchronously. To do so, you pass a pointer to the completion routine in the
ioCompletion field of the MSAMParam parameter block. If you provide a completion
routine, it executes when the asynchronous request completes execution.

The MSAM function saves the value of your A5 register at the time you call it and
then restores the A5 value before it calls your completion routine. Your completion
routine is always called at deferred-task time. Running at deferred-task time is a
safe practice when you use virtual memory.

You can write your completion routine in C, Pascal, or assembly language.

To declare a completion routine in Pascal, use the following statement:

PROCEDURE MyCompletionRoutine(VAR paramBlock: MSAMParam);

Note that if you do not want to specify a completion routine for an asynchronous
function call, you can specify nil in the ioCompletion field and poll the ioResult
field of the parameter block header. When you call an MSAM function asynchronously, it
sets the ioResult field in the parameter block to 1 to indicate that the routine has not
yet completed execution. When the routine completes execution, the MSAM function
sets the ioResult field to the actual function result. If you poll, you should do so within
a loop that calls either the WaitNextEvent or EventAvail routine so that other
processes have access to processor time.

ASSEMBLY-LANGUAGE INFORMATION

When a completion routine written in assembly language is called, register A0 contains a
pointer to the MSAMParam parameter block, and register D0 contains the MSAM function
result code (also available in the ioResult field of the parameter block). The condition
codes are set as a result of TST.W D0.
Messaging Service Access Module Reference 2-219

C H A P T E R 2

Messaging Service Access Modules
You cannot make any other assumptions about any part of your environment, including,
but not limited to

■ the stack pointer and register A6

■ registers A2, A3, and A4

■ low-memory global variables

You must preserve all registers except D0, D1, D2, A0, and A1.

High-Level Events 2
This section contains descriptions of the AOCE high-level events that an MSAM may
receive. Server MSAMs may receive the kMailEPPCAdmin and kMailEPPCMsgPending
high-level events. Personal MSAMs receive the kMailEPPCMsgPending event as well as
a number of others. You can find a complete list of the events sent to personal and server
MSAMs on page 2-32.

Each event description in this section provides a description of the where and
modifiers fields of the event record. The what, message, and when field descriptions
are the same for every event. They are provided here; this information is not repeated in
the individual event descriptions.

Certain events require more information than can be passed in the event record. For
these events, the MSAM obtains the additional information it needs by calling the
AcceptHighLevelEvent function. If an event requires no additional information, an
MSAM does not need to call the AcceptHighLevelEvent function.

The AcceptHighLevelEvent function returns a MailEPPCMsg structure that contains
one of the following:

■ a pointer to an SMCA structure

■ a letter sequence number

■ a MailLocationInfo structure

Where it applies, the event descriptions in this section include a description of the
sequence number or the relevant fields of the SMCA or MailLocationInfo structure.
The SMCA structure is described on page 2-114. The MailLocationInfo structure is
described on page 2-116.

Field name Data type Description

what short Always contains the constant kHighLevelEvent.

message long Always contains the event class
kMailAppleMailCreator.

when long Unused.
2-220 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
kMailEPPCCreateSlot 2

The kMailEPPCCreateSlot event informs a personal MSAM that the MSAM’s
template has added a new Mail Service or Combined record to the Setup catalog.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

The IPM Manager sends the kMailEPPCCreateSlot event when a setup template
calls the MailCreateMailSlot function. Receipt of a kMailEPPCCreateSlot event
informs a personal MSAM that two actions have already taken place:

1. A new Mail Service or Combined record representing the new slot has been added to
the Setup catalog.

2. The configuration information for the new slot has been added to the new record.

Upon receipt of a kMailEPPCCreateSlot event, the personal MSAM should call
the AcceptHighLevelEvent function to get additional information associated
with this event and get the creation ID of the new slot’s record from the
u.theSMCA->u.slotCID field of the MailEPPCMsg structure. Then the MSAM should
read the new slot’s record and validate the information it contains. If the information
passes the validation checks, the personal MSAM should generate a unique 2-byte slot
ID that distinguishes the new slot and add it to the slot’s record in the Setup catalog. The
MSAM should store the slot ID in an attribute whose type is referenced by the attribute
type index kSlotIDAttrTypeNum. Valid values for a slot ID range from 1 to $FFFE.

Field name Data type Description

where long The constant kMailEPPCCreateSlot.

modifiers short Unused; contains 0.

Field name Data type Description

u.theSMCA->result OSErr The result of performing the
activity requested by the
kMailEPPCCreateSlot event.
When the personal MSAM receives
the kMailEPPCCreateSlot event,
this field is already set to 1. Set this
field to the noErr result code if you
successfully complete the activity.
Otherwise, set this field to a result
code that you define.

u.theSMCA->u.slotCID CreationID Creation ID of the new Mail Service
or Combined record that represents
the newly created slot.
Messaging Service Access Module Reference 2-221

C H A P T E R 2

Messaging Service Access Modules
After adding the new slot ID to the slot’s record, the MSAM should return the noErr
result code in the MailEPPCMsg.u.theSMCA->result field.

If the information in the new Mail Service or Combined record is invalid, if the MSAM
fails to add the new slot ID to the record, or if some other error occurs, the MSAM
should return an error code in the result field. This error code is available to the
MSAM’s setup template when the template’s call to the MailCreateMailSlot
function completes. The MSAM and its setup template define the values that the MSAM
may return in the result field.

While it is running, the MSAM must be prepared to receive and process a
kMailEPPCCreateSlot event at any time.

RESULT CODES

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

The MailCreateMailSlot function is described on page 2-213.

For information on setup templates, see the chapter “Service Access Module Setup” in
this book.

kMailEPPCModifySlot 2

The kMailEPPCModifySlot event informs a personal MSAM that the user has
modified the information associated with a particular slot.

EVENT RECORD

noErr 0 No error

Field name Data type Description

where long The constant kMailEPPCModifySlot.

modifiers short The slot ID of the slot that has been modified.
2-222 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MailEPPCMsg STRUCTURE

DESCRIPTION

When the information for one of the personal MSAM’s slots changes, the MSAM gets a
kMailEPPCModifySlot event. The IPM Manager sends the kMailEPPCModifySlot
event when a setup template calls the MailModifyMailSlot function. When the
IPM Manager sends the event, the MSAM’s setup template has already created a
new record containing the updated information for the slot and added the record to
the Setup catalog. Upon receipt of this event, the personal MSAM should call the
AcceptHighLevelEvent function to get additional information associated with this
event. The MSAM should update any internal data it maintains for the slot and store the
creation ID of the slot’s new record so that it can read the record if it needs to. For
instance, if the MSAM got a second kMailEPPCModifySlot event for the same
slot, it would want to compare the new and old records to determine which informa-
tion changed.

The kMailEPPCModifySlot event does not invalidate the slot’s existing queue
references.

After updating its internal data about the modified slot, the MSAM should return the
noErr result code in the u.theSMCA->result field of the MailEPPCMsg structure. If it
fails to do this for some reason, the MSAM should return an error code in this field. This
error code is available to the MSAM’s setup template when the template’s call to the
MailModifyMailSlot function completes. The MSAM and its setup template define
the values that the MSAM may return in the MailEPPCMsg.u.theSMCA->result field.

While it is running, the MSAM must be prepared to receive and process a
kMailEPPCModifySlot event at any time.

Field name Data type Description

u.theSMCA->result OSErr The result of performing the
activity requested by the
kMailEPPCModifySlot event.
When the personal MSAM receives
the kMailEPPCModifySlot event,
this field is already set to 1. Set this
field to the noErr result code if you
successfully complete the activity.
Otherwise, set this field to a result
code that you define.

u.theSMCA->u.slotCID CreationID Creation ID of the new record
that represents the slot that has
been modified.
Messaging Service Access Module Reference 2-223

C H A P T E R 2

Messaging Service Access Modules
RESULT CODES

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

The MailModifyMailSlot function is described on page 2-215.

For information on setup templates, see the chapter “Service Access Module Setup” in
this book.

kMailEPPCDeleteSlot 2

The kMailEPPCDeleteSlot event advises the personal MSAM that a slot will
be deleted.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

The IPM Manager sends the kMailEPPCDeleteSlot event when a user deletes a slot.
Before a slot is actually deleted, the personal MSAM gets a kMailEPPCDeleteSlot
event. The personal MSAM should call the AcceptHighLevelEvent function to get
access to the MailEPPCMsg structure. It should do what is necessary to handle this
event internally, such as discarding data that relates to that slot.

noErr 0 No error

Field name Data type Description

where long The constant kMailEPPCDeleteSlot.

modifiers short The slot ID of the slot to be deleted.

Field name Data type Description

u.theSMCA->result OSErr The result of performing the activity
requested by the kMailEPPCDeleteSlot
event. When the personal MSAM receives
the kMailEPPCDeleteSlot event, this
field is already set to 1. Set this field to the
noErr result code if you successfully
complete the activity. Otherwise, set this
field to a result code that you define.
2-224 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
After taking whatever action is appropriate regarding the slot to be deleted, the MSAM
should return the noErr result code in the u.theSMCA->result field of the
MailEPPCMsg. If it fails to do this for some reason, the MSAM should return an
MSAM-defined error result in this field.

If the MSAM returns a noErr result code, AOCE software deletes the slot’s record in
the Setup catalog. If the MSAM returns an error, the slot’s record in the Setup catalog
is not deleted.

While it is running, the MSAM must be prepared to receive and process a
kMailEPPCDeleteSlot event at any time.

RESULT CODES

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

kMailEPPCMailboxOpened 2

The kMailEPPCMailboxOpened event tells a personal MSAM that a user has opened
his or her AOCE desktop mailbox.

EVENT RECORD

DESCRIPTION

This event notifies the personal MSAM that the user has opened his or her AOCE
mailbox. A personal MSAM receiving this event should connect to its external messaging
system, check for letters, and update the incoming queue for each of its mail slots.

This event is advisory only and requires no response from the personal MSAM.

noErr 0 No error

Field name Data type Description

where long The constant kMailEPPCMailboxOpened.

modifiers short Unused; contains 0.
Messaging Service Access Module Reference 2-225

C H A P T E R 2

Messaging Service Access Modules
kMailEPPCMailboxClosed 2

The kMailEPPCMailboxClosed event tells a personal MSAM that a user has closed
his or her mailbox.

EVENT RECORD

DESCRIPTION

This event notifies the MSAM that the user has closed his or her AOCE mailbox.
A personal MSAM receiving this event should disconnect from its external
messaging system.

This event is advisory only and requires no response from the personal MSAM.

kMailEPPCShutDown 2

The kMailEPPCShutDown event instructs a personal MSAM to quit immediately.

EVENT RECORD

DESCRIPTION

This event corresponds directly to the standard Apple event kAEQuitApplication. An
MSAM should treat it in the same way as it does the kAEQuitApplication event. You
get this event after the user chooses the Shut Down or Restart command from the
Finder’s Special menu.

While it is running, an MSAM must be prepared to receive and process a
kMailEPPCShutDown event at any time.

Field name Data type Description

where long The constant kMailEPPCMailboxClosed.

modifiers short Unused; contains 0.

Field name Data type Description

where long The constant kMailEPPCShutDown.

modifiers short Unused; contains 0.
2-226 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
kMailEPPCContinue 2

The kMailEPPCContinue event instructs a personal MSAM to resume operation after
previously suspending either itself or one of its slots.

EVENT RECORD

DESCRIPTION

A personal MSAM may suspend itself or one of its slots if it runs into a problem that
requires user intervention to correct. The MSAM should call the PMSAMLogError
function to report such errors and then suspend itself or the particular slot, whichever is
appropriate. While it is in a suspended state, the personal MSAM should continue to call
the WaitNextEvent function. When the user has taken the appropriate corrective
action, the personal MSAM gets the kMailEPPCContinue event advising that it should
resume operations.

If the problem is with the personal MSAM itself, the MSAM can quit instead of
suspending itself. In that case, the IPM Manager launches the MSAM when the user has
taken the corrective action and then sends the MSAM the kMailEPPCContinue event.

kMailEPPCSchedule 2

The kMailEPPCSchedule event informs a personal MSAM that it is time to log on to
its external messaging system and transfer mail on behalf of a specific slot.

EVENT RECORD

Field name Data type Description

where long The constant kMailEPPCContinue.

modifiers short Contains either the slot ID of a slot to be reactivated or
0. If this field is set to 0, the event applies to the
personal MSAM itself.

Field name Data type Description

where long The constant kMailEPPCSchedule.

modifiers short The slot ID of the slot whose scheduled
time or interval has occurred.
Messaging Service Access Module Reference 2-227

C H A P T E R 2

Messaging Service Access Modules
DESCRIPTION

For each account or address that a user has on an external messaging system, the user
can provide information on how often or at what time the personal MSAM should log on
and transfer mail. The IPM Manager sends a personal MSAM a kMailEPPCSchedule
event when the schedule information for one of the MSAM’s slots indicates that it is time
for the MSAM to connect to its external messaging system and transfer mail for that slot.
If a personal MSAM is not running at a time when it should log on, the IPM Manager
first launches it and then sends it a kMailEPPCSchedule event.

SEE ALSO

The frequency information is stored in a MailStandardSlotInfoAttribute
structure, described on page 2-121.

A setup template obtains scheduling information from the user. See the chapter “Service
Access Module Setup” in this book for more information.

kMailEPPCInQUpdate 2

The kMailEPPCInQUpdate event notifies a personal MSAM that a letter in an incoming
queue has been updated.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

The kMailEPPCInQUpdate event informs a personal MSAM that the letter flags
attribute for a particular letter has changed, or that the user has deleted the letter.
The modifiers field of the event record contains the slot ID of the slot to which the
letter belongs.

Field name Data type Description

where long The constant kMailEPPCInQUpdate.

modifiers short The slot ID of the slot whose incoming queue
contains the letter to which the event applies.

Field name Data type Description

u.sequenceNumber long The sequence number of the letter that has
either had a change to its attribute values or
that has been deleted.
2-228 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Upon receipt of this event, the personal MSAM should first call the
AcceptHighLevelEvent function to get additional information associated
with this event. The sequence number of the affected letter is specified in the
u.sequenceNumber field of the MailEPPCMsg structure.

If the MSAM chooses to act on the event immediately, it should call the
PMSAMGetMsgSummary function to read the message summary associated with
the letter. If the letter has been deleted by the user, the msgDeleted field in the
MSAMMsgSummary structure is set to true. An MSAM operating in online mode should
delete the letter on its external messaging system. All MSAMs should delete the message
summary for that letter.

If the letter flags attribute has changed, the msgUpdated field in the MSAMMsgSummary
structure is set to true. An MSAM operating in online mode should update information
about the letter on the external messaging system to maintain consistency with the
changed local information about the letter. All MSAMs should set the msgUpdated field
to false.

Alternatively, the personal MSAM can wait until the next time it enumerates the
incoming queue that contains the affected letter. At that time, the MSAM can check for
letters that have been deleted or whose letter flags attribute has been updated. Then it
should take the appropriate action already described here.

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

A personal MSAM deletes letters and message summaries from an incoming queue by
calling the MSAMDelete function, described on page 2-202.

The PMSAMGetMsgSummary function is described on page 2-171.

The MSAMEnumerate function is described on page 2-138.

Message summaries are described in the section “MSAM Modes of Operation”
beginning on page 2-12.

The MSAMMsgSummary structure is described on page 2-124.

kMailEPPCMsgOpened 2

The kMailEPPCMsgOpened event tells a personal MSAM that the user wants to open a
letter that does not currently exist in the incoming queue. The personal MSAM should
place the letter into the incoming queue immediately.
Messaging Service Access Module Reference 2-229

C H A P T E R 2

Messaging Service Access Modules
EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

When a user double-clicks a letter to open it, the IPM Manager checks the associated
message summary in the incoming queue to see if the letter itself is also in the queue.
If only the message summary is in the incoming queue, the IPM Manager sends a
kMailEPPCMsgOpened event to the personal MSAM. This event notifies the MSAM
that a user wants to open a letter not currently in the incoming queue. Upon receipt of
this event, the personal MSAM should call the AcceptHighLevelEvent function to
get additional information associated with this event. You should acknowledge the event
by setting the u.theSMCA->result field of the MailEPPCMsg structure to the noErr
result code or, if you are aware of a condition that makes it impossible for you to
successfully retrieve the letter, set the field to a result code that you define. If you set the
field to noErr, you should retrieve the letter from your external messaging system,
translate it, and write it to the incoming queue.

If you have a problem retrieving the letter, you should report the problem by
calling the PMSAMSetStatus function. Set the seqNum and msgHint fields
of the PMSAMSetStatus function parameter block to the values of the
u.theSMCA->userBytes and u.theSMCA->u.msgHint fields of the MailEPPCMsg
structure, respectively. Then set the status field of the parameter block to
kPMSAMStatusError and call the function.

Field name Data type Description

where long The constant kMailEPPCMsgOpened.

modifiers short The slot ID of the slot whose incoming
queue should contain the letter.

Field name Data type Description

u.theSMCA->result OSErr When the personal MSAM receives the
kMailEPPCMsgOpened event, this field is
already set to 1. Set this field to the noErr
result code to acknowledge receiving the
event. If you already know that it is not
possible to retrieve the letter that the user
wants to open, set this field to a result code
that you define.

u.theSMCA->userBytes

long The sequence number of the letter
that the user wants to open.

u.theSMCA->u.msgHint

long A reference value associated with
the letter. You supply this value to the
PMSAMSetStatus function if you need
to report an error.
2-230 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
RESULT CODES

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

kMailEPPCDeleteOutQMsg 2

The kMailEPPCDeleteOutQMsg event instructs a personal MSAM to delete a message
in its outgoing queue.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

This event tells a personal MSAM to delete, rather than send, a letter in its outgoing
queue. The IPM Manager sends this event in response to a user action. Upon receipt of
this event, the personal MSAM should call the AcceptHighLevelEvent function to
get the sequence number of the letter.

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

noErr 0 No error

Field name Data type Description

where long The constant kMailEPPCDeleteOutQMsg.

modifiers short The slot ID of the slot whose outgoing
queue holds the letter to be deleted.

Field name Data type Description

u.sequenceNumber long The sequence number of the letter that
the user has deleted.
Messaging Service Access Module Reference 2-231

C H A P T E R 2

Messaging Service Access Modules
kMailEPPCWakeup 2

The kMailEPPCWakeup event notifies a personal MSAM that a process called the
MailWakeupPMSAM function.

EVENT RECORD

DESCRIPTION

When a process calls the MailWakeupPMSAM function, the IPM Manager sends a
kMailEPPCWakeup event to the personal MSAM specified by the application. Typically,
a process calls the MailWakeupPMSAM function in response to an external event that
cannot be predicted. For example, a fax modem driver might call the MailWakeupPMSAM
function when it has received an incoming call so that the MSAM can put the fax into the
incoming queue.

If the MSAM is not running at the time the MailWakeupPMSAM function is called, the
IPM Manager launches it.

kMailEPPCLocationChanged 2

The kMailEPPCLocationChanged event notifies a personal MSAM that the current
system location has changed or that a user has changed the location flags for the
specified slot.

EVENT RECORD

Field name Data type Description

where long The constant kMailEPPCWakeup.

modifiers short Unused; contains 0.

Field name Data type Description

where long The constant kMailEPPCLocationChanged.

modifiers short The slot ID of the slot to which the event applies.
2-232 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MailEPPCMsg STRUCTURE

DESCRIPTION

The IPM Manager sends a kMailEPPCLocationChanged high-level event when either
of two events occurs:

1. The current system location changes. In this case, the IPM Manager sends one
kMailEPPCLocationChanged high-level event for each slot belonging to an MSAM.

2. A user activates or deactivates a mail slot in a given location. In this case, the IPM
Manager updates the location flags in the MailStandardSlotInfoAttribute
structure for that slot and sends a kMailEPPCLocationChanged high-level event to
the MSAM.

The event tells the MSAM the slot to which the event applies, the current system
location, and the location flags for the slot. Upon receipt of a
kMailEPPCLocationChanged high-level event, an MSAM should examine the
location flags. If the location flags show that the slot is inactive at the current location
and the slot was previously active, the MSAM should immediately stop performing any
activity on behalf of the slot, such as downloading letters or attempting to send letters.
If the location flags show that the slot is active at the current location and the slot
was previously inactive, the MSAM should begin acting on behalf of the slot.

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The MailLocationFlags data type is described on page 2-115.

The OCESetupLocation data type is described on page 2-115.

Field name Data type Description

u.locationInfo->location OCESetupLocation A value that identifies
the current system
location. It may
contain any integer
value between 0–8.

u.locationInfo->active MailLocationFlags A bit array that defines
whether the slot is
active at a given
location.
Messaging Service Access Module Reference 2-233

C H A P T E R 2

Messaging Service Access Modules
kMailEPPCSendImmediate 2

The kMailEPPCSendImmediate event notifies a personal MSAM to send a letter in an
outgoing queue as soon as possible.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

The IPM Manager sends a kMailEPPCSendImmediate event in response to a user’s
request to send a letter immediately. When a personal MSAM receives the event, it
should attempt immediate delivery of the letter to the external messaging system. The
letter is specified in the MailEPPCMsg.u.theSMCA->userBytes field of the external
messaging system.

After sending the letter, the MSAM should return the noErr result code in the
u.theSMCA->result field of the MailEPPCMsg structure. If it is unable to send the
letter, the MSAM should return an error result code in this field. Typically, the result
codes it returns are kMailSlotSuspended and kMailTooManyErr.

RESULT CODES

Field name Data type Description

where long The constant kMailEPPCSendImmediate.

modifiers short The slot ID of the slot in whose
outgoing queue the letter resides.

Field name Data type Description

u.theSMCA->result OSErr The result of performing the
activity requested by the
kMailEPPCSendImmediate event.
When the personal MSAM receives the
kMailEPPCSendImmediate event, this
field is already set to 1. Set this field to
the noErr result code if you successfully
complete the activity. Otherwise, set this
field to an appropriate result code.

u.theSMCA->userBytes long The sequence number of the letter that
the MSAM should attempt to send
immediately.

noErr 0 No error
kMailTooManyErr –15055 MSAM too busy to process event
kMailSlotSuspended –15058 Slot is suspended
2-234 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

kMailEPPCMsgPending 2

The kMailEPPCMsgPending event informs a personal or server MSAM that there is a
message in an outgoing queue.

EVENT RECORD

DESCRIPTION

Upon receiving a kMailEPPCMsgPending event, a personal MSAM should retrieve the
letter from the outgoing queue of the slot identified in the modifiers field. A server
MSAM should retrieve the message from its single outgoing queue. Both personal and
server MSAMs should then translate the letter or non-letter message and transmit it to
the external messaging system.

When an MSAM is launched, it should check its outgoing queue or queues for messages
awaiting transmittal. The kMailEPPCMsgPending event makes constant monitoring of
the outgoing queue or queues for pending messages unnecessary. However, like all
high-level events, a kMailEPPCMsgPending event may be lost. Therefore, an MSAM
should periodically check its outgoing queue or queues rather than relying exclusively
on the kMailEPPCMsgPending event to inform it of pending messages.

kMailEPPCAdmin 2

The kMailEPPCAdmin event notifies a server MSAM that its configuration has changed.

EVENT RECORD

Field name Data type Description

where long The constant kMailEPPCMsgPending.

modifiers short For personal MSAMs, this field contains the slot ID of
the slot in whose outgoing queue the letter is located.
For server MSAMs, this field contains 0.

Field name Data type Description

where long The constant kMailEPPCAdmin.

modifiers short Unused; contains 0.
Messaging Service Access Module Reference 2-235

C H A P T E R 2

Messaging Service Access Modules
MailEPPCMsg STRUCTURE

DESCRIPTION

The kMailEPPCAdmin high-level event notifies a server MSAM that its configuration
has changed. Upon receiving the kMailEPPCAdmin event, a server MSAM should
call the AcceptHighLevelEvent function to get additional information associated
with this event. The MailEPPCMsg.u.theSMCA->result field is initially set to 1.
The MSAM should set the MailEPPCMsg.u.theSMCA->result field to noErr to
acknowledge receipt of the kMailEPPCAdmin event.

The SMSAMAdminEPPCRequest structure pointed to by the
MailEPPCMsg.u.theSMCA->userBytes field contains an adminCode field. The
value in the adminCode field indicates the format of the remaining data in the
SMSAMAdminEPPCRequest structure. In release 1 of the PowerShare software, the
adminCode field should always be set to kSMSAMNotifyFwdrSetupChange,
indicating that the remaining data is an SMSAMSetupChange structure. If you receive a
kMailEPPCAdmin event whose code value is not kSMSAMNotifyFwdrSetupChange,
you should acknowledge it (set the MailEPPCMsg.u.theSMCA->result field to noErr)
and then ignore the event.

In release 1 of the PowerShare software, the kSMSAMNotifyFwdrSetupChange
subtype of the kMailEPPCAdmin event always indicates that the record location
information of the server MSAM’s foreign dNodes has changed. The MSAM can
verify this by examining the whatChanged field in the SMSAMSetupChange structure.
The kSMSAMFwdrForeignRLIsChangedBit bit should be set. The server MSAM
should read its Forwarder record to obtain the new record location information of its
foreign dNodes.

SPECIAL CONSIDERATIONS

Server MSAMs should act only on kMailEPPCAdmin events that are generated on
the local computer. When you call the AcceptHighLevelEvent function, it returns
a TargetID structure. Within that structure is a LocationNameRec structure. If
the locationKindSelector field of the LocationNameRec structure is set to
ppcNoLocation, you know that the event’s sender resides on the local computer.

RESULT CODES

Field name Data type Description

u.theSMCA->result OSErr When a server MSAM receives the
kMailEPPCAdmin event, this field is
already set to 1. Set this field to the noErr
result code to acknowledge receiving the
kMailEPPCAdmin event.

u.theSMCA->userBytes long Pointer to a SMSAMAdminEPPCRequest
structure.

noErr 0 No error
2-236 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
SEE ALSO

See the section “AOCE Addresses” beginning on page 2-23 for a description of
foreign dNodes.

The section “Initializing a Server MSAM” beginning on page 2-40 describes what types
of information are found in a server MSAM’s Forwarder record and how it gets there.

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

The SMSAMAdminEPPCRequest structure is described on page 2-117.

The SMSAMSetupChange structure is described on page 2-117.

Record location information is specified by an RLI structure. It is described in the
chapter “AOCE Utilities” in Inside Macintosh: AOCE Application Interfaces.

The LocationNameRec structure is described in Inside Macintosh: Interapplication
Communication.

The AcceptHighLevelEvent function and the TargetID structure are described in
Inside Macintosh: Macintosh Toolbox Essentials.
Messaging Service Access Module Reference 2-237

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Service Access Modules TOC
	 Introduction to Service Access Modules
	 Messaging Service Access Modules TOC
	 Messaging Service Access Modules, Part 1 (Intro, Using and Reference: Data Types & Constants)
	 Messaging Service Access Modules, Part 2 (Reference: Functions Part 1)
	Messaging Service Access Modules, Part 3 (Reference: Functions Part 1)
	Messa ging Servic e Access Modu le Refer ence
	Submitting a Message
	Deleting a Message
	Generating Log Entries and Reports
	Shutting Down a Server MSAM
	Setting Message Status
	Personal MSAM Template Functions
	Application-Defined Function
	High-Level Events

	 Messaging Service Access Modules, Part 4 (Summary)
	 Catalog Service Access Modules TOC
	 Catalog Service Access Modules
	 Service Access Module Setup TOC
	 Service Access Module Setup
	 Glossary
	 Index
	 Colophon

