CHAPTER 3

Catalog Service Access Modules

This chapter describes how to write a catalog service access module (CSAM), a device
driver that gives PowerTalk users access to external catalogs. Read this chapter if you
want to integrate an external catalog into an AOCE system. You do not need to read this
chapter if you simply want to use the Standard Catalog Package or the Catalog Manager
to obtain catalog services.

To write a CSAM, you must already be familiar with the Catalog Manager application
program interface (API). It is essential that you read the chapters “AOCE Utilities” and
“Catalog Manager” in Inside Macintosh: AOCE Application Interfaces before reading this
chapter. This chapter assumes that you understand the Catalog Manager’s functions and
data types.

Because a CSAM is implemented as a Macintosh device driver, you also need to be
familiar with the Device Manager. For information about the Device Manager and
writing a device driver, see Inside Macintosh: Devices.

To allow the user to add and remove your CSAM and its catalogs from an AOCE system,
you need to provide an AOCE setup template. The chapter “AOCE Templates” in Inside
Macintosh: AOCE Application Interfaces describes how to write an AOCE template. The
chapter “Service Access Module Setup” in this book describes the setup template
specifically, including how the setup template adds and removes a CSAM and its
catalogs from the Setup catalog.

This chapter provides a brief introduction to CSAMs. Then it describes
» the components of a CSAM
» a CSAM’s driver resource, including the Open and Close driver subroutines

» a CSAM’s catalog service and parse functions, which respond to requests from clients
of the Catalog Manager

» the method of indicating the features a catalog can support

» the impact of various catalog features on the user’s experience with a catalog

Introduction to Catalog Service Access Modules

The Catalog Manager provides a consistent interface for applications that use AOCE
catalog services, regardless of whether the catalog is external to or part of AOCE
software. Apple PowerShare catalogs and personal catalogs are part of AOCE software.
Any other type of catalog is referred to as an external catalog. An external catalog is
made available within an AOCE system by means of a CSAM, which supports the
Catalog Manager APL

A CSAM provides these basic functions:
= accepting Catalog Manager requests
» translating the requests into a form that its external catalog understands

» processing the requests, including activities such as obtaining information from the
external catalog and adding information to the external catalog

Introduction to Catalog Service Access Modules 3-3

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

= translating information for the Catalog Manager client into AOCE data formats such
as records and attributes

s returning the information to the Catalog Manager

AOCE data formats are described in detail in the chapter “AOCE Utilities.” The Catalog
Manager API is described in the chapter “Catalog Manager.” Both chapters are in Inside
Macintosh: AOCE Application Interfaces.

A CSAM is not invoked directly by an application but indirectly through the Catalog
Manager. The CSAM hides any underlying differences in how data is accessed and
stored in its external catalog. For example, suppose an application wants to add a record
to a catalog. The application calls the Di r AddRecor d function. If the target catalog is an
external catalog, the Catalog Manager passes the request to the CSAM that supports that
catalog. The CSAM then adds the record to its catalog and provides the creation ID of the
new record. Thus, a Catalog Manager client can interact with all catalogs in the same
way and can use standard AOCE data types to manipulate data. Figure 3-1 shows the
relationship of an application, the Catalog Manager, a CSAM, and an external catalog.
Although the figure shows a single external catalog, a CSAM can actually support any
number of catalogs. The application and the Catalog Manager communicate through the
Catalog Manager API. The Catalog Manager and the CSAM communicate through the
CSAM'’s catalog service and parse functions, which are introduced in the next section.

Figure 3-1 Relationship of an application, the Catalog Manager, and a CSAM

————————————————— @ ——————————— Catalog

Manager API
] Catalog Manager N
—————— @ ————— CSAM
catalog service
and parse
CSAM routines
S ﬁ N
PowerShare catalog External catalog Personal catalog

Introduction to Catalog Service Access Modules

CHAPTER 3

Catalog Service Access Modules

Every CSAM should support Catalog Manager requests to

= examine the contents of a dNode by real-time browsing, a search mechanism, or both
= enumerate the attribute types within a record

= look up attribute values

= detect changes within a dNode or a record

= get access controls for a dNode, record, or attribute type

A CSAM resides on a user’s Macintosh computer and provides personal access to an
external catalog. The catalog itself can exist anywhere—on the user’s Macintosh, on a
network server, or at a remote site accessed by a modem connection.

You can package a CSAM as a stand-alone driver file or as part of an AOCE messaging
service access module. A messaging service access module (MSAM) translates and
transfers messages between an AOCE messaging system and another messaging system.
If you choose the stand-alone option, you provide a file of type' dsani that contains the
resources described in the section “Writing a Driver Resource for a CSAM” beginning on
page 3-7. The file must also contain the resources that constitute your setup template. If
you package your CSAM with a messaging service access module, include your CSAM,
its setup template, and the MSAM in a file of type ' csanmi (for “combined SAM”).
MSAMs are documented in the chapter “Messaging Service Access Modules” in this
book. The setup template resources are described in the chapter “Service Access Module
Setup” in this book.

Note

For historical reasons, the string dsam(or DSAM) rather than csam

(or CSAM) is often part of a function name, field name, or data type name
referring to a CSAM. O

Components of a CSAM

A CSAM consists of two main components: a driver resource that includes at least your
driver’s Open and Close subroutines, and the collection of functions that implement
Catalog Manager functions. In addition, you must provide an AOCE setup template that
allows the user to add, remove, and configure the CSAM and its catalogs. It can be
helpful to think of the template as the third component of a CSAM product.

The setup template consists of a set of associated resources that reside in the resource
fork of the CSAM file. A template code resource calls the Catalog Manager functions that
add, remove, and configure the CSAM and its catalogs. The setup template is described
in the chapter “Service Access Module Setup” in this book. Figure 3-2 shows the calling
relationships between an application, a setup template, the Catalog Manager, the Device
Manager, and a CSAM.

Components of a CSAM 3-5

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Figure 3-2 Calling relationships

3-6

Setup Template

N

Catalog Manager

]

Device Manager

g

CSAM

Application

Requests for catalog services tend to be real-time in nature. Because Macintosh device
drivers lend themselves to implementing real-time responses, you implement a CSAM
as a Macintosh device driver.

A CSAM has two interfaces to Macintosh system software—one through the Device
Manager and the other through the Catalog Manager. For the Device Manager interface,
you must provide Open and Close driver subroutines. The Catalog Manager calls the
Device Manager to open and close your driver. The Device Manager, in turn, calls your
driver’s Open and Close subroutines. You may provide the Prime, Status, and Control
driver subroutines in accordance with the needs of your driver, but the Catalog Manager
does not call these subroutines to communicate with your driver. The Open and Close
driver subroutines are described in the section “Writing a Driver Resource for a CSAM”
beginning on page 3-7. The Prime, Status, and Control driver subroutines are described
in Inside Macintosh: Devices.

For the Catalog Manager interface, you provide a catalog service function and a parse
function. When an application calls a Catalog Manager function, the Catalog Manager
calls the CSAM's catalog service or parse function and passes it the application’s catalog
service request. A catalog service function accepts requests for catalog services from the
Catalog Manager and calls CSAM-defined routines to implement those services. A parse
function accepts requests to parse data about the CSAM's catalogs and their contents
and calls CSAM-defined routines to implement those services.

Figure 3-3 illustrates who calls your driver subroutines and your catalog service and
parse functions.

Components of a CSAM

CHAPTER 3

Catalog Service Access Modules

Figure 3-3 Who calls the CSAM driver subroutines and the catalog service and
parse functions

Catalog Manager

QpenDri ver
Cl oseDri ver

Device Manager

Open subrout

CSAM

ine -—-—

Cl ose subrouti ne -—w—

Ls= My CSAMCat al ogPr oc
L MyCSAMPar sePr oc

The sections that follow describe the CSAM’s driver resource and the CSAM catalog

service and parse functions.

Writing a Driver Resource for a CSAM

This section provides information about the required resources that constitute your

CSAM'’s device driver.

The driver resource that you must provide in your CSAM, like all resources, has a type, a
resource ID, a resource name, and resource attributes. The resource type is' DRVR . You

may set your ' DRVR' resource ID to any valid value. The Catalog Manager properly
installs your driver. The' DRVR resource name must be the same as the name of your
driver. This point is illustrated later in this section.

For your driver to work properly with the Catalog Manager, you must configure your

' DRVR' resource as follows:

» Set the r esSysHeap resource attribute to guarantee that your driver is loaded into

the system heap.

» Set the r esLocked resource attribute so that your driver is always available and

nonrelocatable in memory.

You may set other attributes needed for your CSAM. See Inside Macintosh: Devices for
more detailed information about the 'DRVR resource. See the chapter “Resource Manager’
in Inside Macintosh: More Macintosh Toolbox for information on resource attributes.

Writing a Driver Resource for a CSAM

7

3-7

SOINPOIA SS9V 92IMI8S BofeleD ‘

CHAPTER 3

Catalog Service Access Modules

Aresource of type ' DRVR contains header information and the driver’s subroutines.
The header information specifies certain settings for the driver and the offsets of the
Open, Close, Status, Prime, and Control subroutines. The book Inside Macintosh: Devices
provides information on setting up the header information. The header is followed by
the driver subroutines themselves. Listing 3-1 illustrates the header of a sample CSAM’s
driver resource in Rez format.

Listing 3-1 A sample CSAM’s driver resource header

3-8

#define DriverlD 0x0b // unused, pl acehol der val ue

resource 'DRVR (DriverlD, ".Sanpl eCSAM', sysheap, | ocked)
{
/* driver flags */
needLock, dont NeedTi me, dont NeedGoodbye, noSt at usEnabl e,
ctl Enabl e, noWiteEnabl e, noReadEnabl e,

0, /* driver delay in ticks */
0, /* desk accessory mask */
0, /* desk accessory nenu */

".Sanpl eCSAM', /* driver nane */
/* the driver code follows the header fields */

b
Your Open subroutine handles initialization functions. It must do the following:

= Allocate and initialize any memory required. You need to allocate memory now
because you cannot do so when the Catalog Manager calls your catalog service or
parse function with an asynchronous request. Your CSAM must allocate its memory
in the system heap and store the handle to the memory in the dCt | st or age field of
the device control entry (DCt | Ent r y) structure.

= Call the Di r I nst ant i at eDSAMfunction to provide the Catalog Manager with
pointers to your catalog service and parse functions. You can also provide a pointer to
your private data, which the Catalog Manager passes back to you when it calls your
catalog service and parse functions.

= Do any other preparation required to make the CSAM ready to receive and process
service requests.

Your Open subroutine is always called synchronously.

In your Close subroutine, you should release any memory that you allocated in your
Open subroutine. The Close subroutine is always called synchronously.

Writing a Driver Resource for a CSAM

CHAPTER 3

Catalog Service Access Modules

Depending on the needs of your driver, your Status, Prime, and Control subroutines may
perform some work or simply return if called.

Note

The Device Manager interface requires you to use some assembly
language. You can write your driver subroutines in a high-level
language if you provide a dispatching mechanism, written in assembly
language, between the Device Manager and the subroutines. See Inside
Macintosh: Devices for instructions on writing subroutines in a high-level
language and for detailed descriptions of all of the driver subroutines. O

When writing a device driver, you ordinarily write software that installs the driver in
the Device Manager’s unit table and opens the driver. For a CSAM, you do not need
to provide software to install and open your driver directly. Instead, an AOCE setup
template that you provide calls the Di r AddDSAMfunction. This causes the Catalog
Manager to install and open your driver. (Setup templates are discussed in the chapter
“Service Access Module Setup” in this book.)

In addition to the ' DRVR' resource, you must also provide a resource of type' STR '
containing a single string that is both the name of your driver and the name of your

" DRVR' resource. This string resource must have the resource name DashNane. If you
use another name for the string resource, the Catalog Manager will not be able to install
your driver. Listing 3-2 illustrates the string resource. The name contained in this string
resource must be the same as the name of the ' DRVR' resource.

Listing 3-2 A CSAM’s driver name string resource

/* The Driver's nane nust be in the resource naned DashNane." */
resource 'STR ' (128, "DashName", purgeable) {
". Sanpl eCSAM'

b

Listing 3-1, Listing 3-2, and Figure 3-4 illustrate the following example. A file named
My CSAM File contains a CSAM. The filename can be any string and is editable by

a user. The file contains a' STR ' resource named DashNane that contains the
string . Sanpl e CSAM The file also contains a' DRVR' resource whose resource name
is . Sanpl eCSAM The driver itself is also named . Sanpl e CSAM The content of the
string resource, the name of the ' DRVR' resource, and the name of the driver are all
the same.

Note that a driver name should always start with a period, followed by printable
uppercase or lowercase characters, not to exceed a total of 31 characters.

Writing a Driver Resource for a CSAM 3-9

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Figure 3-4 Relationship of ' DRVR and' STR ' resources

Filename =M/ CSAM file
File type ="' dsani

Resource type =* STR *
Resource name = DashNane

,—— . Sanpl eCSAM

Resource type =' DRVR
Resource hame = . Sanpl eCSAM

. Sanpl eCSAM
(followed by the driver code)

Responding to the Catalog Manager

3-10

When an application makes a request for catalog services and specifies an external
catalog for which your CSAM is responsible, the Catalog Manager calls your CSAM’s
catalog service or parse function. The catalog service and parse functions are essentially
dispatching functions that receive all Catalog Manager requests. They in turn call other
functions that you provide to service the request.

A CSAM does not need to support every function in the Catalog Manager API.
The Catalog Manager itself handles calls to the Di r Get Di r ect oryl nf o,

Di r Get Ext endedDi rect ori esl nfo, Di r Enunerat eDi rectori esGet, and
Di r Enuner at eDi r ect or i esPar se functions and, therefore, does not pass these

requests to a CSAM. Other Catalog Manager functions that are not passed to a
CSAM include

= Dir AddADAPDI rectory

= Di r Net Sear chADAPDiI r ect or i esCet

= Di r Net Sear chADAPDiI r ect ori esPar se
= Di r Fi ndADAPDI r ect or yByNet Sear ch
s DirCreatePersonal Directory

= DirQpenPersonal Directory

s DirC osePersonal Directory

Di r MakePer sonal Di r ect or yRLI

Di r Get OCESet upRef Num

Responding to the Catalog Manager

CHAPTER 3

Catalog Service Access Modules

You must provide a dispatch function. You can provide both a catalog service function
and a parse function for this purpose. However, because Catalog Manager request codes
for catalog service and parse requests do not overlap, you can process all Catalog
Manager requests through a single dispatch function. To do this, specify the same
address for your catalog service function and your parse function when you call the

Di r I nst ant i at eDSAMfunction.

The Catalog Service Function

The Catalog Manager calls your catalog service function when an application calls a
Catalog Manager function (other than one of the parse functions) and specifies a catalog
that you support. Your catalog service function must determine the type of request that
the application is making and then service that request.

The catalog service function has the following declaration:

pascal OSErr MyDSAMDI rProc (Ptr dsanDat a,
Di r Par anBl ockPtr par anBl ock,
Bool ean async);

The dsanDat a parameter contains the private value that you provided to the

Di r |l nst ant i at eDSAMfunction in the dsanDat a field of that function’s parameter
block. You define this value for your own use. Typically, it is a pointer to your private
data area. The par anBl ock parameter contains a pointer to the Di r Par anBl ock
parameter block that the application provided to the Catalog Manager when the
application made the service request. The async parameter is a Boolean value that
specifies if the request must be processed synchronously or asynchronously. If this
parameter is t r ue, you must process the request asynchronously; otherwise, you
process the request synchronously.

You determine the type of request by examining the r eqCode field of the

Di r Par anBl ock parameter block. Requests for catalog services map one-to-one to
functions in the Catalog Manager API. The method by which you service the request (that
is, implement the Catalog Manager function) is up to you. See the section “Data Types
and Constants” beginning on page 3-42 for a complete list of request codes for Catalog
Manager requests. See the function descriptions in the chapter “Catalog Manager” in
Inside Macintosh: AOCE Application Interfaces for information on the type of service each
function performs, the behavior of the function, and the information it returns.

When an application calls a Catalog Manager function synchronously, the Catalog
Manager passes the request to your CSAM within the calling application’s context.
Therefore, the CSAM can allocate, move, or purge memory and can call any function.
The CSAM must process a synchronous request immediately. (See Inside Macintosh:
Processes for a discussion of application context.)

When an application calls a Catalog Manager function asynchronously, the Catalog
Manager passes the request to your CSAM at interrupt time. You cannot allocate, move,
or purge memory at interrupt time, nor can you call a function that allocates, moves, or
purges memory. If you can service the asynchronous request immediately—that is, if you

Responding to the Catalog Manager 3-11

SOINPOIA SS9V 92IMI8S BofeleD -

3-12

CHAPTER 3

Catalog Service Access Modules

can service the request without performing tasks that are likely to consume a relatively
large amount of time, such as an I/ O operation—do so. Otherwise, your catalog service
function should place the request in a private queue that it maintains and return control
to the Catalog Manager with a result code of noEr r. The Catalog Manager will already
have set the i oResul t field of the Di r Par anBl ock parameter block to 1 before passing
the asynchronous request to your catalog service function. As your function receives
time to execute, service the request.

The CSAM can defer processing an asynchronous request until it is convenient to
complete the request. It can install a VBL task, a Time Manager task, a Deferred Task
Manager task, or a Notification Manager task to ensure that it receives system time
at some point in the future. See Inside Macintosh: Processes for more information on
these topics.

Note

When you have insufficient memory to service an asynchronous request,
you should return an error. However, before returning, you can attempt
to acquire additional memory for future requests. Set the dNeedTi e
flag in the dCt | f | ags field in your driver’s DCt | Ent r y structure.
Later, after a process calls the Syst enrask or Wi t Next Event
function, the Device Manager calls your Control subroutine with the
accRun control code. At this time, you can safely allocate memory.

Do not queue an asynchronous request for which you have insufficient
memory in the hope that you can acquire the memory later and
successfully complete the request. This may result in a system freeze
condition. O

Your catalog service function returns both a function result and a value in the i oResul t
field of the Di r Par anBl ock parameter block to indicate the outcome of its handling of
the request. For each type of service request (function) that you process, you should
return only those result codes that are defined by the Catalog Manager for the function.
The description of each Catalog Manager function provides the result codes that a given
function can return.

If your function was called synchronously, set the i oResul t field and return the
appropriate function result code when you finish servicing the request.

If your function was called asynchronously, do the following when you finish servicing
the request: Set the i oResul t field to the appropriate result code. If the application
provided a completion routine (the value of the i oConpl et i on field of the

Di r Par anBl ock parameter block is not ni |), restore the application’s A5 register by
setting register A5 to the value of the saveA5 field of the Di r Par anBl ock parameter
block and call the application’s completion routine; otherwise, return. When the
completion routine returns control to your catalog service function, you may service
another pending request or return.

Listing 3-3 is an example of a simple catalog service function, the DoMy DSAMDI r Pr oc
function, that determines the type of request and then calls another function to service
the request. DOMyDSANDI r Pr oc passes the called function a pointer to the CSAM's
global data area, myd obal | nf oPt r. This is the value the CSAM originally gave to the

Responding to the Catalog Manager

CHAPTER 3

Catalog Service Access Modules

Catalog Manager when it called the Di r | nst ant i at eDSAMfunction. The Catalog
Manager passes the value back to the catalog service function to use in servicing the
request. In this example, the functions that service a particular catalog service request,
such as the DoPr ocessDi r Get DNodeMet al nf oReqt function, set thei oResul t field
of the Di r Par anBl ock parameter block. Before returning, the DoMy DSANDI r Pr oc
function calls the DoPr ocessCal | Conpl et i on function, which calls the completion
routine if the calling application specified one. See Listing 3-6 on page 3-28 for an
example of calling an application’s completion routine.

Listing 3-3 A catalog service function

pascal OSErr DoMyDSAMDI r Proc(

regi ster Ptr nmyd obal I nfoPtr,
regi ster DirParanBl ockPtr myParanBl ock,
Bool ean async)

switch (nyParanBl ock->header. reqCode) { /* determ ne type of request */
case kDirGetDirectoryl con:
DoPr ocessDi r Get Di r | conRequest (myd obal I nfoPtr, nyParanBl ock, async);
br eak;
case kDi r Get DNodeMet al nf o:
DoPr ocessDi r Get DNodeMet al nf oReqt (nmyd obal I nfoPtr, myParanBl ock, async);
br eak;
case kDi r Get Recor dMet al nf o:
DoPr ocessDi r Get Recr dMet al nf oReqt (nmyd obal I nfoPtr, myParanBl ock, async);
br eak;
/* process other catal og service requests */

}
return (DoProcessCal | Conpl eti on(nyPar anBl ock- >header.i oResult, async));

The Catalog Manager defers calling your catalog service function until a time, sometimes
called deferred-task time, when your function will work properly if the Macintosh is using
virtual memory. See Inside Macintosh: Memory for information about memory
management issues, including virtual memory.

The Parse Function

The Catalog Manager calls your parse function each time an application makes a parse
request for a catalog that you support. A parse request corresponds to one of the Catalog
Manager’s parse functions, such as Di r LookupPar se, Di r Enuner at ePar se, and so
forth. Your parse function must determine the type of parse request that the application
is making and then service that request.

Responding to the Catalog Manager 3-13

SOINPOIA SS9V 92IMI8S BofeleD -

3-14

CHAPTER 3

Catalog Service Access Modules

The parse function has the following declaration:

pascal OSErr MyDSAMD r ParseProc (Ptr dsanDat a,
Di r Par anBl ockPtr par anBl ock,
Bool ean async);

The information in the section “The Catalog Service Function” beginning on page 3-11
also applies to the parse function. That information is not repeated here.

When you service a Catalog Manager parse request, you return information to the
application by two methods. The first method, common to all Catalog Manager requests,
consists of storing information in the appropriate fields of the Di r Par anBl ock
parameter block. The second, unique to parse requests, consists of passing data in
predefined units to an application’s callback routine.

It might be helpful to review here how Catalog Manager parse functions work. Each
Catalog Manager parse function is paired with an associated get function. The

Di r Enuner at eDi rect ori esGet /Di r Enuner at eDi rect ori esPar se and

Di r LookupGet /Di r LookupPar se functions are examples of the get/parse function
pairs in the Catalog Manager API. An application calls a Catalog Manager get function
to obtain information about catalogs, records, attribute types, and so forth. If the target
catalog is a catalog that you support, the Catalog Manager calls your CSAM’s catalog
service function to service the request. You place the requested data into a buffer
provided by the application. You can use any format you wish for the data in this buffer;
the data is therefore unreadable by the application. To retrieve the data from the buffer in
a format that it understands, the application calls the corresponding Catalog Manager
parse function, providing a pointer to a callback routine. The Catalog Manager, in turn,
calls your CSAM'’s parse function. Your parse function passes data to the application

by repeatedly calling the application’s callback routine, each time passing it a defined
chunk of data. The chapter “Catalog Manager” in Inside Macintosh: AOCE Application
Interfaces provides descriptions of the application callback routines associated with
different Catalog Manager parse functions and the type of data you need to return

with each.

Note

Not all Catalog Manager get/ parse function pairs work in exactly the
same way. For example, most support starting or continuing an
enumeration from a specified starting point, but some do not. Be sure to
read the Catalog Manager function descriptions carefully to make sure
your CSAM properly implements the Catalog Manager functions. O

You determine which Catalog Manager function the application has called by examining
the r eqCode field of the Di r Par anBl ock parameter block. Then you process the
request, just as you would when servicing a catalog service request. In addition, you call
the application’s callback routine as part of processing every parse request. You must set
the A5 register to the value of the saveAS5 field of the Di r Par anBl ock parameter block
before calling the callback routine. You typically restore your own A5 register when you
regain control.

Responding to the Catalog Manager

CHAPTER 3

Catalog Service Access Modules

Listing 3-4 illustrates how you call an application’s callback routine. The

DoEnuner at ePar se function is called by another CSAM function in the course

of servicing the parse request that results from an application calling the

Di r Enuner at ePar se function. The DoEnuner at ePar se function gets a pointer to
the Di r Enurrer at ePar se function’s parameter block and a pointer to the buffer

the CSAM previously filled in response to the Di r Enuner at eGet function. The
application’s callback routine expects to get a Di r EnunSpec structure that provides
information about one record, alias, pseudonym, or child dNode in a given dNode.
Inside its main processing loop, the DoEnuner at ePar se function performs the
following tasks:

» Itinitializes the dat aLengt h fields inside the Di r EnunSpec structure to the
maximum size RSt r i ng that the CSAM supports.

» It callsits DoFi | | EnunSpec function to extract data about one record, alias,
pseudonym, or child dNode from the buffer the CSAM previously filled and
stores the data in a Di r EnunBpec structure. If this function does not return the
NoEr r result code, DOEnuner at ePar se exits the loop immediately, knowing it
has extracted all the data from the buffer or it has encountered an error.

» It sets register A5 to the application’s register A5 so the callback routine can access the
application’s global variables and saves its own register A5 value.

» It calls the application’s callback routine, passing it the value of the cl i ent Dat a field
from the Di r Enuner at ePar se parameter block and the enumeration specification
just constructed.

= It restores register A5 to its own register A5 value.

The DoEnurrer at ePar se function continues to execute the loop until it runs out of data
to parse or encounters an error, or until the application’s callback routine returns t r ue.

Listing 3-4 Calling an application’s callback routine

OSErr DoEnurmer at ePar se (Di r ParanBl ockPtr nyParanBl ock, Ptr buffer)
{

Di r Enunpec enuntpec;

RSt ri ng64 nane, type;

| ong ol dA5, saveSeq;

Bool ean done = fal se;

OSEr r myErr = 0;

enunBSpec. u. recordl denti fier.recordName
enuntpec. u. recordl dentifier.recordType
enuntpec. i ndexRati o = O;

whi | e(!done) {
nane. dat aLengt h kRSt ri ng64Si ze;
type. datalLength = kRStri ng64Si ze;

Responding to the Catalog Manager

(RString*) &ane;
(RString*) & ype;

3-15

SOINPOIA SS9V 92IMI8S BofeleD -

}

CHAPTER 3

Catalog Service Access Modules

/* extract data fromthe buffer and fill enunBSpec appropriately */

myErr = DoFi |l | EnunSpec(buffer, &enuntpec);

if (nyErr !'=noErr) /* if no nore data in the buffer, exit the loop */
br eak;

/* save ny A5 register and call application's callback routine */
ol dA5 = Set A5(nmyPar anBl ock- >enuner at ePar sePB. saveA5) ;
done = (*mnyPar anBl ock- >enuner at ePar sePB. eachEnuntSpec)

(myPar anBl ock- >enuner at ePar sePB. cl i ent Dat a, &enunftpec);

/* restore nmy A5 register */
(void) SetA5(ol dA5);

return nyErr;

}

To avoid problems when virtual memory is in use, you must call an application’s
callback routine at deferred-task time. See the chapters “Virtual Memory Manager” in
Inside Macintosh: Memory and “Deferred Task Manager” in Inside Macintosh: Processes for
more information on the handling of virtual memory and deferred tasks.

Determining the Version of the Catalog Manager

To determine the version of the Catalog Manager that is available, call the Gest al t
function with the selector gest al t OCETool boxVer si on. The function returns the
version number of the Collaboration toolbox in the low-order word of the r esponse
parameter. For example, a value of 0x0101 indicates version 1.0.1. If the Collaboration
toolbox is not present and available, the Gest al t function returns 0 for the version
number. You can use the constant gest al t OCETB for AOCE Collaboration toolbox
version 1.0.

Indicating the Features You Support

3-16

A catalog may not support all of the features of the Catalog Manager API. Therefore,
you must identify to the Catalog Manager the features supported by each catalog to
which your CSAM provides access. The Catalog Manager API defines the data type

Di r Gest al t that consists of bits that specify the features supported by a given catalog.

This section defines those bits, sometimes referred to as feature flags or capability flags. The
support or lack thereof for certain features affects the human interface of some
components of PowerTalk. The impact of various feature settings on the human interface
is discussed in “Human Interface Considerations” beginning on page 3-22.

Indicating the Features You Support

CHAPTER 3

Catalog Service Access Modules

The features represented by the bits can be grouped into six general categories (the
corresponding bits are listed for each category):

= supplying identifying information
o kSupport sDNodeNunber Bi t
o kSupportsRecordCreationl DBit
o kSupportsAttributeCreationl DBit
o kSupportsParti al Pat hNanesBi t

= pattern-matching for record names in an enumeration
o kSupportshatchAl | Bit
o kSupportsBegi nsWthBit

kSupport sExact Mat chBi t

kSupport sendsWt hBi t

kSupport sCont ai nsBi t

O

O

O

» ordering the results of an enumeration
o kSupportsOrderedEnunerati onBit
o kCanSupport NameOr der Bi t
o kCanSupport TypeOrderBit
kSupport Sort Backwar dsBi t
o kSupportlndexRati oBit

O

= enumerating from a specified starting point
o kSupport sEnunerati onConti nueBit
o kSupportsLookupConti nueBi t
o kSupport sEnunerat eAttri but eTypeConti nueBit
o kSupport senuner at ePseudonynCont i nueBi t

= other capabilities
o kSupport sFi ndRecor dBi t
o kSupportsAliasesBit
o kSupport sPseudonynsBi t

= reserved features
o kSupport sAut henti cati onBit
o kSupport sProxi esBit

The bits in a variable of type Di r Gest al t are defined as follows:

enum {
kSuppor t sDNodeNunber Bi t =
kSupport sRecordCreati onl DBi t =
kSupportsAttri but eCreationl DBt =
kSuppor t siat chAl | Bi t =
kSupport sBegi nsWt hBit =
kSupport sExact Mat chBi t =

N WNPR O

Indicating the Features You Support 3-17

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

kSupport sendsW t hBi t = 6,

kSupport sCont ai nsBi t =7,

kSuppor t sOr der edEnuner ati onBi t = 8,

kCanSupport NameOr der Bi t = 9,

kCanSupport TypeOr der Bi t = 10,
kSupport Sort Backwar dsBi t = 11,
kSupport | ndexRati oBit = 12,
kSupport sEnumner ati onCont i nueBi t = 13,
kSuppor t sLookupCont i nueBi t = 14,
kSupport sEnuner at eAttri but eTypeConti nueBit= 15,
kSupport sEnumer at ePseudonynmCont i nueBi t = 16,
kSupport sAl i asesBit = 17,
kSupport sPseudonynsBi t = 18,
kSupportsParti al Pat hNanesBi t = 19,
kSuppor t sAut henti cati onBi t = 20,
kSupport sProxi esBi t = 21,
kSupport sFi ndRecor dBi t = 22

b

Bit descriptions

kSuppor t sDNodeNumnber Bi t
Set this bit if the catalog can identify a dNode by a dNode number.
All catalogs must be able to identify a dNode by its pathname.

kSupport sRecordCreati onl DBi t
Set this bit if a catalog can identify a record by a record creation ID.
If a catalog cannot identify a record by a record creation ID, you
must set any record creation IDs that you return to 0. All catalogs
must support identification of records by record name and record
type. If a catalog does not additionally support record creation IDs,
the record name and record type must be unique for each record.
Note that to assure the proper behavior of aliases, a record creation
ID must persist through system shutdown and startup.

kSupportsAttri but eCreationl DBt
Set this bit if a catalog can identify an attribute value by specifying
its attribute creation ID and attribute type. All catalogs must be able
to identify an attribute value by specifying the attribute value and
attribute type.

kSupport shat chAl | Bi t
Set this bit if the catalog supports browsing of record names
and record types; that is, when an application calls the
Di r Enuner at eGet or Di r Fi ndRecor dGet function, the catalog
can service a request to return information about all the records
in a dNode or catalog.

3-18 Indicating the Features You Support

CHAPTER 3

Catalog Service Access Modules

kSupport sBegi nsWt hBit
Set this bit if the catalog supports a search for record names and
record types beginning with a certain string; that is, when an
application calls the Di r Enuner at eGet or Di r Fi ndRecor dCet
function, the catalog can service a request to provide information
about all records whose record name or record type begins with the
string provided by the application.

kSupport sExact Mat chBi t
Set this bit if the catalog supports a search for a record based on an
exact match with the record name or record type; that is, when an
application calls the Di r Enurrer at eGet or Di r Fi ndRecor dGet
function, the catalog can service a request to provide information
about the record whose record name or record type is provided by
the application.

kSupport sendsW t hBi t
Set this bit if the catalog supports a search for record names and
record types ending with a certain string; that is, when an
application calls the Di r Enuner at eGet or Di r Fi ndRecor dCet
function, the catalog can service a request to provide information
about all records whose record name or record type ends with the
string provided by the application.

kSupport sCont ai nsBi t
Set this bit if the catalog supports a search for record names and
record types that contain a certain string; that is, when an
application calls the Di r Enurrer at eGet or Di r Fi ndRecor dGet
function, the catalog can service a request to provide information
about all records whose record name or record type contains the
string provided by the application.

kSupport sOr der edEnuner at i onBi t
Set this bit if the catalog provides requested information in some
sorted order when an application calls the Di r Enurner at eCet
function. The catalog may provide the information in an
unspecified sorted order. If it returns the information sorted by
name or by type, set one or both of the two following bits.

kCanSupport NameOr der Bi t
Set this bit if the catalog supports the sorting by name option in the
Di r Enurrer at eGet function. If you set this bit, you must also set
the kSuppor t sOr der edEnuner at i onBi t bit.

kCanSupport TypeOr der Bi t
Set this bit if the catalog supports the sorting by type option in the
Di r Enuner at eGet function. If you set this bit, you must also set
the kSupport sOr der edEnuner at i onBi t bit.

kSupport Sort Backwar dsBi t
Set this bit if the catalog supports the backward sort direction
option in the Di r Enuner at eCGet function; that is, the catalog
can provide entries preceding a certain point and sort those
entries in reverse order.

Indicating the Features You Support 3-19

SOINPOIA SS9V 92IMI8S BofeleD -

3-20

CHAPTER 3

Catalog Service Access Modules

kSupport | ndexRati oBit
Set this bit if the catalog supports the index ratio feature in the
Di r Enuner at eGet function; that is, the catalog can provide the
approximate position of a record among all records in a dNode
as a percentile.

kSupport sEnuner ati onCont i nueBi t
Set this bit if the catalog supports the continue feature in the
Di r Enuner at eGet function.

kSupport sLookupCont i nueBi t
Set this bit if the catalog supports the continue feature in the
Di r LookupGet function.

kSupport sEnurer at eAt t ri but eTypeCont i nueBi t
Set this bit if the catalog supports the continue feature in the
Di r Enuner at eAt tri but eTypesGet function.

kSupport sEnuner at ePseudonyntCont i nueBi t
Set this bit if the catalog supports the continue feature in the
Di r Enuner at ePseudonynGet function.

kSupport sAl i asesBit
Set this bit if the catalog supports adding an alias with
the Di r AddAl i as function, deleting an alias with the
Di r Del et eRecor d function, and enumerating aliases with
the Di r Enurrer at eGet function.

kSupport sPseudonynsBi t
Set this bit if the catalog supports the Di r AddPseudonym
Di r Del et ePseudonym and Di r Enuner at ePseudony nmGet
functions, and if it supports enumerating pseudonyms with
the Di r Enuner at eCGet function.

kSupportsParti al Pat hNanmesBi t
Set this bit if a catalog can specify a catalog node by using the
dNode number of an intermediate dNode and a partial pathname
starting from the intermediate dNode to the target dNode.

kSupport sAut henti cati onBi t
Reserved. Do not set this bit.

kSupport sProxi esBi t
Reserved. Do not set this bit.

kSupport sFi ndRecor dBi t
Set this bit if the catalog supports the Di r Fi ndRecor dGet and
Di r Fi ndRecor dPar se functions, that is, it can provide informa-
tion about records in the entire catalog, rather than in a given
dNode. The Di r Fi ndRecor dGet function requests information
about records in an entire catalog; the Di r Enuner at eCGet function
requests information about records in a particular dNode.

These bits are also described from the application’s perspective in the chapter “Catalog
Manager” in Inside Macintosh: AOCE Application Interfaces.

Indicating the Features You Support

CHAPTER 3

Catalog Service Access Modules

You can use the following mask values to set the bits in a variable of type Di r Gest al t .

enum {
kSuppor t sDNodeNunber Mask
kSupport sRecor dCr eat i onl Dvask
kSupport sAttri but eCreati onl DVask

1L<<kSupport sDNodeNunberBi t,
1L<<kSupport sRecordCreationl DBit,
1L<<kSupportsAttri buteCreationl DBit,

kSupport shvat chAl | Mask = 1llL<<kSupportsMatchAl I Bit,
kSupport sBegi nsW t hMask = 1lL<<kSupport sBegi nsWthBit,
kSuppor t sExact Mat chMask = 1L<<kSupport sExact Mat chBit,
kSupport sendsW t hMask = 1lL<<kSupportsEndsWthBit,
kSupport sCont ai nsMask = 1lL<<kSupportsContai nsBit,

kSuppor t sOr der edEnuner at i onMask 1L<<kSupport sOrder edEnunerationBit,
kCanSupport NameOr der Mask 1L<<kCanSupport NameOrderBit,
kCanSupport TypeOr der Mask = 1lL<<kCanSupport TypeOrderBit,
kSuppor t Sor t Backwar dsMask 1L<<kSupport Sort Backwar dsBi t,
kSupport | ndexRat i oMask = 1lL<<kSupport | ndexRatioBit,
kSuppor t sEnuner ati onCont i nueMask 1L<<kSupport sEnumner ati onConti nueBi t,
kSuppor t sLookupCont i nueMask = 1L<<kSupport sLookupConti nueBit,
kSupport sEnuner at eAttri but eTypeCont i nueMask =

1L<<kSupport sEnumer at eAttri but eTypeConti nueBit,
kSupport sEnuner at ePseudonyntCont i nueMask =

1L<<kSupport sEnuner at ePseudonynmCont i nueBi t,

kSupport sAl i asesMask = 1lL<<kSupportsAliasesBit,

kSuppor t sPseudonynmsMask = 1L<<kSupport sPseudonynsBit,
kSupport sParti al Pat hNanmesMask = 1lL<<kSupportsParti al Pat hNanesBi t,
kSupport sAut hent i cati onMask = 1lL<<kSupportsAut henticationBit,
kSuppor t sPr oxi esiMask = 1L<<kSupport sProxiesBit,
kSupport sFi ndRecor dMask = 1lL<<kSupport sFi ndRecor dBi t

You can define the features that a catalog supports by adding the values of the appro-
priate masks and storing the resulting value in the CSAM file, where it is available to
both your CSAM and your setup template. Listing 3-5 provides an example of specifying
the features that a given catalog supports.

Listing 3-5 Setting the feature flags for a catalog

#def i ne kPDi r Feat ur es(\
kSuppor t sRecor dCr eat i onl DMask\
kSupport sAttri but eCreati onl DVask \

kSuppor t sivat chAl | Mask \
kSuppor t sBegi nsW t hMask\

kSupport sExact Mat chMask \
kSupport sOr der edEnuner at i onMask \

=+

Indicating the Features You Support 3-21

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

+ kCanSupport NaneOr der Mask \

+ kSupport Sort Backwar dsMask \

+ kSupport sEnuner ati onConti nueMask \
+ kSupport sLookupConti nueMask \

)

Once you define the features for a given catalog, your setup template passes that
information to the Catalog Manager when it calls the Di r AddDSAMDI r ect or y function
to add that catalog to the Setup catalog. The Catalog Manager, in turn, provides the
feature flags for a given catalog to an application when the application calls the

Di r Get Di r ect or yI nf o function for a given catalog.

Human Interface Considerations

3-22

Although a CSAM itself has no human interface, the features that its catalogs can
support affect the human interface provided for those catalogs by certain components

of PowerTalk system software. The following components of PowerTalk system software
make information in a catalog available to the user:

= the Catalogs Extension (CE)

s the Catalog-Browsing panel in the mailer

» the Find panel in the mailer

» the Find in Catalog command in the Apple menu

The mailer is described in the chapter “Standard Mail Package” in Inside Macintosh:
AOCE Application Interfaces. For a description of how these elements appear to the user,
see the book PowerTalk User’s Guide.

You need to understand how the settings of certain feature flags affect the user’s ability
to make use of the information in a catalog using the PowerTalk human interface
components. This section notes the capabilities a catalog must support to provide a
particular service to the user through the PowerTalk components and the implications of
not supporting those capabilities. Here are some service guidelines:

» For catalogs that may contain multiple records with the same name and type, support
record creation IDs.

= For catalogs that may contain more than one attribute value of a given attribute type,
support attribute creation IDs.

= For a browsable catalog, support “match all” and “exact match” capabilities.

= For proper searching of a catalog, support the “exact match” and “begins with”
capabilities and either the “match all” or “find record” capability.

s

» For efficient handling of large catalogs, support “ordered enumeration,” “sort

backward,” and “enumeration continue” capabilities.
» For best scrolling with large catalogs, support index ratios.

» For efficient attribute lookups, support the “lookup continue” capability.

Human Interface Considerations

CHAPTER 3

Catalog Service Access Modules

This information is based on release 1 of the PowerTalk components and is subject to
change in future releases.

Supporting Records Having the Same Name and Type

If a catalog allows multiple records to have the same name and type, then it must
support record creation IDs. Allowing more than one record with the same name and
type without support for record creation IDs creates problems with the CE’s user
interface. For instance, if a user opens such a catalog, the CE displays the records having
the same name and type. If the user then opens one of the records, it is indeterminate
which record’s attributes are shown to the user. Likewise, if the user makes an alias to
such a record, it is not guaranteed that the alias will resolve to the correct record.

Supporting Multiple Attribute Values of the Same Type

If a record in a catalog can contain more than one attribute value of a given attribute
type, then you need to support attribute creation IDs for that catalog. The CE requires an
attribute creation ID. In the absence of attribute creation IDs, the only way to distinguish
among attribute values of the same type is by specifying the attribute value itself. Since
attribute values may be as large as 64 KB, this is not efficient, and the attribute creation
ID is required for performance reasons. For instance, imagine a record that contains
many attributes whose type is Lyric and whose value is the lyric of a popular song. If a
user wants to view all of the lyrics, you might run out of buffer space while responding
to the Di r LookupGet function. When the CE calls Di r LookupCet again to continue
the enumeration, it needs a practical way to indicate from which point to continue the
enumeration.

If your catalog is unable to support a genuine attribute creation ID that permanently and
uniquely identifies an attribute value, then it must support for each attribute value a
unique identifier that persists from the time the CSAM is opened at system startup until
system shutdown. This unique identifier is called a pseudo-persistent attribute creation
ID. The pseudo-persistent attribute creation ID for a given attribute value is not, by
definition, consistent between one session and the next.

Because the CE requires an attribute creation ID when a catalog may contain
more than one attribute value of a given attribute type, you must set the
kSupportsAttri buteCreationl DBit bit, regardless of whether the type of
attribute creation ID your catalog supports is genuine or pseudo-persistent.

It is desirable that you not reuse a value for a pseudo-persistent attribute creation ID
once a session has ended. One way of achieving this is to generate values that incor-
porate a number derived from the date and time of the session with an incrementing
number. This guarantees uniqueness both within and between sessions.

Note

If a catalog’s records contain only one attribute value per attribute type,
the CE does not require you to support attribute creation IDs. O

Human Interface Considerations 3-23

SOINPOIA SS9V 92IMI8S BofeleD -

3-24

CHAPTER 3

Catalog Service Access Modules

Supporting Browsing and Finding

If the user can view all of the records in a catalog through the CE or the Catalog-Browsing
panel in the mailer, the catalog is browsable. If the user cannot view a catalog’s contents,
the catalog is nonbrowsable.

A catalog is browsable when both the kSupport sMat chAl | Bi t and

kSupport sExact Mat chBi t bits are set. A catalog with the “match all” capability
supports user browsing by servicing requests to return information on all the records in
a dNode or catalog. A browsable catalog must also support an “exact match” capability
because, while browsing, a user may make an alias for any object. The “exact match”
capability is needed to resolve an alias.

Finding or searching a catalog differs from browsing in that the user specifies, in whole

or in part, a particular record name as the target of interest. The Find panel in the mailer
and the Find in Catalog command in the Apple menu do not search a catalog unless the
following bits are set:

» either the kSuppor t sMat chAl | Bi t or the kSupport sFi ndRecor dBi t bit
= the kSupport sExact Mat chBi t bit
= the kSupport sBegi nsWt hBi t bit

= the kSupport sEnuner ati onCont i nue bit

Supporting Large Catalogs

The CE and the Catalog-Browsing panel in the mailer attempt to achieve efficiencies in
memory requirements and response time when dealing with large catalogs containing
many records. This behavior is called large-catalog mode.

The CE and the Catalog-Browsing panel in the mailer can operate in large-catalog mode
only if the catalog supports the following capabilities (the relevant bit that must be set
is in parentheses):

= catalog can provide records in some sorted order
(kSuppor t sOr der edEnuner ati onBi t)

» catalog can provide, in reverse sorted order, the records preceding a specific point
(kSupport Sor t Backwar dsBi t)

= catalog can continue an enumeration from a specified starting point
(kSuppor t sEnuner ati onConti nueBit)

If your CSAM provides access to a large catalog that does not provide records in some
sorted and reverse sorted order and that cannot continue an enumeration from a
specified starting point, you should make the catalog nonbrowsable. This avoids
subjecting the user to heavy performance penalties and large memory requirements
when working with that catalog. For example, when the CE is not operating in large-
catalog mode, it attempts to enumerate all of the records in a given dNode of a catalog,
bring the records into memory, and then sort them in the user’s system script before
displaying any records to the user. If the Di r Enumer at eGet function returns the
kOCEMbr eDat a result code, the CE calls the function again with a bigger buffer. It starts

Human Interface Considerations

CHAPTER 3

Catalog Service Access Modules

the enumeration from the first record since the catalog does not support continuing the
enumeration from the last record read. The CE continues to re-enumerate with a bigger
buffer until the catalog dNode is completely enumerated or the Macintosh runs out of
memory. It could take an unacceptable amount of memory and an unacceptably long
time to open a catalog window for a large catalog that does not support large-catalog
mode. (When the CE is operating in large-catalog mode, it enumerates either 60 records
or three times the number of the records visible in the catalog window, whichever

is greater.)

A user can still search for specific records in a large catalog that does not support large-
catalog mode, although he or she is unable to view all of the records. The AppleLink
address list is an example of a searchable but nonbrowsable catalog.

With large catalogs (those setting the kSuppor t sOr der edEnumnrer ati onBi t,
kSuppor t Sor t Backwar dsBi t, and kSuppor t sEnuner ati onCont i nueBi t bits),
the CE and the Catalog-Browsing panel use three different methods of managing
scroll bars in a catalog window or panel:

= ratio-approximation
» letter-approximation

s three-position-thumb

The choice of method depends on the capabilities of the catalog being displayed and
the script used in the catalog. If the catalog can provide the approximate position

of a record within a catalog as a percentile value (an index ratio), it sets the

kSupport | ndexRat i oBi t bit. When this bit is set, the CE and the Catalog-Browsing
panel always use the ratio-approximation method. The ratio-approximation method
results in scroll bars that best indicate the true position of a record in a sorted catalog.

If a catalog cannot supply an index ratio, the scrolling method depends on whether the
catalog can provide records sorted by record name (KCanSuppor t NanmeCr der Bi t) and
whether the script used by the Macintosh system software matches the script used by
the catalog.

If the catalog can return records in name order and the same script is used by both
the catalog and the system software, the letter-approximation method is used. The
letter-approximation method uses a table that maps each letter or range of letters in
a given script to a number. After determining where the first visible record fits in the
complete range of letters, the thumb is set accordingly.

If the scripts differ, the CE and the Catalog-Browsing panel have no idea where the
record belongs within the range of letters in the catalog script. Therefore, they use the
three-position-thumb method. They also use this method if a catalog cannot provide
records sorted by record name. The three-position-thumb method is the least desirable
method. It provides a scroll bar having only three positions—at the top of the scroll bar,
at the bottom, and in the middle. These positions correspond to the first record in a
catalog, the last record, and any other record. Thus, it gives no real information about
the majority of records contained in a catalog. It is used as a last resort.

Human Interface Considerations 3-25

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Table 3-1 summarizes the factors that determine the scrolling method.

Table 3-1 Determining the scrolling method for a catalog

Supports Supports

index ratio name order Scripts Scrolling method

Yes Not applicable Not applicable Ratio approximation
No Yes Match Letter-approximation
No Yes Do not match Three-position-thumb
No No Not applicable Three-position-thumb

Supporting Attribute Lookups

When the user is looking up attribute values through the CE, the efficiency of the
operation depends a great deal on whether the catalog supports the continuation

of the attribute lookup (indicated by the kSupport sLookupCont i nueBi t bit). If a
catalog does not support this feature and the Di r LookupGet function returns the
kOCEMbr eDat a result code, the CE calls the function again with a bigger buffer instead
of continuing the lookup from the last attribute. The CE continues to do this until all
attribute values are completely enumerated or the Macintosh runs out of memory.

Providing Access Controls

3-26

You may want to provide access controls to safeguard the content of the catalogs that
you support. If a catalog that you support already has its own system of controlling
access, you can translate AOCE access controls into those of the external catalog, and
vice versa. If a catalog has no access controls, you can implement them in your CSAM.
You may provide access controls at the dNode, record, and attribute-type level to limit
who may browse the contents of a dNode, record, or attribute type; who may modify the
contents; and so forth. See the chapter “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces for a complete description of access controls.

To implement access controls, you must know who is making a particular service
request. The i dent i ty field in the Di r Par anBl ock parameter block indicates who is
making the service request. It may contain the local identity, a specific identity, or 0.

The local identity is a reference value that identifies the principal user of the Macintosh
computer on which your CSAM is installed. If your CSAM implements access controls,
you should obtain the local identity by calling the Aut hGet Local | dent i t y function.
When you receive requests for catalog service, compare the value in the i denti ty field

Providing Access Controls

CHAPTER 3

Catalog Service Access Modules

in the Di r Par anBl ock parameter block with the local identity. If the local identity is
making the request, you can then determine if the access privileges of the local identity
are sufficient to perform the requested operation.

If the i denti ty field contains neither the local identity nor 0, it contains a specific
identity. A specific identity is a reference value that identifies a user, other than the
principal user, who has a PowerShare account. Your CSAM should take whatever action
is appropriate, depending on how you choose to handle specific identities. One option,
for example, is to treat a specific identity as a guest.

If thei denti ty field contains 0, it indicates that a guest made the catalog service
request. A guest is anyone other than the principal user and alternate users with
PowerShare accounts. If the target catalog supports guest access, you can then determine
if the access privileges for a guest are sufficient to perform the requested operation.

See the chapter “Authentication Manager” in Inside Macintosh: AOCE Application
Interfaces for descriptions of the local identity, specific identities, and the
Aut hGet Local | dent i ty function.

Handling Application Completion Routines

An application may provide a pointer to a completion routine when it makes an
asynchronous Catalog Manager service request. The completion routine takes a single
parameter—a pointer to the parameter block associated with the request.

Your CSAM must call the completion routine that an application provides. You need to

= push the pointer to the parameter block onto the stack (in case the completion routine
was written in C or Pascal)

= store the pointer to the parameter block in register A0 (in case the completion routine
was written in assembly language)

= store the result code for the function you just serviced in register DO (in case the
completion routine was written in assembly language)

» put the result code for the function in the i oResul t field of the parameter block

After taking these steps, you set the A5 register to the value of the saveA5 field of the
Di r Par anBl ock parameter block and call the completion routine.

You must call a completion routine at deferred-task time to avoid problems when virtual
memory may be in use. See the chapters “Virtual Memory Manager” in Inside Macintosh:

Memory and “Deferred Task Manager” in Inside Macintosh: Processes for more information
on the handling of virtual memory and deferred tasks.

Handling Application Completion Routines 3-27

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Listing 3-6 illustrates how you can call an application’s completion routine.

Listing 3-6 Calling an application’s completion routine

Di r Par anHeader record 0 ; struct DirParanBl ock {

gLi nk ds. | 1 Ptr gLi nk;

reserved Hl ds. | 1 | ong reserved Hl

reserved H2 ds. | 1 | ong reserved H2;

i oConpl eti on ds. | 1 ProcPtr ioConpletion

i oResul t ds. w 1 OSEr r i oResul t;

saveAb ds. | 1 | ong saveAb;

reqCode ds. w 1 short r eqCode;
endr S

Cal | Conpl etion proc export
with Di r Par amHeader
nove. | 4(sp), a0 ; AO -> paraneter bl ock
nove.w i oResult(a0), do0 ; D0 == ioResult
nove. | i oConmpl etion(a0),dl ;get application conpletion
beq. s @a ;exit if none
nove. | a5, - (sp) ; save ny A5
nove. | saveA5(a0), a5 ;restore application A5
[ink a6, #0 ;establish new stack frane
nove. | ao, - (sp) ; push param bl ock on stack
nove. | di, al ;put conpletion routine in Al
tst.w do ;set condition codes
jsr (al) ;call appl conpletion routine
unl k a6 ;cl ean out the stack
nove. | (sp) +, ab ;restore my A5

@ rts ;exit from Call Conpl etion
endwi t h
endp
end

Catalog Service Access Module Reference

This section describes the Catalog Manager functions that a CSAM or its setup template
calls and the functions that a CSAM provides. The structures and data types used by
these functions are described in the chapters “AOCE Utilities” and “Catalog Manager”
in Inside Macintosh: AOCE Application Interfaces. The Catalog Manager functions that your
CSAM supports are described in the chapter “Catalog Manager.”

3-28 Catalog Service Access Module Reference

CHAPTER 3

Catalog Service Access Modules

CSAM Functions

This section describes the Catalog Manager functions that you use to initialize a CSAM
and to add and remove a CSAM and the external catalogs that it supports.

All of these functions take a pointer to a catalog parameter block as input. Each
function description includes a list of the fields in the parameter block that are used
by the function.

To call a Catalog Manager function from assembly language, push the address of the

Di r Par anBl ock parameter block and the async flag onto the stack using the Pascal
calling convention, and place the selector value for the _oceTBDi spat ch trap macro in
register D0. Each function description includes the selector value for that function. The
function returns its result code in the i oResul t field of the parameter block. (The

Di r Par anBl ock parameter block is described in the chapter “Catalog Manager” in
Inside Macintosh: AOCE Application Interfaces.)

A CSAM must support asynchronous requests. See the sections “The Catalog Service
Function” on page 3-11 and “The Parse Function” on page 3-13 for information on how
to support an asynchronous request.

Initializing a CSAM

A CSAM must call the Di r | nst ant i at eDSAMfunction before it can receive catalog
service requests.

DirInstantiateDSAM

The Di r I nst ant i at eDSAMfunction provides the Catalog Manager with the addresses
of a CSAM’s catalog service and parse functions.

pascal OSErr Dirlnstanti ateDSAM (Di r ParanmBl ockPtr paranBl ock);
par anBl ock Pointer to a parameter block.

Parameter block

- i oResul t CSErr Result code

- dsamNane RStringPtr CSAM name

- dsanKi nd OCEDi r ect or yKi nd CSAM kind

- dsanDat a Ptr CSAM private data

- dsanDi r Proc ProcPtr CSAM'’s catalog
service function

- dsanDi r Par sePr oc ProcPtr CSAM'’s parse function

- dsamAut hPr oc ProcPtr Reserved; set to ni |

Catalog Service Access Module Reference 3-29

SOINPOIA SS9V 92IMI8S BofeleD -

DESCRIPTION

CHAPTER 3

Catalog Service Access Modules

Field descriptions
i oResul t The result of the function.

dsamNane A pointer to the name of the CSAM. You define the name of your
CSAM. Use the same name that your setup template provides to the
Di r AddDSAMfunction.

dsanKi nd You define this field to identify your CSAM further. Typically,
you provide the signature of your CSAM. Use the same value that
your setup template provides to the Di r AddDSAMfunction.

dsanDat a A pointer to data that is private to the CSAM. You provide this
pointer. The Catalog Manager passes this pointer to the CSAM’s
catalog service or parse function when an application calls a
Catalog Manager function and specifies a catalog that you support.

dsanDi r Proc A pointer to the CSAM'’s catalog service function. The Catalog
Manager calls the CSAM’s catalog service function to process all
application requests for catalog services except parse requests. You
must provide this value.

dsanDi r Par sePr oc
A pointer to the CSAM’s parse function. The Catalog Manager
calls the CSAM’s parse function to process an application’s parse
request. You must provide this value. You can pass the same pointer
as you provided in the dsanDi r Pr oc field if you process all
Catalog Manager requests through a single function.

dsamAut hPr oc Reserved. Set this field to ni | .

Your CSAM’s Open subroutine must call the Di r | nst ant i at eDSAMfunction to
provide the Catalog Manager with the addresses of the CSAM'’s catalog service and
parse functions. Until you do this, no application can use the services of the CSAM. Note
that the addresses (or entry points) can be identical if you simply dispatch the incoming
requests to other functions within your CSAM.

The Di r I nst ant i at eDSAMfunction is the only function in the Catalog Manager API
that is called exclusively by a CSAM.

If the values that you provide in the dsanmNanme and dsanKi nd fields do not match
those provided by your setup template to the Di r AddDSAMfunction, then the

Di r | nst ant i at eDSAMfunction returns the KOCEDSAM nst al | Er r result code. If
this occurs, the Catalog Manager never sends the CSAM any requests.

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

3-30

Trap macro Selector
_oceTBDi spat ch $0127

Catalog Service Access Module Reference

RESULT CODES

SEE ALSO

CHAPTER 3

Catalog Service Access Modules

noErr 0
kOCELocal Aut henti cati onFai |
-1561
kOCEDSAM nstal | Err -1628
k OCEQCESet upRequi r ed -1633
k OCEDSAMRecor dNot Found -1634

No error

User hasn’t entered Key Chain password
Mismatch on CSAM name and kind
Local identity is not set up

CSAM record not in Setup catalog

The Di r AddDSAMfunction, described next, causes the Catalog Manager to install and

open a CSAM.

A CSAM'’s catalog service and parse functions are described in the section
“Application-Defined Functions” beginning on page 3-37.

Application signatures are described in the chapter “Finder Interface” in Inside

Macintosh: Macintosh Toolbox Essentials.

Adding a CSAM and Its Catalogs

The Catalog Manager provides the Di r AddDSAMand Di r AddDSANMDI r ect or y
functions so that your setup template can add a CSAM and the catalogs it supports

to a user’s Setup catalog.

DirAddDSAM

The Di r AddDSAMfunction opens a CSAM that you specify and adds a record
representing the new CSAM to the Setup catalog.

pascal OSErr

par anmBl ock Pointer to a parameter block.

Parameter block

- i oResul t CSErr
- dsanmRecor dCl D Creationl D
> dsamNane RStringPtr

5 dsanKi nd

> f sSpec FSSpecPtr

Field descriptions
i oResul t

dsanRecor dCl D

Di r AddDSAM (Di r Par anBl ockPt r

OCEDi r ect or yKi nd

The result of the function.
The creation ID of the record that the function adds to the Setup

par anBl ock) ;

Result code

Creation ID of CSAM record
CSAM name

CSAM kind

CSAM file specification

catalog. This record represents the CSAM. You pass the CSAM
record’s creation ID to the Di r AddDSAMDI r ect or y function when
you want to add a catalog that the CSAM supports.

Catalog Service Access Module Reference

3-31

SOINPOIA SS9V 92IMI8S BofeleD -

DESCRIPTION

CHAPTER 3

Catalog Service Access Modules

dsamNane A pointer to the name of the CSAM. You define the name of your
CSAM. Use the same name that your CSAM provides to the
Di rlnstanti at eDSAMfunction.

dsankKi nd You define this field to further identify your CSAM. Typically, you
provide the signature of your CSAM. Use the same value that your
CSAM provides to the Di r | nst ant i at eDSAMfunction.

f sSpec A pointer to the file system specification structure that identifies the
file containing the CSAM.

Your setup template calls the Di r AddDSAMfunction to install a CSAM and make it
available to the user. You call this function before calling the Di r AddDSAMDI r ect ory
function.

The function installs the CSAM in the Device Manager’s unit table and opens the
driver. The function creates a record for the CSAM. The CSAM record name is the string
that you provide in the dsanNane field; its record type is aoce DSAMrxxx, where xxxx
is the value you provide in the dsanKi nd field. The function then adds the new

CSAM record to the Setup catalog and returns the record’s creation ID.

The dsamNane and dsanKi nd fields are provided to identify your CSAM. For example,
the name of an AppleLink CSAM might be Appl eLi nk CSAMwhereas its kind might be
ALNK. The combination of name and kind must be unique among CSAMs installed on
the computer.

If the CSAM is already installed, the function provides you with the creation ID of the
CSAM record and returns the KOCEDSAMRecor dEXi st s result code.

SPECIAL CONSIDERATIONS

If your CSAM is a component of a personal MSAM, your setup template calls the
Di r AddDSAMfunction as part of the combined access module initialization procedure,
described in the chapter “Service Access Module Setup” in this book.

This function is always executed synchronously.

There is no registry to guarantee that your CSAM name and kind are unique. To ensure
uniqueness, set your CSAM name to your company name or product name and set your
CSAM kind to your CSAM'’s signature that is registered with Macintosh Developer
Technical Services.

ASSEMBLY-LANGUAGE INFORMATION

3-32

Trap macro Selector
_oceTBDi spat ch $011D

Catalog Service Access Module Reference

CHAPTER 3

Catalog Service Access Modules

RESULT CODES
noErr 0 No error
k OCEPar antr r -50 Invalid parameter
kOCELocal Aut henti cat i onFai |
-1561 User hasn’t entered Key Chain password
kOCEDSAM nst al | Err -1628 CSAM could not be installed
kOCEDSAMRecor dExi st s -1636 CSAM record is already in Setup catalog
SEE ALSO
The Cr eat i onl Dstructure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.
The Di r AAdDSAMDI r ect or y function is described next.
To remove a CSAM that you added, use the Di r RenbveDSAMfunction (page 3-35).
For more information about the Setup catalog and the CSAM record, see the chapter
“Service Access Module Setup” in this book.
Application signatures are described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.
DirAddDSAMDirectory

The Di r AddDSAMDI r ect or y function adds a record for an external catalog to the

Setup catalog.

pascal OSErr Dir ADDSANDI rectory (DirParanBl ockPtr paranBl ock,
Bool ean async);

par anBl ock Pointer to a parameter block.

async A Boolean value that specifies if the function is to be executed
asynchronously. Set async to t r ue if you want the function to be

executed asynchronously.

Parameter block

- i oConpl eti on ProcPtr
- i oResul t CSEr r
- clientData | ong
- dsanRecordCl D Creationl D
- di rect or yName Di rect oryNanePt r
- di scri m nat or Di rDi scri m nat or
- features DirGestalt
- di rect oryRecordCl D
Creationl D

Catalog Service Access Module Reference

Your completion routine
Result code

You define this field
Creation ID of CSAM record
Name of the catalog
Discriminator value

Feature flags

Creation ID of Catalog record

3-33

SOINPOIA SS9V 92IMI8S BofeleD -

DESCRIPTION

ASSEMBLY-LANGUAGE INFORMATION

3-34

CHAPTER 3

Catalog Service Access Modules

Field descriptions
i oConpl etion

i oResul t

clientData

dsamRecor dCl D

di rect or yNane
di scri m nat or

f eatures

A pointer to a completion routine that you can provide. If you call
this function asynchronously, it calls your completion routine when
it completes execution. Set this field to ni | if you don’t provide a
completion routine. The function ignores this field if you call it
synchronously.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 as soon as the function has
been queued for execution. When the function completes execution,
it sets this field to the actual function result code.

Reserved for your use. If you call the Di r AddDSAMDI r ect ory
function asynchronously, you can use this field to pass a private
value to your completion routine.

The creation ID of the record representing the CSAM associated
with the catalog you want to add. You can obtain the CSAM’s
record creation ID from the Di r AddDSAMfunction.

A pointer to the name of the catalog that you want to add.

A value that distinguishes between two or more catalogs with the
same name. You define this value for the catalog you want to add.

The set of feature flags for the catalog you want to add. The flags
are described in the section “Indicating the Features You Support”
beginning on page 3-16.

di rect oryRecordCl D

The creation ID of the record for the catalog that you want to add.
You obtain the creation ID by using the Cal | BackDET macro to call
the KDETcndGet DSSpec callback routine. This provides you with
the Catalog record’s complete record ID, from which you can
extract the creation ID.

Your setup template calls the Di r AddDDSAMDI r ect or y function to add to the Setup
catalog a Catalog record for an external catalog that you specify. Once the function
successfully completes execution, the external catalog is accessible to the user.

When you add a record for an external catalog, the catalog becomes visible to the

Di r Enuner at eDi rect ori esGet function. The catalog remains visible and available
for use with other Catalog Manager functions until its Catalog record is explicitly
removed from the Setup catalog by the Di r RenoveDi r ect or y function.

(AOCE software creates the Catalog record whose creation ID you provide in the
di rect or yRecor dCl Dfield. It does this when the user adds a catalog to his or her
available catalog services.)

Trap macro
_oceTBDi spat ch

Selector
$0133

Catalog Service Access Module Reference

CHAPTER 3

Catalog Service Access Modules

RESULT CODES
noErr 0 No error
kOCEAI r eadyExi st s -1510 Catalog with same name and kind
already exists
kOCELocal Aut henti cati onFai |
-1561 User hasn’t entered Key Chain password
kKOCEDSAM nst al | Err -1628 CSAM doesn't exist
kOCEDSAMNot | nst ant i at ed -1635 CSAM is not instantiated
SEE ALSO

The Di r RenmoveDi r ect or y function is described on page 3-37.

The Di r Enuner at eDi rect ori esGet function is described in the chapter “Catalog
Manager” in Inside Macintosh: AOCE Application Interfaces.

The Di r AddDSAMfunction is described on page 3-31.

For more information about the Setup catalog and the Catalog record, see the chapter
“Service Access Module Setup” in this book.

Catalog feature flags are described in the section “Indicating the Features You Support”
beginning on page 3-16.

The Cal | BackDET macro and the kDETcnmdGet DSSpec callback routine are described
in the chapter “AOCE Templates” in Inside Macintosh: AOCE Application Interfaces.

Removing a CSAM and Its Catalogs

The Catalog Manager provides the Di r RembveDSAMand Di r RenoveDi r ect ory
functions. Your template uses these functions to remove records for CSAMs and external
catalogs from the Setup catalog.

DirRemoveDSAM

The Di r RenmoveDSAMfunction removes a record for a specific CSAM from the
Setup catalog.

pascal OSErr Dir RenoveDSAM (Di r Par anBl ockPt r par anBl ock) ;
par anmBl ock Pointer to a parameter block.

Parameter block

- i oResul t OSEr r Result code
o dsanRecor dCl D Creationl D Creation ID of CSAM record

Catalog Service Access Module Reference 3-35

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Field descriptions
i oResul t The result of the function.
dsanRecordCl D The creation ID of the CSAM record in the Setup catalog for the

CSAM that you want to remove. This creation ID is stored in the
kPar ent DSAMAt t r TypeNumattribute type in the template’s record.

DESCRIPTION

Your setup template calls the Di r RenmoveDSAMfunction to remove a CSAM record from
the Setup catalog. The function also closes the CSAM driver and removes from the Setup
catalog all Catalog records for catalogs supported by the CSAM.

You can obtain the creation ID of the CSAM record by using the Cal | BackDET macro

to call the KDETcndGet DSSpec callback routine. Specify kDETSel f as the target to
retrieve the DSSpec structure that identifies your template record. Then pass that DSSpec
structure to the Di r LookupGet function to read the kPar ent DSAMAt t r TypeNum
attribute type.

Once a CSAM’s record is removed from the Setup catalog, the catalogs it serves are
unavailable.

Ordinarily, you do not call this function. It is included to provide setup templates with
flexibility in handling the CSAM record. For instance, if a user deletes all of the catalogs
a CSAM supports, its setup template may remove the CSAM.

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0120

RESULT CODES
noErr 0 No error
k OCEPar antr r -50 Invalid parameter
kOCEDSAM nstal | Err -1628 CSAM doesn’t exist
SEE ALSO

The Cr eat i onl Dstructure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

For more information about the Setup catalog, see the chapter “Service Access Module
Setup” in this book.

You can add a CSAM to the Setup catalog by calling the Di r AddDSAMfunction
(page 3-31).

3-36 Catalog Service Access Module Reference

CHAPTER 3

Catalog Service Access Modules

For information about the Cal | BackDET macro and the kDETcndGet DSSpec callback
routine, see the chapter “AOCE Templates” in Inside Macintosh: AOCE Application
Interfaces.

The Di r LookupGet function is described in the chapter “Catalog Manager” in Inside
Macintosh: AOCE Application Interfaces.

DirRemoveDirectory

The Di r RemoveDi r ect or y function removes from the Setup catalog a record that
represents a catalog.

Because the function is not limited to removing external catalogs, it is described in the
chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces.

Application-Defined Functions

You provide the catalog service and parse functions described in this section. You pass
their addresses to the Catalog Manager when you call the Di r | nst ant i at eDSAM
function. The Catalog Manager calls your functions when an application requests a
service from an external catalog that you support. It is through these functions that you
supply catalog services.

MyDSAMDijirProc

The MyDSAMDI r Pr oc function accepts and processes Catalog Manager requests for
catalog services. You must provide this function as part of your CSAM.

pascal OSErr MyDSAMDI rProc (Ptr dsanDat a,
Di r Par anBl ockPtr par anBl ock,
Bool ean async);

dsanData A pointer to the CSAM’s private data. This is the value that you
previously passed to the Di r | nst ant i at eDSAMfunction in the
dsanDat a field of its Di r Par anBl ock parameter block.

par anBl ock A pointer to the parameter block that the application passed to the
Catalog Manager when the application called a Catalog Manager
function.

async A Boolean value that specifies if the request must be processed synchro-
nously or asynchronously. If this field is set to t r ue, you must process the
request asynchronously.

Catalog Service Access Module Reference 3-37

SOINPOIA SS9V 92IMI8S BofeleD -

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 3

Catalog Service Access Modules

The Catalog Manager calls your catalog service function when an application requests

a service, other than parse, from a catalog supported by your CSAM. You determine

the type of request by examining the r eqCode field in the Di r Par anBl ock parameter
block. Each possible value of the r eqCode field corresponds to a Catalog Manager
function. You then process the request and return the necessary information in the fields
of the par anBl ock parameter block.

Each type of service request that you may receive corresponds to a single Catalog
Manager function. For each type of service request that you process, you should return
only those result codes that are defined by the Catalog Manager for the corresponding
function. See the description of each Catalog Manager function for the list of result codes
you can return for that function.

The section “The Catalog Service Function” on page 3-11 provides general information
on the actions that your MyDSAMDI r Pr oc function should take while servicing a request
for catalog services. You decide how to implement a given Catalog Manager function for
the catalog that you support.

The Di r | nst ant i at eDSAMfunction is described on page 3-29.

The chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces contains
descriptions of each Catalog Manager function.

The request codes that may appear in the r eqCode field in the Di r Par anBl ock
parameter block are listed in “Data Types and Constants” beginning on page 3-42.

MyDSAMDijirParseProc

3-38

The MyDSAMDI r Par sePr oc function accepts and processes Catalog Manager parse
requests. You may provide this function as part of your CSAM.

pascal OSErr MyDSAMD r ParseProc (Ptr dsanDat a,
Di r Par anBl ockPtr par anBl ock,
Bool ean async);

dsanData A pointer to the CSAM’s private data. This is the value that you

previously passed to the Di r | nst ant i at eDSAMfunction in the
dsanDat a field of its Di r Par anBl ock parameter block.

Catalog Service Access Module Reference

DESCRIPTION

CHAPTER 3

Catalog Service Access Modules

par anBl ock A pointer to the parameter block that the application provided to the
Catalog Manager when the application made a parse request.

async A Boolean value that specifies if the request must be processed synchro-
nously or asynchronously. If this field is set to t r ue, you must process the
request asynchronously.

The Catalog Manager calls your parse function when an application makes a parse
request and specifies a catalog that your CSAM supports. You determine the specific
type of parse request by examining the r eqCode field in the Di r Par anBl ock
parameter block. Each possible value of the r eqCode field corresponds to a Catalog
Manager function. You then process the request by returning the necessary information
in the fields of the parameter block and calling the application’s callback routine.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You can choose to dispatch all service requests through a single function. In that case,
you don’t provide a separate and distinct parse function. Instead, you pass the same
address to the Di r | nst ant i at eDSAMfunction in both the dsanDi r Pr oc and
dsanDi r Par sePr oc fields.

Each type of parse request that you may receive corresponds to a single Catalog
Manager function. For each type of parse request that you process, you should return
only those result codes that are defined by the Catalog Manager for the corresponding
function. See the description of each Catalog Manager function for the list of result codes
you can return for that function.

The sections “The Catalog Service Function” on page 3-11 and “The Parse Function” on
page 3-13 provide general information on the actions that your MyDSAMDI r Par sePr oc
function should take while servicing a parse request. You decide how to implement a
given Catalog Manager parse function for the catalog that you support.

The chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces contains
descriptions of each Catalog Manager function.

The request codes that may appear in the r eqCode field in the Di r Par anBl ock
parameter block are listed in the section “Data Types and Constants” beginning on
page 3-42.

Catalog Service Access Module Reference 3-39

SOINPOIA SS9V 92IMI8S BofeleD -

Resources

CHAPTER 3

Catalog Service Access Modules

This section describes the ' DRVR' resource type that you provide in a CSAM.

The Driver Resource

The driver resource contains the executable code that implements support for the
Catalog Manager API. Listing 3-7 shows the Rez definition of the ' DRVR' resource type.

unused */

| ock driver
for
cal |
responds to Status */
responds to Control */
responds to Wite */
responds to Read */
unused */

driver delay (ticks)
DA event mask */
driver nenu ID */

in menory */
periodic action */
before heap reinit */

*/

to
to
to

of f set
of f set
of f set
of f set
of f set
driver
driver

DRVRRunti nre Qpen */
DRVRRuntime Prinme */
DRVRRunti me Control */
to DRVRRuntime Status */
to DRVRRuntine Cl ose */
nane */

code */

» A Boolean value that indicates if your driver should be locked in memory. You must

» A Boolean value that indicates if your driver should receive processor time

= A Boolean value that indicates if your driver should be notified before the application
heap is reinitialized. Because your CSAM driver must reside in the system heap, this

Listing 3-7 ' DRVR' resource definition
type 'DRVR {
bool ean = 0; /*
bool ean dont NeedLock, needLock; /*
bool ean dont NeedTi ne, needTi ne; /*
bool ean dont NeedGoodbye, needGoodbye; /*
bool ean noSt at usenabl e, statusEnable; /*
bool ean noCt| Enabl e, ctl Enabl e; /*
bool ean noWiteEnabl e, witeEnable; /*
bool ean noReadEnabl e, r eadEnabl e; /*
byte = 0; /*
unsi gned i nt eger; /*
i nteger; /*
i nteger; /*
unsi gned i nteger = 50; /*
unsi gned i nteger = 54; /*
unsi gned i nteger = 58; /*
unsi gned integer = 62; /*
unsi gned i nteger = 66; /*
pstring[31]; /*
hex string; /*
b
The driver resource contains the following fields:
» An unused Boolean value.
set this to needLock for a CSAM.
periodically. Set this according to the needs of your CSAM.
Boolean value is irrelevant.
3-40 Catalog Service Access Module Reference

CHAPTER 3

Catalog Service Access Modules

= A Boolean value that indicates if your driver responds to Status calls from the
Device Manager.

= A Boolean value that indicates if your driver responds to Control calls from the
Device Manager.

= A Boolean value that indicates if your driver responds to Write calls from the
Device Manager.

= A Boolean value that indicates if your driver responds to Read calls from the
Device Manager.

= An unused value.

= A value that indicates the number of ticks between your periodic time intervals. If you
have already specified the Boolean value needTi ne, set this according to the needs
of your CSAM.

» A value for desk accessories. It is irrelevant to a CSAM.
» A value for desk accessories. It is irrelevant to a CSAM.

= Five 4-byte values that specify the offsets to your Open, Prime, Control, Status, and
Close driver subroutines, respectively.

= The name of your CSAM driver. You can use uppercase and lowercase letters when
naming your driver, but the first character must be a period.

= The hexadecimal representation of your executable code. Your driver subroutines
must be aligned on a word boundary.

Catalog Service Access Module Reference 3-41

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Summary of Catalog Service Access Modules

C Summary

Data Types and Constants

enum { /* feature flag bits */
kSuppor t sDNodeNunber Bi t = 0,
kSupport sRecordCreati onl DBi t = 1,
kSupportsAttri but eCreationl DBt = 2,
kSupport shat chAl | Bi t = 3,
kSupport sBegi nsWt hBit = 4,
kSupport sExact Mat chBi t = b5,
kSupport sendsW t hBi t = 6,
kSupport sCont ai nsBi t =7,
kSupport sOr der edEnuner at i onBi t = 8,
kCanSupport NameOr der Bi t =9,
kCanSupport TypeOr der Bi t = 10,
kSupport Sort Backwar dsBi t = 11,
kSupport | ndexRati oBit = 12,
kSupport sEnuner ati onCont i nueBi t = 13,
kSupport sLookupCont i nueBi t = 14,
kSuppor t sEnuner at eAtt ri but eTypeConti nueBit= 15,
kSupport seEnuner at ePseudonyntCont i nueBi t = 16,
kSupport sAl i asesBit = 17,
kSupport sPseudonynsBi t = 18,
kSupport sParti al Pat hNanesBi t = 19,
kSupport sAut henti cati onBi t = 20,
kSupport sProxi esBi t = 21,
kSupport sFi ndRecor dBi t = 22
1
enum { /* feature flag masks */
kSuppor t sDNodeNunber Mask = 1L<<kSupport sDNodeNunberBi t,
kSupport sRecor dCr eat i onl Dvask = 1lL<<kSupportsRecordCreationl DBit,
kSupportsAttributeCreationl DMask = 1L<<kSupportsAttri buteCreationlDBit,
kSuppor t sMat chAl | Mask = 1L<<kSupportsMatchAl I Bi t,
kSupport sBegi nsW t hMask = 1lL<<kSupportsBegi nsWthBit,
kSupport sExact Mat chMask = 1l<<kSupport sExact Mat chBi t,

3-42 Summary of Catalog Service Access Modules

s

/*

CHAPTER 3

Catalog Service Access Modules

kSupport seEndsW t hMask
kSuppor t sCont ai nsMask

kSupport sOr der edEnurner at i onMask
kCanSupport NameOr der Mask
kCanSupport TypeOr der Mask

kSuppor t Sor t Backwar dsMask
kSupport | ndexRat i oMask

kSuppor t sEnuner at i onCont i nueMask
kSuppor t sLookupCont i nueMask

1L<<kSupportsEndsWthBit,

= 1L<<kSupportsContai nsBit,

1L<<kSupport sOrder edEnunerationBit,

1L<<kCanSupport NameOrderBit,
1L<<kCanSupport TypeOrderBit,
1L<<kSupport Sort Backwar dsBi t,

= 1llL<<kSupport | ndexRatioBit,

1L<<kSupport sEnunerati onConti nueBit,

1L<<kSupport sLookupConti nueBi t,

kSupport sEnuner at eAttri but eTypeCont i nueMask =
1L<<kSupport sEnunerateAttri but eTypeConti nueBit,
kSupport sEnuner at ePseudonyntCont i nueMask =

1L<<kSupport sEnuner at ePseudonymCont i hueBi t,

kSupport sAl i asesMask
kSuppor t sPseudonynsMask
kSupport sParti al Pat hNamesMask
kSupport sAut henti cati onMask
kSuppor t sPr oxi esiMask
kSupport sFi ndRecor dMask

request codes for

#defi ne kD r Enuner at ePar se
#def i ne kDi r LookupPar se

#defi ne kDir Enumer at eAttri but eTypesPar se

#def i ne kDi r Enumrer at ePseudonynPar se

#def i ne kDi r Net Sear chADAPDI r ect or i esPar se

1L<<kSupportsAli asesBit,
1L<<kSupport sPseudonynsBit,

1L<<kSupportsParti al Pat hNanesBi t,

1L<<kSupportsAut henticationBit,

= 1L<<kSupport sProxiesBit,

#defi ne kD r Enuner at eDirectori esPar se

#def i ne kDi r Fi ndADAPDI r ect or yByNet Sear ch
#defi ne kDi r Net Sear chADAPDI r ect ori esCet

#def i ne kDi r AddRecord

#def i ne kDirDel et eRecord

#define kDi r AddAttri but eVal ue
#define kDirDel eteAttributeVal ue
#def i ne kDi r ChangeAttri buteVal ue
#define kDirVerifyAttributeVal ue
#defi ne kDi r AddPseudonym
#def i ne kDirDel et ePseudonym
#def i ne kDi r Enurer at eGet

#def i ne kDi r Enumrer at eAttri but eTypesGet

#def i ne kDi r Enurer at ePseudonyntet
#def i ne kDi r Get NaneAndType
#def i ne kDi r Set NameAndType
#def i ne kDi r Get Recor dMet al nf o

1L<<kSupport sFi ndRecor dBi t

Cat al og Manager functions */

0x101
0x102
0x103
0x104
0x105
0x106
0x107
0x108
0x109
0x10A
0x10B
0x10C
0x10D
0x10E
Ox10F
0x110
0x111
0x112
0x113
0x114
0x115
0x116

Summary of Catalog Service Access Modules

3-43

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

#def i ne kDi r LookupGet 0x117
#def i ne kDi r Get DNodeMet al nf o 0x118
#define kDirGetDirectorylnfo 0x119
#defi ne kDi r Enuner at eDi rect ori esCet Ox11A
#defi ne kDir Abort 0x11B
#defi ne kDi r AddAl i as 0x11C
#defi ne kDi r AddDSAM 0x11D
#def i ne kDi r OQpenPersonal Directory Ox11E
#defi ne kDi rCreat ePersonal Directory Ox11F
#defi ne kDi r RenbveDSAM 0x120
#define kDirGetDirectorylcon 0x121
#def i ne kDi r MapPat hNaneToDNodeNunber 0x122
#def i ne kDi r MapDNodeNunber ToPat hNane 0x123
#define kDir Get Local Net wor kSpec 0x124
#def i ne kDi r Get DNodel nf o 0x125
#defi ne kDi r Fi ndVal ue 0x126
#define kDirlnstanti at eDSAM 0x127
#define kDi r Get OCESet upRef Num 0x128
#def i ne kDi r Get DNodeAccessCont r ol Get 0x12A
#defi ne kDi r Get Recor dAccessCont r ol Get 0x12C
#define kDirGet Attri but eAccessControl Get Ox12E
#def i ne kDi r Get DNodeAccessCont r ol Par se Ox12F
#define kDirDel eteAttributeType 0x130
#def i ne kDi r Gl osePersonal Directory 0x131
#def i ne kDi r MakePer sonal Di rect oryRLI 0x132
#def i ne kDi r AddDSAMDI r ect ory 0x133
#defi ne kDi r Get Recor dAccessContr ol Parse 0x134
#def i ne kDi r RenoveDi rectory 0x135
#def i ne kDir Get Ext endedDi rectorieslnfo 0x136
#def i ne kDi r AAdADAPDI r ect ory 0x137
#define kDirGet Attri but eAccessControl Parse 0x138
#def i ne kDi r Fi ndRecor dGet 0x140
#defi ne kDi r Fi ndRecor dPar se 0x141

struct Dirlnstanti at eDSAMPB {

Aut hDi r Par anHeader /* paraneter bl ock header */
RStringPtr dsanNane; /* CSAM name */

OCEDi r ect oryKi nd dsanKi nd; /* CSAM ki nd */

Ptr dsanDat a; /* CSAM private data */
ProcPtr dsanDi r Pr oc; /* catal og service function */
ProcPtr dsanDi r Par seProc; /* parse function */

ProcPtr dsamAut hPr oc; /* reserved, set to nil */

b
typedef struct DirlnstantiateDSAMPB Dirl nstanti at eDSAVPB;

3-44 Summary of Catalog Service Access Modules

CHAPTER 3

Catalog Service Access Modules

struct Di r AddDSAMPB {

Aut hDi r Par anHeader /* paranmeter bl ock header */
Creationl D dsanRecordCI D, /* CSAMrecord creation ID */
RStringPtr dsamNane; /* CSAM nane */

OCEDi rectoryKi nd dsanKi nd; /* CSAM ki nd */

FSSpecPtr f sSpec; /* CSAMs file specification */

1
typedef struct D r AddDSAMPB Di r AddDSAMPB;

struct Di r AdDSAMDI rect oryPB {
Aut hDi r Par anHeader /* paraneter block header */
CreationlD dsanRecordCID; /* CSAMrecord creation ID */
DirectoryNanePtr directoryNanme; /* catal og nanme */
DirDiscrimnator discrimnator; /* catalog discrimnator value */
DirGestalt features; /* feature flags for the catalog */
Creationl D di rect oryRecor dCl D;

/* Catal og record creation ID */

1
typedef struct Dir AddDSAMDI r ect or yPB Di r AddDSAMDI r ect or yPB;

struct D r RenoveDSAMPB {
Aut hDi r Par anHeader /* parameter block header */
Creationl D dsamRecordcCl D, /* CSAM record creation ID */

s

typedef struct Dir RenmoveDSAMPB Di r RenmoveDSAMPB;

CSAM Functions

Initializing a CSAM

pascal OSErr Dirlnstanti at eDSAM
(Di r ParanBl ockPtr paranBl ock);

Adding a CSAM and Its Catalogs

pascal OSErr Di r AddDSAM (Di r Par anBl ockPtr paranBl ock);

pascal OSErr Dir AddDSAMDI rectory
(Di r ParanBl ockPtr paranBl ock, Bool ean async);

Removing a CSAM and Its Catalogs
pascal OSErr Dir RemoveDSAM (Di r Par anBl ockPt r paranBl ock) ;

Summary of Catalog Service Access Modules 3-45

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Application-Defined Functions

pascal OSErr MyDSAMDi rProc (Ptr dsanbData, DirParanBl ockPtr paranBl ock,
Bool ean async);
pascal OSErr MyDSAMD r Par seProc
(Ptr dsanData, DirParanBl ockPtr paranBl ock,
Bool ean async);

Pascal Summary

Data Types and Constants

CONST
{ feature flag bits }

kSuppor t sDNodeNunber Bi t = 0;
kSupport sRecor dCr eati onl DBi t = 1;
kSupportsAttri but eCreationl DBt = 2;
kSupport shat chAl | Bi t = 3;
kSupport sBegi nsWt hBit = 4;
kSupport sExact Mat chBi t = b;
kSupport sendsW t hBi t = 6;
kSupport sCont ai nsBi t =7
kSupport sOr der edEnuner at i onBi t = 8;
kCanSupport NameOr der Bi t = 9;
kCanSupport TypeOr der Bi t = 10;
kSupport Sort Backwar dsBi t = 11;
kSupport |l ndexRati oBit = 12;
kSupport sEnuner ati onCont i nueBi t = 13;
kSupport sLookupCont i nueBi t = 14;
kSupport sEnuner at eAttri but eTypeCont i nueBi t = 15;
kSuppor t sEnuner at ePseudonyntCont i nueBi t = 16;
kSupport sAl i asesBit = 17;
kSupport sPseudonynsBi t = 18;
kSupportsParti al Pat hNanesBi t = 19;
kSupport sAut henti cati onBi t = 20;
kSupport sProxi esBi t = 21;
kSupport sFi ndRecor dBi t = 22;

{ feature flag masks }

kSuppor t sDNodeNunber Mask = $00000001;
kSupport sRecor dCr eat i onl DMVask = $00000002;
kSupport sAttri but eCreati onl Dvask = $00000004;

3-46 Summary of Catalog Service Access Modules

CHAPTER 3

Catalog Service Access Modules

kSupport sMat chAl | Mask

kSupport sBegi nsW t hMask

kSupport sExact Mat chMask

kSupport seEndsW t hMask

kSuppor t sCont ai nsMask

kSupport sOr der edEnurner at i onMask
kCanSupport NameOr der Mask

kCanSupport TypeOr der Mask

kSuppor t Sor t Backwar dsMask

kSupport | ndexRat i oMask

kSuppor t sEnuner at i onCont i nueMask
kSuppor t sLookupCont i nueMask

kSupport sEnuner at eAttri but eTypeCont i nueMask
kSuppor t sEnuner at ePseudonyntCont i nueMask
kSupport sAl i asesMask

kSupport sPseudonynsMask

kSupportsParti al Pat hNamesMask

kSupport sAut hent i cati onMask

kSupport sProxi esMask

kSupport sFi ndRecor dvask

{ request codes for Catal og Manager requests
kDi r Enuner at ePar se

kDi r LookupPar se

kDi r Enuner at eAttri but eTypesPar se
kDi r Enuner at ePseudonynPar se

kDi r Net Sear chADAPDI r ect ori esPar se
kDi r Enuner at eDi rect ori esPar se
kDi r Fi ndADAPDI r ect or yByNet Sear ch
kDi r Net Sear chADAPDiI r ect ori esGet
kDi r AddRecord

kDi r Del et eRecor d

kDi r AddAt tri but eVal ue

kDi rDel et eAttri but eval ue

kDi r ChangeAttri but eval ue

kDi rVeri fyAttri buteVal ue

kDi r AddPseudonym

kDi r Del et ePseudonym

kDi r Enuner at eGet

kDi r Enuner at eAttri but eTypesGet
kDi r Enuner at ePseudonyntet

kDi r Get NanmeAndType

kDi r Set NaneAndType

kDi r Get Recor dMet al nf o

Summary of Catalog Service Access Modules

= $00000008;
= $00000010;
= $00000020;
= $00000040;
= $00000080;
= $00000100;
= $00000200;
= $00000400;
= $00000800;
= $00001000;
= $00002000;
= $00004000;
= $00008000;
= $00010000;
= $00020000;
= $00040000;
= $00080000;
= $00100000;
= $00200000;
= $00400000;

}
$101

$102
$103
$104
$105
$106
$107
$108
$109
$10A
$10B
$10C
$10D
$10E
$10F
$110
$111
$112
$113
$114
$115
$116

3-47

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

kDi r LookupGet $117
kDi r Get DNodeMet al nf o $118
kDi rGet Directorylnfo $119
kDi r Enuner at eDi rect ori esGet $11A
kDi r Abort $11B
kDi r AddAl i as $11C
kDi r AddDSAM $11D
kDi r OpenPer sonal Di rect ory $11E
kDi r Cr eat ePer sonal Directory $11F
kDi r RemoveDSAM $120
kDi r Get Directoryl con $121
kDi r MapPat hNaneToDNodeNunber $122
kDi r MapDNodeNurber ToPat hNarre $123
kDi r Get Local Net wor kSpec $124
kDi r Get DNodel nf o $125
kDi r Fi ndVal ue $126
kDi rl nst ant i at eDSAM $127
kDi r Get OCESet upRef Num $128
kDi r Get DNodeAccessCont r ol Get $12A
kDi r Get Recor dAccessCont r ol Get $12C
kDirGet Attri but eAccessCont rol Get $12E
kDi r Get DNodeAccessCont r ol Par se $12F
kDi rDel et eAttri but eType $130
kDi r Cl osePersonal Di rectory $131
kDi r MakePer sonal Di rect or yRLI $132
kDi r AddDSAMDI r ect ory $133
kDi r Get Recor dAccessCont r ol Par se $134
kDi r RenoveDirectory $135
kDi r Get Ext endedDi rectori eslnfo $136
kDi r AddADAPDiI r ect ory $137
kDi r Get Attri but eAccessControl Parse $138
kDi r Fi ndRecor dGet $140
kDi r Fi ndRecor dPar se $141

Dirl nstanti at eDSAMPB = RECORD

gLi nk: Ptr; { reserved }

reservedl: LONG NT; { reserved }

reserved2: LONG NT; { reserved }

i oConpl etion: ProcPtr; { your conpletion routine }

i oResul t: OSErr; { result code }

saveAb: LONG NT; { reserved }

r eqCode: | NTEGER; { Catal og Manager function request code }
reserved: ARRAY[1. .2] OF LONG NT;

{ reserved }

3-48 Summary of Catalog Service Access Modules

CHAPTER 3

Catalog Service Access Modules

serverHi nt:
dsRef Num
call 1D
identity:
gReservedl:
gReserved2
gReserved3
clientData:
dsamNare:
dsanKi nd:

dsanDat a
dsanDi r Proc:

dsanDi r Par seProc: ProcPtr

dsanmAut hPr oc
END;

Addr Bl ock;

| NTEGER

LONG NT;

Aut hl dentity;
LONG NT;

LONG NT;

LONG NT;

LONG NT;
RStringPtr;
OCEDi rectoryKi n

Ptr;
ProcPtr;

e et et Ma W e Wil e M o B e B e e

ProcPtr;

Di r AddDSAMPB = RECORD

gLi nk:
reservedl:
reserved2:

i oConpl eti on:
i oResul t:
saveA5:

r eqCode:
reserved:

serverHint:
dsRef Num
call 1D
identity:
gReservedl:
gReserved2
gReserved3
cl i ent Dat a:
dsanmRecor dCl D
dsanmNarre:
dsanKi nd:

f sSpec:
END;

Ptr;
LONG NT;
LONG NT;
Prochtr;
CSErr;
LONG NT;
| NTEGER

latn M et W e W e W e W e W

Power Share server’s Appl eTal k address }
personal catal og reference nunber }
reserved }

requestor’s authentication identity }
reserved }

reserved }

reserved }

you define this field }

CSAM nane }

CSAM ki nd }

CSAM private data }

CSAM s catal og service routine }
CSAM s parse routine }

reserved }

reserved }

reserved }

reserved }

your conpletion routine }

result code }

reserved }

Cat al og Manager function request code }

ARRAY[1..2] OF LONG NT;

Addr Bl ock;

| NTEGER
LONG NT;

Aut hl dentity;
LONG NT;
LONG NT;
LONG NT;
LONG NT;
Creationl D,
RStringPtr;

o M e B e W e et M e S)

OCEDi rect oryKi n

reserved }

Power Share server’s Appl eTal k address }
personal catal og reference nunber }
reserved }

requestor’s authentication identity }
reserved }

reserved }

reserved }

you define this field }

creation ID of CSAMrecord }

CSAM nane }

{ CSAM ki nd }
FSSpecPtr; { CSAM file specification }

Summary of Catalog Service Access Modules

3-49

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Di r AddDSAMDI r ect or yPB = RECORD

gLi nk: Ptr; { reserved }
reservedl: LONG NT; { reserved }
reserved2: LONG NT; { reserved }
i oCompl etion: ProcPtr; { your conpletion routine }
i oResul t: OSErr; { result code }
saveAb: LONG NT; { reserved }
r eqCode: | NTEGER,; { Catal og Manager function request code }
reserved: ARRAY[1. .2] OF LONG NT;
{ reserved }
serverH nt: Addr Bl ock; { Power Share server’s Appl eTal k address }
dsRef Num | NTEGER, { personal catal og reference nunmber }
calll D LONG NT; { reserved }
identity: Aut hl dentity; { requestor’s authentication identity }
gReservedl: LONG NT; { reserved }
gReserved2: LONG NT; { reserved }
gReserved3: LONG NT; { reserved }
cl i ent Dat a: LONG NT; { you define this field }

dsanRecordCl D. CreationlD;
directoryNanme: DirectoryNamePtr;
discrimnator: DirDiscrimnator;
features: DirGestalt;

di rectoryRecordCl D: CreationlD;
END;

~

Di r RembveDSAMPB = RECORD

creation ID of CSAMrecord }
{ catal og nane }
{ discrimnator value }
{ feature flags for the catal og }
{ creation ID of catalog record }

gLi nk: Ptr; { reserved }
reservedl: LONG NT; { reserved }
reserved2: LONG NT; { reserved }
i oConpl etion: ProcPtr; { your conpletion routine }
i oResul t: OSErr; { result code }
saveAb: LONG NT; { reserved }
r eqCode: | NTEGER; { Catal og Manager function request code }
reserved: ARRAY[1. .2] OF LONG NT;
{ reserved }
serverHint: Addr Bl ock; { Power Share server’s Appl eTal k address }
dsRef Num | NTEGER; { personal catal og reference nunmber }
cal Il D LONG NT; { reserved }
identity: Aut hl dentity; { requestor’s authentication identity }
gReservedl: LONG NT; { reserved }
gReserved2: LONG NT; { reserved }
gReserved3: LONG NT; { reserved }
cl i ent Dat a: LONG NT; { you define this field }
dsanRecordCl D. CreationlD; { creation ID of CSAMrecord }

END;

3-50 Summary of Catalog Service Access Modules

CHAPTER 3

Catalog Service Access Modules

CSAM Functions

Initializing a CSAM

FUNCTI ON Di rI nst anti at eDSAM (par anBl ock: DirParanBl ockPtr): OSErr;
Adding a CSAM and Its Catalogs
FUNCTI ON Di r AddDSAM (paranBl ock: DirParanBl ockPtr): OSErr;
FUNCTI ON Di r AddDSAMDI r ect ory (par anBl ock: Dir ParanBl ockPtr;
async: BOOLEAN): CSErr;
Removing a CSAM and Its Catalogs
FUNCTI ON Di r Renmove DSAM (paranBl ock: DirParanBl ockPtr): OSErr;
Application-Defined Functions
FUNCTI ON MyDSAMDI r Func (dsanDat a: Ptr; paranBl ock: DirParanBl ockPtr;

async: BOOLEAN): OSErr;

FUNCTI ON MyDSAMDI r Par seFunc (dsanData: Ptr; paranBl ock: DirParanBl ockPtr;

async: BOOLEAN): OSErr;

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_oceTBDi spat ch

Selector Routine

0%$127 Dirlnstanti at eDSAM
0%$11D Di r AddDSAM

0%$133 Di r AddDSAMDI r ect ory
0%$120 Di r Renove DSAM

0$135 Di r RenoveDi rectory

Summary of Catalog Service Access Modules

3-51

SOINPOIA SS9V 92IMI8S BofeleD -

CHAPTER 3

Catalog Service Access Modules

Result Codes

noErr 0
k OCEPar antr r -50
kOCEAI r eadyExi st's -1510
kOCELocal Aut henti cati onFai |

-1561
kOCEDSAM nstal | Err -1628
k OCECCESet upRequi r ed -1633
k OCEDSAMRecor dNot Found -1634
k OCEDSAMNot | nst anti at ed -1635
k OCEDSAMRecor dEXi st s -1636

3-52

No error
Invalid parameter
Catalog with same name and kind already exists

User hasn’t entered Key Chain password
CSAM could not be installed or doesn’t exist
Local identity is not set up

CSAM record not in Setup catalog

CSAM is not instantiated

CSAM record is already in Setup catalog

Summary of Catalog Service Access Modules

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Service Access Modules TOC
	 Introduction to Service Access Modules
	 Messaging Service Access Modules TOC
	 Messaging Service Access Modules, Part 1 (Intro, Using and Reference: Data Types & Constants)
	 Messaging Service Access Modules, Part 2 (Reference: Functions Part 1)
	 Messaging Service Access Modules, Part 3 (Reference: Functions Part 2)
	 Messaging Service Access Modules, Part 4 (Summary)
	 Catalog Service Access Modules TOC
	Catalog Service Access Modules
	Introduction to Catalog Service Access Modules
	Components of a CSAM
	Writing a Driver Resource for a CSAM
	Responding to the Catalog Manager
	The Catalog Service Function
	The Parse Function
	Determining the Version of the Catalog Manager

	Indicating the Features You Support
	Human Interface Considerations
	Supporting Records Having the Same Name and Type
	Supporting Multiple Attribute Values of the Same T...
	Supporting Browsing and Finding
	Supporting Large Catalogs
	Supporting Attribute Lookups

	Providing Access Controls
	Handling Application Completion Routines
	Catalog Service Access Module Reference
	CSAM Functions
	Initializing a CSAM
	Adding a CSAM and Its Catalogs
	Removing a CSAM and Its Catalogs

	Application-Defined Functions
	Resources
	The Driver Resource

	Summary of Catalog Service Access Modules
	C Summary
	Data Types and Constants
	CSAM Functions
	Application-Defined Functions

	Pascal Summary
	Data Types and Constants
	CSAM Functions
	Application-Defined Functions

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Service Access Module Setup TOC
	 Service Access Module Setup
	 Glossary
	 Index
	 Colophon

