

C H A P T E R 2

2

M
essaging S

ervice A
ccess M

odules

Messaging Service Access Modules 2

This chapter describes Apple Open Collaboration Environment (AOCE) messaging
service access modules. A messaging service access module is a software component that
provides the PowerTalk user with access to external mail and messaging services. You
do not need to read this chapter if you are writing a mail or messaging application or
adding mail or messaging capabilities to your application.

To write a messaging service access module, you need to be familiar with many
components of AOCE software. You should read the chapters “Introduction to the Apple
Open Collaboration Environment” and “AOCE Utilities” in Inside Macintosh: AOCE
Application Interfaces before reading this chapter to get a general overview of AOCE
software components and the shared AOCE data types and the utility routines that act
on them. This chapter assumes that you are familiar with AOCE catalogs and records
and their structures, and that you know how to read and write data to them. The
chapters “Standard Catalog Package” and “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces describe the high-level application programming interface (API)
and the low-level API to AOCE catalogs, respectively.

To read and write AOCE records, you must obtain an authentication identity. Identities
are described in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

Along with your messaging service access module, you need to provide a type of AOCE
template called an address template to allow the user to enter address information. If you
are writing a personal messaging service access module, you also need to provide a
setup template that allows the user to configure your access module. The chapter
“AOCE Templates” in Inside Macintosh: AOCE Application Interfaces describes how to
write an AOCE template. The chapter “Service Access Module Setup” in this book
provides additional specific information about setup and address templates and their
interaction with messaging service access modules and the PowerTalk Key Chain.

All messaging service access module developers need to be familiar with high-level
events. See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials
for information about high-level events.

This chapter starts with an introduction to messaging service access modules.
Subsequent sections describe

■ personal messaging service access modules

■ server messaging service access modules

■ the types of messages that are read and written by messaging service access modules

■ AOCE addresses

■ the AOCE high-level events

■ how to get messages out of an AOCE system

■ how to put messages into an AOCE system

■ the structures and routines in the messaging service access module API
2-5

C H A P T E R 2

Messaging Service Access Modules

Introduction to Messaging Service Access Modules 2

A messaging system is a combination of hardware and software that provides people
and processes with the ability to exchange electronic messages—it provides messaging
services. Apple’s AOCE messaging system consists of PowerTalk system software and
PowerShare mail servers that allow Macintosh users and processes accessible over a
network or via a modem to exchange electronic messages. Today there are many types of
messaging systems, such as Internet, AppleLink, QuickMail, and so forth, with which
AOCE users might want to communicate. To facilitate the exchange of messages between
an AOCE messaging system and other existing and future messaging systems, the AOCE
architecture defines a messaging service access module (MSAM). An MSAM links
Apple’s AOCE messaging system to another messaging system, extending the reach of
messaging service clients.

The AOCE architecture defines two kinds of MSAMs. A personal MSAM translates
messages and transfers them between a user’s Macintosh and the user’s account on
another messaging system. It runs on a user’s Macintosh. A server MSAM translates
and transfers messages between a PowerShare mail server and a non-AOCE messaging
system. A server MSAM transfers messages for any number of users located on the
AppleTalk network to which it is connected. It runs on a Macintosh with a PowerShare
mail server. Thus, the MSAM component of AOCE software architecture is scalable. It
can provide service to a single user who uses a non-networked Macintosh computer or
to large numbers of users in large internetworks.

Figure 2-1 shows how adding an MSAM to an AOCE system extends the reach of AOCE
users. Prior to adding an MSAM, AOCE users cannot exchange electronic messages with
others who are accessible only on a non-AOCE messaging system. Once an MSAM that
connects to the non-AOCE messaging system is added, the AOCE users can exchange
messages with people accessible on the non-AOCE messaging system.

The basic services provided by both personal and server MSAMs include

■ transferring messages between an AOCE messaging system and another
messaging system

■ translating the content of messages between AOCE-defined formats and other formats

■ translating message addresses between AOCE-defined formats and other formats

■ reporting the results of attempts to deliver messages

Personal and server MSAMs are described in more detail in the following sections.

A note on terminology

Throughout this chapter, the term message is used as an inclusive term
to refer to all types of messages. When information applies only to
letters (a specific type of message), the term letter is used. When
information applies only to messages that are not letters, the term
non-letter message is used. Letters and messages are defined in the
section “Types of Messages” beginning on page 2-16.
2-6 Introduction to Messaging Service Access Modules

C H A P T E R 2

Messaging Service Access Modules

2

M
essaging S

ervice A
ccess M

odules

Figure 2-1 Adding an MSAM

Messaging systems that are not provided automatically with PowerTalk
system software and PowerShare servers are collectively referred to as
external messaging systems. An external messaging system may handle
only letters or non-letter messages or both.

The term mail refers to letters. Messaging systems that handle only
letters are sometimes referred to as mail systems.

As a convention, this chapter refers to messages coming into an AOCE
system from an external messaging system as incoming messages and
to those that are leaving an AOCE system to go into an external
messaging system as outgoing messages.

Throughout the chapter, the text distinguishes between personal and
server MSAMs where appropriate. The term MSAM is used when the
text applies to both personal and server MSAMs, unless it is clear from
the context that only a personal or server MSAM is meant. ◆

An MSAM is a low-level component in the AOCE software hierarchy. It does not directly
provide services to a user or process; rather, it provides services indirectly through either
the Standard Mail Package or the Interprogram Messaging (IPM) Manager. Thus, a client
has a standard interface to all messaging systems, including those that are accessible via

AOCE messaging system before adding an MSAM

External
messaging

system

PowerShare
server

Server
Macintosh

External
messaging

system

PowerShare
server

Server
Macintosh

Server
MSAM

AOCE messaging system after adding an MSAM
Introduction to Messaging Service Access Modules 2-7

C H A P T E R 2

Messaging Service Access Modules

MSAMs as well as Apple’s PowerTalk and PowerShare services, regardless of underlying
differences in how messages are accessed and formatted. Figure 2-2 shows the relation-
ship of two clients, the Standard Mail Package, the IPM Manager, an MSAM, and an
external messaging system.

Figure 2-2 An MSAM’s relationship to AOCE software

MSAMs interact with the IPM Manager. Either the MSAM or the IPM Manager can
initiate communication with the other. Figure 2-3 illustrates the way the IPM Manager
and an MSAM initiate communications with each other. An MSAM initiates communi-
cation with the IPM Manager by calling one of the functions provided in the MSAM API.
These functions are described in detail in the section “MSAM Functions” beginning on
page 2-130.

The IPM Manager initiates communication with an MSAM by sending it a high-level
event. The events that the IPM Manager may send to an MSAM, which typically instruct
the MSAM to take some action or advise it of a status change, are described in the
section “High-Level Events” beginning on page 2-220.

Figure 2-3 Communication between the IPM Manager and an MSAM

Mail application

Messaging

application

AOCE Standard

Mail Package

IPM Manager MSAM
External

messaging system

MSAM API functions

AOCE high-level events

IPM Manager
 MSAM

2-8 Introduction to Messaging Service Access Modules

C H A P T E R 2

Messaging Service Access Modules

2

M
essaging S

ervice A
ccess M

odules

Personal MSAMs 2

A personal MSAM allows a user or a mail or messaging application to transfer messages
between the user’s Macintosh and users or applications on one or more external
messaging systems. A personal MSAM connects to an external messaging system and
transfers messages between the user’s Macintosh and the external messaging system.
The user or process must have an account on the external messaging system to which the
personal MSAM provides access. The user’s Macintosh does not need to be connected to
an AppleTalk network.

A personal MSAM is a background-only application; that is, it has no user interface.

Every personal MSAM must be accompanied by AOCE templates that allow the user to
configure the MSAM and to enter address information. These templates, called the setup
template and address template, are described in the chapter “Service Access Module Setup”
in this book. Information that applies to all AOCE templates is provided in the chapter
“AOCE Templates” in Inside Macintosh: AOCE Application Interfaces.

A file containing a personal MSAM must have a file type of either 'msam' or 'csam'. If
you provide both a personal MSAM and a catalog service access module (CSAM) in the
same file, use the file type'csam'(for “combined service access module”). If you
provide a personal MSAM only, use the file type 'msam'. You must include your setup
and address templates in the same file as your personal MSAM.

Although personal MSAMs and server MSAMs both connect to external messaging
systems and translate and transfer messages, there are a number of differences between
them. See Table 2-1 on page 2-11 for a list of these differences.

A slot, as the term is used in the MSAM API and in this chapter, refers to a collection of
information about one account on an external messaging system. The information
includes whatever is necessary to allow an MSAM to access the account and retrieve and
send messages. Slot information determines what external messaging system the MSAM
connects to. The term mail slot refers to a slot that allows the transfer of letters. The term
messaging slot refers to a slot that allows the transfer of non-letter messages.

Slot information is stored in the form of AOCE record attributes in records in the
PowerTalk Setup catalog. The record types in which the information is stored differ
depending on whether you provide a combined MSAM/CSAM or a stand-alone MSAM.
If you provide a combined MSAM/CSAM, slot information and its associated catalog
information is stored in a single Combined record. If you provide a stand-alone MSAM,
slot information is stored in a Mail Service record (sometimes called a slot record) and
associated catalog information is stored in a Catalog record. The setup template that you
provide with your MSAM writes slot information to some of these records; the PowerTalk
Key Chain writes to others. The chapter “Service Access Module Setup” in this book
describes the required attributes of the Combined, Mail Service, and Catalog records,
and it explains who is responsible for writing those attributes to the different types of
records in the Setup catalog.
Personal MSAMs 2-9

C H A P T E R 2

Messaging Service Access Modules

In addition to the required record attributes, slot information includes whatever is
necessary to allow the MSAM to service the slot—for instance, an access telephone
number and the line speed. MSAMs can define record attribute types to store slot
configuration information.

A personal MSAM can manage more than one slot. For example, if a user had two
accounts on an external messaging system of a given type, a personal MSAM
would manage two slots, one for each of the user’s accounts on that messaging system.
A personal MSAM also can connect to more than one external messaging system.
For example, if a user has an account on each of two independent messaging systems,
the same personal MSAM can connect to each system and manage a slot for the
user’s account there.

Each mail slot that a personal MSAM manages has two queues: an incoming queue and
an outgoing queue.

Each messaging slot that a personal MSAM manages has an outgoing queue. The notion
of an incoming queue does not apply to messaging.

An incoming queue contains AOCE letters that the personal MSAM translates from mail
received from its external messaging system and each letter’s associated message
summary. (See the section “MSAM Modes of Operation” beginning on page 2-12 for
information about message summaries.) An outgoing queue contains messages that the
personal MSAM must deliver to an external messaging system. A personal MSAM
retrieves a message from an outgoing queue, translates it, and delivers it to the intended
recipients on the external messaging system.

Note that any given queue contains either letters and message summaries or non-letter
messages. It does not contain both. Figure 2-4 shows an example of a personal MSAM
with three slots and their associated queues.

Figure 2-4 Personal MSAM with its slots and queues

Personal MSAM

Slot 1
for letters

Slot 2
for letters

Slot 3
for messages

Incoming
queue1

Outgoing
queue1

Outgoing
queue3

Incoming
queue2

Outgoing
queue2
2-10 Personal MSAMs

C H A P T E R 2

Messaging Service Access Modules

2

M
essaging S

ervice A
ccess M

odules

IMPORTANT

In release 1 of the AOCE software, the handling of non-letter messages is
not fully supported for personal MSAMs. Therefore it is not advisable
for a personal MSAM to implement the transfer of non-letter messages
using release 1 of the AOCE software. ▲

Server MSAMs 2

A server MSAM allows users and processes on an AppleTalk network to exchange
messages with other users and processes on one or more external messaging systems. It
serves its clients indirectly by acting as a conduit for messages between a PowerShare
mail server and the external systems to which the MSAM is connected. It must run on
the same Macintosh as its PowerShare mail server.

Server MSAMs route messages between different messaging systems rather than between
individual accounts on those systems. Therefore, a server MSAM does not necessarily
need to know about specific accounts on an external messaging system, and, as a result, it
has no concept of slots.

A server MSAM can connect to different types of messaging systems. For instance, a
single server MSAM might connect to one or more Simple Mail Transfer Protocol
(SMTP), X.400, and X.500 systems.

A server MSAM is a foreground Macintosh application. Once a server MSAM is
launched, it should run continuously.

(A server MSAM and its PowerShare mail server do not have to run on a dedicated
Macintosh. However, performance of other applications on the same Macintosh may
suffer when the MSAM and server are very busy.)

Table 2-1 summarizes the differences between personal MSAMs and server MSAMs.
(Not all of the differences have been discussed at this point.) You may want to refer to
this table as you read succeeding sections in this chapter.

Table 2-1 Differences between personal MSAMs and server MSAMs

Characteristic Personal MSAM Server MSAM

Application type Background-only Foreground

Interconnects User/process to
specific account

Multiple users/
processes to
messaging system

Needs specific account
information

Yes No

Uses slots Yes No

continued
Server MSAMs 2-11

C H A P T E R 2

Messaging Service Access Modules

MSAM Modes of Operation 2

In addition to its type (either personal or server), another important characteristic of an
MSAM is its mode of operation. Mode of operation refers to the degree of control an
MSAM retains over messages that it puts into an AOCE system. Some MSAMs function
in some respects like a standard store-and-forward gateway; others function as an agent
for the user. This section explains these modes in more detail.

The store-and-forward gateway model consists of a source messaging system, a series
of one or more store-and-forward gateways, and a destination messaging system. A
store-and-forward gateway links different systems, providing temporary data storage
and, where necessary, address translation. Figure 2-5 illustrates the store-and-forward
gateway model. In such a model, the gateway hands off a message to the next link in the
store-and-forward chain. Once it transfers a message, its responsibility for (and control
of) that message ends. MSAMs that operate in this fashion are said to operate in
standard mode.

Queues 1 outgoing queue per
slot; 1 incoming queue
per mail slot

1 outgoing queue

Writes message summaries Yes No

Can write incoming letters
on demand

Yes No

Needs setup template Yes No

Needs address template Yes Yes

Runs on A user’s Macintosh A server Macintosh with
a PowerShare mail server

Must be connected to an
AppleTalk network

No Yes

Transfers messages for more
than one user

No Yes

Mode of operation Standard, online,
quasi-batch

Standard

File type 'csam' or 'msam' 'APPL'

Linked to its catalogs through Mail Service and
Catalog records in
the Setup catalog

Foreign dNodes in
AOCE catalog

Represented by MSAM record in the
Setup catalog

Forwarder record

Table 2-1 Differences between personal MSAMs and server MSAMs (continued)

Characteristic Personal MSAM Server MSAM
2-12 MSAM Modes of Operation

C H A P T E R 2

Messaging Service Access Modules

2

M
essaging S

ervice A
ccess M

odules

Figure 2-5 Store-and-forward gateway model

The online model consists of a source messaging system, a destination messaging
system, and a personal MSAM that acts as an agent for the user in connecting those
systems. In the online model, a personal MSAM does not act simply as a link in a series
of store-and-forward gateways. Rather, it actively manages letters in a user’s AOCE
mailbox and in the user’s accounts on external messaging systems, reflecting changes in
one to the other, and keeping both ends synchronized as much as possible. Figure 2-6
illustrates the online model. MSAMs that operate in this fashion are said to operate
in online mode. A personal MSAM operating in online mode can affect the user’s
experience quite directly, something an MSAM operating in standard mode cannot do.

Figure 2-6 Online model

A significant difference between standard mode and online mode is the point at which
the MSAM is active. In standard mode, an MSAM is removed from any contact with the
user. In online mode, the MSAM is actively involved with the user experience through
the MSAM API and Finder interface.

PowerShare

server

Server

MSAM

Store-and-forward

gateway 1

Store-and-forward

gateway n

External

messaging system

Max

Sean

Lara

User

Macintosh

Server

Macintosh

AOCE

Collaboration

toolbox Network

Connection

Finder Personal

MSAM

User account

on external

messaging system

Max

User's

Macintosh
MSAM Modes of Operation 2-13

C H A P T E R 2

Messaging Service Access Modules

A server MSAM always operates in standard mode. It delivers messages to a PowerShare
mail server, at which point the MSAM’s responsibility for the message ends. The AOCE
system is responsible for delivering the message to its final destination. Similarly, from
an AOCE system perspective, a server MSAM is a store-and-forward gateway in that
messages sent to a server MSAM are addressed to a particular messaging system, not a
specific address within that system.

A personal MSAM may operate in standard mode, online mode, or a variation of online
mode referred to as quasi-batch mode. A personal MSAM always operates in standard
mode when it is dealing with incoming non-letter messages. Much as a server MSAM
hands off a message to a PowerShare mail server, the personal MSAM hands off a
non-letter message to the IPM Manager resident on the Macintosh. Once it submits
such a message to an AOCE system, the personal MSAM has no further control of or
responsibility for the message. The AOCE system delivers the message to its final
destination on the Macintosh. When a personal MSAM is dealing with incoming letters,
however, it operates in online mode or quasi-batch mode.

IMPORTANT

A single personal MSAM may operate in both standard and online or
quasi-batch modes; that is, it may handle both letters and non-letter
messages. The MSAM API is general enough to cover all variations. As a
result, the API contains features that do not apply in every case.

However, as noted earlier, the handling of non-letter messages is not
fully supported for personal MSAMs in release 1 of the AOCE software.
Therefore it is not advisable for a personal MSAM to implement the
transfer of non-letter messages using release 1 of AOCE software. ▲

The AOCE software architecture allows a personal MSAM to operate in online mode (act
as a user agent) by providing it with the means to deliver an incoming letter to a specific
queue and to manipulate that letter after placing it in the queue.

The user’s AOCE mailbox is a repository for letters from all of the different sources to
which the user has access. These sources include an incoming queue for each mail slot
managed by a personal MSAM installed on the Macintosh. On any given Macintosh with
AOCE software installed, there are some number of destination queues for incoming
messages, each of which contains either letters or non-letter messages. An incoming
queue is a special type of destination queue for letters. It is special because a personal
MSAM can manipulate an incoming queue and its contents. All other destination queues
are under the control of the IPM Manager.

A personal MSAM submitting letters to an AOCE system must conform to certain
minimal requirements of online mode. These requirements are to create, manage, and
delete information blocks about the letters that it puts into an incoming queue. The
information blocks are called message summaries. The AOCE Mailbox extension to the
Finder uses message summaries to display information about the letters to the user.
Message summaries are also the means by which a personal MSAM reflects changes in
the status of a letter from the local Macintosh computer to the remote system and vice
versa. Only personal MSAMs create message summaries for incoming letters.
2-14 MSAM Modes of Operation

C H A P T E R 2

Messaging Service Access Modules

2

M
essaging S

ervice A
ccess M

odules

Before a personal MSAM puts a letter into an incoming queue, it must first create
the letter’s message summary and put it into the incoming queue. A message
summary contains

■ information that is needed to display the letter to the user (this includes the subject of
the letter, its timestamp, the sender’s name, and so forth)

■ status information, such as whether the user has read the letter or deleted the letter (a
personal MSAM uses the status flags to maintain consistency between the letter’s
status on an AOCE system and on an external system)

■ state information about the letter, such as whether the letter itself currently exists in
the incoming queue

■ whatever private data that you wish to attach to this letter (for instance, you may
want to store the ID or reference number that uniquely identifies the letter on the
external messaging system)

A message summary is defined by the MSAMMsgSummary structure, described on
page 2-127.

After creating and submitting a message summary for a letter, a personal MSAM may
immediately translate the letter into the AOCE letter format and put it into the incoming
queue. Alternately, the MSAM can delay writing the letter until the user actually opens
it. (The MSAM receives a high-level event when a user opens a letter.)

In general, a personal MSAM that connects to an external messaging system over a slow
link should create the message summary and put the letter into the incoming queue at
the same time. This gives a user faster access to the letter when he or she decides to
read the letter. Also, when a link is slow or expensive, the MSAM might keep the copy of
the letter the user has already read to avoid a retransmission if the user wants to read the
letter again.

A personal MSAM that connects to an external messaging system over a fast link such
as a local area network may choose to create just the message summary without auto-
matically translating and transferring the letter itself. The MSAM can retrieve the letter
on demand, that is, only when the user actually wants to read the letter. In these
circumstances, it can delete the letter after the user reads it because retransmission
would not cause much of a delay.

A personal MSAM may implement some features of online mode but not all, and it may
thus operate somewhere in between standard and online modes. Quasi-batch mode
represents a continuous gradation between standard and online modes. In quasi-batch
mode, a personal MSAM may simply create a message summary, transfer the letter to an
AOCE system, and do nothing further with regard to the letter. For example, a personal
MSAM for fax transmissions might simply download a fax and put it into the incoming
queue. Such a personal MSAM complies with only the minimal requirements of online
mode and operates as much as possible like a standard store-and-forward gateway.
MSAM Modes of Operation 2-15

C H A P T E R 2

Messaging Service Access Modules
Table 2-2 shows the types of operating modes available to server and personal MSAMs.

This section has described the incoming queue as a special queue for incoming letters,
available only to personal MSAMs with mail slots. There is no analogous construct on
the outgoing side. All MSAMs, personal and server alike, have an outgoing queue from
which they obtain outgoing messages. A server MSAM has a single outgoing queue that
contains all of the messages addressed to external messaging systems to which it is
connected. A personal MSAM, regardless of its operating mode, has one outgoing queue
for each of its slots. Each queue contains the outgoing messages for the associated slot.

Types of Messages 2

The following sections discuss messages, letters, and reports.

Basic Messages 2
A message is the basic unit of communication defined by the Interprogram Messaging
(IPM) Manager. A message consists of a message header followed by zero or more
message blocks, each of which is a sequence of any number of bytes. The message
header contains control information about the message, such as the message creator and
message type, the total length of the message, the time it was submitted, addressing
information, and so forth. It also contains the length, creator, and type of each block in
the message. For more detailed information on the structure of messages and more
information on the IPM Manager and the services it provides, see the chapter
“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

Every message has a message creator and a message type. The message creator and type
are analogous to a Macintosh file’s creator and type. The message creator indicates
which application created the message. A message type indicates the semantics of the
message, the type of blocks the message should contain, and the relationships among the
various blocks in the message.

Similarly, every block has a block creator and a block type. The block creator indicates
which application created the block. A block type indicates the format of the data
contained within the block.

Table 2-2 MSAM operating modes

Operating mode Type of MSAM

Standard Personal MSAM (for non-letter messages) and server MSAM

Online Personal MSAM (for letters)

Quasi-batch Personal MSAM (for letters)
2-16 Types of Messages

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
In addition to message types, AOCE software defines the concept of message families. A
message that belongs to a message family shares a similar form with all other messages
that belong to the same message family. Messages of the same family conform to the
syntax of a defined set of message block types and their associated semantics. The syntax
specifies which block types are optional and which are mandatory and specifies the
relationships between the various blocks. Messages that belong to the same message
family may also contain additional blocks whose types are not defined as part of the
message family.

Apple defines three message families for an MSAM’s use. All non-letter messages that an
MSAM transfers belong to the kIPMFamilyUnspecified family. Letters may belong to
either the kMailFamily or kMailFamilyFile family, both of which are defined in the
next section. Although it is possible to distinguish a new class of messages by defining a
new message family, it is not recommended that you do so.

IMPORTANT

Apple Computer, Inc., reserves all values for message and block types,
message and block creators, and message families that consist entirely of
lowercase letters and special characters. You are free to create and use
other values except 0 and '????'. Apple Computer, Inc., does not
provide a registry for message and block types, message and block
creators, and message families. ▲

A message can contain another message. A message that is contained within another
message is called a nested message.

Letters 2
A letter is a type of message, consisting of a defined set of message blocks, that is
intended to be read by a person.

A letter must contain a letter header block. A letter header block contains the address of
the sender and of each recipient. It also contains the letter’s attributes.

Letter attributes are bits of information about a letter. They include such things as the
time the letter was sent, the subject of the letter, the priority assigned to the letter by the
sender, and so forth.

Note
In this chapter, letter attributes are usually referred to simply as
attributes. Do not confuse these letter attributes with record attributes. A
record attribute refers to a part of an AOCE record. For information
about record attributes, see the chapters “AOCE Utilities” and “Catalog
Manager” in Inside Macintosh: AOCE Application Interfaces. ◆

A letter may have blocks that contain letter content, a nested letter, enclosures, and an
image of the letter content. The MSAM API provides functions that you can use to read
and write most of these blocks without specifying the block type. For example, the
function MSAMPutContent automatically creates a block of type kMailContentType.
However, to add a block of type image (kMailImageBodyType) or a private data block
Types of Messages 2-17

C H A P T E R 2

Messaging Service Access Modules
(kMailMSAMType), you need to provide the block type to the MSAMPutBlock function.
Table 2-3 lists the AOCE-defined block types that a letter may contain and the functions
you use to read and write a block of a given type.

Letter content is that part of the letter that the sender typically wants the recipient
to read first, like the body of a conventional hard-copy letter. Letter content may be
in three forms:

■ a content block (block type is kMailContentType)

■ an image block (block type is kMailImageBodyType)

■ a content enclosure (block type is kMailEnclosureFileType)

A content block contains the body of a letter in one or more data segments. Each
segment contains data of one of the following types:

■ Plain text. A text segment contains data in one or more character sets (Roman, Arabic,
Kanji, and so on) with 1-byte or 2-byte character codes, depending on the character set.

Table 2-3 Predefined letter block types

Block type Value Block contents To read/write

kMailLtrHdrType 'lthd' Letter header MSAMGetRecipients
MSAMPutRecipient

MSAMGetAttributes
MSAMPutAttribute

kMailContentType 'body' Body of letter MSAMGetContent
MSAMPutContent

kMailEnclosureListType 'elst' List of enclosures MSAMGetEnclosure
MSAMPutEnclosure

kMailEnclosureDesktopType 'edsk' Desktop Manager
information for
enclosures

MSAMGetEnclosure
MSAMPutEnclosure

kMailEnclosureFileType 'asgl' A file enclosure MSAMGetEnclosure
MSAMPutEnclosure

kMailImageBodyType 'imag' Image of letter MSAMGetBlock
MSAMPutBlock

kMailMSAMType 'gwyi' MSAM-defined
information

MSAMGetBlock
MSAMPutBlock

kIPMEnclosedMsgType 'emsg' Nested letter MSAMOpenNested
MSAMBeginNested

kIPMDigitalSignature 'dsig' Digital signature MSAMGetBlock
MSAMPutBlock
2-18 Types of Messages

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
■ Styled text. The segment contains text and a StScrpRec structure containing the style
information for that text.

■ Pictures. The segment contains data in PICT format.

■ Sounds. The segment contains data in Audio Interchange File Format (AIFF).

■ Movies. The segment contains data in QuickTime movie file format ('MooV').

These five data formats are collectively called standard content or standard interchange
format, sometimes referred to as AppleMail format. All MSAMs must support standard
content to facilitate interoperability. Any user with AOCE software installed can read
and write letters containing standard content using the AppleMail application.

Another way of communicating a letter’s content is to include it in an image block.
Data in an image block is stored in a structure of type TPfPgDir followed by picture
elements (PICTs). The format of data in an image block is sometimes referred to as
snapshot format.

The AppleMail application can read image blocks. Thus, by including an image block in
a letter, an application that uses formats other than standard interchange format can
ensure that a user having the AppleMail application can view the formatted content. A
receiver cannot edit image data. MSAMs should support image blocks.

The third form in which letter content may be transmitted or received is a content
enclosure, sometimes referred to as a main enclosure. Such an enclosure is typically in
the native format of the sending application. An MSAM is not required to support
translations of various application file formats. A recipient must have a copy of the
sending application to read a content enclosure. A letter can have only one content
enclosure.

The contents (if any) of a letter may be in any or all of these three forms. Typically, you
can expect letters to contain a content block as well as a content enclosure.

An enclosure is a file or folder sent along with a letter. An enclosure may be either a
regular enclosure or a content enclosure. A regular enclosure is a file or folder included
in a letter like an attachment in a conventional hard-copy letter. That letter may or may
not contain a content block.

A letter can have up to 50 enclosures. An enclosure file can be of any type. If an
enclosure is a folder, it can contain any number of files of any type, so long as the total
number of enclosures does not exceed 50. Each file and folder counts as one enclosure.
For example, if a letter had as an enclosure a folder containing three files, the total
number of enclosures in the letter is four: one folder and three files. A content enclosure
counts when totaling the number of enclosures in a letter.
Types of Messages 2-19

C H A P T E R 2

Messaging Service Access Modules
A nested letter is a complete letter included whole within another letter. A letter can
have only one letter nested within it. However, the nested letter itself may contain a
nested letter. Figure 2-7 illustrates this concept.

Figure 2-7 Nested letters

The nesting level of a letter indicates how many letters are nested within it. The nesting
level of a letter that contains no nested letters is 0. A letter that contains a letter with a
nesting level of n has a nesting level of n + 1. Thus, if a reply letter contains a copy of the
original letter, the nesting level of the reply is one greater than the nesting level of the
original letter. Figure 2-8 illustrates an example of nesting letters. Sue sends a memo to
Dan. Her original memo has a nesting level of 0. Dan replies to Sue and includes a copy
of Sue’s original memo in the reply. His reply has a nesting level of 1. Sue sends a
different memo to Tim and includes Dan’s reply. The nesting level of her memo to Tim is
2. The theoretical limit to the number of nesting levels is very large.

Outermost letter

Nested letter

Nested letter
2-20 Types of Messages

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
A forwarded letter is always a nested letter. It is nested within a letter that has no content
and no enclosures. The letter that contains the forwarded letter has a nesting level of
n + 1, where n is the nesting level of the forwarded letter.

Figure 2-8 How the nesting level increments

Figure 2-9 illustrates the structure of a hypothetical letter. In the message header, the
message creator and type ('lap2' and 'lttr') indicate that this message is a letter
that was created by the AppleMail application. Next is the letter header block. The letter
header information includes the letter’s nesting level, set to 2, indicating that this letter
has two letters nested within it. The letter contains a content block. The blocks of type
kMailEnclosureListType ('elst') and kMailEnclosureDesktopType ('edsk')
 are private to Macintosh system software. There are two enclosures in the letter, one
of which is a content enclosure. An image block is present. It contains an alternate
representation of the data in the content block. The letter also contains a nested letter in a

Memo to Tim

Nested level = 2

Memo to Sue

Nested level = 1

Memo to Dan

Nested level = 0

Memo to Sue

Nested level = 1

Memo to Dan

Nested level = 0

Memo to Dan

Nested level = 0
Types of Messages 2-21

C H A P T E R 2

Messaging Service Access Modules
nested letter block. The nested letter is a complete letter consisting of a message header, a
letter header block, a content block, and a nested letter block. Its letter header shows that
its nesting level is 1. The nested letter block contains a complete letter consisting of a
message header, a letter header block, and a content block. Its nesting level is 0.

Figure 2-9 Structure of a letter

Ordinarily, letters belong to one of two message families defined by AOCE software. A
letter that belongs to the kMailFamily family may contain either a content block or any
type of enclosure or both. A letter that belongs to the kMailFamilyFile family does
not contain a content block or a content enclosure, but may contain a regular enclosure.
You should not put a content block into or expect to get a content block from a letter in
the kMailFamilyFile family.

Message header

Message creator = 'lap2'

Message type = 'lttr'

Letter header block

Block creator = 'apml'

Block type = 'lthd'

Nesting level = 1

Content block

Block creator = 'apml'

Block type = 'body'

Nested letter block

Block creator = 'apml'

Block type = 'emsg'

Message header

Message creator = 'lap2'

Message type = 'lttr'

Letter header block

Block creator = 'apml'

Block type = 'lthd'

Nesting level = 0

Content block

Block creator = 'apml'

Block type = 'body'

Message header

Message creator = 'lap2'

Message type = 'lttr'

Letter header block

Block creator = 'apml'

Block type = 'lthd'

Nesting level = 2

Content block

Block creator = 'apml'

Block type = 'body'

Private block

Block creator = 'apml'

Block type = 'elst'

Private block

Block creator = 'apml'

Block type = 'edsk'

Enclosure block

Block creator = 'apml'

Block type = 'asgl'

Main enclosure = true

Enclosure block

Block creator = 'apml'

Block type = 'asgl'

Main enclosure = false

Image block

Block creator = 'apml'

Block type = 'imag'

Nested letter block

Block creator = 'apml'

Block type = 'emsg'
2-22 Types of Messages

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Reports 2
A report communicates delivery information about a message to the sender of the
message. A report, like a letter, is a message with a defined set of message blocks.

The sender of a message can request information about successful delivery of the
message, failure to deliver the message, or both, for a message. The sender’s request
applies to all of the message’s recipients.

A single report may contain information about the outcome of delivery attempts to one
or more recipients of a message; that is, it may contain delivery indications, non-delivery
indications, or both. A delivery indication indicates the successful delivery of a specific
message to one or more specified recipients. A non-delivery indication indicates failure
to deliver a specific message to one or more specified recipients. A delivery or
non-delivery indication is sometimes referred to as a recipient report.

An MSAM can both create a report about an outgoing message and receive a report
about an incoming message.

Note
A report that an MSAM creates or receives (an MSAM report) differs
somewhat from a report created or received by other clients of the IPM
Manager (an IPM report). An IPM report may contain a copy of the
original message, but an MSAM report never does. An IPM report goes
directly to an IPM Manager client. An MSAM report goes to an AOCE
agent, which interprets the information in the MSAM report and creates
an IPM report to send to the ultimate report recipient. ◆

The sections “Generating a Report” on page 2-61 and “Receiving a Report” on page 2-80
describe how an MSAM generates and receives reports. For information on IPM reports,
see the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

AOCE Addresses 2

The AOCE software architecture provides for the exchange of messages among different
types of messaging systems. The exchange of messages requires a way of uniquely
specifying the sender and receiver of a message. This unique specification is called an
address. This section discusses the syntax and semantics of the AOCE address structure.

To provide connectivity between AOCE messaging systems and other messaging
systems, the AOCE address structure is designed to accommodate already existing
address formats, in addition to address formats that may be developed for future
messaging systems.

One way that messaging systems can be differentiated is by the syntax and semantics of
their addresses. Messaging systems that share the same addressing conventions are said
to be of the same type.
AOCE Addresses 2-23

C H A P T E R 2

Messaging Service Access Modules
An address is unique within a messaging system. To exchange messages between
messaging systems, a sender must specify an address plus the messaging system in
which the address is unique.

At the most general level, you can think of an AOCE address structure as having two
parts: a messaging system specifier and an entity specifier that uniquely identifies a
person or process within that messaging system. When an address specifies a recipient
within an AOCE messaging system, the AOCE software delivers the message to the
specific address. When an address specifies a recipient in a non-AOCE messaging
system, the AOCE software delivers the message to the MSAM responsible for that
messaging system.

For AOCE routing software, the basic problem can be stated as follows: assume an
external messaging system is named System X. System X contains many addressable
entities (users and processes). To send a message to an entity Y in System X, AOCE needs
a way to say “Y in System X.” AOCE doesn’t care what Y is. Y is internal to, and should
be unique in, System X.

Figure 2-10 shows an AOCE messaging system, an AppleLink system, and two SMTP
systems. (SMTP stands for Simple Mail Transfer Protocol. Computers connected to the
Internet often use SMTP to exchange messages.) Within this environment, AOCE routing
software needs a way to specify each messaging system. Each messaging system is
partially described by a four-character extension type. An extension type identifies a
type of messaging system that uses a specific addressing convention—for example, an
AppleLink system or an X.400 system. Because there can be more than one messaging
system of a given type, an address based on the extension type alone is not sufficient to
distinguish between two or more messaging systems of the same type. In the illustration,
AOCE routing software could not distinguish between the two SMTP systems on the
basis of type. To solve this problem, AOCE software requires that each messaging system
have a unique name by which it is known within an AOCE system. In Figure 2-10, the
names Felines and Canines distinguish between the two SMTP messaging systems.

Figure 2-10 AOCE system connected to external messaging systems

AOCE system

AppleLink system SMTP system

Name: Lincoln Center

Type:'ACAP'
SMTP system

Name: Surf City

Type:'ALNK'

Name: Canines

Type:'SMTP'

Name: Felines

Type:'SMTP'
2-24 AOCE Addresses

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
In some cases, there is only one messaging system of a given type, and the messaging
system already has a unique, well-known name. The Internet is a good example of this.
In cases like this, if your MSAM provides a preassigned name, it should use the well-
known name. A unique name for each messaging system is fundamental to AOCE
addressing.

Within some messaging systems, multiple address formats are allowed. The Internet, for
example, accepts both UUCP and SMTP addresses. An Internet MSAM has one unique
name associated with it, but it may service multiple extension types, one for each form of
Internet address that it knows how to translate.

Note
There is no registry for extension types. If you want to use an existing
extension type, you are responsible for ensuring that the extension type
always represents the same address syntax and semantics. If you want
to create a new extension type, it is recommended that you use your
application’s signature type, registered with Macintosh Developer
Technical Services, to ensure uniqueness. ◆

Before describing an AOCE address structure, it is helpful to understand a little about
how the AOCE software implements unique names for messaging systems. Within an
AOCE system, each external messaging system is associated with a unique catalog name.
The catalog name identifies to AOCE software the messaging system and the set of
addresses that belong to that messaging system.

For server MSAMs, the AOCE system administrator creates a reference to an external
messaging system by creating a dNode, sometimes called a foreign dNode, in an AOCE
catalog. Figure 2-11 illustrates the addition of a dNode that represents an external
messaging system. The original AOCE configuration has a catalog named Catalog A that
contains dNodes named Artists Unlimited and Legal Services. AOCE software routes
messages only among addresses in Catalog A. There exists an external messaging system
called TriColor Labs. People within the original AOCE messaging system may want to
communicate with people who are accessible only via the TriColor Labs messaging
system. A server MSAM is installed within the AOCE system to extend the messaging
environment to include people within the TriColor Labs messaging system. The AOCE
system administrator creates a new dNode representing the TriColor Labs system and
gives the dNode a unique name, TCL, within Catalog A. AOCE software still routes
messages only among addresses in Catalog A, but Catalog A now includes a new set of
addresses represented by the dNode TCL.
AOCE Addresses 2-25

C H A P T E R 2

Messaging Service Access Modules
Figure 2-11 Adding a dNode for a messaging system

For personal MSAMs, the PowerTalk Key Chain creates a Catalog record in the Setup
catalog to represent the set of addresses belonging to a given messaging system. See the
chapter “Service Access Module Setup” for more information.

The name that uniquely identifies an external messaging system in an AOCE system is
the name of the dNode (for server MSAMs) or the name of the Catalog record in the
Setup catalog (for personal MSAMs).

Figure 2-12 illustrates the following points about MSAMs, messaging system names, and
extension types:

■ An external messaging system must have a unique name.

■ Different MSAMs may connect to different external messaging systems of the same
extension type.

■ A single MSAM may connect to more than one external messaging system, each
having a different extension type (it may also connect to more than one external
messaging system having the same extension type).

■ A single external messaging system may have more than one extension type.

Artists
Unlimited

Before adding dNode

PowerShare
server

PowerShare server
Server MSAM

Original messaging system

TriColor Labs
messaging

system

Expanded AOCE messaging system

TriColor Labs
messaging

system

AOCE Catalog A

Artists
Unlimited

After adding dNode

AOCE Catalog A

TCL
Legal

Services

Legal
Services
2-26 AOCE Addresses

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Figure 2-12 MSAMs, messaging system names, and extension types

Now look at the AOCE address structure. AOCE software already defines a RecordID
structure to uniquely identify a record in an AOCE catalog. This structure is adapted and
extended for use as an address structure. In an AOCE messaging system, an address is
specified as an OCERecipient structure, which is identical to a DSSpec structure.

struct DSSpec {

RecordID *entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

typedef DSSpec OCERecipient;

(The RecordID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.)

Name: Worldwide X400

Type: 'X400'

AOCE

messaging

system

Name: Private STMP

Type: 'STMP'

MSAM

MSAM

MSAM

Name: AppleLink

Type: 'ALNK'

Name: Private X400

Type: 'X400'

Name: Internet

Type: 'STMP','UUCP'
AOCE Addresses 2-27

C H A P T E R 2

Messaging Service Access Modules
Figure 2-13 shows an exploded view of an OCERecipient structure. An AOCE address
is a two-level specification that first identifies a messaging system and then identifies
an individual entity within it. This is roughly analogous to an address on a piece of
hard-copy mail that specifies a large organization and a mailstop within it. The postal
service uses part of the address—organization name, street number, city, state, and zip
code—to deliver the mail to the organization. The organization itself uses the remainder
of the address, the mailstop number, to deliver the mail to a specific internal address. With
an AOCE address, the OCERecipient.entitySpecifier.rli substructure identifies
the messaging system. The value pointed to by the OCERecipient.extensionValue
field identifies the individual entity within that messaging system.

Figure 2-13 Exploded view of an OCERecipient structure

Field name:

entitySpecifier

Type:

RecordIDPtr

Field name:

extensionType

Type:

OSType

Field name:

extensionSize

Type:

unsigned short

Field name:

extensionValue

Type:

Ptr

OCERecipient

Field name:

rli

Type:

PackedRLIPtr

Field name:

local

Type:

LocalRecordID

RecordID

Field name:

length

Type:

unsigned short

Field name:

data[kRLIMaxBytes]

Type:

byte

PackedRLI

Field name:

directoryName

Type:

DirectoryNamePtr

Field name:

discriminator

Type:

DirDiscriminator

Field name:

dNodeNumber

Type:

DNodeNum

Field name:

path

Type:

PackedPathNamePtr

Unpacked

form of RLI

Field name:

dataLength

Type:

unsigned short

Field name:

data [*]

Type:

byte

PackedPathName

Unpacked

pathname

an array of

RString

structures

Address

Field name:

cid

Type:

CreationID

Field name:

recordName

Type:

RStringPtr

Field name:

recordType

Type:

RStringPtr

LocalRecordID

DirectoryName
Field name:

charSet

Type:

CharacterSet

Field name:

dataLength

Type:

unsigned short

Field name:

body[kDirectoryNameMaxBytes]

Type:

byte

Field name:

charSet

Type:

CharacterSet

Field name:

dataLength

Type:

unsigned short

Field name:

body[kRStringMaxBytes]

Type:

byte

RString

* [kPathNameMaxBytes – size of (unsigned short)]
2-28 AOCE Addresses

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Table 2-4 lists the elemental fields of the address structure and the type of information
each field contains when it is used to specify an address on an external system. The
structure identifies both the external system and a specific sender or receiver within it
that is the source or destination of a message.

Table 2-4 External address: Contents of an OCERecipient structure

Field name Contents

directoryName A pointer to an RString structure containing the unique name
of a catalog in the AOCE environment. The name identifies the
external messaging system to AOCE. The name is limited to
32 characters.

discriminator An 8-byte value that further describes the catalog. The first
4 bytes indicate the extension type of the associated messaging
system, for example, ALNK or SMTP. It is the same as the value
in the extensionType field. The second 4 bytes are private to
the catalog.

dNodeNumber Unused. Set to 0.

path Unused. Set to nil.

cid Unused. Set to 0.

recordName A pointer to an RString structure containing the name of the
sender or receiver. This should be a displayable string.

recordType A pointer to an RString structure containing the type of the
sender or receiver—for example, “user” or “group”. This should
be a displayable string.

extensionType The four-character extension type that specifies a type of
messaging system, for example, 'ALNK' or 'SMTP'. The
extension type is the same as the first 4 bytes of the associated
catalog’s discriminator value.

extensionSize The length, in bytes, of the extensionValue field.

extensionValue A pointer to a buffer that contains the address of the sender or
receiver on the external system. The address is used only by the
MSAM. Its content and format are not examined by AOCE
software. However, for the type-in addressing feature in the
mailer to work, the address must be a single RString structure.
AOCE Addresses 2-29

C H A P T E R 2

Messaging Service Access Modules
Table 2-5 lists the elemental fields of the OCERecipient structure and the type of infor-
mation each field contains when it is used to specify an address within an AOCE system.

Table 2-6 lists the extension types for addresses within an AOCE messaging system.
These extension types are discussed in more detail in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application Interfaces. You do not need
to understand the semantics of the extension types. You do need to be sure that a
recipient to whom you transmit a message from an AOCE system can reply to the
message. Your MSAM might include the extension information with the outgoing
message and reconstruct it when it submits the reply to the AOCE system. Alternatively,

Table 2-5 AOCE address: Contents of an OCERecipient structure

Field name Contents

directoryName A pointer to an RString structure containing the name of the
PowerShare catalog that contains the record representing the
sender or receiver. The name is limited to 32 characters.

discriminator The discriminator value of the catalog that contains the record
representing the sender or receiver.

dNodeNumber A value that identifies the dNode that contains the record
representing the sender or receiver. Set to 0 if you use the path
field to specify the dNode.

path A pointer to a buffer that contains the names of all of the
dNodes on the path from the catalog node in which the sender
or receiver record resides, up to the catalog root node. Set
this field to nil if you use the dNodeNumber field to identify
the dNode.

cid The creation ID of the record that represents the sender
or receiver.

recordName A pointer to an RString structure containing the name of the
sender or receiver. This is a displayable string.

recordType A pointer to an RString structure containing the type of the
sender or receiver. It tells you what the entity is, such as a user.
This is a displayable string.

extensionType A four-character extension type that specifies the format of the
data pointed to by the extensionValue field. AOCE defines
the following extension types: kOCEalanXtn, kOCEentnXtn,
kOCEaphnXtn.

extensionSize The length, in bytes, of the extensionValue field.

extensionValue A pointer to a buffer that contains the address of the sender or
receiver on the AOCE system. The address is used only by the
AOCE software. Its content and format need not be examined
by the MSAM.
2-30 AOCE Addresses

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
your MSAM might maintain mapping tables to convert between addresses within the
AOCE messaging system and external addresses. In this way, it can avoid sending to its
external system information that is only relevant inside an AOCE system. This
implementation decision is up to you.

Before you submit an incoming message to AOCE, you must construct OCERecipient
structures containing the addresses of the sender and each of the recipients. Table 2-4 on
page 2-29 describes the information you must provide in each field of the address
structure for (a) the sender from your external messaging system and (b) any recipient
in an external messaging system. Table 2-5 on page 2-30 describes the information
you must provide in each field of the address structure for a recipient within the
AOCE system.

When you read an outgoing message from AOCE, you must translate the OCERecipient
structures that contain the address information for the sender and each of the recipients
into a format that your external messaging system understands. Table 2-4 on page 2-29
describes what information you will find in each field of the address structure when the
structure specifies a recipient on an external messaging system. Table 2-5 on page 2-30
describes the information contained in each field of the address structure when the
structure specifies the sender of an outgoing message or a PowerTalk recipient.

The address of a recipient in an AOCE messaging system might include only the entity
specifier portion of the OCERecipient structure; that is, it may not have any data in the
extensionType, extensionSize, and extensionValue fields. This form is called
an indirect address because it is not actually an address but points to a record in an AOCE
catalog that contains the address. It uniquely identifies the messaging system and
provides a displayable name and type to identify the sender or receiver. The direct form
of an address always includes both the entity specifier and the extension information.
The extension information gives a more detailed form of address. Addresses in external
messaging systems are always in the direct form. Addresses in PowerShare catalogs may
be in either the direct or indirect form. For more information about direct and indirect
addressing, see the chapter “Interprogram Messaging Manager” in Inside Macintosh:
AOCE Application Interfaces.

Table 2-6 AOCE extension types

Constant Value Description

kOCEalanXtn 'alan' Indicates an EntityName structure (an NBP name)
plus a queue name in the form of a Pascal string. It is
used for an address accessible on the local AppleTalk
network.

kOCEentnXtn 'entn' Indicates a DSSpec structure. It is used for an address
accessible through a PowerShare mail server.

kOCEaphnXtn 'aphn' Indicates a structure that specifies an address
accessible by telephone.
AOCE Addresses 2-31

C H A P T E R 2

Messaging Service Access Modules
Table 2-7 shows examples of the content of the fields of an OCERecipient structure for
an indirect AOCE address and an SMTP address.

When the entitySpecifier portion of the OCERecipient structure contains infor-
mation about a sender or receiver on an external system, that information does not
specify a record in a PowerShare catalog that represents the sender or receiver. However,
when the structure contains information on a sender or receiver inside an AOCE
messaging system, it does specify an existing record.

With your MSAM, you need to provide a special kind of AOCE template, called an
address template, that allows a user to enter address information. Basic information about
AOCE templates is provided in the chapter “AOCE Templates” in Inside Macintosh:
AOCE Application Interfaces. Specific information about address templates is provided in
the chapter “Service Access Module Setup” in this book.

AOCE High-Level Events 2

Both personal and server MSAMs must be prepared to receive and respond to high-level
events defined by AOCE software. The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials describes the use of high-level events in detail; that
information is not repeated in this section.

Table 2-7 Sample addresses

OCERecipient fields
AOCE system
(indirect address form) SMTP system

directoryName Engineering Finance

discriminator ACAP1234 SMTP0000

dNodeNumber 6 0

path nil nil

creationID 44894489 00000000

recordName Joe Bernard Suzy Durksen

recordType aoce User aoce User

extensionType Not applicable 'SMTP'

extensionSize Not applicable 16

extensionValue Not applicable Suzy@finance.com
2-32 AOCE High-Level Events

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Personal MSAMs may receive the following high-level events:

Server MSAMs may receive these high-level events:

Detailed descriptions of these events can be found in the section “High-Level Events”
beginning on page 2-220.

When an MSAM receives an AOCE high-level event, it manipulates a standard
EventRecord structure (defined in the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials). The fields of an event record associated with an AOCE
high-level event have a particular meaning.

struct EventRecord {

short what;

long message;

long when;

long where;

short modifiers;

};

Field descriptions

what Always contains the constant kHighLevelEvent.
message Always contains the event class kMailAppleMailCreator.

Constant Event ID Description

kMailEPPCCreateSlot 'crsl' Slot created

kMailEPPCModifySlot 'mdsl' Slot modified

kMailEPPCDeleteSlot 'dlsl' Slot deleted

kMailEPPCMailboxOpened 'mbop' User opened mailbox

kMailEPPCMailboxClosed 'mbcl' User closed mailbox

kMailEPPCMsgPending 'msgp' Messages waiting to be sent

kMailEPPCSendImmediate 'sndi' Send letter now

kMailEPPCShutDown 'quit' Shut down operations and quit

kMailEPPCContinue 'cont' Resume operation after error fixed

kMailEPPCSchedule 'sked' Time for scheduled activity

kMailEPPCInQUpdate 'inqu' Incoming queue updated

kMailEPPCMsgOpened 'msgo' User opened letter

kMailEPPCDeleteOutQMsg 'dlom' Delete outgoing queue message

kMailEPPCWakeup 'wkup' Launched due to wakeup

kMailEPPCLocationChanged 'locc' System location changed

Constant Event ID Description

kMailEPPCAdmin 'admn' Server administration function

kMailEPPCMsgPending 'msgp' Messages waiting to be sent
AOCE High-Level Events 2-33

C H A P T E R 2

Messaging Service Access Modules
when Unused.
where Contains the event ID that identifies a specific event—for example,

kMailEPPCAdmin.
modifiers For personal MSAMs, this field contains the slot ID when the event

applies to a particular slot; otherwise, it is set to 0. Server MSAMs
can ignore this field.

Some AOCE high-level events require more information than that provided in the event
record. After you receive such an event, you should call the AcceptHighLevelEvent
function to get the additional data associated with the event. The additional data is in the
form of a MailEPPCMsg structure.

A MailEPPCMsg structure consists of a version number and a union field. The union
field may have any of the following contents: a pointer to an SMCA structure; a letter
sequence number; a MailLocationInfo structure.

The version number indicates the version of the event. The MSAM should compare the
version number in the MailEPPCMsg structure with kMailEPPCMsgVersion. If they
are not the same, software incompatibilities may exist between the PowerTalk software
and the MSAM, and there is no guarantee that the MailEPPCMsg structure used by the
MSAM and by the IPM Manager are the same. The MSAM should ignore the event.

Most of the AOCE high-level events are informational in nature. For example, a
kMailEPPCMsgPending event tells an MSAM that it has a new outgoing message.
Informational events sent by the IPM Manager are not guaranteed to be received by the
MSAM. The MSAM should consider these events as hints; that is, it should not rely on
them as the only mechanism to initiate an action. For example, to make sure it transfers
outgoing messages in a timely manner, it could check its outgoing queues every 20
minutes, each time it is launched, and each time it receives a kMailEPPCMsgPending
event.

A few events are more than informational in nature. An MSAM must receive the
kMailEPPCCreateSlot, kMailEPPCModifySlot, kMailEPPCDeleteSlot,
kMailEPPCMsgOpened, and kMailEPPCSendImmediate events in order to take the
relevant actions. For these events, the MailEPPCMsg structure contains a pointer to an
SMCA structure. The MSAM needs to set the result field of the SMCA structure to
acknowledge the event or to report the outcome of its effort to handle the event.
Additionally, the IPM Manager informs the client if the event does not reach the MSAM.
(An MSAM cannot acknowledge or set a result for an event whose MailEPPCMsg
structure does not contain a pointer to an SMCA structure.)

Once the MSAM sets the result field to acknowledge the event or to signal completion,
the SMCA structure is no longer valid.

An MSAM defines the error codes that it returns in response to the
kMailEPPCCreateSlot, kMailEPPCModifySlot, kMailEPPCDeleteSlot, and
kMailEPPCMsgOpened events. For the kMailEPPCSendImmediate event, it typically
should return the kMailSlotSuspended or kMailTooManyErr result code.
2-34 AOCE High-Level Events

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
System Location 2

The concept of location serves users with mobile Macintosh computers. Personal MSAMs
must understand the concept of location, whereas server MSAMs need not. A personal
MSAM, residing on a user’s Macintosh, must be aware of the possibility that the system
location may change. For instance, a personal MSAM installed on a PowerBook may be
launched at different locations, such as the user’s business office, the user’s home, a
customer site, an airport, and so forth. The personal MSAM is likely to be affected by
such changes of location. A fax MSAM, for example, would use different telephone
numbers when running at home or in the office; an Internet MSAM cannot work if a
TCP/IP network connection is not available.

After it is launched, a personal MSAM gets the current system location from the Setup
record in the Setup catalog. Then it determines, for each slot, whether the slot is active at
that location by checking the location flags in the slot’s standard slot information. See
the section “Initializing a Personal MSAM” on page 2-37 for a description of how you
do this.

If a slot is not active at the current location, the personal MSAM should not perform any
work on behalf of that slot. If none of the personal MSAM’s slots are active at the current
location, the MSAM should quit.

If the system location changes, the IPM Manager sends the MSAM one
kMailEPPCLocationChanged high-level event for each slot. The event tells the
MSAM the slot to which it applies, the current system location, and the location flags
for the slot. If the location flags show that the slot is inactive at the current location,
the MSAM should immediately stop performing any activity on behalf of the slot,
such as downloading or sending letters.

A user can activate or deactivate a mail slot in a given location. In response, the IPM
Manager updates the location flags in the MailStandardSlotInfoAttribute
structure for that slot and sends a kMailEPPCLocationChanged high-level event to
the MSAM. At that point, the MSAM needs to determine if the slot is active at the
current location. If the slot is active, the MSAM should continue to act for the slot; if it
is not, the MSAM should cease acting for the slot.

Using the MSAM API 2

This section shows you how to

■ determine whether the Collaboration toolbox is available

■ launch a personal MSAM

■ initialize personal and server MSAMs

■ transfer an outgoing letter from an AOCE system to another messaging system
System Location 2-35

C H A P T E R 2

Messaging Service Access Modules
■ transfer an incoming letter from another messaging system to an AOCE system

■ delete a message

■ translate addresses

■ log personal MSAM operation errors

Determining Whether the Collaboration Toolbox Is Available 2
Before calling any of the functions in the MSAM API, a server MSAM should verify
that the Collaboration toolbox is available by calling the Gestalt function with the
selector gestaltOCEToolboxAttr. If the Collaboration toolbox is present but not
running (for example, if the user deactivated it from the PowerTalk Setup control
panel), the Gestalt function sets the bit gestaltOCETBPresent in the response
parameter. If the Collaboration toolbox is running and available, the function sets the
bit gestaltOCETBAvailable in the response parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.
Because a personal MSAM is launched by the IPM Manager, it can assume that the
Collaboration toolbox is available.

If you want to be informed when the IPM Manager starts up or shuts down, you can
install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk
Link-Access Protocol Manager calls your ATQ routine with the transition selector
ATTransIPMStart when the IPM Manager has finished starting up and with the
selector ATTransIPMShutdown when the IPM Manager has started to shut down. The
ATQ is described in the “Link-Access Protocol (LAP) Manager” chapter in Inside
Macintosh: Networking.

Determining the Version of the IPM Manager 2
To determine the version of the IPM Manager that is available, call the Gestalt function
with the selector gestaltOCEToolboxVersion. The function returns the version
number of the Collaboration toolbox in the low-order word of the response parameter.
For example, a value of 0x0101 indicates version 1.0.1. If the Collaboration toolbox is not
present and available, the Gestalt function returns 0 for the version number. You can
use the constant gestaltOCETB for AOCE Collaboration toolbox version 1.0.

Launching a Personal MSAM 2
A personal MSAM must be launched by the IPM Manager. If you launch a personal
MSAM in any other manner, it will not work properly with the IPM Manager.

If a personal MSAM is not already running, the IPM Manager launches it in response to
any of the following events:

■ The MSAM’s setup template calls the MailCreateMailSlot or
MailModifyMailSlot function.

■ An application calls the MailWakeupPMSAM function.
2-36 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
■ The MSAM’s scheduled send or receive time occurs, or its send/receive time
interval elapses.

Initializing a Personal MSAM 2
Before the IPM Manager launches a personal MSAM for the first time, the setup template
you provide with your personal MSAM must obtain information about the MSAM,
the accounts on external messaging systems to which it will connect, and the catalogs
associated with those external messaging systems. It gets this information from the user
and stores it in the Setup catalog.

Once launched, a personal MSAM needs to obtain a variety of information, much of it in
the Setup catalog. The information includes:

■ the current system location

■ information about each slot for which it is responsible (each slot represents one
account on a messaging system)

■ the incoming and outgoing queue references for each of its slots

■ any additional configuration or private information it may require

A personal MSAM obtains much of the necessary information by reading records in the
Setup catalog. It then often copies this information into private structures.

The following steps illustrate a typical sequence of actions your MSAM can take to
obtain the necessary startup information after it has been launched:

1. Get the creation ID of the MSAM’s record in the Setup catalog by calling the
PMSAMGetMSAMRecord function. Build a record ID that contains your MSAM’s
record creation ID.

2. Get the local identity by calling the AuthGetLocalIdentity function. If the user
hasn’t set up a local identity yet, the function returns the kOCESetupRequired
result code. If the local identity is locked, the function returns the
kOCELocalAuthenticationFail result code. In either case, call the
AuthAddToLocalIdentityQueue function to be notified when the local identity
is set up and unlocked. If the AuthGetLocalIdentity function returned
kOCELocalAuthenticationFail, you can pass the locked local identity provided
by the function to the DirLookupGet and DirLookupParse functions. Therefore,
you should proceed with the initialization process.

3. Get the reference number of the Setup catalog and the creation ID of the Setup
record by calling the DirGetOCESetupRefnum function. You need to provide the
catalog’s reference number in the dsRefNum field of the DirLookupGet and
DirLookupParse parameter blocks when you want to read the records in the
Setup catalog. You need the creation ID to build a record ID for the Setup record.

4. Get the current location from the Setup record in the Setup catalog by calling the
DirLookupGet and DirLookupParse functions. As the target of the aRecordList
field in the DirLookupGet parameter block, specify the record ID of the Setup record.
You can set all fields of the record ID except the creation ID to nil. Set the creation ID
to the value you obtained in the previous step. Instead of providing record location
information, you provide the catalog’s reference number in the dsRefNum field of the
Using the MSAM API 2-37

C H A P T E R 2

Messaging Service Access Modules
DirLookupGet function’s parameter block. As the target of the attrTypeList field
in the parameter block, specify the AttributeType structure referenced by the
attribute type index kLocationAttrTypeNum. The function reads the Setup record
and places the location information into a buffer in a private data format.
Call the DirLookupParse function to read the data in the buffer. The function calls a
callback routine that you provide and passes it a pointer to an Attribute structure
containing the location information (type OCESetupLocation) that you requested.

5. Get a reference to each Mail Service or Combined record that belongs to the MSAM
by calling the DirLookupGet and DirLookupParse functions. If you provide a
stand-alone MSAM, attributes for a slot and its associated catalog are stored in a Mail
Service and a Catalog record, respectively. If you provide a combined MSAM/CSAM,
attributes for a slot and its associated catalog are stored in a single Combined record.
As the target of the aRecordList field in the DirLookupGet parameter block,
specify the RecordID structure that you created that contains the creation ID of
your MSAM record. As the target of the attrTypeList field in the parameter
block, specify the AttributeType structure referenced by the attribute type index
kMailServiceAttrTypeNum. The function reads the MSAM record and places the
packed record ID of each Mail Service or Combined record that it finds into a buffer in
a private data format.
Call the DirLookupParse function to read the data in the buffer. The function calls
your callback routine and passes it a pointer to an Attribute structure containing
a packed record ID that points to either a Mail Service or a Combined record. The
DirLookupParse function calls your callback routine once for each packed record
ID in the buffer, each of which corresponds to a slot for which your MSAM is
responsible. Now you know how many slots you are responsible for and in what
records their specific information is stored.

6. Unpack the packed record IDs of the Mail Service or Combined records by calling the
OCEUnpackRecordID utility function.

7. Get the slot ID, standard slot information, and associated catalog information for each
slot by calling the DirLookupGet and DirLookupParse functions. As the target of
the aRecordList field in the DirLookupGet parameter block, specify the unpacked
record IDs that point to your Mail Service or Combined records. As the target of the
attrTypeList field in the parameter block, specify AttributeType structures that
are referenced by the following attribute type indexes: kSlotIDAttrTypeNum,
kStdSlotInfoAttrTypeNum, and kAssoDirectoryAttrTypeNum.
Call the DirLookupParse function. It repeatedly calls your callback routine and
passes it a pointer to an Attribute structure containing one of the record attributes
you requested for each of your Mail Service or Combined records.
The value of each kSlotIDAttrTypeNum attribute is the slot ID you previously
assigned to the slot while processing the kMailEPPCCreateSlot high-level event
for that slot. It is a number (type MailSlotID) that uniquely identifies the slot. (If
you have never received and processed a kMailEPPCCreateSlot high-level event,
no kSlotIDAttrTypeNum attributes exist.)
2-38 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
The value of each kStdSlotInfoAttrTypeNum attribute is a
MailStandardSlotInfoAttribute structure that indicates if the slot is active
and provides its send and receive timer information. For each slot, you must
determine if the slot is active at the current system location. The active field of the
MailStandardSlotInfoAttribute structure is a bit array; each bit corresponds to
a possible system location. If the slot is active at that location, the bit is set. You can
test the bits with the MailLocationMask macro (see page 2-115)
The value of each kAssoDirectoryAttrTypeNum attribute is a packed record ID
that points to the Catalog record associated with this slot or to the Combined record.

8. If you provide a stand-alone MSAM, unpack the packed record ID for each slot’s
associated Catalog record by calling the OCEUnpackRecordID utility function. (If
you provide a combined MSAM/CSAM, attributes for the slot and catalog are both
stored in the Combined record— you already unpacked the Combined record IDs.)

9. Get information about the catalog associated with each slot by calling the
DirLookupGet and DirLookupParse functions. As the target of the aRecordList
field in the DirLookupGet parameter block, specify the unpacked record IDs that
point to your Catalog or Combined records. As the target of the attrTypeList
field in the parameter block, specify AttributeType structures that are
referenced by the following attribute type indexes: kCommentAttrTypeNum,
kRealNameAttrTypeNum, and kDiscriminatorAttrTypeNum. If you provide a
combined MSAM/CSAM, also specify kSFlagsAttrTypeNum.
Call the DirLookupParse function. It repeatedly calls your callback routine and
passes it a pointer to an Attribute structure containing one of the attributes you
requested from each Catalog or Combined record. Table 2-8 on page 2-40 describes
the information contained in those attributes.

10. Get the user’s account name and decrypted password by calling the
OCESetupGetDirectoryInfo function. If the local identity is still locked, this
function returns an error. You cannot proceed until the local identity is unlocked.
Note that the value of the nativeName field returned by the
OCESetupGetDirectoryInfo function is the value of the Real Name attribute
(kRealNameAttrTypeNum) in the Catalog or Combined record. The content and use
of the Real Name attribute and the nativeName field are defined by the personal
MSAM and its setup template. A setup template can store the user’s account name
in the Real Name attribute.
At this point, you have obtained all of the standard information stored in your MSAM
and Combined records (or MSAM, Mail Service, and Catalog records) in the Setup
catalog. Using the DirLookupGet and DirLookupParse functions, you may read
other attributes of private types that your setup or address template has added to
the records.

11. Get the incoming and outgoing queue references for each of the slots by calling the
PMSAMOpenQueues function for each slot.
Using the MSAM API 2-39

C H A P T E R 2

Messaging Service Access Modules
Now the personal MSAM can begin performing its primary functions of translating and
transferring messages between an AOCE system and external messaging systems.

The chapter “Service Access Module Setup” in this book describes the information that
your setup template obtains from the user and stores in the Setup catalog as well as the
process it uses to do so. See the chapter “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces for descriptions of the DirGetOCESetupRefnum, DirLookupGet,
and DirLookupParse functions. For a description of the OCEUnpackRecordID
function and the record and attribute type indexes, see the chapter “AOCE Utilities” in
Inside Macintosh: AOCE Application Interfaces. The OCESetupGetDirectoryInfo
function is described in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

Initializing a Server MSAM 2
The first time a server MSAM is launched, it needs to solicit user input to obtain
information about itself. Then it initializes itself within the AOCE system by calling
the SMSAMSetup and SMSAMStartup functions.

The SMSAMSetup function creates the server MSAM’s Forwarder record. The Forwarder
record (record type index kMnMForwarderRecTypeNum) contains information about
the server MSAM. The Forwarder record name is the name of the server MSAM. The
record contains the record ID of the MSAM’s PowerShare mail server, an optional
comment string describing the server MSAM, and a list of the foreign dNodes to which
the server MSAM is connected. (See the chapter “Catalog Manager” in Inside Macintosh:
AOCE Application Interfaces for information about PowerShare catalogs, dNodes, and
foreign dNodes, as well as other concepts that pertain to AOCE catalogs.)

Table 2-8 Selected Catalog record attributes

Attribute type
Data type of
attribute value Description

kDiscriminatorAttrTypeNum DirDiscriminator Discriminator value for this catalog.

kSFlagsAttrTypeNum long Bit array indicating the features
supported by this catalog. Present for
combined MSAM/CSAM only.

kCommentAttrTypeNum RString Displayable string describing this
catalog/external messaging system.

kRealNameAttrTypeNum RString Defined by the MSAM and its setup
template. For example, it may be the
user’s account (logon) name or the
name of the external messaging
system and its address catalog.
2-40 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
After being launched for the first time, a server MSAM must find out its name,
password, messaging system extension type, and a descriptive comment string about
the extension type. The MSAM should display one or more dialog boxes to obtain its
name and password from the system administrator. Typically, an MSAM has built-in
knowledge of the extension type it supports and a descriptive comment string about
the extension type; if it does not, it must obtain that information from the system
administrator.

Once a server MSAM has all this information, it calls the SMSAMSetup function to
create its Forwarder record. Prior to calling the function, the MSAM must allocate a
RecordID structure for its Forwarder record. Then the MSAM sets the recordName
field to its name that the user provided, and the recordType field to the constant
kMnMForwarderRecTypeNum. The MSAM passes to the function a pointer to the
RecordID structure, the MSAM’s password, its extension type, and a string describing
its extension type. In the RecordID structure, the function returns the creation ID for
the newly created Forwarder record and the record location information. In the
catalogServerHint field, the function returns the AppleTalk address (an AddrBlock
structure) of the PowerShare catalog server that created the Forwarder record. The
MSAM can pass this address to a Catalog Manager function (in the serverHint field of
the function’s parameter block) if it wants to direct the request to that particular catalog
server. This can be helpful in preventing failures in the setup process due to delays in
replicating the MSAM’s Forwarder record.

During the execution of the SMSAMSetup function, the PowerShare mail server prompts
the user for the system administrator’s name and password. You may find it helpful to
consult the PowerShare System Manager’s Guide, which describes the setup process from
the system administrator’s perspective.

If the system administrator does not provide this information, the function returns an
error. The function will also return an error if

■ the PowerShare catalog server was unreachable

■ the MSAM’s name is not unique

■ the disk is full

■ an error occurred in creating the Forwarder record (any record creation error)

If an error occurs, the MSAM must display an appropriate dialog box telling the user
about the error. If the PowerShare catalog server was unreachable, the MSAM should
give the user the option of trying the operation again and, if the user chooses to try
again, the MSAM should call the SMSAMSetup function once more. If the user chooses
not to try again, the MSAM should quit. If the MSAM’s name was not unique, the
MSAM should allow the user to enter another name. In any error, the MSAM should fix
the problem when it can or quit when it cannot. Until the SMSAMSetup function
executes successfully, the MSAM cannot proceed with its initialization process.

When the SMSAMSetup function completes successfully, the server MSAM must save
knowledge of this fact so that if it is launched again in the future, it does not call the
SMSAMSetup function again. It is recommended that the server MSAM create a
preferences file in the Preferences folder and save the record ID of its Forwarder record
in its preferences file.
Using the MSAM API 2-41

C H A P T E R 2

Messaging Service Access Modules
Once the SMSAMSetup function completes successfully, the server MSAM should call
the AuthBindSpecificIdentity function, providing the record ID of its Forwarder
record and its encrypted password, to obtain its authentication identity. Once a server
MSAM has obtained its authentication identity, it should provide that information on
subsequent calls to AOCE functions that require an identity.

At this point, the server MSAM may present dialog boxes to the user to obtain any
additional configuration information it needs to function within an AOCE system and to
connect to its external messaging system, such as an IP address, a telephone number,
how often it should connect, and so forth. In general, an MSAM should ask for more
generic information first—that is, information that applies independently of a messaging
system. Then it should prompt for specific information for each messaging system that it
supports. It should then add this information to its Forwarder record in MSAM-defined
attribute types.

Note
In addition to its Forwarder record, a server MSAM should store a copy
of its configuration information in its preferences file for quick, efficient
access.

A server MSAM should keep a backup copy of its preferences file in
case the file is lost or damaged. If its preferences file is lost or damaged
and a server MSAM does not have a backup copy, it can retrieve the
information stored in the MSAM’s Forwarder record and rebuild the file.
To read its Forwarder record, an MSAM must have the Forwarder record
ID (which it obtains from the SMSAMSetup function). ◆

As the final step in the server MSAM’s initialization process, the MSAM calls the
SMSAMStartup function to obtain a reference number for its outgoing queue. After
the SMSAMStartup function completes successfully, the PowerShare mail server
may send high-level events to the server MSAM. The MSAM should respond to
high-level events, connect to external messaging systems, and begin to translate and
transfer messages.

A server MSAM must run on the same Macintosh computer as its PowerShare mail
server. If the PowerShare mail server is not running, the SMSAMStartup function
returns the corErr result code. You can detect when the PowerShare mail server
becomes available by

■ repeatedly calling the Gestalt function and using the
gestaltOCESFServerAvailable mask on its response parameter to determine if
a PowerShare mail server is running on the local Macintosh computer

■ repeatedly calling the SMSAMStartup function

■ adding an entry to the AppleTalk Transition Queue and waiting to receive a
notification that the PowerShare mail server is available

Using the AppleTalk Transition Queue is the recommended approach. The transition
event code ATTransSFStart indicates that the PowerShare mail server has finished
starting up, and the code ATTransSFShutdown indicates that the PowerShare mail
server has started to shut down.
2-42 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
The AppleTalk Transition Queue is described in the chapter “Link-Access Protocol (LAP)
Manager” in Inside Macintosh: Networking.

If the PowerShare mail server quits, your queue reference becomes invalid. You know
that the PowerShare mail server is not running when any of the MSAM API functions
return the corErr result code or you receive notification of the ATTransSFShutdown
AppleTalk transition event. If the PowerShare mail server quits unexpectedly, you do not
receive an AppleTalk transition event.

When it starts up again, the PowerShare mail server does not know that your server
MSAM exists. You need to call the SMSAMStartup function again to get a new queue
reference. You detect the restarting of the PowerShare mail server by any of the three
methods listed previously.

If the PowerShare mail server quits, your server MSAM can keep running. Although you
can no longer retrieve messages from your outgoing queue, you can continue to process
any outgoing messages you queued separately. You can mark recipients and send reports
for those messages after the PowerShare mail server resumes operations. If you have a
separate spool area to hold them, you can continue to process incoming messages while
the PowerShare mail server is not running.

Handling Outgoing Messages 2
This section describes what you need to do with messages in an outgoing queue. It
assumes you have already initialized your MSAM. Each subsection addresses a specific
task, such as

■ enumerating messages in an outgoing queue

■ opening and closing messages

■ determining the message family

■ determining what is in a message

■ reading letter attributes

■ reading addresses

■ reading letter content

■ reading nested messages

■ marking recipients

■ generating reports

There are some differences between how you read letters and how you read non-letter
messages. These differences are noted in the sections that address the specific tasks. For
convenience, Table 2-9 lists the tasks you perform while handling messages in an
outgoing queue and the functions you use to accomplish the task for a letter and a
non-letter message.
Using the MSAM API 2-43

C H A P T E R 2

Messaging Service Access Modules
The order in which functions are listed in Table 2-9 corresponds to the sequence in which
you would call the functions to process a message in an outgoing queue. You first
enumerate the messages in the queue. Then you open a specific message and read its
header information. Header information consists of such items as the message creator
and type, and address (recipient) information. Next, you read the substance of the
message—for a letter, its content block, other blocks it may contain, and enclosures; for a
non-letter message, its blocks. When you have finished reading the message, you close it.
After you have transmitted the message to the recipients for which you are responsible,
you indicate the outcome of your delivery attempts—that is, you generate a report
containing delivery and non-delivery indications if required and mark the recipients.
Setting the status of a message is a task that you perform at several points while you are
processing the message.

You should call the functions that handle outgoing messages asynchronously so that you
can receive and process an AOCE high-level event at any time.

Enumerating Messages in an Outgoing Queue 2

Before you can read a message from an outgoing queue, you must obtain its sequence
number. A sequence number uniquely identifies the message in the queue. You provide
it when you open the message. You get the sequence number of a message by calling the
MSAMEnumerate function.

To make sure it transfers outgoing messages in a timely manner, an MSAM should
enumerate an outgoing queue on a regular basis. The MSAM should enumerate each

Table 2-9 Outgoing tasks and functions

Task Letters Non-letter messages

Enumerate a queue MSAMEnumerate MSAMEnumerate

Open a message MSAMOpen
MSAMOpenNested

MSAMOpen
MSAMOpenNested

Read header information MSAMGetAttributes
MSAMGetRecipients

MSAMGetMsgHeader
MSAMGetRecipients

Read letter content MSAMGetContent Not applicable

Read an enclosure MSAMGetEnclosure Not applicable

Enumerate a block MSAMEnumerateBlocks MSAMEnumerateBlocks

Read a block MSAMGetBlock MSAMGetBlock

Close a message MSAMClose MSAMClose

Generate a report MSAMCreateReport
MSAMPutRecipientReport
MSAMSubmit

MSAMCreateReport
MSAMPutRecipientReport
MSAMSubmit

Mark a recipient MSAMnMarkRecipients MSAMnMarkRecipients

Set message status
(personal MSAMs only)

PMSAMSetStatus PMSAMSetStatus
2-44 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
time it is launched and each time it receives a kMailEPPCMsgPending event. It should
also enumerate at periodic intervals—for instance, every 20 minutes. If an MSAM puts
itself into an idle state, it should enumerate before entering the idle state. A personal
MSAM should also enumerate when it receives a kMailEPPCSchedule event.

Listing 2-1 illustrates one way that you can enumerate messages in an outgoing queue.
For convenience, the function DoEnumerateOutgoingMessages in Listing 2-1 defines
the type MyEnumOutQReplyType, a structure that contains a buffer that can hold a
2-byte count value plus exactly one MSAMEnumerateOutQReply structure. As a result,
each time DoEnumerateOutgoingMessages calls the MSAMEnumerate function,
MSAMEnumerate returns exactly one MSAMEnumerateOutQReply structure, which
provides identifying information about one message in the queue, including its
sequence number.

Before the DoEnumerateOutgoingMessages function calls the MSAMEnumerate
function, it always initializes the fields of the parameter block. It sets the queue reference
to an outgoing queue reference previously obtained from the PMSAMOpenQueues
function. The first time through the loop, DoEnumerateOutgoingMessages sets the
starting sequence number to 1 to start with the first message in the queue. On subse-
quent executions of the loop, it sets the starting sequence number to the sequence
number of the next message in the queue, which is returned by MSAMEnumerate.

The DoEnumerateOutgoingMessages function calls the MSAMEnumerate function
once for each message in the queue. Into your buffer, MSAMEnumerate places the count
of the number of MSAMEnumerateOutQReply structures followed by the reply
structures themselves. In Listing 2-1, the count is always 1.

Listing 2-1 Enumerating outgoing messages

OSErr DoEnumerateOutgoingMessages(MSAMQueueRef myOutgoingQRef)

{

typedef struct MyEnumOutQReplyType {

MailReply reply; /* number of structures returned */

MSAMEnumerateOutQReply message; /* enumerate reply structure */

} MyEnumOutQReplyType;

OSErr myErr;

MSAMEnumeratePB myParamBlock;

MyEnumOutQReplyType myEnumOutQReply;

long myNextMsgSeq;

myNextMsgSeq = 1;

myErr = noErr;
Using the MSAM API 2-45

C H A P T E R 2

Messaging Service Access Modules
do {

myParamBlock.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.queueRef = myOutgoingQRef;

myParamBlock.startSeqNum = myNextMsgSeq;

myParamBlock.buffer.bufferSize = sizeof(MyEnumOutQReplyType);

myParamBlock.buffer.buffer = (Ptr)&myEnumOutQReply;

MSAMEnumerate((MSAMParam *)&myParamBlock,true);

/* poll for completion */

myErr = DoWaitPBDone(&myParamBlock);

myNextMsgSeq = myParamBlock.nextSeqNum;

/* save the MSAMEnumerateOutQReply structure */

DoSaveData((Ptr)&myEnumOutQReply);

}

while (myErr == noErr && myNextMsgSeq != 0);

return myErr;

}

The DoWaitPBDone function, called here and in the listings in the following sections,
polls the ioResult field to determine when an asynchronous request has completed.
While it is polling, it also yields time to other processes running on the computer by
calling the WaitNextEvent function. When the MSAMEnumerate function completes,
DoWaitPBDone returns the MSAMEnumerate result code as its result code.

The DoMSAMCompletion completion routine, called when the MSAMEnumerate function
completes execution, calls the WakeUpProcess function. Then WakeUpProcess makes
the MSAM process, which suspended itself by calling the WaitNextEvent function,
eligible to receive CPU time.

After the MSAMEnumerate function completes, DoEnumerateOutgoingMessages
saves the enumeration information elsewhere by calling its DoSaveData function. It
needs to do this because MSAMEnumerate overwrites the MyEnumOutQReplyType
structure each time through the loop.

Opening and Closing a Message 2

Before you can read any part of an outgoing message, you must open it. To open a
specific message, you call the MSAMOpen function and provide the queue reference of
the outgoing queue in which the message is located and the sequence number of the
message. The MSAMOpen function returns a reference number for the opened message
that you use when you call other functions to read the various parts of the message, such
as the message header, recipient information, and the content data in the message. If the
message is a letter, you can also read the letter’s attributes. You cannot modify a message
in an outgoing queue.
2-46 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
When you have finished reading a message, call the MSAMClose function to close it.
Closing a message reduces PowerTalk software memory requirements. Once you have
closed a message, the message reference number is no longer valid, even though
the message itself remains in the outgoing queue. If you want to read any part of the
message again, you must call the MSAMOpen function and get a new reference number.
You can open and close a message as many times as you wish.

Determining the Message Family 2

You must determine if a message that you want to read is a letter or a non-letter message
because the functions you use to read a letter or a non-letter message differ somewhat (see
Table 2-9 on page 2-44). You determine the message family to which a message belongs
by examining the msgFamily field in the MSAMEnumerateOutQReply structure.
Letters may belong to either the kMailFamily or kMailFamilyFile family. Non-
letter messages belong to the kIPMFamilyUnspecified family. Once you know the
message family, you can call the appropriate MSAM functions to read the attributes,
addresses, and contents of the letter or non-letter message.

Determining What Is in a Message 2

Typically, when you read a letter, you call the MSAMGetContent, MSAMGetBlock,
MSAMGetEnclosure, and MSAMOpenNested functions to read the letter’s content
block, image block, enclosures, and nested letter, respectively.

When you want to read a non-letter message, you need to enumerate the blocks in the
message. The MSAMEnumerateBlocks function returns each block’s creator and type,
its offset in bytes from the beginning of the message, and its length in bytes. When you
want to read a given block, you call the MSAMGetBlock function and provide the
block’s creator and type.

Reading Letter Attributes 2

Every letter contains attributes that provide information about the letter, such as whether
the sender wants to receive a report containing delivery or non-delivery indications,
when the letter was sent, and so forth. You should read this information and include in
the letter as much of the information as is meaningful in your messaging system. You
can read most letter attributes with the MSAMGetAttributes function. However, to
read the recipients of a letter—the from, to, cc, and bcc attributes—you call the
MSAMGetRecipients function.

To the MSAMGetAttributes function, you provide a set of bit flags, known as the request
mask, that represents the attributes whose values you want to read and a buffer to hold
the attribute values. The MailAttributeBitmap structure, described on page 2-100,
defines the attributes that the bit flags in the request mask represent. The function
returns a second set of bit flags, known as the response mask, that indicates which of the
requested attribute values it has returned in your buffer.
Using the MSAM API 2-47

C H A P T E R 2

Messaging Service Access Modules
The function DoReadLetterAttributes in Listing 2-2 shows how you can
request attribute values, test for their presence in your buffer, and save the value
in a file. The DoReadLetterAttributes function defines the structure type
MaximumLetterAttributes that is large enough to hold a value for each
of the attributes that the MSAMGetAttributes function can return. The
DoReadLetterAttributes function declares a variable of that type, myAttribBuf,
and sets a pointer, myAttribPtr, to point to the start of the buffer. Next, it initializes
the request mask to 0 and then sets the request mask to specify every attribute that
the MSAMGetAttributes function can return. If the messaging system to which you
provide access does not use some of this information, don’t ask for it. For instance, if
you know that your messaging system does not understand a reply ID, do not set the
bit for the reply ID in the attribute request mask.

Note
Because the MailAttributeBitmap data type is defined as a
bit field structure, you cannot use predefined masks such as
kMailSubjectMask, kMailMsgTypeMask, and so forth to set or test
the value of a bit field in a variable of type MailAttributeBitmap.
The masks operate on variables of type long. ◆

After the DoReadLetterAttributes function sets its attribute request mask, it calls
the MSAMGetAttributes function. The MSAMGetAttributes function returns the
attributes that you request (if they are present in the letter header) packed into your
buffer, starting with the attribute specified by the least significant bit in the request mask.
The MSAMGetAttributes function also sets the bits in the response mask
corresponding to those attributes for which it returned a value.

Next, DoReadLetterAttributes tests the bits in the response mask to find
out which attributes are in the buffer. Initially, myAttribPtr points to the
beginning of the myAttribBuf buffer. For each bit in the response mask that is set,
DoReadLetterAttributes writes the corresponding attribute value to a file and
adds the size of the attribute value’s data type to myAttribPtr to position the
pointer to the start of the next attribute value in myAttribBuf.

Listing 2-2 Reading letter attributes

OSErr DoReadLetterAttributes(MailMsgRef myMailRef)

{

 /* maximum size structure for calling MSAMGetAttributes */

typedef struct MaximumLetterAttributes {

MailIndications indications;

OCECreatorType msgType;

MailLetterID letterID;

MailTime sendTimeStamp;

MailNestingLevel nestingLevel;

OSType messageFamily;

MailLetterID replyID;
2-48 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MailLetterID conversationID;

RString subject;

} MaximumLetterAttributes;

OSErr myErr;

MSAMGetAttributesPB myParamBlock;

MailAttributeBitmap myRequestBitmap;

MaximumLetterAttributes myAttribBuf;

char *myAttribPtr;

long *myClearBitmap;

myAttribPtr = (char *)&myAttribBuf; /* point to start of buffer */

/* initialize the request mask to 0 */

myClearBitmap = (long *)&myRequestBitmap;

*myClearBitmap = 0L;

/* set bits for the attributes you want */

myRequestBitmap.indications = myRequestBitmap.msgType =

 myRequestBitmap.letterID = myRequestBitmap.sendTimeStamp =

 myRequestBitmap.nestingLevel = myRequestBitmap.msgFamily =

 myRequestBitmap.replyID = myRequestBitmap.conversationID =

 myRequestBitmap.subject = 1;

/* fill in the fields of the parameter block */

myParamBlock.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.mailMsgRef = myMailRef;

myParamBlock.requestMask = myRequestBitmap;

myParamBlock.buffer.bufferSize = sizeof(MaximumLetterAttributes);

myParamBlock.buffer.buffer = myAttribPtr;

myParamBlock.more = false;

/* call function to get the attributes */

MSAMGetAttributes((MSAMParam *)&myParamBlock,true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr!=noErr)

return myErr;

/* save returned attributes to disk */

if (myParamBlock.responseMask.indications) {

myErr = DoWriteToFile(kMailIndicationsMask, myAttribPtr,

sizeof(MailIndications));
Using the MSAM API 2-49

C H A P T E R 2

Messaging Service Access Modules
if (myErr!=noErr)

return myErr;

myAttribPtr += sizeof(MailIndications);

}

if (myParamBlock.responseMask.msgType) {

myErr = DoWriteToFile(kMailMsgTypeMask, myAttribPtr,

sizeof(OCECreatorType));

if (myErr!=noErr)

return myErr;

myAttribPtr += sizeof(OCECreatorType);

}

if (myParamBlock.responseMask.letterID) {

myErr = DoWriteToFile(kMailLetterIDMask, myAttribPtr,

sizeof(MailLetterID));

if (myErr!=noErr)

return myErr;

myAttribPtr += sizeof(MailLetterID);

}

/*

Test for presence of the send time stamp, nesting level, message

family, reply ID, and conversation ID attributes. If present, write

them to file.

*/

if (myParamBlock.responseMask.subject) {

myErr = DoWriteToFile(kMailSubjectMask, myAttribPtr, sizeof(RString));

if (myErr!=noErr)

return myErr;

myAttribPtr += sizeof(RString);

}

}

You can read information such as the message creator and message type from the
message header of non-letter messages by calling the MSAMGetMsgHeader function.

Interpreting Creator and Type for Messages and Blocks 2

An outgoing message may have any message creator and any message type. Typically,
an application that generates a message uses its own application signature as the
message creator and its document type as the message type.

The message creator value 'lap2' indicates that the AppleMail application created
the message.
2-50 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
If the message type of an outgoing message is kMailLtrMsgType, the message is a
letter that contains any or all of the following: data in standard interchange format, data
in image format, or a regular enclosure.

Each block in an outgoing message has a block creator and block type. The AppleMail
application sets the block creator to kMailAppleMailCreator for blocks that it
creates. The block types that you may find in a letter are listed in Table 2-3 on page 2-18.

Reading Addresses 2

When you read the addresses associated with an outgoing message, you must get both
the original and the resolved recipients for that message. That gives you complete
addressing information for both display and routing purposes.

An original recipient can be a To, From, cc, or bcc recipient. These four types of original
recipients are defined as follows:

■ From: the sender of a message

■ To: a primary recipient of a message

■ cc: a secondary recipient receiving a copy of a letter

■ bcc: a secondary recipient whose address does not appear on the letter as received by
the To and cc recipients and other bcc recipients

An original recipient may be a group address (distribution list).

A resolved recipient is a recipient to which you are responsible for delivering the
message. Usually, a resolved recipient is an individual address; sometimes it can be a
group address.

Reading Original Recipients 2

To get a list of original recipients, you call the MSAMGetRecipients function. You need
to get original recipients so that you can properly display them as From, To, cc, or bcc
recipients in the message you send to an external messaging system. The function
returns information about one type of original recipient. You specify the type of original
recipient you want by setting the attrID field of the MSAMGetRecipientsPB
parameter block appropriately. You can set the attrID field to any of the following
constants:

If you are reading a letter, you need to get each original recipient type so that when you
translate the letter, it includes display information about all of the recipients. Display
address information refers to an address that may not be usable for routing within a
given messaging system but nevertheless shows that the letter went to the addressee.

Constant Value Recipient type

kMailFromBit 12 From

kMailToBit 13 To

kMailCcBit 14 cc

kMailBccBit 15 bcc
Using the MSAM API 2-51

C H A P T E R 2

Messaging Service Access Modules
(A bcc recipient is an exception, as it should be displayed only to the sender and the bcc
recipient itself.)

If you are reading a non-letter message, the only original recipient types that apply are
From and To. You may not need to get display information. If that is the case, do not call
the MSAMGetRecipients function to retrieve the To recipients. You may still want to
call it to get the From recipient. (You could also get the From recipient by calling the
MSAMGetMsgHeader function.)

When a letter has a bcc recipient, you must make every attempt to conform to the
following AOCE guidelines for bcc recipients: A bcc recipient must know that he or she
is a bcc recipient. A To or a cc recipient must not see any bcc recipient. It is less desirable,
but acceptable, for a bcc recipient to see other bcc recipients.

To support these guidelines, your MSAM may need to generate a separate copy of the
letter for each bcc recipient for which it is responsible or employ other implementations
that are less straightforward or more expensive than usual. As a last resort, if your
MSAM cannot support AOCE guidelines, it must reject bcc recipients. In that case, it
must still apply the guidelines to the letter—that is, no other recipient must know of the
bcc recipients.

Reading Resolved Recipients 2

To get a list of resolved recipients, call the MSAMGetRecipients function and specify
the kMailResolvedList constant in the attrID field of the MSAMGetRecipientsPB
parameter block. You need to get a list of resolved recipients so that you know to which
recipients you must send the message.

As you read the MailResolvedRecipient structures that the MSAMGetRecipients
function places in your buffer, you must save the ordinal-position value for each
resolved recipient. The first recipient’s ordinal-position value is 1; the second recipient’s
ordinal-position value is 2; and so forth. The MSAMnMarkRecipients function requires
you to provide the ordinal-position value to identify a recipient for whom you have
completed delivery attempts. If you need to call MSAMGetRecipients more than
once to get all of the resolved recipients, you must increment the ordinal-position
value continuously so that each resolved recipient is associated with a unique ordinal-
position value.

Personal MSAMs always find a one-to-one correspondence between their resolved
recipients and their displayable (original) recipients because the MSAMGetRecipients
function expands all group addresses into individual recipients before it returns
recipient information to the personal MSAM.

Server MSAMs may find more recipients in the resolved list than in the displayable
lists for this reason: the PowerShare mail server expands PowerShare group addresses
into individual addresses for the resolved list, but the original recipient lists may
have included PowerShare group addresses that were not expanded. The
MSAMGetRecipients function does not expand external group addresses.

Server MSAMs may also find that there are recipients in the resolved list that are not
exactly the same as the corresponding recipients in the original list. These have been
resolved by the AOCE software to a more specific form.
2-52 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
The PowerShare mail server does not suppress duplicate external addresses. It does
suppress duplicate addresses resulting from the expansion of a PowerShare group
address. However, you are not guaranteed that the MSAMGetRecipients function will
not return duplicate PowerShare addresses.

Listing 2-3 illustrates a dispatch routine that calls the DoReadGenericAddress
function (shown in Listing 2-4 on page 2-55) to get a list of resolved recipients and lists
of the original recipients that are appropriate to a letter or a non-letter message.

Listing 2-3 Getting resolved and original recipients

OSErr DoReadAddress(MailMsgRef myMsgRef)

{

FSSpec myTempFileSpec;

OSErr myErr;

/* initialize the file specification */

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef,

kMailResolvedList);

if (myErr!= noErr)

return myErr;

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef, kMailFromBit);

if (myErr!= noErr)

return myErr;

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef, kMailToBit);

if (myErr!= noErr)

return myErr;

if (myMsg->msgFamily == kMailFamily) { /* it's a letter */

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef, kMailCcBit);

if (myErr!= noErr)

return myErr;

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef, kMailBccBit);

if (myErr!= noErr)

return myErr;

}

return myErr;

}

Using the MSAM API 2-53

C H A P T E R 2

Messaging Service Access Modules
The function DoReadGenericAddress shown in Listing 2-4 actually reads the addresses
from an outgoing message and writes them to a disk file. The DoReadGenericAddress
function takes three parameters: the file system specification of a temporary disk file to
which it writes the addresses, the message reference number for a given message, and an
attribute ID that identifies the type of address that the caller wants to retrieve from the
message.

First DoReadGenericAddress allocates a buffer, pointed to by the addressBuffer
field, that it uses to hold addresses returned by the MSAMGetRecipients function. It
sets the size of the buffer to 1024 bytes. Your MSAM should determine the buffer size
that is appropriate for your needs.

Next, DoReadGenericAddress determines if it is handling a request to get resolved or
original recipients and sets the doingResolved Boolean variable accordingly. If it is
handling resolved recipients, DoReadGenericAddress initializes its local variable
ordinalPosition to 0. It uses ordinalPosition to save the ordinal position of each
resolved recipient. It needs this information to mark a recipient when it has finished its
efforts to deliver the letter to the recipient. The ordinal-position value must be unique for
each recipient.

Then, DoReadGenericAddress fills in all but one of the fields of the local variable
myParamBlock, which is an MSAMGetRecipientsPB parameter block. It sets the
myParamBlock.mailMsgRef field to its message reference number parameter
(myMailRef) to identify the message and sets the myParamBlock.attrID field to its
attribute ID parameter (attrID) to indicate which type of address (To, From, cc, bcc,
or resolved) it wants the MSAMGetRecipients function to return. Although the
nextIndex and more fields are outputs of the MSAMGetRecipients function,
DoReadGenericAddress sets them here to execute the for statement that follows
and to initialize the myParamBlock.startIndex field properly the first time through
the loop.

To accomplish its main work, DoReadGenericAddress uses two for loops, one nested
inside the other. Note that the outer for statement contains only the logical expression
controlling the iteration of the loop. The loop executes as long as the value of
myParamBlock.more is true and no error has occurred. The MSAMGetRecipients
function sets the more field to true when there are more addresses to return than it
could fit into the caller’s buffer.

The outer for loop sets the myParamBlock.startIndex field to the value of the
myParamBlock.nextIndex field, which it previously set to 1. This tells the
MSAMGetRecipients function that it should begin returning addresses starting
with the first address of the specified type. Then DoReadGenericAddress calls
MSAMGetRecipients asynchronously and polls for its completion.

If no error has occurred, DoReadGenericAddress initializes two variables used by the
inner for loop. The MSAMGetRecipients function always puts at the beginning of
your buffer the count of the number of addresses it placed in your buffer, followed by
the addresses themselves. Therefore, DoReadGenericAddress sets recipientPtr to
point into the address buffer at the byte where address information actually begins,
skipping over the count. It next sets the variable numRecipients to the count of the
2-54 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
number of addresses in the buffer. Then, it executes the inner for loop to manipulate the
addresses returned in the buffer.

The inner for loop extracts an address from the buffer and writes it to a disk file.
It executes until all of the addresses have been extracted and written or until an
error occurs. For convenience, DoReadGenericAddress defines two new types,
MailOriginalRecipientExt and MailResolvedRecipientExt. Each consists of
a MailOriginalRecipient or MailResolvedRecipient structure, respectively,
followed by an OCEPackedRecipient structure. The new types enable
DoReadGenericAddress to manipulate all of the relevant information associated
with a particular address using a single structure.

If it is extracting resolved recipients, DoReadGenericAddress first increments
the ordinalPosition local variable. Then it sets the pointer resolvedPtr to
recipientPtr, which in turn points to the beginning of the first resolved address.
The DoReadGenericAddress function writes the MailResolvedRecipientExt
structure to a disk file, tagging it with its address type (attribute ID) and ordinal-position
value for later identification. Once that is done, DoReadGenericAddress advances
the recipientPtr pointer to the next address in the buffer. It moves recipientPtr
past the MailResolvedRecipient structure, past the dataLength field in the
OCEPackedRecipient structure, and then past the number of bytes specified
in the dataLength field. If recipientPtr points to an odd byte address,
DoReadGenericAddress increments it by 1 to point to an even byte boundary.
At this point, the for loop is ready to execute again.

Because of differences in the sizes of the applicable structures, the for loop has separate
but parallel logic to extract and write resolved and original recipients.

The logic of DoReadGenericAddress assumes that after it writes the addresses to disk,
the MSAM translates them from AOCE address format into the format of the destination
messaging system.

Listing 2-4 Reading addresses from an outgoing message

OSErr DoReadGenericAddress(FSSpec *myTempFileSpec, MailMsgRef myMailRef,

MailAttributeID attrID)

{

typedef struct MailOriginalRecipientExt {

MailOriginalRecipient prefix;

OCEPackedRecipient packedRecip;

} MailOriginalRecipientExt;

typedef struct MailResolvedRecipientExt {

MailResolvedRecipient prefix;

OCEPackedRecipient packedRecip;

} MailResolvedRecipientExt;
Using the MSAM API 2-55

C H A P T E R 2

Messaging Service Access Modules
OSErr myErr;

MSAMGetRecipientsPB myParamBlock;

short count, numRecipients, ordinalPosition;

MailOriginalRecipientExt *origPtr;

MailResolvedRecipientExt *resolvedPtr;

Ptr addressBuffer, recipientPtr;

Boolean doingResolved;

addressBuffer = NewPtr(1024L);

if (MemError()!= noErr)

return MemError();

if (attrID == kMailResolvedList) {

doingResolved = true;

ordinalPosition = 0;

else

doingResolved = false;

myParamBlock.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.mailMsgRef = myMailRef;

myParamBlock.attrID = attrID;

myParamBlock.buffer.buffer = addressBuffer;

myParamBlock.buffer.bufferSize = 1024L;

myParamBlock.more = true; /* to get into "for" loop */

myParamBlock.nextIndex = 1;

myErr = noErr;

for (; myParamBlock.more == true && myErr == noErr;) {

myParamBlock.startIndex = myParamBlock.nextIndex;

MSAMGetRecipients((MSAMParam *)&myParamBlock,true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr != noErr) {

DisposPtr(addressBuffer);

return myErr;

} /* end if */

recipientPtr = addressBuffer + sizeof(short);

numRecipients = (MailReply *) addressBuffer->tupleCount;

for (count = 0; count < numRecipients && myErr == noErr;

count++) {

if (doingResolved) {

resolvedPtr = (MailResolvedRecipientExt *)recipientPtr;

ordinalPosition++;

myErr = WriteRecipient(myTempFileSpec, attrID, resolvedPtr,

ordinalPosition);
2-56 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
recipientPtr += (sizeof(MailResolvedRecipient) + sizeof(short)

+ resolvedPtr->packedRecip.dataLength);

if ((unsigned long)recipientPtr % 2)/*pad to even boundary */

recipientPtr++;

} /* end if */

else {

origPtr = (MailOriginalRecipientExt *)recipientPtr;

myErr = WriteRecipient(myTempFileSpec, attrID, origPtr, 0);

recipientPtr += (sizeof(MailOriginalRecipient) + sizeof(short)

+ origPtr->packedRecip.dataLength);

if ((unsigned long)recipientPtr % 2)/*pad to even boundary */

recipientPtr++;

} /* end else */

} /* end inner for loop */

} /* end outer for loop */

DisposPtr(addressBuffer);

return myErr;

}

Reading Letter Content 2

You read a letter’s content block by calling the MSAMGetContent function. A content
block consists of a series of data segments. A segment contains data in any of these
formats: plain text, styled text, pictures, sound, and QuickTime movies. You select which
types of segment you want to read by setting the segmentMask field in the function’s
parameter block appropriately.

To read the segments sequentially, set the segmentID field to 0. The MSAMGetContent
function returns data from the first segment of a type that you requested in your
segment mask. Continue resetting the segmentID field to 0 on subsequent calls to the
MSAMGetContent function to read the segments of interest sequentially.

To access the segments in any order you choose, set the segmentID field to a given
segment’s segment ID. You can obtain the segment ID for each segment in a letter’s
content block by scanning the segments without actually reading in any data. To do this,
set the segmentMask and segmentID fields to 0 before calling the MSAMGetContent
function. This tells the function that you do not want it to return data for any segment
type and that you want it to return information about the segments starting with the first
segment in the block. Save the values of the segmentType, segmentLength, and
segmentID fields that the function returns. Reset the segmentID field to 0 and call the
function again to get information about the next segment in the block. Continue saving
the values of the segmentType, segmentLength, and segmentID fields, resetting the
segmentID field to 0, and calling the function. The function provides information about
the next segment in the content block. When it returns information about the last
segment in the content block, the function returns true in the endOfContent field.
Using the MSAM API 2-57

C H A P T E R 2

Messaging Service Access Modules
At this point, you know the order of the segments in the block, the type of data each
contains, the number of bytes in the segment, and the segment IDs. You can then read
the data in the segments in any order you choose. Set the segmentMask field to indicate
the types of segments from which you want to retrieve data. The types of segment data
you request depends on the capabilities of your messaging system. For instance, if your
messaging system understands only plain text data, there is no point in reading
segments that contain QuickTime movie data.

The function DoReadLetterContent in Listing 2-5 reads a letter’s content block. It
allocates buffer space for the segment data. In the MSAMGetContentPB parameter block,
it sets the segment mask to request data from segments containing plain text, pictures,
and sound. Then it repeatedly calls the MSAMGetContent function until the function
returns true in the endOfContent field, always resetting the segment ID to 0 to
proceed sequentially through the blocks. If MSAMGetContent completes successfully,
DoReadLetterContent writes the segment data to a file. Later, it can read this file and
build its message in the format acceptable to its external messaging system.

Listing 2-5 Reading a letter’s content block

#define kMaxBufferSize 32767L

OSErr DoReadLetterContent(FSSpec *myTempFileSpec, MailMsgRef myMailRef)

{

MSAMGetContentPB myParamBlock;

Ptr dataBuffer;

OSErr myErr;

Boolean startOfBlock;

unsigned short blockIndex;

/* allocate data buffer */

dataBuffer = NewPtr(kMaxBufferSize);

if (MemError() != noErr)

return MemError();

/* fill in parameter block */

myParamBlock.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.mailMsgRef = myMailRef;

myParamBlock.buffer.buffer = dataBuffer;

myParamBlock.buffer.bufferSize = kMaxBufferSize;

myParamBlock.segmentMask = kMailTextSegmentMask |

kMailPictSegmentMask | kMailSoundSegmentMask;

myParamBlock.textScrap = nil;
2-58 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
/* read letter content */

startOfBlock = true;

blockIndex = 0;

do {

myParamBlock.segmentID = 0;

MSAMGetContent((MSAMParam *)&myParamBlock,true);

myErr = WaitPBDone(&myParamBlock);

if ((myErr == noErr) && (myParamBlock.buffer.dataSize > 0)) {

if (startOfBlock) {

DoWriteContentToFile(myTempFileSpec, myParamBlock.segmentType,

myParamBlock.buffer.buffer,

myParamBlock.buffer.dataSize, blockIndex);

startOfBlock = false;

}

else

DoAppendContentToFile(myTempFileSpec, myParamBlock.segmentType,

myParamBlock.buffer.buffer

myParamBlock.buffer.dataSize, blockIndex);

if (myParamBlock.endOfSegment == true) {

startOfBlock = true;

blockIndex++;

}

}

} while ((myErr == noErr) && (myParamBlock.endOfContent == false));

DisposPtrChk(dataBuffer);

return myErr;

}

Reading a Nested Message 2

A message can have other messages nested within it. If you are reading a letter, you
can determine if the letter contains nested letters by calling the MSAMGetAttributes
function and requesting the nestingLevel attribute. A nesting level of 0 means there
are no nested letters; a nesting level of 1 means there is one nested letter, and so forth.
If you are reading a non-letter message, you can determine if it contains a nested
message by calling the MSAMEnumerateBlocks function and looking for a block of
type kIPMEnclosedMsgType. Such a block contains a complete message. That nested
message may in turn contain a message block of type kIPMEnclosedMsgType that
contains a complete message, and so on.

To open a nested message, you call the MSAMOpenNested function, which returns a
reference number to the nested message. To read the nested message, you pass this
nested message reference number to functions. An MSAM can call MSAMOpenNested
repeatedly to open a hierarchy of nested messages.
Using the MSAM API 2-59

C H A P T E R 2

Messaging Service Access Modules
You can close a nested message explicitly by calling the MSAMClose function or you can
close it implicitly when you close the parent message.

Note
A letter can have only one nested letter per nesting level, although each
nested letter can itself contain a nested letter, and so forth. A non-letter
message may actually have more than one nested message per nesting
level. The IPM Manager API allows applications to create such
messages. However, the MSAM API restricts you to reading one nested
message per nesting level. You can read only the first occurrence of a
nested message in a sequence of message blocks. ◆

Marking Recipients 2

Once you have read a message from the outgoing queue, translated it into the format
understood by your external messaging system, and transmitted it, you can mark
one or more recipients. Marking a recipient indicates that you have completed your
efforts to deliver the message to that recipient. You mark a recipient by calling the
MSAMnMarkRecipients function.

Marking a recipient does not indicate that you have successfully delivered the message,
but only that you are finished with your efforts to deliver it to that recipient.

You can use the MSAMnMarkRecipients function to help you keep track of your
delivery status for a message. The function clears the responsible flag in the
MailResolvedRecipient structure for the recipients you specify. Thus, if you later
call the MSAMGetRecipients function to get the resolved recipients for the message,
the responsible flag indicates those recipients you have already processed.

You identify a recipient that you want to mark by its ordinal position in the buffer
returned by the MSAMGetRecipients function. That is, when you call the
MSAMGetRecipients function to get your resolved recipients, it places recipient
information in your buffer, and you must save the ordinal-position value of each
resolved recipient as you retrieve the recipient information from the buffer. The
first recipient’s ordinal-position value is 1; the second recipient’s ordinal-position
value is 2; and so forth. It is this value that you provide to the MSAMnMarkRecipients
function to identify the recipient. If you use the recipient’s absolute index, contained
in a MailResolvedRecipient structure, the MSAMnMarkRecipients function does
not work correctly.

After you mark all of the recipients for a given message, the function sets the done
field in the MSAMEnumerateOutQReply structure to true. If you later call the
MSAMEnumerate function to check the messages in your outgoing queue, you can
determine if you have finished processing a given message by checking the done field.

You can call the MSAMnMarkRecipients function as many times as necessary for a
given message, specifying one or more recipients each time as you complete your
delivery efforts for those recipients.
2-60 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Generating a Report 2

When you have completed your delivery attempts for an outgoing message, you may
need to generate a report to the sender. An MSAM determines whether it must create a
report for an outgoing message by reading information in the message header. An
MSAM should create a report about an outgoing message only in response to the
sender’s request.

If the message is a letter, an MSAM calls the MSAMGetAttributes function to
read the MailIndications structure. In the MailIndications structure, the
kMailNonReceiptReportsBit bit and the kMailReceiptReportsBit bit, if set,
indicate that the letter’s sender requested non-delivery and delivery indications,
respectively.

If the message is not a letter, an MSAM calls the MSAMGetMsgHeader function
with the constant kIPMFixedInfo as the value of the selector field. The
IPMFixedHdrInfo structure returned by MSAMGetMsgHeader contains the
notification field, which contains the kIPMNonDeliveryNotificationBit bit
and the kIPMDeliveryNotificationBit bit. These bits, if set, indicate that the
sender of the message requested non-delivery and delivery indications, respectively.
Test these bits to determine if you need to create a report.

If a sender asks for delivery indications, non-delivery indications, or both, an MSAM
must provide information on the outcome of delivery attempts (a delivery or non-
delivery indication) for every recipient for which the MSAM is responsible. It is
important that an MSAM provide delivery information on all of the MSAM’s recipients
whenever a sender requests any type of delivery information because an MSAM report
does not go directly to the report requestor. Instead, the report goes to an AOCE agent
that uses the MSAM report information to prepare an IPM report according to the
requestor’s specifications. If an MSAM fails to provide delivery information on all of its
recipients, the requestor may receive inaccurate IPM reports.

An MSAM should ignore the bit fields having to do with including a copy of the original
message in the report. If necessary, a copy of the original is added by the AOCE agent.

To create a report, an MSAM must

1. call the MSAMCreateReport function

2. call the MSAMPutRecipientReport function to add delivery and non-delivery
indications for recipients for which it was responsible

3. call the MSAMSubmit function to deliver its finished report

An MSAM must have certain information about a message in order to create a report
about the message. The MSAMCreateReport function requires the letter or message ID
of the message to which the report applies and the address of the sender. You obtain
this information from either the MSAMGetAttributes and MSAMGetRecipients
functions (for a letter) or the MSAMGetMsgHeader function (for a non-letter message).
The MSAMPutRecipientReport function requires the recipient index to identify
which recipient is being reported upon. You obtain this information from the
MSAMGetRecipients function.
Using the MSAM API 2-61

C H A P T E R 2

Messaging Service Access Modules
Depending on how the external messaging system works, an MSAM may save this
information in its own data store or include it with the message. If, for example, more
than one MSAM connects to the same external messaging system, and the system
might acknowledge receiving the message to any of those MSAMs, an MSAM should
include the information with the message. This enables the external messaging system
to extract the information from the message and then include the information with
the acknowledgment of the message. As a result, any MSAM that receives the
acknowledgment has the information necessary to create a report for that message.
You decide how to make sure that the information required to create a report is
available, given the characteristics of the external messaging system to which your
MSAM connects.

Your MSAM and its external messaging system define what constitutes successful or
failed delivery for outgoing messages.

Writing Incoming Messages 2
This section describes how you create and submit an incoming letter for delivery to its
AOCE recipients. It assumes you have already initialized your MSAM. Each subsection
addresses a specific task, such as

■ creating a message summary for an incoming letter (for personal MSAMs only)

■ creating a letter

■ creating a non-letter message

■ writing letter attributes

■ writing addresses

■ writing letter content

■ submitting a letter for delivery

■ receiving a report

The differences between writing letters and writing non-letter messages are noted in the
sections that address the specific tasks. For convenience, Table 2-10 lists the tasks you
perform while handling incoming messages and the functions you use to accomplish
each task for a letter and a non-letter message.

The order in which functions are listed in Table 2-10 corresponds to the sequence in
which you would call the functions to process an incoming message. A personal MSAM
first creates a message summary if it is dealing with a letter. Then all MSAMs create the
message itself and begin adding information to it. First, you write header information
consisting of message attributes, such as the priority of the message, and address
(recipient) information. Next, you write the substance of the message—for a letter, its
content block, other blocks it may contain, and enclosures; for a non-letter message, its
blocks. You can include an entire message within another message by defining its
beginning and end with the MSAMBeginNested and MSAMEndNested functions and
2-62 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
calling the appropriate functions to write the nested message’s header information,
blocks, enclosures, and so forth. When you have finished writing the message, you
submit it to the AOCE system for delivery to its recipients.

A personal MSAM may also delete a letter, or both the letter and the letter’s message
summary, from an incoming queue. For example, the MSAM may delete a letter (but
not the message summary) if it no longer wants the letter to be cached locally. If the
personal MSAM is mirroring the letter’s status on the external messaging system, it can
delete the letter and message summary when the letter is removed from the external
messaging system.

A personal MSAM may also set the status of a letter and enumerate an incoming queue.
Setting the status of a letter is a task that the MSAM performs at several points while it is
processing the letter. Enumerating an incoming queue is a task it may do in response to
receiving a kMailEPPCInQUpdate high-level event.

You should call the functions that handle incoming messages asynchronously so that
you can receive and process an AOCE high-level event at any time.

The sample code in Listing 2-6 through Listing 2-15 illustrates one way a personal
MSAM can write a letter to an incoming queue. Most of the sample code and the text
also apply to a server MSAM. The text notes differences between the operation of
personal and server MSAMs where applicable.

Table 2-10 Incoming tasks and functions

Task Letters Non-letter messages

Create a messaging summary
(personal MSAMs only)

PMSAMCreateMsgSummary Not applicable

Create a message MSAMCreate MSAMCreate

Write header information MSAMPutAttribute
MSAMPutRecipient

MSAMPutMsgHeader
MSAMPutRecipient

Write letter content MSAMPutContent Not applicable

Write an enclosure MSAMPutEnclosure Not applicable

Write a block MSAMPutBlock MSAMPutBlock

Write a nested letter MSAMBeginNested
MSAMEndNested

MSAMBeginNested
MSAMEndNested

Submit a message MSAMSubmit MSAMSubmit

Delete a message
(personal MSAMs only)

MSAMDelete Not applicable

Set message status
(personal MSAMs only)

PMSAMSetStatus Not applicable

Enumerate a queue
(personal MSAMs only)

MSAMEnumerate Not applicable
Using the MSAM API 2-63

C H A P T E R 2

Messaging Service Access Modules
Most of these listings contain code fragments from the DoIncomingLetter function,
but only Listing 2-6 on page 2-67 shows the DoIncomingLetter function definition
and its local variables.

Choosing Creator and Type for Messages and Blocks 2

When you create an incoming message, you set the message creator to indicate the
application that should open the message. If you set the message creator for a letter to
'lap2', the signature of the AppleMail application, the AppleMail application opens
the letter when the user double-clicks the letter’s icon. If the letter contains a content
enclosure, you can set the message creator to the signature of the application that created
the content enclosure. In this case, if the user has that application, that application will
open the letter.

The message type kMailLtrMsgType designates an AOCE letter that contains data in
standard interchange format or image format, or a regular enclosure. When you create
an incoming letter, you should use this message type when the letter contains data in
standard interchange format or image format, or when it contains a regular enclosure.
If the letter also contains a content enclosure or a private block, and you set the
message creator to the signature of the application that created the enclosure or private
block, then you can use a message type that you define that is consistent with the
message creator.

When you create a non-letter message, you typically use an application-defined message
creator and message type.

Each block in an incoming message has a block creator and block type. When you create
blocks such as header, content, enclosure, and report blocks by calling the appropriate
MSAM function, the function sets the block creator to kMailAppleMailCreator and
the block type to the correct predefined type. (Letter block types are listed in Table 2-3 on
page 2-18.)

When you call the MSAMPutBlock function to add a block to an incoming message, you
set the block creator and block type to values that you select. If you are writing a block of
a predefined type such as an image block or a private block, be sure to set the block type
to kMailImageBodyType or kMailMSAMType, respectively.

Creating a Letter’s Message Summary 2

A personal MSAM must create a message summary for an incoming letter before
creating the letter itself. Server MSAMs do not create message summaries at any time,
and personal MSAMs do not create message summaries for non-letter messages. The
need to create a message summary is related to the mode of operation in the personal
MSAM. See the section “MSAM Modes of Operation” beginning on page 2-12 for
information on this topic.

The function DoIncomingLetter shown in Listing 2-6 on page 2-67 illustrates how you
can create a message summary for an incoming letter. It assumes that you previously
read the letter from an external messaging system, translated it into AOCE data formats,
2-64 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
and saved it to disk. (Note that this method is just one way an MSAM can handle
incoming letters.)

The DoIncomingLetter function first allocates the buffer dataBuffer that it uses to
hold a variety of data throughout the function’s execution. Then it initializes all of
the fields of the message summary structure to 0 prior to setting the fields that a
personal MSAM should set. At the top level of the message summary structure,
DoIncomingLetter sets only the version field. You always set it to the constant
kMailMsgSummaryVersion.

You set the bits in the attribute mask that correspond to the attributes that are present in
the letter. In the attrMask field of the masterData substructure, DoIncomingLetter
sets the bits for the send timestamp, indications, the sender of the letter, the subject of the
letter, the message type, and the message family. Each external messaging system may
differ in the attribute information it routinely provides. In the sample code, the external
messaging system always provides a timestamp and does not provide a reply ID. For
this reason, the corresponding bits in the attribute mask in the message summary are set
and not set accordingly.

Once you have set the bits in the attribute mask, you write the attributes to the message
summary. At a minimum, you must write the message type, send timestamp, sender,
and subject attributes to the message summary. The DoIncomingLetter function first
writes the send timestamp to the message summary by calling its DoGetTimeStamp
routine. Next, it calls its DoGetLetterLength utility routine to get the approximate
size of the letter.

In the coreData substructure, DoIncomingLetter explicitly provides a value for all
of the fields except agentInfo and letterFlags. (The DoIncomingLetter function
implicitly set the letterFlags field to 0 when it initialized the entire message
summary structure to 0.) In the letterIndications field, it sets those bits that
indicate the letter has normal priority and that it has a content block. This technique
assumes that the incoming letter has no priority setting, so DoIncomingLetter
supplies a default value here. (The DoIncomingLetter function also supplies a default
value for content if the letter has no content. See Listing 2-11 on page 2-78.)

The DoIncomingLetter function sets the message type to the constant
kMailLtrMsgType to indicate a standard AOCE letter. It sets the message creator to
kLetterCreator, a constant for 'lap2', the signature of the AppleMail application.
As a result, when a user double-clicks the letter, the Finder launches the AppleMail
application to open the letter. Usually, an MSAM does not set a letter’s creator to its own
signature because the MSAM cannot open the letter and allow the user to view and edit
it. However, if your MSAM is associated with a particular letter application, you should
use that application’s signature so that the application will launch when the user opens
the letter.

The DoIncomingLetter function sets the message family to kMailFamily, indicating
that the letter falls into the general class of mail messages. Next, it sets the messageSize
field to the value returned by the DoGetLetterLength utility routine. The Finder uses
this value when a user chooses the Get Info command from the File menu.
Using the MSAM API 2-65

C H A P T E R 2

Messaging Service Access Modules
The sender and subject fields in the message summary deserve special attention.
Each is declared as an RString32 structure in the MailCoreData structure in the
message summary. However, those declarations only serve to allocate space and indicate
the relative order of the sender and subject data. They do not represent the actual data
layout. You should treat these two fields as a common buffer containing variable-length
sender and subject data. The correct order of information in the common buffer is an
RString32 structure containing the sender information (character set, data length, and
sender data), padded to an even byte boundary if necessary, and followed immediately
by an RString32 structure containing the subject information. (You should also pad the
subject information to an even byte boundary if necessary.) Thus, sender information
always starts at a fixed place whereas subject information does not. Neither subject nor
sender information may exceed kRString32Size bytes although either, of course, may
be smaller.

The DoIncomingLetter function illustrates one way to write the sender and subject
information to a message summary. The DoIncomingLetter function calls its
DoReadFromFile utility routine to read a PackedDSSpec structure containing the
sender’s address information from the letter stored on disk. (The DoReadFromFile
routine reads a file in which an incoming letter is stored and returns in a buffer the
requested letter component and the number of bytes it placed in the buffer.) If the read
operation succeeds, DoIncomingLetter unpacks the packed address and calls its
DoCopyFitRString utility routine. The DoCopyFitRString routine copies the
displayable string that identifies the sender from the recordName field of the unpacked
address into the sender field of the message summary, truncating it if it is longer than
kRString32Size bytes.

Next, DoIncomingLetter reads into its local variable subject an RString structure
containing the subject from the stored letter. Every AOCE letter must have a subject. If
the read operation fails, DoIncomingLetter converts a constant C string containing a
default value for the subject into an RString and writes it to its local variable subject.
Finally, it calls its DoCopyFitRString routine to copy its local variable subject into
the message summary, truncating it if it is longer than kRString32Size bytes. (The
DoIncomingLetter function copies the subject into its local variable subject instead
of directly into the message summary because it uses the local variable when adding the
subject attribute to the letter header. See Listing 2-8 on page 2-72.)

Now that both the subject and sender information are in a common buffer in the
message summary, DoIncomingLetter adjusts the byte position at which the subject
information begins. The subject information must start immediately after the sender
information. DoIncomingLetter calculates the total length of the sender RString,
including the fields for length and character set. If the total is an odd number, it adds
1 to get an even word boundary, then calls the BlockMove routine to move the subject
information immediately after the end of the sender information.
2-66 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
IMPORTANT

Because the sender and subject fields form one common buffer
into which the information is packed, using the subject field to
access the subject information does not produce the desired result.
You must compute the beginning of the subject information in the
common buffer. ▲

At this point, the DoIncomingLetter function has filled in the relevant fields of
the message summary. Next, it sets up the fields of the parameter block for the
PMSAMCreateMsgSummary function. One of the parameters to DoIncomingLetter
is a MySlotSpec structure, a data type defined by the personal MSAM that contains
information about a slot. The personal MSAM of which DoIncomingLetter is a
part previously stored the incoming queue reference that it obtained from the
PMSAMOpenQueues function in the MySlotSpec structure. The DoIncomingLetter
function uses that incoming queue reference to fill in the queueRef field of the
MSAMCreate parameter block. Next, it sets the msgSummary field of the parameter
block to the address of the message summary structure it has just initialized.
Although DoIncomingLetter does not do it, you can add up to
kMailMaxPMSAMMsgSummaryData bytes of private data in the buffer structure
pointed to by the buffer field of the PMSAMCreateMsgSummary parameter block.
It is a convenient way for you to store additional information related to a specific
letter. Then DoIncomingLetter calls the PMSAMCreateMsgSummary function, which
returns a sequence number for the letter. The DoIncomingLetter function must use
this sequence number when it calls the MSAMCreate function to create the letter itself.

Listing 2-6 Creating a message summary

OSErr DoIncomingLetter(FSSpec *myTempFileSpec, MySlotSpec *slotSpec)

{

OSErr myErr;

MSAMParam myParamBlock;

MSAMMsgSummary myMsgSum;

Ptr dataBuffer;

unsigned long bufferLen;

unsigned long contentLength;

RString subject;

RecordID entitySpecifier;

OCERecipient fromAddress;

MailMsgRef letterRef;

long letterSeqNum;

char defaultText[256];

unsigned char *subjectOffset;

#define kLetterCreator 'lap2' /* signature of AppleMail app */

#define kDefaultSubject "<no subject>"
Using the MSAM API 2-67

C H A P T E R 2

Messaging Service Access Modules
#define kDefaultBody "<no message>"

#define kMaxBufferSize 32767L

/* constants to identify components of stored letter on disk */

#define kFromType '2FRM'

#define kToType '2MTO'

#define kCCType '2MCC'

#define kBCCType '2BCC'

#define kTextContent '2TXT'

#define kPictContent '2PIC'

#define kSoundContent '2SND'

#define kContentSectionType '2RTY'

#define kSubjectType '2SUB'

/* allocate buffer for reading from disk */

bufferLen = kMaxBufferSize;

dataBuffer = NewPtr(bufferLen);

if (MemError() != noErr)

return MemError();

/* initialize the message summary structure to 0 */

DoClearBuffer(&myMsgSum,sizeof(MSAMMsgSummary));

/* set the version and attribute mask fields */

myMsgSum.version = kMailMsgSummaryVersion;

myMsgSum.masterData.attrMask.sendTimeStamp = true;

myMsgSum.masterData.attrMask.indications = true;

myMsgSum.masterData.attrMask.from = true;

myMsgSum.masterData.attrMask.subject = true;

myMsgSum.masterData.attrMask.msgType = true;

myMsgSum.masterData.attrMask.msgFamily = true;

/* get the timestamp and write it to message summary */

DoGetTimeStamp(myTempFileSpec,&myMsgSum.coreData.sendTime);

/* get length of stored letter data in bytes */

contentLength = kMaxBufferSize;

contentLength = DoGetLetterLength(myTempFileSpec);

/* set other core data fields */

myMsgSum.coreData.letterIndications.priority = kIPMNormalPriority;

myMsgSum.coreData.letterIndications.hasContent = true;

myMsgSum.coreData.letterIndications.hasStandardContent= true;
2-68 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
myMsgSum.coreData.messageType.msgType = kMailLtrMsgType;

myMsgSum.coreData.messageType.msgCreator = kLetterCreator;

myMsgSum.coreData.messageFamily = kMailFamily;

myMsgSum.coreData.messageSize = contentLength;

myMsgSum.coreData.addressedToMe = kAddressedAs_TO;

/* get sender name from stored letter and write it to message summary */

bufferLen = kMaxBufferSize;

myErr = DoReadFromFile(myTempFileSpec, kFromType, dataBuffer,

&bufferLen);

if (myErr != noErr) {

DisposPtr(dataBuffer);

return myErr;

}

OCEUnpackDSSpec((PackedDSSpec*)dataBuffer, &fromAddress,

&entitySpecifier);

DoCopyFitRString(entitySpecifier.local.recordName,

(RStringPtr)&myMsgSum.coreData.sender, kRString32Size);

/* get subject from stored letter and write it to message summary */

bufferLen = kMaxBufferSize;

myErr = DoReadFromFile(myTempFileSpec, kSubjectType, &subject,

&bufferLen);

if (myErr != noErr)

OCECToRString(kDefaultSubject, smRoman, &subject, kRStringMaxBytes);

DoCopyFitRString(&subject, (RStringPtr)&myMsgSum.coreData.subject,

kRString32Size);

/* calculate subject offset and move subject flush with sender */

subjectOffset = ((unsigned char *)&myMsgSum.coreData.sender) +

myMsgSum.coreData.sender.dataLength + sizeof(long);

if ((unsigned long)subjectOffset % 2)

subjectOffset++;

BlockMove(&myMsgSum.coreData.subject, subjectOffset,

myMsgSum.coreData.subject.dataLength + sizeof(long));

/*

All required fields have been set. Create the message summary. Save the

letter's sequence number.

*/

myParamBlock.header.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.pmsamCreateMsgSummary.inQueueRef = slotSpec->inQueue;
Using the MSAM API 2-69

C H A P T E R 2

Messaging Service Access Modules
myParamBlock.pmsamCreateMsgSummary.msgSummary = &myMsgSum;

myParamBlock.pmsamCreateMsgSummary.buffer = nil;

PMSAMCreateMsgSummary(&myParamBlock,true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr != noErr) {

DisposPtr(dataBuffer);

return myErr;

}

letterSeqNum = myParamBlock.pmsamCreateMsgSummary.seqNum;

Creating a Letter 2

After creating a message summary, a personal MSAM may write the letter associated
with the message summary to the incoming queue immediately or at a later time. The
choice of methods should depend on the speed of the link connecting your personal
MSAM to its external messaging system. If the link is fast, you can download the letter
on demand—that is, when the user opens it. If the link is slow, you should cache the
letter locally so that there is no untimely delay when the user opens it. The function
DoIncomingLetter writes the letter immediately. Listing 2-7 is a code fragment from
DoIncomingLetter that shows how you create a letter.

The DoIncomingLetter function sets up the fields of the parameter block for the
MSAMCreate function. It checks whether the letter has a blind copy recipient and sets
the bccRecipients field accordingly. It uses the incoming queue reference originally
obtained from the PMSAMOpenQueues function to fill in the queueRef field of the
parameter block. Then DoIncomingLetter sets the asLetter field to true to indicate
that the message it is creating is a letter. Because it is creating a letter, it must set the
msgType.format field to kIPMOSFormatType. This setting indicates that the rest of
the IPMMsgType structure contained in the msgType.format field consists of an
OCECreatorType structure. Then DoIncomingLetter sets the letter’s creator and
type to the same values it used when it created the letter’s message summary. It sets the
seqNum field to the sequence number it obtained from the PMSAMCreateMsgSummary
function.

Once DoIncomingLetter has finished initializing the parameter block, it calls the
MSAMCreate function. The function returns a reference to the new letter, which
DoIncomingLetter saves. The DoIncomingLetter function must provide the
reference to all subsequent functions that add various components to the letter.

Listing 2-7 Creating a letter

/* check for bcc recipients */

bufferLen = kMaxBufferSize;

myErr = DoReadFromFile(myTempFileSpec, kBCCType, dataBuffer, &bufferLen);

myParamBlock.msamCreate.bccRecipients = (myErr == noErr);
2-70 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
/* fill in the rest of the parameter block and create the letter */

myParamBlock.header.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.msamCreate.queueRef = slotSpec->inQueue;

myParamBlock.msamCreate.asLetter = true;

myParamBlock.msamCreate.msgType.format = kIPMOSFormatType;

myParamBlock.msamCreate.msgType.theType.msgOSType.msgCreator =

kLetterCreator;

myParamBlock.msamCreate.msgType.theType.msgOSType.msgType =

kMailLtrMsgType;

myParamBlock.msamCreate.seqNum = letterSeqNum;

myParamBlock.msamCreate.tunnelForm = false;

MSAMCreate(&myParamBlock, true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr != noErr) {

DisposPtr(dataBuffer);

return myErr;

}

letterRef = myParamBlock.msamCreate.newRef;

A server MSAM does basically the same things to create a letter, with the following
differences. A server MSAM uses the queue reference that it obtained from the
SMSAMStartup function to fill in the queueRef field. Because server MSAMs do not
create message summaries, there is no need to ascertain that the values provided to the
MSAMCreate function for the creator and type exactly match those in the message
summary. A server MSAM does not supply a value in the seqNum field of the
MSAMCreate parameter block.

Creating a Non-Letter Message 2

When you create a non-letter message instead of a letter, the following differences apply
for both personal and server MSAMs:

■ You must set the myParamBlock.msamCreate.asLetter field to false.

■ You can set the myParamBlock.msamCreate.msgType.format field to either
kIPMOSFormatType (which specifies that the message creator and message type
information is formatted as type OCECreatorType) or kIPMStringFormatType
(which specifies that the message creator and message type information is formatted
as type Str32). Typically, you use type OCECreatorType; type Str32 is included
for compatibility with the Program-to-Program Communications (PPC) Toolbox.

■ You may set the myParamBlock.msamCreate.refCon field to a private value. The
MSAMCreate function stores that value in the message header. A recipient can
retrieve the value with the MSAMGetMsgHeader function.

■ You do not supply a value in the myParamBlock.msamCreate.bccRecipients
field.

In addition, a personal MSAM does not supply a value in the
myParamBlock.msamCreate.seqNum field.
Using the MSAM API 2-71

C H A P T E R 2

Messaging Service Access Modules
Writing Letter Attributes 2

Once you have created a letter, you add the component parts to the letter. To add
information to a letter’s header, you use the MSAMPutAttribute function. Listing 2-8, a
code fragment from the DoIncomingLetter function, shows how you add attributes to
a letter header.

The MSAMPutAttribute function allows you to add one attribute each time you call it.
The DoIncomingLetter function adds the send timestamp, indications, message
family, and subject attributes to the letter’s header by copying the values it previously
stored in the letter’s message summary. Each time it calls the MSAMPutAttribute
function, DoIncomingLetter sets the mailMsgRef field to indicate the letter to which
it wants to add the attribute. It sets the attrID field to a constant that indicates the type
of attribute it wants to add. Then it specifies the buffer in which the attribute data is
located, specifies the buffer size, and calls the MSAMPutAttribute function to add the
attribute to the letter header. Note that when it writes the subject, DoIncomingLetter
does not use the C function sizeof to get the size of the subject attribute because that
would return the size of an RString structure. Instead, it computes the exact size of the
subject string in the buffer by using the actual length of the subject, which is specified
in the subject.dataLength field, and then adding 4 bytes for the dataLength and
charSet fields of the RString structure. If the number of bytes turns out to be odd, it
adds 1 to make an even length.

The DoIncomingLetter function does not add the letter creator and type to the letter
header. That information was already added when DoIncomingLetter called the
MSAMCreate function.

Once the parameter block is initialized, DoIncomingLetter calls the
MSAMPutAttribute function. If the function returns an error, DoIncomingLetter
calls its DoCancelOnSubmit function, which disposes of the data buffer, calls the
MSAMSubmit function to delete the unfinished letter, and calls the MSAMDelete function
to delete the message summary.

Listing 2-8 Adding attributes to a letter header

/* add the time */

myParamBlock.msamPutAttribute.mailMsgRef = letterRef;

myParamBlock.msamPutAttribute.attrID = kMailSendTimeStampBit;

myParamBlock.msamPutAttribute.buffer.buffer =

(Ptr)&myMsgSum.coreData.sendTime;

myParamBlock.msamPutAttribute.buffer.bufferSize = sizeof(MailTime);

MSAMPutAttribute(&myParamBlock, true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr != noErr) {

DoCancelOnSubmit(letterRef, letterSeqNum, slotSpec->inQueue,

dataBuffer);

return myErr;

}

2-72 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
/* add the indications */

myParamBlock.msamPutAttribute.mailMsgRef = letterRef;

myParamBlock.msamPutAttribute.attrID = kMailIndicationsBit;

myParamBlock.msamPutAttribute.buffer.buffer =

(Ptr)&myMsgSum.coreData.letterIndications;

myParamBlock.msamPutAttribute.buffer.bufferSize = sizeof(MailIndications);

MSAMPutAttribute(&myParamBlock, true);

/*

Call DoWaitPBDone and check for error. Then use the same logic used

to add the time and indications to add the message family.

*/

/* add the subject */

myParamBlock.msamPutAttribute.mailMsgRef = letterRef;

myParamBlock.msamPutAttribute.attrID = kMailSubjectBit;

myParamBlock.msamPutAttribute.buffer.buffer = (Ptr)&subject;

myParamBlock.msamPutAttribute.buffer.bufferSize = subject.dataLength + 4;

if ((myParamBlock.msamPutAttribute.buffer.bufferSize % 2) != 0)

myParamBlock.msamPutAttribute.buffer.bufferSize++;

MSAMPutAttribute(&myParamBlock, true);

/* call DoWaitPBDone and check for error */

A server MSAM does not have a message summary from which to copy attribute values,
so it would extract the attribute values from the incoming letter itself.

Note
The MSAMPutAttribute function does not apply to non-letter
messages. In dealing with an incoming non-letter message, both
personal and server MSAMs can add attributes to the message header
by calling the MSAMPutMsgHeader function. ◆

Writing Addresses 2

Although the different types of recipients—From, To, cc, and bcc—are letter attributes,
you do not add them to a letter using the MSAMPutAttribute function. Instead, you
use the MSAMPutRecipient function. Each time you call the MSAMPutRecipient
function, you can add one recipient to a letter. This function requires you to add all of the
recipients of one type before adding any recipient of another type. The code fragment
from the DoIncomingLetter function shown in Listing 2-9 demonstrates how you can
add recipients to a letter.

The DoIncomingLetter function calls its DoAddTheRecipients function four times,
once for each type of recipient, to actually add the recipient information to the letter. It
passes several parameters to DoAddTheRecipients:

■ the reference number of the letter to which it wants to add a recipient

■ a pointer to the file specification of the temporary file containing the translated
incoming letter
Using the MSAM API 2-73

C H A P T E R 2

Messaging Service Access Modules
■ a constant that identifies the disk file component for a given type of recipient

■ the type of recipient to add (an attribute ID)

■ a pointer to its buffer

■ the size of the buffer

If DoAddTheRecipients returns an error for any type of recipient,
DoIncomingLetter terminates writing the letter.

Listing 2-9 Adding recipients to a letter

/*

Add the recipients. Check for error after calling DoAddTheRecipients

for each recipient type.(Shown only the first time in the following

code.)

*/

myErr = DoAddTheRecipients(letterRef, myTempFileSpec, kFromType,

kMailFromBit, dataBuffer, kMaxBufferSize);

if (myErr != noErr) {

DoCancelOnSubmit(letterRef, letterSeqNum, slotSpec->inQueue,

dataBuffer);

return myErr;

}

myErr = DoAddTheRecipients(letterRef, myTempFileSpec, kToType, kMailToBit,

dataBuffer, kMaxBufferSize);

myErr = DoAddTheRecipients(letterRef, myTempFileSpec, kCcType, kMailCcBit,

dataBuffer, kMaxBufferSize);

myErr = DoAddTheRecipients(letterRef, myTempFileSpec, kBccType,

kMailBccBit, dataBuffer, kMaxBufferSize);

The DoAddTheRecipients function is shown in Listing 2-10. It is a utility routine that
can add any type of recipient to a given letter. It assumes that the MSAM has previously
written the letter’s recipient information to a file in the form of a PackedDSSpec
structure. For a given type of recipient, DoAddTheRecipients reads one recipient at a
time, and places the information in a buffer. Then it unpacks the PackedDSSpec
structure and fills in the fields of the parameter block for the MSAMPutRecipient
function.

The DoAddTheRecipients function sets the mailMsgRef and attrID fields to the
values it was passed by DoIncomingLetter for the letter’s reference number and the
recipient type attribute ID, respectively. It sets the recipient field to the unpacked
DSSpec structure it got by calling the OCEUnpackDSSpec routine. Then it sets the
responsible field to false.
2-74 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
A personal MSAM always sets the responsible field of the parameter block for
MSAMPutRecipient to false when it is adding a recipient to a letter. For a non-letter
message, however, it should set the responsible field to false only when the
recipient address is not local to the computer on which the personal MSAM is running.
Setting the responsible field to true for a non-letter message indicates that you want
the AOCE system to be responsible for delivering the message to its destination on the
local computer.

A server MSAM should set the responsible field to true to indicate that the AOCE
system should deliver the message to the recipient. This applies to both letter and
non-letter messages.

Finally, DoAddTheRecipients calls the MSAMPutRecipient function. The
DoAddTheRecipients function repeats this cycle until either the MSAMPutRecipient
function returns an error or there are no more recipients of a given type for the letter.

Listing 2-10 Adding a specific type of recipient

OSErr DoAddTheRecipients(MailMsgRef mailRef, FSSpec *myTempFileSpec,

OSType recipType, MailAttributeID attrID,

Ptr dataBuffer, unsigned long bufferLen)

{

OSErr myErr;

Boolean moreRecipients = true;

unsigned long gotLength;

OCERecipient recipient;

RecordID entitySpecifier;

MSAMParam myParamBlock;

do {

gotLength = bufferLen;

myErr = DoReadFromFile(myTempFileSpec, recipType, dataBuffer,

 &gotLength);

if (myErr == noErr && gotLength > 0) {

/* unpack a recipient, initialize the parameter block,

add the recipient */

OCEUnpackDSSpec((PackedDSSpec*)dataBuffer, &recipient,

&entitySpecifier);

myParamBlock.msamPutRecipient.ioCompletion =

(ProcPtr)DoMSAMCompletion;

myParamBlock.msamPutRecipient.mailMsgRef = mailRef;

myParamBlock.msamPutRecipient.attrID = attrID;
Using the MSAM API 2-75

C H A P T E R 2

Messaging Service Access Modules
myParamBlock.msamPutRecipient.recipient = &recipient;

myParamBlock.msamPutRecipient.responsible = false;

MSAMPutRecipient(&myParamBlock, true);

myErr = DoWaitPBDone(&myParamBlock);

}

else {

moreRecipients = false;

myErr = noErr;

}

} while (myErr == noErr && moreRecipients);

return myErr;

}

Writing Letter Content 2

A letter’s content block consists of a series of one or more segments, each containing
data of one of the following types: plain text, styled text, pictures, sounds, and
QuickTime movies. To add a content block to an incoming letter, you call the
MSAMPutContent function.

You provide the function with a buffer containing data of a given type and tell it what
type of data is in the buffer. The first time you call the MSAMPutContent function, set
the append field to false to tell the function to begin a new segment. On subsequent
calls to the function, you set the append field to true or false, depending on whether
you want your data placed in a new segment or appended to the current one.

When you add a text segment, you must specify values for the startNewScript
and script fields. The value of the startNewScript field (true or false) tells the
MSAMPutContent function whether the data in your buffer uses a different character
set than that of text data you previously wrote. You set the script field to a code
that indicates the character set of your data. (See Inside Macintosh: Text for a list of
script codes.)

When you add a styled text segment, you provide the style information in a style scrap
structure (StScrpRec structure). You should allocate the StScrpRec structure
dynamically because it is a very large structure. See the MSAMPutContent function
description on page 2-186 for more information on adding styled text.

You must add all of a letter’s content sequentially. For instance, you cannot call
MSAMPutContent to add some of the content, call MSAMPutBlock to add a private
block, and then call MSAMPutContent again to add the remainder of the content. Once
you call MSAMPutContent, calling any other function in the MSAM API terminates the
content block for the letter. If you call the MSAMPutContent function again for the same
letter, it returns the kMailInvalidOrder result code. The MSAMPutContent function
adds the segments to the letter in the order you provide them.
2-76 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
The DoWriteLetterContent function in Listing 2-11 shows one way to add content to
an incoming letter. It assumes the MSAM has previously stored a letter from its external
messaging system in a disk file. The file is composed of a series of sections corresponding
to different components of the letter. The content component of the stored letter consists
of a series of sections, similar to the segments in a letter’s content block, each of which
contains a single type of data.

The DoWriteLetterContent function starts by initializing the fields of the
MSAMPutContent function’s parameter block that won’t change regardless of what it
reads from its file. It sets the mailMsgRef field to the letter’s reference number. It sets
the textScrap field to nil because it does not handle styled text. Because this MSAM
handles just one character set, DoWriteLetterContent sets the script field to
smRoman and never changes this setting. It sets the append field to false because it
intends that each block of data that it previously stored on disk be written to a separate
segment in the letter’s content block.

The DoWriteLetterContent function initializes its local variable contentType to
indicate that it wants to read the content section of its stored letter. It sets the local
variable contentWritten to false because it has not yet written a segment to the
incoming letter.

Then DoWriteLetterContent reads sequentially through the content sections of
the stored letter. It repeatedly calls the DoReadFromFile utility routine to read a buffer
of data from the file. The DoReadFromFile function returns one content section from the
file each time it is called. The buffer is large enough to hold any content section that
the MSAM previously stored. After reading each section, DoWriteLetterContent
determines the type of data in the section and sets the segmentType field accordingly.
Because this MSAM handles only plain text, picture, or sound data, the content sections
can contain only these types of data. If DoReadFromFile returns plain text data,
DoWriteLetterContent sets the startNewScript field to true. This tells the
MSAMPutContent function to examine the script field to discover the character
set of the text in the buffer. Typically, you set this field to true when you first add a plain
text segment and thereafter whenever the character set of the text changes (which does
not apply to this MSAM) or you’ve called MSAMPutContent to add some other type of
segment. Last, DoWriteLetterContent sets the bufferSize field to the number
of bytes it read from its disk file and calls the MSAMPutContent function to write
the data to the letter’s content block. If the MSAMPutContent function returns
successfully, DoWriteLetterContent sets the local variable contentWritten to
true. The DoWriteLetterContent function continues to read from its file and write
segments to the letter’s content block until it has read all the content sections in the file or
it encounters an error.

When DoWriteLetterContent has finished reading the content sections, it tests
the local variable contentWritten. If it failed to write any data successfully,
DoWriteLetterContent copies a default string into its buffer and calls the
MSAMPutContent function. It must do this to provide some content since it set the
hasContent bit in the indications attribute in the letter’s header. (See Listing 2-6 on
page 2-67.)
Using the MSAM API 2-77

C H A P T E R 2

Messaging Service Access Modules
Listing 2-11 Writing letter content

OSErr DoWriteLetterContent(FSSpec *myTempFileSpec, MailMsgRef myMailRef,

Ptr dataBuffer)

{

unsigned long bufferLen;

OSType contentType;

Boolean contentWritten;

MSAMParam myParamBlock;

OSErr myErr,myErr2;

myParamBlock.header.ioCompletion = (ProcPtr)MSAMCompletion;

myParamBlock.msamPutContent.mailMsgRef = myMailRef;

myParamBlock.msamPutContent.textScrap = nil;

myParamBlock.msamPutContent.buffer.buffer = dataBuffer;

myParamBlock.msamPutContent.script = smRoman;

myParamBlock.msamPutContent.append = false;

contentType = kContentSectionType;

contentWritten = false;

do { /* for each content section in the temp file */

bufferLen = kMaxBufferSize;

myErr = DoReadFromFile(myTempFileSpec, contentType, dataBuffer,

 &bufferLen);

switch (contentType) { /* determine segment type */

case kTextContent:

myParamBlock.msamPutContent.segmentType = kMailTextSegmentType;

myParamBlock.msamPutContent.startNewScript = true;

break;

case kPictContent:

myParamBlock.msamPutContent.segmentType = kMailPictSegmentType;

break;

case kSoundContent:

myParamBlock.msamPutContent.segmentType = kMailSoundSegmentType;

break;

} /* endswitch */

myParamBlock.msamPutContent.buffer.bufferSize= bufferLen;

if (myErr == noErr) {

MSAMPutContent(&myParamBlock,true);

myErr2 = WaitPBDone(&myParamBlock);

if (myErr2 != noErr)

return myErr2;

contentWritten = true; /* don't need default content */
2-78 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
} /* endif */

} while (myErr != noErr);

if (myErr == kEndOfContentSections)

myErr = noErr;

/* if no content written, write default content */

if (contentWritten == false) {

strcpy(dataBuffer,kDefaultBody);

myParamBlock.msamPutContent.segmentType = kMailTextSegmentType;

myParamBlock.msamPutContent.buffer.bufferSize = strlen(kDefaultBody);

MSAMPutContent(&myParamBlock,true);

myErr = WaitPBDone(&myParamBlock);

}

return myErr;

}

You call the MSAMPutContent function to add content to letters only. You do not call it
to write data to a non-letter message.

Submitting a Message 2

After composing a message, an MSAM calls the MSAMSubmit function to submit the
message to the AOCE system for delivery. A message must be complete before you
submit it because, when the MSAMSubmit function completes execution, the message’s
reference number is invalid and you cannot change the message in any way.

Listing 2-12 is a code fragment from the DoIncomingLetter function that shows
how you can submit a letter for delivery. The DoIncomingLetter function sets
the mailMsgRef field to the letter’s reference number and the submitFlag field to
true to indicate that the letter is ready for delivery. If you set the submitFlag field
to false, the function deletes the letter. Then DoIncomingLetter calls the
MSAMSubmit function.

If MSAMSubmit returns an error, DoIncomingLetter calls the MSAMDelete function
to delete the message summary associated with the letter. The DoIncomingLetter
function sets the queueRef field to the reference value that identifies the incoming
queue in which the message summary is located. (It originally obtained this value from
the PMSAMOpenQueues function.) Then it sets the seqNum field to the sequence number
that identifies the message summary. Last, DoIncomingLetter sets the msgOnly field
to false. This tells MSAMDelete to delete the letter and its message summary. In this
case, there is no letter to delete. The MSAMDelete function deletes the message summary
and returns the result code noErr.
Using the MSAM API 2-79

C H A P T E R 2

Messaging Service Access Modules
Listing 2-12 Submitting a letter

/* submit the letter */

myParamBlock.msamSubmit.mailMsgRef = letterRef;

myParamBlock.msamSubmit.submitFlag = true;

myErr = MSAMSubmit(&myParamBlock);

if (myErr != noErr) { /* delete message summary */

myParamBlock.msamDelete.queueRef = slotSpec->inQueue;

myParamBlock.msamDelete.seqNum = msgSeqNum;

myParamBlock.msamDelete.msgOnly = false;

myParamBlock.msamDelete.result = noErr;

MSAMDelete(&myParamBlock, true);

DoWaitPBDone(&myParamBlock);

}

DisposPtr(dataBuffer);

return myErr;

If DoIncomingLetter had been dealing with a non-letter message, it would not need to
delete a message summary, because a personal MSAM only creates a message summary
for a letter. A server MSAM, of course, does not need to delete a message summary
because it never creates one.

Because it normally has continuous access to the PowerShare mail server, a server
MSAM should translate incoming messages immediately and submit them to the
PowerShare mail server. If the PowerShare mail server quits, the server MSAM should
either stop accepting incoming messages or store the incoming messages until the
PowerShare mail server is available again.

Receiving a Report 2

An MSAM can receive reports about incoming messages. Server MSAMs can receive
reports on both letters and non-letter messages. Personal MSAMs can receive reports on
non-letter messages only.

To request a report on a non-letter message, an MSAM should set the appropriate
bits in the deliveryNotification field when it calls the MSAMPutMsgHeader
function. You set the bits by using the kIPMDeliveryNotificationMask or
kIPMNonDeliveryNotificationMask masks to request delivery and non-delivery
indications.

To request a report on a letter, a server MSAM should set the receiptReports bit, the
nonReceiptReports bit, or both in the letter’s MailIndications attribute.

Because personal MSAMs do not receive reports on letters, the IPM Manager ignores
the setting of the receiptReports and nonReceiptReports bits in a letter’s
MailIndications attribute for any letter submitted by a personal MSAM. Instead,
the result code of the MSAMSubmit function tells a personal MSAM if the letter delivery
attempt was successful or not.
2-80 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
The report that an MSAM receives never includes a copy of the original message. Thus,
the IPM Manager ignores the bits in a letter’s indications attribute and a non-letter
message’s header that have to do with enclosing a copy of the original with the report.

An MSAM can identify a report from the IPM Manager in its outgoing queue because
all such reports have a message creator of kIPMSignature and a message type of
kIPMReportNotify.

An MSAM reads a report by calling the MSAMOpen, MSAMGetMsgHeader, and
MSAMGetBlock functions. Reports consist of a recipient report block (type
kMailReportType) and possibly a private data block (type kMailMSAMType).
The recipient report block contains a report header and information about some
number of recipients. (See the chapter “Interprogram Messaging Manager” in
Inside Macintosh: AOCE Application Interfaces for a description of the report
header IPMReportBlockHeader and the recipient report information structure
OCERecipientReport.) If an MSAM added a private data block to a message, the
IPM Manager includes a copy of that block in the report.

A report may contain information on one or more AOCE recipients. The IPM Manager
attempts to report as quickly as possible on each recipient. If there is some difficulty in
reporting, it sends a report on the recipients about which it has information and sends
another report about the remaining recipients at a later time. Therefore, if a message that
the MSAM put into an AOCE system has several recipients, the MSAM may get several
reports. If the MSAM plans to forward that information to its external messaging system,
it may want to consolidate the information from the reports before forwarding it.

Note
The AOCE software defines successful delivery to mean that the
message was placed in the recipient’s incoming queue. It does not imply
that the message was actually opened or read. ◆

Deleting a Message 2
A personal MSAM should not delete messages from its outgoing queues. Messages
should stay in an outgoing queue so that the user can look at them. An exception to
this rule occurs when a user wants to delete a letter rather than send it. In that case,
the IPM Manager sends the personal MSAM a kMailEPPCDeleteOutQMsg event, and
the MSAM should delete the letter. A server MSAM does delete messages from its
outgoing queue.

A personal MSAM can delete letters from an incoming queue. It can delete only a letter
or both a letter and the associated message summary. For example, the MSAM may want
to delete a letter, but not the message summary, when it decides the letter no longer
needs to be cached locally. If the MSAM is trying to mirror the letter’s status on its
external messaging system, it can delete the letter and the message summary when the
letter is removed from the external messaging system.
Using the MSAM API 2-81

C H A P T E R 2

Messaging Service Access Modules
Note
The IPM Manager may also delete a letter from a personal MSAM’s
incoming queue in response to a user action. In that case, it sets the
msgDeleted flag in the letter’s message summary and sends the
kMailEPPCInQUpdate event. ◆

The MSAMDelete function removes a message from the queue that you specify.
You identify the message by its sequence number, which you obtain from the
MSAMEnumerate function. Once you have deleted a message, it is no longer available
to you on the Macintosh computer on which your MSAM is running. (The message
may still exist on the external messaging system.)

Translating Addresses 2
One of an MSAM’s primary tasks is translating address information from AOCE format
to the format of its external messaging system and vice versa. Within AOCE software, an
address is defined by an OCERecipient structure, a complex structure that contains
other structures and elemental fields. It is described on page 2-106. Figure 2-13 on
page 2-28 illustrates the fields in an OCERecipient structure and their relationship to
each other. Table 2-4 on page 2-29 lists what each field should contain for a non-AOCE
address. Table 2-5 on page 2-30 lists the contents of each field when the OCERecipient
structure contains an AOCE address. If you are already familiar with the information in
Figure 2-13, Table 2-4, and Table 2-5, you’ll find the listings and descriptions in the
sections “Translating From an AOCE Address” and “Translating to an AOCE Address”
easier to understand.

Note that an OCERecipient structure is identical to a DSSpec structure.

Within this chapter and the MSAM API, an address is often referred to as an xxx recipient,
where xxx specifies a type of recipient—To, From, cc, or bcc.

A non-letter message contains only From and To recipients. A letter may contain any
type of recipients.

An address can become known to an AOCE system by any of the following methods:

■ the user provides the address information by means of an address template
(see the chapter “Service Access Module Setup” in this book for an explanation
of address templates)

■ the address is read from an incoming message

■ the user types in the address when using a mailer (this works only if the extension
value portion of the address is formatted as a single RString; see the chapter
“Standard Mail Package” in Inside Macintosh: AOCE Application Interfaces for an
explanation of the mailer and type-in addressing)

■ the address exists in a catalog and can be retrieved by the user or an application

The MSAM whose code is shown in the sections that follow is a personal MSAM that
connects to an SMTP messaging system. The address format understood by the SMTP
messaging system is a string of this form: username@systemlocation. The information
presented applies to server MSAMs as well.
2-82 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules

Translating From an AOCE Address 2

Prior to transmitting a letter to its external messaging system, an MSAM must convert
the address information from AOCE format (an OCERecipient structure) to the format
understood by its external messaging system.

The function DoBuildSMTPAddressInfo in Listing 2-13 provides an example
of building a non-AOCE address from an OCERecipient structure. The
DoBuildSMTPAddressInfo function first allocates a buffer pointed to by
addressBuf. This address buffer will eventually hold all of the SMTP address
information for a given letter except the bcc recipients, which are stored in a
separate buffer. The DoBuildSMTPAddressInfo function sets the first byte in the
address buffer to 0 to indicate an empty string.

When it is launched, this MSAM creates and maintains a MySlotSpec structure
for each mail slot for which it is responsible. This privately defined structure contains
all the information relevant to a individual slot. To build the From address, the
DoBuildSMTPAddressInfo function begins by copying the user name from the
MySlotSpec structure for the slot it is processing into the local variable fromAddr.
Then the function appends to the user name the @ character and the SMTP server name,
which it also copies from the MySlotSpec structure. Once it has finished building the
string holding the actual From address, DoBuildSMTPAddressInfo builds a second
string in the address buffer that includes formatting information. First, it copies the
constant kMyFromHeader into addressBuf to label the address. The constant’s value
is "From: ". Next, it appends the From address in fromAddr to the contents of the
address buffer. Finally, it appends a carriage return. At this point, the contents of the
address buffer look like this:

From: username@systemLocation(CR)0

Next, DoBuildSMTPAddressInfo adds the To addresses. To the address buffer, it adds
the string "To: " to label the address. It initializes the hasRecipient Boolean variable
to false to indicate that at this point it has found no To recipients. Then it repeats the
following procedure until it encounters an error:

■ Read a To address from a temporary file. The MSAM created this file when it read the
letter from AOCE. If there are no more To addresses, it will get an error here.

■ If the read succeeded
n call the DoAOCEToSMTPAddress function (see Listing 2-14 on page 2-87), which

converts an AOCE address into an SMTP address
n append the SMTP address and a comma to the contents of the address buffer
n set the hasRecipient Boolean to true

At this point, DoBuildSMTPAddressInfo completes the formatting. If it added any To
addresses to the address buffer, it overwrites the last comma with the string terminator 0
and then appends a carriage return. The contents of the address buffer now look like this:

From: username@systemLocation(CR)To: recipient1@location,
recipient2@location,...,recipientN@location(CR)0
Using the MSAM API 2-83

C H A P T E R 2

Messaging Service Access Modules
If it has not added any To addresses to the address buffer, it positions the string
terminator 0 immediately before the "To: " label, in effect erasing it.

The DoBuildSMTPAddressInfo function processes a letter that has no To recipient
for two reasons. First, AOCE software considers valid a letter whose header has at least
one To, cc, or bcc recipient. Therefore, it is possible for an MSAM to get a letter from
its AOCE system that has no To recipient. Second, as you will see in Listing 2-14 on
page 2-87, this MSAM translates only SMTP addresses. It is possible that all of the To
recipients for a given letter are non-SMTP addresses, but that one or more of the cc or bcc
addresses are SMTP addresses. This topic is discussed in more detail in the explanation
of Listing 2-14.

The DoBuildSMTPAddressInfo function adds the cc addresses to the address buffer
in exactly the same manner as it added the To address. At this point, the address buffer
contains a string that includes the From, To, and cc addresses, formatted with commas
and carriage returns, and terminated by a NULL character.

For bcc addresses, DoBuildSMTPAddressInfo uses the same procedure but a separate
buffer, bccBuf. Typically, an SMTP messaging system does not display a bcc address
even to a bcc recipient. Therefore, DoBuildSMTPAddressInfo places any bcc addresses
in a separate buffer so they can be handled separately. In code not shown in Listing 2-13,
the DoBuildSMTPAddressInfo function uses the information in the address buffer for
both routing and display purposes, but it uses the address information in the bcc buffer
for routing only.

When DoBuildSMTPAddressInfo has finished building its two address buffers, it
adds them to the letter.

Listing 2-13 Building SMTP addresses

OSErr DoBuildSMTPAddressInfo(FSSpec *myTempFileSpec, MySlotSpec *slotSpec)

{

#define kMyMaxAddrBufSize 4096 /* this MSAM's limit on address

 info */

#define kMyFromHeader "From: "

#define kMyToHeader "To: "

#define kMyCCHeader "Cc: "

#define kMyBCCHeader "Bcc: "

#define kMyAddressDelimiter ", "

#define kMyCRStr "\r"

OSErr myErr;

char tmpString[256];

char bccBuf[256];

char fromAddr[256];

char *addressBuf;

unsigned long tmpLen;
2-84 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
char packedRecip[kMaxRecipSize];

Boolean hasRecipient;

/* allocate memory to hold addresses in external form */

addressBuf = NewPtr(kMyMaxAddrBufSize);

if (MemError() != noErr) {

return (MemError();

}

addressBuf[0] = 0;

/* build 'from' address */

strcpy(fromAddr, slotSpec->dirIdentity.userName);

strcat(fromAddr, "@");

strcat(fromAddr, slotSpec->specInfo.smtpServer);

strcpy(addressBuf, kMyFromHeader);

strcat(addressBuf, fromAddr);

strcat(addressBuf, kMyCRStr);

/* build 'To' address */

hasRecipient = false;

strcat(addressBuf, kMyToHeader);

for (myErr = noErr; myErr == noErr;) {

tmpLen = kMaxRecipSize;

myErr = DoReadFromFile(myTempFileSpec, kToType, (Ptr)packedRecip,

&tmpLen);

if (myErr == noErr) {

if (DoAOCEToSMTPAddress(

(OCEPackedRecipient *)packedRecip, tmpString)) {

strcat(addressBuf, tmpString);

strcat(addressBuf, kMyAddressDelimiter);

hasRecipient = true;

}

}

}

if (hasRecipient) {

addressBuf[strlen(addressBuf) - strlen(kMyAddressDelimiter)] = 0;

strcat(addressBuf, kMyCRStr);

}

else {

addressBuf[strlen(addressBuf) - strlen(kMyToHeader)] = 0;

}

/* not shown here -- build 'cc' address just like 'To' address */
Using the MSAM API 2-85

C H A P T E R 2

Messaging Service Access Modules
/* build 'bcc' address just like 'To' address but in separate buffer */

hasRecipient = false;

strcpy(bccBuf,kMyBCCHeader);

for (myErr=noErr; myErr==noErr;) {

tmpLen = kMaxRecipSize;

myErr = DoReadFromFile(myTempFileSpec,kBCCType, (Ptr)packedRecip,

&tmpLen);

if (myErr==noErr) {

if (DoAOCEToSMTPAddress(

(OCEPackedRecipient *)packedRecip,tmpString)) {

strcat(bccBuf,tmpString);

strcat(bccBuf,kMyAddressDelimiter);

hasRecipient = true;

}

}

}

if (hasRecipient) {

bccBuf[strlen(bccBuf)-strlen(kMyAddressDelimiter)] = 0;

strcat(bccBuf,kMyCRStr);

}

/* not shown here -- add address information to the letter */

DisposPtr(addressBuf);

return noErr;

}

The DoAOCEToSMTPAddress function in Listing 2-14 converts an SMTP address
contained in an OCEPackedRecipient structure into string format. It returns true
when it produces an SMTP address from an OCEPackedRecipient structure.

The DoAOCEToSMTPAddress function calls the OCEUnpackDSSpec AOCE utility
routine to unpack the packed recipient information pointed to by its packedRecip
parameter. If the extension type of the unpacked address specifies an SMTP address, it
calls the BlockMove function to copy the value from the extensionValue field into
the RString structure recipRString, converts the RString in recipRString into a
C string, and stores the C string in the buffer pointed to by its unixRecip parameter.
Then it returns true. If the extension type specifies some other type of address, the
DoAOCEToSMTPAddress function makes no effort to translate the address and simply
returns false.

A user can send a single letter to recipients in different types of messaging systems; thus,
a single AOCE letter header may contain addresses with different extension types. This
creates a potential problem for an MSAM, which is illustrated in the following example.
The SMTP messaging system to which our sample MSAM is connected understands
2-86 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Listing 2-14 Converting from AOCE to SMTP address

Boolean DoAOCEToSMTPAddress(OCEPackedRecipient *packedRecip,

char *unixRecip)

{

#define kMySMTPAddrType'SMTP'

OCERecipient recip;

RecordID entitySpecifier;

OSType recipType;

RString recipRString;

OCEUnpackDSSpec((PackedDSSpec*)packedRecip, &recip, &entitySpecifier);

recipType = recip.extensionType;

switch (recipType) {

case kMySMTPAddrType:

BlockMove(recip.extensionValue, &recipRString, recip.extensionSize);

DoRToCString(&recipRString, unixRecip);

break;

default: /* if not SMTP address, don't convert it */

return false;

break;

}

return true;

}

only SMTP addresses. When the messaging system receives a letter, it tries to route the
letter to all of the addresses in the letter header. If it cannot do this, it generates an error
reply to the sender. Suppose an AOCE user sends a letter to a fax address and sends a
copy to a recipient with an SMTP address. Our sample MSAM is responsible for this
SMTP address and must deliver the letter to the SMTP recipient. How should the MSAM
handle the fax address? It cannot add the fax address as the To recipient because the
SMTP messaging system will complain. Yet, it should provide the SMTP recipient with a
letter that shows that the letter’s primary recipient was a fax address.

The solution to this dilemma is up to the MSAM and its messaging system. For instance,
the MSAM can copy the displayable strings from the recordName and recordType
fields of an address into a display area in the letter header. A messaging system does not
interpret information in the header’s display area. If no such display area exists, the
MSAM can append the displayable strings to the body of the letter and note that the
letter was also sent to that address.

An MSAM can add an actual address for which it is not responsible instead of the
displayable strings from the recordName and recordType fields of the address. To do
this, it must know the address format specified by a given extension type and how an
Using the MSAM API 2-87

C H A P T E R 2

Messaging Service Access Modules
address of that type is stored in an OCERecipient structure. Knowing this, the MSAM
can translate the extension value into an actual address. (Apple does not define the
syntax and semantics for non-AOCE address extension types. MSAM developers must
work together to define agreed-upon extension types, and the associated address syntax
and semantics.)

Suppose, for example, an AppleLink MSAM knows how an SMTP address is stored in
an OCERecipient structure. If an AOCE user sends a letter to an AppleLink address
and to an SMTP address, the AppleLink MSAM can translate the SMTP address to its
proper SMTP form and add it to the letter header as a display address.

Remember that an MSAM only delivers a letter to those recipients for which it is
responsible. All other recipient information with the letter is for display purposes only,
regardless of whether the other recipient information is included in actual address
format or as displayable strings, and regardless of where the information is stored (a
display area in the letter header or the body of the letter).

Note
Given that an MSAM routes a letter only to those recipients for which it
is responsible, a recipient on the MSAM’s messaging system cannot
necessarily reply to all other recipients. An MSAM must consider what
to do when a recipient wants to reply to addresses that the MSAM
cannot reach. Regardless of how it handles this situation, the MSAM
should avoid sending the AOCE user a reply that looks as if it went to
all recipients of the original message if in fact it did not. ◆

Although an MSAM is limited by the characteristics of the messaging system to which it
is connected, it should always attempt to represent all recipients of an outgoing letter
that it translates and transmits.

Translating to an AOCE Address 2

When an MSAM receives a message from its external messaging system, it must
translate the addresses associated with the message before it can deliver the message
to an AOCE system.

The function DoConvertToAOCEAddress in Listing 2-15 on page 2-90 provides an
example of building an AOCE OCERecipient address structure from a non-AOCE
address. The DoConvertToAOCEAddress function takes an address from a letter it
received from its SMTP system and puts that address into AOCE format. The
DoConvertToAOCEAddress function calls several AOCE utility routines to facilitate
the process of constructing an AOCE address; the utility routines are described in the
chapter “AOCE Utilities” in Inside Macintosh: AOCE Application Interfaces.

Listing 2-15 picks up at the point where DoConvertToAOCEAddress begins assembling
the pieces of an OCERecipient structure. The DoConvertToAOCEAddress function
begins by constructing the record ID part of the OCERecipient. A record ID, in turn,
consists of a local record ID and record location information. It makes an RLI structure
that contains the record location information by calling the AOCE utility routine
OCENewRLI and providing it with an RLI structure’s component parts: a catalog name,
a discriminator, a dNode number, and a path. The OCENewRLI function returns
2-88 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
the RLI structure. The MSAM retrieves the catalog name from the private slot
specification structure (type MySlotSpec) that the MSAM builds when it is
launched. Because dNode numbers and paths are not used with non-AOCE
addresses, DoConvertToAOCEAddress passes OCENewRLI a null dNode number
and a nil pointer to a path. After OCENewRLI returns the RLI structure,
DoConvertToAOCEAddress calls the AOCE utility routine OCEValidRLI to check
its validity.

Next, DoConvertToAOCEAddress calls the OCEPackRLI utility routine to convert the
RLI structure into packed form and calls the OCEValidPackedRLI utility routine to
check the validity of the packed form.

Having prepared the record location information, DoConvertToAOCEAddress next
prepares the local record ID, which consists of a creation ID, a record name, and a record
type. A creation ID is not used in a non-AOCE address, so DoConvertToAOCEAddress
calls the OCESetCreationIDtoNull utility routine to set the CreationID structure to
0. The buffer pointed to by the local variable realName contains a displayable form of
the sender or receiver’s name in C string format. The DoConvertToAOCEAddress
function converts the C string into an RString and stores the RString in the local
variable recordName. It tells the OCECToRString utility routine what character set the
string uses and how many bytes, at maximum, it should place in the data portion of
the RString, which in this example is the maximum number of bytes. Then
DoConvertToAOCEAddress calls the OCECToRString utility routine again to get an
RString that contains the sender or receiver’s type. In this example, the type is always
set to the constant kUserRecTypeBody, indicating a user.

At this point, DoConvertToAOCEAddress calls the OCENewLocalRecordID utility
routine to build a local record ID from the creation ID, record name, and record type. The
DoConvertToAOCEAddress function then calls the OCENewRecordID utility routine
to build a record ID from its packed RLI and local record ID.

At last, DoConvertToAOCEAddress is ready to build the OCERecipient itself. It sets
the entitySpecifier field to point to the record ID it has just constructed. Then it sets
the extension fields. It specifies its extension type in the extensionType field. The
buffer pointed to by the local variable startAddr contains the SMTP address in C
string format. The DoConvertToAOCEAddress function converts the C string into
an RString and stores the RString in the local variable xtnValueRString. (The
DoConvertToAOCEAddress function converts the extension value from C string to
RString format so that the mailer can correctly display the SMTP address to the user.)
Then, DoConvertToAOCEAddress sets the extensionSize field to the number
of bytes in the body field of xtnValueRString plus 4 more to account for the
dataLength and charSet fields in an RString structure. This produces a count of
the total number of bytes in xtnValueRString. Last, DoConvertToAOCEAddress
sets the extensionValue field to point to xtnValueRString.

Before writing the address to a disk file, DoConvertToAOCEAddress converts the
address into packed form. It calls the OCEPackedDSSpecSize utility routine, passing
it the unpacked structure. In response, OCEPackedDSSpecSize returns the size
of the packed structure into which the unpacked structure could be converted. Then
DoConvertToAOCEAddress calls the OCEPackDSSpec utility routine and passes the
Using the MSAM API 2-89

C H A P T E R 2

Messaging Service Access Modules
size value to it. Finally, DoConvertToAOCEAddress writes the packed structure to a
disk file.

Listing 2-15 Building an OCERecipient structure

OSErr DoConvertToAOCEAddress(FSSpec *myTempFileSpec, MySlotSpec *slotSpec)

{

#define kMySMTPAddrType 'SMTP'

#define kMyDirectoryType 'SMTP'

#define kMyDiscriminator {kMyDirectoryType,0L}

OSErr myErr;

char *startAddr, *realName;

RLI myRLI;

PackedRLI myPackedRLI;

DirDiscriminator discriminator = kMyDiscriminator;

CreationID cid;

RString recordName,recordType;

LocalRecordID localRID;

RecordID RID;

OCERecipient theRecipient;

char packedRecipient[kMaxRecipSize];

unsigned long packedRecipLength;

RString xtnValueRString;

/*

Not shown here -- parse the address information in the letter from the

external messaging system. Put the SMTP address into a buffer pointed

to by startAddr. Put the displayable string that identifies the sender

or receiver into a buffer pointed to by realName.

*/

/* make an RLI and check it for validity */

OCENewRLI(&myRLI, (DirectoryNamePtr)&slotSpec->directoryName,

&discriminator, kNULLDNodeNumber, nil);

if (!OCEValidRLI(&myRLI))

return kUnexpectedOCECondition;

/* pack the RLI and check it for validity */

myErr = OCEPackRLI(&myRLI, &myPackedRLI, kRLIMaxBytes);
2-90 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
if (myErr != noErr)

return myErr;

if (!OCEValidPackedRLI(&myPackedRLI))

return kUnexpectedOCECondition;

/* prepare name and type rstrings and creation ID for local RID */

OCESetCreationIDtoNull(&cid); /* set cid to null */

OCECToRString(realName, smRoman, &recordName, kRStringMaxBytes);

OCECToRString(kUserRecTypeBody, smRoman, &recordType, kRStringMaxBytes);

/* the components have been prepared; make the local RID and the RID */

OCENewLocalRecordID (&recordName, &recordType, &cid, &localRID);

OCENewRecordID(&myPackedRLI, &localRID, &RID);

/* build the OCERecipient address structure */

theRecipient.entitySpecifier = &RID;

theRecipient.extensionType = kMySMTPAddrType;

OCECToRString(startAddr, smRoman, &xtnValueRString, kRStringMaxChars);

theRecipient.extensionSize = xtnValueRString.length+4;

theRecipient.extensionValue = (Ptr)&xtnValueRString;

/* pack the OCERecipient and write it to a disk file */

packedRecipLength = OCEPackedDSSpecSize(&theRecipient);

OCEPackDSSpec(&theRecipient, (PackedDSSpec *)&packedRecipient,

packedRecipLength);

myErr = DoWriteAddressToFile(myTempFileSpec, (Ptr)&packedRecipient,

packedRecipLength);

}

Note
If a personal MSAM receives an incoming letter that contains more than
one AOCE recipient, the MSAM translates all of the addresses. However,
a personal MSAM cannot forward letters from the user’s Macintosh to
other AOCE users. A personal MSAM can deliver an incoming letter
only to the owner of the local Macintosh computer, even if the letter
contains the addresses of other AOCE users. ◆

Logging Personal MSAM Operational Errors 2
When an operational error occurs, such as a modem not functioning properly or an
access number being out of service, the personal MSAM should log the error by calling
the PMSAMLogError function.

You can log four general classes of information: informational messages, warnings,
errors that are not correctable by the user, and errors that are correctable by the user.
Using the MSAM API 2-91

C H A P T E R 2

Messaging Service Access Modules
These classes are referred to as error types; they are represented by four enumerated
constants. You use one of these constants in the errorType field of the
MailErrorLogEntryInfo structure when you log an error:

enum {

kMailELECorrectable = 0, /* error correctable by user */

kMailELEError = 1, /* error not correctable by user */

kMailELEWarning = 2, /* warning requiring no user intervention */

kMailELEInformational = 3 /* informational message */

};

For example, you would log an error of type kMailELEInformational if you wanted
to inform the user that it took 12 connection attempts before a connection with the
external messaging system was actually achieved. If you wanted to warn the user that
his or her password on the external messaging system was about to expire, you would
log an error of type kMailELEWarning. You use the kMailELEError error type to log
an error that cannot be fixed by the user, for example, a missing resource in the personal
MSAM. If an error occurs that requires user intervention, you log an error of type
kMailELECorrectable.

In general, you should log all errors that require user intervention, but you should be
selective about logging other types of errors. Logging many warnings and informational
messages can fill the error log and cause problems at the user interface.

An error may apply to a specific slot or to the personal MSAM as a whole. When you log
an error, you set the msamSlotID field of the MailErrorLogEntryInfo structure to 0
if the error applies to the personal MSAM as a whole. Otherwise, you set it to the slot ID
of the affected slot.

When you log an error of type kMailELECorrectable, the IPM Manager considers
either the personal MSAM or the affected slot to be suspended. While a personal MSAM
is suspended, the IPM Manager does not send it any high-level events or restart it at
scheduled times if it quits. While a slot is suspended, the user cannot modify or delete it.
Moreover, if you specify the suspended slot in a call to the PMSAMOpenQueues function,
the function returns the kMailSlotSuspended result code. Other than these
exceptions, a personal MSAM can continue whatever activity it deems appropriate
while it or one of its slots is suspended.

For example, suppose a user configures an SMTP personal MSAM to start up every night
at midnight. At midnight, the IPM Manager launches the MSAM, and the MSAM fails to
connect to its external messaging system because MacTCP, which is required for this
MSAM, is not installed. The MSAM should log an error of type kMailELECorrectable.
The IPM Manager will not try to launch the SMTP personal MSAM again until the user
has installed MacTCP.

Because logging an error of type kMailELECorrectable implies that the problem is
not transient in nature, the PMSAMLogError function does not provide you with a
mechanism for canceling these errors or accessing logged entries. Correctable errors,
by their definition, require a user’s attention, and you should not log them unless
absolutely necessary.
2-92 Using the MSAM API

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
AOCE software defines the following error codes:

enum { /* predefined values of MailLogErrorCode */

kMailMSAMErrorCode = 0, /* MSAM-defined error */

kMailMiscError = -1, /* miscellaneous error */

kMailNoModem = -2 /* modem required, but missing */

};

Because a personal MSAM is a background application, it has no user interface and
therefore cannot notify the user of runtime errors. Because each MSAM can potentially
encounter errors specific to its implementation, the Finder cannot adequately notify the
user of these errors without help from the MSAM. To solve this problem, an MSAM
needs to provide two 'STR#' string list resources. The first 'STR#' resource contains a
list of the MSAM’s error messages, each describing a problem that may occur. This
resource must have a resource ID of kMailMSAMErrorStringListID. The second
'STR#' resource contains a list of strings specifying the action that the user can take to
fix a specific error. It must have a resource ID of kMailMSAMActionStringListID.

To cause the Finder to display one of your error messages, you must set the errorCode
field of the MailErrorLogEntryInfo structure to kMailMSAMErrorCode and set the
errorResource field. The errorResource field is an index into the list of your error
messages in the 'STR#' resource. The index of the first message in the string list is 1.

When you log an error that requires user intervention (kMailELECorrectable), you
must specify an action that the user should take to correct the error. You provide the action
messages in a 'STR#' resource (resource ID = kMailMSAMActionStringListID). You
set the actionResource field to an index into the list of your action messages in the
'STR#' resource. The index of the first message in the string list is 1.

The Finder displays all errors to the user, regardless of the error type. A user reports that
an error is corrected by clicking the Resolve button on a problem report in his or her In
Tray. (See the PowerTalk User’s Guide for a description of the PowerTalk user interface.)

The IPM Manager reinstates a suspended personal MSAM or slot when the user reports
that the error is corrected or when the computer on which the personal MSAM is
running is restarted. If the personal MSAM is not running when the user reports that the
problem has been corrected, the IPM Manager launches it. If the personal MSAM is
running, it gets a kMailEPPCContinue high-level event.

Messaging Service Access Module Reference 2

This section describes the structures and functions that constitute the messaging
service access module API. It also includes descriptions of the high-level events an
MSAM might receive.
Messaging Service Access Module Reference 2-93

C H A P T E R 2

Messaging Service Access Modules
Data Types and Constants 2
This section describes the data structures in the MSAM API. The chapters “AOCE
Utilities” and “Interprogram Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces contain descriptions of other structures that you use.

The MSAM Parameter Block 2

Every function in the MSAM API takes a pointer to an MSAMParam parameter block as
input. The parameter block has a standard header followed by function-specific fields.
Each function description in the section “MSAM Functions” describes the fields of that
function’s parameter block.

MailParamBlockHeader 2

The parameter block header for an MSAMParam structure has the following definition:

define MailParamBlockHeader

Ptr qLink; /* reserved */\

long reservedH1; /* reserved */\

long reservedH2; /* reserved */\

ProcPtr ioCompletion; /* your completion routine */\

OSErr ioResult; /* result code */\

long saveA5; /* location of app global variables */\

short reqCode; /* reserved */

Field descriptions

qLink Reserved.
reservedH1 Reserved.
reservedH2 Reserved.
ioCompletion Pointer to a completion routine that you can provide. When a

function that you called asynchronously completes execution, it
calls your completion routine. See page 2-219 for a description of
the completion routine. Set this field to nil if you do not wish to
provide a completion routine. This field is ignored if you call a
function synchronously.

ioResult The result of a function. You can poll the ioResult field to
determine when a function has finished executing. When you
execute the function asynchronously, the function sets this field
to 1 as soon as the function has been queued for execution. When
the function completes execution, it sets this field to the actual
result code.

saveA5 The contents of your application’s A5 register.
reqCode Reserved.
2-94 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MSAMParam 2

The MSAMParam structure is a union of function-specific substructures, each of which
contains standard header fields.

union MSAMParam {
struct {MailParamBlockHeader} header;

PMSAMGetMSAMRecordPB pmsamGetMSAMRecord;

PMSAMOpenQueuesPB pmsamOpenQueues;

PMSAMSetStatusPB pmsamSetStatus;

PMSAMLogErrorPB pmsamLogError;

SMSAMSetupPB smsamSetup;

SMSAMStartupPB smsamStartup;

SMSAMShutdownPB smsamShutdown;

MSAMEnumeratePB msamEnumerate;

MSAMDeletePB msamDelete;

MSAMOpenPB msamOpen;

MSAMOpenNestedPB msamOpenNested;

MSAMClosePB msamClose;

MSAMGetMsgHeaderPB msamGetMsgHeader;

MSAMGetAttributesPB msamGetAttributes;

MSAMGetRecipientsPB msamGetRecipients;

MSAMGetContentPB msamGetContent;

MSAMGetEnclosurePB msamGetEnclosure;

MSAMEnumerateBlocksPB msamEnumerateBlocks;

MSAMGetBlockPB msamGetBlock;

MSAMMarkRecipientsPB msamMarkRecipients;

MSAMnMarkRecipientsPB msamnMarkRecipients;

MSAMCreatePB msamCreate;

MSAMBeginNestedPB msamBeginNested;

MSAMEndNestedPB msamEndNested;

MSAMSubmitPB msamSubmit;

MSAMPutMsgHeaderPB msamPutMsgHeader;

MSAMPutAttributePB msamPutAttribute;

MSAMPutRecipientPB msamPutRecipient;

MSAMPutContentPB msamPutContent;

MSAMPutEnclosurePB msamPutEnclosure;

MSAMPutBlockPB msamPutBlock;

MSAMCreateReportPB msamCreateReport;

MSAMPutRecipientReportPB msamPutRecipientReport;

PMSAMCreateMsgSummaryPB pmsamCreateMsgSummary;

PMSAMPutMsgSummaryPB pmsamPutMsgSummary;

PMSAMGetMsgSummaryPB pmsamGetMsgSummary;
Messaging Service Access Module Reference 2-95

C H A P T E R 2

Messaging Service Access Modules
MailWakeupPMSAMPB wakeupPMSAM;

MailCreateMailSlotPB createMailSlot;

MailModifyMailSlotPB modifyMailSlot;

};

typedef union MSAMParam MSAMParam;

The Mail Buffer 2

You use the MailBuffer structure to pass data between your MSAM and the
IPM Manager.

MailBuffer 2

The mail buffer structure is defined by the MailBuffer data type.

struct MailBuffer {

long bufferSize; /* size of your buffer */

Ptr buffer; /* pointer to your buffer */

long dataSize; /* amount of data returned in or read out

of your buffer */

};

typedef struct MailBuffer MailBuffer;

Field descriptions

bufferSize When reading, you set this field to the size of your buffer in bytes.
When writing, you set this field to the number of bytes that you
want to write.

buffer A pointer to your buffer. You allocate a buffer of whatever size
you need.

dataSize When it successfully completes execution, the function sets this
field to the actual number of bytes that it read or wrote.

The Mail Reply Structure 2

A MailReply structure is a model. Many functions in the MSAM API format the data
they place in a MailBuffer structure according to the MailReply model format.
2-96 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MailReply 2

A structure of type MailReply consists of a single field, tupleCount, that contains
a count. It is followed immediately by tupleCount occurrences of a data item or
structure. The format of the data item or structure depends on the particular
function that returns the data in the MailReply structure format. For instance, the
MSAMEnumerate function returns MSAMEnumerateOutQReply or
MSAMEnumerateInQReply structures.

struct MailReply {

unsigned short tupleCount;

/* tuple[tupleCount] */

};

typedef struct MailReply MailReply;

The Enumeration Structures 2

The enumeration structures, MSAMEnumerateOutQReply and
MSAMEnumerateInQReply, return information about messages in an outgoing or
incoming queue, respectively. The MSAMEnumerate function returns a list of one
or the other of these structures. Each structure gives enough information about a
message for you to know what to do next with the message.

MSAMEnumerateOutQReply 2

When a personal or server MSAM calls the MSAMEnumerate function to enumerate an
outgoing queue, the function returns information about the messages in the outgoing
queue in a list of MSAMEnumerateOutQReply structures, one for each message.

struct MSAMEnumerateOutQReply {

long seqNum; /* sequence number of message */

Boolean done; /* resolution of message */

IPMPriority priority; /* priority of message */

OSType msgFamily; /* message family */

long approxSize; /* size of message */

Boolean tunnelForm; /* reserved */

Byte padByte; /* pad to even byte boundary */

NetworkSpec nextHop; /* reserved */

OCECreatorType msgType; /* message creator and type */

};

typedef struct MSAMEnumerateOutQReply MSAMEnumerateOutQReply;
Messaging Service Access Module Reference 2-97

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

seqNum A sequence number that identifies a specific message in the
outgoing queue. It is valid until you delete the message. You
pass this value to the MSAMOpen function to identify a message
you want to open.

done A Boolean value that indicates if you have sent—or completed your
attempts to send—the message to each of the recipients for which
you are responsible. The IPM Manager sets this field to true when
you have finished sending or attempting to send the message to all
of the recipients for which you are responsible. You tell the IPM
Manager which recipients you have processed by calling the
MSAMnMarkRecipients function.

priority A value that indicates the priority with which the message was sent.
Possible values are: kIPMNormalPriority, kIPMLowPriority,
and kIPMHighPriority.

msgFamily A value that indicates the message family to which the message
belongs. The AOCE-defined message families are kMailFamily,
kMailFamilyFile, and kIPMFamilyUnspecified. Developers
can define other message families.

approxSize The size of the message itself, not including some overhead bytes
associated with the message when it resides in the outgoing queue.

tunnelForm Reserved.
nextHop Reserved.
msgType A structure that specifies the creator and type of the message. The

creator field indicates the creator of the message. The type field
identifies the type of message.

MSAMEnumerateInQReply 2

When a personal MSAM calls the MSAMEnumerate function to enumerate an incoming
queue, the function returns information about the letters in the queue in a list of
MSAMEnumerateInQReply structures, one for each letter.

struct MSAMEnumerateInQReply {

long seqNum; /* letter sequence number */

Boolean msgDeleted; /* should letter be deleted? */

Boolean msgUpdated; /* was message summary updated? */

Boolean msgCached; /* is letter in the incoming queue? */

Byte padByte; /* pad to even byte boundary */

};

typedef struct MSAMEnumerateInQReply MSAMEnumerateInQReply;
2-98 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Field descriptions

seqNum A sequence number for a specific letter in the incoming queue. It is
valid until you delete the letter.

msgDeleted A Boolean value that indicates whether you should delete the letter.
Only the IPM Manager sets and clears this field. If this field is set to
true, you should delete the letter.

msgUpdated A Boolean value that indicates if the IPM Manager has updated the
message summary associated with the letter. Only the IPM Manager
sets and clears this field. This field is set to true if the IPM
Manager has updated the message summary.

msgCached A Boolean value that indicates if the letter is attached to its message
summary. Only the IPM Manager sets and clears this field. This
field is set to true if you wrote the letter into the incoming queue.

The Mail Time Structure 2

The MailTime structure appears in the sendTimeStamp attribute in a letter’s header
and in the sendTime field of a letter’s message summary.

MailTime 2

The MailTime structure is the standard structure for reporting time in an AOCE system.

struct MailTime {

UTCTime time; /* current UTC(GMT) */

UTCOffset offset; /* offset from UTC */

};

typedef struct MailTime MailTime;

Field descriptions

time Current time expressed as universal coordinated time (UTC) in
seconds since 00:00 hours, January 1, 1904. (The UTCTime data type
is unsigned long.)

offset Offset from UTC in seconds. The offset is a signed value added to
the time value. (The UTCOffset data type is long.)

The Letter Attribute Structures 2

Letter attributes identify a letter and indicate who wrote it, when it was sent, what its
priority for delivery is, who the recipients are, and so forth. Most attributes are stored in
the letter header; a few are stored in the message summary.
Messaging Service Access Module Reference 2-99

C H A P T E R 2

Messaging Service Access Modules
MailAttributeID 2

When calling the MSAMPutAttribute or MSAMPutRecipient function, you use the
MailAttributeID data type to indicate the letter attribute whose value you are
passing to the function. When calling the MSAMGetRecipients function, you use it
to indicate the recipient type about which you want information.

typedef unsigned short MailAttributeID;

A variable of type MailAttributeID may have any of the following values:

enum {

kMailLetterFlagsBit = 1, /* letter flags bit */

kMailIndicationsBit = 3, /* indications bit */

kMailMsgTypeBit = 4, /* letter creator & type bit */

kMailLetterIDBit = 5, /* letter ID bit */

kMailSendTimeStampBit = 6, /* send timestamp bit */

kMailNestingLevelBit = 7, /* nesting level bit */

kMailMsgFamilyBit = 8, /* message family bit */

kMailReplyIDBit = 9, /* reply ID bit */

kMailConversationIDBit = 10, /* conversation ID bit */

kMailSubjectBit = 11, /* subject bit */

kMailFromBit = 12, /* From recipient bit */

kMailToBit = 13, /* To recipient bit */

kMailCcBit = 14, /* cc recipient bit */

kMailBccBit = 15 /* bcc recipient bit */

};

MailAttributeBitmap 2

When calling the MSAMGetAttributes function, you use a MailAttributeBitmap
structure to indicate the letter attributes about which you want information. Each
defined bit in the attribute bitmap represents a letter attribute. This structure is also a
component part of the MSAMMsgSummary structure.

struct MailAttributeBitmap {

unsigned int /* 32 bits */

reservedA:16, /* bits 17 to 32--reserved */

reservedB:1, /* bit 16--reserved */

bcc:1, /* bit 15--blind carbon copy recipients */

cc:1, /* bit 14--carbon copy recipients */

to:1, /* bit 13--To recipients */

from:1, /* bit 12--sender of letter */
2-100 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
subject:1, /* bit 11--subject of letter */

conversationID:1, /* bit 10--ID of conversation thread */

replyID:1, /* bit 09--ID of letter being replied to */

msgFamily:1, /* bit 08--message family */

nestingLevel:1, /* bit 07--nesting level of letter */

sendTimeStamp:1, /* bit 06--time letter was sent */

letterID:1; /* bit 05--letter's unique ID number */

msgType:1, /* bit 04--letter's creator and type */

indications:1, /* bit 03--indications */

reservedC:1, /* bit 02--reserved */

letterFlags:1 /* bit 01--letter flags */

};

typedef struct MailAttributeBitmap MailAttributeBitmap;

Field descriptions

bcc Secondary recipients whose addresses do not appear on the letter as
received by the To and cc recipients and other bcc recipients.

cc Recipients who are being sent a courtesy copy of the letter.
to Primary recipients of the letter.
from The sender of the letter.
subject The subject of the letter.
conversationID The letter ID number of the original letter that began a sequence of

replies or forwards that resulted in the current letter.
replyID The letter ID number of the letter to which the current letter is

a reply.
msgFamily A value that indicates the message family to which the message

belongs.
nestingLevel The nesting level of the letter. A letter that is newly created (that is,

not a reply to or forward of an existing letter) has a nesting level of
0. A reply to or forward of a letter whose nesting level is 0 has a
nesting level of 1. A reply to or forward of a letter whose nesting
level is 1 has a nesting level of 2, and so on. See the section “Letters”
beginning on page 2-17 for information on nested letters.

sendTimeStamp The time the letter was sent.
letterID The letter ID number for the letter. This number is generated by the

IPM Manager.
msgType The creator and type of the letter. Each letter has a creator and type.
indications Indications of the properties of the letter, such as whether the letter

contains a digital signature, whether the originator requested
non-delivery reports, and so on. The MailIndications structure
is described on page 2-102.

letterFlags Flags that indicate the status of the letter, such as whether it has
been opened by the user. The MailLetterFlags structure is
described on page 2-123. Server MSAMs should ignore this attribute.
Messaging Service Access Module Reference 2-101

C H A P T E R 2

Messaging Service Access Modules
The following table summarizes letter attributes. In the column headed “O/M”, an M
indicates mandatory—that is, this attribute must always be present. An O means optional—
the attribute may or may not be present in a letter. In the column headed “F/V”, an F
indicates fixed—that is, this attribute has a fixed size—while a V means variable—the
attribute size is variable.

An MSAM should allocate the largest possible buffer for attributes whose size is variable.

Note
All letter attributes except the letterFlags attribute are stored in the
letter header. Both personal and server MSAMs read or set all letter
attributes in the letter header. The letterFlags attribute is stored in a
letter’s message summary. Server MSAMs do not create message
summaries and therefore do not set or read a letterFlags attribute
for letters they handle. The letterFlags attribute applies only to
letters submitted by a personal MSAM. ◆

MailIndications 2

The MailIndications structure further defines the letter attribute called
indications. It is a bit field structure that contains information about several
characteristics of the letter, such as what priority level the originator set for the
letter, whether it has been sent, what type of reports the originator wants, and so
on. An MSAM sets many of these bits for an incoming letter and reads the bits
for an outgoing letter.

Constant Value Attribute data type O/M F/V

kMailLetterFlagsBit 1 MailLetterFlags M F

kMailIndicationsBit 3 MailIndications M F

kMailMsgTypeBit 4 OCECreatorType M F

kMailLetterIDBit 5 MailLetterID M F

kMailSendTimeStampBit 6 MailTime M F

kMailNestingLevelBit 7 MailNestingLevel M F

kMailMsgFamilyBit 8 OSType M F

kMailReplyIDBit 9 MailLetterID O F

kMailConversationIDBit 10 MailLetterID O F

kMailSubjectBit 11 RString O V

kMailFromBit 12 OCERecipient M V

kMailToBit 13 OCERecipient M V

kMailCcBit 14 OCERecipient O V

kMailBccBit 15 OCERecipient O V
2-102 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
The following constants define bits in the MailIndications structure:

enum {

kMailOriginalInReportBit = 1,

kMailNonReceiptReportsBit = 3,

kMailReceiptReportsBit = 4,

kMailForwardedBit = 5,

kMailPriorityBit = 6,

kMailIsReportWithOriginalBit = 8,

kMailIsReportBit = 9,

kMailHasContentBit = 10,

kMailHasSignatureBit = 11,

kMailAuthenticatedBit = 12,

kMailSentBit = 13

};

Note
Constants for the hasStandardContent, hasImageContent, and
hasNativeContent bit fields are not defined. ◆

struct MailIndications {

unsigned int

reservedB:16,

hasStandardContent:1,/* letter has a content block */

hasImageContent:1, /* letter has an image block */

hasNativeContent:1, /* letter has a content enclosure */

sent:1, /* letter sent, not just composed */

authenticated:1, /* letter was created and transported with

authentication */

hasSignature:1, /* letter was signed with a digital signature */

hasContent:1, /* this letter or a nested letter has content */

isReport:1, /* not a letter, is really a report */

isReportWithOriginal:1,/* report contains the original letter */

priority:2, /* letter has normal, low, or high priority */

forwarded:1, /* letter contains a forwarded letter */

receiptReports:1, /* originator requests delivery indications */

nonReceiptReports:1, /* originator requests non-delivery indications */

originalInReport:2, /* originator wants original letter enclosed in

 reports */

};

typedef struct MailIndications MailIndications;
Messaging Service Access Module Reference 2-103

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

hasStandardContent
If this bit is set, this letter has a block of type kMailContentType
that contains data in standard interchange format.

hasImageContent
If this bit is set, this letter has a block of type kMailImageBodyType
that contains data in standard image format.

hasNativeContent
If this bit is set, this letter contains content in the form of a
content enclosure.

sent If this bit is set, this letter was sent, not just composed. This bit is
clear for nested letters and those that exist on disk and have not yet
been submitted.

authenticated If this bit is set, this letter was created by an authenticated user and
transported over a secure path using the Apple Secure Data Stream
Protocol. In release 1, a letter entering an AOCE system via an
MSAM is not authenticated. This bit will always be set to 0 on
letters read by a personal MSAM. On letters read by a server
MSAM, the bit may be set or clear. In either case, it is for
the MSAM’s information only.

hasSignature If this bit is set, the sender signed the letter with a digital signature.
The signature applies to the letter as a whole. If a portion of the
letter is signed, the bit is not set. See the chapter “Digital Signature
Manager” in Inside Macintosh: AOCE Application Interfaces for
information about digital signatures. The AOCE software sets this
bit to 0 for letters submitted by an MSAM. If this bit is set for an
outgoing letter, the MSAM can ignore it or add a note to the letter
indicating that the letter was originally signed with a digital
signature.

hasContent If this bit is set, this letter, or a letter nested within it, contains
content. The content can be a content block, an image block,
or a content enclosure. Although this bit doesn’t indicate the
type of content or the nesting level at which the content exists,
it provides useful information to AOCE letter applications that
display letter content by indicating if a letter has some type of
content at some nesting level.

isReport If this bit is set, this is an IPM report. Because an IPM report is not a
report that an MSAM creates or receives, you never set this bit for a
report that you create, nor will it be set on a report that you receive.
For more information about reports, see the section “Reports” on
page 2-23. IPM reports are discussed in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces.
2-104 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
isReportWithOriginal
If this bit is set, this is an IPM report that contains the original letter
to which the report pertains. Because an IPM report is not a report
that an MSAM creates or receives, you never set this bit for a report
that you create, nor will it be set on a report that you receive. For
more information about reports, see the section “Reports” on
page 2-23. IPM reports are discussed in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces.

priority The priority of the letter, as set by the sender. This 2-bit field can be
set to any of the following values: kIPMNormalPriority,
kIPMLowPriority, or kIPMHighPriority.

enum {

kIPMAnyPriority = 0,/* not used by MSAM */

kIPMNormalPriority = 1,

kIPMLowPriority,

kIPMHighPriority

};

It is up to the recipient to decide how to handle letters of
different priorities.

forwarded If this bit is set, this letter is a forwarded letter.
receiptReports If this bit is set, the originator of this letter has requested a report

containing delivery indications.
nonReceiptReports

If this bit is set, the originator of this letter has requested a report
containing non-delivery indications.

originalInReport
This 2-bit field can be set to either of the following values:

enum {

kMailNoOriginal = 0,

kMailEncloseOnNonReceipt= 3

};

If this field is set to kMailNoOriginal, the originator of this letter
specified that the original letter not be enclosed in reports. If this
field is set to kMailEnclosedOnNonReceipt, the originator of
this letter specified that the original letter be enclosed in reports
containing non-delivery indications. An MSAM ignores this field
and never includes a copy of the original letter in a report it creates.
The AOCE toolbox is responsible for including originals when
appropriate.
Messaging Service Access Module Reference 2-105

C H A P T E R 2

Messaging Service Access Modules
The following table indicates who sets the bits in the MailIndications structure for
an incoming letter. In the column labeled “Responsible for setting,” MSAM refers to both
personal and server MSAMs.

The Recipient Structures 2

The structures in this section define the sender or receiver of a message. You use these
structures when you get recipient information from a message that you have opened or
when you put recipient information into a message that you are creating. The chapter
“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces also
describes the OCERecipient and OCEPackedRecipient structures. The structures are
described here from the perspective of an MSAM’s use of them.

OCERecipient 2

The OCERecipient structure completely specifies an address. It should contain
whatever information is needed to deliver a message to that address.

You use an OCERecipient structure to specify a reply address when you call the
MSAMPutMsgHeader function.

An OCERecipient structure is the unpacked form of the OCEPackedRecipient
structure (described next). The utility routines OCEPackRecipient and
OCEUnpackRecipient allow you to transform the address information from one
format to the other. The routines are described in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

MailIndications bit field Responsible for setting

hasStandardContent MSAM

hasImageContent MSAM

hasNativeContent MSAM

sent IPM Manager

authenticated IPM Manager

hasSignature IPM Manager

hasContent MSAM

isReport Not applicable

isReportWithOriginal Not applicable

priority MSAM

forwarded MSAM

receiptReports MSAM

nonReceiptReports MSAM

originalInReport MSAM
2-106 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
struct OCERecipient {

RecordID* entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

Field descriptions

entitySpecifier
Pointer to a RecordID structure. The record ID contains part of the
address. The section “AOCE Addresses” beginning on page 2-23
explains what each field of the RecordID structure should contain
when it holds either an AOCE address or an external address.

extensionType Identifies the type of messaging system with which this recipient is
associated. It determines the format and the meaning of the data
pointed to by the extensionValue field. You must provide an
extension type.

extensionSize The number of bytes in the extensionValue field.
extensionValue A pointer to the part of the address that is specific to the messaging

system. You should provide the address extension information in an
RString structure. This allows the information to be displayed
properly to the user and allows the user to create new addresses of
this type using the type-in addressing feature. (Type-in addressing
is a feature of PowerTalk software’s human interface.)

Table 2-5 on page 2-30 and Table 2-4 on page 2-29 list the contents of each field in an
OCERecipient structure for an AOCE address and an external address, respectively.

typedef OCERecipient MailRecipient;

The MailRecipient structure is defined as an OCERecipient data type. You use it
in exactly the same way as you would an OCERecipient structure. You provide a
MailRecipient structure to specify a recipient of a letter or a report when you call
the MSAMPutRecipient or MSAMCreateReport function, respectively.

OCEPackedRecipient 2

An OCEPackedRecipient structure is the packed form of the OCERecipient
structure (described in the previous section).

You cannot read the packed address directly. Before you can read it, you must
convert it to the unpacked format using the OCEUnpackRecipient utility routine.
The utility routines OCESizePackedRecipient, OCEGetRecipientType, and
OCESetRecipientType allow you to manipulate an OCEPackedRecipient structure.
They are described in the chapter “Interprogram Messaging Manager” in Inside
Macintosh: AOCE Application Interfaces.
Messaging Service Access Module Reference 2-107

C H A P T E R 2

Messaging Service Access Modules
A structure of type OCEPackedRecipient is a minimum-sized structure and should
not be allocated on the stack. Instead, use the NewPtr or NewHandle routine to allocate
the structure.

struct OCEPackedRecipient {

unsigned short dataLength; /* length of recipient data */

Byte data[kOCEPackedRecipientMaxBytes];

};

Field descriptions

dataLength Length of the packed recipient address that immediately follows
this field.

data Packed recipient address.

MailOriginalRecipient 2

The MailOriginalRecipient structure consists of a single field, index, that contains
an index value for a given recipient. The MailOriginalRecipient structure is a
model of how address information is stored in a buffer. It is always followed immedi-
ately by an OCEPackedRecipient structure that contains the address information of
that recipient. The MSAMGetRecipients function returns recipient information in
MailOriginalRecipient format when you call the function requesting information
about recipients of a particular type (From, To, cc, or bcc).

struct MailOriginalRecipient {

short index; /* index for recipient */

/* followed by OCEPackedRecipient structure */

};

typedef struct MailOriginalRecipient MailOriginalRecipient;

Field descriptions

index An absolute index value associated with the recipient.

MailResolvedRecipient 2

The MailResolvedRecipient structure contains an index value for the recipient,
an indication of whether the recipient is a bcc recipient, and a Boolean value that
indicates whether you are responsible for delivering the message to this recipient.
The MailResolvedRecipient structure is a model of how address information is
stored in a buffer. The fields of the structure are always followed immediately by an
2-108 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
OCEPackedRecipient structure that contains the address information of the
recipient. The MSAMGetRecipients function returns recipient information in
MailResolvedRecipient format when you call the function requesting informa-
tion about resolved recipients.

struct MailResolvedRecipient {

short index; /* index for recipient */

short recipientFlags;/* recipient information */

Boolean responsible; /* responsible for delivery? */

Byte padByte;

/* followed by OCEPackedRecipient structure */

};

typedef struct MailResolvedRecipient MailResolvedRecipient;

Field descriptions

index An absolute index value associated with the recipient. You need this
value when you call the MSAMPutRecipientReport function to
identify the recipient to whom the report pertains. The index is also
useful if you want to match an original recipient with a resolved
recipient.

recipientFlags A value that tells you if this recipient is a bcc recipient. Use
the mask kIPMBCCRecMask to determine if this recipient is
a bcc recipient.

responsible A Boolean value that is set to true if you are responsible for
sending the message to this recipient.

The Segment Types 2

A content block (type kMailContentType) contains the body or main content of a letter
in standard interchange format (see the section “Letters” beginning on page 2-17 for more
information about interchange format). A content block consists of segments of data in
plain text, styled text, picture, sound, or movie format. The MailSegmentType data
type identifies one of the five standard data segment types. The MailSegmentMask data
type specifies one or more of these segment types. You read and write content blocks with
the MSAMGetContent (page 2-150) and MSAMPutContent functions (page 2-186).

MailSegmentType 2

A variable of the MailSegmentType data type specifies the format of data in a
data segment.

typedef unsigned short MailSegmentType;
Messaging Service Access Module Reference 2-109

C H A P T E R 2

Messaging Service Access Modules
A variable of type MailSegmentType can contain one of the following values:

enum { /* values of MailSegmentType */

kMailInvalidSegmentType = 0,

kMailTextSegmentType = 1,

kMailPictSegmentType = 2,

kMailSoundSegmentType = 3,

kMailStyledTextSegmentType = 4,

kMailMovieSegmentType = 5

};

Constant descriptions

kMailInvalidSegmentType
This value is included as a convenience. An MSAM can initialize a
variable of type MailSegmentType to this known value before
calling the MSAMGetContent function.

kMailTextSegmentType
The segment contains plain text in one or more character sets. The
text data must consist of 1-byte or 2-byte character codes,
depending on the character set (Roman, Arabic, Kanji, and so on).

kMailPictSegmentType
The segment contains picture data in PICT format. For more
information about PICT format, see Inside Macintosh: Imaging With
QuickDraw.

kMailSoundSegmentType
The segment contains data in Audio Interchange File Format
(AIFF). For more information about AIFF format, see Inside
Macintosh: More Macintosh Toolbox.

kMailStyledTextSegmentType
The segment contains text and a StScrpRec structure containing
the style information corresponding to that text. The text data
consists of 1-byte or 2-byte character codes, depending on the
character set (Roman, Arabic, Kanji, and so on). For more
information on the StScrpRec structure, the style record, and the
style table, see Inside Macintosh: Text.

kMailMovieSegmentType
The segment contains QuickTime movie data in QuickTime movie
file format ('MooV'). For more information about the 'MooV' file
format, see Inside Macintosh: QuickTime.

MailSegmentMask 2

You use the MailSegmentMask data type to indicate the kinds of data segments that
you want to read when you call the MSAMGetContent function.

typedef unsigned short MailSegmentMask;
2-110 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
The bits in the segment mask are defined as follows:

enum {
kMailTextSegmentBit,

kMailPictSegmentBit,

kMailSoundSegmentBit,

kMailStyledTextSegmentBit,

kMailMovieSegmentBit

};

You can use a combination of the following values to set bits in the segment mask:

enum { /* values of MailSegmentMask */

kMailTextSegmentMask = 1L<<kMailTextSegmentBit,

kMailPictSegmentMask = 1L<<kMailPictSegmentBit,

kMailSoundSegmentMask = 1L<<kMailSoundSegmentBit,

kMailStyledTextSegmentMask = 1L<<kMailStyledTextSegmentBit,

kMailMovieSegmentMask = 1L<<kMailMovieSegmentBit

};

The Enclosure Information Structure 2

You add an enclosure to a letter by calling the MSAMPutEnclosure function. The
function takes a MailEnclosureInfo structure as input. This structure describes the
enclosure being added to the letter.

MailEnclosureInfo 2

You pass a MailEnclosureInfo structure to the MSAMPutEnclosure function when
you enclose a file that resides in memory.

struct MailEnclosureInfo {

StringPtr enclosureName;

/* name of the enclosure */

CInfoPBPtr catInfo; /* HFS catalog info about enclosure*/

StringPtr comment; /* comment for Get Info window */

Ptr icon /* icon for enclosure file */

};

typedef struct MailEnclosureInfo MailEnclosureInfo;
Messaging Service Access Module Reference 2-111

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

enclosureName A pointer to the name of the file that you want to enclose. Format
the filename as a Pascal-style string—that is, add a leading length
byte. The name must be 1 to 31 bytes long, excluding the length
byte, and must not contain colons (:).

catInfo A pointer to a fully specified CInfoPBRec structure (defined in
Inside Macintosh: Files), which is returned by the PBGetCatInfo
function. Set the fields for which you cannot obtain appropriate
values to 0, with the exception of the ioNamePtr and
ioFlFndrInfo fields. Ignore the ioNamePtr field because you
pass the filename in the enclosureName field. The first 8 bytes of
the ioFlFndrInfo field contain values for the file’s type and
creator. Because the type and creator determine the application
associated with the file and the icon that the Finder displays for that
file, omitting a value for the ioFlFndrInfo field renders the file
unusable. Therefore, you should make every attempt to provide
meaningful values for the file’s creator and type. If you do not
know the application associated with the file, set the creator field
to four question marks ('????'). If you do not know the file’s type,
set the type field to ('????') as well.

comment A pointer to a Pascal-style string containing the file’s comment; it is
the information that the Get Info command in the Finder displays
for the file. The string cannot be longer than 199 characters,
excluding the length byte. The Finder truncates a longer string
when it places the file on an HFS volume. If the file has no
comment, set the comment field to nil.

icon A pointer to the file’s icon: the standard black-and-white icon (32 by
32 bits) consisting of 128 bytes of bitmap followed by 128 bytes of
mask. Enclosures in a letter are stored in AppleSingle format.
AppleSingle format typically provides a single black-and-white
icon so that non-Macintosh file systems can easily read an icon
without needing to know how to get at the icon resources stored
in AppleSingle format. This field preserves compatibility with
AppleSingle format. It is not used by AOCE software. You can set
this field to nil.

The Image Block Information Structure 2

You use the TPfPgDir structure when reading or writing an image block.
2-112 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
TPfPgDir 2

An image block starts with an image block information structure (the TPfPgDir data
type defined by the Printing Manager), followed by a series of PICT elements.

struct TPfPgDir{

short iPages; /* number of pages in image block */

long iPgPos[129]; /* array [0..iPfMaxPgs] of offsets */

};

Field descriptions

iPages The number of pages in the image. The image block contains one
PICT for each page.

iPgPos An array of offsets from the start of the block to the picture elements
that follow the TPfPgDir structure.

The iPgPos array contains offsets to the picture elements that follow the TPfPgDir
structure. The offset from the start of the image block to the image of page n + 1 is
iPgPos[n] (because page numbers start at 1 and the array elements start at 0). The array
contains iPgPos[n + 1] elements for a document of n pages. The last element is the offset
of the end of the last page from the beginning of the block. You can determine the size of
a page by subtracting the offset of the current page from the offset of the next page, that
is, the size of page n is iPgPos[n] – iPgPos[n – 1].

The High-Level Event Structures 2

The MailEPPCMsg, SMCA, OCESetupLocation, MailLocationFlags, and
MailLocationInfo structures are used in conjunction with high-level events.

MailEPPCMsg 2

When you call the AcceptHighLevelEvent function after receiving an AOCE
high-level event, the function returns a buffer that contains a MailEPPCMsg structure.

struct MailEPPCMsg {

short version; /* message version */

union {

SMCA * theSMCA; /* pointer to SMCA */

long sequenceNumber; /* letter sequence number */

MailLocationInfo locationInfo;/* location information */

} u;

};

typedef struct MailEPPCMsg MailEPPCMsg;
Messaging Service Access Module Reference 2-113

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

version The version number of the AOCE high-level event. You should
verify that this version number matches the value of the
kMailEPPCMsgVersion constant in the PowerTalk interface files
you used when you built your MSAM.

u.theSMCA A pointer to an SMCA structure that contains additional information
relevant to the event. The IPM Manager uses this field when it
sends any of the following events: kMailEPPCCreateSlot,
kMailEPPCModifySlot, kMailEPPCDeleteSlot,
kMailEPPCMsgOpened, kMailEPPCSendImmediate,
kMailEPPCAdmin.

u.sequenceNumber
The sequence number of the letter to which the event applies.
The IPM Manager uses this field when it sends either the
kMailEPPCInQUpdate or kMailEPPCDeleteOutQMsg event.

u.locationInfo A MailLocationInfo structure. The IPM Manager uses this field
when it sends the kMailEPPCLocationChanged event.

SMCA 2

The shared memory communication area, defined by the SMCA structure, is used to pass
information between the IPM Manager and an MSAM, in addition to the data passed in
the EventRecord structure.

struct SMCA {

unsigned short smcaLength; /* length of entire SMCA

(including the length field) */

OSErr result; /* result code */

long userBytes; /* event-specific data */

union{

CreationID slotCID; /* creation ID of record

containing slot information */

long msgHint; /* message reference value */

} u;

};

typedef struct SMCA SMCA;

Field descriptions

smcaLength The total length of the SMCA structure, including the 2 bytes for the
smcaLength field itself. The IPM Manager sets this field.

result You set this field to acknowledge receipt of the event to the IPM
Manager or to indicate that you have handled the event. Set it to the
noErr result code to acknowledge receipt of the event or to report
success. Otherwise, set it to an MSAM-defined error code. See the
individual event descriptions for details.
2-114 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
userBytes The interpretation of this field is dependent on the particular event
that is being processed. See the individual event descriptions for
information on how this field is used for that event.

u.slotCID If the event applies to a particular slot, this field contains the
creation ID of the slot’s record in the Setup catalog. If the event
applies to the MSAM as a whole, this field contains 0. The IPM
Manager sets this field. It is irrelevant to server MSAMs.

u.msgHint A reference value associated with a specific letter. The IPM Manager
sets this field.

OCESetupLocation 2

The OCESetupLocation data type defines the current system location.

typedef char OCESetupLocation;

The values 0–8 are valid values for a variable of type OCESetupLocation. Values 1–8
refer to an actual location. The value 0 is a special case that indicates the offline or
disconnected state. When the current system location is 0, a personal MSAM should not
be executing.

The following enumeration defines constants for two of the valid values of type
OCESetupLocation:

enum {

kOCESetupLocationNone = 0, /* disconnect state */

kOCESetupLocationMax = 8 /* maximum location value */

};

MailLocationFlags 2

The MailLocationFlags data type defines a bit array. Each bit corresponds to a
system location. If the bit is set, the slot to which the location flags apply is active at that
location. The MailLocationFlags data type is used in the MailLocationInfo and
MailStandardSlotInfoAttribute structures.

typedef unsigned char MailLocationFlags;

A system location is identified by a value ranging from 1 to 8. To test a bit in a variable of
type MailLocationFlags, the following mask is defined:

#define MailLocationMask(locationNumber) (1<<((locationNumber)-1))
Messaging Service Access Module Reference 2-115

C H A P T E R 2

Messaging Service Access Modules
Note that for the special location value 0, which corresponds to the disconnected or
offline state, the mask value is 0. The slot is inactive at all locations when the current
system location is 0.

MailLocationInfo 2

The MailLocationInfo structure contains the current system location and a bit
array defining the locations at which a given slot is active. The MailLocationInfo
structure is part of the MailEPPCMsg structure. A personal MSAM receives a
MailLocationInfo structure when it receives a kMailEPPCLocationChanged event.

struct MailLocationInfo {

OCESetupLocation location; /* the current location */

MailLocationFlags active; /* slot's location flags */

};

typedef struct MailLocationInfo MailLocationInfo;

Field descriptions

location A value that identifies the current system location. It may contain
any integer value between 0–8.

active A bit array that defines whether or not a given slot is active at each
system location.

The Server MSAM Administrative Event Structures 2

The IPM Manager provides a server MSAM with administrative information by means
of the kMailEPPCAdmin high-level event (page 2-235).

SMSAMAdminCode 2

The SMSAMAdminCode data type defines a set of codes for server MSAM administrative
actions.

typedef unsigned short SMSAMAdminCode;

A variable of type SMSAMAdminCode can have any of the following values:

enum {

kSMSAMNotifyFwdrSetupChange= 1,

kSMSAMNotifyFwdrNameChange = 2,

kSMSAMNotifyFwdrPwdChange = 3,

kSMSAMGetDynamicFwdrParams = 4

};
2-116 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
SMSAMAdminEPPCRequest 2

The userBytes field of the SMCA structure associated with a kMailEPPCAdmin
high-level event provides a pointer to an SMSAMAdminEPPCRequest structure. The
SMSAMAdminEPPCRequest structure contains an administrative code followed by
data whose type is determined by the code.

struct SMSAMAdminEPPCRequest {

SMSAMAdminCode adminCode; /* admin code */

union {

SMSAMSetupChange setupChange; /* setup change */

SMSAMNameChange nameChange; /* reserved */

SMSAMPasswordChange passwordChange; /* reserved */

SMSAMDynamicParams dynamicParams; /* reserved */

} u;

};

typedef struct SMSAMAdminEPPCRequest SMSAMAdminEPPCRequest;

Field descriptions

adminCode A value that indicates the type of administrative action requested
by the kMailEPPCAdmin high-level event. The value in this field
determines the type of structure contained in the u field. In release 1
of PowerTalk system software, this should always be the
kSMSAMNotifyFwdrSetupChange code.

u Contains a structure that varies depending on the value of the
adminCode field. In release 1 of PowerTalk system software, this
should always be an SMSAMSetupChange structure.

SMSAMSetupChange 2

The SMSAMSetupChange structure contains connectivity information about a
server MSAM.

struct SMSAMSetupChange {

SMSAMSlotChanges whatChanged; /* what parameters changed */

AddrBlock serverHint; /* AOCE server address */

};

typedef struct SMSAMSetupChange SMSAMSetupChange;

Field descriptions

whatChanged A value that indicates the connectivity information that
has changed.
Messaging Service Access Module Reference 2-117

C H A P T E R 2

Messaging Service Access Modules
serverHint The AppleTalk address of the PowerShare catalog server that the
MSAM should use to read its Forwarder record containing the
changed connectivity information. Because an AOCE system is a
distributed system, the changed data may not have propagated to
other servers yet.

SMSAMSlotChanges 2

The SMSAMSlotChanges data type defines a bit array that indicates the kind of
connectivity information that has changed.

typedef unsigned long SMSAMSlotChanges;

The bits in the SMSAMSlotChanges data type are defined as follows:

enum {

kSMSAMFwdrHomeInternetChangedBit,

kSMSAMFwdrConnectedToChangedBit,

kSMSAMFwdrForeignRLIsChangedBit,

kSMSAMFwdrMnMServerChangedBit

};

You can use the following values to test the bits in a variable of type
SMSAMSlotChanges:

enum { /* values of SMSAMSlotChanges */

kSMSAMFwdrEverythingChangedMask = -1,

kSMSAMFwdrHomeInternetChangedMask= 1L<<kSMSAMFwdrHomeInternetChangedBit,

kSMSAMFwdrConnectedToChangedMask = 1L<<kSMSAMFwdrConnectedToChangedBit,

kSMSAMFwdrForeignRLIsChangedMask = 1L<<kSMSAMFwdrForeignRLIsChangedBit,

kSMSAMFwdrMnMServerChangedMask = 1L<<kSMSAMFwdrMnMServerChangedBit

};

Constant descriptions

kSMSAMFwdrEverythingChangedMask
In release 1 of the AOCE software, this constant has the same
definition as that of the kSMSAMFwdrForeignRLIsChangedMask
constant.

kSMSAMFwdrHomeInternetChangedMask
Reserved.

kSMSAMFwdrConnectedToChangedMask
Reserved.
2-118 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
kSMSAMFwdrForeignRLIsChangedMask
The record location information that points to a catalog associated
with the MSAM’s external messaging system has changed. The
information changes when the PowerShare system administrator
adds or deletes a catalog for a messaging system served by the
MSAM.

kSMSAMFwdrMnMServerChangedMask
Reserved.

The Personal MSAM Setup Structures 2

The MailTimer and MailTimerKind data types and the MailTimers and
MailStandardSlotInfoAttribute structures contain the user’s send and receive
requirements for a given slot and location information for that slot.

MailTimer 2

A variable of type MailTimer specifies a number of seconds. The value is interpreted as
a frequency interval or a specific time, depending on which union field is used.

union MailTimer {

long frequency; /* how often to connect */

long connectTime; /* time since midnight */

};

typedef union MailTimer MailTimer;

Field descriptions

frequency A value that tells a personal MSAM how often it should connect to
its messaging system to send or retrieve mail. The frequency
interval is specified in seconds.

connectTime A value that tells a personal MSAM at what time it should connect
to its messaging system to send or retrieve mail. The time is
specified as the number of seconds since midnight. The midnight
used is that of the internal time on the Macintosh as set by the user.

MailTimerKind 2

A variable of type MailTimerKind specifies the type of timer that a user wants to use
with a given mail slot.

typedef Byte MailTimerKind;
Messaging Service Access Module Reference 2-119

C H A P T E R 2

Messaging Service Access Modules
A variable of type MailTimerKind can have any of the following values:

enum {

kMailTimerOff = 0, /* no timer specified */

kMailTimerTime = 1, /* timer relative to midnight */

kMailTimerFrequency = 2 /* frequency timer*/

};

Constant descriptions

kMailTimerOff Specifies that the user has not requested a timer.
kMailTimerTime Specifies that a personal MSAM should send or retrieve messages at

a particular time.
kMailTimerFrequency

Specifies that a personal MSAM should send or retrieve messages at
regular intervals.

MailTimers 2

The MailTimers structure indicates how frequently a personal MSAM connects to its
external messaging system. A personal MSAM’s setup template sets the fields of the
MailTimers structure in response to user actions. The user can express the frequency as
a particular clock time at which the personal MSAM automatically connects every day
(for example, connect at 3:00 A.M. to send and receive letters) or as a periodic occurrence
(for example, connect every two hours). The IPM Manager uses the information in this
structure to determine when it should send a kMailEPPCSchedule event to the
personal MSAM.

struct MailTimers {

MailTimerKind sendTimeKind; /* timer kind for sending */

MailTimerKind receiveTimeKind; /* timer kind for receiving */

MailTimer send; /* connect time or frequency

for sending letters */

MailTimer receive; /* connect time or frequency

for receiving letters */

};

typedef struct MailTimers MailTimers;

Field descriptions

sendTimeKind A constant that indicates what type of timer the user wants the
personal MSAM to use for sending messages for a particular slot.
The setup template sets this field to one of the following values:
kMailTimerTime, kMailTimerFrequency, or kMailTimerOff.
2-120 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
receiveTimeKind
A constant that indicates what type of timer the user wants the
personal MSAM to use for retrieving messages for a particular slot.
The setup template sets this field to one of the following values:
kMailTimerTime, kMailTimerFrequency, or kMailTimerOff.

send A value that specifies either the time interval that elapses before the
personal MSAM sends messages to its external messaging system
or a specific time at which the MSAM sends these messages.
The MSAM interprets this field according to the value in the
sendTimeKind field. If that value is kMailTimerOff, the MSAM
ignores this field.

receive A value that specifies either the time interval that elapses before the
personal MSAM retrieves messages from its external messaging
system or a specific time at which the MSAM retrieves these
messages. The MSAM interprets this field according to the value in
the receiveTimeKind field. If that value is kMailTimerOff, the
MSAM ignores this field.

MailStandardSlotInfoAttribute 2

The personal MSAM’s setup template obtains location and timing information from the
user to set the active and sendReceiveTimer fields of this structure appropriately.
Then it adds the structure to the slot’s Combined or Mail Service record in the Setup
catalog, where the information is available to the IPM Manager.

struct MailStandardSlotInfoAttribute {

short version; /* version of this slot structure */

MailLocationFlags active; /* active at location i if

MailLocationMask(i) is set */

Byte padByte;

MailTimers sendReceiveTimer;

};

typedef struct MailStandardSlotInfoAttribute MailStandardSlotInfoAttribute;

Field descriptions

version The version of the MailStandardSlotInfoAttribute structure.
You should set this field to 1. There is no constant defined for it.

active A bit array that defines whether or not the slot is active at a given
location. If the bit is set, the slot is active at the corresponding loca-
tion. A slot is active if a personal MSAM is able to send and receive
messages for the slot.

sendReceiveTimer
The frequency at which the IPM Manager should schedule the
personal MSAM to send and receive messages for the user account
represented by this slot. (The IPM Manager does this by sending the
MSAM a kMailEPPCSchedule event.)
Messaging Service Access Module Reference 2-121

C H A P T E R 2

Messaging Service Access Modules
The Personal MSAM Letter Flag Structures 2

The letter flags provide information about a letter in an incoming queue. Only personal
MSAMs use the structures in this section.

MailLetterSystemFlags 2

The IPM Manager sets the letter system flags.

typedef unsigned short MailLetterSystemFlags;

The bit in the system flags bytes that you can test is defined as follows:

enum {

kMailIsLocalBit = 2

};

You can use the following value to test the bit flag in the MailLetterSystemFlags
data type.

enum {

kMailIsLocalMask = 1L<<kMailIsLocalBit

};

Constant descriptions

kMailIsLocalMask
The letter exists in an incoming queue on the local computer. If the
kMailIsLocalBit bit is not set, the letter is stored on an external
messaging system, and only its message summary is currently
available locally.

MailLetterUserFlags 2

The IPM Manager and a personal MSAM can set letter user flags in response to a
user action.

typedef unsigned short MailLetterUserFlags;

The bits in the user flags bytes are defined as follows:

enum {
kMailReadBit,

kMailDontArchiveBit,

kMailInTrashBit

};
2-122 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
You can use the following values to test the flags in the MailLetterUserFlags
data type.

enum {
kMailReadMask = 1L<<kMailReadBit,

kMailDontArchiveMask = 1L<<kMailDontArchiveBit,

kMailInTrashMask = 1L<<kMailInTrashBit

};

Constant descriptions

kMailReadMask The user has opened this letter. A personal MSAM sets the letter
user flags to 0 when it creates the letter’s message summary. The
IPM Manager sets the kMailReadBit bit to 1 when the user opens
the letter. A personal MSAM can also modify this bit by calling the
PMSAMPutMsgSummary function.

kMailDontArchiveMask
Reserved.

kMailInTrashMask
Reserved.

MailLetterFlags 2

The MailLetterFlags structure contains both system and user letter flags to indicate
the status of a letter.

struct MailLetterFlags {

MailLetterSystemFlags sysFlags; /* system flags */

MailLetterUserFlags userFlags; /* user flags */

};

typedef struct MailLetterFlags MailLetterFlags;

Field descriptions

sysFlags A set of bit flags managed by the IPM Manager. You can test the
kMailIsLocalBit bit to determine if a given letter is actually
stored on the local computer.

userFlags A set of bit flags that indicate state changes that are controlled by
the user. The only bit flag that is relevant to an MSAM is the
kMailReadBit bit, which indicates whether the user has opened
the letter. You can test this bit with the kMailReadMask constant.
Messaging Service Access Module Reference 2-123

C H A P T E R 2

Messaging Service Access Modules
MailMaskedLetterFlags 2

Use the MailMaskedLetterFlags structure to set the letter flags attribute in a letter.
This structure is used by the MSAMPutMsgSummary function.

struct MailMaskedLetterFlags {

MailLetterFlags flagMask; /* flags that are to be set */

MailLetterFlags flagValues; /* their values */

};

typedef struct MailMaskedLetterFlags MailMaskedLetterFlags;

Field descriptions

flagMask The flags that are to be set.
flagValues The values of the flags that you want to set.

The Personal MSAM Message Summary Structures 2

A personal MSAM creates a message summary to store summary information about a
letter. The Finder uses message summary information to display incoming letters to the
user. The MSAMMsgSummary structure defines a message summary. A message summary
consists of a few individual fields and two groups of letter attributes. The two groups of
letter attributes are defined by the MailMasterData and MailCoreData structures,
described in this section.

MailMasterData 2

The attributes specified in the MailMasterData structure are not critical to the Finder
when it displays information about the letter to which the message summary belongs.

struct MailMasterData {

MailAttributeBitmap attrMask; /* indicates attributes present in

letter */

MailLetterID messageID; /* ID of this letter *

MailLetterID replyID; /* ID of letter this is a reply to */

MailLetterID conversationID;/* ID of letter that started this

 conversation */

};

typedef struct MailMasterData MailMasterData;
2-124 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
Field descriptions

attrMask A bit array that indicates letter attributes. You must set the bits that
correspond to the attributes that are present in the letter. See the
description of the MailAttributeBitmap structure on page 2-100
for a description of the bits in the attribute bitmap.

messageID The letter ID of this letter. The letter ID is a value that uniquely
identifies the letter. The letter ID is provided by the IPM Manager.

replyID The letter ID of the letter to which this letter is a reply. You provide
this value if it exists in the letter.

conversationID The letter ID of the original letter that began a sequence of replies or
forwards that resulted in this letter. You provide this value if it
exists in the letter.

MailCoreData 2

The Finder uses the attributes specified in the MailCoreData structure when it displays
information about the letter to which the message summary belongs. You provide values
for the fields of the structure, except where otherwise noted in the field descriptions.

/* defines for the addressedToMe field */

#define kAddressedAs_TO 0x1

#define kAddressedAs_CC 0x2

#define kAddressedAs_BCC 0x4

struct MailCoreData {

MailLetterFlags letterFlags; /* letter status flags */

unsigned long messageSize /* size of letter */

MailIndications letterIndications;

/* indications for this letter */

OCECreatorType messageType; /* message creator and type of this

letter */

MailTime sendTime; /* time this letter was sent */

OSType messageFamily; /* message family */

unsigned char reserved;

unsigned char addressedToMe; /* user is To, cc, or bcc recipient */

char agentInfo[6]; /* reserved (set to 0) */

/* these are variable length and even padded */

RString32 sender; /* sender of this letter */

RString32 subject; /* subject of this letter */

};

typedef struct MailCoreData MailCoreData;
Messaging Service Access Module Reference 2-125

C H A P T E R 2

Messaging Service Access Modules
Field descriptions

letterFlags A set of bit flags that indicate the status of the letter, such as
whether it has been opened by the user. Set this field to 0. See the
description of the MailLetterFlags structure on page 2-123 for
more information on these bit flags. You can modify the user
portion of the letter flags when you call the PMSAMPutMsgSummary
function.

messageSize The size of the letter in bytes. You provide this value.
letterIndications

Indications of additional properties of the letter, such as whether the
letter contains a digital signature, whether or not the originator
requested non-delivery indications, and so on. See the description
of the MailIndications structure on page 2-102. You provide
this value.

messageType The creator and type of the letter. Every letter has a creator and
type. You must provide this value.

sendTime The time the letter was sent. You provide this value.
messageFamily A value that indicates the message family to which the message

belongs. Set this field to kMailFamily.
reserved Reserved.
addressedToMe Indicates how the letter was sent to the addressee: as a To address, a

cc address, or a bcc address; possible values are kAddressedAs_TO,
kAddressedAs_CC, and kAddressedAs_BCC. You must set this
field appropriately. You can set more than one bit.

agentInfo Reserved. Set this field to 0.
sender The sender of the letter. You must provide a value for this field.

If your sender information consists of an odd number of bytes,
add a pad byte so that it ends on an even byte boundary. The IPM
Manager treats this field and the subject field that follows as a
single common buffer that contains variable-length sender and
subject information. See the section “Creating a Letter’s Message
Summary” beginning on page 2-64 for information on how to
correctly assign a value to this field.

subject The subject of the letter. You must provide this value. If your subject
information consists of an odd number of bytes, add a pad byte so
that it ends on an even byte boundary. The IPM Manager treats this
field and the sender field before it as a single common buffer that
contains variable-length sender and subject information. You add
the subject on the first even-byte boundary following the sender
information, which is not necessarily the same as the beginning of
this field. See the section “Creating a Letter’s Message Summary”
beginning on page 2-64 for information on how to correctly assign a
value to this field.
2-126 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MSAMMsgSummary 2

An MSAMMsgSummary structure provides summary information about an incoming
letter. You must create one of these structures for each incoming letter. (In addition
to the fields defined in the message summary structure, the IPM Manager stores up
to kMailMaxPMSAMMsgSummaryData bytes of MSAM-specific private data with a
message summary.)

struct MSAMMsgSummary {

short version; /* version of the MSAMMsgSummary

structure */

Boolean msgDeleted; /* should letter be deleted? */

Boolean msgUpdated; /* was message summary updated? */

Boolean msgCached; /* is letter in the incoming queue? */

Byte padByte;

MailMasterData masterData; /* attributes not essential to

display */

MailCoreData coreData; /* attributes critical to display *

};

typedef struct MSAMMsgSummary MSAMMsgSummary;

Field descriptions

version The version of the message summary structure. You must set this
field to the constant kMailMsgSummaryVersion.

msgDeleted A Boolean value indicating whether you should delete this letter.
You do not provide a value for this field. The IPM Manager initially
sets this field to false. It sets this field to true when the user
deletes a letter. If this field is true, you should delete the letter on
your external messaging system and delete the letter’s message
summary.

msgUpdated A Boolean value indicating whether the IPM Manager updated
information in the message summary. You do not provide an
initial value for this field. The IPM Manager initially sets this
field to false. It sets this field to true when it updates any
of the following fields in the message summary: msgDeleted,
msgStoreFlags, finderInfo. You read this field to determine
if the message summary has changed. If it has, you should
reexamine the message summary and take appropriate action,
if any, based on the changed information. After taking the action,
you should reset this field to false.

msgCached A Boolean value indicating whether the letter associated with the
message summary exists in an incoming queue. You do not provide
a value for this field. The IPM Manager initially sets this field
to false. It sets this field to true when you write the letter
corresponding to this message summary into the incoming queue.
Messaging Service Access Module Reference 2-127

C H A P T E R 2

Messaging Service Access Modules
masterData A MailMasterData structure that contains letter attributes not
essential to the ability of the Finder to display the letter. See the
structure description on page 2-124 for an explanation of the
information that you must provide.

coreData A MailCoreData structure that contains the attributes crucial to
the Finder’s ability to display the letter. See the structure
description on page 2-125 for an explanation of the information that
you must provide.

The Personal MSAM Error Log Entry Structure 2

The error log is where a personal MSAM can report errors that require a user’s
intervention to correct. The personal MSAM reports errors using the PMSAMLogError
function. The function takes a pointer to a MailErrorLogEntryInfo structure
as input.

MailErrorLogEntryInfo 2

You provide a MailErrorLogEntryInfo structure to the PMSAMLogError function
when you want to report an operational error to the IPM Manager and ultimately to
the user.

typedef unsigned short MailLogErrorType;

/* values of MailLogErrorType */

enum {

kMailELECorrectable = 0, /* error correctable by user */

kMailELEError = 1, /* error not correctable by user */

kMailELEWarning = 2, /* warning requiring no user intervention */

kMailELEInformational= 3 /* informational message */

};

typedef short MailLogErrorCode;

/* predefined values of MailLogErrorCode */

enum {

kMailMSAMErrorCode = 0, /* MSAM-defined error */

kMailMiscError = -1, /* miscellaneous error */

kMailNoModem = -2 /* modem required, but missing */

};

struct MailErrorLogEntryInfo {

short version; /* log entry version */

UTCTime timeOccurred; /* time of error */

Str31 reportingPMSAM; /* MSAM reporting the error */

Str31 reportingMSAMSlot; /* slot having the error */
2-128 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

2
M

essaging S
ervice A

ccess M
odules
MailLogErrorType errorType; /* level of error */

MailLogErrorCode errorCode; /* error code */

short errorResource; /* error string resource index */

short actionResource; /* action string resource index */

unsigned long filler; /* reserved */

unsigned short filler2; /* reserved */

};

typedef struct MailErrorLogEntryInfo MailErrorLogEntryInfo;

Field descriptions

version The version of the error log entry. Set this field to
kMailErrorLogEntryVersion.

timeOccurred The time that the error occurred. This is filled in by the
IPM Manager.

reportingPMSAM
A string identifying the personal MSAM that is logging the error.
This is filled in by the IPM Manager.

reportingMSAMSlot
A string identifying the slot that is experiencing the error, if the
error is associated with a specific slot. This is filled in by the IPM
Manager.

errorType A value that indicates the type of error that you are logging. Set this
field to one of the following constants: kMailELECorrectable,
kMailELEError, kMailELEWarning,
kMailELEInformational.

errorCode A value that indicates the error you are logging. There are three
predefined errors; you can define others. If you want to log an error
that you define, set this field to kMailMSAMErrorCode and set the
errorResource field to the index into your string list ('STR#')
resource for the string that describes the error. The constants for the
predefined errors are kMailMSAMErrorCode, kMailMiscError,
and kMailNoModem.

errorResource An index into your list of error messages. An error message
describes the problem that has occurred. The resource ID of the
'STR#' resource containing the list of error messages must be
kMailMSAMErrorStringListID. If you are logging an
AOCE-defined error, the IPM Manager ignores this field.

actionResource The index into your list of action messages. An action message is
always associated with an error of type kMailELECorrectable.
The action message recommends the action that the user should
take to correct the error. The resource ID of the 'STR#' resource
containing the list of action messages must be
kMailMSAMActionStringListID. If you are logging an
AOCE-defined error, the IPM Manager ignores this field.

See the section “Logging Personal MSAM Operational Errors” on page 2-91 for more
information about operational errors.
Messaging Service Access Module Reference 2-129

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Service Access Modules TOC
	 Introduction to Service Access Modules
	 Messaging Service Access Modules TOC
	Messaging Service Access Modules, Part 1 (Introduction and Using)
	Introduction to Messaging Service Access Modules
	Personal MSAMs
	Server MSAMs
	MSAM Modes of Operation
	Types of Messages
	Basic Messages
	Letters
	Reports

	AOCE Addresses
	AOCE High-Level Events
	System Location
	Using the MSAM API
	Determining Whether the Collaboration Toolbox Is A...
	Determining the Version of the IPM Manager
	Launching a Personal MSAM
	Initializing a Personal MSAM
	Initializing a Server MSAM
	Handling Outgoing Messages
	Enumerating Messages in an Outgoing Queue
	Opening and Closing a Message
	Determining the Message Family
	Determining What Is in a Message
	Reading Letter Attributes
	Interpreting Creator and Type for Messages and Blo...
	Reading Addresses
	Reading Letter Content
	Reading a Nested Message
	Marking Recipients
	Generating a Report

	Writing Incoming Messages
	Choosing Creator and Type for Messages and Blocks
	Creating a Letter’s Message Summary
	Creating a Letter
	Creating a Non-Letter Message
	Writing Letter Attributes
	Writing Addresses
	Writing Letter Content
	Submitting a Message
	Receiving a Report

	Deleting a Message
	Translating Addresses
	Translating From an AOCE Address
	Translating to an AOCE Address

	Logging Personal MSAM Operational Errors

	Messaging Service Access Module Reference
	Data Types and Constants
	The MSAM Parameter Block
	The Mail Buffer
	The Mail Reply Structure
	The Enumeration Structures
	The Mail Time Structure
	The Letter Attribute Structures
	The Recipient Structures
	The Segment Types
	The Enclosure Information Structure
	The Image Block Information Structure
	The High-Level Event Structures
	The Server MSAM Administrative Event Structures
	The Personal MSAM Setup Structures
	The Personal MSAM Letter Flag Structures
	The Personal MSAM Message Summary Structures
	The Personal MSAM Error Log Entry Structure

	 Messaging Service Access Modules, Part 2 (Reference: Functions Part 1)
	 Messaging Service Access Modules, Part 3 (Reference: Functions Part 2)
	 Messaging Service Access Modules, Part 4 (Summary)
	 Catalog Service Access Modules TOC
	 Catalog Service Access Modules
	 Service Access Module Setup TOC
	 Service Access Module Setup
	 Glossary
	 Index
	 Colophon

